WO2023080346A1 - 반도체 소자용 커패시터, 반도체 소자용 커패시터의 제조 방법, 및 디램 소자 - Google Patents

반도체 소자용 커패시터, 반도체 소자용 커패시터의 제조 방법, 및 디램 소자 Download PDF

Info

Publication number
WO2023080346A1
WO2023080346A1 PCT/KR2022/002619 KR2022002619W WO2023080346A1 WO 2023080346 A1 WO2023080346 A1 WO 2023080346A1 KR 2022002619 W KR2022002619 W KR 2022002619W WO 2023080346 A1 WO2023080346 A1 WO 2023080346A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
electrode
oxide
layer
moo
Prior art date
Application number
PCT/KR2022/002619
Other languages
English (en)
French (fr)
Inventor
한정환
Original Assignee
서울과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울과학기술대학교 산학협력단 filed Critical 서울과학기술대학교 산학협력단
Publication of WO2023080346A1 publication Critical patent/WO2023080346A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/75Electrodes comprising two or more layers, e.g. comprising a barrier layer and a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/65Electrodes comprising a noble metal or a noble metal oxide, e.g. platinum (Pt), ruthenium (Ru), ruthenium dioxide (RuO2), iridium (Ir), iridium dioxide (IrO2)
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N97/00Electric solid-state thin-film or thick-film devices, not otherwise provided for

Definitions

  • the present invention relates to a capacitor for a semiconductor device, and more particularly, to a capacitor for a semiconductor device including a lower electrode and an upper electrode of a double electrode structure in which a metal or metal oxide layer and a molybdenum dioxide layer are stacked, and a capacitor for a semiconductor device It relates to a manufacturing method, and a DRAM device.
  • DRAM memory semiconductor devices
  • ultra-fine integrated devices such as the use of a process with a design rule of 20 nm or less.
  • capacitor technology is a core technology of DRAM. Capacitors storing electric charges responsible for recording “1” and “0” information require a large capacitance while maintaining a low leakage current under an operating voltage.
  • Dielectrics that have been mainly used up to now are aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), zirconium oxide (ZrO 2 ), etc., and are being used or developed together with electrode materials such as TiN.
  • Al 2 O 3 aluminum oxide
  • HfO 2 hafnium oxide
  • ZrO 2 zirconium oxide
  • electrode materials such as TiN.
  • a material that is attracting attention as a new dielectric material is titanium oxide (TiO 2 ) of a rutile structure that can have a permittivity of 100 or more.
  • Titanium oxide having such a rutile structure is not formed by a general manufacturing method, but is formed when a noble metal oxide electrode such as RuO 2 and IrO 2 is used.
  • a noble metal oxide electrode such as RuO 2 and IrO 2
  • they have a large work function, can suppress leakage current, and have the advantage of obtaining a high permittivity dielectric, so they are attracting attention as electrode materials for next-generation capacitor devices.
  • Such a capacitor structure has a problem in that it is very vulnerable to a heat treatment process in a reducing atmosphere during a manufacturing process of a DRAM device.
  • RuO 2 , IrO 2 , etc. are easily reduced to metals at high temperatures, and during reduction, non-uniformity of the surface state, increase in leakage current due to increase in roughness, and oxygen generated during reduction move inside the DRAM device, causing fatal problems.
  • the manufacturing cost of the DRAM device increases due to the use of the noble metal oxide electrode.
  • Molybdenum dioxide Molybdenum dioxide
  • Molybdenum dioxide Molybdenum dioxide
  • Molybdenum dioxide Molybdenum dioxide
  • Molybdenum trioxide MoO 3
  • MoO 3 molybdenum trioxide
  • Another object of the present invention is to provide a capacitor for a semiconductor device including a lower electrode and an upper electrode of a double electrode structure in which a metal or metal oxide layer and a molybdenum dioxide layer are stacked.
  • Another object of the present invention is to provide a method for manufacturing a capacitor for a semiconductor device including a lower electrode and an upper electrode of a double electrode structure in which a metal or metal oxide layer and a molybdenum dioxide layer are stacked.
  • Another object of the present invention is to provide a DRAM device including the capacitor for the semiconductor device.
  • a capacitor for a semiconductor device provides a lower electrode including a first electrode layer and a second electrode layer, a dielectric layer formed on the lower electrode, and a dielectric layer formed on the dielectric layer. It may include an upper electrode formed.
  • the lower electrode is a double electrode composed of the first electrode layer containing a metal or metal oxide (AO x (where 0 ⁇ x ⁇ 2)) and the second electrode layer containing molybdenum dioxide (MoO 2 ).
  • the first electrode layer and the second electrode layer are heat-treated under at least one of an inert atmosphere, an oxygen atmosphere, and a hydrogen atmosphere, and a gap between the first electrode layer and the second electrode layer is formed. It can be formed through an oxidation-reduction reaction.
  • the metal oxide included in the first electrode layer may be ruthenium oxide.
  • ruthenium oxide (RuO y (where 0 ⁇ y ⁇ 2)) deposited on the first electrode layer is reduced, and deposited on the second electrode layer
  • the second electrode layer including denium (MoO 2 ) may have a stacked structure.
  • the lower electrode may further include a base electrode layer including titanium nitride (TiN).
  • TiN titanium nitride
  • the first electrode layer may be formed on the base electrode layer.
  • the dielectric layer is titanium dioxide (TiO 2 ), Al, Hf, Zr, Ta, Si doped with at least one of titanium dioxide (Doped-TiO 2 ), hafnium dioxide (HfO 2 ), zirconium dioxide (ZrO 2 ) ), tantalum pentoxide (Ta 2 O 5 ), and aluminum oxide (Al 2 O 3 ). Since the dielectric layer is formed on the second electrode layer including molybdenum dioxide (MoO 2 ) having a rutile structure, permittivity and leakage current may be improved.
  • MoO 2 molybdenum dioxide
  • the upper electrode includes the first electrode layer containing ruthenium or ruthenium oxide (RuO x (where 0 ⁇ x ⁇ 2), and the second electrode layer containing molybdenum dioxide (MoO 2 )) It may include the double electrodes stacked.
  • RuO x ruthenium or ruthenium oxide
  • MoO 2 molybdenum dioxide
  • the metal oxide included in the first electrode layer may be iridium oxide.
  • iridium oxide (IrO y (where 0 ⁇ y ⁇ 2)) deposited on the first electrode layer is reduced,
  • MoO z (where 0 ⁇ z ⁇ 2)) deposited on the second electrode layer is oxidized,
  • the first layer containing iridium or iridium oxide (IrO x (where 0 ⁇ x ⁇ 2)) is oxidized.
  • An electrode layer and the second electrode layer including molybdenum dioxide (MoO 2 ) may have a stacked structure.
  • the metal oxide included in the first electrode layer may be rhenium oxide.
  • the rhenium oxide (ReO y (where 0 ⁇ y ⁇ 2)) deposited on the first electrode layer is reduced,
  • the molybdenum oxide (MoO z (where 0 ⁇ z ⁇ 2)) deposited on the second electrode layer is oxidized, the first layer containing rhenium or rhenium oxide (ReO x (where 0 ⁇ x ⁇ 2)) is oxidized.
  • An electrode layer and the second electrode layer including molybdenum dioxide (MoO 2 ) may have a stacked structure.
  • a method of manufacturing a capacitor for a semiconductor device includes forming a lower electrode, forming a dielectric layer on the lower electrode, and an upper portion on the dielectric layer. It may include forming an electrode.
  • Forming the lower electrode may include depositing a first electrode layer including a first metal oxide (AO y (provided that 0 ⁇ y ⁇ 2)), molybdenum oxide (MoO z (provided that 0 ⁇ z ⁇ 2) according to the step of depositing a second electrode layer including), the step of heat-treating the first electrode layer and the second electrode layer, and the oxidation-reduction reaction between the first electrode layer and the second electrode layer, the second metal or Forming a double electrode composed of the first electrode layer including a second metal oxide (AO x (where 0 ⁇ x ⁇ 2)) and the second electrode layer including molybdenum dioxide (MoO 2 ) can include
  • the step of depositing the first electrode layer and the step of depositing the second electrode layer included in the step of forming the lower electrode are atomic layer deposition (ALD), chemical vapor deposition (CVD), sputtering (sputtering) Depositing the first electrode layer and the second electrode layer using at least one of thermal evaporation, E-beam evaporation, molecular beam epitaxy, and pulsed laser deposition (PLD).
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • sputtering sputtering
  • PLD pulsed laser deposition
  • the step of heat-treating the first electrode layer and the second electrode layer included in the step of forming the lower electrode is 200 ° C to 800 ° C under at least one condition of an inert atmosphere, an oxygen atmosphere, and a hydrogen atmosphere.
  • the first electrode layer and the second electrode layer may be heat-treated at a temperature of °C for 30 seconds to 60 minutes.
  • the first metal oxide and the second metal oxide may be at least one of ruthenium oxide, iridium oxide, and rhenium oxide.
  • a DRAM device may include a substrate, a transistor disposed on the substrate, and a capacitor electrically connected to the transistor.
  • the capacitor may include a lower electrode including a first electrode layer and a second electrode layer, a dielectric layer formed on the lower electrode, and an upper electrode formed on the dielectric layer.
  • the lower electrode is a double electrode composed of the first electrode layer containing a metal or metal oxide (AO x (where 0 ⁇ x ⁇ 2)) and the second electrode layer containing molybdenum dioxide (MoO 2 ).
  • the first electrode layer and the second electrode layer are heat-treated under at least one of an inert atmosphere, an oxygen atmosphere, and a hydrogen atmosphere, and a gap between the first electrode layer and the second electrode layer is formed. It can be formed through an oxidation-reduction reaction.
  • the molybdenum dioxide electrode serves as an oxidation-reduction prevention layer, deterioration of surface properties of the electrode can be prevented.
  • the permittivity of the dielectric layer may be improved according to the rutile structure of molybdenum dioxide.
  • molybdenum dioxide has a high work function, leakage current of a capacitor for a semiconductor device may be reduced.
  • molybdenum dioxide is relatively inexpensive compared to conventional electrode materials, manufacturing costs of DRAM devices can be reduced.
  • the upper and lower electrodes of the capacitor for semiconductor devices include a first electrode layer including a metal or a metal oxide (AO x (where 0 ⁇ x ⁇ 2)), and molybdenum dioxide. (MoO 2 ) It may have a double electrode structure composed of a second electrode layer. That is, in the capacitor for semiconductor devices of the present invention, only the upper electrode among the upper electrode and the lower electrode may have a double electrode structure, only the lower electrode among the upper electrode and the lower electrode may have a double electrode structure, and the upper electrode and the lower electrode may have a double electrode structure. All of the electrodes may have a double electrode structure.
  • AO x metal or a metal oxide
  • MoO 2 molybdenum dioxide.
  • FIG. 1 is a diagram illustrating a stacked structure of a capacitor for a semiconductor device according to embodiments of the present invention.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a capacitor for a semiconductor device of FIG. 1 .
  • FIG. 3 is a flowchart illustrating steps of forming a lower electrode in the manufacturing method of the capacitor for semiconductor device of FIG. 2 .
  • FIG. 4 is a diagram showing an example of a capacitor for a semiconductor device including a double electrode composed of ruthenium oxide and molybdenum dioxide.
  • FIG. 5A is a graph showing a reaction between molybdenum and ruthenium oxide to form a double electrode of the capacitor for a semiconductor device of FIG. 4 .
  • Figure 5b is a graph showing the reaction equation and reaction energy according to the mole fraction in the graph of Figure 5a.
  • FIG. 6A is a graph showing a reaction between molybdenum oxide and ruthenium oxide for forming a double electrode of the capacitor for a semiconductor device of FIG. 4 .
  • Figure 6b is a graph showing the reaction equation and reaction energy according to the mole fraction in the graph of Figure 6a.
  • FIG. 7 is a diagram illustrating another example of the capacitor for a semiconductor device of FIG. 1 .
  • FIG. 8 is a diagram showing an example of a capacitor for a semiconductor device including a double electrode composed of iridium oxide and molybdenum dioxide.
  • FIG. 9A is a graph showing a reaction between molybdenum and iridium oxide for forming a double electrode of the capacitor for a semiconductor device of FIG. 8 .
  • Figure 9b is a graph showing the reaction equation and reaction energy according to the mole fraction in the graph of Figure 9a.
  • FIG. 10 is a diagram showing an example of a capacitor for a semiconductor device including a double electrode composed of rhenium oxide and molybdenum dioxide.
  • FIG. 11A is a graph showing a reaction between molybdenum and rhenium oxide to form a double electrode of the capacitor for a semiconductor device of FIG. 10 .
  • Figure 11b is a graph showing the reaction equation and reaction energy according to the mole fraction in the graph of Figure 11a.
  • FIG. 12 is a diagram illustrating a DRAM device including a capacitor for a semiconductor device according to example embodiments.
  • first or second may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another component, for example, without departing from the scope of rights according to the concept of the present invention, a first component may be named a second component, Similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a diagram showing a stacked structure of a capacitor 10 for a semiconductor device according to embodiments of the present invention
  • FIG. 2 is a flow chart showing a manufacturing method of the capacitor 10 for a semiconductor device of FIG. 1
  • FIG. 2 is a flowchart illustrating steps of forming the lower electrode 100 of the method of manufacturing the capacitor 10 for a semiconductor device.
  • the capacitor 10 for a semiconductor device includes a lower electrode 100 including a first electrode layer EL1 and a second electrode layer EL2, a dielectric layer 200, and an upper electrode 300.
  • the capacitor 10 for a semiconductor device includes forming a lower electrode 100 (S100), forming a dielectric layer 200 on the lower electrode 100 (S200), and forming a dielectric layer 200 on the dielectric layer 200. It may be manufactured through the step of forming the upper electrode 300 (S300).
  • the lower electrode 100 of the capacitor 10 for a semiconductor device includes a first electrode layer EL1 including a metal or metal oxide (AO x (where 0 ⁇ x ⁇ 2)) and molybdenum dioxide (MoO 2 ). It may include a double electrode composed of a second electrode layer EL2 including a.
  • AO x metal or metal oxide
  • MoO 2 molybdenum dioxide
  • forming the lower electrode 100 includes depositing a first electrode layer EL1 containing a first metal oxide (S110), and a second electrode layer containing molybdenum oxide.
  • the first electrode layer EL1 and the second electrode layer EL2 are subsequently heat treated, and the first electrode layer EL1 and the second electrode layer ( According to the redox reaction between EL2), the first electrode layer EL1 including the second metal or the second metal oxide AO x (where 0 ⁇ x ⁇ 2), and molybdenum dioxide (MoO 2 ) It may be formed through a process of forming a double electrode composed of the second electrode layer EL2 including .
  • depositing the first electrode layer EL1 ( S110 ) and depositing the second electrode layer EL2 ( S120 ) may include the first electrode layer EL1 and the second electrode layer EL2 by a physical thin film deposition method. ) can be deposited.
  • the step of depositing the first electrode layer EL1 and the step of depositing the second electrode layer EL2 are atomic layer deposition (ALD), chemical vapor deposition (CVD), sputtering, and thermal evaporation.
  • the first electrode layer EL1 and the second electrode layer EL2 may be deposited using at least one of E-beam evaporation, molecular beam epitaxy, and pulsed laser deposition (PLD).
  • the heat treatment of the first electrode layer EL1 and the second electrode layer EL2 is performed at a temperature of 200°C to 800°C under at least one of an inert atmosphere, an oxygen atmosphere, and a hydrogen atmosphere.
  • the first electrode layer EL1 and the second electrode layer EL2 may be heat treated for 30 seconds to 60 minutes.
  • forming a double electrode composed of the first electrode layer EL1 and the second electrode layer EL2 is performed according to the oxidation-reduction reaction between the first electrode layer EL1 and the second electrode layer EL2.
  • a double electrode composed of a first electrode layer EL1 and a second electrode layer EL2 may be formed.
  • the double electrode is formed of the first metal oxide AO y deposited on the first electrode layer EL1 (provided that 0 ⁇ y ⁇ 2 )) is reduced, and the molybdenum oxide (MoO z (provided, 0 ⁇ z ⁇ 2)) deposited on the second electrode layer (EL2) is oxidized, so that the second metal or the second metal oxide (AO x (provided,
  • a first electrode layer EL1 including 0 ⁇ x ⁇ 2 and a second electrode layer EL2 including molybdenum dioxide (MoO 2 ) may have a stacked structure.
  • the dielectric constant of the dielectric layer 200 can be improved according to the rutile structure of molybdenum dioxide.
  • the first metal oxide deposited on the first electrode layer EL1 and the second metal oxide included in the first electrode layer EL1 after the heat treatment step are at least one of ruthenium oxide, iridium oxide, and rhenium oxide.
  • ruthenium oxide, iridium oxide, and rhenium oxide can be The structure of the capacitor 10 for a semiconductor device composed of each metal oxide will be described in detail with reference to FIGS. 4 to 11 .
  • the dielectric layer 200 may be formed by stacking a dielectric material having a predetermined permittivity on the lower electrode 100 .
  • the dielectric layer 200 is titanium dioxide (TiO 2 ), titanium dioxide (Doped-TiO 2 ) doped with at least one of Al, Hf, Zr, Ta, Si, hafnium dioxide (HfO 2 ), zirconium dioxide (ZrO 2 ) 2 ), tantalum pentoxide (Ta 2 O 5 ), and aluminum oxide (Al 2 O 3 ).
  • the dielectric constant of the dielectric layer 200 may be improved by being formed on the second electrode layer EL2 including molybdenum dioxide (MoO 2 ) having a rutile structure.
  • MoO 2 molybdenum dioxide
  • the step of forming the upper electrode 300 may form the upper electrode 300 in the same manner as the double electrode formation method of the lower electrode 100.
  • only the lower electrode 100 among the lower electrode 100 and the upper electrode 300 may have a double electrode structure, and the upper electrode among the lower electrode 100 and the upper electrode 300 may have a double electrode structure. Only 300 may have a double electrode structure, and both the lower electrode 100 and the upper electrode 300 may have a double electrode structure.
  • the upper electrode 300 includes a first electrode layer EL1 including ruthenium or ruthenium oxide (RuO x (where 0 ⁇ x ⁇ 2), and a second electrode layer EL1 including molybdenum dioxide (MoO 2 )).
  • the double electrode in which the electrode layer EL2 is stacked may be included.
  • the molybdenum dioxide electrode serves as an oxidation-reduction prevention layer, so that the surface properties of the electrode can be prevented from deteriorating.
  • FIG. 4 is a view showing an example of a capacitor 10a for a semiconductor device including a double electrode composed of ruthenium oxide and molybdenum dioxide
  • FIG. It is a graph showing the reaction of molybdenum and ruthenium oxide for the reaction
  • FIG. 5b is a diagram showing the reaction formula and reaction energy according to the mole fraction in the graph of FIG. 5a.
  • the metal oxide included in the first electrode layer EL1 may be ruthenium oxide.
  • the capacitor 10a for a semiconductor device includes a lower electrode 100 including a first electrode layer EL1 and a second electrode layer EL2, a dielectric layer 200, and a first electrode layer EL1 and a second electrode layer EL2. It may include an upper electrode 300 including.
  • the first electrode layer EL1 may include ruthenium or ruthenium oxide (RuO x ), and the second electrode layer EL2 may include molybdenum dioxide (MoO 2 ).
  • RuO x ruthenium or ruthenium oxide
  • MoO 2 molybdenum dioxide
  • the lower electrode 100 may include a double electrode including a first electrode layer EL1 containing ruthenium oxide (RuO x ) and a second electrode layer EL2 containing molybdenum dioxide (MoO 2 ).
  • a double electrode including a first electrode layer EL1 containing ruthenium oxide (RuO x ) and a second electrode layer EL2 containing molybdenum dioxide (MoO 2 ).
  • RuO x ruthenium oxide
  • MoO 2 molybdenum dioxide
  • the upper electrode 300 may include a double electrode including a first electrode layer EL1 containing ruthenium oxide (RuO x ) and a second electrode layer EL2 containing molybdenum dioxide (MoO 2 ).
  • a double electrode including a first electrode layer EL1 containing ruthenium oxide (RuO x ) and a second electrode layer EL2 containing molybdenum dioxide (MoO 2 ).
  • RuO x ruthenium oxide
  • MoO 2 molybdenum dioxide
  • the double electrode is formed of ruthenium oxide (RuO y (where 0 ⁇ y ⁇ 2) deposited on the first electrode layer EL1 as the first electrode layer EL1 and the second electrode layer EL2 are heat-treated). ) is reduced, and molybdenum oxide (MoO z (provided, 0 ⁇ z ⁇ 2)) deposited on the second electrode layer EL2 is oxidized, thereby ruthenium or ruthenium oxide (RuO x (provided, 0 ⁇ x ⁇ 2) ), and a second electrode layer EL2 including molybdenum dioxide (MoO 2 ) may have a stacked structure.
  • RuO y ruthenium oxide
  • MoO z molybdenum oxide
  • the first electrode layer EL1 may be deposited with ruthenium oxide (RuO 2 ), and the second electrode layer EL2 may be deposited with molybdenum (Mo).
  • RuO 2 ruthenium oxide
  • Mo molybdenum
  • ruthenium oxide (RuO 2 ) deposited on the first electrode layer EL1 is reduced and deposited on the second electrode layer EL2.
  • Molybdenum (Mo) may be oxidized.
  • molybdenum dioxide (MoO 2 ) may be produced.
  • MoO 2 molybdenum dioxide
  • FIG. 5A as the mole fraction of ruthenium oxide (RuO 2 ) changes from 0 to 1, the mole fraction of molybdenum dioxide (MoO 2 ) may increase and then decrease again.
  • the mole fraction of ruthenium oxide (RuO 2 ) when the mole fraction of ruthenium oxide (RuO 2 ) is 0.5, the mole fraction of molybdenum dioxide (MoO 2 ) may be 0.5.
  • the reaction energy according to the redox reaction may be -81.60 (KJ / mol).
  • molybdenum dioxide MoO 2
  • MoO 3 molybdenum trioxide
  • FIG. 6A is a graph showing the reaction of molybdenum oxide and ruthenium oxide to form a double electrode of the capacitor 10a for a semiconductor device of FIG. 4, and FIG. 6B shows the reaction equation and reaction energy according to the mole fraction in the graph of FIG. It is a diagram that represents
  • the first electrode layer EL1 may be deposited with ruthenium oxide (RuO 2 ), and the second electrode layer EL2 may be deposited with molybdenum oxide (Mo 2 O 3 ).
  • RuO 2 ruthenium oxide
  • Mo 2 O 3 molybdenum oxide
  • ruthenium oxide (RuO 2 ) deposited on the first electrode layer EL1 is reduced and deposited on the second electrode layer EL2.
  • Molybdenum oxide (Mo 2 O 3 ) may be oxidized.
  • molybdenum dioxide may be produced according to an oxidation-reduction reaction between ruthenium oxide (RuO 2 ) and molybdenum oxide (Mo 2 O 3 ). As shown in FIG. 6A, as the mole fraction of ruthenium oxide (RuO 2 ) changes, the mole fraction of molybdenum dioxide (MoO 2 ) may change.
  • the mole fraction of ruthenium oxide (RuO 2 ) when the mole fraction of ruthenium oxide (RuO 2 ) is 0.273, the mole fraction of molybdenum dioxide (MoO 2 ) may be 1.364. At this time, the reaction energy according to the redox reaction may be -162.1 (KJ/mol).
  • molybdenum dioxide converts to molybdenum trioxide (MoO 3 ) according to an oxidation-reduction reaction between ruthenium oxide and molybdenum oxide. Since it is stably generated without conversion, the molybdenum dioxide electrode layer can be stably formed on the second electrode layer EL2.
  • the dielectric constant of the dielectric layer 200 is improved according to the rutile structure of molybdenum dioxide included in the lower electrode 100, and the oxide dioxide included in the upper electrode 300 is improved. Since the molybdenum electrode serves as an oxidation-reduction prevention layer of the ruthenium oxide electrode, deterioration of the surface properties of the upper electrode 300 can be prevented.
  • molybdenum dioxide since molybdenum dioxide has a high work function, leakage current of the capacitor 10a for semiconductor devices can be reduced. In addition, since molybdenum dioxide is relatively inexpensive compared to conventional electrode materials, manufacturing costs of DRAM devices can be reduced.
  • FIG. 7 is a view showing another example of the capacitor 10 for a semiconductor device of FIG. 1 .
  • the capacitor 10 for a semiconductor device includes a lower electrode 100 including a base electrode layer ELB, a first electrode layer EL1, and a second electrode layer EL2, a dielectric layer 200, and a first electrode layer ELB.
  • An upper electrode 300 including an electrode layer EL1 and a second electrode layer EL2 may be included.
  • the lower electrode 100 may include a base electrode layer ELB containing titanium nitride (TiN), and the first electrode layer EL1 may be formed on the base electrode layer ELB.
  • TiN titanium nitride
  • TiN is only an example of a material constituting the base electrode layer ELB, and the configuration of the base electrode layer ELB of the present invention is not limited.
  • FIG. 8 is a view showing an example of a capacitor 10b for a semiconductor device including a double electrode composed of iridium oxide and molybdenum dioxide
  • FIG. It is a graph showing the reaction of molybdenum and iridium oxide for the reaction
  • FIG. 9b is a diagram showing the reaction formula and reaction energy according to the mole fraction in the graph of FIG. 9a.
  • the metal oxide included in the first electrode layer EL1 may be iridium oxide.
  • the capacitor 10b for a semiconductor device includes a lower electrode 100 including a first electrode layer EL1 and a second electrode layer EL2, a dielectric layer 200, and a first electrode layer EL1 and a second electrode layer EL2. It may include an upper electrode 300 including.
  • the first electrode layer EL1 may include iridium or iridium oxide (IrO x ), and the second electrode layer EL2 may include molybdenum dioxide (MoO 2 ).
  • IrO x iridium or iridium oxide
  • MoO 2 molybdenum dioxide
  • the lower electrode 100 may include a double electrode including a first electrode layer EL1 containing iridium oxide (IrO x ) and a second electrode layer EL2 containing molybdenum dioxide (MoO 2 ).
  • a double electrode including a first electrode layer EL1 containing iridium oxide (IrO x ) and a second electrode layer EL2 containing molybdenum dioxide (MoO 2 ).
  • the upper electrode 300 may include a double electrode composed of a first electrode layer EL1 containing iridium oxide (IrO x ) and a second electrode layer EL2 containing molybdenum dioxide (MoO 2 ).
  • IrO x iridium oxide
  • MoO 2 molybdenum dioxide
  • the double electrode is formed of iridium oxide (IrO y (where 0 ⁇ y ⁇ 2) deposited on the first electrode layer EL1). ) is reduced, and molybdenum oxide (MoO z (provided, 0 ⁇ z ⁇ 2)) deposited on the second electrode layer EL2 is oxidized, thereby forming iridium oxide (IrO x (provided, 0 ⁇ x ⁇ 2)).
  • IrO y iridium oxide
  • MoO z molybdenum oxide
  • a first electrode layer EL1 containing molybdenum dioxide (MoO 2 ) may have a stacked structure.
  • the first electrode layer EL1 may be deposited with iridium oxide (IrO 2 ), and the second electrode layer EL2 may be deposited with molybdenum (Mo).
  • IrO 2 iridium oxide
  • Mo molybdenum
  • the iridium oxide (IrO2) deposited on the first electrode layer EL1 is reduced, and the deposited iridium oxide (IrO2) on the second electrode layer EL2 is reduced.
  • Molybdenum (Mo) can be oxidized.
  • molybdenum dioxide (MoO 2 ) may be generated.
  • mole fraction of iridium oxide (RuO 2 ) changes from 0 to 1
  • mole fraction of molybdenum dioxide (MoO 2 ) may increase and then decrease again.
  • the mole fraction of iridium oxide (RuO 2 ) when the mole fraction of iridium oxide (RuO 2 ) is 0.429, the mole fraction of molybdenum dioxide (MoO 2 ) may be 0.429.
  • the reaction energy according to the redox reaction may be -113.2 (KJ/mol).
  • molybdenum dioxide MoO 2
  • MoO 3 molybdenum trioxide
  • the dielectric constant of the dielectric layer 200 is improved according to the rutile structure of molybdenum dioxide included in the lower electrode 100, and the oxide dioxide included in the upper electrode 300 is improved. Since the molybdenum electrode serves as an oxidation-reduction prevention layer of the iridium oxide electrode, deterioration of the surface properties of the upper electrode 300 can be prevented.
  • molybdenum dioxide since molybdenum dioxide has a high work function, leakage current of the semiconductor device capacitor 10b may be reduced. In addition, since molybdenum dioxide is relatively inexpensive compared to conventional electrode materials, manufacturing costs of DRAM devices can be reduced.
  • FIG. 10 is a diagram showing an example of a capacitor 10c for a semiconductor device including a double electrode composed of rhenium oxide and molybdenum dioxide
  • FIG. It is a graph showing the reaction of molybdenum and rhenium oxide for the reaction
  • FIG. 11b is a diagram showing the reaction formula and reaction energy according to the mole fraction in the graph of FIG. 11a.
  • the metal oxide included in the first electrode layer EL1 may be rhenium oxide.
  • the capacitor 10c for a semiconductor device includes a lower electrode 100 including a first electrode layer EL1 and a second electrode layer EL2, a dielectric layer 200, and a first electrode layer EL1 and a second electrode layer EL2. It may include an upper electrode 300 including.
  • the first electrode layer EL1 may include rhenium or rhenium oxide (ReO x ), and the second electrode layer EL2 may include molybdenum dioxide (MoO 2 ).
  • ReO x rhenium or rhenium oxide
  • MoO 2 molybdenum dioxide
  • the lower electrode 100 may include a double electrode including a first electrode layer EL1 containing rhenium oxide (ReO x ) and a second electrode layer EL2 containing molybdenum dioxide (MoO 2 ).
  • a double electrode including a first electrode layer EL1 containing rhenium oxide (ReO x ) and a second electrode layer EL2 containing molybdenum dioxide (MoO 2 ).
  • ReO x rhenium oxide
  • MoO 2 molybdenum dioxide
  • the upper electrode 300 may include a double electrode including a first electrode layer EL1 containing rhenium oxide (ReO x ) and a second electrode layer EL2 containing molybdenum dioxide (MoO 2 ).
  • a double electrode including a first electrode layer EL1 containing rhenium oxide (ReO x ) and a second electrode layer EL2 containing molybdenum dioxide (MoO 2 ).
  • ReO x rhenium oxide
  • MoO 2 molybdenum dioxide
  • the double electrode is formed by forming rhenium oxide (ReO y (where 0 ⁇ y ⁇ 2) deposited on the first electrode layer EL1 as the first electrode layer EL1 and the second electrode layer EL2 are heat treated. ) is reduced, and molybdenum oxide (MoO z (provided, 0 ⁇ z ⁇ 2)) deposited on the second electrode layer (EL2) is oxidized, thereby forming rhenium oxide (ReO x (provided, 0 ⁇ x ⁇ 2)).
  • a first electrode layer EL1 containing molybdenum dioxide (MoO 2 ) may have a stacked structure.
  • the first electrode layer EL1 may be deposited with rhenium oxide (ReO 2 ), and the second electrode layer EL2 may be deposited with molybdenum (Mo).
  • ReO 2 rhenium oxide
  • Mo molybdenum
  • the rhenium oxide (ReO 2 ) deposited on the first electrode layer EL1 is reduced and deposited on the second electrode layer EL2.
  • Molybdenum (Mo) may be oxidized.
  • molybdenum dioxide (MoO 2 ) may be generated.
  • MoO 2 molybdenum dioxide
  • FIG. 11a as the mole fraction of rhenium oxide (ReO 2 ) changes from 0 to 1, the mole fraction of molybdenum dioxide (MoO 2 ) may increase and then decrease again.
  • the mole fraction of rhenium oxide (ReO 2 ) when the mole fraction of rhenium oxide (ReO 2 ) is 0.5, the mole fraction of molybdenum dioxide (MoO 2 ) may be 0.5. At this time, the reaction energy according to the redox reaction may be -18.10 (KJ / mol).
  • molybdenum dioxide MoO 2
  • MoO 3 molybdenum trioxide
  • the dielectric constant of the dielectric layer 200 is improved according to the rutile structure of molybdenum dioxide included in the lower electrode 100, and the oxide dioxide included in the upper electrode 300 is improved. Since the molybdenum electrode serves as an oxidation-reduction prevention layer of the rhenium oxide electrode, deterioration of the surface properties of the upper electrode 300 can be prevented.
  • molybdenum dioxide since molybdenum dioxide has a high work function, leakage current of the capacitor 10c for semiconductor devices can be reduced. In addition, since molybdenum dioxide is relatively inexpensive compared to conventional electrode materials, manufacturing costs of DRAM devices can be reduced.
  • FIG. 12 is a diagram illustrating a DRAM device 1000 including a capacitor for a semiconductor device according to example embodiments.
  • the DRAM device 1000 may include a substrate (not shown), a transistor TR disposed on the substrate, and a capacitor CP electrically connected to the transistor TR.
  • the substrate may include a semiconductor material.
  • the substrate is silicon (Si), germanium (Ge), gallium arsenide (GaAs), zinc oxide (ZnO), silicon carbide (SiC), silicon germanium (SiGe), gallium nitride (GaN), gallium (III) ) oxide (Ga 2 O 3 ), and sapphire (sapphir e) may include at least one.
  • the substrate may include a conductive material.
  • the substrate is gold (Au), nickel (Ni), tungsten (W), molybdenum (Mo), copper (Cu), aluminum (Al), tantalum (Ta), silver (Ag), platinum (Pt) , at least one of chromium (Cr) or an alloy thereof.
  • the transistor TR may be disposed on a substrate.
  • the transistor TR may include a gate extending in a first direction, a gate insulating layer interposed between the gate and the substrate, and a source and drain disposed on both sides of the gate.
  • the first wire WR1 is a wire electrically connected to the gate of the transistor TR and can determine on/off of the transistor TR. Meanwhile, the first wire WR1 may be omitted and a gate extending in the first direction may perform the function of the first wire WR1.
  • the second wire WR2 is disposed on another layer to be insulated from the first wire WR1 and extends in a second direction perpendicular to the first direction.
  • the second wire WR2 may be electrically connected to the source (or drain) of the transistor TR.
  • the second wire WR2 may be used for read and write operations of the DRAM device 1000 .
  • the capacitor CP may be disposed on another layer to be insulated from the first and second wires WR1 and WR2.
  • the capacitor CP may be electrically connected to the drain (or source) of the transistor TR.
  • the capacitor CP includes a lower electrode 100 including a first electrode layer and a second electrode layer, a dielectric layer 200 formed on the lower electrode 100, and an upper electrode 300 formed on the dielectric layer 200.
  • a lower electrode 100 including a first electrode layer and a second electrode layer
  • a dielectric layer 200 formed on the lower electrode 100
  • an upper electrode 300 formed on the dielectric layer 200.
  • the lower electrode 100 is a double layer composed of the first electrode layer containing a metal or metal oxide (AO x (where 0 ⁇ x ⁇ 2)) and the second electrode layer containing molybdenum dioxide (MoO 2 ). electrodes may be included.
  • AO x metal or metal oxide
  • MoO 2 molybdenum dioxide
  • the first electrode layer and the second electrode layer are heat-treated under at least one of an inert atmosphere, an oxygen atmosphere, and a hydrogen atmosphere, and the first electrode layer and the second electrode layer It can be formed through an oxidation-reduction reaction between them.
  • the dielectric constant of the dielectric layer is improved according to the rutile structure of molybdenum dioxide included in the lower electrode 100, and the molybdenum dioxide electrode included in the upper electrode 300 is oxidized.
  • the reduction prevention layer By serving as a reduction prevention layer, deterioration of the surface properties of the electrode can be prevented.
  • molybdenum dioxide since molybdenum dioxide has a high work function, leakage current of a capacitor for a semiconductor device may be reduced. In addition, since the price of molybdenum dioxide is relatively low compared to conventional electrode materials, the manufacturing cost of the DRAM device 1000 can be reduced.
  • devices and components described in the embodiments may include, for example, a processor, a controller, an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, a field programmable array (FPA), It may be implemented using one or more general purpose or special purpose computers, such as a programmable logic unit (PLU), microprocessor, or any other device capable of executing and responding to instructions.
  • a processing device may run an operating system (OS) and one or more software applications running on the operating system.
  • a processing device may also access, store, manipulate, process, and generate data in response to execution of software.
  • the processing device includes a plurality of processing elements and/or a plurality of types of processing elements. It can be seen that it can include.
  • a processing device may include a plurality of processors or a processor and a controller. Other processing configurations are also possible, such as parallel processors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

반도체 소자용 커패시터는 제1 전극층 및 제2 전극층을 포함하는 하부전극, 상기 하부전극 상에 형성되는 유전체층, 및 상기 유전체층 상에 형성되는 상부전극을 포함할 수 있다. 상기 하부전극은 금속 또는 금속산화물(AOx (단, 0≤x<2))을 포함하는 상기 제1 전극층, 및 이산화몰리브데늄(MoO2)을 포함하는 상기 제2 전극층으로 구성된 이중전극을 포함할 수 있다. 상기 하부전극에 포함된 상기 이중전극은 상기 제1 전극층 및 상기 제2 전극층이 열처리되고, 상기 제1 전극층 및 상기 제2 전극층 사이에 산화환원반응을 통하여 형성될 수 있다.

Description

반도체 소자용 커패시터, 반도체 소자용 커패시터의 제조 방법, 및 디램 소자
본 발명은 반도체 소자용 커패시터에 관한 것으로, 보다 상세하게는 금속 또는 금속산화물층과 이산화몰리브데늄층이 적층된 이중전극 구조의 하부전극 및 상부전극을 포함하는 반도체 소자용 커패시터, 반도체 소자용 커패시터의 제조 방법, 및 디램 소자에 관한 것이다.
반도체 소자 공정의 비약적인 발전 통해 반도체 소자의 집적도는 급속도로 발전하고 있다. 특히 현재 디램(DRAM) 등 메모리 반도체 소자는 디자인룰 20nm 이하의 공정이 사용되는 등 초미세집적 소자 개발이 요구된다. 이러한 디램 소자의 미세화에 가장 큰 걸림돌은 디램의 핵심 기술인 커패시터 기술이다. "1"과 "0" 정보의 기록을 담당하는 전하를 저장하는 커패시터는 동작 전압 하에서 낮은 누설전류를 유지함과 동시에 큰 정전 용량 확보가 요구된다.
이러한 조건을 만족하기 위해서는 높은 유전율을 가지는 유전체 소재 및 낮은 누설전류를 확보할 수 있는 전극 소재 개발이 요구된다. 현재까지 주로 이용되어온 유전체는 알루미늄산화물(Al2O3), 하프늄산화물(HfO2), 지르코늄산화물 (ZrO2) 등등이며, TiN 등의 전극 물질과 함께 사용 혹은 개발되고 있다. 그러나 위에서 언급한 물질들로는 향후 요구되는 10 nm 급 디램 소자 개발이 어렵기 때문에 새로운 유전체 및 전극 물질 개발이 요구된다.
새로운 유전체 물질로 주목받고 있는 소재는 100 이상의 유전율을 가질 수 있는 루타일 구조의 티타늄산화물(TiO2)이다. 이러한 루타일 구조의 티타늄산화물은 일반적인 제조 방법으로는 형성되지 않으나, RuO2 및 IrO2 등의 귀금속 산화물 전극을 이용하였을 때 형성된다. RuO2, IrO2등의 전극의 경우 일함수가 커서 누설전류를 억제할 수 있고 높은 유전율의 유전체를 얻을 수 있는 장점이 있어 차세대 커패시터 소자의 전극 소재 물질로 주목받고 있다.
그러나, 이와 같은 커패시터 구조는 디램 소자 제조 공정 중 환원 분위기에서의 열처리 공정에 매우 취약한 문제를 가지고 있다. RuO2, IrO2 등은 고온에서 쉽게 금속으로 환원되며, 환원 시 표면 상태의 불균일, 거칠기의 증가로 인한 누설전류의 증가 및 환원 시 발생하는 산소가 디램 소자 내부에서 이동하며 치명적인 문제를 발생시키게 된다. 또한, 귀금속 산화물 전극의 사용으로 인해 디램 소자의 제조비용이 증가하는 문제가 있다.
이러한 문제점을 개선할 수 있는 유망한 전극 소재는 루타일 구조의 이산화몰리브데늄(MoO2)이다. 이산화몰리브데늄(MoO2)은 기존 전극 대비 가격이 낮으며, 산화환원에 대한 저항성이 크고, 큰 일함수를 가지므로 다양한 유전체와의 조합을 통해 누설전류를 억제할 수 있다. 또한, 루타일 구조를 가짐에 따라 유전체의 유전율 향상을 기대할 수 있다. 다만, 이산화몰리브데늄보다 삼산화몰리브데늄(MoO3)이 열역학적으로 더 안정적이므로, 순수한 저저항의 MoO2 제조가 어렵고, 이산화몰리브데늄 전극 제조 과정에서 MoO2이 쉽게 산화되어 점차적으로 MoO3으로 전환되는 문제가 있다. 따라서, 디램 소자 제조 공정 중 안정적으로 이산화몰리브데늄 전극을 제조하는 기술이 요구된다.
본 발명의 다른 목적은 금속 또는 금속산화물층과 이산화몰리브데늄층이 적층된 이중전극 구조의 하부전극 및 상부전극을 포함하는 반도체 소자용 커패시터를 제공하는 것이다.
본 발명의 다른 목적은 금속 또는 금속산화물층과 이산화몰리브데늄층이 적층된 이중전극 구조의 하부전극 및 상부전극을 포함하는 반도체 소자용 커패시터의 제조 방법을 제공하는 것이다.
본 발명의 다른 목적은 상기 반도체 소자용 커패시터를 포함하는 디램 소자를 제공하는 것이다.
다만, 본 발명이 해결하고자 하는 과제는 상기 언급된 과제에 한정되는 것이 아니며, 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위에서 다양하게 확장될 수 있을 것이다.
본 발명의 일 목적을 달성하기 위하여, 본 발명의 실시예들에 따른 반도체 소자용 커패시터는 제1 전극층 및 제2 전극층을 포함하는 하부전극, 상기 하부전극 상에 형성되는 유전체층, 및 상기 유전체층 상에 형성되는 상부전극을 포함할 수 있다. 상기 하부전극은 금속 또는 금속산화물(AOx (단, 0≤x<2))을 포함하는 상기 제1 전극층, 및 이산화몰리브데늄(MoO2)을 포함하는 상기 제2 전극층으로 구성된 이중전극을 포함할 수 있다. 상기 하부전극에 포함된 상기 이중전극은 불활성분위기, 산소분위기, 및 수소분위기 중 적어도 하나의 조건에서, 상기 제1 전극층 및 상기 제2 전극층이 열처리되고, 상기 제1 전극층 및 상기 제2 전극층 사이에 산화환원반응을 통하여 형성될 수 있다.
일 실시예에서, 상기 제1 전극층에 포함된 상기 금속산화물은 루테늄산화물일 수 있다. 상기 이중전극은 상기 제1 전극층 및 상기 제2 전극층이 열처리됨에 따라, 상기 제1 전극층에 증착된 루테늄산화물(RuOy (단, 0<y≤2))이 환원되고, 상기 제2 전극층에 증착된 몰리브데늄산화물(MoOz (단, 0≤z<2))이 산화됨으로써, 루테늄 또는 루테늄산화물(RuOx (단, 0≤x<2)을 포함하는 상기 제1 전극층, 및 이산화몰리브데늄(MoO2)을 포함하는 상기 제2 전극층이 적층된 구조를 가질 수 있다.
일 실시예에서, 상기 하부전극은 티타늄질화물(TiN)을 포함하는 베이스 전극층을 더 포함할 수 있다. 상기 제1 전극층은 상기 베이스 전극층 상에 형성될 수 있다.
일 실시예에서, 상기 유전체층은 이산화티타늄(TiO2), Al, Hf, Zr, Ta, Si 중 적어도 하나로 도핑된 이산화티타늄(Doped-TiO2), 이산화하프늄(HfO2), 이산화지르코늄(ZrO2), 오산화탄탈럼(Ta2O5), 및 산화알루미늄(Al2O3) 중 적어도 하나로 구성될 수 있다. 상기 유전체층은 루타일 구조의 이산화몰리브데늄(MoO2)을 포함하는 상기 제2 전극층 상에 형성됨으로써, 유전율 및 누설전류가 개선될 수 있다.
일 실시예에서, 상기 상부전극은 루테늄 또는 루테늄산화물(RuOx (단, 0≤x<2)을 포함하는 상기 제1 전극층, 및 이산화몰리브데늄(MoO2)을 포함하는 상기 제2 전극층이 적층된 상기 이중전극을 포함할 수 있다.
일 실시예에서, 상기 제1 전극층에 포함된 상기 금속산화물은 이리듐산화물일 수 있다. 상기 하부전극에 포함된 상기 이중전극은 상기 제1 전극층 및 상기 제2 전극층이 열처리됨에 따라, 상기 제1 전극층에 증착된 이리듐산화물(IrOy (단, 0<y≤2))이 환원되고, 상기 제2 전극층에 증착된 몰리브데늄산화물(MoOz (단, 0≤z<2))이 산화됨으로써, 이리듐 또는 이리듐산화물(IrOx (단, 0≤x<2)을 포함하는 상기 제1 전극층, 및 이산화몰리브데늄(MoO2)을 포함하는 상기 제2 전극층이 적층된 구조를 가질 수 있다.
일 실시예에서, 상기 제1 전극층에 포함된 상기 금속산화물은 레늄산화물일 수 있다. 상기 하부전극에 포함된 상기 이중전극은 상기 제1 전극층 및 상기 제2 전극층이 열처리됨에 따라, 상기 제1 전극층에 증착된 레늄산화물(ReOy (단, 0<y≤2))이 환원되고, 상기 제2 전극층에 증착된 몰리브데늄산화물(MoOz (단, 0≤z<2))이 산화됨으로써, 레늄 또는 레늄산화물(ReOx (단, 0≤x<2)을 포함하는 상기 제1 전극층, 및 이산화몰리브데늄(MoO2)을 포함하는 상기 제2 전극층이 적층된 구조를 가질 수 있다.
본 발명의 다른 목적을 달성하기 위하여, 본 발명의 실시예들에 따른 반도체 소자용 커패시터의 제조 방법은 하부전극을 형성하는 단계, 상기 하부전극 상에 유전체층을 형성하는 단계, 및 상기 유전체층 상에 상부전극을 형성하는 단계를 포함할 수 있다. 상기 하부전극을 형성하는 단계는 제1 금속산화물(AOy (단, 0<y≤2))을 포함하는 제1 전극층을 증착하는 단계, 몰리브데늄산화물(MoOz (단, 0≤z<2))을 포함하는 제2 전극층을 증착하는 단계, 상기 제1 전극층 및 상기 제2 전극층을 열처리하는 단계, 및 상기 제1 전극층 및 상기 제2 전극층 사이의 산화환원반응에 따라, 제2 금속 또는 제2 금속산화물(AOx (단, 0≤x<2))을 포함하는 상기 제1 전극층, 및 이산화몰리브데늄(MoO2)을 포함하는 상기 제2 전극층으로 구성된 이중전극을 형성하는 단계를 포함할 수 있다.
일 실시예에서, 상기 하부전극을 형성하는 단계에 포함된 상기 제1 전극층을 증착하는 단계 및 상기 제2 전극층을 증착하는 단계는 원자층 증착법(ALD), 화학증착법(CVD), 스퍼터링(sputtering), 열증착법(Thermal evaporation), 전자빔 증착법(E-beam evaporation), 분자빔 증착법(Molecular Beam Epitaxy), 펄스레이저 증착법(PLD) 중 적어도 하나를 이용하여 상기 제1 전극층 및 상기 제2 전극층을 증착할 수 있다.
일 실시예에서, 상기 하부전극을 형성하는 단계에 포함된 상기 제1 전극층 및 상기 제2 전극층을 열처리하는 단계는 불활성분위기, 산소분위기, 및 수소분위기 중 적어도 하나의 조건에서, 200°C 내지 800°C 온도로 상기 제1 전극층 및 상기 제2 전극층을 30초 내지 60분 동안 열처리할 수 있다.
일 실시예에서, 상기 제1 금속산화물 및 상기 제2 금속산화물은 루테늄산화물, 이리듐 산화물, 및 레늄산화물 중 적어도 하나일 수 있다.
본 발명의 다른 목적을 달성하기 위하여, 본 발명의 실시예들에 따른 디램 소자는 기판, 상기 기판 상에 배치되는 트랜지스터, 및, 상기 트랜지스터와 전기적으로 연결되는 커패시터를 포함할 수 있다. 상기 커패시터는 제1 전극층 및 제2 전극층을 포함하는 하부전극, 상기 하부전극 상에 형성되는 유전체층, 및 상기 유전체층 상에 형성되는 상부전극을 포함할 수 있다. 상기 하부전극은 금속 또는 금속산화물(AOx (단, 0≤x<2))을 포함하는 상기 제1 전극층, 및 이산화몰리브데늄(MoO2)을 포함하는 상기 제2 전극층으로 구성된 이중전극을 포함할 수 있다. 상기 하부전극에 포함된 상기 이중전극은 불활성분위기, 산소분위기, 및 수소분위기 중 적어도 하나의 조건에서, 상기 제1 전극층 및 상기 제2 전극층이 열처리되고, 상기 제1 전극층 및 상기 제2 전극층 사이에 산화환원반응을 통하여 형성될 수 있다.
본 발명의 실시예들에 따른 반도체 소자용 커패시터 및 이의 제조 방법에 따르면, 이산화몰리브데늄 전극이 산화환원 방지층의 역할을 수행하므로, 전극의 표면 특성 저하가 방지될 수 있다. 또한, 이산화몰리브데늄의 루타일 구조에 따라 유전체층의 유전율이 향상될 수 있다. 또한, 이산화몰리브데늄은 일함수가 높으므로, 반도체 소자용 커패시터의 누설전류가 감소할 수 있다. 또한, 이산화몰리브데늄은 기존 전극 소재에 비하여 상대적으로 가격이 낮으므로, 디램 소자의 제조 비용이 감소할 수 있다.
또한, 본 발명의 실시예들에 따른 반도체 소자용 커패시터의 상부전극 및 하부전극은 금속 또는 금속산화물(AOx (단, 0≤x<2))을 포함하는 제1 전극층, 및 이산화몰리브데늄(MoO2)을 포함하는 제2 전극층으로 구성된 이중전극 구조를 가질 수 있다. 즉, 본 발명의 반도체 소자용 커패시터는 상부전극과 하부전극 중 상부전극만이 이중전극 구조를 가질 수 있고, 상부전극과 하부전극 중 하부전극만이 이중전극 구조를 가질 수도 있으며, 상부전극과 하부전극이 모두 이중전극 구조를 가질 수도 있다.
다만, 본 발명의 효과는 상술한 효과에 한정되는 것이 아니며, 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위에서 다양하게 확장될 수 있을 것이다.
도 1은 본 발명의 실시예들에 따른 반도체 소자용 커패시터의 적층 구조를 나타내는 도면이다.
도 2는 도 1의 반도체 소자용 커패시터의 제조 방법을 나타내는 순서도이다.
도 3은 도 2의 반도체 소자용 커패시터의 제조 방법의 하부전극을 형성하는 단계를 나타내는 순서도이다.
도 4는 루테늄산화물과 이산화몰리브데늄으로 구성된 이중전극을 포함하는 반도체 소자용 커패시터의 일 예시를 나타내는 도면이다.
도 5a는 도 4의 반도체 소자용 커패시터의 이중전극을 형성하기 위한 몰리브데늄과 루테늄산화물의 반응을 나타내는 그래프이다.
도 5b는 도 5a의 그래프에서 몰분율에 따른 반응식 및 반응에너지를 나타내는 도표이다.
도 6a는 도 4의 반도체 소자용 커패시터의 이중전극을 형성하기 위한 몰리브데늄산화물과 루테늄산화물의 반응을 나타내는 그래프이다.
도 6b는 도 6a의 그래프에서 몰분율에 따른 반응식 및 반응에너지를 나타내는 도표이다.
도 7은 도 1의 반도체 소자용 커패시터의 다른 예시를 나타내는 도면이다.
도 8은 이리듐산화물과 이산화몰리브데늄으로 구성된 이중전극을 포함하는 반도체 소자용 커패시터의 일 예시를 나타내는 도면이다.
도 9a는 도 8의 반도체 소자용 커패시터의 이중전극을 형성하기 위한 몰리브데늄과 이리듐산화물의 반응을 나타내는 그래프이다.
도 9b는 도 9a의 그래프에서 몰분율에 따른 반응식 및 반응에너지를 나타내는 도표이다.
도 10은 레늄산화물과 이산화몰리브데늄으로 구성된 이중전극을 포함하는 반도체 소자용 커패시터의 일 예시를 나타내는 도면이다.
도 11a는 도 10의 반도체 소자용 커패시터의 이중전극을 형성하기 위한 몰리브데늄과 레늄산화물의 반응을 나타내는 그래프이다.
도 11b는 도 11a의 그래프에서 몰분율에 따른 반응식 및 반응에너지를 나타내는 도표이다.
도 12는 본 발명의 실시예들에 따른 반도체 소자용 커패시터를 포함하는 디램 소자를 나타내는 도면이다.
본 명세서에 개시되어 있는 본 발명의 개념에 따른 실시예들에 대해서 특정한 구조적 또는 기능적 설명들은 단지 본 발명의 개념에 따른 실시예들을 설명하기 위한 목적으로 예시된 것으로서, 본 발명의 개념에 따른 실시예들은 다양한 형태로 실시될 수 있으며 본 명세서에 설명된 실시예들에 한정되지 않는다.
본 발명의 개념에 따른 실시예들은 다양한 변경들을 가할 수 있고 여러 가지 형태들을 가질 수 있으므로 실시예들을 도면에 예시하고 본 명세서에 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시예들을 특정한 개시형태들에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 변경, 균등물, 또는 대체물을 포함한다.
제1 또는 제2 등의 용어를 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만, 예를 들어 본 발명의 개념에 따른 권리 범위로부터 이탈되지 않은 채, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소는 제1 구성요소로도 명명될 수 있다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성요소들 간의 관계를 설명하는 표현들, 예를 들어 "~사이에"와 "바로~사이에" 또는 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
본 명세서에서 사용한 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함으로 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다. 그러나, 특허출원의 범위가 이러한 실시예들에 의해 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
도 1은 본 발명의 실시예들에 따른 반도체 소자용 커패시터(10)의 적층 구조를 나타내는 도면이고, 도 2는 도 1의 반도체 소자용 커패시터(10)의 제조 방법을 나타내는 순서도이며, 도 3은 도 2의 반도체 소자용 커패시터(10)의 제조 방법의 하부전극(100)을 형성하는 단계를 나타내는 순서도이다.
도 1 내지 3을 참조하면, 반도체 소자용 커패시터(10)는 제1 전극층(EL1) 및 제2 전극층(EL2)을 포함하는 하부전극(100), 유전체층(200), 및 상부전극(300)을 포함할 수 있다. 구체적으로, 반도체 소자용 커패시터(10)는 하부전극(100)을 형성하는 단계(S100), 하부전극(100) 상에 유전체층(200)을 형성하는 단계(S200), 및 유전체층(200) 상에 상부전극(300)을 형성하는 단계(S300)를 통해 제조될 수 있다.
반도체 소자용 커패시터(10)의 하부전극(100)은 금속 또는 금속산화물(AOx (단, 0≤x<2))을 포함하는 제1 전극층(EL1), 및 이산화몰리브데늄(MoO2)을 포함하는 제2 전극층(EL2)으로 구성된 이중전극을 포함할 수 있다.
도 3에서 보듯이, 하부전극(100)을 형성하는 단계(S100)는 제1 금속산화물을 포함하는 제1 전극층(EL1)을 증착하는 단계(S110), 몰리브데늄산화물을 포함하는 제2 전극층(EL2)을 증착하는 단계(S120), 제1 전극층(EL1) 및 제2 전극층(EL2)을 열처리하는 단계(S130), 및 제2 금속 또는 제2 금속산화물을 포함하는 제1 전극층(EL1), 및 이산화몰리브데늄을 포함하는 제2 전극층(EL2)으로 구성된 이중전극을 형성하는 단계(S140)를 포함할 수 있다.
예를 들어, 하부전극(100)은, 제1 금속산화물(AOy (단, 0<y≤2))을 포함하는 제1 전극층(EL1)이 증착되고, 몰리브데늄산화물(MoOz (단, 0≤z<2))을 포함하는 제2 전극층(EL2)이 증착되며, 제1 전극층(EL1) 및 제2 전극층(EL2)이 후속 열처리되고, 제1 전극층(EL1) 및 제2 전극층(EL2) 사이의 산화환원반응에 따라, 제2 금속 또는 제2 금속산화물(AOx (단, 0≤x<2))을 포함하는 제1 전극층(EL1), 및 이산화몰리브데늄(MoO2)을 포함하는 제2 전극층(EL2)으로 구성된 이중전극이 형성되는 과정을 통해, 형성될 수 있다.
일 실시예에서, 제1 전극층(EL1)을 증착하는 단계(S110) 및 제2 전극층(EL2)을 증착하는 단계(S120)는 물리적 박막 증착 방식으로 제1 전극층(EL1) 및 제2 전극층(EL2)을 증착할 수 있다.
예를 들어, 제1 전극층(EL1)을 증착하는 단계 및 제2 전극층(EL2)을 증착하는 단계는 원자층 증착법(ALD), 화학증착법(CVD), 스퍼터링(sputtering), 열증착법(Thermal evaporation), 전자빔 증착법(E-beam evaporation), 분자빔 증착법(Molecular Beam Epitaxy), 펄스레이저 증착법(PLD) 중 적어도 하나를 이용하여 제1 전극층(EL1) 및 제2 전극층(EL2)을 증착할 수 있다.
일 실시예에서, 제1 전극층(EL1) 및 제2 전극층(EL2)을 열처리하는 단계(S130)는 불활성분위기, 산소분위기, 및 수소분위기 중 적어도 하나의 조건에서, 200°C 내지 800°C 온도로 제1 전극층(EL1) 및 제2 전극층(EL2)을 30초 내지 60분 동안 열처리할 수 있다.
일 실시예에서, 제1 전극층(EL1) 및 제2 전극층(EL2)으로 구성된 이중전극을 형성하는 단계(S140)는 제1 전극층(EL1) 및 제2 전극층(EL2) 사이의 산화환원반응에 따라, 제1 전극층(EL1), 및 제2 전극층(EL2)으로 구성된 이중전극을 형성할 수 있다.
예를 들어, 상기 이중전극은 제1 전극층(EL1) 및 제2 전극층(EL2)이 열처리됨에 따라, 제1 전극층(EL1)에 증착된 제1 금속산화물(AOy (단, 0<y≤2))이 환원되고, 제2 전극층(EL2)에 증착된 몰리브데늄산화물(MoOz (단, 0≤z<2))이 산화됨으로써, 제2 금속 또는 제2 금속산화물(AOx (단, 0≤x<2)을 포함하는 제1 전극층(EL1), 및 이산화몰리브데늄(MoO2)을 포함하는 제2 전극층(EL2)이 적층된 구조를 가질 수 있다.
하부전극(100)이 이러한 이중전극 구조를 가짐으로써, 이산화몰리브데늄의 루타일 구조에 따라 유전체층(200)의 유전율이 향상될 수 있다.
예를 들어, 제1 전극층(EL1)에 증착된 상기 제1 금속산화물 및 열처리 단계 이후의 제1 전극층(EL1)에 포함된 상기 제2 금속산화물은 루테늄산화물, 이리듐 산화물, 및 레늄산화물 중 적어도 하나일 수 있다. 각각의 금속산화물로 구성되는 반도체 소자용 커패시터(10)의 구조에 대해서는 도 4 내지 11을 통해 상세히 설명한다.
일 실시예에서, 유전체층(200)을 형성하는 단계(S200)는 하부전극(100) 상에 소정의 유전율을 가지는 유전물질을 적층하여 유전체층(200)을 형성할 수 있다.
예를 들어, 유전체층(200)은 이산화티타늄(TiO2), Al, Hf, Zr, Ta, Si 중 적어도 하나로 도핑된 이산화티타늄(Doped-TiO2), 이산화하프늄(HfO2), 이산화지르코늄(ZrO2), 오산화탄탈럼(Ta2O5), 및 산화알루미늄(Al2O3) 중 적어도 하나로 구성될 수 있다.
유전체층(200)은 루타일 구조의 이산화몰리브데늄(MoO2)을 포함하는 제2 전극층(EL2) 상에 형성됨으로써, 유전율이 개선될 수 있다.
일 실시예에서, 상부전극(300)을 형성하는 단계(S300)는 하부전극(100)의 상기 이중전극 형성 방식과 동일한 방식으로 상부전극(300)을 형성할 수 있다.
한편, 본 발명의 반도체 소자용 커패시터는 하부전극(100)과 상부전극(300) 중 하부전극(100)만이 이중전극 구조를 가질 수도 있고, 하부전극(100)과 상부전극(300) 중 상부전극(300)만이 이중전극 구조를 가질 수도 있으며, 하부전극(100)과 상부전극(300)이 모두 이중전극 구조를 가질 수도 있다.
예를 들어, 상부전극(300)은 루테늄 또는 루테늄산화물(RuOx (단, 0≤x<2)을 포함하는 제1 전극층(EL1), 및 이산화몰리브데늄(MoO2)을 포함하는 제2 전극층(EL2)이 적층된 상기 이중전극을 포함할 수 있다.
상부전극(300)이 이러한 이중전극 구조를 가짐으로써, 이산화몰리브데늄 전극이 산화환원 방지층의 역할을 수행하여 전극의 표면 특성 저하가 방지될 수 있다.
도 4는 루테늄산화물과 이산화몰리브데늄으로 구성된 이중전극을 포함하는 반도체 소자용 커패시터(10a)의 일 예시를 나타내는 도면이고, 도 5a는 도 4의 반도체 소자용 커패시터(10a)의 이중전극을 형성하기 위한 몰리브데늄과 루테늄산화물의 반응을 나타내는 그래프이며, 도 5b는 도 5a의 그래프에서 몰분율에 따른 반응식 및 반응에너지를 나타내는 도표이다.
도 4를 참조하면, 제1 전극층(EL1)에 포함된 상기 금속산화물은 루테늄산화물일 수 있다. 반도체 소자용 커패시터(10a)는 제1 전극층(EL1) 및 제2 전극층(EL2)을 포함하는 하부전극(100), 유전체층(200), 및 제1 전극층(EL1) 및 제2 전극층(EL2)을 포함하는 상부전극(300)을 포함할 수 있다.
구체적으로, 제1 전극층(EL1)은 루테늄 또는 루테늄산화물(RuOx)을 포함하고, 제2 전극층(EL2)은 이산화몰리브데늄(MoO2)을 포함할 수 있다.
예를 들어, 하부전극(100)은 루테늄산화물(RuOx)을 포함하는 제1 전극층(EL1) 및 이산화몰리브데늄(MoO2)을 포함하는 제2 전극층(EL2)으로 구성된 이중전극을 포함할 수 있다.
예를 들어, 상부전극(300)은 루테늄산화물(RuOx)을 포함하는 제1 전극층(EL1) 및 이산화몰리브데늄(MoO2)을 포함하는 제2 전극층(EL2)으로 구성된 이중전극을 포함할 수 있다.
일 실시예에서, 상기 이중전극은 제1 전극층(EL1) 및 제2 전극층(EL2)이 열처리됨에 따라, 제1 전극층(EL1)에 증착된 루테늄산화물(RuOy (단, 0<y≤2))이 환원되고, 제2 전극층(EL2)에 증착된 몰리브데늄산화물(MoOz (단, 0≤z<2))이 산화됨으로써, 루테늄 또는 루테늄산화물(RuOx (단, 0≤x<2)을 포함하는 제1 전극층(EL1), 및 이산화몰리브데늄(MoO2)을 포함하는 제2 전극층(EL2)이 적층된 구조를 가질 수 있다.
도 5a 및 5b를 참조하면, 제1 전극층(EL1)은 루테늄산화물(RuO2)로 증착되고, 제2 전극층(EL2)은 몰리브데늄(Mo)으로 증착될 수 있다.
상기 이중전극은 제1 전극층(EL1) 및 제2 전극층(EL2)이 후속 열처리됨에 따라, 제1 전극층(EL1)에 증착된 루테늄산화물(RuO2)이 환원되고, 제2 전극층(EL2)에 증착된 몰리브데늄(Mo)이 산화될 수 있다.
여기서, 루테늄산화물(RuO2)과 몰리브데늄(Mo)의 산화환원반응에 따라, 이산화몰리브데늄(MoO2)이 생성될 수 있다. 도 5a에서 보듯이, 루테늄산화물(RuO2)의 몰분율이 0에서 1로 변화함에 따라, 이산화몰리브데늄(MoO2)의 몰분율이 증가하였다가 다시 감소할 수 있다.
예를 들어, 도 5b에서 보듯이, 루테늄산화물(RuO2)의 몰분율이 0.5일 때, 이산화몰리브데늄(MoO2)의 몰분율은 0.5일 수 있다. 이 때, 산화환원반응에 따른 반응에너지는 -81.60(KJ/mol) 일 수 있다.
제1 전극층(EL1)에 포함된 금속산화물에 루테늄산화물을 사용하는 경우, 루테늄산화물과 몰리브데늄의 산화환원반응에 따라 이산화몰리브데늄(MoO2)이 삼산화몰리브데늄(MoO3)으로 전환없이 안정적으로 생성되므로, 제2 전극층(EL2)에 이산화몰리브데늄 전극층을 안정적으로 형성할 수 있다.
도 6a는 도 4의 반도체 소자용 커패시터(10a)의 이중전극을 형성하기 위한 몰리브데늄산화물과 루테늄산화물의 반응을 나타내는 그래프이고, 도 6b는 도 6a의 그래프에서 몰분율에 따른 반응식 및 반응에너지를 나타내는 도표이다.
도 6a 및 6b를 참조하면, 제1 전극층(EL1)은 루테늄산화물(RuO2)로 증착되고, 제2 전극층(EL2)은 몰리브데늄산화물(Mo2O3)로 증착될 수 있다.
상기 이중전극은 제1 전극층(EL1) 및 제2 전극층(EL2)이 후속 열처리됨에 따라, 제1 전극층(EL1)에 증착된 루테늄산화물(RuO2)이 환원되고, 제2 전극층(EL2)에 증착된 몰리브데늄산화물(Mo2O3)이 산화될 수 있다.
여기서, 루테늄산화물(RuO2)과 몰리브데늄산화물(Mo2O3)의 산화환원반응에 따라, 이산화몰리브데늄(MoO2)이 생성될 수 있다. 도 6a에서 보듯이, 루테늄산화물(RuO2)의 몰분율이 변화함에 따라 이산화몰리브데늄(MoO2)의 몰분율이 변화할 수 있다.
예를 들어, 도 6b에서 보듯이, 루테늄산화물(RuO2)의 몰분율이 0.273일 때, 이산화몰리브데늄(MoO2)의 몰분율은 1.364일 수 있다. 이 때, 산화환원반응에 따른 반응에너지는 -162.1(KJ/mol) 일 수 있다.
제1 전극층(EL1)에 포함된 금속산화물에 루테늄산화물을 사용하는 경우, 루테늄산화물과 몰리브데늄산화물의 산화환원반응에 따라 이산화몰리브데늄(MoO2)이 삼산화몰리브데늄(MoO3)으로 전환없이 안정적으로 생성되므로, 제2 전극층(EL2)에 이산화몰리브데늄 전극층을 안정적으로 형성할 수 있다.
이러한 반도체 소자용 커패시터(10a)의 구조에 따라, 하부전극(100)에 포함된 이산화몰리브데늄의 루타일 구조에 따라 유전체층(200)의 유전율이 향상되고, 상부전극(300)에 포함된 이산화몰리브데늄 전극이 루테늄산화물 전극의 산화환원 방지층의 역할을 수행하여 상부전극(300)의 표면 특성 저하가 방지될 수 있다.
또한, 이산화몰리브데늄은 일함수가 높으므로, 반도체 소자용 커패시터(10a)의 누설전류가 감소할 수 있다. 또한, 이산화몰리브데늄은 기존 전극 소재에 비하여 상대적으로 가격이 낮으므로, 디램 소자의 제조 비용이 감소할 수 있다.
도 7은 도 1의 반도체 소자용 커패시터(10)의 다른 예시를 나타내는 도면이다.
도 7을 참조하면, 반도체 소자용 커패시터(10)는 베이스 전극층(ELB), 제1 전극층(EL1), 제2 전극층(EL2)을 포함하는 하부전극(100), 유전체층(200), 및 제1 전극층(EL1) 및 제2 전극층(EL2)을 포함하는 상부전극(300)을 포함할 수 있다.
예를 들어, 하부전극(100)은 티타늄질화물(TiN)을 포함하는 베이스 전극층(ELB)을 포함하고, 제1 전극층(EL1)은 베이스 전극층(ELB) 상에 형성될 수 있다. 다만, 티타늄질화물(TiN)는 베이스 전극층(ELB)을 구성하는 물질의 일 예시일 뿐, 본 발명의 베이스 전극층(ELB)의 구성을 한정하지는 않는다.
도 8은 이리듐산화물과 이산화몰리브데늄으로 구성된 이중전극을 포함하는 반도체 소자용 커패시터(10b)의 일 예시를 나타내는 도면이고, 도 9a는 도 8의 반도체 소자용 커패시터(10b)의 이중전극을 형성하기 위한 몰리브데늄과 이리듐산화물의 반응을 나타내는 그래프이며, 도 9b는 도 9a의 그래프에서 몰분율에 따른 반응식 및 반응에너지를 나타내는 도표이다.
도 8을 참조하면, 제1 전극층(EL1)에 포함된 상기 금속산화물은 이리듐산화물일 수 있다. 반도체 소자용 커패시터(10b)는 제1 전극층(EL1) 및 제2 전극층(EL2)을 포함하는 하부전극(100), 유전체층(200), 및 제1 전극층(EL1) 및 제2 전극층(EL2)을 포함하는 상부전극(300)을 포함할 수 있다.
구체적으로, 제1 전극층(EL1)은 이리듐 또는 이리듐산화물(IrOx)을 포함하고, 제2 전극층(EL2)은 이산화몰리브데늄(MoO2)을 포함할 수 있다.
예를 들어, 하부전극(100)은 이리듐산화물(IrOx)을 포함하는 제1 전극층(EL1) 및 이산화몰리브데늄(MoO2)을 포함하는 제2 전극층(EL2)으로 구성된 이중전극을 포함할 수 있다.
예를 들어, 상부전극(300)은 이리듐산화물(IrOx)을 포함하는 제1 전극층(EL1) 및 이산화몰리브데늄(MoO2)을 포함하는 제2 전극층(EL2)으로 구성된 이중전극을 포함할 수 있다.
일 실시예에서, 상기 이중전극은 제1 전극층(EL1) 및 제2 전극층(EL2)이 열처리됨에 따라, 제1 전극층(EL1)에 증착된 이리듐산화물(IrOy (단, 0<y≤2))이 환원되고, 제2 전극층(EL2)에 증착된 몰리브데늄산화물(MoOz (단, 0≤z<2))이 산화됨으로써, 이리듐산화물(IrOx (단, 0≤x<2)을 포함하는 제1 전극층(EL1), 및 이산화몰리브데늄(MoO2)을 포함하는 제2 전극층(EL2)이 적층된 구조를 가질 수 있다.
도 9a 및 9b를 참조하면, 제1 전극층(EL1)은 이리듐산화물(IrO2)로 증착되고, 제2 전극층(EL2)은 몰리브데늄(Mo)으로 증착될 수 있다.
상기 이중전극은 제1 전극층(EL1) 및 제2 전극층(EL2)이 후속 열처리됨에 따라, 제1 전극층(EL1)에 증착된 이리듐산화물(IrO2)이 환원되고, 제2 전극층(EL2)에 증착된 몰리브데늄(Mo)이 산화될 수 있다.
여기서, 이리듐산화물(IrO2)과 몰리브데늄(Mo)의 산화환원반응에 따라, 이산화몰리브데늄(MoO2)이 생성될 수 있다. 도 9a에서 보듯이, 이리듐산화물(RuO2)의 몰분율이 0에서 1로 변화함에 따라, 이산화몰리브데늄(MoO2)의 몰분율이 증가하였다가 다시 감소할 수 있다.
예를 들어, 도 9b에서 보듯이, 이리듐산화물(RuO2)의 몰분율이 0.429일 때, 이산화몰리브데늄(MoO2)의 몰분율은 0.429일 수 있다. 이 때, 산화환원반응에 따른 반응에너지는 -113.2(KJ/mol) 일 수 있다.
제1 전극층(EL1)에 포함된 금속산화물에 이리듐산화물을 사용하는 경우, 이리듐산화물과 몰리브데늄의 산화환원반응에 따라 이산화몰리브데늄(MoO2)이 삼산화몰리브데늄(MoO3)으로 전환없이 안정적으로 생성되므로, 제2 전극층(EL2)에 이산화몰리브데늄 전극층을 안정적으로 형성할 수 있다.
이러한 반도체 소자용 커패시터(10b)의 구조에 따라, 하부전극(100)에 포함된 이산화몰리브데늄의 루타일 구조에 따라 유전체층(200)의 유전율이 향상되고, 상부전극(300)에 포함된 이산화몰리브데늄 전극이 이리듐산화물 전극의 산화환원 방지층의 역할을 수행하여 상부전극(300)의 표면 특성 저하가 방지될 수 있다.
또한, 이산화몰리브데늄은 일함수가 높으므로, 반도체 소자용 커패시터(10b)의 누설전류가 감소할 수 있다. 또한, 이산화몰리브데늄은 기존 전극 소재에 비하여 상대적으로 가격이 낮으므로, 디램 소자의 제조 비용이 감소할 수 있다.
도 10은 레늄산화물과 이산화몰리브데늄으로 구성된 이중전극을 포함하는 반도체 소자용 커패시터(10c)의 일 예시를 나타내는 도면이고, 도 11a는 도 10의 반도체 소자용 커패시터(10c)의 이중전극을 형성하기 위한 몰리브데늄과 레늄산화물의 반응을 나타내는 그래프이며, 도 11b는 도 11a의 그래프에서 몰분율에 따른 반응식 및 반응에너지를 나타내는 도표이다.
도 10을 참조하면, 제1 전극층(EL1)에 포함된 상기 금속산화물은 레늄산화물일 수 있다. 반도체 소자용 커패시터(10c)는 제1 전극층(EL1) 및 제2 전극층(EL2)을 포함하는 하부전극(100), 유전체층(200), 및 제1 전극층(EL1) 및 제2 전극층(EL2)을 포함하는 상부전극(300)을 포함할 수 있다.
구체적으로, 제1 전극층(EL1)은 레늄 또는 레늄산화물(ReOx)을 포함하고, 제2 전극층(EL2)은 이산화몰리브데늄(MoO2)을 포함할 수 있다.
예를 들어, 하부전극(100)은 레늄산화물(ReOx)을 포함하는 제1 전극층(EL1) 및 이산화몰리브데늄(MoO2)을 포함하는 제2 전극층(EL2)으로 구성된 이중전극을 포함할 수 있다.
예를 들어, 상부전극(300)은 레늄산화물(ReOx)을 포함하는 제1 전극층(EL1) 및 이산화몰리브데늄(MoO2)을 포함하는 제2 전극층(EL2)으로 구성된 이중전극을 포함할 수 있다.
일 실시예에서, 상기 이중전극은 제1 전극층(EL1) 및 제2 전극층(EL2)이 열처리됨에 따라, 제1 전극층(EL1)에 증착된 레늄산화물(ReOy (단, 0<y≤2))이 환원되고, 제2 전극층(EL2)에 증착된 몰리브데늄산화물(MoOz (단, 0≤z<2))이 산화됨으로써, 레늄산화물(ReOx (단, 0≤x<2)을 포함하는 제1 전극층(EL1), 및 이산화몰리브데늄(MoO2)을 포함하는 제2 전극층(EL2)이 적층된 구조를 가질 수 있다.
도 11a 및 11b를 참조하면, 제1 전극층(EL1)은 레늄산화물(ReO2)로 증착되고, 제2 전극층(EL2)은 몰리브데늄(Mo)으로 증착될 수 있다.
상기 이중전극은 제1 전극층(EL1) 및 제2 전극층(EL2)이 후속 열처리됨에 따라, 제1 전극층(EL1)에 증착된 레늄산화물(ReO2)이 환원되고, 제2 전극층(EL2)에 증착된 몰리브데늄(Mo)이 산화될 수 있다.
여기서, 레늄산화물(ReO2)과 몰리브데늄(Mo)의 산화환원반응에 따라, 이산화몰리브데늄(MoO2)이 생성될 수 있다. 도 11a에서 보듯이, 레늄산화물(ReO2)의 몰분율이 0에서 1로 변화함에 따라, 이산화몰리브데늄(MoO2)의 몰분율이 증가하였다가 다시 감소할 수 있다.
예를 들어, 도 5b에서 보듯이, 레늄산화물(ReO2)의 몰분율이 0.5일 때, 이산화몰리브데늄(MoO2)의 몰분율은 0.5일 수 있다. 이 때, 산화환원반응에 따른 반응에너지는 -18.10(KJ/mol) 일 수 있다.
제1 전극층(EL1)에 포함된 금속산화물에 레늄산화물을 사용하는 경우, 레늄산화물과 몰리브데늄의 산화환원반응에 따라 이산화몰리브데늄(MoO2)이 삼산화몰리브데늄(MoO3)으로 전환없이 안정적으로 생성되므로, 제2 전극층(EL2)에 이산화몰리브데늄 전극층을 안정적으로 형성할 수 있다.
이러한 반도체 소자용 커패시터(10c)의 구조에 따라, 하부전극(100)에 포함된 이산화몰리브데늄의 루타일 구조에 따라 유전체층(200)의 유전율이 향상되고, 상부전극(300)에 포함된 이산화몰리브데늄 전극이 레늄산화물 전극의 산화환원 방지층의 역할을 수행하여 상부전극(300)의 표면 특성 저하가 방지될 수 있다.
또한, 이산화몰리브데늄은 일함수가 높으므로, 반도체 소자용 커패시터(10c)의 누설전류가 감소할 수 있다. 또한, 이산화몰리브데늄은 기존 전극 소재에 비하여 상대적으로 가격이 낮으므로, 디램 소자의 제조 비용이 감소할 수 있다.
도 12는 본 발명의 실시예들에 따른 반도체 소자용 커패시터를 포함하는 디램 소자(1000)를 나타내는 도면이다.
도 12를 참조하면, 디램 소자(1000)는 기판(미도시), 기판 상에 배치되는 트랜지스터(TR), 및 트랜지스터(TR)와 전기적으로 연결되는 커패시터(CP)를 포함할 수 있다.
기판은 반도체 물질을 포함할 수 있다. 예를 들어, 기판은 규소(Si), 게르마늄(Ge), 비소화갈륨(GaAs), 산화아연(ZnO), 실리콘카바이드(SiC), 실리콘게르마늄(SiGe), 질화갈륨(GaN), 갈륨(Ⅲ)옥사이드(Ga2O3), 및 사파이어(sapphir e) 중 적어도 하나를 포함할 수 있다.
또한, 기판은 전도성 물질을 포함할 수 있다. 예를 들어, 기판은 금(Au), 니켈(Ni), 텅스텐(W), 몰리브덴(Mo), 구리(Cu), 알루미늄(Al), 탄탈륨(Ta), 은(Ag), 백금(Pt), 크롬(Cr) 중 적어도 하나 또는 이들의 합금을 포함할 수 있다.
트랜지스터(TR)는 기판 상에 배치될 수 있다. 예를 들어, 트랜지스터(TR)는 제1 방향으로 연장하는 게이트, 게이트와 기판 사이에 개재되는 게이트 절연막, 게이트 양측에 배치되는 소스 및 드레인을 포함할 수 있다.
제1 배선(WR1)은 트랜지스터(TR)의 게이트에 전기적으로 연결되는 배선으로 트랜지스터(TR)의 온/오프를 결정할 수 있다. 한편, 제1 배선(WR1)은 생략되고 제1 방향으로 연장하는 게이트가 제1 배선(WR1)의 기능을 수행할 수도 있다.
제2 배선(WR2)은 제1 배선(WR1)과 절연되도록 다른 층에 배치되며, 제1 방향에 수직인 제2 방향으로 연장할 수 있다. 제2 배선(WR2)은 트랜지스터(TR)의 소스(또는 드레인)에 전기적으로 연결될 수 있다. 제2 배선(WR2)은 디램 소자(1000)의 읽기 및 쓰기 동작에 사용될 수 있다.
커패시터(CP)는 제1 배선(WR1) 및 제2 배선(WR2)과 절연되도록 다른 층에 배치될 수 있다. 커패시터(CP)는 트랜지스터(TR)의 드레인(또는 소스)와 전기적으로 연결될 수 있다.
커패시터(CP)는 제1 전극층 및 제2 전극층을 포함하는 하부전극(100), 하부전극(100) 상에 형성되는 유전체층(200), 및 유전체층(200) 상에 형성되는 상부전극(300)을 포함할 수 있다.
하부전극(100)은 금속 또는 금속산화물(AOx (단, 0≤x<2))을 포함하는 상기 제1 전극층, 및 이산화몰리브데늄(MoO2)을 포함하는 상기 제2 전극층으로 구성된 이중전극을 포함할 수 있다.
하부전극(100)에 포함된 상기 이중전극은 불활성분위기, 산소분위기, 및 수소분위기 중 적어도 하나의 조건에서, 상기 제1 전극층 및 상기 제2 전극층이 열처리되고, 상기 제1 전극층 및 상기 제2 전극층 사이에 산화환원반응을 통하여 형성될 수 있다.
이러한 커패시터(CP)의 구조에 따라, 하부전극(100)에 포함된 이산화몰리브데늄의 루타일 구조에 따라 유전체층의 유전율이 향상되고, 상부전극(300)에 포함된 이산화몰리브데늄 전극이 산화환원 방지층의 역할을 수행하여 전극의 표면 특성 저하가 방지될 수 있다.
또한, 이산화몰리브데늄은 일함수가 높으므로, 반도체 소자용 커패시터의 누설전류가 감소할 수 있다. 또한, 이산화몰리브데늄은 기존 전극 소재에 비하여 상대적으로 가격이 낮으므로, 디램 소자(1000)의 제조 비용이 감소할 수 있다.
다만, 이에 대해서는 상술한 바 있으므로, 그에 대한 중복되는 설명은 생략하기로 한다.
이상에서 설명된 장치는 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPA(field programmable array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (12)

  1. 제1 전극층 및 제2 전극층을 포함하는 하부전극;
    상기 하부전극 상에 형성되는 유전체층; 및
    상기 유전체층 상에 형성되는 상부전극을 포함하고,
    상기 하부전극은 금속 또는 금속산화물(AOx (단, 0≤x<2))을 포함하는 상기 제1 전극층, 및 이산화몰리브데늄(MoO2)을 포함하는 상기 제2 전극층으로 구성된 이중전극을 포함하고,
    상기 하부전극에 포함된 상기 이중전극은,
    상기 제1 전극층 및 상기 제2 전극층이 열처리되고, 상기 제1 전극층 및 상기 제2 전극층 사이에 산화환원반응을 통하여 형성되는 것을 특징으로 하는,
    반도체 소자용 커패시터.
  2. 제1항에 있어서,
    상기 금속산화물은 루테늄산화물이고,
    상기 이중전극은,
    상기 제1 전극층 및 상기 제2 전극층이 열처리됨에 따라, 상기 제1 전극층에 증착된 루테늄산화물(RuOy (단, 0<y≤2))이 환원되고, 상기 제2 전극층에 증착된 몰리브데늄산화물(MoOz (단, 0≤z<2))이 산화됨으로써, 루테늄 또는 루테늄산화물(RuOx (단, 0≤x<2)을 포함하는 상기 제1 전극층, 및 이산화몰리브데늄(MoO2)을 포함하는 상기 제2 전극층이 적층된 구조를 가지는 것을 특징으로 하는,
    반도체 소자용 커패시터.
  3. 제2항에 있어서,
    상기 하부전극은 티타늄질화물(TiN)을 포함하는 베이스 전극층을 더 포함하고,
    상기 제1 전극층은 상기 베이스 전극층 상에 형성되는 것을 특징으로 하는,
    반도체 소자용 커패시터.
  4. 제2항에 있어서,
    상기 유전체층은 이산화티타늄(TiO2), Al, Hf, Zr, Ta 중 적어도 하나로 도핑된 이산화티타늄(Doped-TiO2), 이산화하프늄(HfO2), 이산화지르코늄(ZrO2), 오산화탄탈럼(Ta2O5), 및 산화알루미늄(Al2O3) 중 적어도 하나로 구성되고,
    상기 유전체층은 루타일 구조의 이산화몰리브데늄(MoO2)을 포함하는 상기 제2 전극층 상에 형성됨으로써, 유전율이 개선되는 것을 특징으로 하는,
    반도체 소자용 커패시터.
  5. 제2항에 있어서,
    상기 상부전극은,
    루테늄산화물(RuOx (단, 0≤x<2)을 포함하는 상기 제1 전극층, 및 이산화몰리브데늄(MoO2)을 포함하는 상기 제2 전극층이 적층된 상기 이중전극을 포함하는 것을 특징으로 하는,
    반도체 소자용 커패시터.
  6. 제1항에 있어서,
    상기 금속산화물은 이리듐산화물이고,
    상기 하부전극에 포함된 상기 이중전극은,
    상기 제1 전극층 및 상기 제2 전극층이 열처리됨에 따라, 상기 제1 전극층에 증착된 이리듐산화물(IrOy (단, 0<y≤2))이 환원되고, 상기 제2 전극층에 증착된 몰리브데늄산화물(MoOz (단, 0≤z<2))이 산화됨으로써, 이리듐 또는 이리듐산화물(IrOx (단, 0≤x<2)을 포함하는 상기 제1 전극층, 및 이산화몰리브데늄(MoO2)을 포함하는 상기 제2 전극층이 적층된 구조를 가지는 것을 특징으로 하는,
    반도체 소자용 커패시터.
  7. 제1항에 있어서,
    상기 금속산화물은 레늄산화물이고,
    상기 하부전극에 포함된 상기 이중전극은,
    상기 제1 전극층 및 상기 제2 전극층이 열처리됨에 따라, 상기 제1 전극층에 증착된 레늄산화물(ReOy (단, 0<y≤2))이 환원되고, 상기 제2 전극층에 증착된 몰리브데늄산화물(MoOz (단, 0≤z<2))이 산화됨으로써, 레늄 또는 레늄산화물(ReOx (단, 0≤x<2)을 포함하는 상기 제1 전극층, 및 이산화몰리브데늄(MoO2)을 포함하는 상기 제2 전극층이 적층된 구조를 가지는 것을 특징으로 하는,
    반도체 소자용 커패시터.
  8. 하부전극을 형성하는 단계;
    상기 하부전극 상에 유전체층을 형성하는 단계; 및
    상기 유전체층 상에 상부전극을 형성하는 단계를 포함하고,
    상기 하부전극을 형성하는 단계는,
    제1 금속산화물(AOy (단, 0<y≤2))을 포함하는 제1 전극층을 증착하는 단계;
    몰리브데늄산화물(MoOz (단, 0≤z<2))을 포함하는 제2 전극층을 증착하는 단계;
    상기 제1 전극층 및 상기 제2 전극층을 열처리하는 단계; 및
    상기 제1 전극층 및 상기 제2 전극층 사이의 산화환원반응에 따라, 제2 금속 또는 제2 금속산화물(AOx (단, 0≤x<2))을 포함하는 상기 제1 전극층, 및 이산화몰리브데늄(MoO2)을 포함하는 상기 제2 전극층으로 구성된 이중전극을 형성하는 단계를 포함하는 것을 특징으로 하는,
    반도체 소자용 커패시터의 제조 방법.
  9. 제8항에 있어서,
    상기 하부전극을 형성하는 단계에 포함된 상기 제1 전극층을 증착하는 단계 및 상기 제2 전극층을 증착하는 단계는,
    원자층 증착법(ALD), 화학증착법(CVD), 스퍼터링(sputtering), 열증착법(Thermal evaporation), 전자빔 증착법(E-beam evaporation), 분자빔 증착법(Molecular Beam Epitaxy), 펄스레이저 증착법(PLD) 중 적어도 하나를 이용하여 상기 제1 전극층 및 상기 제2 전극층을 증착하는 것을 특징으로 하는,
    반도체 소자용 커패시터의 제조 방법.
  10. 제8항에 있어서,
    상기 하부전극을 형성하는 단계에 포함된 상기 제1 전극층 및 상기 제2 전극층을 열처리하는 단계는,
    불활성분위기, 산소분위기, 및 수소분위기 중 적어도 하나의 조건에서, 200°C 내지 800°C 온도로 상기 제1 전극층 및 상기 제2 전극층을 30초 내지 60분 동안 열처리하는 것을 특징으로 하는,
    반도체 소자용 커패시터의 제조 방법.
  11. 제8항에 있어서,
    상기 제1 금속산화물 및 상기 제2 금속산화물은 루테늄산화물, 이리듐 산화물, 및 레늄산화물 중 적어도 하나인 것을 특징으로 하는,
    반도체 소자용 커패시터의 제조 방법.
  12. 기판;
    상기 기판 상에 배치되는 트랜지스터; 및
    상기 트랜지스터와 전기적으로 연결되는 커패시터를 포함하고,
    상기 커패시터는
    제1 전극층 및 제2 전극층을 포함하는 하부전극;
    상기 하부전극 상에 형성되는 유전체층; 및
    상기 유전체층 상에 형성되는 상부전극을 포함하고,
    상기 하부전극은 금속 또는 금속산화물(AOx (단, 0≤x<2))을 포함하는 상기 제1 전극층, 및 이산화몰리브데늄(MoO2)을 포함하는 상기 제2 전극층으로 구성된 이중전극을 포함하고,
    상기 하부전극에 포함된 상기 이중전극은,
    상기 제1 전극층 및 상기 제2 전극층이 열처리되고, 상기 제1 전극층 및 상기 제2 전극층 사이에 산화환원반응을 통하여 형성되는 것을 특징으로 하는,
    디램 소자.
PCT/KR2022/002619 2021-11-05 2022-02-23 반도체 소자용 커패시터, 반도체 소자용 커패시터의 제조 방법, 및 디램 소자 WO2023080346A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0151057 2021-11-05
KR1020210151057A KR102614117B1 (ko) 2021-11-05 2021-11-05 반도체 소자용 커패시터, 반도체 소자용 커패시터의 제조 방법, 및 디램 소자

Publications (1)

Publication Number Publication Date
WO2023080346A1 true WO2023080346A1 (ko) 2023-05-11

Family

ID=86241714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002619 WO2023080346A1 (ko) 2021-11-05 2022-02-23 반도체 소자용 커패시터, 반도체 소자용 커패시터의 제조 방법, 및 디램 소자

Country Status (2)

Country Link
KR (1) KR102614117B1 (ko)
WO (1) WO2023080346A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040085529A (ko) * 2003-03-31 2004-10-08 김지영 확산장벽을 갖는 초고집적도 기억소자용 커패시터의하부전극 구조와 커패시터의 하부전극 형성방법 및커패시터의 형성방법
KR100822179B1 (ko) * 2006-12-27 2008-04-16 동부일렉트로닉스 주식회사 반도체 소자용 커패시터 및 이의 제조 방법
KR20150134180A (ko) * 2014-05-21 2015-12-01 삼성전자주식회사 매립형 게이트 구조체를 갖는 반도체 소자 및 그 제조 방법
KR20170119119A (ko) * 2016-04-18 2017-10-26 한국과학기술연구원 반도체 메모리 소자용 커패시터 및 그 제조방법
KR20200104075A (ko) * 2019-02-26 2020-09-03 삼성에스디아이 주식회사 반도체 메모리 소자용 커패시터 및 이의 제조 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120051820A (ko) 2010-11-15 2012-05-23 삼성전자주식회사 커패시터, 그 형성 방법, 이를 포함하는 반도체 소자 및 그 제조 방법
US8969169B1 (en) * 2013-09-20 2015-03-03 Intermolecular, Inc. DRAM MIM capacitor using non-noble electrodes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040085529A (ko) * 2003-03-31 2004-10-08 김지영 확산장벽을 갖는 초고집적도 기억소자용 커패시터의하부전극 구조와 커패시터의 하부전극 형성방법 및커패시터의 형성방법
KR100822179B1 (ko) * 2006-12-27 2008-04-16 동부일렉트로닉스 주식회사 반도체 소자용 커패시터 및 이의 제조 방법
KR20150134180A (ko) * 2014-05-21 2015-12-01 삼성전자주식회사 매립형 게이트 구조체를 갖는 반도체 소자 및 그 제조 방법
KR20170119119A (ko) * 2016-04-18 2017-10-26 한국과학기술연구원 반도체 메모리 소자용 커패시터 및 그 제조방법
KR20200104075A (ko) * 2019-02-26 2020-09-03 삼성에스디아이 주식회사 반도체 메모리 소자용 커패시터 및 이의 제조 방법

Also Published As

Publication number Publication date
KR102614117B1 (ko) 2023-12-13
KR20230065471A (ko) 2023-05-12

Similar Documents

Publication Publication Date Title
KR100371891B1 (ko) 마이크로 일렉트로닉 구조물 및 이의 형성 방법
US5337207A (en) High-permittivity dielectric capacitor for use in a semiconductor device and process for making the same
US6815285B2 (en) Methods of forming dual gate semiconductor devices having a metal nitride layer
JP3076507B2 (ja) 半導体装置、半導体集積回路装置及びその製造方法
US7981761B2 (en) Method of manufacturing semiconductor device having MIM capacitor
KR960030330A (ko) 내열 금속과 그 위의 알루미늄으로 구성된, 박막 다중 층 산소 확산 장벽
KR100809173B1 (ko) 반도체 기판상의 집적 회로 제조 방법
EP0489519A2 (en) Sol-gel processing of piezoelectric and ferroelectric films
WO2023080346A1 (ko) 반도체 소자용 커패시터, 반도체 소자용 커패시터의 제조 방법, 및 디램 소자
US6780699B2 (en) Semiconductor device and method for fabricating the same
JPH04335572A (ja) 半導体装置の製造方法
JP2000174132A (ja) 半導体装置の製造方法
US11244970B2 (en) Thin film transistor, array substrate, display apparatus, and method of fabricating thin film transistor
WO2020138975A1 (ko) 메모리 소자 및 그 제조 방법
WO2018012868A1 (ko) 스위칭 원자 트랜지스터 및 이의 동작방법
JP3254703B2 (ja) 集積回路装置およびその製造方法
US20060022250A1 (en) Semiconductor device which includes a capacitor and an interconnection film coupled to each other and a manufacturing method thereof
KR19990062504A (ko) 커패시터를 구비한 반도체 장치 및 그 제조 방법
EP1345257A2 (en) Method for fabricating capacitor device
JP2001168290A (ja) 半導体装置の製造方法
JP3120568B2 (ja) 薄膜キャパシタ
JPH11307745A (ja) 非揮発性半導体素子及びその製造方法
JP2005026345A (ja) 強誘電体キャパシタ、強誘電体キャパシタを具える半導体装置、強誘電体キャパシタの製造方法及び半導体装置の製造方法
KR100769135B1 (ko) 반도체 장치의 게이트 유전막 형성 방법
JPH0567786A (ja) 薄膜トランジスタの製造方法