JP2005097044A - 非可逆回路素子用ガーネットフェライトとそれを用いた非可逆回路素子 - Google Patents

非可逆回路素子用ガーネットフェライトとそれを用いた非可逆回路素子 Download PDF

Info

Publication number
JP2005097044A
JP2005097044A JP2003333386A JP2003333386A JP2005097044A JP 2005097044 A JP2005097044 A JP 2005097044A JP 2003333386 A JP2003333386 A JP 2003333386A JP 2003333386 A JP2003333386 A JP 2003333386A JP 2005097044 A JP2005097044 A JP 2005097044A
Authority
JP
Japan
Prior art keywords
garnet ferrite
composition ratio
composition
garnet
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003333386A
Other languages
English (en)
Inventor
Kinshirou Takadate
金四郎 高舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2003333386A priority Critical patent/JP2005097044A/ja
Priority to US10/945,787 priority patent/US20050068122A1/en
Priority to CNA2004100798554A priority patent/CN1600741A/zh
Publication of JP2005097044A publication Critical patent/JP2005097044A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators
    • H01P1/383Junction circulators, e.g. Y-circulators
    • H01P1/387Strip line circulators

Landscapes

  • Magnetic Ceramics (AREA)
  • Compounds Of Iron (AREA)
  • Non-Reversible Transmitting Devices (AREA)

Abstract

【課題】 4πMsの温度係数(α)の絶対値を小さくでき、しかも強磁性共鳴半値幅(ΔH)を小さくできるガーネットフェライトの提供。マイクロ波帯などの高周波帯域において損失が小さい非可逆回路素子の提供。
【解決手段】 組成式Y3−xGdFet−2y−zCoSiAl12(ただし、組成比を示すx、y、z、tは0.2≦x≦1.5、0.005≦y≦0.015、0≦z≦1.5、4.75≦t≦5の範囲である。)で示される非可逆回路素子用ガーネットフェライト5。ガーネットフェライト5からなる本体部の上面に中心導体6A、6B、6Cが電気的絶縁状態で所定の角度で交差するように配置された磁性組立体と、磁石7と、整合用コンデンサと、ヨークを兼ねるケース2、3からなるアイソレータ1。
【選択図】 図1

Description

本発明は、マイクロ波帯などの高周波帯域で使用される非可逆回路素子に適用されるガーネットフェライトとそれを用いた非可逆回路素子に関するもので、特に、4πMsの温度係数(α)の絶対値を小さくでき、しかも強磁性共鳴半値幅を小さくできる技術に関するものである。
従来から、高周波用磁性材料としては、Mn-Znフェライト、Ni-Znフェライト、リチウムフェライト、YIGフェライトなどが知られている。
また、携帯電話等の無線通信機器においては、アンテナとアンプの間に設けられてアンプの安定動作並びに混変調の防止などの目的から、非可逆素子材料としての高周波用磁性材料を備えた非可逆回路素子が適用されている。
先の磁性材料の中でもYIGフェライトは、Y3Fe512からなる組成物にGdあるいはAlを一部元素置換した系で実現されており、低損失を示すものと知られている。
ところがこのYIGフェライトは、使用環境温度が変わるとアイソレーション特性が変化してしまうため、4πMsの温度係数(α)の絶対値を小さくできるYIGフェライトが要望されている。
上記αの絶対値を小さくした磁性材料としては、Feが化学量論比から0.5〜5%の範囲で少なくされてなるガーネットフェライトであって、A12 (但し、AはY又はYとGdを示し、BはFe単独あるいはFeに加えてAl、In、Mnの少なくとも1種以上の元素を示す。)なる組成式で示される非可逆回路素子用ガーネットフェライト(例えば、特許文献1参照)や、Y3−3x−zGd3xCaFe5−5y−z−5eAl5ySn12(但し、1.5<3x<2.4、0<y<0.12、0<z<0.4)なる組成式で示されるガーネットフェライト(例えば、特許文献2参照)が考えられており、アイソレーターやサーキュレーターなどの回路素子に応用可能な材料とされている。
また、このようにαの絶対値が小さくされたガーネットフェライトは、小型化された非可逆回路素子に用いられることが多い。
特開2003−137646号公報 特開昭49−8798号公報
しかしながら上記A12なる組成式又は上記Y3−3x−zGd3xCaFe5−5y−z−5eAl5ySn12なる組成式で示される従来のガーネットフェライトにおいては、Gdの添加量が増すにつれて上記αの絶対値を小さくすることができるが、強磁性共鳴半値幅(ΔH)が大きくなり、マイクロ波帯などの高周波帯域で使用されるアイソレータの挿入損失が増大するといった問題があった。例えば、上記A12なる組成のガーネットフェライトでは、Gdの添加量が組成比で1.5を超えると、−35℃における温度係数(α)を0に近い値にできるが、ΔHが10000A・m−1を超えてしまう。
また、上記Y3−3x−zGd3xCaFe5−5y−z−5eAl5ySn12なる組成のガーネットフェライトでは、Gdを組成比で1.5〜2.4添加したときの温度係数(α)は正(+)の値であり、特に2.0以上となるとαが0.5%/℃を超えてしまう。一方、アイソレータ等の非可逆回路素子に使用する永久磁石の表面磁束の温度係数は負(−)であることが多いため、ガーネットフェライトと永久磁石の温度特性の傾きが逆であり、非可逆回路素子の特性が温度変化により大きく変化してしまう。
本発明は、上記事情に鑑みてなされたものであって、本発明は以上の背景に基づいてなされたもので、4πMsの温度係数(α)の絶対値を小さくでき、しかも強磁性共鳴半値幅(ΔH)を小さくできるガーネットフェライトを提供することを目的の1つとする。
更に本発明は、上記のようなガーネットフェライトを備えることにより、マイクロ波帯などの高周波帯域において損失が小さい非可逆回路素子の提供を目的の1つとする。
上記目的を達成するために、本発明は以下の構成を採用した。
本発明の非可逆回路素子用ガーネットフェライトは、非可逆回路素子に使用されるガーネットフェライトであって、組成式Y3−xGdFet−2y−zCoSiAl12(ただし、前記組成式中の組成比を示すx、y、z、tは0.2≦x≦1.5、0.005≦y≦0.015、0≦z≦1.5、4.75≦t≦5の範囲である。)で示されることを特徴とする。
この非可逆回路素子用ガーネットフェライトでは、CoとSiを上記組成比で添加したことにより、Gdを単独添加する場合(Y‐Gd‐Fe‐Al‐Oなる組成の場合)に比べて強磁性共鳴半値幅(ΔH)を小さくすることができる。また、Gdを上記範囲で添加したことにより、4πMsの温度係数(α)の絶対値を低減できる。
また、Alの添加量を上記の範囲内で変更することにより、4πMsの値を調整することができる。また、Fe、Co、Si、Alの合計量を上記範囲で調整することにより、異相が析出することなく、ガーネット単相にすることができ、ΔHを小さくすることができる。
本発明の非可逆回路素子用ガーネットフェライトは、4πMsの温度係数(α)の絶対値を小さくでき、しかも強磁性共鳴半値幅(ΔH)を小さくできる。また、本発明のガーネットフェライトは、従来のガーネットフェライトとαが同じ値でもΔHについては従来のものよりも低くすることができる。
従って、本発明のガーネットフェライトによれば、非可逆回路素子の低損失化寄与することができる。
また、本発明の非可逆回路素子用ガーネットフェライトは、組成式Y3−x−uGdCaFet−2y−u−zCoSiAl12(ただし、前記DはZr、Hf、Snのうち1種又は2種以上の元素を示し、組成比を示すx、y、z、t、uは0.2≦x≦1.5、0.005≦y≦0.015、0≦z≦1.5、4.75≦t≦5、0<u≦0.3の範囲である。)で示されることを特徴とする。
かかる構成の非可逆回路素子用ガーネットフェライトでは、特に、CoとSiに加えてCaと上記Dをそれぞれ上記組成比で添加したことにより、Gdを単独添加する場合(Y‐Gd‐Fe‐Al‐Oなる組成の場合)に比べて強磁性共鳴半値幅(ΔH)を小さくすることができる。
また、本発明の非可逆回路素子用ガーネットフェライトは、組成式Y3−xGdFet−2y−v−zCoSiInAl12(ただし、前記組成式中の組成比を示すx、y、z、tは0.2≦x≦1.5、0.005≦y≦0.015、0≦z≦1.5、4.75≦t≦5、0<v≦0.2の範囲である。)で示されることを特徴とする。
かかる構成の非可逆回路素子用ガーネットフェライトでは、特に、CoとSiに加えてInを上記組成比で添加したことにより、Gdを単独添加する場合(Y‐Gd‐Fe‐Al‐Oなる組成の場合)に比べて強磁性共鳴半値幅(ΔH)を小さくすることができる。
上記Y3−xGdFet−2y−zCoSiAl12なる組成式で示される非可逆回路素子用ガーネットフェライトにおいて、組成比を示すx、y、z、tは0.2≦x≦1.25、0.005≦y≦0.01、0≦z≦1.5、4.75≦t≦4.9の範囲であることが好ましい。
また、上記Y3−x−uGdCaFet−2y−u−zCoSiAl12なる組成式で示される非可逆回路素子用ガーネットフェライトにおいて、組成比を示すx、y、z、t、uは0.2≦x≦1.25、0.005≦y≦0.01、0≦z≦1.5、4.75≦t≦4.9、0.04≦u≦0.2の範囲であることが好ましい。
また、上記Y3−xGdFet−2y−v−zCoSiInAl12なる組成式で示される非可逆回路素子用ガーネットフェライトにおいて、組成比を示すx、y、z、t、vは0.2≦x≦1.25、0.005≦y≦0.01、0≦z≦1.5、4.75≦t≦4.9、0.04≦v≦0.2の範囲であることが好ましい。
また、本発明の非可逆回路素子は、上記のいずれかの構成の本発明の非可逆回路素子用ガーネットフェライトからなる本体部上に複数の中心導体が電気的絶縁状態で交差するように配置された磁性組立体を備えたことを特徴とする。上記の構成の磁性組立体を用いれば、アイソレータ等の非可逆回路素子が完成される。
また、本発明の非可逆回路素子は、上記のいずれかの構成の非可逆回路素子用ガーネットフェライトからなる本体部の上面に複数の中心導体が電気的絶縁状態で所定の角度で交差するように配置された磁性組立体を有し、この磁性組立体に直流磁界を印加するための磁石と、整合用コンデンサと、これらを包むヨークが少なくとも具備されてなることを特徴とする。上記の構成の磁性組立体と磁石と整合用コンデンサとヨークを備えることで、アイソレータ等の非可逆回路素子が完成される。
かかる構成の非可逆回路素子によれば、4πMsの温度係数(α)の絶対値を小さくでき、しかも強磁性共鳴半値幅(ΔH)を小さくできるガーネットフェライトからなる本体部を有する磁性組立体が備えられたことにより、マイクロ波帯などの高周波帯域において損失が小さく、特性の温度変化が小さい非可逆回路素子を提供できる。
以上、詳述したように本発明によれば、4πMsの温度係数(α)の絶対値を小さくでき、しかも強磁性共鳴半値幅(ΔH)を小さくできるガーネットフェライトを提供できる。
また、本発明の非可逆回路素子は、4πMsの温度係数(α)の絶対値を小さくでき、しかも強磁性共鳴半値幅(ΔH)を小さくできる本発明のガーネットフェライトを用いた磁性組立体と、磁石と、整合用コンデンサと、ヨークを備えることにより、マイクロ波帯などの高周波帯域において損失が小さく、特性の温度変化が小さい非可逆回路素子を提供できる。
以下、図面により本発明の実施形態について説明する。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法比率などは適宜異ならせて示してある。
図1は本発明に係る非可逆回路素子用ガーネットフェライトを備えたアイソレータ(非可逆回路素子)の一例を示す分解斜視図であり、この形態のアイソレータ1は、上部ケース2と下部ケース3との間に、下部ケース3側から順に基板4と円板状のガーネットフェライト素子5と中心導体6A、6B、6C(これらはガーネットフェライト素子5の下部側で共通電極部により電気的に接続されている。)と磁石7とを設けて構成されている。
先の上部ケース2と下部ケース3は側面コ字型の磁性体製のケースであり、上部ケース2と下部ケース3を一体化することで箱型の収納体が構成される。これら上部ケース2と下部ケース3はヨークを兼ねるものである。先の基板4は、中央部に丸型の透孔4aが形成された樹脂製の基台4Aを有し、その一面周縁部3カ所にパターン電極(整合用コンデンサ)4bが形成され、残り1つの縁部にアース電極4cが形成され、更にアース電極4cと先のパターン電極4bの1つに電気的に接続された抵抗素子4dが設けられたものである。
上記ガーネットフェライト素子(非可逆回路素子用ガーネットフェライト)5は、後述するガーネットフェライトからなる円盤状のものであり、ガーネットフェライト素子5の外周部には帯状の金属片からなる中心導体6A、6B、6Cが円板状のガーネットフェライト素子5の中心部を起点に周回りに60゜間隔で巻き付けられ、ガーネットフェライト素子5は基板4の透孔4aに挿入されて各中心導体6A、6B、6Cの各一端部が各パターン電極4bに電気的に接続され、各中心導体6A、6B、6Cの各他端部は図示しない共通電極部に一体的に接続されている。そして、中心導体6A、6B、6C上にガーネットフェライト素子5の上下方向にバイアス磁界を印加する円盤型の磁石7が積み重ねられ、この状態でこれらが上ケース2と下ケース3との間に収納されてアイソレータ1が構成されている。
上記ガーネットフェライト素子5は、Y3−xGdFet−2y−zCoSiAl12(ただし、上記組成式中の組成比を示すx、y、z、tは0.2≦x≦1.5、0.005≦y≦0.015、0≦z≦1.5、4.75≦t≦5の範囲である。)なる組成式(1)で示されるガーネットフェライトから構成されている。
また、上記組成式(1)中の組成比を示すx、y、z、tは、0.2≦x≦1.25、0.005≦y≦0.01、0≦z≦1.5、4.75≦t≦4.9の範囲であることが好ましい。
ガーネットフェライト素子5が上記組成式(1)で示されるガーネットフェライトから構成されている場合のYとGdの組成比の合計は、3であり、上記Yの組成比は1.5以上2.8以下である。
上記Gdの組成比を0.2以上1.5以下とすることにより、4πMsの温度係数(α)の絶対値を低減できる。また、アイソレータ1に使用する磁石7の表面磁束の温度係数はマイナスであることが多いため、Gdの組成比を0.2以上1.5以下とすることが室温付近の温度係数を負あるいはゼロに近い値あるいはゼロにできる。また、Gdの組成比が1.25以下であればΔHを6000A/m以下の低い値にできる点で好ましい。
また、Gdの組成比が1.0以下であればガーネットフェライト素子5のαを全温度範囲でマイナスにでき、磁石7の表面磁束の温度係数と傾きを合わせることができ、アイソレータ1の安定性を高めることができる点で好ましい。
Gdの組成比が0.2未満であるとCo−Si添加によるΔH低減効果は得られなくなってしまう。
また、CoとSiの組成比をそれぞれ0.005以上0.015以下とすることにより、強磁性共鳴半値幅(ΔH)を小さくすることができる。また、CoとSiの組成比をそれぞれ0.005以上0.01以下とすることが、確実にΔH低減効果を得られる点で好ましい。CoとSiの組成比がそれぞれ0.015を超えるとΔHが増大してしまう。CoとSiの組成比がそれぞれ0.005未満になるとΔH低減効果が得られなくなってしまう。
また、Alの組成比を0以上1.5以下とすることにより、4πMsの値を調整することができる。Alの組成比が1.5を超えると、4πMsがゼロになってしまう。従って、Alの組成比の上限を1.5とすることが実用的な大きさの4πMs値が得られる点で好ましい。
上記FeとCoとSiとAlの組成比の合計はtである。
上記組成比tを4.75以上5以下とすることにより、異相が析出することなく、ガーネット単相にすることができ、ΔHを小さくすることができる。組成比tが4.75未満になると、ガーネットフェライト素子がガーネット単相にならず、異相が析出してΔHが急激に大きくなってしまい、5を超えると上記と同様の異相が析出してΔHが急激に大きくなってしまう。また、上記組成比tを4.75以上4.9以下とすることが、ΔHをより効果的に低減できる点で好ましい。
上記FeとCoとSiとAlの組成比の合計の範囲は、4.75以上5未満であり、好ましくは4.75以上4.9未満とされる。Feの組成比を5未満にするとΔHが低下し始め、4.75未満にするとΔHの値が明らかに悪化する。
また、上記ガーネットフェライト素子5は、Y3−x−uGdCaFet−2y−u−zCoSiAl12(ただし、前記DはZr、Hf、Snのうち1種又は2種以上の元素を示し、組成比を示すx、y、z、t、uは0.2≦x≦1.5、0.005≦y≦0.015、0≦z≦1.5、4.75≦t≦5、0<u≦0.3の範囲である。)なる組成式(2)で示されるガーネットフェライトから構成されていてもよい。
また、上記組成式(2)中の組成比を示すx、y、z、t、uは、0.2≦x≦1.25、0.005≦y≦0.01、0≦z≦1.5、4.75≦t≦4.9、0.04≦u≦0.2の範囲であることが好ましい。
ガーネットフェライト素子5が上記組成式(2)で示されるガーネットフェライトから構成されている場合のYとGdとCaの組成比の合計は、3であり、上記Yの組成比は1.2以上2.76以下である。
また、上記CaとDの組成比をそれぞれ0を超えて0.3以下とすることにより、確実にΔH低減効果を得られる点で好ましい。上記CaとDの組成比がそれぞれ0.3を超えるとΔHをこれ以上下げることができず、逆にαの絶対値が増大してしまう。また、上記CaとDを組成比でそれぞれ0.04以上0.2以下とすることが、低いαとΔHのバランスが取れる点で好ましい。さらに、CaとDを組成比でそれぞれ0.1以上0.16以下とすることで、αの絶対値及びΔHをともに小さくすることができる。
上記FeとCoとSiと上記DとAlの組成比の合計はtであり、上記組成比tを4.75以上5以下とすることにより、異相が析出することなく、ガーネット単相にすることができ、ΔHを小さくすることができる。
上記FeとCoとSiと上記DとAlの組成比の合計の範囲は、4.75以上5未満であり、好ましくは4.75以上4.9未満とされる。
また、上記ガーネットフェライト素子5は、Y3−xGdFet−2y−v−zCoSiInAl12(ただし、前記組成式中の組成比を示すx、y、z、tは0.2≦x≦1.5、0.005≦y≦0.015、0≦z≦1.5、4.75≦t≦5、0<v≦0.2の範囲である。)なる組成式(3)で示されるガーネットフェライトから構成されていてもよい。
また、上記組成式(3)中の組成比を示す組成比を示すx、y、z、t、vは0.2≦x≦1.25、0.005≦y≦0.01、0≦z≦1.5、4.75≦t≦4.9、0.04≦v≦0.2の範囲であることが好ましい。
Inの組成比を0を超えて0.2以下とすることにより、強磁性共鳴半値幅(ΔH)を小さくすることができる。また、Inの組成比を0.04以上0.2以下とすることが、確実にΔH低減効果を得られる点で好ましい。Inを0.2を超えて添加してもΔHをこれ以上下げることができず、逆にαの絶対値が増大してしまう。このようにInの組成比を0.04以上0.2以下とし、Gdと複合で添加することが、低いαとΔHのバランスが取れる。また、Inの組成比を0.1以上0.16以下とすることで、αの絶対値及びΔHをともに小さくすることが可能となるので、より好ましい。
上記FeとCoとSiとInとAlの組成比の合計はtであり、上記組成比tを4.75以上5以下とすることにより、異相が析出することなく、ガーネット単相にすることができ、ΔHを小さくすることができる。
上記FeとCoとSiとInとAlの組成比の合計の範囲は、4.75以上5未満であり、好ましくは4.75以上4.9未満とされる。
上記組成式(1)乃至(3)のいずれかで示されるガーネットフェライト素子5によれば、αの絶対値を小さくでき、しかもΔHを6000A・m−1以下にすることも可能である。また、ガーネットフェライト素子5は、従来のガーネットフェライトとαが同じ値でもΔHについては従来のものよりも低くするすることができる。また、Alの量の調整により、4πMsの値を調整できるので、高周波領域用として好適な値に設定することができる。また、上記Gdの量の調整により、永久磁石7と組み合わせてアイソレータ1として使用する場合に磁石7の温度特性を補償することができる。
次に、このガーネットフェライト素子5の製造方法の一例について説明する。
先のガーネットフェライト素子5を製造するには、まず、目的とする組成の構成元素の酸化物粉末を用意し、目的の元素組成比となるように混合する。
例えば、Y−Gd−Fe−Co−Si−Al−O系のガーネットフェライトを製造するためには、原料として、Y23、Gd23、Fe23、Co、SiO、Al23の各粉末を用意する。また、Y−Ca−Fe−Co−Si−D(Sn又はZr又はHf)‐Al-O系のガーネットフェライトを製造するためには、原料として、Y23、CaCO、Fe23、Co、SiO 、SnO又はZrO又はHfO、Al23の各粉末を用意する。また、Y−Gd−Fe−Co−Si−In−Al-O系のガーネットフェライトを製造するためには、原料として、Y23、Gd23、Fe23 、Co、SiO 、In23、Al23の各粉末等を用意する。
ここで目的の組成比のガーネットフェライト素子とは、上記組成式(1)乃至(3)のいずれかで示されるものである。
これらの原料としてはこれらの粉末を用いることが好ましく、各粉末を目的の組成比になるように秤量する。なお、粉末状ではない粒状あるいは固体状の原料を用いる場合は、これらの原料を混合し、ボールミル、あるいはアトライタ等の粉砕混合装置により原料を粉砕混合する処理を必要時間、例えば数分〜数10時間行う。ここでの粉砕混合工程において、ボールミル、遊星ミル等の粉砕刃やボールや内壁に鉄分を含んでいると、あるいは、アトライタで使用する混合粉砕用のボールや内壁に鉄分を含んでいると、これらの鉄分が混合粉末側に移行するおそれがあるので、ミルやアトライタにおいて混合粉末と接触する部分に鉄分を含まないものを用いることが好ましい。
具体的に、ボールミルでは刃先あるいは混合粉末を収納する部分として鉄系以外の材料からなるものを用いてボールミルを構成すれば良く、アトライタにおいては粉砕混合用のボールとしてアルミナ製のもの、ジルコニアボール、メタル芯にチタン酸カルシウムのコーティングを施したもの等を用いることで混合粉末に対する鉄分の移行を無くすることができる。なお、ミルやアトライタの内壁はナイロン等の樹脂などのFe系以外の材料からなる壁部で構成すれば良い。
即ち、ボールミル等の装置では、ナイロン樹脂等で形成された外径180mm(内径135mm)の円筒状の容器に仮焼き粉とジルコニア製のボールをいれ、容器の開口部に同じくナイロン樹脂等で形成された蓋をする。この蓋をした容器を2本の水平軸(円筒容器の直径よりも若干短い間隔で離間して水平支持された2本の回転軸)で形成された架台に載せ、これらの回転軸に周回りに回転駆動力を与えて80〜100rpmで16〜20時間程度上記の容器とともに回転させる。この回転により上記ジルコニア製のボールとともに仮焼き粉末を撹拌し、仮焼き粉末を粉砕する。
なお、原料として粉末状のものを用いる場合に、前記の粉砕混合工程を略しても良い。
先の混合物を乾燥した後、1000℃〜1200℃程度の温度で大気中もしくは酸素雰囲気中において必要時間、例えば数時間仮焼し、仮焼粉末(仮焼物)を得る。
続いてこの仮焼粉末(仮焼物)を再度先のボールミルあるいはアトライタによって粉砕して粉末化する。ここで用いる粉砕装置においてもFeの混入を防止する目的で先の条件を満足する装置を用いることが好ましい。
得られた仮焼後の粉末の粒径を揃えた後、バインダーとともに目的の形状となるように成型し、1t/cm2程度の圧力を加えて目的の円盤状あるいは板状あるいは角柱状などの形状に成型し、次いでこの成型体を1350℃〜1500℃程度の温度に加熱して焼結すると、目的とする円板状のガーネットフェライト素子5が得られる。
なおここで、目的の形状に近い形に成型しておき、焼結後に得られた成型体から目的の形状のガーネットフェライト素子を切り出すようにして製造することもできる。
以上のように得られた円板状のガーネットフェライト素子5に対し、図1に示すように中心導体6A、6B、6Cを装着して取り付け、図1に示すように基板4の透孔4aにガーネットフェライト素子5を嵌め込み、磁石7とともにケース2、3の内部に配することでアイソレータ1を構成することができる。
以上の如く得られたガーネットフェライト素子5においては、アイソレータとして用いた場合の500MHz以上の高周波域、例えば10GHz帯域での挿入損失が小さく、ΔHの小さなものが得られる。
ここでアイソレータ1に用いられるガーネットフェライト素子5において把握される強磁性共鳴半値幅の値として知られているΔHとは、透磁率の虚数部μ''のピークの半値幅として知られている値であり、通常の磁性体の透磁率を測定する場合は磁場をかけた方向と同じ方向に基づいて透磁率を測定するものであるのに対し、静磁場で飽和させた状態で静磁場の方向と直角方向に高周波磁界を印加した時の透磁率を測定し、その虚数部の測定値から求められる値である。この値が小さいほど損失としては小さいことを意味する。
また、磁化温度係数α(−35)及びα(85)は、次のように計算される。
α(−35)=[{4πMs(25℃)−4πMs(−35℃)}/4πMs(25℃)]×(100/60) [%・℃−1]
α(85)=[{4πMs(85℃)−4πMs(25℃)}/4πMs(25℃)]×(100/60) [%・℃−1]
なお、上記式中、4πMs(−35℃)、4πMs(25℃)、4πMs(85℃)は、それぞれ−35℃、25℃、85℃におけるガーネットフェライトの4πMs(飽和磁化)の値である。
本実施形態のアイソレータ1は、ガーネットフェライト素子5からなる本体部の上面に中心導体6A、6B、6Cが電気的絶縁状態で所定の角度で交差するように配置された磁性組立体を有し、この磁性組立体に直流磁界を印加するための磁石7と、整合用コンデンサ4bと、これらを包むヨーク2、3が備えられてなるものであるので、マイクロ波帯などの高周波帯域において損失が小さく、また使用環境温度の変化しても安定したアイソレーション特性を有することができる。
よって先のガーネットフェライト素子5を備えたアイソレータ1においては、送信機等において、アンプとアンテナとの間に挿入されて好適に用いられ、アンテナからの雑音がアンプ側に戻るのを抑制する2端子素子としての優れた機能を発揮する。
(実施例1−1〜1−24)
以下の表1〜2に示す各試料の組成となるようにY23粉末、Gd23粉末、Fe23粉末、Co粉末、SiO粉末、Al3粉末をボールミル(鋼球の周囲をセラミックコーティング処理してなるボールを使用)で混合し、この混合物を乾燥した後、1200℃で4時間仮焼きし、仮焼物を得た。次にこの仮焼物を有機バインダーとともに先のものと同等のボールミルに投入し、20時間湿式粉砕した。この粉砕物を大気中もしくは酸素雰囲気中において1350℃〜1500℃で本焼成してY3−xGdFet−2y−zCoSiAl12なる組成のガーネットフェライト試料(実施例1−1〜1−24)を得た。
実施例1−1〜1−24のガーネットフェライト試料の4πMsと、−35℃〜+25℃での磁化温度係数α(−35)と、+25℃〜+85℃での磁化温度係数α(85)と、使用周波数10GHzのときのガーネットフェライト試料の強磁性共鳴半値幅(各試料における透磁率の虚数部μ''のピークの半値幅)ΔHを調べた結果を表1〜2に示す。また、先のガーネットフェライト試料の透磁率の測定については、静磁場でバイアスをかけて磁気的に飽和させた状態においてその直角方向に測定用の高周波磁界をかけた時の静磁場と直角方向での透磁率を測定した結果である。また、このようにして測定した透磁率の虚数部μ''のピークの半値幅がΔHに相当する。
また、実施例1−1〜1−24のガーネットフェライト試料のα(−35)とΔHとの関係を図2、α(85)とΔHの関係を図3に示した。
Figure 2005097044
Figure 2005097044
表1〜表2に示すx、y、z、tは組成式Y3−xGdFet−2y−zCoSiAl12中の組成比である。
(比較例1−1〜1−9)
以下の表3に示す各試料の組成となるようにY23粉末、Fe23粉末、Co粉末、SiO粉末、Al3粉末と、必要によりGd23粉末を用いた以外は上記実施例と同様にしてY3−xGdFet−2y−zCoSiAl12なる組成のガーネットフェライト試料(比較例1−1〜1−9)を得た。比較例1−1〜1−9のガーネットフェライト試料の4πMsと、α(−35)と、α(85)と、ΔHを調べた結果を表3に示す。
Figure 2005097044
表3に示すx、y、z、tは組成式Y3−xGdFet−2y−zCoSiAl12中の組成比である。
(従来例1〜9)
以下の表4に示す各試料の組成となるようにY23粉末、Fe23粉末、Al23粉末と、必要によりGd23粉末を用いた以外は上記実施例と同様にしてY3−xGdFe4.883−zAl12なる組成のガーネットフェライト試料(従来例1〜9)を得た。従来例1〜9のガーネットフェライト試料の4πMsと、α(−35)と、α(85)と、ΔHを調べた結果を表4に示す。
また、従来例1〜9のガーネットフェライト試料のα(−35)とΔHとの関係を図2、α(85)とΔHの関係を図3に示した。
Figure 2005097044
表4に示すx、zは組成式Y3−xGdFe4.883−zAl12中の組成比である。
表1〜表4及び図2〜図3に示す結果から実施例の試料は、従来例の試料とαの値が同じ大きさであっても、ΔHは小さいことがわかる。
また、実施例の試料は、CoとSiが添加されたことより、Gdの組成比が従来例と同じ値である場合は従来例のものよりΔHを小さくできることがわかる。
例えば、Gdの組成比が0.2の従来例3の試料はΔHが2610A・m−1であるが、Gdの組成比が0.2でも、CoとSiの組成比がそれぞれ0.01である実施例1−1の試料はΔHが2460A・m−1であり、従来例よりΔHが小さい。
また、Gdの組成比が1.55の比較例1−3の試料は、全温度域でαがプラスである。これに対しGdの組成比が1.50の実施例1−15の試料は、α(−35)はプラスであるが、α(85)は0である。従ってGdの組成比が1.5以下であれば、少なくとも室温以上の温度でαを磁石の表面磁束の温度係数と合わせることができる。また、Gdの組成比が1.25以下の実施例の試料は、ΔHが5830A・m−1以下の低い値であることがわかる。また、Gdの組成比が1.0以下の実施例の試料は、αを全温度範囲でマイナスであり、磁石の表面磁束の温度係数と同じ符号にできることがわかる。
これらのことから、Gdの組成比の上限値は1.5とし、好ましくは1.25以下、より好ましくは1.0以下とした。
また、CoとSiの組成比がそれぞれ0.02の比較例1−5の試料は、α(−35)が−0.02%・℃−1で、α(85)が−0.14%・℃−1であるが、ΔHが7640A・m−1と大きい。これに対してCoとSiの組成比がそれぞれ0.015の実施例1−11の試料は、α(−35)が−0.02%・℃−1で、α(85)が−0.15%・℃−1であるが、ΔHが5490A・m−1と比較例1−5よりも小さい。また、実施例1−11のΔHが、CoとSi無添加の場合の比較例1−4のΔHの6210A・m−1 よりも小さい点とあわせて考慮するとCoとSiの組成比の上限値はそれぞれ0.015と考えられる。
CoとSiが添加されていない比較例1−4の試料は、ΔHが6210A・m−1と比較的大きい。これに対してCoとSiの組成比がそれぞれ0.005の実施例1−9の試料は、ΔHが3900A・m−1であり、比較例1−4よりΔHが小さいことがわかる。このことからCoとSiの組成比の下限値はそれぞれ0.005とした。
また、Alの組成比が1.55である比較例1−6は、4πMsが殆どゼロになってしまう。
また、組成比tが5.035である比較例1−8や、tが4.740である比較例1−9の試料は、α(−35)、α(85)が小さくても、ΔHが6800A・m−1以上と大きくなってしまう。このことから組成比tの範囲は、4.75〜5とした。
(実施例2−1〜2−3)
以下の表5に示す各試料の組成となるようにY23粉末、Gd23粉末、Fe23粉末、Co粉末、SiO粉末、Al3粉末、SnO又はZrO又はHfOを用いた以外は上記実施例と同様にしてY1.9GdCa0.1Fe4.563Co0.01Si0.010.1Al0.212(ただし、上記DはZr又はHf又はSn)なる組成のガーネットフェライト試料(実施例2−1〜2−3)を得た。実施例2−1〜2−3のガーネットフェライト試料の4πMsと、α(−35)と、α(85)と、ΔHを調べた結果を表5に示す。
Figure 2005097044
(比較例2−1〜2−3)
以下の表6に示す各試料の組成となるようにY23粉末、Gd23粉末、Fe23粉末、Al3粉末、SnO又はZrO又はHfOを用いた以外は上記実施例と同様にしてY1.9GdCa0.1Fe4.5830.1Al0.212(ただし、上記DはZr又はHf又はSn)なる組成のガーネットフェライト試料(比較例2−1〜2−3)を得た。比較例2−1〜2−3のガーネットフェライト試料の4πMsと、α(−35)と、α(85)と、ΔHを調べた結果を表6に示す。
Figure 2005097044
表5と表6に示した結果からZrとCaを添加した比較例2−1の試料は、ΔHが3740A・m−1であった。これに対してZrとCaにCoとSiを複合添加した実施例2−1の試料は、ΔHが3050A・m−1であり、αを全温度範囲でマイナスとした状態でΔHを比較例に比べて小さくできることがわかる。
また、HfとCaを添加した比較例2−2の試料は、ΔHが4300A・m−1であった。これに対してHfとCaにCoとSiを複合添加した実施例2−2の試料は、ΔHが3510A・m−1であり、αを全温度範囲でマイナスとした状態でΔHを比較例に比べて小さくできることがわかる。
また、SnとCaを添加した比較例2−3の試料は、ΔHが3420A・m−1であった。これに対してSnとCaにCoとSiを複合添加した実施例2−3の試料は、ΔHが2790A・m−1であり、αを全温度範囲でマイナスとした状態でΔHを比較例よりも小さくできることがわかる。
(実施例3−1)
以下の表7に示す組成となるようにY23粉末、Gd23粉末、Fe23粉末、Co粉末、SiO粉末、In23粉末、Al3粉末を用いた以外は上記実施例と同様にしてYGdFe4.563Co0.01Si0.01In0.1Al0.212なる組成のガーネットフェライト試料(実施例3−1)を得た。実施例3−1のガーネットフェライト試料の4πMsと、α(−35)と、α(85)と、ΔHを調べた結果を表7に示す。
Figure 2005097044
(比較例3−1)
以下の表8に示す組成となるようにY23粉末、Gd23粉末、Fe23粉末、In23粉末、Al3粉末を用いた以外は上記実施例と同様にしてYGdFe4.583In0.1Al0.212なる組成のガーネットフェライト試料(比較例3−1)を得た。比較例3−1のガーネットフェライト試料の4πMsと、α(−35)と、α(85)と、ΔHを調べた結果を表8に示す。
Figure 2005097044
表8に示した結果からInを添加した比較例3−1の試料は、ΔHが4140A・m−1であった。これに対してInにCoとSiを複合添加した実施例3−1の試料は、ΔHが3260A・m−1であり、αを全温度範囲でマイナスとした状態でΔHを比較例よりも小さくできることがわかる。
本発明のガーネットフェライトは、αの絶対値を小さくでき、しかもΔHを小さくできるので、500MHz以上の高周波域で使用される小型のアイソレータに好適に用いることができ、その場合に低損失で、かつ特性の温度変化を小さくすることができる。
図1は本発明に係るガーネットフェライトを備えたアイソレータの一例を示す分解斜視図。 図2は実施例と従来例のガーネットフェライト試料のα(−35)とΔHとの関係を示す図。 図3は実施例と従来例のガーネットフェライト試料のα(85)とΔHの関係を示す図。
符号の説明
1・・・アイソレータ(非可逆回路素子)、2・・・上部ケース、3・・・下部ケース、4・・・基板、4a・・・透孔、4A・・・基台、4b・・・パターン電極、4c・・・アース電極、4d・・・抵抗素子、5・・・ガーネットフェライト素子(非可逆回路素子用ガーネットフェライト)、6A、6B、6C・・・中心導体、7・・・磁石。

Claims (8)

  1. 非可逆回路素子に使用されるガーネットフェライトであって、
    組成式Y3−xGdFet−2y−zCoSiAl12(ただし、前記組成式中の組成比を示すx、y、z、tは0.2≦x≦1.5、0.005≦y≦0.015、0≦z≦1.5、4.75≦t≦5の範囲である。)で示されることを特徴とする非可逆回路素子用ガーネットフェライト。
  2. 非可逆回路素子に使用されるガーネットフェライトであって、
    組成式Y3−x−uGdCaFet−2y−u−zCoSiAl12(ただし、前記DはZr、Hf、Snのうち1種又は2種以上の元素を示し、組成比を示すx、y、z、t、uは0.2≦x≦1.5、0.005≦y≦0.015、0≦z≦1.5、4.75≦t≦5、0<u≦0.3の範囲である。)で示されることを特徴とする非可逆回路素子用ガーネットフェライト。
  3. 非可逆回路素子に使用されるガーネットフェライトであって、
    組成式Y3−xGdFet−2y−v−zCoSiInAl12(ただし、前記組成式中の組成比を示すx、y、z、tは0.2≦x≦1.5、0.005≦y≦0.015、0≦z≦1.5、4.75≦t≦5、0<v≦0.2の範囲である。)で示されることを特徴とする非可逆回路素子用ガーネットフェライト。
  4. 前記組成式中の組成比を示すx、y、z、tは0.2≦x≦1.25、0.005≦y≦0.01、0≦z≦1.5、4.75≦t≦4.9の範囲であることを特徴とする請求項1に記載の非可逆回路素子用ガーネットフェライト。
  5. 前記組成式中の組成比を示すx、y、z、t、uは0.2≦x≦1.25、0.005≦y≦0.01、0≦z≦1.5、4.75≦t≦4.9、0.04≦u≦0.2の範囲であることを特徴とする請求項2に記載の非可逆回路素子用ガーネットフェライト。
  6. 前記組成式中の組成比を示すx、y、z、t、vは0.2≦x≦1.25、0.005≦y≦0.01、0≦z≦1.5、4.75≦t≦4.9、0.04≦v≦0.2の範囲であることを特徴とする請求項3に記載の非可逆回路素子用ガーネットフェライト。
  7. 請求項1乃至6のいずれか一項に記載の非可逆回路素子用ガーネットフェライトからなる本体部上に複数の中心導体が電気的絶縁状態で交差するように配置された磁性組立体を備えたことを特徴とする非可逆回路素子。
  8. 請求項1乃至6のいずれか一項に記載の非可逆回路素子用ガーネットフェライトからなる本体部の上面に複数の中心導体が電気的絶縁状態で所定の角度で交差するように配置された磁性組立体を有し、この磁性組立体に直流磁界を印加するための磁石と、整合用コンデンサと、これらを包むヨークが少なくとも具備されてなることを特徴とする低損失非可逆回路素子。
JP2003333386A 2003-09-25 2003-09-25 非可逆回路素子用ガーネットフェライトとそれを用いた非可逆回路素子 Withdrawn JP2005097044A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003333386A JP2005097044A (ja) 2003-09-25 2003-09-25 非可逆回路素子用ガーネットフェライトとそれを用いた非可逆回路素子
US10/945,787 US20050068122A1 (en) 2003-09-25 2004-09-21 Garnet ferrite having a small absolute value of temperature coefficient of 4piMs and a small ferromagnetic resonance half-width, and a non-reciprocal circuit element applying the same
CNA2004100798554A CN1600741A (zh) 2003-09-25 2004-09-23 石榴红铁氧体和使用了它的非可逆电路元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003333386A JP2005097044A (ja) 2003-09-25 2003-09-25 非可逆回路素子用ガーネットフェライトとそれを用いた非可逆回路素子

Publications (1)

Publication Number Publication Date
JP2005097044A true JP2005097044A (ja) 2005-04-14

Family

ID=34373124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003333386A Withdrawn JP2005097044A (ja) 2003-09-25 2003-09-25 非可逆回路素子用ガーネットフェライトとそれを用いた非可逆回路素子

Country Status (3)

Country Link
US (1) US20050068122A1 (ja)
JP (1) JP2005097044A (ja)
CN (1) CN1600741A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111116193B (zh) * 2019-12-25 2022-05-10 深圳顺络电子股份有限公司 一种微波铁氧体材料及其制备方法和器件
CN114031389A (zh) * 2021-11-02 2022-02-11 横店集团东磁股份有限公司 一种三阶互调环形器用微波铁氧体材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US80315A (en) * 1868-07-28 thomas
FR2177632B1 (ja) * 1972-03-31 1978-03-03 Thomson Csf

Also Published As

Publication number Publication date
CN1600741A (zh) 2005-03-30
US20050068122A1 (en) 2005-03-31

Similar Documents

Publication Publication Date Title
JP6574507B2 (ja) 希土類低減ガーネット系および関連のマイクロ波適用例
CN109563640B (zh) 温度不敏感介电常数石榴石
US6780344B2 (en) Garnet ferrite for low-insertion-loss non-reciprocal circuit, method for preparing the same, and non-reciprocal circuit device including the same
TW202012312A (zh) 具有高居里溫度及介電常數之磁性材料
JP4432482B2 (ja) 高周波用磁性体材料及び高周波用回路部品
JP2007145705A (ja) 多結晶セラミック磁性体材料、マイクロ波磁性体、及びこれを用いた非可逆回路素子
JP5488954B2 (ja) 多結晶セラミック磁性体材料、マイクロ波磁性体、及びこれを用いた非可逆回路素子
CN100508274C (zh) 不可逆电路元件
JP2005097044A (ja) 非可逆回路素子用ガーネットフェライトとそれを用いた非可逆回路素子
JP2005184088A (ja) 非可逆回路素子及び通信機装置
JP2005097042A (ja) 非可逆回路素子用ガーネットフェライトとそれを用いた非可逆回路素子
JP2005097043A (ja) 非可逆回路素子用ガーネットフェライトとそれを用いた非可逆回路素子
JP4586215B2 (ja) 非可逆回路素子の相互変調積を制御する方法、フェリ磁性材料及びこれを用いた非可逆回路素子
JP3523363B2 (ja) 多結晶セラミックス磁性焼結体の製造方法及びこれにより得られる磁性体を用いた高周波回路部品
JP2004075503A (ja) 高周波用磁性体磁器および高周波回路部品
JP3405013B2 (ja) 磁性体材料の製造方法およびこれを用いた高周波回路部品
JP3627329B2 (ja) 多結晶セラミックス磁性体材料の製造方法および高周波非可逆回路素子
EP1269488B1 (en) High-frequency magnetic ceramic and high-frequency circuit component
JP4650996B2 (ja) 集中定数型非可逆回路素子およびこれを用いた移動体通信機器
JP2006044964A (ja) フェライト材料、非可逆回路素子及び無線装置
WO2004113250A1 (ja) 非可逆回路素子用フェライト磁器組成物、非可逆回路素子、及び無線装置
JP2004172827A (ja) 非可逆回路素子及び通信機装置
JP2004032811A (ja) 集中定数型非可逆回路素子
JPH0945518A (ja) マイクロ波用磁性体材料、およびこれを用いた高周波回路部品

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205