WO2023077890A1 - 一种三阶互调环形器用微波铁氧体材料及其制备方法 - Google Patents

一种三阶互调环形器用微波铁氧体材料及其制备方法 Download PDF

Info

Publication number
WO2023077890A1
WO2023077890A1 PCT/CN2022/110191 CN2022110191W WO2023077890A1 WO 2023077890 A1 WO2023077890 A1 WO 2023077890A1 CN 2022110191 W CN2022110191 W CN 2022110191W WO 2023077890 A1 WO2023077890 A1 WO 2023077890A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintering
temperature
preparation
slurry
ferrite material
Prior art date
Application number
PCT/CN2022/110191
Other languages
English (en)
French (fr)
Inventor
吕飞雨
王媛珍
张利康
Original Assignee
横店集团东磁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横店集团东磁股份有限公司 filed Critical 横店集团东磁股份有限公司
Priority to US18/575,267 priority Critical patent/US20240308916A1/en
Publication of WO2023077890A1 publication Critical patent/WO2023077890A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0311Compounds
    • H01F1/0313Oxidic compounds
    • H01F1/0315Ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators

Definitions

  • the embodiments of the present application relate to the technical field of magnetic materials, such as a microwave ferrite material, in particular to a microwave ferrite material for a third-order intermodulation circulator and a preparation method thereof.
  • Intermodulation interference is one of the typical interference phenomena, which will lead to the deterioration of communication system performance and seriously affect the coverage and capacity of the network. There are many factors that affect intermodulation interference.
  • it is also necessary to carry out reasonable frequency planning according to different occasions, and to match the standardized network coverage construction process.
  • the market puts forward higher performance requirements for microwave ferrite materials, especially the stricter requirements for third-order intermodulation.
  • CN 110128129A discloses a preparation method of low-loss garnet ferrite material, including the following steps: (1) batching; (2) primary ball milling; (3) pre-calcination; (4) secondary ball milling; (5) Granulation; (6) compression molding; (7) sintering.
  • the nano-modified adhesive prepared by nano-TiO 2 , nano-SiO 2 and polyvinyl alcohol is used for granulation, and the material after secondary ball milling is mixed with the nano-modified adhesive under vacuum and pressure before granulation.
  • the preparation method can make the prepared garnet ferrite material have few lattice defects, low porosity, regular, uniform and dense microstructure, and effectively reduce material loss.
  • CN 102584200A discloses a microwave ferrite material with ultra-low loss and small linewidth and a preparation method thereof.
  • the chemical formula of the microwave ferrite material is: Y 3-2x-y Ca 2x+y Fe 5-xyz V x Zr y Al z O 12 , wherein: 0.02 ⁇ x ⁇ 0.25, 0.05 ⁇ y ⁇ 0.25, 0.01 ⁇ z ⁇ 0.25; the preparation method includes the following steps: calculating according to stoichiometry and weighing raw materials, vibration ball milling, pre-calcination, Coarse crushing by vibration milling, fine crushing by sand milling, spray granulation, compression molding and sintering.
  • the ferromagnetic resonance linewidth ⁇ H of the obtained material is ⁇ 1.27KA/m
  • the insertion loss of the assembled microwave device is ⁇ 0.21dB, and its stability and reliability are greatly improved , the application range is expanded; the microwave ferrite device made has the advantages of wide operating frequency band and low insertion loss.
  • CN 104496450A discloses a narrow-linewidth low-loss gyromagnetic ferrite material and its preparation method.
  • the chemical formula of the gyromagnetic ferrite material is: Y 3-x Ca x Fe 5-x-3y Li y Sn 2y+x O 12 , wherein: 0.01 ⁇ x ⁇ 0.3, 0.001 ⁇ y ⁇ 0.04; the preparation method is: calculating according to the chemical formula and weighing the raw materials, mixing, pre-calcining, sand milling, centrifugal spray granulation, compression molding, sintering, Ground, annealed and silvered.
  • the saturation magnetization M s of the obtained material is 123.4kA/m ⁇ 159.2kA/m, the gyromagnetic resonance linewidth ⁇ H ⁇ 1.2kA/m, the dielectric loss tg ⁇ e ⁇ 0.5 ⁇ 10 -4 , assembled at 25.7 ⁇ In the 31.5 ⁇ 10 circulator, the performance is tested at 925MHz ⁇ 960MHz, and the insertion loss is ⁇ 0.16dB.
  • the sintering temperature of the material is low, energy saving and environmental protection, the grain diameter is 7-18 ⁇ m, uniform and complete, and has few defects.
  • the third-order intermodulation parameters of the ferrite materials obtained in the above applications need to be further improved. Therefore, how to provide a microwave ferrite material for a third-order intermodulation circulator and its preparation method to reduce the intermodulation between combined signals Interference, in order to further improve the performance of the communication system and the coverage and capacity of the network, while ensuring that the stability and repeatability of the preparation process are maintained at a good level, so as to be suitable for mass production applications, has become an urgent problem for those skilled in the art. question.
  • the embodiment of the present application provides a microwave ferrite material for a third-order intermodulation circulator and its preparation method.
  • the microwave ferrite material reduces the intermodulation interference between combined signals, and further improves the performance of the communication system and the network Excellent coverage and capacity, while ensuring the stability and repeatability of the preparation process at a good level, suitable for mass production applications.
  • the embodiment of the present application provides a microwave ferrite material for a third-order intermodulation circulator, the chemical formula of the microwave ferrite material is Y 3-a Ca a Sn a In b Mn c Fe 5-abc O 12 , where 0.1 ⁇ a ⁇ 0.3, 0.01 ⁇ b ⁇ 0.1, 0.001 ⁇ c ⁇ 0.1.
  • the microwave ferrite material provided by this application is based on the original 4G communication low-loss garnet microwave ferrite material. Ca elements are used to replace some rare earth Y elements, and Sn, Mn, and In elements are used to replace some Fe elements. Characteristics and compensation points to obtain suitable 4 ⁇ Ms, ⁇ H and Tc, especially Sn and Mn composite substitution makes ferrite materials have suitable 4 ⁇ Ms and Curie temperature.
  • the raw materials of the microwave ferrite material include Y 2 O 3 , CaCO 3 , SnO 2 , In 2 O 3 , MnCO 3 and Fe 2 O 3 .
  • the purity of the Y 2 O 3 is ⁇ 99.95%, for example, it can be 99.95%, 99.96%, 99.97%, 99.98% or 99.99%, but it is not limited to the listed values, other unlisted values within the range Numerical values also apply.
  • the purity of the CaCO3 is ⁇ 99.5%, for example, it can be 99.5%, 99.6%, 99.7%, 99.8% or 99.9%, but it is not limited to the listed values, and other unlisted values within this range are also the same Be applicable.
  • the purity of the SnO2 is ⁇ 99.5%, for example, it can be 99.5%, 99.6%, 99.7%, 99.8% or 99.9%, but it is not limited to the listed values, and other unlisted values within this range are also the same Be applicable.
  • the purity of the In 2 O 3 is ⁇ 99.99%, for example, it can be 99.99%, 99.992%, 99.994%, 99.996% or 99.998%, but it is not limited to the listed values, other unlisted values within the range Numerical values also apply.
  • the MnCO 3 has a purity ⁇ 99%, for example, it can be 99%, 99.2%, 99.4%, 99.6% or 99.8%, but it is not limited to the listed values, and other unlisted values within this range are also the same Be applicable.
  • the purity of the Fe 2 O 3 is ⁇ 99.5%, for example, it can be 99.5%, 99.6%, 99.7%, 99.8% or 99.9%, but it is not limited to the listed values, other unlisted values within the range Numerical values also apply.
  • the embodiment of the present application provides a method for preparing the microwave ferrite material as described in the first aspect, the preparation method includes the following steps:
  • step (3) drying and preheating: drying and pre-burning the first slurry obtained in step (2) successively to obtain the first powder;
  • step (5) Post-processing: the second powder obtained in step (5) is sequentially subjected to molding, sintering and grinding to obtain a microwave ferrite material.
  • the preparation method provided by this application reduces the line width of the material and the loss of the device by optimizing the powder making process and determining a reasonable iron-deficiency formula, and optimizes the sintering process on the basis of ensuring the optimal formula to obtain the best crystal image of the material , thereby improving the third-order intermodulation parameters of the product, and the preparation process is stable and repeatable, and is suitable for mass production applications.
  • the dispersant in step (2) includes acetone.
  • the mass proportion of the dispersant in step (2) in the first slurry is 1-10%, such as 1%, 2%, 3%, 4%, 5%, 6%, 7% , 8%, 9% or 10%, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the rotating speed of the ball mill in step (2) is 60-80rpm, such as 60rpm, 62rpm, 64rpm, 66rpm, 68rpm, 70rpm, 72rpm, 74rpm, 76rpm, 78rpm or 80rpm, but not limited to the listed values , other unlisted values within this value range are also applicable.
  • the time of ball milling in step (2) is 20-40h, such as 20h, 22h, 24h, 26h, 28h, 30h, 32h, 34h, 36h, 38h or 40h, but not limited to the listed values , other unlisted values within this value range are also applicable.
  • the particle size X50 of the first slurry in step (2) is 0.5-1.0 ⁇ m, such as 0.5 ⁇ m, 0.6 ⁇ m, 0.7 ⁇ m, 0.8 ⁇ m, 0.9 ⁇ m or 1.0 ⁇ m, but not limited to the listed Numerical values, other unlisted numerical values within this numerical range are also applicable.
  • the particle size X50 represents the corresponding particle size value when the cumulative distribution percentage reaches 50%.
  • the drying temperature in step (3) is 120-150°C, such as 120°C, 125°C, 130°C, 135°C, 140°C, 145°C or 150°C, but not limited to the listed ones Numerical values, other unlisted numerical values within this numerical range are also applicable.
  • the drying time in step (3) is 16-20h, such as 16h, 16.5h, 17h, 17.5h, 18h, 18.5h, 19h, 19.5h or 20h, but not limited to the listed ones Numerical values, other unlisted numerical values within this numerical range are also applicable.
  • the step (3) further includes sieving the powder between drying and preheating.
  • the mesh of the sieve is 40-80 mesh, such as 40 mesh, 45 mesh, 50 mesh, 55 mesh, 60 mesh, 65 mesh, 70 mesh, 75 mesh or 80 mesh, but not limited to For the listed values, other unlisted values within the range of values are also applicable.
  • the preheating temperature in step (3) is 1200-1300°C, such as 1200°C, 1210°C, 1220°C, 1230°C, 1240°C, 1250°C, 1260°C, 1270°C, 1280°C, 1290°C °C or 1300 °C, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the heating rate of the preheating in step (3) is 1-2°C/min, such as 1°C/min, 1.1°C/min, 1.2°C/min, 1.3°C/min, 1.4°C/min, 1.5°C/min, 1.6°C/min, 1.7°C/min, 1.8°C/min, 1.9°C/min or 2°C/min, but not limited to the listed values, other unlisted values within this range are also applicable .
  • the preheating time in step (3) is 4-8h, such as 4h, 4.5h, 5h, 5.5h, 6h, 6.5h, 7h, 7.5h or 8h, but not limited to the listed Numerical values, other unlisted numerical values within this numerical range are also applicable.
  • the preheating in step (3) is carried out in an oxygen atmosphere, and the oxygen flow is started when the temperature is raised to 800°C, and the oxygen flow is ended when the temperature is lowered to 800°C.
  • the oxygen flow rate is 20-50L/min, for example, it can be 20L/min , 25L/min, 30L/min, 35L/min, 40L/min, 45L/min or 50L/min, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the co-solvent in step (4) includes SiO 2 .
  • the SiO 2 co-solvent can increase the degree of solid phase reaction of the material and reduce the porosity.
  • the concentration of the co-solvent in the second slurry in step (4) is 50-500ppm, such as 50ppm, 100ppm, 150ppm, 200ppm, 250ppm, 300ppm, 350ppm, 400ppm, 450ppm or 500ppm, but not only Limited to the listed numerical values, other unlisted numerical values within this numerical range are also applicable.
  • the rotating speed of the ball mill described in step (4) is 50-80rpm, for example, it can be 50rpm, 55rpm, 60rpm, 65rpm, 70rpm, 75rpm or 80rpm, but it is not limited to the listed values, other not listed in the range of values values are also applicable.
  • the time of ball milling in step (4) is 30-50h, for example, it can be 30h, 32h, 34h, 36h, 38h, 40h, 42h, 44h, 46h, 48h or 50h, but it is not limited to the listed values , other unlisted values within this value range are also applicable.
  • the particle size X50 of the second slurry in step (4) is 0.4-0.9 ⁇ m, such as 0.4 ⁇ m, 0.5 ⁇ m, 0.6 ⁇ m, 0.7 ⁇ m, 0.8 ⁇ m or 0.9 ⁇ m, but not limited to the listed Numerical values, other unlisted numerical values within this numerical range are also applicable.
  • the adhesive in step (5) includes an aqueous solution of polyvinyl alcohol.
  • the concentration of the binder in step (5) is 9-11wt%, such as 9wt%, 9.2wt%, 9.4wt%, 9.6wt%, 9.8wt%, 10wt%, 10.2wt%, 10.4 wt%, 10.6wt%, 10.8wt% or 11wt%, but not limited to the listed values, other unlisted values within the range of values are also applicable.
  • the amount of the binder added in step (5) is 8-12wt%, such as 8wt%, 8.5wt%, 9wt%, 9.5wt%, 10wt%, 10.5wt%, 11wt%, 11.5wt% % or 12wt%, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the particle size X85 of the second powder in step (5) is 60-80 ⁇ m, such as 60 ⁇ m, 62 ⁇ m, 64 ⁇ m, 66 ⁇ m, 68 ⁇ m, 70 ⁇ m, 72 ⁇ m, 74 ⁇ m, 76 ⁇ m, 78 ⁇ m or 80 ⁇ m, but not limited to For the listed values, other unlisted values within the range of values are also applicable.
  • the particle size X85 represents the corresponding particle size value when the cumulative distribution percentage reaches 85%.
  • the forming in step (6) is carried out in a 100T press.
  • the forming in step (6) obtains a cylinder with a density of 3-3.5 g/cm 3 , for example, 3 g/cm 3 , 3.1 g/cm 3 , 3.2 g/cm 3 , 3.3 g/cm 3 , 3.4g/cm 3 or 3.5g/cm 3 , but not limited to the listed values, other unlisted values within this range are also applicable.
  • the temperature raising stage of the sintering in step (6) is divided into three gradients, specifically the first sintering, the second sintering and the third sintering in sequence.
  • the first sintering temperature is 550-650°C, such as 550°C, 560°C, 570°C, 580°C, 590°C, 600°C, 610°C, 620°C, 630°C, 640°C or 650°C °C, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the heating rate of the first sintering is 0.5-1.5°C/min, such as 0.5°C/min, 0.6°C/min, 0.7°C/min, 0.8°C/min, 0.9°C/min, 1°C/min min, 1.1°C/min, 1.2°C/min, 1.3°C/min, 1.4°C/min or 1.5°C/min, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the second sintering temperature is 950-1050°C, such as 950°C, 960°C, 970°C, 980°C, 990°C, 1000°C, 1010°C, 1020°C, 1030°C, 1040°C or 1050°C °C, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the heating rate of the second sintering is 1.5-2.5°C/min, such as 1.5°C/min, 1.6°C/min, 1.7°C/min, 1.8°C/min, 1.9°C/min, 2°C/min min, 2.1°C/min, 2.2°C/min, 2.3°C/min, 2.4°C/min or 2.5°C/min, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the third sintering temperature is 1400-1500°C, such as 1400°C, 1410°C, 1420°C, 1430°C, 1440°C, 1450°C, 1460°C, 1470°C, 1480°C, 1490°C or 1500°C °C, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the heating rate of the third sintering is 2-3°C/min, such as 2°C/min, 2.1°C/min, 2.2°C/min, 2.3°C/min, 2.4°C/min, 2.5°C/min min, 2.6°C/min, 2.7°C/min, 2.8°C/min, 2.9°C/min or 3°C/min, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the holding time for the third sintering is 20-40h, such as 20h, 22h, 24h, 26h, 28h, 30h, 32h, 34h, 36h, 38h or 40h, but not limited to the listed values, Other unrecited values within this value range are also applicable.
  • the cooling stage of the sintering in step (6) is divided into two gradients, specifically cooling down to 600°C at a rate of 1-2°C/min, followed by natural cooling, for example, 1°C/min, 1.1°C °C/min, 1.2°C/min, 1.3°C/min, 1.4°C/min, 1.5°C/min, 1.6°C/min, 1.7°C/min, 1.8°C/min, 1.9°C/min or 2°C/min, but It is not limited to the listed values, and other unlisted values within the range of values are also applicable.
  • the sintering in step (6) is carried out in an oxygen atmosphere, and the oxygen flow is started when the temperature is raised to 900°C, and the oxygen flow is ended when the temperature is lowered to 700°C.
  • the oxygen flow rate is 30-50L/min, for example, 30L/min, 32L/min, 34L/min, 36L/min, 38L/min, 40L/min, 42L/min, 44L/min, 46L/min, 48L/min or 50L/min, but not limited to the listed values, the Other unrecited values within the range of values also apply.
  • the grinding in step (6) is carried out in a centerless grinder.
  • the preparation method includes the following steps:
  • step (3) Drying and preheating: Put the first slurry obtained in step (2) into an oven for drying at a temperature of 120-150°C for 16-20 hours; -80 mesh sieve, put it into an air sintering furnace for pre-calcination, raise the temperature to 1200-1300 °C at a rate of 1-2 °C/min, and keep it for 4-8 hours to obtain the first powder; the preheating is in an oxygen atmosphere Carry out, and start oxygen flow when the temperature rises to 800°C, and end oxygen flow when the temperature drops to 800°C, and the flow rate of oxygen flow is 20-50L/min;
  • the second powder obtained in step (5) is sequentially molded, sintered and ground to obtain a microwave ferrite material; the molding is carried out in a 100T press to obtain a density of 3-3.5g/ cm 3 cylinder; the heating stage of the sintering is divided into three gradients, specifically the first sintering, the second sintering and the third sintering in sequence; the temperature of the first sintering is 550-650°C, and the temperature rise The rate is 0.5-1.5°C/min; the temperature of the second sintering is 950-1050°C, and the heating rate is 1.5-2.5°C/min; the temperature of the third sintering is 1400-1500°C, and the heating rate is 2- 3°C/min, the holding time is 20-40h; the cooling stage of the sintering is divided into two gradients, specifically, the temperature is lowered to 600°C at a rate of 1-2°C/min, followed by natural cooling; the sintering is carried out at It
  • the embodiment of the present application provides an application of the microwave ferrite material as described in the first aspect in the preparation of a third-order intermodulation circulator.
  • the microwave ferrite material provided by the embodiment of the present application is based on the original 4G communication low-loss garnet microwave ferrite material, using Ca element to replace part of the rare earth Y element, and Sn, Mn, and In elements to replace part of the Fe element , using their electromagnetic properties and compensation points to obtain suitable saturation magnetization, ferromagnetic resonance linewidth and Curie temperature, especially the composite substitution of Sn and Mn makes ferrite materials have suitable saturation magnetization ( ⁇ H ⁇ 15oe) and Curie temperature (Tc>250°C);
  • the preparation method provided by the embodiment of the present application reduces the line width of the material and the loss of the device by optimizing the pulverizing process and determining a reasonable iron-deficiency formula, and optimizes the sintering process on the basis of ensuring the optimal formula to obtain the best Excellent material crystal image, thereby improving the third-order intermodulation parameters of the product (25°C IMD>75dB, 125°C IMD>70dB), and the preparation process is stable and repeatable, suitable for mass production applications.
  • Fig. 1 is the sintered crystal image of the microwave ferrite material obtained in embodiment 1;
  • Fig. 2 is the sintered crystal image of the microwave ferrite material obtained in embodiment 3;
  • Fig. 3 is the sintered crystal image of the microwave ferrite material obtained in Example 4.
  • This embodiment provides a microwave ferrite material for a third-order intermodulation circulator and a preparation method thereof, the preparation method comprising the following steps:
  • step (1) Pour the raw materials weighed in step (1) into a ball mill tank and use a ball mill to mix them.
  • mass ratio of raw materials: deionized water: zirconia balls 1: 1: 6, add acetone as a dispersion dispersant, the rotating speed of ball milling is 60rpm, the time is 35h, and the first slurry is obtained after ball milling; the mass proportion of the dispersant in the first slurry is 5%, and the particle size X50 of the first slurry is 0.75 ⁇ m ;
  • step (3) Drying and preheating: Put the first slurry obtained in step (2) into an oven for drying at a temperature of 150°C for 16 hours; pass the dried powder through a 60-mesh sieve and put Pre-fire in an air sintering furnace, raise the temperature to 1280°C at a rate of 1.5°C/min, and keep it for 8 hours to obtain the first powder; the preheating is carried out in an oxygen atmosphere, and the temperature is raised to 800°C to start oxygen flow, and the temperature is lowered End the oxygen flow at 800°C, and the oxygen flow rate is 30L/min;
  • the second powder obtained in step (5) is sequentially molded, sintered and ground to obtain a microwave ferrite material; the molding is carried out in a 100T press to obtain a density of 3.2g/cm 3
  • the cylinder; the heating stage of the sintering is divided into three gradients, specifically the first sintering, the second sintering and the third sintering in sequence; the temperature of the first sintering is 600°C, and the heating rate is 1°C /min; the temperature of the second sintering is 1000°C, the heating rate is 2°C/min; the temperature of the third sintering is 1480°C, the heating rate is 2.5°C/min, and the holding time is 24h; the sintering
  • the cooling stage is divided into two gradients.
  • the temperature is lowered to 600°C at a rate of 1.5°C/min, followed by natural cooling; the sintering is carried out in an oxygen atmosphere, and the temperature is raised to 900°C to start oxygen flow, and the temperature is lowered to 700°C End the oxygen flow, and the oxygen flow rate is 40L/min; the grinding process is carried out in a centerless grinder.
  • the sintered crystal image of the microwave ferrite material obtained in this embodiment is shown in FIG. 1 .
  • This embodiment provides a microwave ferrite material for a third-order intermodulation circulator and its preparation method, except that the temperature of the third sintering in step (6) in the preparation method is changed to 1510°C, and the other conditions are the same as those in Embodiment 1. are the same, so I won’t repeat them here.
  • the sintered crystal image of the microwave ferrite material obtained in this embodiment is shown in FIG. 2 .
  • Example 2 It can be seen from FIG. 2 that compared with Example 1, the third sintering temperature of this example is too high, resulting in more defects on the crystal surface of the obtained microwave ferrite material.
  • This embodiment provides a microwave ferrite material for a third-order intermodulation circulator and its preparation method. Except that the temperature of the third sintering in step (6) in the preparation method is changed to 1390° C., other conditions are the same as those in Embodiment 1. are the same, so I won’t repeat them here.
  • the sintered crystal image of the microwave ferrite material obtained in this embodiment is shown in FIG. 3 .
  • This embodiment provides a microwave ferrite material for a third-order intermodulation circulator and its preparation method, except that step (4) in the preparation method does not add co-solvent SiO 2 , the rest of the conditions are the same as in Example 1, so in I won't go into details here.
  • This embodiment provides a microwave ferrite material for a third-order intermodulation circulator and its preparation method. Except that step (6) in the preparation method does not pass oxygen during the sintering process, the rest of the conditions are the same as in Embodiment 1, so it will not be described here. Do repeat.
  • Embodiment 1-6 and the microwave ferrite material obtained in comparative example 1-2 carry out the following performance tests:
  • Example 3 has an excessively wide ferromagnetic resonance line width because of its third sintering temperature; If the temperature is too low, the ferromagnetic resonance line width will be too wide, and the saturation magnetization and third-order intermodulation parameters will decrease; in Example 5, because no co-solvent SiO 2 is added, the degree of solid-state reaction of the material will decrease and the porosity will increase.
  • Example 6 because of the lack of oxygen in the sintering process, the ferromagnetic resonance line width is too wide, and the third-order intermodulation parameters decrease; Comparative example 1 because Too much Ca element leads to too low saturation magnetization and Curie temperature, and the third-order intermodulation parameter is lower than that of Example 1; because of too much Mn element in Comparative Example 2, the ferromagnetic resonance line width is too wide.
  • the microwave ferrite material provided by this application uses Ca to replace part of the rare earth Y element, and uses Sn, Mn, and In to replace part of the Fe element.
  • the preparation method provided by this application reduces the line width of the material and the loss of the device by optimizing the powder making process and determining a reasonable iron-deficiency formula.
  • the sintering process is optimized to obtain the best material crystal image, thereby improving the third-order intermodulation parameters of the product (25°C IMD>75dB, 125°C IMD>70dB), and the preparation process is stable and repeatable, suitable for large batches production application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种三阶互调环形器用微波铁氧体材料及其制备方法,化学式为Y 3-aCa aSn aIn bMn cFe 5-a-b-cO 12,其中,0.1≤a≤0.3,0.01≤b≤0.1,0.001≤c≤0.1。制备方法包括以下步骤:(1)称量;(2)一次球磨;(3)烘干预热;(4)二次球磨;(5)造粒;(6)后处理。该微波铁氧体材料降低了合路信号之间的互调干扰,进一步提升了通信系统性能和网络的覆盖能力及容量,同时确保了制备工艺的稳定性和重复性维持在良好水平,适用于大批量生产应用。

Description

一种三阶互调环形器用微波铁氧体材料及其制备方法 技术领域
本申请实施例涉及磁性材料技术领域,例如一种微波铁氧体材料,尤其涉及一种三阶互调环形器用微波铁氧体材料及其制备方法。
背景技术
在通信网络的部署过程中,为了节约成本,会出现大量不同运营商共享基站网络系统的情况。由于运营商之间采用不同制式的通信技术,且系统存在非线性因素,合路信号之间会产生干扰。互调干扰是典型的干扰现象之一,它会导致通信系统性能的恶化,严重影响网络的覆盖能力及容量。影响互调干扰的因素很多,除对有源设备和无源设备在原有的基础上提高指标外,还需根据不同场合进行合理的频率规划,并配以规范的网络覆盖施工流程。随着通信技术的发展,市场对微波铁氧体材料提出了更高的性能要求,特别是针对三阶互调的要求更为严格。
CN 110128129A公开了一种低损耗石榴石铁氧体材料的制备方法,包括下述步骤:(1)配料;(2)一次球磨;(3)预烧;(4)二次球磨;(5)造粒;(6)压制成型;(7)烧结。其中,造粒采用纳米TiO 2、纳米SiO 2和聚乙烯醇配制得到的纳米改性胶粘剂,造粒之前在真空加压条件下将二次球磨后的物料与纳米改性胶粘剂进行混匀处理。所述制备方法能使制备的石榴石铁氧体材料晶格缺陷少,气孔率低,微观结构规整且均匀、致密,有效降低材料的损耗。
CN 102584200A公开了一种超低损耗、小线宽微波铁氧体材料及其制备方法,所述微波铁氧体材料的化学式为:Y 3-2x-yCa 2x+yFe 5-x-y-zV xZr yAl zO 12,其中:0.02≤x≤0.25,0.05≤y≤0.25,0.01≤z≤0.25;所述制备方法包括如下步骤:按化学计量计算并称取原材料,振动球磨,预烧,振磨粗粉碎,砂磨细粉碎,喷雾造粒,压制成型和烧结。经测试,所获材料的铁磁共振线宽ΔH≤1.27KA/m,介电损耗tgδe≤0.5×10 -4,装配的微波器件的插入损耗≤0.21dB,其稳定性和可靠性大幅度提高,应用范围扩大;制成的微波铁氧体器件具有工作频带宽和插入损耗低的优点。
CN 104496450A公开了一种窄线宽低损耗旋磁铁氧体材料及其制备方法, 所述旋磁铁氧体材料的化学式为:Y 3-xCa xFe 5-x-3yLi ySn 2y+xO 12,其中:0.01≤x≤0.3,0.001≤y≤0.04;所述制备方法为:按化学式计算并称取原材料、混合、预烧、砂磨粉碎、离心喷雾造粒、压制成型、烧结、磨削、退火和被银。经测试,所获材料的饱和磁化强度M s为123.4kA/m~159.2kA/m,旋磁共振线宽ΔH≤1.2kA/m,介电损耗tgδe≤0.5×10 -4,装配于25.7×31.5×10的环行器中,在925MHz~960MHz下测试性能,插入损耗≤0.16dB。材料烧结温度低,节能环保,晶粒直径在7~18μm,均匀完整,缺陷少。
然而上述申请所得铁氧体材料的三阶互调参数均有待进一步提高,因此,如何提供一种三阶互调环形器用微波铁氧体材料及其制备方法,降低合路信号之间的互调干扰,以进一步提升通信系统性能和网络的覆盖能力及容量,同时确保制备工艺的稳定性和重复性维持在良好水平,以适用于大批量生产应用,成为了目前本领域技术人员迫切需要解决的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供一种三阶互调环形器用微波铁氧体材料及其制备方法,所述微波铁氧体材料降低了合路信号之间的互调干扰,进一步提升了通信系统性能和网络的覆盖能力及容量,同时确保了制备工艺的稳定性和重复性维持在良好水平,适用于大批量生产应用。
第一方面,本申请实施例提供一种三阶互调环形器用微波铁氧体材料,所述微波铁氧体材料的组成化学式为Y 3-aCa aSn aIn bMn cFe 5-a-b-cO 12,其中,0.1≤a≤0.3,0.01≤b≤0.1,0.001≤c≤0.1。
本申请中,0.1≤a≤0.3,例如可以是a=0.1、0.12、0.14、0.16、0.18、0.2、0.22、0.24、0.26、0.28或0.3,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中,0.01≤b≤0.1,例如可以是b=0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09或0.1,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中,0.001≤c≤0.1,例如可以是c=0.001、0.005、0.01、0.02、0.03、 0.04、0.05、0.06、0.07、0.08、0.09或0.1,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请提供的微波铁氧体材料在原4G通信低损耗石榴石微波铁氧体材料的基础上,采用Ca元素替代部分稀土Y元素,采用Sn、Mn、In元素替代部分Fe元素,利用它们的电磁特性和补偿点来获得合适的4πMs、ΔH和Tc,尤其是Sn和Mn复合取代使得铁氧体材料具有合适的4πMs和居里温度。
优选地,所述微波铁氧体材料的原材料包括Y 2O 3、CaCO 3、SnO 2、In 2O 3、MnCO 3和Fe 2O 3
优选地,所述Y 2O 3的纯度≥99.95%,例如可以是99.95%、99.96%、99.97%、99.98%或99.99%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述CaCO 3的纯度≥99.5%,例如可以是99.5%、99.6%、99.7%、99.8%或99.9%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述SnO 2的纯度≥99.5%,例如可以是99.5%、99.6%、99.7%、99.8%或99.9%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述In 2O 3的纯度≥99.99%,例如可以是99.99%、99.992%、99.994%、99.996%或99.998%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述MnCO 3的纯度≥99%,例如可以是99%、99.2%、99.4%、99.6%或99.8%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述Fe 2O 3的纯度≥99.5%,例如可以是99.5%、99.6%、99.7%、99.8%或99.9%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
第二方面,本申请实施例提供一种如第一方面所述微波铁氧体材料的制备方法,所述制备方法包括以下步骤:
(1)称量:根据微波铁氧体材料的组成进行计算,称取对应的原材料;
(2)一次球磨:混合去离子水、氧化锆球、分散剂和步骤(1)称取的原 材料,球磨后得到第一浆料;
(3)烘干预热:将步骤(2)所得第一浆料依次进行烘干和预烧,得到第一粉料;
(4)二次球磨:混合去离子水、氧化锆球、助溶剂和步骤(3)所得第一粉料,球磨后得到第二浆料;
(5)造粒:混合粘合剂和步骤(4)所得第二浆料,离心喷雾后得到第二粉料;
(6)后处理:将步骤(5)所得第二粉料依次进行成型、烧结和磨加工,得到微波铁氧体材料。
本申请提供的制备方法通过优化制粉工艺并确定合理的缺铁配方,降低了材料的线宽和器件的损耗,在保证最优配方的基础上优化了烧结工艺,得到最佳的材料晶像,从而提高了产品的三阶互调参数,且制备工艺稳定,重复性好,适用于大批量生产应用。
优选地,步骤(2)所述混合的质量比为原材料∶去离子水∶氧化锆球=1∶(1-1.3)∶(4-8),例如可以是1∶1∶4、1∶1.1∶5、1∶1.2∶6、1∶1.2∶7或1∶1.3∶8,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(2)所述分散剂包括丙酮。
优选地,步骤(2)所述分散剂在第一浆料中的质量占比为1-10%,例如可以是1%、2%、3%、4%、5%、6%、7%、8%、9%或10%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(2)所述球磨的转速为60-80rpm,例如可以是60rpm、62rpm、64rpm、66rpm、68rpm、70rpm、72rpm、74rpm、76rpm、78rpm或80rpm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(2)所述球磨的时间为20-40h,例如可以是20h、22h、24h、26h、28h、30h、32h、34h、36h、38h或40h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(2)所述第一浆料的粒度X50为0.5-1.0μm,例如可以是0.5μm、0.6μm、0.7μm、0.8μm、0.9μm或1.0μm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中,所述粒度X50表示累计分布百分数达到50%时所对应的粒径值。
优选地,步骤(3)所述烘干的温度为120-150℃,例如可以是120℃、125℃、130℃、135℃、140℃、145℃或150℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(3)所述烘干的时间为16-20h,例如可以是16h、16.5h、17h、17.5h、18h、18.5h、19h、19.5h或20h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(3)所述烘干和预热之间还包括对粉料进行过筛。
优选地,所述过筛的目数为40-80目,例如可以是40目、45目、50目、55目、60目、65目、70目、75目或80目,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(3)所述预热的温度为1200-1300℃,例如可以是1200℃、1210℃、1220℃、1230℃、1240℃、1250℃、1260℃、1270℃、1280℃、1290℃或1300℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(3)所述预热的升温速率为1-2℃/min,例如可以是1℃/min、1.1℃/min、1.2℃/min、1.3℃/min、1.4℃/min、1.5℃/min、1.6℃/min、1.7℃/min、1.8℃/min、1.9℃/min或2℃/min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(3)所述预热的时间为4-8h,例如可以是4h、4.5h、5h、5.5h、6h、6.5h、7h、7.5h或8h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(3)所述预热在氧气氛围中进行,且升温至800℃开始通氧,降温至800℃结束通氧,通氧流量为20-50L/min,例如可以是20L/min、25L/min、30L/min、35L/min、40L/min、45L/min或50L/min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(4)所述混合的质量比为第一粉料∶去离子水∶氧化锆球=1∶(1-1.3)∶(4-8),例如可以是1∶1∶4、1∶1.1∶5、1∶1.2∶6、1∶1.2∶7或1∶1.3∶8,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(4)所述助溶剂包括SiO 2
本申请中,所述SiO 2助溶剂可提升材料固相反应程度,降低气孔率。
优选地,步骤(4)所述助溶剂在第二浆料中的浓度为50-500ppm,例如可以是50ppm、100ppm、150ppm、200ppm、250ppm、300ppm、350ppm、400ppm、450ppm或500ppm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(4)所述球磨的转速为50-80rpm,例如可以是50rpm、55rpm、60rpm、65rpm、70rpm、75rpm或80rpm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(4)所述球磨的时间为30-50h,例如可以是30h、32h、34h、36h、38h、40h、42h、44h、46h、48h或50h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(4)所述第二浆料的粒度X50为0.4-0.9μm,例如可以是0.4μm、0.5μm、0.6μm、0.7μm、0.8μm或0.9μm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(5)所述粘合剂包括聚乙烯醇水溶液。
优选地,步骤(5)所述粘合剂的浓度为9-11wt%,例如可以是9wt%、9.2wt%、9.4wt%、9.6wt%、9.8wt%、10wt%、10.2wt%、10.4wt%、10.6wt%、10.8wt%或11wt%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(5)所述粘合剂的添加量为8-12wt%,例如可以是8wt%、8.5wt%、9wt%、9.5wt%、10wt%、10.5wt%、11wt%、11.5wt%或12wt%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(5)所述第二粉料的粒度X85为60-80μm,例如可以是60μm、62μm、64μm、66μm、68μm、70μm、72μm、74μm、76μm、78μm或80μm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中,所述粒度X85表示累计分布百分数达到85%时所对应的粒径值。
优选地,步骤(6)所述成型在100T压机中进行。
优选地,步骤(6)所述成型得到密度为3-3.5g/cm 3的圆柱体,例如可以是3g/cm 3、3.1g/cm 3、3.2g/cm 3、3.3g/cm 3、3.4g/cm 3或3.5g/cm 3,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(6)所述烧结的升温阶段分为三个梯度进行,具体为依次进行的第一烧结、第二烧结和第三烧结。
优选地,所述第一烧结的温度为550-650℃,例如可以是550℃、560℃、570℃、580℃、590℃、600℃、610℃、620℃、630℃、640℃或650℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述第一烧结的升温速率为0.5-1.5℃/min,例如可以是0.5℃/min、0.6℃/min、0.7℃/min、0.8℃/min、0.9℃/min、1℃/min、1.1℃/min、1.2℃/min、1.3℃/min、1.4℃/min或1.5℃/min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述第二烧结的温度为950-1050℃,例如可以是950℃、960℃、970℃、980℃、990℃、1000℃、1010℃、1020℃、1030℃、1040℃或1050℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述第二烧结的升温速率为1.5-2.5℃/min,例如可以是1.5℃/min、1.6℃/min、1.7℃/min、1.8℃/min、1.9℃/min、2℃/min、2.1℃/min、2.2℃/min、2.3℃/min、2.4℃/min或2.5℃/min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述第三烧结的温度为1400-1500℃,例如可以是1400℃、1410℃、1420℃、1430℃、1440℃、1450℃、1460℃、1470℃、1480℃、1490℃或1500℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述第三烧结的升温速率为2-3℃/min,例如可以是2℃/min、2.1℃/min、2.2℃/min、2.3℃/min、2.4℃/min、2.5℃/min、2.6℃/min、2.7℃/min、2.8℃/min、2.9℃/min或3℃/min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述第三烧结的保温时间为20-40h,例如可以是20h、22h、24h、26h、28h、30h、32h、34h、36h、38h或40h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(6)所述烧结的降温阶段分为两个梯度进行,具体为先以1-2℃/min的速率降温至600℃,后续自然冷却,例如可以是1℃/min、1.1℃/min、1.2℃/min、1.3℃/min、1.4℃/min、1.5℃/min、1.6℃/min、1.7℃/min、1.8℃/min、1.9℃/min或2℃/min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(6)所述烧结在氧气氛围中进行,且升温至900℃开始通氧, 降温至700℃结束通氧,通氧流量为30-50L/min,例如可以是30L/min、32L/min、34L/min、36L/min、38L/min、40L/min、42L/min、44L/min、46L/min、48L/min或50L/min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(6)所述磨加工在无心磨床中进行。
作为本申请第二方面优选的技术方案,所述制备方法包括以下步骤:
(1)称量:根据微波铁氧体材料的组成进行计算,称取对应的原材料;
(2)一次球磨:将步骤(1)称取的原材料倒入球磨罐中使用球磨机混合,按照质量比为原材料∶去离子水∶氧化锆球=1∶(1-1.3)∶(4-8)投料,并加入丙酮作为分散剂,球磨的转速为60-80rpm,时间为20-40h,球磨后得到第一浆料;所述分散剂在第一浆料中的质量占比为1-10%,所述第一浆料的粒度X50为0.5-1.0μm;
(3)烘干预热:将步骤(2)所得第一浆料放入烘箱中烘干,烘干的温度为120-150℃,时间为16-20h;将烘干后的粉料过40-80目筛,放进空气烧结炉中预烧,以1-2℃/min的速率升温至1200-1300℃,并保持4-8h,得到第一粉料;所述预热在氧气氛围中进行,且升温至800℃开始通氧,降温至800℃结束通氧,通氧流量为20-50L/min;
(4)二次球磨:将步骤(3)所得第一粉料倒入球磨罐中使用球磨机混合,按照质量比为第一粉料∶去离子水∶氧化锆球=1∶(1-1.3)∶(4-8)投料,并加入SiO 2作为助溶剂,球磨的转速为50-80rpm,时间为30-50h,球磨后得到第二浆料;所述助溶剂在第二浆料中的浓度为50-500ppm,所述第二浆料的粒度X50为0.4-0.9μm;
(5)造粒:在步骤(4)所得第二浆料中加入浓度为9-11wt%的粘合剂聚乙烯醇水溶液,且粘合剂的添加量为8-12wt%,离心喷雾后得到粒度X85为60-80μm的第二粉料;
(6)后处理:将步骤(5)所得第二粉料依次进行成型、烧结和磨加工,得到微波铁氧体材料;所述成型在100T压机中进行,得到密度为3-3.5g/cm 3的圆柱体;所述烧结的升温阶段分为三个梯度进行,具体为依次进行的第一烧结、第二烧结和第三烧结;所述第一烧结的温度为550-650℃,升温速率为0.5-1.5℃/min;所述第二烧结的温度为950-1050℃,升温速率为1.5-2.5℃/min; 所述第三烧结的温度为1400-1500℃,升温速率为2-3℃/min,保温时间为20-40h;所述烧结的降温阶段分为两个梯度进行,具体为先以1-2℃/min的速率降温至600℃,后续自然冷却;所述烧结在氧气氛围中进行,且升温至900℃开始通氧,降温至700℃结束通氧,通氧流量为30-50L/min;所述磨加工在无心磨床中进行。
第三方面,本申请实施例提供一种如第一方面所述微波铁氧体材料在制备三阶互调环形器中的应用。
相对于相关技术,本申请实施例具有以下有益效果:
(1)本申请实施例提供的微波铁氧体材料在原4G通信低损耗石榴石微波铁氧体材料的基础上,采用Ca元素替代部分稀土Y元素,采用Sn、Mn、In元素替代部分Fe元素,利用它们的电磁特性和补偿点来获得合适的饱和磁化强度、铁磁共振线宽和居里温度,尤其是Sn和Mn复合取代使得铁氧体材料具有合适的饱和磁化强度(ΔH<15oe)和居里温度(Tc>250℃);
(2)本申请实施例提供的制备方法通过优化制粉工艺并确定合理的缺铁配方,降低了材料的线宽和器件的损耗,在保证最优配方的基础上优化了烧结工艺,得到最佳的材料晶像,从而提高了产品的三阶互调参数(25℃IMD>75dB,125℃IMD>70dB),且制备工艺稳定,重复性好,适用于大批量生产应用。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1是实施例1所得微波铁氧体材料的烧结晶像;
图2是实施例3所得微波铁氧体材料的烧结晶像;
图3是实施例4所得微波铁氧体材料的烧结晶像。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
本实施例提供一种三阶互调环形器用微波铁氧体材料及其制备方法,所述 制备方法包括以下步骤:
(1)称量:根据微波铁氧体材料的组成化学式为Y 3-aCa aSn aIn bMn cFe 5-a-b-cO 12(a=0.27,b=0.01,c=0.05)称取对应的原材料,其中Y 2O 3的纯度为99.95%,CaCO 3的纯度为99.5%,SnO 2的纯度为99.5%,In 2O 3的纯度为99.99%,MnCO 3的纯度为99%,Fe 2O 3的纯度为99.5%;
(2)一次球磨:将步骤(1)称取的原材料倒入球磨罐中使用球磨机混合,按照质量比为原材料∶去离子水∶氧化锆球=1∶1∶6投料,并加入丙酮作为分散剂,球磨的转速为60rpm,时间为35h,球磨后得到第一浆料;所述分散剂在第一浆料中的质量占比为5%,所述第一浆料的粒度X50为0.75μm;
(3)烘干预热:将步骤(2)所得第一浆料放入烘箱中烘干,烘干的温度为150℃,时间为16h;将烘干后的粉料过60目筛,放进空气烧结炉中预烧,以1.5℃/min的速率升温至1280℃,并保持8h,得到第一粉料;所述预热在氧气氛围中进行,且升温至800℃开始通氧,降温至800℃结束通氧,通氧流量为30L/min;
(4)二次球磨:将步骤(3)所得第一粉料倒入球磨罐中使用球磨机混合,按照质量比为第一粉料∶去离子水∶氧化锆球=1∶1∶6投料,并加入SiO 2作为助溶剂,球磨的转速为60rpm,时间为36h,球磨后得到第二浆料;所述助溶剂在第二浆料中的浓度为200ppm,所述第二浆料的粒度X50为0.61μm;
(5)造粒:在步骤(4)所得第二浆料中加入浓度为9wt%的粘合剂聚乙烯醇水溶液,且粘合剂的添加量为9wt%,离心喷雾后得到粒度X85为70μm的第二粉料;
(6)后处理:将步骤(5)所得第二粉料依次进行成型、烧结和磨加工,得到微波铁氧体材料;所述成型在100T压机中进行,得到密度为3.2g/cm 3的圆柱体;所述烧结的升温阶段分为三个梯度进行,具体为依次进行的第一烧结、第二烧结和第三烧结;所述第一烧结的温度为600℃,升温速率为1℃/min;所述第二烧结的温度为1000℃,升温速率为2℃/min;所述第三烧结的温度为1480℃,升温速率为2.5℃/min,保温时间为24h;所述烧结的降温阶段分为两个梯度进行,具体为先以1.5℃/min的速率降温至600℃,后续自然冷却;所述烧结在氧气氛围中进行,且升温至900℃开始通氧,降温至700℃结束通氧,通氧流量为40L/min;所述磨加工在无心磨床中进行。
本实施例所得微波铁氧体材料的烧结晶像见图1。
实施例2
本实施例提供一种三阶互调环形器用微波铁氧体材料及其制备方法,除了所述微波铁氧体材料的组成化学式为Y 3-aCa aSn aIn bMn cFe 5-a-b-cO 12(a=0.26,b=0.01,c=0.02),且将所述制备方法中步骤(4)助溶剂在第二浆料中的浓度改为100ppm,其余条件均与实施例1相同,故在此不做赘述。
实施例3
本实施例提供一种三阶互调环形器用微波铁氧体材料及其制备方法,除了将所述制备方法中步骤(6)第三烧结的温度改为1510℃,其余条件均与实施例1相同,故在此不做赘述。
本实施例所得微波铁氧体材料的烧结晶像见图2。
由图2可知:相较于实施例1,本实施例因其第三烧结温度过高,导致所得微波铁氧体材料的晶体表面出现较多缺陷。
实施例4
本实施例提供一种三阶互调环形器用微波铁氧体材料及其制备方法,除了将所述制备方法中步骤(6)第三烧结的温度改为1390℃,其余条件均与实施例1相同,故在此不做赘述。
本实施例所得微波铁氧体材料的烧结晶像见图3。
由图3可知:相较于实施例1,本实施例因其第三烧结温度过低,导致所得微波铁氧体材料的晶体成熟度下降。
实施例5
本实施例提供一种三阶互调环形器用微波铁氧体材料及其制备方法,除了所述制备方法中步骤(4)不添加助溶剂SiO 2,其余条件均与实施例1相同,故在此不做赘述。
实施例6
本实施例提供一种三阶互调环形器用微波铁氧体材料及其制备方法,除了所述制备方法中步骤(6)烧结过程不通氧,其余条件均与实施例1相同,故在此不做赘述。
对比例1
本对比例提供一种三阶互调环形器用微波铁氧体材料及其制备方法,除了所述微波铁氧体材料的组成化学式为Y 3-aCa aSn aIn bMn cFe 5-a-b-cO 12(a=0.32,b=0.01,c=0.05),其余条件及制备方法均与实施例1相同,故在此不做赘述。
对比例2
本对比例提供一种三阶互调环形器用微波铁氧体材料及其制备方法,除了所述微波铁氧体材料的组成化学式为Y 3-aCa aSn aIn bMn cFe 5-a-b-cO 12(a=0.27,b=0.01,c=0.15),其余条件及制备方法均与实施例1相同,故在此不做赘述。
实施例1-6与对比例1-2所得微波铁氧体材料进行以下性能测试:
(1)利用阿基米德排水法测试样品密度ρ;
(2)将样品加工成Φ1.6mm×22mm的细棒测试介电常数ε;
(3)将样品抛光成Φ1mm的圆球测试铁磁共振线宽ΔH;
(4)将样品加工成Φ2.5mm的圆球测试饱和磁化强度4πMs和居里温度Tc;
(5)制备规格为H20.5×17×1.0的样品测试其分别在25℃和125℃下的三阶互调参数IMD。
上述性能测试的具体结果见表1。
表1
Figure PCTCN2022110191-appb-000001
由表1可知:实施例1与2的各项性能参数均能够达到标准水平;实施例3因其第三烧结温度过高,导致铁磁共振线宽过宽;实施例4因其第三烧结温度 过低,导致铁磁共振线宽过宽,且饱和磁化强度和三阶互调参数均下降;实施例5因其未添加助溶剂SiO 2,导致材料固相反应程度降低,气孔率升高,且铁磁共振线宽过宽,三阶互调参数下降;实施例6因其烧结过程未通氧,导致铁磁共振线宽过宽,且三阶互调参数下降;对比例1因其Ca元素过多,导致饱和磁化强度和居里温度均过低,且三阶互调参数不及实施例1;对比例2因其Mn元素过多,导致铁磁共振线宽过宽。
由此可见,本申请提供的微波铁氧体材料在原4G通信低损耗石榴石微波铁氧体材料的基础上,采用Ca元素替代部分稀土Y元素,采用Sn、Mn、In元素替代部分Fe元素,利用它们的电磁特性和补偿点来获得合适的饱和磁化强度、铁磁共振线宽和居里温度,尤其是Sn和Mn复合取代使得铁氧体材料具有合适的饱和磁化强度(ΔH<15oe)和居里温度(Tc>250℃);此外,本申请提供的制备方法通过优化制粉工艺并确定合理的缺铁配方,降低了材料的线宽和器件的损耗,在保证最优配方的基础上优化了烧结工艺,得到最佳的材料晶像,从而提高了产品的三阶互调参数(25℃IMD>75dB,125℃IMD>70dB),且制备工艺稳定,重复性好,适用于大批量生产应用。
申请人声明,以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,均落在本申请的保护范围和公开范围之内。

Claims (15)

  1. 一种三阶互调环形器用微波铁氧体材料,其中,所述微波铁氧体材料的组成化学式为Y 3-aCa aSn aIn bMn cFe 5-a-b-cO 12,其中,0.1≤a≤0.3,0.01≤b≤0.1,0.001≤c≤0.1。
  2. 根据权利要求1所述的微波铁氧体材料,其中,所述微波铁氧体材料的原材料包括Y 2O 3、CaCO 3、SnO 2、In 2O 3、MnCO 3和Fe 2O 3
  3. 根据权利要求1或2所述的微波铁氧体材料,其中,所述Y 2O 3的纯度≥99.95%;
    优选地,所述CaCO 3的纯度≥99.5%;
    优选地,所述SnO 2的纯度≥99.5%;
    优选地,所述In 2O 3的纯度≥99.99%;
    优选地,所述MnCO 3的纯度≥99%;
    优选地,所述Fe 2O 3的纯度≥99.5%。
  4. 一种如权利要求1-3任一项所述微波铁氧体材料的制备方法,其包括以下步骤:
    (1)称量:根据微波铁氧体材料的组成进行计算,称取对应的原材料;
    (2)一次球磨:混合去离子水、氧化锆球、分散剂和步骤(1)称取的原材料,球磨后得到第一浆料;
    (3)烘干预热:将步骤(2)所得第一浆料依次进行烘干和预烧,得到第一粉料;
    (4)二次球磨:混合去离子水、氧化锆球、助溶剂和步骤(3)所得第一粉料,球磨后得到第二浆料;
    (5)造粒:混合粘合剂和步骤(4)所得第二浆料,离心喷雾后得到第二粉料;
    (6)后处理:将步骤(5)所得第二粉料依次进行成型、烧结和磨加工,得到微波铁氧体材料。
  5. 根据权利要求4所述的制备方法,其中,步骤(2)所述混合的质量比为原材料∶去离子水∶氧化锆球=1∶(1-1.3)∶(4-8)。
  6. 根据权利要求4或5所述的制备方法,其中,步骤(2)所述分散剂包括丙酮。
  7. 根据权利要求4-6任一项所述的制备方法,其中,步骤(2)所述分散剂 在第一浆料中的质量占比为1-10%。
  8. 根据权利要求4-7任一项所述的制备方法,其中,步骤(2)所述球磨的转速为60-80rpm;
    优选地,步骤(2)所述球磨的时间为20-40h;
    优选地,步骤(2)所述第一浆料的粒度X50为0.5-1.0μm。
  9. 根据权利要求4-8任一项所述的制备方法,其中,步骤(3)所述烘干的温度为120-150℃;
    优选地,步骤(3)所述烘干的时间为16-20h;
    优选地,步骤(3)所述烘干和预热之间还包括对粉料进行过筛;
    优选地,所述过筛的目数为40-80目;
    优选地,步骤(3)所述预热的温度为1200-1300℃;
    优选地,步骤(3)所述预热的升温速率为1-2℃/min;
    优选地,步骤(3)所述预热的时间为4-8h;
    优选地,步骤(3)所述预热在氧气氛围中进行,且升温至800℃开始通氧,降温至800℃结束通氧,通氧流量为20-50L/min。
  10. 根据权利要求4-9任一项所述的制备方法,其中,步骤(4)所述混合的质量比为第一粉料∶去离子水∶氧化锆球=1∶(1-1.3)∶(4-8);
    优选地,步骤(4)所述助溶剂包括SiO 2
    优选地,步骤(4)所述助溶剂在第二浆料中的浓度为50-500ppm;
    优选地,步骤(4)所述球磨的转速为50-80rpm;
    优选地,步骤(4)所述球磨的时间为30-50h;
    优选地,步骤(4)所述第二浆料的粒度X50为0.4-0.9μm。
  11. 根据权利要求4-10任一项所述的制备方法,其中,步骤(5)所述粘合剂包括聚乙烯醇水溶液;
    优选地,步骤(5)所述粘合剂的浓度为9-11wt%;
    优选地,步骤(5)所述粘合剂的添加量为8-12wt%;
    优选地,步骤(5)所述第二粉料的粒度X85为60-80μm。
  12. 根据权利要求4-11任一项所述的制备方法,其中,步骤(6)所述成型在100T压机中进行;
    优选地,步骤(6)所述成型得到密度为3-3.5g/cm 3的圆柱体;
    优选地,步骤(6)所述烧结的升温阶段分为三个梯度进行,具体为依次进行的第一烧结、第二烧结和第三烧结;
    优选地,所述第一烧结的温度为550-650℃;
    优选地,所述第一烧结的升温速率为0.5-1.5℃/min;
    优选地,所述第二烧结的温度为950-1050℃;
    优选地,所述第二烧结的升温速率为1.5-2.5℃/min;
    优选地,所述第三烧结的温度为1400-1500℃;
    优选地,所述第三烧结的升温速率为2-3℃/min;
    优选地,所述第三烧结的保温时间为20-40h。
  13. 根据权利要求4-12任一项所述的制备方法,其中,步骤(6)所述烧结的降温阶段分为两个梯度进行,具体为先以1-2℃/min的速率降温至600℃,后续自然冷却;
    优选地,步骤(6)所述烧结在氧气氛围中进行,且升温至900℃开始通氧,降温至700℃结束通氧,通氧流量为30-50L/min;
    优选地,步骤(6)所述磨加工在无心磨床中进行。
  14. 根据权利要求4-13任一项所述的制备方法,其中,所述制备方法包括以下步骤:
    (1)称量:根据微波铁氧体材料的组成进行计算,称取对应的原材料;
    (2)一次球磨:将步骤(1)称取的原材料倒入球磨罐中使用球磨机混合,按照质量比为原材料∶去离子水∶氧化锆球=1∶(1-1.3)∶(4-8)投料,并加入丙酮作为分散剂,球磨的转速为60-80rpm,时间为20-40h,球磨后得到第一浆料;所述分散剂在第一浆料中的质量占比为1-10%,所述第一浆料的粒度X50为0.5-1.0μm;
    (3)烘干预热:将步骤(2)所得第一浆料放入烘箱中烘干,烘干的温度为120-150℃,时间为16-20h;将烘干后的粉料过40-80目筛,放进空气烧结炉中预烧,以1-2℃/min的速率升温至1200-1300℃,并保持4-8h,得到第一粉料;所述预热在氧气氛围中进行,且升温至800℃开始通氧,降温至800℃结束通氧,通氧流量为20-50L/min;
    (4)二次球磨:将步骤(3)所得第一粉料倒入球磨罐中使用球磨机混合,按照质量比为第一粉料∶去离子水∶氧化锆球=1∶(1-1.3)∶(4-8)投料,并加入SiO 2 作为助溶剂,球磨的转速为50-80rpm,时间为30-50h,球磨后得到第二浆料;所述助溶剂在第二浆料中的浓度为50-500ppm,所述第二浆料的粒度X50为0.4-0.9μm;
    (5)造粒:在步骤(4)所得第二浆料中加入浓度为9-11wt%的粘合剂聚乙烯醇水溶液,且粘合剂的添加量为8-12wt%,离心喷雾后得到粒度X85为60-80μm的第二粉料;
    (6)后处理:将步骤(5)所得第二粉料依次进行成型、烧结和磨加工,得到微波铁氧体材料;所述成型在100T压机中进行,得到密度为3-3.5g/cm 3的圆柱体;所述烧结的升温阶段分为三个梯度进行,具体为依次进行的第一烧结、第二烧结和第三烧结;所述第一烧结的温度为550-650℃,升温速率为0.5-1.5℃/min;所述第二烧结的温度为950-1050℃,升温速率为1.5-2.5℃/min;所述第三烧结的温度为1400-1500℃,升温速率为2-3℃/min,保温时间为20-40h;所述烧结的降温阶段分为两个梯度进行,具体为先以1-2℃/min的速率降温至600℃,后续自然冷却;所述烧结在氧气氛围中进行,且升温至900℃开始通氧,降温至700℃结束通氧,通氧流量为30-50L/min;所述磨加工在无心磨床中进行。
  15. 一种如权利要求1-3任一项所述微波铁氧体材料在制备三阶互调环形器中的应用。
PCT/CN2022/110191 2021-11-02 2022-08-04 一种三阶互调环形器用微波铁氧体材料及其制备方法 WO2023077890A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/575,267 US20240308916A1 (en) 2021-11-02 2022-08-04 Microwave ferrite material for third-order intermodulation circulator and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111291814.1A CN114031389A (zh) 2021-11-02 2021-11-02 一种三阶互调环形器用微波铁氧体材料及其制备方法
CN202111291814.1 2021-11-02

Publications (1)

Publication Number Publication Date
WO2023077890A1 true WO2023077890A1 (zh) 2023-05-11

Family

ID=80142694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110191 WO2023077890A1 (zh) 2021-11-02 2022-08-04 一种三阶互调环形器用微波铁氧体材料及其制备方法

Country Status (3)

Country Link
US (1) US20240308916A1 (zh)
CN (1) CN114031389A (zh)
WO (1) WO2023077890A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116455483A (zh) * 2023-06-16 2023-07-18 西南应用磁学研究所(中国电子科技集团公司第九研究所) 用于旋磁器件三阶互调电平测试系统及测试方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114031389A (zh) * 2021-11-02 2022-02-11 横店集团东磁股份有限公司 一种三阶互调环形器用微波铁氧体材料及其制备方法
CN115057697B (zh) * 2022-06-29 2023-05-16 横店集团东磁股份有限公司 一种低线宽的w型六角晶系微波铁氧体材料的制备方法
CN115745591A (zh) * 2022-11-25 2023-03-07 国网辽宁省电力有限公司沈阳供电公司 一种局部放电监测用高频电流传感器NiCuZn软磁铁氧体材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101591168A (zh) * 2009-06-05 2009-12-02 李凌峰 一种小线宽、低损耗微波铁氧体材料及制造方法
CN103803959A (zh) * 2012-11-15 2014-05-21 南京金宁微波有限公司 一种小线宽、高居里温度微波铁氧体材料及其制备方法
CN111187064A (zh) * 2020-01-13 2020-05-22 横店集团东磁股份有限公司 一种高稳定性石榴石微波铁氧体磁片及其制备方法
CN111187067A (zh) * 2020-01-15 2020-05-22 横店集团东磁股份有限公司 一种低损耗石榴石微波铁氧体磁片及其制备方法
CN112479701A (zh) * 2020-11-27 2021-03-12 横店集团东磁股份有限公司 复合介电陶瓷粉共烧磁体、其制备方法及复合介电陶瓷粉共烧磁片
CN112745122A (zh) * 2020-11-12 2021-05-04 绵阳市维奇电子技术有限公司 一种高功率高介电常数石榴石的制备方法及石榴石
CN114031389A (zh) * 2021-11-02 2022-02-11 横店集团东磁股份有限公司 一种三阶互调环形器用微波铁氧体材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0211187A3 (en) * 1985-06-28 1989-01-11 Kabushiki Kaisha Toshiba Process for producing single crystal of garnet ferrite
DE3721767A1 (de) * 1987-07-01 1989-01-12 Bayer Ag Verfahren zur herstellung feinteiliger bariumhexaferritpigmente aus halogenidschmelzen sowie die verwendung derartig hergestellter bariumhexaferritpigmente
JP4586215B2 (ja) * 1998-04-14 2010-11-24 Tdk株式会社 非可逆回路素子の相互変調積を制御する方法、フェリ磁性材料及びこれを用いた非可逆回路素子
JP2005097044A (ja) * 2003-09-25 2005-04-14 Alps Electric Co Ltd 非可逆回路素子用ガーネットフェライトとそれを用いた非可逆回路素子
CN110128129B (zh) * 2019-07-03 2021-06-15 三桥惠(佛山)新材料有限公司 一种低损耗石榴石铁氧体材料的制备方法
CN111004028A (zh) * 2019-12-25 2020-04-14 横店集团东磁股份有限公司 一种微波铁氧体磁片及其制备方法和用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101591168A (zh) * 2009-06-05 2009-12-02 李凌峰 一种小线宽、低损耗微波铁氧体材料及制造方法
CN103803959A (zh) * 2012-11-15 2014-05-21 南京金宁微波有限公司 一种小线宽、高居里温度微波铁氧体材料及其制备方法
CN111187064A (zh) * 2020-01-13 2020-05-22 横店集团东磁股份有限公司 一种高稳定性石榴石微波铁氧体磁片及其制备方法
CN111187067A (zh) * 2020-01-15 2020-05-22 横店集团东磁股份有限公司 一种低损耗石榴石微波铁氧体磁片及其制备方法
CN112745122A (zh) * 2020-11-12 2021-05-04 绵阳市维奇电子技术有限公司 一种高功率高介电常数石榴石的制备方法及石榴石
CN112479701A (zh) * 2020-11-27 2021-03-12 横店集团东磁股份有限公司 复合介电陶瓷粉共烧磁体、其制备方法及复合介电陶瓷粉共烧磁片
CN114031389A (zh) * 2021-11-02 2022-02-11 横店集团东磁股份有限公司 一种三阶互调环形器用微波铁氧体材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116455483A (zh) * 2023-06-16 2023-07-18 西南应用磁学研究所(中国电子科技集团公司第九研究所) 用于旋磁器件三阶互调电平测试系统及测试方法
CN116455483B (zh) * 2023-06-16 2023-09-12 西南应用磁学研究所(中国电子科技集团公司第九研究所) 用于旋磁器件三阶互调电平测试系统及测试方法

Also Published As

Publication number Publication date
US20240308916A1 (en) 2024-09-19
CN114031389A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
WO2023077890A1 (zh) 一种三阶互调环形器用微波铁氧体材料及其制备方法
CN112679204B (zh) 一种高饱和高介电常数低线宽微波铁氧体材料及其制备方法
CN113072372B (zh) 一种双组分微波铁氧体材料及其制备方法和应用
CN112745122B (zh) 一种高功率高介电常数石榴石的制备方法及石榴石
US11945753B2 (en) Low loss power ferrites and method of manufacture
WO2023029872A1 (zh) 一种微波铁氧体材料及其制备方法与应用
WO2023284190A1 (zh) 一种高饱和低损耗双组分微波铁氧体材料及其制备方法与应用
JP2015191935A (ja) 六方晶フェライト焼結体、及びこれを用いた高周波磁性部品
CN113896521B (zh) 一种低饱和窄线宽旋磁材料及其制备方法
Xiao et al. Ca-Sn co-substituted BiIn-YIG ferrite with narrow FMR linewidth for microwave device application
CN112390637A (zh) 无钇配方的高介电常数微波铁氧体材料及其制备方法和器件
CN104496450A (zh) 一种窄线宽低损耗旋磁铁氧体材料及其制备方法
CN112430075A (zh) 一种铁氧体磁性材料及其制造方法
WO2024001623A1 (zh) 一种低线宽的w型六角晶系微波铁氧体材料的制备方法
CN114956800B (zh) 一种高性能微波多晶铁氧体材料
CN116409988A (zh) 高介电中等饱和磁化强度石榴石铁氧体材料及制备方法
CN110395976A (zh) 一种锂铝共掺杂的镍锌铁氧体陶瓷材料的制备方法
JP2022059859A (ja) MnZn系フェライト、及びその製造方法
TWI636032B (zh) 旋磁體的製造方法
CN118561587A (zh) 高介电常数低铁磁共振线宽的微波铁氧体材料及其制备方法和应用
Chen et al. Enhanced Microwave Magnetic and Dielectric Properties of YBiIG Ferrite by Ca-Zr Co-substitution
Chen et al. Influence of Forming Pressure on Properties of Yttrium Iron Garnet Ferrite
CN117209265A (zh) 低线宽低损耗的钇铁石榴石铁氧体材料及其制备方法
JPH0536518A (ja) ガーネツト型フエライトユニツトの製造方法
CN116715508A (zh) 一种新型低介电镓、锗基高品质因数微波介质材料及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22888925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE