WO2023080028A1 - 熱硬化型導電性樹脂組成物、電子部品の製造方法 - Google Patents

熱硬化型導電性樹脂組成物、電子部品の製造方法 Download PDF

Info

Publication number
WO2023080028A1
WO2023080028A1 PCT/JP2022/039888 JP2022039888W WO2023080028A1 WO 2023080028 A1 WO2023080028 A1 WO 2023080028A1 JP 2022039888 W JP2022039888 W JP 2022039888W WO 2023080028 A1 WO2023080028 A1 WO 2023080028A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive resin
resin composition
thermosetting
mass
present
Prior art date
Application number
PCT/JP2022/039888
Other languages
English (en)
French (fr)
Inventor
将平 荒木
利夫 米今
聡一郎 江崎
Original Assignee
昭栄化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭栄化学工業株式会社 filed Critical 昭栄化学工業株式会社
Publication of WO2023080028A1 publication Critical patent/WO2023080028A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups

Definitions

  • the present invention provides an electrode for an electronic component for manufacturing an electronic component by forming an electrode on a to-be-electrode-formed body for an electronic component, such as a laminate for a multilayer electronic component and a to-be-cathode-formed body for a solid electrolytic capacitor.
  • the present invention relates to thermosetting conductive resin compositions for forming.
  • the present invention provides an electronic component for manufacturing an electronic component by forming an electrode on an electrode forming body for an electronic component such as a laminate for a multilayer electronic component and a cathode forming body for a solid electrolytic capacitor. related to the manufacturing method of
  • Patent Document 1 discloses a composition that does not contain an epoxy resin and is composed of a gel-like silicone rubber (polydimethylsiloxane) and a conductive powder.
  • a composition containing an epoxy resin is used while maintaining moisture resistance in the sense that the permeation of the plating solution can be effectively blocked. It is described that the flexural strength of the external electrode which is even better than that can be obtained.
  • Patent Document 1 describes that a certain degree of moisture resistance can be obtained by using silicone rubber. When used for conductive purposes, it is often difficult to obtain conductivity.
  • thermosetting conductive resin composition containing a thermosetting silicone resin having a hydroxyl group. It was discovered that both However, when a conductive powder containing a base metal such as Cu is used as the conductive powder of the composition, there is a new problem that the viscosity of the conductive resin composition may increase over time, The inventors of the present invention have discovered a new problem that the conductivity may decrease (good conductivity cannot be obtained).
  • an object of the present invention is to achieve high viscosity stability and suppress a decrease in conductivity even when a thermosetting silicone resin having a hydroxyl group and a conductive powder containing a base metal such as Cu are contained.
  • An object of the present invention is to provide a conductive resin composition for forming electrodes of electronic parts, which is capable of forming a conductive resin layer (having good conductivity) and having excellent moisture resistance.
  • the present inventors have found that in addition to a conductive powder containing a base metal such as Cu and a thermosetting silicone resin having a hydroxyl group, an amine additive and an acid additive By containing at least one additive among the agents, the viscosity stability is high, the decrease in conductivity is suppressed (the conductivity is good), and the thermosetting can form a conductive resin layer with excellent moisture resistance.
  • a type conductive resin composition can be obtained, and have completed the present invention.
  • the present invention (1) provides a conductive powder containing a base metal, a thermosetting silicone resin having a hydroxyl group; at least one of an amine-based additive and an acid-based additive; To provide a thermosetting conductive resin composition characterized by containing
  • the present invention (2) also provides the thermosetting conductive resin composition of (1), wherein the amine additive or the acid additive has a molecular weight of 30 or more and 2000 or less. .
  • the present invention (3) is characterized in that the boiling point Tb or 90 mass% weight loss temperature Td90 under 1 atm of the amine additive or the acid additive is 80° C. or higher and 400° C. or lower ( It provides the thermosetting conductive resin composition of 1) or (2).
  • the present invention (4) provides the thermosetting conductive resin composition according to any one of (1) to (3), wherein the amine additive contains at least one of secondary amine and tertiary amine. It provides.
  • the present invention (5) also provides the thermosetting conductive resin composition according to any one of (1) to (4), wherein the acid additive contains a dicarboxylic acid.
  • the content of the amine additive is 0.6 parts by mass or more and 10.0 parts by mass or less with respect to 100 parts by mass of the thermosetting silicone resin having a hydroxyl group. and/or the content of the acid additive is 0.1 parts by mass or more and 1.6 parts by mass or less with respect to 100 parts by mass of the conductive powder containing the base metal (1) to provide a thermosetting conductive resin composition.
  • the present invention (7) provides a preparation step of preparing an electrode forming body for an electronic component; an electrode forming step of forming an electrode on the outer surface of the electrode forming body for an electronic component; has In the electrode forming step, the thermosetting conductive resin composition according to any one of (1) to (6) is applied to the electronic component electrode forming body, and then the thermosetting conductive resin composition is applied. Forming a conductive resin layer on the electronic component electrode forming body by curing; To provide a method for manufacturing an electronic component characterized by
  • thermosetting silicone resin having a hydroxyl group and a conductive powder containing a base metal such as Cu are contained, the viscosity stability is high and the decrease in conductivity is suppressed (conductive It is possible to provide a thermosetting conductive resin composition for forming electrodes of electronic parts, which is capable of forming a conductive resin layer having excellent moisture resistance.
  • thermosetting conductive resin composition of the present invention contains a conductive powder containing a base metal, a thermosetting silicone resin having a hydroxyl group, and at least one of an amine additive and an acid additive. It is a thermosetting conductive resin composition. As a result, a conductive resin layer having excellent moisture resistance and conductivity can be formed, and viscosity stability is also excellent. Although the reason why the above effect is obtained is not clear, the inventors of the present invention presume as follows. That is, when a conductive powder containing a thermosetting silicone resin having a hydroxyl group and a base metal such as Cu is present in the composition, the reaction between the base metal such as Cu and the hydroxyl group causes the composition to change over time.
  • the presence of the amine-based additive in the composition allows the amine-based additive to coordinate with the hydroxyl groups of the resin to protect the hydroxyl groups from base metals such as Cu, thereby suppressing an increase in the viscosity of the composition over time.
  • inhibition of curing is suppressed, a decrease in conductivity of the obtained conductive resin layer can be suppressed (good conductivity is obtained).
  • the presence of the acid-based additive in the composition allows the acid-based additive to bind to the surface of the conductive powder, thereby preventing contact between base metals such as Cu and hydroxyl groups of the thermosetting silicone resin.
  • thermosetting conductive resin composition of the present invention is a thermosetting conductive resin composition that is cured by heating to form a cured film (conductive resin layer).
  • the heating temperature is not particularly limited, it may be, for example, within the range of 150°C to 300°C and within the range of 180°C to 250°C.
  • the thermosetting conductive resin composition of the present invention contains conductive powder.
  • the thermosetting conductive resin composition of the present invention contains conductive powder containing at least a base metal as the conductive powder.
  • conductive powders containing base metals include base metal powders, base metal alloy powders composed of an alloy of two or more base metals, noble metal-coated base metal powders in which the surfaces of base metal powders are coated with noble metals, and alloy powders of base metals and noble metals. be done.
  • Examples of conductive powders containing base metals include copper powder, silver-coated copper powder, copper alloy powder, silver-lead alloy powder, tin powder, nickel powder, silver-coated nickel powder, copper-nickel alloy powder, iron powder, and zinc. powder, aluminum powder.
  • the conductive powder containing a base metal is preferably a silver-coated copper powder, a copper powder, or a copper alloy powder that does not contain expensive metal components such as noble metals and rare metals, and copper powder is particularly preferred.
  • a silver-coated copper powder is preferable in terms of excellent conductivity.
  • the silver-coated copper powder at least part of the surface of the copper powder should be coated with silver.
  • the conductive powder preferably contains Cu from various points as described above.
  • a composition containing a thermosetting silicone resin having a hydroxyl group when using a conductive powder containing a base metal, problems of increased viscosity and decreased conductivity tend to occur, but a conductive powder containing Cu is used.
  • thermosetting conductive resin composition of the present invention by using an amine-based additive or an acid-based additive, when a thermosetting silicone resin having a hydroxyl group and a conductive powder containing a base metal are combined, although the above problem can be solved, especially by using Cu as the base metal, while maximizing the advantages of the above-mentioned conductive powder containing Cu, a thermosetting silicone resin having a hydroxyl group and a conductive powder containing Cu It can also solve the problem of combining That is, in the present invention, the effect of the present invention is particularly enhanced by combining a conductive powder containing Cu, a thermosetting silicone resin having a hydroxyl group, and at least one of an amine-based additive and an acid-based additive.
  • base metal refers to a metal such as copper, iron, nickel, aluminum, lead, zinc, tin, etc., which has a higher ionization tendency than copper or copper. It refers to metals such as silver and platinum that have a lower ionization tendency than copper.
  • the shape of the conductive powder is not particularly limited, and examples thereof include a spherical shape and a flake shape. It is preferably in the form of flakes.
  • thermosetting conductive resin composition of the present invention can further contain other conductive powders in addition to the conductive powder containing the base metal described above. That is, the thermosetting conductive resin composition of the present invention may contain only a conductive powder containing a base metal as the conductive powder, or may contain a conductive powder containing a base metal and a conductive powder containing a noble metal. It may contain a powder.
  • the shape of the other conductive powder is not particularly limited, and examples thereof include a spherical shape and a flake shape, but the flake shape is preferable from the viewpoint of excellent conductivity and adhesiveness.
  • the content of the flaky conductive powder with respect to the entire conductive powder is preferably 20.0% by mass or more, more preferably 40.0% by mass or more, and particularly preferably It is 60.0 mass % or more.
  • the content ratio of the flake-shaped conductive powder to the entire conductive powder is within the above range, the obtained conductive resin layer has high conductivity and adhesiveness.
  • the aspect ratio of the flaky conductive powder is preferably 1.5 to 50.0, more preferably 2.0 to 30.0, particularly preferably 5.0 to 20.0.
  • the obtained conductive resin layer has high conductivity and adhesiveness.
  • the length and thickness of 50 arbitrarily selected conductive powders are measured in scanning electron microscope (SEM) image observation, and the average value of the ratio of the length to the thickness (length / thickness) is obtained.
  • SEM scanning electron microscope
  • the number average particle diameter of the flake-shaped conductive powder when measured using a scanning electron microscope (SEM) is preferably 0.1 to 20.0 ⁇ m, more preferably 0.3 to 15.0 ⁇ m, still more preferably 0.5 to 10.0 ⁇ m, particularly preferably 1.0 to 5.0 ⁇ m.
  • SEM scanning electron microscope
  • the major diameters of 50 arbitrarily selected conductive powders were measured by SEM (scanning electron microscope) image observation, and the average value was taken as the number average particle size of the flake-shaped conductive powder.
  • the specific surface area of the flaky conductive powder is preferably 0.5 to 5.0 m 2 /g, particularly preferably 0.6 to 4.0 m 2 /g.
  • the obtained conductive resin layer has high conductivity and adhesiveness.
  • the volume-based cumulative 50% particle diameter (D 50 ) of the spherical conductive powder is preferably 0.01 to 7.0 ⁇ m, particularly preferably 0.03 to 5.0 ⁇ m.
  • D 50 was determined as a 50% value (D 50 ) in the integrated fraction based on volume using a laser diffraction particle size distribution analyzer.
  • the specific surface area of the spherical conductive powder is preferably 0.2-3.0 m 2 /g, particularly preferably 0.3-2.5 m 2 /g.
  • the obtained conductive resin layer has high conductivity and adhesiveness.
  • thermosetting conductive resin composition of the present invention contains a resin binder.
  • the thermosetting conductive resin composition of the present invention contains a thermosetting silicone resin having at least hydroxyl groups as a resin binder.
  • the thermosetting silicone resin having a hydroxyl group is preferably a condensation-type thermosetting silicone resin that has a hydroxyl group and is cured by a condensation reaction by heating. It is more preferably a dehydration condensation type silicone resin that cures as a Especially preferred.
  • the content ratio of the thermosetting silicone resin having a hydroxyl group to the total resin binder contained in the thermosetting conductive resin composition of the present invention is preferably 25.0% by mass or more, more preferably 30.0% by mass or more, more preferably 40.0% by mass or more, more preferably 50.0% by mass or more, more preferably 60.0% by mass or more, more preferably 70.0% by mass or more, more preferably 80.0% by mass or more, More preferably 90.0% by mass or more, particularly preferably 95.0% by mass or more.
  • the thermosetting conductive resin composition contains a thermosetting silicone resin having a hydroxyl group within the above range, the moisture resistance of the conductive resin layer is increased, and an amine-based additive or an acid-based additive is used. Therefore, the effect of suppressing a decrease in specific resistance and an increase in viscosity is enhanced.
  • Thermosetting silicone resins with hydroxyl groups can be cured by heating without using a curing agent or catalyst.
  • a heat-curing type a condensation-curing type in which a condensation reaction proceeds by heating and cures is preferred.
  • the position and number of hydroxyl groups in the thermosetting silicone resin having hydroxyl groups are not particularly limited. It is preferable that at least side chains have a plurality of hydroxyl groups in terms of excellent conductivity.
  • a hydroxyl group may be bonded to a silicon atom, or may be bonded to an atom other than a silicon atom (for example, a carbon atom).
  • an OH group bonded to Si in a silanol group is also referred to as a hydroxyl group.
  • the main skeleton (main chain) of the thermosetting silicone resin having a hydroxyl group may have siloxane units, and examples thereof include polymers consisting only of siloxane units (polysiloxane) and copolymers containing siloxane units. be done.
  • copolymers containing siloxane units include copolymers of at least one of monomers, oligomers and polymers containing siloxane units and at least one of monomers, oligomers and polymers not containing siloxane units. These polymers and copolymers may be linear or branched.
  • thermosetting silicone resin having a hydroxyl group may have a functional group other than a hydroxyl group on the side chain or end of the polymer, such as an alkenyl group, a hydrogensilyl group, a (meth)acryloyl group, an epoxy group. , an amino group, a carbinol group, a mercapto group, a carboxy group, a phenol group, an aryl group, an alkyl group such as a methyl group, and an aromatic group such as a phenyl group.
  • a functional group other than a hydroxyl group on the side chain or end of the polymer such as an alkenyl group, a hydrogensilyl group, a (meth)acryloyl group, an epoxy group.
  • an amino group a carbinol group, a mercapto group, a carboxy group, a phenol group, an aryl group, an alkyl group such as a methyl group, and an aromatic group such as a
  • the functional groups of the thermosetting silicone resin are preferably alkyl groups such as methyl groups and aromatic groups such as phenyl groups from the viewpoint of moisture resistance, hydroxyl groups are preferable from the viewpoint of conductivity, and epoxy groups are preferable from the viewpoint of adhesiveness. preferable.
  • thermosetting silicone resin having a hydroxyl group may be a modified resin in which various oligomers, polymers, etc. are introduced (grafted) to the side chains or terminals of the polymer, or a crosslinked resin in which the resins are crosslinked. good.
  • the molecular weight (weight average molecular weight Mw) of the thermosetting silicone resin having hydroxyl groups is not particularly limited, but is preferably 1,000 to 300,000, particularly preferably 2,000 to 200,000.
  • thermosetting conductive resin composition of the present invention may further contain a curing agent and a catalyst, for example, platinum-based, titanium-based, aluminum-based, zinc-based, iron-based, phosphoric acid-based curing agents catalysts.
  • a catalyst for example, platinum-based, titanium-based, aluminum-based, zinc-based, iron-based, phosphoric acid-based curing agents catalysts.
  • thermosetting conductive resin composition of the present invention may contain a resin binder other than the thermosetting silicone resin having a hydroxyl group within a range that does not impair the effects of the present invention.
  • the resin binder other than the thermosetting silicone resin having a hydroxyl group may be a thermosetting resin or a thermoplastic resin.
  • Resin binders other than thermosetting silicone resins having hydroxyl groups include cellulose resins such as ethyl cellulose, acetal resins such as polyvinyl acetal resins, polyimide resins, polyamide resins, polyamideimide resins, epoxy resins, acrylic resins, polybutadiene, and the like.
  • butadiene-based resins (meth)acrylic resins, styrene resins, phenolic resins, alkyd resins, polyurethane resins, silicone resins different from the thermosetting silicone resins having hydroxyl groups, and the like.
  • the content of the resin binder in the thermosetting conductive resin composition of the present invention is preferably 3.0 to 30.0 parts by mass, more preferably 3.0 to 30.0 parts by mass, per 100.0 parts by mass of the conductive powder. 28.0 parts by mass, more preferably 3.0 to 25.0 parts by mass, more preferably 5.0 to 25.0 parts by mass, more preferably 7.0 to 23.0 parts by mass, particularly preferably 11.0 parts by mass. 0 to 20.0 parts by mass.
  • the content of the resin binder is within the above range, a conductive resin layer having excellent conductivity and adhesiveness can be easily obtained.
  • the thermosetting conductive resin composition tends to be excellent in printability when applied to the electrode formation body.
  • thermosetting conductive resin composition of the present invention contains at least one additive selected from amine additives and acid additives.
  • the thermosetting conductive resin composition of the present invention contains a thermosetting silicone resin having a hydroxyl group and a conductive powder containing a base metal by containing an amine additive and/or an acid additive. Even so, viscosity stability can be increased, and a decrease in conductivity can be suppressed (good conductivity is obtained).
  • Amine-based additives are not particularly limited, and include primary amines, secondary amines, and tertiary amines.
  • the amine-based additive is a secondary amine or a tertiary amine, the effect of the present invention can be obtained more favorably, and the secondary amine is particularly preferred.
  • the molecular weight of the amine additive is preferably in the range of 10 to 5000, more preferably in the range of 20 to 3000, more preferably in the range of 30 to 2000. It is more preferably in the range of 1000 or less, more preferably in the range of 50 to 500, still more preferably in the range of 80 to 350, and in the range of 100 to 300 is particularly preferred.
  • the molecular weight of the amine-based additive is within the above range, the effects of the present invention can be obtained more favorably.
  • the number of carbon atoms in the amine-based additive is preferably 6 or more and 20 or less, and particularly preferably 7 or more and 18 or less. Thereby, the effect of the present invention can be obtained more preferably.
  • the pKa of the amine additive measured in water at 25°C is preferably 7.5 or more and 12.0 or less. Thereby, the effect of the present invention can be obtained more preferably.
  • the boiling point Tb or 90 mass% weight loss temperature Td90 of the amine additive under 1 atmosphere is preferably a reference temperature of ⁇ 100° C. or higher and a reference temperature of +30° C. or lower when the curing temperature of the conductive resin composition is used as the reference temperature. , a reference temperature of ⁇ 75° C. or more and a reference temperature of +20° C. or less is more preferable, and a reference temperature of ⁇ 50° C. or more and a reference temperature of +10° C. or less is particularly preferable.
  • the boiling point Tb or 90 mass% weight loss temperature Td90 of the amine additive under 1 atmosphere is preferably 80° C. or higher and 400° C. or lower, more preferably 80° C. or higher and 350° C.
  • the boiling point Tb or 90 mass% weight loss temperature Td90 of the amine additive under 1 atm acts in the conductive resin composition until immediately before curing, so that the effects of the present invention can be easily obtained.
  • the boiling point Tb or 90 mass% weight loss temperature Td90 of the amine additive under 1 atm is within the above range, it is easy to vaporize or decompose before curing is completed, so it is difficult to interfere with curing. The effects of the present invention are easily obtained.
  • the resulting conductive resin layer tends to have excellent conductivity and moisture resistance.
  • the "90 mass% weight loss temperature Td90" refers to the temperature at which the weight is reduced by 90 mass% when the temperature is raised at a temperature elevation rate of 10°C/min under the conditions of 1 atm and an air atmosphere.
  • Examples of amine-based additives include monoamines, diamines, and triamines. Use of diamines and triamines is preferable because the effects of the present invention can be significantly obtained, and the use of diamines makes the effects of the present invention more pronounced.
  • amine additives include monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, monopropylamine, dipropylamine, diisopropylamine, tripropylamine, monobutylamine, dibutylamine, tri Butylamine, monopentylamine, dipentylamine, tripentylamine, monohexylamine, dihexylamine, trihexylamine, monoheptylamine, diheptylamine, triheptylamine, monooctylamine, dioctylamine, dimethyloctylamine, trioctylamine , dimethylethylamine, diethanolamine, polyoxyethylenelaurylamine, N-lauryldiethanolamine, 3-(2-ethylhexyloxy)propylamine, N-2-(aminoethyl)-3-aminopropylamine, N-2-(aminoeth
  • the effect of the present invention can be obtained more preferably.
  • the amine-based additive contains at least one selected from dibutylamine, triethanolamine, diisopropylamine, dihexylamine, dimethyloctylamine, and polyoxyethylenelaurylamine
  • the effect of the present invention can be obtained more preferably.
  • the acid-based additive is not particularly limited as long as it is an organic acid, and examples thereof include carboxylic acids such as monocarboxylic acids, dicarboxylic acids, and tricarboxylic acids.
  • carboxylic acids such as monocarboxylic acids, dicarboxylic acids, and tricarboxylic acids.
  • the acid-based additive is a dicarboxylic acid, the effects of the present invention can be obtained more favorably, which is preferable.
  • Dicarboxylic acids include, for example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, octenylsuccinic acid, octadecylbutanedioic acid. is mentioned.
  • the acid-based additive is octadecylbutanedioic acid, the effect of the present invention can be obtained more favorably, which is preferable.
  • the molecular weight of the acid additive is preferably in the range of 10 to 5000, more preferably in the range of 20 to 3000, more preferably in the range of 30 to 2000. It is more preferably in the range of 1000 or more, and particularly preferably in the range of 250 or more and 750 or less. When the molecular weight of the acid-based additive is within the above range, the effects of the present invention can be obtained more favorably.
  • the number of carbon atoms in the acid-based additive is preferably 10 or more and 35 or less, and particularly preferably 15 or more and 25 or less. Thereby, the effect of the present invention can be obtained more preferably.
  • the pKa of the acid additive measured in water at 25°C is preferably 2.0 or more and 6.5 or less. Thereby, the effect of the present invention can be obtained more preferably.
  • the boiling point or 90 mass% weight loss temperature Td90 of the acid additive under 1 atmosphere is preferably a reference temperature of ⁇ 100° C. or higher and a reference temperature of +30° C. or lower when the curing temperature of the conductive resin composition is used as the reference temperature.
  • a reference temperature of ⁇ 75° C. or higher and a reference temperature of +20° C. or lower is preferable, and a reference temperature of ⁇ 50° C. or higher and a reference temperature of +10° C. or lower is preferable.
  • the boiling point Tb or 90 mass% weight loss temperature Td90 of the acid additive under 1 atmosphere is preferably 80° C. or higher and 350° C. or lower, more preferably 80° C. or higher and 300° C. or lower, and further 100° C.
  • the boiling point Tb or 90 mass% weight loss temperature Td90 of the acid-based additive under 1 atm acts in the conductive resin composition until immediately before curing, so that the effects of the present invention can be easily obtained.
  • the boiling point Tb or the 90 mass% weight loss temperature Td90 of the acid-based additive under 1 atm is within the above range, it is easy to evaporate or decompose before curing is completed, so it is unlikely to interfere with curing. The effects of the present invention are easily obtained.
  • the resulting conductive resin layer tends to have excellent conductivity and moisture resistance.
  • thermosetting conductive resin composition of the present invention contains only the amine-based additive among the amine-based additive and the acid-based additive, it is contained in the thermosetting conductive resin composition of the present invention.
  • the content of the amine-based additive is preferably 0.3 parts by mass or more and 20.0 parts by mass or less, and 0.6 parts by mass or more and 10.0 parts by mass with respect to 100 parts by mass of the thermosetting silicone resin having a hydroxyl group. The following are more preferable, and 1.8 parts by mass or more and 6.0 parts by mass or less are particularly preferable.
  • the content of the amine-based additive is within the above range, the effects of the present invention can be obtained more preferably.
  • thermosetting conductive resin composition of the present invention contains only the amine-based additive among the amine-based additive and the acid-based additive, it is contained in the thermosetting conductive resin composition of the present invention.
  • the content of the amine additive is preferably 0.05 parts by mass or more and 3.2 parts by mass or less, and 0.1 parts by mass or more and 1.6 parts by mass or less with respect to 100 parts by mass of the conductive powder containing the base metal. More preferably, 0.3 parts by mass or more and 1.4 parts by mass or less is particularly preferable.
  • the content of the amine-based additive is within the above range, the effects of the present invention can be obtained more preferably.
  • thermosetting conductive resin composition of the present invention contains only the acid-based additive among the amine-based additive and the acid-based additive, it is contained in the thermosetting conductive resin composition of the present invention.
  • the content of the acid-based additive is preferably 0.3 parts by mass or more and 20.0 parts by mass or less, and 0.6 parts by mass or more and 10.0 parts by mass with respect to 100 parts by mass of the thermosetting silicone resin having a hydroxyl group. The following are more preferable, and 1.8 parts by mass or more and 6.0 parts by mass or less are particularly preferable.
  • the content of the acid-based additive is within the above range, the effects of the present invention can be obtained more favorably.
  • thermosetting conductive resin composition of the present invention contains only the acid-based additive among the amine-based additive and the acid-based additive, it is contained in the thermosetting conductive resin composition of the present invention.
  • the content of the acid additive is preferably 0.05 parts by mass or more and 3.2 parts by mass or less, and 0.1 parts by mass or more and 1.6 parts by mass or less with respect to 100 parts by mass of the conductive powder containing the base metal. More preferably, 0.3 parts by mass or more and 1.4 parts by mass or less is particularly preferable.
  • the content of the acid-based additive is within the above range, the effects of the present invention can be obtained more favorably.
  • thermosetting conductive resin composition of the present invention contains both an amine additive and an acid additive
  • the amine additive and acid contained in the thermosetting conductive resin composition of the present invention The total content of system additives is preferably 0.3 parts by mass or more and 20.0 parts by mass or less, and 0.6 parts by mass or more and 10.0 parts by mass with respect to 100 parts by mass of the thermosetting silicone resin having a hydroxyl group.
  • the following are more preferable, and 1.8 parts by mass or more and 6.0 parts by mass or less are particularly preferable.
  • the effect of the present invention can be obtained more preferably.
  • thermosetting conductive resin composition of the present invention contains both an amine additive and an acid additive
  • the amine additive and acid contained in the thermosetting conductive resin composition of the present invention The total content of the system additives is preferably 0.05 parts by mass or more and 3.2 parts by mass or less, and 0.1 parts by mass or more and 1.6 parts by mass or less with respect to 100 parts by mass of the conductive powder containing the base metal. More preferably, 0.3 parts by mass or more and 1.4 parts by mass or less is particularly preferable.
  • the total content of the amine-based additive and the acid-based additive is within the above range, the effect of the present invention can be obtained more preferably.
  • thermosetting conductive resin composition of the present invention contains both an amine additive and an acid additive
  • the content of the amine additive contained in the thermosetting conductive resin composition of the present invention The amount is preferably 0.3 parts by mass or more and 20.0 parts by mass or less, more preferably 0.6 parts by mass or more and 10.0 parts by mass or less, and particularly It is preferably 1.8 parts by mass or more and 6.0 parts by mass or less
  • the content of the acid additive contained in the thermosetting conductive resin composition of the present invention is 100 parts by mass of the conductive powder containing a base metal.
  • parts by mass preferably 0.05 parts by mass or more and 3.2 parts by mass or less, more preferably 0.1 parts by mass or more and 1.6 parts by mass or less, particularly preferably 0.3 parts by mass or more and 1.4 parts by mass It is below the department.
  • the thermosetting conductive resin composition of the present invention can further contain an organic solvent.
  • the organic solvent contained is not particularly limited, and examples thereof include terpineol, dihydroterpineol, dihydroterpineol acetate, secondary butyl alcohol, butyl carbitol, butyl carbitol acetate, and benzyl alcohol. From the viewpoint of adhesion strength, acetate solvents are preferable, and butyl carbitol acetate is particularly preferable.
  • thermosetting conductive resin composition of the present invention can contain additives such as antifoaming agents, plasticizers, dispersants, and rheology modifiers, if necessary.
  • Plasticizers include dimethyl phthalate, diethyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, di-n-octyl phthalate, butyl benzyl phthalate, dioctyl adipate, diisononyl adipate, dibutyl sebacate, sebacic acid.
  • Rheology modifiers include, for example, silica powder.
  • thermosetting conductive resin composition of the present invention is suitably used for forming external electrodes of multilayer electronic components and for forming cathodes of solid electrolytic capacitors.
  • the moisture permeability of the thermosetting conductive resin composition of the present invention is preferably 80.0 mg or less, more preferably 40.0 mg or less, still more preferably 20.0 mg or less, and particularly preferably 10.0 mg or less. Since the moisture permeability is within the above range, an electronic component having excellent moisture resistance can be obtained when a conductive resin layer is formed using the conductive resin composition of the present invention.
  • the method for measuring the moisture permeability of the conductive resin composition of the present invention is not particularly limited, it can be measured, for example, by the following moisture permeability measurement test. ⁇ Moisture permeability measurement test> The conductive resin composition was cast on a PET film to a thickness of 250 ⁇ m, cured at 200° C.
  • Moisture permeation amount (weight increase) Weight of glass bottle after putting in dryer - Weight of glass bottle before putting in dryer (1) Calculates the amount of moisture permeation.
  • the specific resistance of the conductive resin layer obtained using the thermosetting conductive resin composition of the present invention is preferably 1.0 ⁇ 10 5 ⁇ cm or less, more preferably 5.0 ⁇ 10 4 ⁇ cm. Below, more preferably 1.0 ⁇ 10 4 ⁇ cm or less, more preferably 5.0 ⁇ 10 3 ⁇ cm or less, and more preferably 1.0 ⁇ 10 3 ⁇ cm or less.
  • the method for measuring the resistivity of the conductive resin composition of the present invention is not particularly limited, it can be measured, for example, by the following resistivity measurement test.
  • ⁇ Resistance measurement test> A conductive resin composition was cast on a slide glass substrate to a width of 1 cm, a length of 5 cm, and a thickness of 50 ⁇ m, and cured at 200° C. for 60 minutes to obtain a cured film. Instruments, KEITHLEY 2002) is used to measure the resistance of the surface of the cured film by the four-probe method, and the specific resistance is calculated from the obtained value and the thickness of the
  • the specific resistance reduction rate of the thermosetting conductive resin composition of the present invention is preferably 15% or more, more preferably 30% or more, more preferably 50% or more, more preferably 70% or more, more preferably 80%. above, more preferably 90% or more, particularly preferably 95% or more.
  • an electronic component having excellent conductivity can be obtained because the rate of decrease in specific resistance is within the above range.
  • the method for calculating the resistivity reduction rate of the thermosetting conductive resin composition of the present invention is not particularly limited, but for example, it can be calculated by the following resistivity reduction rate calculation method.
  • the composition (X) is the thermosetting conductive resin composition of the present invention containing the additive of the present invention (at least one of an amine additive and an acid additive), and the additive of the present invention.
  • the composition (Y) is a thermosetting conductive resin composition having the same composition as the composition (X) except that it does not contain (at least one of an amine additive and an acid additive)
  • each specific resistance was measured by the above-mentioned specific resistance measurement test, and the obtained specific resistances were defined as (A) and (B), respectively.
  • Formula (2): Specific resistance decrease rate [%] (1-((A) / (B))) ⁇ 100 (2) Then, the resistivity decrease rate is calculated.
  • the method for measuring the viscosity of the thermosetting conductive resin composition of the present invention is not particularly limited. can be measured at a shear rate of 4 (1/s).
  • the viscosity increase rate of the thermosetting conductive resin composition of the present invention is preferably 10.0 times or less, more preferably 8.0 times or less, more preferably 6.0 times or less, more preferably 4.0 times. Below, more preferably 2.0 times or less, particularly preferably 1.5 times or less.
  • a thermosetting conductive resin composition having excellent viscosity stability can be obtained. If the viscosity stability is low, the viscosity will increase over time. When the viscosity increases, the printed shape may deteriorate. When the thermosetting conductive resin composition is printed to form external electrodes and cathodes, the printed shape may be poor.
  • thermosetting conductive resin composition of the present invention is excellent in viscosity stability, when electronic components are formed using the conductive resin composition of the present invention, highly moisture-resistant electronic components can be stably obtained. easy to get.
  • the method for calculating the viscosity increase rate of the thermosetting conductive resin composition of the present invention is not particularly limited, it can be calculated, for example, by the following viscosity increase rate calculation method.
  • Viscosity increase rate [times] Viscosity one week after preparation/Viscosity one day after preparation (3) Calculate the viscosity increase rate.
  • the viscosity increase suppression rate of the thermosetting conductive resin composition of the present invention is preferably 10% or more, more preferably 20% or more, more preferably 30% or more, more preferably 40% or more, more preferably 50%. , more preferably 60% or more, more preferably 70% or more, still more preferably 80% or more, and particularly preferably 90% or more.
  • a thermosetting conductive resin composition having excellent viscosity stability can be obtained. Due to the excellent viscosity stability, it is easy to stably obtain highly moisture-resistant electronic components for the same reason as described above.
  • thermosetting conductive resin composition of the present invention containing the additive (at least one of an amine-based additive and an acid-based additive) according to the present invention is the composition (X), the additive (amine-based
  • the composition (Y) is a thermosetting conductive resin composition having the same composition as the composition (X) except that it does not contain at least one of an additive and an acid additive
  • the composition Using (X) and the composition (Y) each viscosity increase rate was measured by the viscosity increase rate measurement test described above, and the obtained viscosity increase rates were defined as (C) and (D), respectively.
  • the adhesion strength of the conductive resin layer obtained using the thermosetting conductive resin composition of the present invention is preferably 3.0 kg or more, more preferably 4.0 kg or more, still more preferably 5.0 kg or more, and particularly preferably is 6.0 kg or more.
  • the adhesion strength of the conductive resin layer obtained using the thermosetting conductive resin composition of the present invention is not particularly limited, but can be, for example, 20.0 kg or less. Since the conductive resin layer having the adhesion strength within the above range is formed between the metal layer and the plated layer of the external electrodes of the multilayer electronic component, cracks and interfacial peeling occur at the connection portion between the substrate and the electronic component.
  • the impact resistance of the electronic component is enhanced. Therefore, by using the conductive resin composition of the present invention to form between the metal layer and the plated layer of the external electrode of the multilayer electronic component, the impact resistance of the electronic component can be enhanced. In addition, the excellent adhesion strength makes it difficult for the conductive resin layer to separate from the electronic component electrode forming body, so that the moisture resistance of the electronic component can be easily maintained.
  • the method for measuring the adhesion strength is not particularly limited, it can be measured, for example, by the following adhesion strength measurement test.
  • ⁇ Adhesion strength measurement test> A conductive resin composition was cast on a slide glass substrate to a thickness of 50 ⁇ m, placed on an alumina chip of 1.5 mm long, 3.0 mm wide and 1.0 mm high, and cured at 200° C. for 60 minutes. , Apply a force in the horizontal direction at a speed of 0.3 mm / s using a bond tester (manufactured by Seishin Shoji Co., Ltd., model number: SS-30WD), and measure the value when the alumina chip is peeled off. .
  • a bond tester manufactured by Seishin Shoji Co., Ltd., model number: SS-30WD
  • the cured film density of the thermosetting conductive resin composition of the present invention is preferably 2.0 g/cm 3 or more, more preferably 2.5 g/cm 3 or more, and more preferably 3.0 g/cm 3 or more. 3 or more, more preferably 3.5 g/cm 3 or more, and particularly preferably 4.0 g/cm 3 or more.
  • the method for measuring the density of the cured film of the conductive resin composition of the present invention is not particularly limited. The film is cured under the conditions of 200° C.
  • the resulting cured film is cut into a circular shape, the weight and volume of the cut cured film are measured, and the A cured film density (g/cm 3 ) can be calculated as a ratio of weight (g).
  • thermosetting conductive resin composition of the present invention is used to form an electrode on an electrode forming body on which an electrode is formed (hereinafter also referred to as an electrode forming body for electronic parts) in the manufacture of electronic parts. is suitable as a thermosetting conductive resin composition.
  • the thermosetting conductive resin composition of the present invention is used as a thermosetting conductive resin composition for forming an external electrode of a laminate for laminated electronic parts and for forming a cathode of a cathode forming body for a solid electrolytic capacitor. , is particularly preferred.
  • thermosetting conductive resin composition of the present invention in a method of manufacturing an electronic component having a preparation step of preparing an electrode-forming body for an electronic component and an electrode forming step of forming an electrode on the outer surface of the electrode-forming body for an electronic component , can be used, and in the electrode forming step, the thermosetting conductive resin composition of the present invention is used to impart conductivity to the electronic component electrode forming body.
  • a resin layer is formed to form an electrode.
  • the preparation step is a step of preparing an electrode forming body for electronic components.
  • the electronic component electrode forming body refers to an object on which an electrode is formed in the manufacturing process of the electronic component.
  • Electrode-formed bodies for electronic parts include a laminate for electronic parts consisting of a plurality of ceramic layers and a plurality of internal electrode layers, a solid electrolytic capacitor consisting of an anode and a dielectric layer formed on the surface of the anode. Examples include a cathode forming body and an electrode forming body for a chip resistor having end face electrodes.
  • a multilayer electronic component laminate is composed of a plurality of ceramic layers and a plurality of internal electrode layers.
  • adjacent ceramic layers are connected to each other by internal electrode layers interposed therebetween.
  • laminated bodies for laminated electronic components include laminated bodies for laminated ceramic capacitors, laminated bodies for laminated ceramic inductors, and laminated bodies for piezoelectric actuators.
  • Examples of the material for forming the ceramic layer that constitutes the multilayer electronic component laminate include barium titanate, strontium titanate, calcium titanate, barium zirconate, strontium zirconate, calcium zirconate, strontium calcium zirconate, and the like. .
  • a cathode forming body for a solid electrolytic capacitor consists of an anode and a dielectric layer formed on the surface of the anode.
  • Combinations of materials for forming the anode and the dielectric layer include tantalum and tantalum pentoxide, aluminum and aluminum oxide, niobium and niobium pentoxide, and the like.
  • the electrode forming step is a step of forming electrodes on the outer surface of the electrode-forming body for electronic components.
  • forming a conductive resin layer on the electronic component electrode forming body means forming a conductive resin layer directly on the surface of the electronic component electrode forming body. It includes both cases in which another layer or film (for example, a metal layer, a conductor layer) or the like is first formed on the electrode forming body, and a conductive resin layer is formed on the surface thereof.
  • the conductive resin layer is formed directly on the surface of the electronic component electrode forming body, and between the electronic component electrode forming body.
  • the conductive resin layer is formed with another layer or film (for example, a metal layer, a conductor layer) interposed therebetween.
  • the position and method of forming the electrodes, the thickness of the electrodes, the number of electrodes, the type of metal that constitutes the electrodes, the shape of the conductive powder used for electrode formation, etc. are appropriately selected according to the electronic component to be manufactured. be done.
  • thermosetting conductive resin composition of the present invention is used to form a conductive resin layer on the electronic component electrode forming body.
  • thermosetting conductive resin composition of the present invention is applied to the electronic component electrode forming body so that the thermosetting conductive resin composition of the present invention is applied to a predetermined position of the electronic component electrode forming body.
  • a conductive resin layer is formed by forming a layer of the conductive resin composition and then curing the thermosetting conductive resin composition of the present invention. The curing described above is performed by heating.
  • the surface of the electronic component electrode forming body is directly conductive.
  • a resin layer can be formed.
  • an appropriate step can be included depending on the type of the electronic component. For example, in the case of a laminated electronic component, in the electrode forming step, after forming a metal layer on a predetermined position of an electrode forming body for electronic components, the thermosetting conductive resin composition of the present invention is applied to the surface of the metal layer.
  • thermosetting conductive resin composition of the present invention is formed at a predetermined position of the electrode forming body for electronic parts by applying a material, etc., and then the thermosetting conductive resin of the present invention.
  • a conductive resin layer is formed on the surface of the metal layer.
  • the heat treatment of the present invention is applied to the surface of the conductive layer.
  • thermosetting conductive resin composition layer of the present invention is formed at a predetermined position of the electrode forming body for electronic parts by applying the curable conductive resin composition, and then the heat of the present invention is applied. By curing the curable conductive resin composition, a conductive resin layer is formed on the surface of the conductive layer.
  • an appropriate step can be included depending on the type of the electronic component. For example, in the case of a laminated electronic component, in the electrode forming step, a conductive resin layer is formed at a predetermined position of an electrode forming body for electronic components, and then a plated layer is formed on the surface of the conductive resin layer.
  • electrodes can be formed by forming a conductive resin layer on the electronic component electrode forming body. That is, in this form, the electrode is configured only by the conductive resin layer.
  • thermosetting conductive resin composition of the present invention is used on the electronic component electrode forming body to form a conductive resin layer, and the electronic component electrode forming body is formed by dipping. Then, the thermosetting conductive resin composition of the present invention can be applied to form a layer of the thermosetting conductive resin composition of the present invention on a predetermined position of the electrode forming body for electronic parts. .
  • the electronic component electrode forming body is a multilayer electronic component laminate comprising a ceramic layer and an internal electrode layer.
  • the electrode forming step (1) is a conductive resin layer forming step ( 1A) at least.
  • the electrode forming step (1) includes a conductive resin layer forming step (1A) of forming a conductive resin layer on the outer surface of the multilayer electronic component laminate using the conductive resin composition of the present invention. It is not particularly limited as long as it is, and for example, an electrode forming step (1) comprising at least a metal layer forming step, a conductive resin layer forming step (1A), and a plated layer forming step can be mentioned.
  • the metal layer forming step is a step of forming a metal layer electrically connected to the internal electrode layer on the outer surface of the multilayer electronic component laminate.
  • the metal forming the metal layer includes at least one of Cu, Ag, Pd, Ni, Sn, Al, Au and Pt, or an alloy containing one or more of these.
  • a method for forming the metal layer is not particularly limited, and examples thereof include a dipping method, a plating method, a roll coating method, a screen printing method, and a sputtering method. The thickness, shape, position, number, etc. of the metal layers are appropriately selected.
  • the conductive resin layer forming step (1A) is a step of forming a conductive resin layer using the thermosetting conductive resin composition of the present invention on the surface of the metal layer formed by performing the metal layer forming step. be.
  • thermosetting conductive resin composition of the present invention is applied to the surface of the metal layer formed by performing the metal layer forming step, whereby the surface of the metal layer is A conductive resin layer is formed by forming a layer of the thermosetting conductive resin composition of the present invention and then curing the thermosetting conductive resin composition of the present invention.
  • a method for forming the conductive resin layer is not particularly limited, and examples thereof include a dipping method, a screen printing method, and a roll coating method. Among these, the dipping method is preferred.
  • the thickness, shape, position, number, etc. of the thermosetting conductive resin composition layer of the present invention are appropriately selected.
  • the plated layer forming step is a step of forming a plated layer on the surface of the conductive resin layer.
  • the metal forming the plated layer includes at least one of Ni, Cu, Sn, Ag and Au, or an alloy containing one or more of these.
  • the method of forming the plated layer is not particularly limited, and examples thereof include electrolytic plating and electroless plating. The thickness, shape, position, number, etc. of the plated layers are appropriately selected.
  • a second form of the electrode forming step (hereinafter also referred to as an electrode forming step (2)) is an electrode forming step in the case where the electrode forming body for electronic components is a cathode forming body for solid electrolytic capacitors. .
  • the electrode forming step (2) is a conductive resin layer forming step of forming a conductive resin layer on the outer surface of the cathode forming body for a solid electrolytic capacitor using the thermosetting conductive resin composition of the present invention. (2A) at least.
  • thermosetting conductive resin composition of the present invention is used to form a conductive resin layer ( 2A) is not particularly limited, for example, an electrode forming step (2) comprising at least a solid electrolyte layer forming step, a carbon layer forming step, and a conductive resin layer forming step (2A). is mentioned.
  • the solid electrolyte layer forming step is a step of forming a solid electrolyte layer on the outer surface of the cathode forming body for a solid electrolytic capacitor.
  • the method for forming the solid electrolyte layer is not particularly limited, and it can be formed by a known solid electrolyte produced by a chemical method. is mentioned.
  • the carbon layer forming step is a step of forming a carbon layer on the solid electrolyte layer.
  • the method for forming the carbon layer is not particularly limited, and for example, a method of applying a carbon paste containing a resin, a solvent, and carbon powder onto the solid electrolyte layer by a dipping method, followed by drying and/or curing. mentioned.
  • Carbon powder is not particularly limited, but graphite powder is preferred.
  • the conductive resin layer forming step (2A) is a step of forming a conductive resin layer on the carbon layer using the thermosetting conductive resin composition of the present invention.
  • the method for forming the conductive resin layer is not particularly limited. and a method of curing a flexible resin composition.
  • the electrode forming step (3) is the electrode forming step (3) in the case where the electronic component electrode forming body is a chip resistor electrode forming body having end face electrodes.
  • the electrode forming step (3) has at least a step of forming a conductive resin layer on the end face electrodes.
  • the method for forming the conductive resin layer is not particularly limited. and a method of curing the thermosetting conductive resin composition.
  • An electrode forming body for a chip resistor having end face electrodes includes, for example, an insulating substrate, a pair of upper surface electrodes formed on the insulating substrate, a resistor formed between the pair of upper surface electrodes, and a pair of upper surface electrodes. It comprises a protective layer formed so as to partially cover the resistor, and an edge electrode formed on the edge of the insulating substrate.
  • the electrode forming step (4) has at least a step of forming a conductive resin layer on the substrate.
  • the method for forming the conductive resin layer is not particularly limited, and for example, the thermosetting conductive resin composition of the present invention is applied by screen printing, inkjet printing, or dispenser printing, A method of curing the conductive composition is included.
  • substrates include alumina substrates, glass epoxy substrates, paper phenol substrates, and paper epoxy substrates.
  • the electrode forming step (5) has at least a step of forming a conductive resin layer on the film.
  • the method for forming the conductive resin layer is not particularly limited, and for example, the thermosetting conductive resin composition of the present invention is applied by screen printing, inkjet printing, or dispenser printing, A method of curing the conductive composition is included.
  • films include polyimide films and PET films.
  • Spherical silver-coated copper powder (conductive powder 1) coated with silver in a ratio of 10 parts by mass to 90 parts by mass of spherical copper powder (manufactured by Mitsui Kinzoku, model number: MA-CO3K) was produced.
  • the 50% value (D 50 ) in the volume-based integrated fraction was determined using a laser diffraction particle size distribution analyzer.
  • the specific surface area was measured by the BET method.
  • a spherical silver-coated copper powder was produced by the method described above, and the resulting spherical silver-coated copper powder was pulverized in a ball mill using palmitic acid as a lubricant to produce a flaky silver-coated copper powder (conductive powder 2). .
  • the number average particle size (D 50 ) and aspect ratio of 50 randomly selected powders were measured by SEM (scanning electron microscope) image observation, and the average value was determined. Moreover, the specific surface area was measured by the BET method.
  • spherical silver powder (conductive powder 5) was prepared according to the spray pyrolysis method described in Japanese Patent Publication No. 63-31522. Specifically, for the spherical silver powder, an aqueous solution in which a silver salt was dissolved was subjected to spray pyrolysis, and the collected silver powder was classified to adjust the D50 value. For the obtained silver powder, the 50% value (D 50 ) in the integrated fraction based on volume was determined using a laser diffraction particle size distribution analyzer. Moreover, the specific surface area was measured by the BET method.
  • a spherical silver powder was produced by the method described above, and the obtained spherical silver powder was pulverized in a ball mill using stearic acid as a lubricant to produce flaky silver powder (conductive powder 3).
  • the number average particle diameter (D 50 ) and aspect ratio of 50 randomly selected silver powders were measured in SEM image observation, and the average value was obtained.
  • the specific surface area was measured by the BET method.
  • ⁇ Preparation of conductive resin composition A conductive powder and a silicone resin were blended at the blend ratios shown in Tables 1 and 2 to prepare a conductive resin composition.
  • the unit of numerical values shown in Tables 1 and 2 is parts by mass.
  • BCA in the table is an abbreviation for butyl carbitol acetate
  • BZA is an abbreviation for benzyl alcohol.
  • ⁇ Conductive powder 1 Spherical silver-coated copper powder, D50 : 4.0 ⁇ m, specific surface area: 0.5 m2 /g ⁇ Conductive powder 2 Flake-shaped silver-coated copper powder, aspect ratio: 20, D 50 : 8.0 ⁇ m, specific surface area: 1.5 m 2 /g ⁇ Conductive powder 3 Flake-like silver powder, aspect ratio: 30, D 50 : 6.0 ⁇ m, specific surface area: 1.0 m 2 /g ⁇ Conductive powder 4 Spherical nickel powder, D 50 : 0.8 ⁇ m, specific surface area: 1.2 m 2 /g ⁇ Conductive powder 5 Spherical silver powder, D50 : 2.3 ⁇ m, specific surface area: 0.5 m2 /g ⁇ Silicone resin 1 A thermosetting silicone resin having a hydroxyl group, a dehydration condensation type, manufactured by Shin-Etsu Chemical Co., Ltd., model number: ES-1001N.
  • ⁇ Silicone resin 2 Thermosetting silicone resin having no hydroxyl group, addition curing type, manufactured by Shin-Etsu Chemical Co., Ltd., model number: X-40-2756 (one-liquid type containing curing catalyst), other functional groups: alkenyl group, methyl group, Phenyl group/amine additive 1: dibutylamine secondary amine, molecular weight: 129.2, number of carbon atoms: 8, boiling point: 159°C, pKa: 11.3 Amine additive 2: N-lauryldiethanolamine tertiary amine, molecular weight: 273.5, carbon number: 16, pKa: 14 Amine additive 3: triethanolamine tertiary amine, molecular weight: 149.2, number of carbon atoms: 6, boiling point: 335.4, pKa: 7.8 Amine additive 4: diisopropylamine secondary amine, molecular weight: 101.2, number of carbon atoms: 6, boiling point: 84°C,
  • Example 1 After mixing silicone resin 1, conductive powder 1, conductive powder 2, amine-based additive 1, and butyl carbitol acetate at the ratio shown in Table 1, using a three-roll mill (manufactured by Inoue Seisakusho) and kneaded to obtain a paste-like composition.
  • Example 2 After mixing silicone resin 1, conductive powder 1, conductive powder 2, amine-based additive 2, and butyl carbitol acetate at the ratio shown in Table 1, a three-roll mill (manufactured by Inoue Seisakusho) was used. and kneaded to obtain a paste-like composition.
  • ⁇ Performance evaluation> moisture permeability
  • the conductive resin composition was cast on a PET film to a thickness of 250 ⁇ m and cured at 200° C. for 60 minutes to obtain a cured film.
  • the resulting cured film was cut into a circle with a diameter of 7.5 mm, and fixed with an adhesive so as to cover a 5 ml glass bottle containing 2 g of silica gel. After that, the glass bottle was placed in a 750 ml container containing 100 ml of purified water so that the cured film did not come into contact with the purified water, and the container was placed in a dryer set at 65° C. and allowed to stand for 15 hours.
  • the weight of the glass bottle before and after being placed in the dryer was measured, and the weight increase was defined as the moisture permeability. Those with a moisture permeation amount exceeding 80.0 mg were evaluated as “failed, low moisture resistance”, and those with 80.0 mg or less were evaluated as “acceptable, high moisture resistance”.
  • the conductive resin composition was cast on a slide glass substrate to have a width of 1 cm, a length of 5 cm and a thickness of 50 ⁇ m, and cured at 200° C. for 60 minutes to obtain a cured film.
  • a digital multimeter Karl Fischer Instruments, KEITHLEY2002
  • the resistance of the surface of the cured film was measured by the four-probe method, and the specific resistance was calculated from the obtained value and the thickness of the sample.
  • Viscosity increase rate The viscosity of the pasty composition whose viscosity has been adjusted was measured one day after preparation and one week or four weeks after preparation using a rotational viscometer (manufactured by Brookfield, model number: HADV-II+Pro or HBDV-II+). Then, the viscosity was measured at 25° C. and a shear rate of 4 (1/s), and the ratio of the viscosity one week or four weeks after preparation to the viscosity one day after preparation was calculated as the viscosity increase rate.
  • the prepared paste-like composition whose viscosity had been adjusted was stored in a sealed container at 25°C.
  • Viscosity increase suppression rate The viscosity increase rate of the viscosity-adjusted paste-like composition (X) containing an additive (at least one of an amine-based additive and an acid-based additive) and the additive (amine-based).
  • the viscosity increase rate of the viscosity-adjusted paste composition (Y) having the same composition as the paste composition (X) except that it does not contain at least one of an additive and an acid additive) is ) and (D), and the resistivity decrease rate was calculated by the following formula. Viscosity increase suppression rate [%] (1-((C) / (D))) ⁇ 100
  • the conductive resin composition was cast on a slide glass substrate to a thickness of 50 ⁇ m, placed on an aluminum cylinder with a diameter of 3 mm, and cured at 200° C. for 60 minutes. Using a bond tester (manufactured by Seishin Shoji Co., Ltd., model number: SS-30WD), the film was pulled vertically at a speed of 0.5 mm/s, and the value at breakage was measured.
  • a bond tester manufactured by Seishin Shoji Co., Ltd., model number: SS-30WD
  • cured film density A conductive resin composition was cast on a PET film to a thickness of 250 ⁇ m to form a coating film, and the coating film was cured in an air atmosphere at 150° C. for 10 minutes to form a cured film. The cured film was cut into a circular shape, the weight and volume of the cut cured film were measured, and the cured film density (g/cm 3 ) was calculated as the ratio of the weight (g) to the volume (cm 3 ).
  • Examples 1 and 2 have extremely low specific resistance compared to Comparative Example 1, and compared to Comparative Example 1, viscosity stability was also high. . From this, it was found that an electronic component having excellent conductivity can be produced as compared with the case where the conductive resin composition of Comparative Example 1 is used. In addition, since the viscosity stability is higher than that of Comparative Example 1, the coating shape is good even when electronic components are manufactured using the conductive resin composition that has been prepared for a certain period of time. It was found that it is possible to manufacture an electronic component with high moisture resistance as compared with the case of using the conductive resin composition. Further, in Examples 3 to 22, similarly to Examples 1 and 2, it was possible to confirm the effect of suppressing a decrease in resistivity and an increase in viscosity.
  • Example 23 Each metal paste was prepared and evaluated in the same manner as in Comparative Example 1 and Example 1 above, except that 100 parts by mass of each of spherical tin powder, spherical zinc powder, and spherical aluminum powder was used as the conductive powder. As a result, it was confirmed that the amine-based additive was effective in suppressing the decrease in specific resistance and the increase in viscosity, and that the composition exhibited high moisture resistance. In particular, when spherical tin powder was used as the conductive powder, the specific resistance exceeded the upper limit of measurement when neither the amine-based additive nor the acid-based additive according to the present invention was included.
  • the conductivity is dramatically improved, and the specific resistance is 2.9 ⁇ 10 3 ⁇ cm, which is a relative The rate of decrease in resistance was over 99%.
  • Example 24 A paste was prepared in the same manner as in Comparative Example 1 and Example 1 using a thermosetting silicone resin having another hydroxyl group instead of silicone resin 1, and evaluation was performed. It was confirmed that the resistivity reduction and viscosity increase suppression effects could be confirmed, and that high humidity resistance was exhibited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

卑金属を含む導電性粉末と、水酸基を有する熱硬化性シリコーン樹脂と、アミン系添加剤及び酸系添加剤のうちの少なくとも1種と、を含有することを特徴とする熱硬化型導電性樹脂組成物。本発明によれば、水酸基を有する熱硬化性シリコーン樹脂と、Cu等の卑金属を含む導電性粉末とを含有する場合であっても、粘度安定性が高く、導電性の低下が抑制され(導電性が良好であり)、耐湿性に優れる導電性樹脂層を形成可能な、電子部品の電極形成用の熱硬化型導電性樹脂組成物を提供することができる。

Description

熱硬化型導電性樹脂組成物、電子部品の製造方法
 本発明は、積層型電子部品用の積層体、固体電解コンデンサ用の被陰極形成体等の電子部品用被電極形成体に、電極を形成させて、電子部品を製造するための電子部品の電極形成用の熱硬化型導電性樹脂組成物に関する。また、本発明は、積層型電子部品用の積層体、固体電解コンデンサ用の被陰極形成体等の電子部品用被電極形成体に、電極を形成させて、電子部品を製造するための電子部品の製造方法に関する。
 近年、電子機器は従来よりも過酷な環境で用いられるようになってきているため、電子機器に搭載される電子部品についても、従来よりも過酷な環境で使用しても、故障しないことが求められている。
 具体的には、例えば、スマートフォンなどのモバイル機器の場合は落下により、また、自動車に搭載されている電子機器の場合は走行時の振動により、衝撃を受けたとしても、基板と電子部品の接続部分にクラックや界面剥離が生じて基板から電子部品が脱落したり、電子部品自体にクラックが生じたりしないような、高い耐衝撃性が要求される。
 また、モバイル機器や自動車は、湿度の高い環境に晒されることもあるため、モバイル機器や自動車に搭載されている電子部品には、内部に水分が侵入しないように高い耐湿性が要求される。
 ここで、特許文献1には、エポキシ樹脂を含まず、ゲル状のシリコーンゴム(ポリジメチルシロキサン)と、導電性粉末と、からなる組成物が開示されており、当該組成物を用いて積層セラミックコンデンサの外部電極の外表面に導電性樹脂層を形成することで、めっき液の浸透を効果的に遮断できるという意味での耐湿性を有しつつ、エポキシ樹脂を含有する組成物を用いた場合よりも更に優れた外部電極の曲げ強度が得られると記載されている。
特開2014-135463号公報
 上述の通り、シリコーンゴムを使えば一定の耐湿性が得られることが特許文献1に記載されているが、シリコーンゴムやシリコーン樹脂は絶縁性が非常に高いため絶縁用途に用いられることが多く、導電用途に用いた場合には導電性が得られにくい場合が多い。
 そこで、発明者等が鋭意検討を行ったところ、水酸基を有する熱硬化性シリコーン樹脂を含有する熱硬化型導電性樹脂組成物を用いて導電性樹脂層を形成することで、耐湿性と導電性を両立できることを見出した。しかしながら、当該組成物の導電性粉末としてCu等の卑金属を含有する導電性粉末を用いた場合、時間経過に伴って当該導電性樹脂組成物の粘度が増加する場合があるという新たな問題や、導電性が低下する(良好な導電性が得られない)場合があるという新たな問題を本発明者等が発見した。
 従って、本発明の目的は、水酸基を有する熱硬化性シリコーン樹脂と、Cu等の卑金属を含む導電性粉末とを含有する場合であっても、粘度安定性が高く、導電性の低下が抑制され(導電性が良好であり)、耐湿性に優れる導電性樹脂層を形成可能な、電子部品の電極形成用の導電性樹脂組成物を提供することにある。
 上記課題を解決すべく鋭意検討を重ねた結果、本発明者等は、Cu等の卑金属を含む導電性粉末と、水酸基を有する熱硬化性シリコーン樹脂に加え、更にアミン系添加剤及び酸系添加剤のうち少なくとも1種の添加剤を含むことで、粘度安定性が高く、導電性の低下が抑制され(導電性が良好であり)、耐湿性に優れる導電性樹脂層を形成可能な熱硬化型導電性樹脂組成物が得られることを見出し、本発明を完成させるに至った。
 すなわち、本発明(1)は、卑金属を含む導電性粉末と、
 水酸基を有する熱硬化性シリコーン樹脂と、
 アミン系添加剤及び酸系添加剤のうちの少なくとも1種と、
を含有することを特徴とする熱硬化型導電性樹脂組成物を提供するものである。
 また、本発明(2)は、前記アミン系添加剤又は前記酸系添加剤の分子量が30以上2000以下の範囲内である(1)の熱硬化型導電性樹脂組成物を提供するものである。
 また、本発明(3)は、前記アミン系添加剤又は前記酸系添加剤の1気圧下での沸点Tb又は90質量%減量温度Td90が80℃以上400℃以下であることを特徴とする(1)又は(2)の熱硬化型導電性樹脂組成物を提供するものである。
 また、本発明(4)は、前記アミン系添加剤が二級アミン及び三級アミンのうち少なくともいずれか1種を含む(1)~(3)いずれかの熱硬化型導電性樹脂組成物を提供するものである。
 また、本発明(5)は、前記酸系添加剤がジカルボン酸を含むことを特徴とする(1)~(4)いずれかの熱硬化性導電性樹脂組成物を提供するものである。
 また、本発明(6)は、前記アミン系添加剤の含有量が、前記水酸基を有する熱硬化性シリコーン樹脂100質量部に対して、0.6質量部以上10.0質量部以下であること、及び/又は前記酸系添加剤の含有量が、前記卑金属を含む導電性粉末100質量部に対して、0.1質量部以上1.6質量部以下であることを特徴とする(1)の熱硬化型導電性樹脂組成物を提供するものである。
 また、本発明(7)は、電子部品用被電極形成体を準備する準備工程と、
 該電子部品用被電極形成体の外表面上に、電極を形成させる電極形成工程と、
を有し、
 該電極形成工程において、電子部品用被電極形成体に、(1)~(6)いずれか記載の熱硬化型導電性樹脂組成物を塗布し、次いで、該熱硬化型導電性樹脂組成物を硬化させることにより、該電子部品用被電極形成体に導電性樹脂層を形成させること、
を特徴とする電子部品の製造方法を提供するものである。
 本発明によれば、水酸基を有する熱硬化性シリコーン樹脂と、Cu等の卑金属を含む導電性粉末とを含有する場合であっても、粘度安定性が高く、導電性の低下が抑制され(導電性が良好であり)、耐湿性に優れる導電性樹脂層を形成可能な、電子部品の電極形成用の熱硬化型導電性樹脂組成物を提供することができる。
 本発明の熱硬化型導電性樹脂組成物は、卑金属を含む導電性粉末と、水酸基を有する熱硬化性シリコーン樹脂と、アミン系添加剤及び酸系添加剤のうち少なくとも1種と、を含有する熱硬化型導電性樹脂組成物である。これにより、耐湿性と導電性に優れる導電性樹脂層を形成でき、更に、粘度安定性にも優れる。上記効果が得られる理由は定かではないが、本発明者等は、次のように推測している。すなわち、組成物中に水酸基を有する熱硬化性シリコーン樹脂とCu等の卑金属を含む導電性粉末が存在する場合、Cu等の卑金属と水酸基とが反応することで、時間経過に伴って組成物の粘度が増加し、また、加熱硬化が阻害される。組成物中にアミン系添加剤が存在することで、アミン系添加剤が当該樹脂の水酸基に配位して水酸基をCu等の卑金属から保護し、時間経過に伴う組成物の粘度増加を抑制でき、また、硬化阻害が抑制されるため得られる導電性樹脂層の導電性の低下を抑制できる(良好な導電性が得られる)。また、組成物中に酸系添加剤が存在することで、酸系添加剤が上記導電性粉末の表面に結合し、Cu等の卑金属と熱硬化性シリコーン樹脂の水酸基の接触を防ぐことができ、それにより時間経過に伴う組成物の粘度増加を抑制でき、また、硬化阻害が抑制されるため得られる導電性樹脂層の導電性の低下を抑制できる(良好な導電性が得られる)。
 本発明の熱硬化型導電性樹脂組成物は、加熱により硬化して硬化膜(導電性樹脂層)を形成する熱硬化型導電性樹脂組成物である。加熱温度は特に制限されないが、例えば、150℃~300℃の範囲内、180℃~250℃の範囲内が挙げられる。
 本発明の熱硬化型導電性樹脂組成物は、導電性粉末を含有する。そして、本発明の熱硬化型導電性樹脂組成物は、導電性粉末として、少なくとも卑金属を含む導電性粉末を含有する。卑金属を含む導電性粉末としては、卑金属粉末、2種以上の卑金属の合金からなる卑金属合金粉末、卑金属粉末の表面が貴金属でコートされている貴金属コート卑金属粉末、卑金属と貴金属との合金粉末が挙げられる。卑金属を含む導電性粉末としては、例えば、銅粉末、銀コート銅粉末、銅合金粉末、銀-鉛合金粉末、スズ粉末、ニッケル粉末、銀コートニッケル粉末、銅-ニッケル合金粉末、鉄粉末、亜鉛粉末、アルミニウム粉末が挙げられる。銀粉末は、イオンマイグレーションを起こしやすいので、イオンマイグレーションを起こしにくいという点で、銀を含まない粉末、すなわち、卑金属粉末、特に例えば銅粉末が好ましい。また、コストが低いという点で、卑金属を含む導電性粉末としては、銀コート銅粉末や銅粉末、貴金属やレアメタル等の高価な金属成分を含まない銅合金粉末が好ましく、特に銅粉末が好ましい。導電性に優れるという点で、卑金属を含む導電性粉末としては、銀コート銅粉末が好ましい。銀コート銅粉末としては、銀が銅粉末表面の少なくとも一部を被覆していればよい。本発明の熱硬化型導電性樹脂組成物は、上述した通り種々の点で、導電性粉末がCuを含むことが好ましい。一方で、水酸基を有する熱硬化性シリコーン樹脂を含有する組成物において、卑金属を含む導電性粉末を用いる場合に粘度増加及び導電性低下の問題が生じやすくなるが、Cuを含む導電性粉末を用いる場合に特にこれらの問題が生じやすくなる。本発明の熱硬化型導電性樹脂組成物においては、アミン系添加剤又は酸系添加剤を用いることで、水酸基を有する熱硬化性シリコーン樹脂と卑金属を含む導電性粉末とを組合せた場合に生じる上記問題を解決することができるが、特に卑金属としてCuを用いることで、前述のCuを含む導電性粉末の利点を最大限活かしつつ、水酸基を有する熱硬化性シリコーン樹脂とCuを含む導電性粉末を組み合わせた場合の問題も解決できる。すなわち、本発明においては、Cuを含む導電性粉末と、水酸基を有する熱硬化性シリコーン樹脂と、アミン系添加剤及び酸系添加剤のうち少なくとも1種を組み合わせることで、本発明の効果が特に顕著に発揮される。なお、本明細書において「卑金属」とは、銅、鉄、ニッケル、アルミニウム、鉛、亜鉛、錫等の、銅、あるいは銅よりもイオン化傾向が大きい金属を指し、「貴金属」とは、金、銀、白金等の、銅よりもイオン化傾向が小さい金属を指す。
 本発明の熱硬化型導電性樹脂組成物では、導電性粉末の形状は、特に制限されるものではなく、例えば、球状やフレーク状が挙げられるが、導電性と接着性に優れるという点で、フレーク状であることが好ましい。
 本発明の熱硬化型導電性樹脂組成物は、前述の卑金属を含む導電性粉末に加え、更に他の導電性粉末を含有することができる。つまり、本発明の熱硬化型導電性樹脂組成物は、導電性粉末として、卑金属を含む導電性粉末のみを含有していてもよく、あるいは、卑金属を含む導電性粉末と、貴金属を含む導電性粉末と、を含有していてもよい。上記他の導電性粉末の形状は、特に制限されるものではなく、例えば、球状やフレーク状が挙げられるが、導電性と接着性に優れるという点で、フレーク状であることが好ましい。
 本発明の熱硬化型導電性樹脂組成物では、導電性粉末全体に対するフレーク状導電性粉末の含有割合は、好ましくは20.0質量%以上、より好ましくは40.0質量%以上、特に好ましくは60.0質量%以上である。導電性粉末全体に対するフレーク状導電性粉末の含有割合が上記範囲にあることにより、得られる導電性樹脂層の導電性および接着性が高くなる。
 フレーク状導電性粉末のアスペクト比は、好ましくは1.5~50.0、より好ましくは2.0~30.0、特に好ましくは5.0~20.0である。フレーク状導電性粉末のアスペクト比が上記範囲にあることにより、得られる導電性樹脂層の導電性および接着性が高くなる。なお、本発明においては、走査型電子顕微鏡(SEM)像観察において任意に選んだ50個の導電性粉末の長径と厚みを測定し、厚みに対する長径の比(長径/厚み)の平均値をフレーク状導電性粉末のアスペクト比とした。
 走査型電子顕微鏡(SEM)を用いて測定したときのフレーク状導電性粉末の数平均粒子径は、好ましくは0.1~20.0μm、より好ましくは0.3~15.0μm、更に好ましくは0.5~10.0μm、特に好ましくは1.0~5.0μmである。フレーク状導電性粉末の数平均粒子径が上記範囲にあることにより、得られる導電性樹脂層の導電性および接着性が高くなる。なお、本発明においては、SEM(走査電子顕微鏡)像観察において任意に選んだ50個の導電性粉末の長径を測定し、その平均値をフレーク状導電性粉末の数平均粒子径とした。
 フレーク状導電性粉末の比表面積は、好ましくは0.5~5.0m/g、特に好ましくは0.6~4.0m/gである。フレーク状導電性粉末の比表面積が上記範囲にあることにより、得られる導電性樹脂層の導電性および接着性が高くなる。
 球状導電性粉末の体積基準の累積50%粒子径(D50)は、好ましくは0.01~7.0μm、特に好ましくは0.03~5.0μmである。球状導電性粉末のD50が上記範囲にあることにより、得られる導電性樹脂層の導電性および接着性が高くなる。なお、本発明において、D50については、レーザー回折式粒度分布測定装置を用いて、体積基準の積算分率における50%値(D50)を求めた。
 球状導電性粉末の比表面積は、好ましくは0.2~3.0m/g、特に好ましくは0.3~2.5m/gである。球状導電性粉末の比表面積が上記範囲にあることにより、得られる導電性樹脂層の導電性および接着性が高くなる。
 本発明の熱硬化型導電性樹脂組成物は、樹脂バインダーを含有する。そして、本発明の熱硬化型導電性樹脂組成物は、樹脂バインダーとして、少なくとも水酸基を有する熱硬化性シリコーン樹脂を含有する。水酸基を有する熱硬化性シリコーン樹脂は、水酸基を有し且つ加熱により縮合反応が進行して硬化する縮合型熱硬化性シリコーン樹脂であることが好ましく、水酸基を有し且つ加熱により脱水縮合反応が進行して硬化する脱水縮合型シリコーン樹脂であることがより好ましく、ケイ素原子に結合した水酸基(シラノール基)を有し且つ加熱により脱水縮合反応が進行する脱水縮合型熱硬化性シリコーン樹脂であることが特に好ましい。
 本発明の熱硬化型導電性樹脂組成物に含まれる全樹脂バインダーに対する水酸基を有する熱硬化性シリコーン樹脂の含有割合は、好ましくは25.0質量%以上、より好ましくは30.0質量%以上、より好ましくは40.0質量%以上、より好ましくは50.0質量%以上、より好ましくは60.0質量%以上、より好ましくは70.0質量%以上、より好ましくは80.0質量%以上、より好ましくは90.0質量%以上、特に好ましくは95.0質量%以上である。熱硬化型導電性樹脂組成物が上記範囲で水酸基を有する熱硬化性シリコーン樹脂を含有することにより、導電性樹脂層の耐湿性が高くなり、また、アミン系添加剤又は酸系添加剤を用いることによる比抵抗低下及び粘度増加抑制効果が大きくなる。
 水酸基を有する熱硬化性シリコーン樹脂は、硬化剤や触媒を用いなくとも、加熱により硬化する。加熱硬化のタイプとしては、加熱により縮合反応が進行して硬化する縮合硬化型が好ましい。加熱により脱水縮合反応が進行して硬化する脱水縮合型が特に好ましい。
 水酸基を有する熱硬化性シリコーン樹脂における水酸基の位置や数は特に制限されるものではなく、例えば、ポリマーの片末端、ポリマーの両末端、ポリマーの側鎖に有することができる。導電性に優れるという点で、少なくとも側鎖に複数の水酸基を有することが好ましい。水酸基はケイ素原子に結合していてもよく、ケイ素原子以外の他の原子(例えば炭素原子)に結合していてもよい。なお、本明細書において、シラノール基におけるSiに結合したOH基も水酸基と称する。
 水酸基を有する熱硬化性シリコーン樹脂の主骨格(主鎖)はシロキサン単位を有していればよく、例えば、シロキサン単位のみからなる重合体(ポリシロキサン)や、シロキサン単位を含む共重合体が挙げられる。シロキサン単位を含む共重合体としては、シロキサン単位を含むモノマー、オリゴマー及びポリマーのうち少なくともいずれかと、シロキサン単位を含まないモノマー、オリゴマー及びポリマーのうち少なくともいずれかとの共重合体が挙げられる。これらの重合体や共重合体は、直鎖状であってもよく、分岐鎖状であってもよい。
 水酸基を有する熱硬化性シリコーン樹脂は、ポリマーの側鎖や末端に水酸基以外の他の官能基を有していてもよく、例えば、アルケニル基、ハイドロジェンシリル基、(メタ)アクリロイル基、エポキシ基、アミノ基、カルビノール基、メルカプト基、カルボキシ基、フェノール基、アリール基、メチル基等のアルキル基、フェニル基等の芳香族基等が挙げられる。熱硬化性シリコーン樹脂の官能基としては、耐湿性の点ではメチル基等のアルキル基、フェニル基等の芳香族基が好ましく、導電性の点では水酸基が好ましく、接着性の点ではエポキシ基が好ましい。
 水酸基を有する熱硬化性シリコーン樹脂は、ポリマーの側鎖や末端に種々のオリゴマーやポリマー等が導入(グラフト)された変性樹脂であってもよく、樹脂同士が架橋された架橋樹脂であってもよい。
 水酸基を有する熱硬化性シリコーン樹脂の分子量(重量平均分子量Mw)は、特に制限されないが、好ましくは1000~300000、特に好ましくは2000~200000である。
 本発明の熱硬化型導電性樹脂組成物は、更に、硬化剤や触媒を含有してもよく、例えば、白金系、チタン系、アルミ系、亜鉛系、鉄系、リン酸系の硬化剤や触媒が挙げられる。
 本発明の熱硬化型導電性樹脂組成物は、本発明の効果を損なわない範囲で、水酸基を有する熱硬化性シリコーン樹脂以外の樹脂バインダーを含有してもよい。水酸基を有する熱硬化性シリコーン樹脂以外の樹脂バインダーとしては、熱硬化性樹脂であってもよく、熱可塑性樹脂であってもよい。水酸基を有する熱硬化性シリコーン樹脂以外の樹脂バインダーとしては、エチルセルロース等のセルロース系樹脂、ポリビニルアセタール樹脂等のアセタール系樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、エポキシ樹脂、アクリル樹脂、ポリブタジエンなどのブタジエン系樹脂、(メタ)アクリル樹脂、スチレン樹脂、フェノール樹脂、アルキッド樹脂、ポリウレタン樹脂、前記水酸基を有する熱硬化性シリコーン樹脂とは異なるシリコーン樹脂等が挙げられる。
 本発明の熱硬化型導電性樹脂組成物中の樹脂バインダーの含有量は、導電性粉末100.0質量部に対し、好ましくは3.0~30.0質量部、より好ましくは3.0~28.0質量部、より好ましくは3.0~25.0質量部、より好ましくは5.0~25.0質量部、より好ましくは7.0~23.0質量部、特に好ましくは11.0~20.0質量部である。樹脂バインダーの含有量が上記範囲にあることで、導電性や接着性に優れた導電性樹脂層が得られやすい。また、被電極形成体に熱硬化型導電性樹脂組成物を塗布する際の印刷性が優れたものとなりやすい。
 本発明の熱硬化型導電性樹脂組成物は、アミン系添加剤及び酸系添加剤のうち少なくとも1種の添加剤を含有する。本発明の熱硬化型導電性樹脂組成物がアミン系添加剤及び/又は酸系添加剤を含有することで、水酸基を有する熱硬化性シリコーン樹脂と、卑金属を含む導電性粉末とを含有する場合であっても、粘度安定性を高くでき、また、導電性の低下を抑制できる(良好な導電性が得られる)。特に、添加剤としてアミン系添加剤を用いることで、本発明の効果が得られやすくなるため、好ましい。また、添加剤としてアミン系添加剤と酸系添加剤を併用する場合に、本発明の効果が得られやすくなるため、好ましい。
 アミン系添加剤としては特に制限されず、一級アミン、二級アミン、三級アミンが挙げられる。特に、アミン系添加剤が二級アミン及び三級アミンの場合、本発明の効果がより好適に得られるため、好ましく、中でも、二級アミンが好ましい。
 アミン系添加剤の分子量は、10以上5000以下の範囲内にあることが好ましく、20以上3000以下の範囲内にあることがより好ましく、30以上2000以下の範囲内にあることがより好ましく、40以上1000以下の範囲内にあることがより好ましく、50以上500以下の範囲内にあることがより好ましく、80以上350以下の範囲内にあることが更に好ましく、100以上300以下の範囲内にあることが特に好ましい。アミン系添加剤の分子量が上記範囲にあることで、本発明の効果がより好適に得られる。
 アミン系添加剤の炭素数は、6以上20以下であることが好ましく、7以上18以下であることが特に好ましい。これにより、本発明の効果がより好適に得られる。
 アミン系添加剤の、25℃、水中で測定したpKaは、7.5以上12.0以下が好ましい。これにより、本発明の効果がより好適に得られる。
 アミン系添加剤の1気圧下での沸点Tb又は90質量%減量温度Td90は、導電性樹脂組成物の硬化温度を基準温度としたときに、基準温度-100℃以上基準温度+30℃以下が好ましく、基準温度-75℃以上基準温度+20℃以下が更に好ましく、基準温度-50℃以上基準温度+10℃以下が特に好ましい。また、アミン系添加剤の1気圧下での沸点Tb又は90質量%減量温度Td90は、80℃以上400℃以下が好ましく、80℃以上350℃以下がより好ましく、80℃以上300℃以下がより好ましく、100℃以上250℃以下が更に好ましく、120℃以上230℃以下が特に好ましい。アミン系添加剤の1気圧下での沸点Tb又は90質量%減量温度Td90が上記範囲内にあることで、硬化直前まで導電性樹脂組成物中で作用するため、本発明の効果が得られやすい。また、アミン系添加剤の1気圧下での沸点Tb又は90質量%減量温度Td90が上記範囲内にあることで、硬化が完了する前に気化又は分解しやすいため、硬化の妨げになりにくく、本発明の効果が得られやすい。また、硬化後の膜中に残存しにくいため、得られる導電性樹脂層の導電性及び耐湿性が優れたものとなりやすい。なお、本明細書における「90質量%減量温度Td90」は、1気圧、大気雰囲気の条件で、10℃/分の昇温速度で昇温したときに90質量%減量するときの温度を指す。
 アミン系添加剤としては、例えば、モノアミン、ジアミン、トリアミンがあげられるが、ジアミン及びトリアミンを用いることで本発明の効果が顕著に得られるため好ましく、ジアミンを用いることで本発明の効果がより顕著に得られるため特に好ましい。アミン系添加剤として更に具体的には、例えば、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、モノプロピルアミン、ジプロピルアミン、ジイソプロピルアミン、トリプロピルアミン、モノブチルアミン、ジブチルアミン、トリブチルアミン、モノペンチルアミン、ジペンチルアミン、トリペンチルアミン、モノヘキシルアミン、ジヘキシルアミン、トリヘキシルアミン、モノヘプチルアミン、ジヘプチルアミン、トリヘプチルアミン、モノオクチルアミン、ジオクチルアミン、ジメチルオクチルアミン、トリオクチルアミン、ジメチルエチルアミン、ジエタノールアミン、ポリオキシエチレンラウリルアミン、N-ラウリルジエタノールアミン、3-(2-エチルヘキシルオキシ)プロピルアミン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン、ポリ(テトラメチレン/3-メチルテトラメチレンエーテル)グリコールビス(4-アミノベンゾエート)、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート、トリエタノールアミンが挙げられる。アミン系添加剤がジブチルアミン、トリエタノールアミン、ジイソプロピルアミン、ジヘキシルアミン、ジメチルオクチルアミン及びポリオキシエチレンラウリルアミンから選ばれる少なくとも1種以上を含む場合、本発明の効果がより好適に得られるため好ましく、特に、アミン系添加剤がジブチルアミン、トリエタノールアミン、及びポリオキシエチレンラウリルアミンから選ばれる少なくとも1種以上を含む場合、本発明の効果が更に好適に得られるため好ましい。
 酸系添加剤としては、有機酸であれば特に制限されず、モノカルボン酸、ジカルボン酸、トリカルボン酸等のカルボン酸類が挙げられる。特に、酸系添加剤がジカルボン酸の場合、本発明の効果がより好適に得られるため、好ましい。ジカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸、オクテニルコハク酸、オクタデシルブタン二酸が挙げられる。特に、酸系添加剤がオクタデシルブタン二酸の場合、本発明の効果がより好適に得られるため、好ましい。
 酸系添加剤の分子量は、10以上5000以下の範囲内にあることが好ましく、20以上3000以下の範囲内にあることがより好ましく、30以上2000以下の範囲内にあることがより好ましく、100以上1000以下の範囲内にあることが更に好ましく、250以上750以下の範囲内にあることが特に好ましい。酸系添加剤の分子量が上記範囲にあることで、本発明の効果がより好適に得られる。
 酸系添加剤の炭素数は、10以上35以下であることが好ましく、15以上25以下であることが特に好ましい。これにより、本発明の効果がより好適に得られる。
 酸系添加剤の、25℃、水中で測定したpKaは、2.0以上6.5以下が好ましい。これにより、本発明の効果がより好適に得られる。
 酸系添加剤の1気圧下での沸点又は90質量%減量温度Td90は、導電性樹脂組成物の硬化温度を基準温度としたときに、基準温度-100℃以上基準温度+30℃以下が好ましく、基準温度-75℃以上基準温度+20℃以下が好ましく、基準温度-50℃以上基準温度+10℃以下が好ましい。また、酸系添加剤の1気圧下での沸点Tb又は90質量%減量温度Td90は、80℃以上350℃以下が好ましく、80℃以上300℃以下がより好ましく、100℃以上250℃以下が更に好ましく、120℃以上230℃以下が特に好ましい。酸系添加剤の1気圧下での沸点Tb又は90質量%減量温度Td90が上記範囲内にあることで、硬化直前まで導電性樹脂組成物中で作用するため、本発明の効果が得られやすい。また、酸系添加剤の1気圧下での沸点Tb又は90質量%減量温度Td90が上記範囲内にあることで、硬化が完了する前に気化又は分解しやすいため、硬化の妨げになりにくく、本発明の効果が得られやすい。また、硬化後の膜中に残存しにくいため、得られる導電性樹脂層の導電性及び耐湿性が優れたものとなりやすい。
 本発明の熱硬化型導電性樹脂組成物が、アミン系添加剤及び酸系添加剤のうち、アミン系添加剤のみを含有する場合、本発明の熱硬化型導電性樹脂組成物に含有されるアミン系添加剤の含有量は、水酸基を有する熱硬化性シリコーン樹脂100質量部に対して、0.3質量部以上20.0質量部以下が好ましく、0.6質量部以上10.0質量部以下がより好ましく、1.8質量部以上6.0質量部以下が特に好ましい。アミン系添加剤の含有量が上記範囲にあることで、本発明の効果がより好適に得られる。
 本発明の熱硬化型導電性樹脂組成物が、アミン系添加剤及び酸系添加剤のうち、アミン系添加剤のみを含有する場合、本発明の熱硬化型導電性樹脂組成物に含有されるアミン系添加剤の含有量は、卑金属を含む導電性粉末100質量部に対して、0.05質量部以上3.2質量部以下が好ましく、0.1質量部以上1.6質量部以下がより好ましく、0.3質量部以上1.4質量部以下が特に好ましい。アミン系添加剤の含有量が上記範囲にあることで、本発明の効果がより好適に得られる。
 本発明の熱硬化型導電性樹脂組成物が、アミン系添加剤及び酸系添加剤のうち、酸系添加剤のみを含有する場合、本発明の熱硬化型導電性樹脂組成物に含有される酸系添加剤の含有量は、水酸基を有する熱硬化性シリコーン樹脂100質量部に対して、0.3質量部以上20.0質量部以下が好ましく、0.6質量部以上10.0質量部以下がより好ましく、1.8質量部以上6.0質量部以下が特に好ましい。酸系添加剤の含有量が上記範囲にあることで、本発明の効果がより好適に得られる。
 本発明の熱硬化型導電性樹脂組成物が、アミン系添加剤及び酸系添加剤のうち、酸系添加剤のみを含有する場合、本発明の熱硬化型導電性樹脂組成物に含有される酸系添加剤の含有量は、卑金属を含む導電性粉末100質量部に対して、0.05質量部以上3.2質量部以下が好ましく、0.1質量部以上1.6質量部以下がより好ましく、0.3質量部以上1.4質量部以下が特に好ましい。酸系添加剤の含有量が上記範囲にあることで、本発明の効果がより好適に得られる。
 本発明の熱硬化型導電性樹脂組成物が、アミン系添加剤及び酸系添加剤の両方を含有する場合、本発明の熱硬化型導電性樹脂組成物に含有されるアミン系添加剤及び酸系添加剤の合計含有量は、水酸基を有する熱硬化性シリコーン樹脂100質量部に対して、0.3質量部以上20.0質量部以下が好ましく、0.6質量部以上10.0質量部以下がより好ましく、1.8質量部以上6.0質量部以下が特に好ましい。アミン系添加剤及び酸系添加剤の合計含有量が上記範囲にあることで、本発明の効果がより好適に得られる。
 本発明の熱硬化型導電性樹脂組成物が、アミン系添加剤及び酸系添加剤の両方を含有する場合、本発明の熱硬化型導電性樹脂組成物に含有されるアミン系添加剤及び酸系添加剤の合計含有量は、卑金属を含む導電性粉末100質量部に対して、0.05質量部以上3.2質量部以下が好ましく、0.1質量部以上1.6質量部以下がより好ましく、0.3質量部以上1.4質量部以下が特に好ましい。アミン系添加剤及び酸系添加剤の合計含有量が上記範囲にあることで、本発明の効果がより好適に得られる。
 本発明の熱硬化型導電性樹脂組成物が、アミン系添加剤及び酸系添加剤の両方を含有する場合、本発明の熱硬化型導電性樹脂組成物に含有されるアミン系添加剤の含有量は、水酸基を有する熱硬化性シリコーン樹脂100質量部に対して、好ましくは0.3質量部以上20.0質量部以下、より好ましくは0.6質量部以上10.0質量部以下、特に好ましくは1.8質量部以上6.0質量部以下であり、且つ、本発明の熱硬化型導電性樹脂組成物に含有される酸系添加剤の含有量は、卑金属を含む導電性粉末100質量部に対して、好ましくは0.05質量部以上3.2質量部以下、より好ましくは0.1質量部以上1.6質量部以下、特に好ましくは0.3質量部以上1.4質量部以下である。
 本発明の熱硬化型導電性樹脂組成物は、更に、有機溶媒を含有することができる。含有する有機溶媒は、特に制限されず、ターピネオール、ジヒドロターピネオール、ジヒドロターピネオールアセテート、セカンダリーブチルアルコール、ブチルカルビトール、ブチルカルビトールアセテート、ベンジルアルコール等が挙げられる。密着強度の観点から、アセテート系溶媒が好ましく、特に、ブチルカルビトールアセテートが好ましい。
 本発明の熱硬化型導電性樹脂組成物は、上記成分以外に、必要に応じて、消泡剤、可塑剤、分散剤、レオロジー調整剤等の添加剤を含有することができる。可塑剤としては、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジ-2-エチルヘキシル、フタル酸ジノルマルオクチル、フタル酸ブチルベンジル、アジピン酸ジオクチル、アジピン酸ジイソノニル、セバシン酸ジブチル、セバシン酸ジエチル、セバシン酸ジオクチル、リン酸トリクレシル、塩素化パラフィン、シクロヘキサン1,2ジカルボン酸ジイソノニルエステル(DINCH)等が挙げられる。レオロジー調整剤としては、例えば、シリカ粉末が挙げられる。
 本発明の熱硬化型導電性樹脂組成物は、積層型電子部品の外部電極形成用及び固体電解コンデンサの陰極形成用として好適に用いられる。
 本発明の熱硬化型導電性樹脂組成物の透湿量は、好ましくは80.0mg以下、より好ましくは40.0mg以下、更に好ましくは20.0mg以下、特に好ましくは10.0mg以下である。透湿量が上記範囲にあることにより、本発明の導電性樹脂組成物を用いて導電性樹脂層を形成した場合に、耐湿性に優れる電子部品が得られる。なお、本発明の導電性樹脂組成物の透湿量を測定する方法は、特に限定されないが、例えば、下記透湿量測定試験により測定することができる。
<透湿量測定試験>
 導電性樹脂組成物をPETフィルム上に厚さ250μmでキャスティングし、200℃、60分の条件で硬化させ、得られた硬化膜を直径7.5mmの円形に切り出し、シリカゲル2gが入った5mlガラス瓶に蓋をするように接着剤で固定し、精製水を100ml入れた750ml容器内に前記硬化膜が精製水に接触しないように該ガラス瓶を入れ密閉した状態で、65℃に設定した乾燥機に入れて15時間静置し、次いで、下記式(1):
   透湿量(重量増加量)=乾燥機に入れた後のガラス瓶の重量-乾燥機に入れる前のガラス瓶の重量   (1)
により、透湿量を算出する。
 本発明の熱硬化型導電性樹脂組成物を用いて得られる導電性樹脂層の比抵抗は、好ましくは1.0×10μΩ・cm以下、より好ましくは5.0×10μΩ・cm以下、より好ましくは1.0×10μΩ・cm以下、より好ましくは5.0×10μΩ・cm以下、より好ましくは1.0×10μΩ・cm以下である。なお、本発明の導電性樹脂組成物の比抵抗を測定する方法は特に限定されないが、例えば、下記比抵抗測定試験により測定することができる。
<比抵抗測定試験>
 導電性樹脂組成物をスライドガラス基板上に幅1cm、長さ5cm、厚さ50μmでキャスティングし、200℃、60分の条件で硬化させて硬化膜を得た後、デジタルマルチメータ(例えば、Keithley Instruments社製、KEITHLEY2002)を用いて4端子法により硬化膜表面の抵抗を測定し、得られた値と試料厚さから比抵抗を算出する。
 本発明の熱硬化型導電性樹脂組成物の比抵抗低下率は、好ましくは15%以上、より好ましくは30%以上、より好ましくは50%以上、より好ましくは70%以上、より好ましくは80%以上、更に好ましくは90%以上、特に好ましくは95%以上である。比抵抗低下率が上記範囲にあることにより、本発明の熱硬化型導電性樹脂組成物を用いて導電性樹脂層を形成した場合に、導電性に優れる電子部品が得られる。なお、本発明の熱硬化型導電性樹脂組成物の比抵抗低下率を算出する方法は、特に限定されないが、例えば、下記比抵抗低下率算出方法により算出することができる。
<比抵抗低下率算出方法>
 本発明に係る添加剤(アミン系添加剤及び酸系添加剤のうちの少なくとも1種)を含有する本発明の熱硬化型導電性樹脂組成物を組成物(X)、本発明に係る添加剤(アミン系添加剤及び酸系添加剤のうちの少なくとも1種)を含有しないこと以外は組成物(X)と同じ組成の熱硬化型導電性樹脂組成物を組成物(Y)としたとき、前記組成物(X)及び前記組成物(Y)を用いて前述の比抵抗測定試験によりそれぞれの比抵抗を測定し、得られた比抵抗をそれぞれ(A)、(B)とし、次いで、下記式(2):
   比抵抗低下率[%]=(1-((A)/(B)))×100   (2)
により、比抵抗低下率を算出する。
 本発明の熱硬化型導電性樹脂組成物の粘度を測定する方法は特に限定されないが、例えば、回転粘度計(ブルックフィールド社製、型番:HADV-II+Pro又はHBDV-II+)を用いて、25℃において、せん断速度4(1/s)の条件で測定することができる。
 本発明の熱硬化型導電性樹脂組成物の粘度増加率は、好ましくは10.0倍以下、より好ましくは8.0倍以下、より好ましくは6.0倍以下、より好ましくは4.0倍以下、更に好ましくは2.0倍以下、特に好ましくは1.5倍以下である。粘度増加率が上記範囲にあることにより、粘度安定性に優れる熱硬化型導電性樹脂組成物が得られる。粘度安定性が低い場合、時間経過に伴って粘度が増加する。粘度が増加した場合、印刷形状が悪くなる場合があるため、例えば、積層型電子部品用の積層体や固体電解コンデンサ用の被陰極形成体等の電子部品用被電極形成体に、本発明の熱硬化型導電性樹脂組成物を印刷して外部電極や陰極を形成させる場合、印刷形状が悪くなる場合がある。印刷形状が悪いと、例えば、積層型電子部品の外部電極や固体電解コンデンサの陰極のコーナー部の厚みが薄くなるため、電子部品を形成した場合に求める耐湿性が得られない場合がある。本発明の熱硬化型導電性樹脂組成物は、粘度安定性に優れるため、本発明の導電性樹脂組成物を用いて電子部品を形成する場合に、高い耐湿性の電子部品が安定して得られやすい。なお、本発明の熱硬化型導電性樹脂組成物の粘度増加率を算出する方法は、特に限定されないが、例えば、下記粘度増加率算出方法により算出することができる。
<粘度増加率算出方法>
 本発明の熱硬化型導電性樹脂組成物の、作製1日後の粘度と、作製1週間後の粘度を、前述の粘度を測定する方法により測定し、次いで、下記式(3):
   粘度増加率[倍]=作製1週間後の粘度/作製1日後の粘度   (3)
により、粘度増加率を算出する。
(粘度増加抑制率)
 本発明の熱硬化型導電性樹脂組成物の粘度増加抑制率は、好ましくは10%以上、より好ましくは20%以上、より好ましくは30%以上、より好ましくは40%以上、より好ましくは50%以上、より好ましくは60%以上、より好ましくは70%以上、更に好ましくは80%以上、特に好ましくは90%以上である。粘度増加抑制率が上記範囲にあることにより、粘度安定性に優れる熱硬化型導電性樹脂組成物が得られる。粘度安定性に優れることで、前述の理由と同様の理由で、高い耐湿性の電子部品が安定して得られやすい。なお、本発明の熱硬化型導電性樹脂組成物の粘度増加抑制率を算出する方法は、特に限定されないが、例えば、下記粘度増加抑制率算出方法により算出することができる。
<粘度増加抑制率算出方法>
 本発明に係る添加剤(アミン系添加剤及び酸系添加剤のうちの少なくとも1種)を含有する本発明の熱硬化型導電性樹脂組成物を組成物(X)、前記添加剤(アミン系添加剤及び酸系添加剤のうちの少なくとも1種)を含有しないこと以外は組成物(X)と同じ組成の熱硬化型導電性樹脂組成物を組成物(Y)としたとき、前記組成物(X)及び前記組成物(Y)を用いて前述の粘度増加率測定試験によりそれぞれの粘度増加率を測定し、得られた粘度増加率をそれぞれ(C)、(D)とし、次いで、下記式(4):
   粘度増加抑制率[%]=(1-((C)/(D)))×100   (4)
により、粘度増加抑制率を算出する。
 本発明の熱硬化型導電性樹脂組成物を用いて得られる導電性樹脂層の密着強度は、好ましくは3.0kg以上、より好ましくは4.0kg以上、更に好ましくは5.0kg以上、特に好ましくは6.0kg以上である。なお、本発明の熱硬化型導電性樹脂組成物を用いて得られる導電性樹脂層の密着強度は、特に制限されないが、例えば、20.0kg以下とすることができる。密着強度が上記範囲にある導電性樹脂層が、積層型電子部品の外部電極の金属層とメッキ層の間に形成されていることにより、基板と電子部品の接続部分にクラックや界面剥離が生じ難く、また、電子部品自体にクラックが生じ難いので、電子部品の耐衝撃性が高くなる。そのため、本発明の導電性樹脂組成物を用いて、積層型電子部品の外部電極の金属層とメッキ層の間に形成させることにより、電子部品の耐衝撃性を高くすることができる。また、密着強度が優れることで、導電性樹脂層が電子部品用被電極形成体から剥離しにくくなるため、電子部品としての耐湿性を維持しやすい。なお、密着強度を測定する方法は、特に限定されないが、例えば、下記密着強度測定試験により測定することができる。
<密着強度測定試験>
 導電性樹脂組成物をスライドガラス基板上に厚さ50μmでキャスティングし、縦1.5mm、横3.0mm、高さ1.0mmのアルミナチップをのせて、200℃、60分の条件で硬化させ、ボンドテスター(西進商事社製、型番:SS-30WD)を用いて0.3mm/sの速さで水平方向に力を加え、アルミナチップが剥離したときの値を計測することにより測定される。
本発明の熱硬化型導電性樹脂組成物の硬化膜密度は、好ましくは2.0g/cm以上であり、より好ましくは2.5g/cm以上であり、より好ましくは3.0g/cm以上であり、更に好ましくは3.5g/cm以上であり、特に好ましくは4.0g/cm以上である。硬化膜密度が上記範囲にあることにより、本発明の導電性樹脂組成物を用いて導電性樹脂層を形成した場合に、導電性及び耐湿性に優れる電子部品が得られる。なお、本発明の導電性樹脂組成物硬化膜密度を測定する方法は特に限定されないが、例えば、導電性樹脂組成物をPETフィルム上に厚さ250μmでキャスティングして塗布膜を形成させ、当該塗布膜を大気雰囲気、200℃、60分の条件で硬化させて硬化膜を形成させ、得られた硬化膜を円形に切り出し、切り出した硬化膜の重量と体積を測定し、体積(cm)に対する重量(g)の比として硬化膜密度(g/cm)を算出することができる。
 本発明の熱硬化型導電性樹脂組成物は、電子部品の製造において、電極が形成される被電極形成体(以下、電子部品用被電極形成体とも記載する。)に、電極を形成するための熱硬化型導電性樹脂組成物として、好適である。そして、本発明の熱硬化型導電性樹脂組成物は、積層型電子部品用積層体の外部電極形成用及び固体電解コンデンサ用被陰極形成体の陰極形成用の熱硬化型導電性樹脂組成物として、特に好適である。
 一使用例では、電子部品用被電極形成体を準備する準備工程と、該電子部品用被電極形成体の外表面上に、電極を形成させる電極形成工程と、を有する電子部品の製造方法において、本発明の熱硬化型導電性樹脂組成物を用いることができ、前記電極形成工程において、本発明の熱硬化型導電性樹脂組成物を用いて、前記電子部品用被電極形成体に導電性樹脂層を形成させて電極を形成させる。
 準備工程は、電子部品用被電極形成体を準備する工程である。電子部品用被電極形成体とは、電子部品の製造工程において、電極が形成される対象を指す。電子部品用被電極形成体としては、複数のセラミック層と複数の内部電極層とからなる積層型電子部品用積層体、陽極と該陽極表面に形成された誘電体層からなる固体電解コンデンサ用被陰極形成体、端面電極を備えるチップ抵抗器用被電極形成体が挙げられる。
 積層型電子部品用積層体は、複数のセラミック層と複数の内部電極層とからなる。積層型電子部品用積層体では、隣接するセラミック層同士が、それらの間に介在している内部電極層により、接続されている。積層型電子部品用積層体としては、積層セラミックコンデンサ用の積層体、積層セラミックインダクタ用の積層体、圧電アクチュエータ用の積層体が挙げられる。
 積層型電子部品用積層体を構成するセラミック層の形成物質としては、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、ジルコン酸バリウム、ジルコン酸ストロンチウム、ジルコン酸カルシウム、ジルコン酸ストロンチウムカルシウム等が挙げられる。
 積層型電子部品用積層体を構成する内部電極層の形成物質としては、ニッケル、パラジウム、銀、銅及び金等のうちのいずれか、あるいは、これらのうち1種以上を含む合金(例えば銀とパラジウムとの合金等)が挙げられる。
 固体電解コンデンサ用被陰極形成体は、陽極と該陽極表面に形成された誘電体層からなる。陽極と誘電体層の形成物質の組合せとしては、タンタルと五酸化タンタル、アルミニウムと酸化アルミニウム、ニオブと五酸化ニオブ等が挙げられる。
 電極形成工程は、電子部品用被電極形成体の外表面上に、電極を形成させる工程である。なお、本発明において、電子部品用被電極形成体に導電性樹脂層を形成させるとは、電子部品用被電極形成体の表面に、直接導電性樹脂層を形成させる場合と、電子部品用被電極形成体に、先に他の層又は膜(例えば、金属層、導電体層)等を形成させ、その表面に導電性樹脂層を形成させる場合の両方を含む。よって、本発明の電子部品の製造方法により得られる電子部品では、電子部品用被電極形成体の表面に、直接導電性樹脂層が形成されている場合と、電子部品用被電極形成体の間に、他の層又は膜(例えば、金属層、導電体層)等が介在した状態で、導電性樹脂層が形成されている場合の両方がある。
 電極形成工程において、電極を形成させる位置、方法、電極の厚み、電極の数、電極を構成する金属の種類、電極形成に用いる導電性粉末の形状等は、製造目的とする電子部品により適宜選択される。
 電極形成工程では、本発明の熱硬化型導電性樹脂組成物を用いて、電子部品用被電極形成体に、導電性樹脂層を形成させる。
 電極形成工程では、電子部品用被電極形成体に、本発明の熱硬化型導電性樹脂組成物を、塗布することにより、電子部品用被電極形成体の所定の位置に、本発明の熱硬化型導電性樹脂組成物の層を形成させ、次いで、本発明の熱硬化型導電性樹脂組成物を硬化させることにより、導電性樹脂層を形成させる。なお、前述の硬化は、加熱することにより行う。
 電極形成工程では、電子部品用被電極形成体の表面に、直接、本発明の熱硬化型導電性樹脂組成物を塗布することより、電子部品用被電極形成体の表面に、直接、導電性樹脂層を形成させることができる。また、電極形成工程では、電子部品用被電極形成体に、導電性樹脂層を形成させる前に、電子部品の種類により、適宜の工程を有することができる。例えば、積層型電子部品の場合、電極形成工程では、電子部品用被電極形成体の所定の位置に金属層を形成させた後、金属層の表面に、本発明の熱硬化型導電性樹脂組成物を、塗布すること等により、電子部品用被電極形成体の所定の位置に、本発明の熱硬化型導電性樹脂組成物の層を形成させ、次いで、本発明の熱硬化型導電性樹脂組成物を硬化させることにより、金属層の表面に、導電性樹脂層を形成させる。また、例えば、固体電解コンデンサの場合、電極形成工程では、固体電解コンデンサ用被陰極形成体の所定の位置にカーボン層からなる導電層を形成させた後、導電層の表面に、本発明の熱硬化型導電性樹脂組成物を、塗布すること等により、電子部品用被電極形成体の所定の位置に、本発明の熱硬化型導電性樹脂組成物層を形成させ、次いで、本発明の熱硬化型導電性樹脂組成物を硬化させることにより、導電層の表面に、導電性樹脂層を形成させる。また、電極形成工程では、電子部品用被電極形成体に、導電性樹脂層を形成させた後に、電子部品の種類により、適宜の工程を有することができる。例えば、積層型電子部品の場合、電極形成工程では、電子部品用被電極形成体の所定の位置に導電性樹脂層を形成させた後、導電性樹脂層の表面に、メッキ層を形成させる。
 電極形成工程では、電子部品用被電極形成体に、導電性樹脂層を形成させることにより、電極を形成させることができる。つまり、この形態では、導電性樹脂層だけで、電極が構成されている。
 電極形成工程では、電子部品用被電極形成体に、本発明の熱硬化型導電性樹脂組成物を用いて、導電性樹脂層を形成させるときに、ディップ法により、電子部品用被電極形成体に、本発明の熱硬化型導電性樹脂組成物を塗布して、電子部品用被電極形成体の所定の位置に、本発明の熱硬化型導電性樹脂組成物の層を形成させることができる。
 電極形成工程の第一の形態(以下、電極形成工程(1)とも記載する。)は、電子部品用被電極形成体が、セラミック層と内部電極層とからなる積層型電子部品用積層体の場合の電極形成工程である。そして、電極形成工程(1)は、本発明の熱硬化型導電性樹脂組成物を用いて、積層型電子部品用積層体の外表面に導電性樹脂層を形成させる導電性樹脂層形成工程(1A)を、少なくとも有する。電極形成工程(1)としては、本発明の導電性樹脂組成物を用いて、積層型電子部品用積層体の外表面に導電性樹脂層を形成させる導電性樹脂層形成工程(1A)を有していれば、特に制限されず、例えば、少なくとも、金属層形成工程と、導電性樹脂層形成工程(1A)と、メッキ層形成工程と、からなる電極形成工程(1)が挙げられる。
 金属層形成工程は、積層型電子部品用積層体の外表面上に、内部電極層と電気的に接続する金属層を形成させる工程である。金属層を形成する金属としては、Cu、Ag、Pd、Ni、Sn、Al、Au及びPtのうちの少なくとも1種、又はこれらのうち1種以上を含む合金が挙げられる。金属層の形成方法としては、特に制限されず、例えば、ディップ法、メッキ法、ロール塗布法、スクリーン印刷法、スパッタ法が挙げられる。金属層の厚み、形状、位置、数等は、適宜選択される。
 導電性樹脂層形成工程(1A)は、金属層形成工程を行い形成させた金属層の表面に、本発明の熱硬化型導電性樹脂組成物を用いて、導電性樹脂層を形成させる工程である。
 導電性樹脂層形成工程(1A)では、金属層形成工程を行い形成させた金属層の表面に、本発明の熱硬化型導電性樹脂組成物を、塗布することにより、金属層の表面に、本発明の熱硬化型導電性樹脂組成物の層を形成させ、次いで、本発明の熱硬化型導電性樹脂組成物を硬化させることにより、導電性樹脂層を形成させる。導電性樹脂層の形成方法としては、特に制限されず、例えば、ディップ法、スクリーン印刷法、ロール塗布法が挙げられる。これらのうち、ディップ法が好ましい。本発明の熱硬化型導電性樹脂組成物層の厚み、形状、位置、数等は、適宜選択される。
 メッキ層形成工程は、導電性樹脂層の表面に、メッキ層を形成させる工程である。メッキ層を形成する金属としては、Ni、Cu、Sn、Ag及びAuのうちの少なくとも1種、又はこれらのうち1種以上を含む合金が挙げられる。メッキ層の形成方法としては、特に制限されず、例えば、電解メッキ、無電解メッキが挙げられる。メッキ層の厚み、形状、位置、数等は、適宜選択される。
 電極形成工程の第二の形態(以下、電極形成工程(2)とも記載する。)は、電子部品用被電極形成体が、固体電解コンデンサ用被陰極形成体である場合の電極形成工程である。そして、電極形成工程(2)は、本発明の熱硬化型導電性樹脂組成物を用いて、固体電解コンデンサ用被陰極形成体の外表面に導電性樹脂層を形成させる導電性樹脂層形成工程(2A)を、少なくとも有する。電極形成工程(2)としては、本発明の熱硬化型導電性樹脂組成物を用いて、固体電解コンデンサ用被陰極形成体の外表面に導電性樹脂層を形成させる導電性樹脂層形成工程(2A)を有していれば、特に制限されず、例えば、少なくとも、固体電解質層形成工程と、カーボン層形成工程と、導電性樹脂層形成工程(2A)と、からなる電極形成工程(2)が挙げられる。
 固体電解質層形成工程は、固体電解コンデンサ用被陰極形成体の外表面上に、固体電解質層を形成する工程である。固体電解質層を形成する方法としては、特に制限されず、化学的方法により製造される公知の固体電解質で形成でき、固体電解質としては、例えば、ポリピロール、ポリアニリン、ポリチオフェン、ポリアセチレン等の導電性高分子が挙げられる。
カーボン層形成工程は、固体電解質層上にカーボン層を形成する工程である。カーボン層を形成する方法としては、特に制限されず、例えば、樹脂と、溶剤と、カーボン粉末を含有するカーボンペーストを、ディップ法により固体電解質層上に塗布後、乾燥および/または硬化させる方法が挙げられる。カーボン粉末に特に制限はないが、グラファイト粉末が好ましい。
 導電性樹脂層形成工程(2A)は、カーボン層上に本発明の熱硬化型導電性樹脂組成物を用いて導電性樹脂層を形成する工程である。導電性樹脂層を形成する方法としては、特に制限されず、例えば、ディップ法、スクリーン印刷法、ロール塗布法等により、本発明の導電性樹脂組成物を塗布し、次いで、当該熱硬化型導電性樹脂組成物を硬化させる方法が挙げられる。
 電極形成工程の他の形態としては、電子部品用被電極形成体が、端面電極を備えるチップ抵抗器用被電極形成体である場合の電極形成工程(3)が挙げられる。前記電極形成工程(3)は、少なくとも、端面電極上に導電性樹脂層を形成する工程を有する。導電性樹脂層を形成する方法としては、特に制限されず、例えば、ディップ法、スクリーン印刷法、ロール塗布法等により、本発明の熱硬化型導電性樹脂組成物を塗布し、次いで、本発明の熱硬化型導電性樹脂組成物を硬化させる方法が挙げられる。端面電極を備えるチップ抵抗器用被電極形成体は、例えば、絶縁基板と、絶縁基板上に形成された一対の上面電極と、一対の上面電極間に形成された抵抗体と、一対の上面電極の一部と抵抗体を覆うように形成された保護層と、絶縁基板の端面に形成された端面電極を備える。
 電極形成工程の他の形態としては、電子部品用被電極形成体が、基板である場合の電極形成工程(4)が挙げられる。前記電極形成工程(4)は、少なくとも、基板上に導電性樹脂層を形成する工程を有する。導電性樹脂層を形成する方法としては、特に制限されず、例えば、スクリーン印刷、インクジェット印刷、又は、ディスペンサー印刷により、本発明の熱硬化型導電性樹脂組成物を塗布し、次いで、本発明の導電性組成物を硬化させる方法が挙げられる。基板としては、例えば、アルミナ基板、ガラスエポキシ基板、紙フェノール基板、紙エポキシ基板が挙げられる。
 電極形成工程の他の形態としては、電子部品用被電極形成体が、フィルムである場合の電極形成工程(5)が挙げられる。前記電極形成工程(5)は、少なくとも、フィルム上に導電性樹脂層を形成する工程を有する。導電性樹脂層を形成する方法としては、特に制限されず、例えば、スクリーン印刷、インクジェット印刷、又は、ディスペンサー印刷により、本発明の熱硬化型導電性樹脂組成物を塗布し、次いで、本発明の導電性組成物を硬化させる方法が挙げられる。フィルムとしては、例えば、ポリイミドフィルム、PETフィルムが挙げられる。
 以下、本発明を具体的な実験例に基づき説明するが、本発明は、これらに限定されるものではない。
<球状銀コート銅粉末の製造>
 球状の銅粉末(三井金属製、型番:MA-CO3K)90質量部に対して10質量部の比率となるように銀で被覆した球状銀コート銅粉末(導電性粉末1)を製造した。得られた球状銀コート銅粉末について、レーザー回折式粒度分布測定装置を用いて、体積基準の積算分率における50%値(D50)を求めた。また、BET法により比表面積を測定した。
<フレーク状銀コート銅粉末の製造>
 前述の方法で球状銀コート銅粉末を製造し、得られた球状銀コート銅粉末を、滑剤としてパルミチン酸を用いてボールミルで粉砕してフレーク状銀コート銅粉末(導電性粉末2)を製造した。SEM(走査電子顕微鏡)像観察において任意に選んだ50個の粉末の数平均粒子径(D50)及びアスペクト比を測定し、その平均値を求めた。また、BET法により比表面積を測定した。
<球状銀粉末の製造>
 先ず、特公昭63-31522号に記載されている噴霧熱分解法に基づいて、球状銀粉末(導電性粉末5)を準備した。すなわち、球状銀粉末については、銀塩を溶解させた水溶液を噴霧熱分解し、捕集した銀粉末を分級処理して、D50の値を調節した。なお、得られた銀粉末について、レーザー回折式粒度分布測定装置を用いて、体積基準の積算分率における50%値(D50)を求めた。また、BET法により比表面積を測定した。
<フレーク状銀粉末の製造>
前述の方法で球状銀粉末を製造し、得られた球状銀粉末を、滑剤としてステアリン酸を用いてボールミルで粉砕してフレーク状銀粉末(導電性粉末3)を製造した。SEM像観察において任意に選んだ50個の銀粉末の数平均粒子径(D50)及びアスペクト比を測定し、その平均値を求めた。また、BET法により比表面積を測定した。
<導電性樹脂組成物の調製>
 表1及び表2に示す配合割合で、導電性粉末とシリコーン樹脂とを配合し、導電性樹脂組成物を調製した。なお、表1及び表2に示す数値の単位は質量部である。また、表中の「BCA」はブチルカルビトールアセテートの略称であり、「BZA」はベンジルアルコールの略称である。
・導電性粉末1
 球状銀コート銅粉末、D50:4.0μm、比表面積:0.5m/g
・導電性粉末2
 フレーク状銀コート銅粉末、アスペクト比:20、D50:8.0μm、比表面積:1.5m/g
・導電性粉末3
 フレーク状銀粉末、アスペクト比:30、D50:6.0μm、比表面積:1.0m/g
・導電性粉末4
 球状ニッケル粉末、D50:0.8μm、比表面積:1.2m/g
・導電性粉末5
 球状銀粉末、D50:2.3μm、比表面積:0.5m/g
・シリコーン樹脂1
 水酸基を有する熱硬化性シリコーン樹脂、脱水縮合型、信越化学工業社製、型番:ES-1001N、なお、シリコーン樹脂1としては、ロットの異なるロットAとロットBのものを用いた。
・シリコーン樹脂2
 水酸基を有さない熱硬化性シリコーン樹脂、付加硬化型、信越化学工業社製、型番:X-40-2756(硬化触媒を含有する一液タイプ)、その他の官能基:アルケニル基、メチル基、フェニル基
・アミン系添加剤1:ジブチルアミン
 二級アミン、分子量:129.2、炭素数:8、沸点:159℃、pKa:11.3
・アミン系添加剤2:N-ラウリルジエタノールアミン
 三級アミン、分子量:273.5、炭素数:16、pKa:14
・アミン系添加剤3:トリエタノールアミン
 三級アミン、分子量:149.2、炭素数:6、沸点:335.4、pKa:7.8
・アミン系添加剤4:ジイソプロピルアミン
二級アミン、分子量:101.2、炭素数:6、沸点:84℃、pKa:11.1
・アミン系添加剤5:ジへキシルアミン
二級アミン、分子量:185.4、炭素数:12、沸点:194℃
・アミン系添加剤6:ジメチルオクチルアミン
三級アミン、分子量:157.3、炭素数:10、沸点:195℃
・酸系添加剤1:オクタデシルブタン二酸
 ジカルボン酸、分子量:369、炭素数:22、Td90:350℃
・酸系添加剤2:オクテニルコハク酸
 ジカルボン酸、分子量:228.3、炭素数:12
・酸/塩基混合添加剤1
 HIPLAAD ED401、楠本化成社製
 なお、以下表中の樹脂の量は、溶剤を除く樹脂自体の量を指す。
(比較例1)
 シリコーン樹脂1と、導電性粉末1と、導電性粉末2と、ブチルカルビトールアセテートとを、表1に記載の比率で混合後、三本ロールミル(井上製作所製)用いて混錬し、ペースト状組成物を得た。
(実施例1)
 シリコーン樹脂1と、導電性粉末1と、導電性粉末2と、アミン系添加剤1と、ブチルカルビトールアセテートとを、表1に記載の比率で混合後、三本ロールミル(井上製作所製)用いて混錬し、ペースト状組成物を得た。
(実施例2)
 シリコーン樹脂1と、導電性粉末1と、導電性粉末2と、アミン系添加剤2と、ブチルカルビトールアセテートとを、表1に記載の比率で混合後、三本ロールミル(井上製作所製)用いて混錬し、ペースト状組成物を得た。
(実施例3~22、比較例2~6)
 表1又は表2に記載する成分を、表1又は表2に記載の比率で混合後、三本ロールミル(井上製作所製)用いて混錬し、ペースト状の組成物を得た。
 上述の実施例1~19、実施例21~22、比較例1~3及び比較例5~6により得られたペースト状の組成物をブチルカルビトールアセテートで、上述の実施例20及び比較例4により得られたペースト状の組成物をベンジルアルコールで希釈し、25℃、せん断速度4(1/s)における粘度が30Pa・sとなるよう調整した上で、以下の評価を行った。その結果を表3及び4に示す。
<性能評価>
(透湿量)
 導電性樹脂組成物をPETフィルム上に厚さ250μmでキャスティングし、200℃、60分の条件で硬化させて硬化膜を得た。得られた硬化膜を直径7.5mmの円形に切り出し、シリカゲル2gが入った5mlガラス瓶に蓋をするように接着剤で固定した。その後、精製水を100ml入れた750ml容器内に前記硬化膜が精製水に接触しないように上記ガラス瓶を入れ密閉した状態で、65℃に設定した乾燥機に入れて15時間静置した。乾燥機に入れる前と入れた後のガラス瓶の重量を測定し、重量増加分を透湿量とした。透湿量が、80.0mgを超えるものを「不合格、耐湿性が低い」、80.0mg以下のものを「合格、耐湿性が高い」とした。
(比抵抗)
 導電性樹脂組成物をスライドガラス基板上に幅1cm、長さ5cm、厚さ50μmでキャスティングし、200℃、60分の条件で硬化させて硬化膜を得た。デジタルマルチメータ(Keithley Instruments社製、KEITHLEY2002)を用いて4端子法により硬化膜表面の抵抗を測定し、得られた値と試料厚さから比抵抗を算出した。
(比抵抗低下率)
 前述の方法で算出した、添加剤(アミン系添加剤及び酸系添加剤のうちの少なくとも1種)を含有する粘度調整済みのペースト状組成物(X)の比抵抗及び添加剤(アミン系添加剤及び酸系添加剤のうちの少なくとも1種)を含有しないこと以外は上記ペースト状組成物(X)と同じ組成の粘度調整済みのペースト状組成物(Y)の比抵抗をそれぞれ(A)及び(B)とし、下記式により比抵抗低下率を算出した。
   比抵抗低下率[%]=(1-((A)/(B)))×100
(粘度増加率)
 粘度調整済みのペースト状組成物の、作製1日後の粘度と、作製1週間後又は4週間後の粘度を、回転粘度計(ブルックフィールド社製、型番:HADV-II+Pro又はHBDV-II+)を用いて、25℃において、せん断速度4(1/s)の条件で測定し、作製1日後の粘度に対する作製1週間後又は4週間後の粘度の比率を粘度増加率として算出した。作製した粘度調整済みのペースト状組成物は25℃で密閉容器内に保管した。なお、実施例21~22及び比較例5~6は作製4週間後の粘度により粘度増加率を算出し、その他の実施例及び比較例については作製1週間後の粘度により粘度増加率を算出した。
(粘度増加抑制率)
 前述の方法で算出した、添加剤(アミン系添加剤及び酸系添加剤のうちの少なくとも1種)を含有する粘度調整済みのペースト状組成物(X)の粘度増加率及び添加剤(アミン系添加剤及び酸系添加剤のうちの少なくとも1種)を含有しないこと以外は上記ペースト組成物(X)と同じ組成の粘度調整済みのペースト状組成物(Y)の粘度増加率をそれぞれ(C)及び(D)とし、下記式により比抵抗低下率を算出した。
   粘度増加抑制率[%]=(1-((C)/(D)))×100
(密着強度)
 導電性樹脂組成物をスライドガラス基板上に厚さ50μmでキャスティングし、直径3mmのアルミシリンダーをのせて、200℃、60分の条件で硬化させた。ボンドテスター(西進商事社製、型番:SS-30WD)を用いて0.5mm/sの速さで垂直方向に引張り、破断したときの値を計測した。
(硬化膜密度)
 導電性樹脂組成物をPETフィルム上に厚さ250μmでキャスティングして塗布膜を形成させ、当該塗布膜を大気雰囲気、150℃、10分の条件で硬化させて硬化膜を形成させ、得られた硬化膜を円形に切り出し、切り出した硬化膜の重量と体積を測定し、体積(cm)に対する重量(g)の比として硬化膜密度(g/cm)を算出した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3及び4の結果より、実施例1及び実施例2は、比較例1と比べて極めて低い比抵抗となっており、かつ、比較例1と比べて粘度安定性も高いことが示された。このことから、比較例1の導電性樹脂組成物を使用した場合と比べて、導電性に優れる電子部品を製造可能であることがわかった。また、比較例1に比べて粘度安定性が高いため、作成後一定時間経過した導電性樹脂組成物を用いて電子部品を製造する場合においても塗布形状が良好となり、その結果、比較例1の導電性樹脂組成物を使用した場合と比べて、耐湿性が高い電子部品を製造可能であることがわかった。また、実施例3~22も、実施例1及び実施例2と同様に、比抵抗低下及び粘度増加抑制効果が確認できた。
(参考例1)
 導電性粉末として導電性粉末5を40質量部及び導電性粉末3を60質量部用いたこと以外は、比較例1と同様の方法で、粘度調整済みのペースト状の組成物を得て上記評価を行ったところ、粘度増加率は1.1倍となった。すなわち、導電性粉末として銀粉末を用いた場合には、粘度安定性に関する問題は発生しなかった。
(参考例2)
 シリコーン樹脂1の代わりにシリコーン樹脂2を用いたこと以外は、比較例1と同様の方法を用いて、ペースト状の組成物を得た。得られたペースト状の組成物をブチルカルビトールアセテートで希釈し、25℃、せん断速度4(1/s)における粘度が30Pa・sとなるよう調整した上で、上記評価を行ったところ、粘度増加率は0.9倍となった。すなわち、シリコーン樹脂として付加硬化型シリコーン樹脂を用いた場合には、粘度安定性に関する問題は発生しなかった。
(実施例23)
 導電性粉末として、球状錫粉末、球状亜鉛粉末、球状アルミニウム粉末を、それぞれ100質量部を用いた以外は、前述の比較例1及び実施例1と同様の方法で各金属ペーストの作製及び評価を行ったところ、アミン系添加剤による比抵抗低下及び粘度増加抑制効果が確認でき、かつ、高い耐湿性を示すことが確認できた。特に、導電性粉末として球状錫粉末を用いた場合、本発明に係るアミン系添加剤及び酸系添加剤のいずれも含まないと比抵抗が測定上限を超えていたのに対し、本発明に係る添加剤としてアミン系添加剤1をシリコーン樹脂100質量部に対して5.0質量部含むことで導電性が飛躍的に向上し、比抵抗は2.9×10μΩ・cmであり、比抵抗低下率としては99%超であった。
(実施例24)
 シリコーン樹脂1の代わりに他の水酸基を有する熱硬化性シリコーン樹脂を用いて、前述の比較例1及び実施例1と同様の方法でペーストを作製し、評価を行ったところ、アミン系添加剤による比抵抗低下及び粘度増加抑制効果が確認でき、かつ、高い耐湿性を示すことが確認できた。

Claims (7)

  1.  卑金属を含む導電性粉末と、
     水酸基を有する熱硬化性シリコーン樹脂と、
     アミン系添加剤及び酸系添加剤のうちの少なくとも1種と、
    を含有することを特徴とする熱硬化型導電性樹脂組成物。
  2.  前記アミン系添加剤又は前記酸系添加剤の分子量が30以上2000以下であることを特徴とする請求項1に記載の熱硬化型導電性樹脂組成物。
  3.  前記アミン系添加剤又は前記酸系添加剤の1気圧下での沸点Tb又は90質量%減量温度Td90が80℃以上400℃以下であることを特徴とする請求項1に記載の熱硬化型導電性樹脂組成物。
  4.  前記アミン系添加剤が二級アミン及び三級アミンのうちの少なくとも1種を含むことを特徴とする請求項1に記載の熱硬化型導電性樹脂組成物。
  5. 前記酸系添加剤がジカルボン酸を含むことを特徴とする請求項1に記載の熱硬化性導電性樹脂組成物。
  6.  前記アミン系添加剤の含有量が、前記水酸基を有する熱硬化性シリコーン樹脂100質量部に対して、0.6質量部以上10.0質量部以下であること、及び/又は、前記酸系添加剤の含有量が、前記卑金属を含む導電性粉末100質量部に対して、0.1質量部以上1.6質量部以下であることを特徴とする請求項1に記載の熱硬化型導電性樹脂組成物。
  7.  電子部品用被電極形成体を準備する準備工程と、
     該電子部品用被電極形成体の外表面上に、電極を形成させる電極形成工程と、
    を有し、
     該電極形成工程において、電子部品用被電極形成体に、請求項1~6のいずれか一項に記載の熱硬化型導電性樹脂組成物を塗布し、次いで、該熱硬化型導電性樹脂組成物を硬化させることにより、該電子部品用被電極形成体に導電性樹脂層を形成させること、
    を特徴とする電子部品の製造方法。
PCT/JP2022/039888 2021-11-02 2022-10-26 熱硬化型導電性樹脂組成物、電子部品の製造方法 WO2023080028A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021179759 2021-11-02
JP2021-179759 2021-11-02

Publications (1)

Publication Number Publication Date
WO2023080028A1 true WO2023080028A1 (ja) 2023-05-11

Family

ID=86240993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039888 WO2023080028A1 (ja) 2021-11-02 2022-10-26 熱硬化型導電性樹脂組成物、電子部品の製造方法

Country Status (2)

Country Link
TW (1) TW202330796A (ja)
WO (1) WO2023080028A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331522B2 (ja) 1985-06-26 1988-06-24 Shoei Kagaku Kogyo Kk
JPH0773730A (ja) * 1993-06-29 1995-03-17 Asahi Chem Ind Co Ltd 導電性粉末
WO2009144925A1 (ja) * 2008-05-31 2009-12-03 株式会社スリーボンド 導電性樹脂組成物
JP2011142052A (ja) * 2010-01-08 2011-07-21 Hitachi Chem Co Ltd 銅導体インク及び導電性基板及びその製造方法
JP2013510220A (ja) * 2009-11-05 2013-03-21 ドクサンテコピア カンパニーリミテッド 導電性接着剤とその製造方法及びそれを含む電子装置
WO2013111438A1 (ja) * 2012-01-27 2013-08-01 昭栄化学工業株式会社 固体電解コンデンサ素子、その製造方法及び導電ペースト
JP2014135463A (ja) 2013-01-09 2014-07-24 Samsung Electro-Mechanics Co Ltd 導電性樹脂組成物、これを含む積層セラミックキャパシタ及びその製造方法
JP2015537068A (ja) * 2012-10-15 2015-12-24 ダウ グローバル テクノロジーズ エルエルシー 導電性組成物
US20160042864A1 (en) * 2014-08-05 2016-02-11 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor
WO2017126382A1 (ja) * 2016-01-19 2017-07-27 ナミックス株式会社 樹脂組成物、導電性銅ペースト、および半導体装置
WO2019009146A1 (ja) * 2017-07-03 2019-01-10 Dowaエレクトロニクス株式会社 導電性ペースト
WO2020250675A1 (ja) * 2019-06-12 2020-12-17 京都エレックス株式会社 導電性ペースト組成物

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331522B2 (ja) 1985-06-26 1988-06-24 Shoei Kagaku Kogyo Kk
JPH0773730A (ja) * 1993-06-29 1995-03-17 Asahi Chem Ind Co Ltd 導電性粉末
WO2009144925A1 (ja) * 2008-05-31 2009-12-03 株式会社スリーボンド 導電性樹脂組成物
JP2013510220A (ja) * 2009-11-05 2013-03-21 ドクサンテコピア カンパニーリミテッド 導電性接着剤とその製造方法及びそれを含む電子装置
JP2011142052A (ja) * 2010-01-08 2011-07-21 Hitachi Chem Co Ltd 銅導体インク及び導電性基板及びその製造方法
WO2013111438A1 (ja) * 2012-01-27 2013-08-01 昭栄化学工業株式会社 固体電解コンデンサ素子、その製造方法及び導電ペースト
JP2015537068A (ja) * 2012-10-15 2015-12-24 ダウ グローバル テクノロジーズ エルエルシー 導電性組成物
JP2014135463A (ja) 2013-01-09 2014-07-24 Samsung Electro-Mechanics Co Ltd 導電性樹脂組成物、これを含む積層セラミックキャパシタ及びその製造方法
US20160042864A1 (en) * 2014-08-05 2016-02-11 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor
WO2017126382A1 (ja) * 2016-01-19 2017-07-27 ナミックス株式会社 樹脂組成物、導電性銅ペースト、および半導体装置
WO2019009146A1 (ja) * 2017-07-03 2019-01-10 Dowaエレクトロニクス株式会社 導電性ペースト
WO2020250675A1 (ja) * 2019-06-12 2020-12-17 京都エレックス株式会社 導電性ペースト組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ISHIBASHI HIDEO: "Preparation of Metal Nano-Particles and Their Application to Circuit Pattern Formation by Ink Jet Printing", JOURNAL OF JAPAN INSTITUTE OF ELECTRONICS PACKAGING. ELECTRONIC COMPONENTS MOUNTING TECHNOLOGY BASIC LECTURE "CONTINUED CONDUCTIVE ADHESIVES" PART 3, vol. 11, no. 2, 1 January 2008 (2008-01-01), pages 157 - 163, XP093063607 *

Also Published As

Publication number Publication date
TW202330796A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
JP5569747B2 (ja) 積層セラミックコンデンサ内部電極に用いられるグラビア印刷用導電性ペースト
KR100871407B1 (ko) 도전성 조성물 및 도전막 형성 방법
EP4144801A1 (en) Electroconductive resin composition and manufacturing method for electronic component
US11328851B2 (en) Ceramic electronic component and manufacturing method therefor
JP2012174797A5 (ja)
WO2008023496A1 (fr) Composant électronique feuilleté et procédé pour le fabriquer
JP5882960B2 (ja) 表面処理された金属粉、及びその製造方法
TWI798292B (zh) 導電性漿料、電子零件及層積陶瓷電容器
JP2017011145A (ja) 積層セラミックコンデンサ
WO2014103569A1 (ja) 導電性接着剤組成物及びそれを用いた電子素子
US20150364256A1 (en) Conductive resin paste and ceramic electronic component
KR101814084B1 (ko) 세라믹 칩부품의 연성외부전극 형성용 도전성 페이스트 조성물
WO2023080028A1 (ja) 熱硬化型導電性樹脂組成物、電子部品の製造方法
TWI810336B (zh) 導電性漿料、電子零件以及積層陶瓷電容器
JP7176654B2 (ja) 電子部品の製造方法
WO2023080027A1 (ja) 熱硬化型導電性樹脂組成物及び電子部品の製造方法
JP2021107476A (ja) ペースト組成物
JP2011218268A (ja) 塗膜形成方法および電子部品
TW201510015A (zh) 導電性膏及附導電膜之基材
WO2023218872A1 (ja) ポリマー型導電性ペースト、導電膜、及び、固体電解コンデンサ素子
JP2015036442A (ja) 表面処理された金属粉の製造方法
TWI342569B (en) Esd protective materials and method for making the same
TW202234427A (zh) 導電性漿料以及積層陶瓷電容器
JPWO2017159704A1 (ja) 導電層形成用塗布液、導電層の製造方法及び導電層

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889848

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023557971

Country of ref document: JP