WO2023074843A1 - 新規なオリゴ糖、該オリゴ糖の製造中間体、及びそれらの製造方法 - Google Patents

新規なオリゴ糖、該オリゴ糖の製造中間体、及びそれらの製造方法 Download PDF

Info

Publication number
WO2023074843A1
WO2023074843A1 PCT/JP2022/040346 JP2022040346W WO2023074843A1 WO 2023074843 A1 WO2023074843 A1 WO 2023074843A1 JP 2022040346 W JP2022040346 W JP 2022040346W WO 2023074843 A1 WO2023074843 A1 WO 2023074843A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound represented
compound
solvent
group
Prior art date
Application number
PCT/JP2022/040346
Other languages
English (en)
French (fr)
Inventor
剛 上田
龍生 伊東
竜也 中村
恵介 鈴木
智志 中根
沢コン 楊
Original Assignee
第一三共株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一三共株式会社 filed Critical 第一三共株式会社
Priority to CA3236388A priority Critical patent/CA3236388A1/en
Publication of WO2023074843A1 publication Critical patent/WO2023074843A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/203Monocyclic carbocyclic rings other than cyclohexane rings; Bicyclic carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a novel oligosaccharide that is a biantennary glycan having an ⁇ 2,6-sialic acid structure at the non-reducing end, a method for producing the oligosaccharide, an intermediate thereof, and a method for producing an intermediate thereof.
  • Non-Patent Document 1 The addition of sugar chains (glycosylation) to proteins is known to have a significant impact on protein function and structure. Among them, N-linked sugar chains are deeply involved in the physiological activity of proteins. Among them, biantennary N-glycans having ⁇ 2,6-sialic acid structure at the non-reducing end exhibit antibody-dependent cytotoxic activity. (ADCC activity) and complement-dependent cytotoxic activity (CDC activity) are reported to be optimal structures (Non-Patent Document 1).
  • ADCC activity antibody-dependent cytotoxic activity
  • CDC activity complement-dependent cytotoxic activity
  • Non-Patent Document 2 As a semi-chemical synthesis method, it has been reported that an N-linked sugar chain can be obtained from chicken egg yolk by combining an enzymatic method and a chemical method (Non-Patent Document 2). While these methods can synthesize the target sugar chain in fewer steps than pure chemical synthesis, they require the procurement of a large amount of egg yolk, and the subsequent isolation and purification from the egg yolk and the water-soluble sugar chain after chemical conversion. Purification of unprotected sugar chains also requires special techniques and purification equipment in many cases (Patent Documents 1 to 4).
  • Non-Patent Document 3 Total synthesis of complex-type 11-sugar glycans with ⁇ 2,6-sialyl moieties
  • Non-Patent Document 4 Total Synthesis of Immunoglobin G13 Glycopeptide Having an ⁇ 2,6-Sialyl Site
  • Non-Patent Document 5 Total Synthesis of ⁇ 2,6-sialyl 12-sugar N-linked sugar chain containing core fucose
  • Non-Patent Document 5 Total Synthesis of ⁇ 2,6-sialyl 10-sugar Oligosaccharide Chain Fluorinated at 3-Position
  • Non-Patent Document 6 Total synthesis of asymmetrically deuterated ⁇ 2,6-sialyl biantennary-type 11-sugar oligosaccharide chains and tetra-antennary-type
  • deacylation may be required in sugar derivatives protected by phthalimide groups.
  • the phthalimide group readily undergoes a ring-opening reaction under basic conditions, so it is necessary to strictly control the amount of water in the system. Even if there is, it is difficult to completely suppress the ring opening. Therefore, there is a demand for a technique that can proceed deacylation with high yield while suppressing ring-opening of the phthalimide group.
  • Non-Patent Document 9 an increase in the number of benzyl groups in the substrate tends to reduce the reaction yield
  • Non-Patent Document 10 improved conditions using ⁇ -pinene as an additive have been reported
  • Non-Patent Document 11 the yield is low in a complex substrate having multiple benzyl groups. remains moderate.
  • liquid-phase synthesis methods and solid-phase synthesis methods are known as methods for chemically synthesizing oligosaccharide chains.
  • the liquid phase synthesis method allows the use of ordinary organic synthesis methods, so although it is easy to track reactions and scale up, post-treatment and purification are performed for each step, which is time-consuming and labor-intensive.
  • the solid-phase synthesis method is advantageous in that automatic synthesis is possible and rapid production is possible, but there is a limit to scale-up due to equipment restrictions, and due to low reactivity, sugar elongation reaction It has the disadvantage that it is necessary to use an excessive amount of the glycosyl donor, which makes it unsuitable for industrial large-scale synthesis, and that it is difficult to confirm the progress of the reaction during the intermediate steps (Patent Document 5).
  • Patent Document 6 Non-Patent Documents 12, 13, and 14).
  • the Troc group requires deprotection reaction conditions with zinc/AcOH or a long reaction time with an excess amount of lithium hydroxide, and complex sugar chains are accompanied by decomposition of the substrate under the deprotection reaction conditions.
  • the deprotection of the phthalimide group the use of an excessive amount of ethylenediamine poses a problem that amidation of the sialic acid ester moiety proceeds as a side reaction. After hydrolysis, a two-step process is required to perform deprotection.
  • sulfonyl groups are deprotected under reaction conditions that are difficult to scale up using metallic sodium.
  • Non-Patent Document 15 a purification method using a metal complex using MgCl 2 has been reported (Non-Patent Document 15), but since it is a method in which the target substance is adsorbed to an excess amount of MgCl 2 , there is a lot of loss in the filtrate. , its purification effect is expected to be small compared to isolation by crystallization. Therefore, a method for purifying compounds having the polyethylene glycol structure is desired.
  • One of the objects of the present invention is a novel oligosaccharide that can be used to produce a biantennary glycan having an ⁇ 2,6-sialic acid structure at the non-reducing end, a method for producing the oligosaccharide, and intermediates thereof. and to provide a method for producing intermediates thereof.
  • a further object of the present invention is to provide a novel oligosaccharide that is a biantennary glycan having an ⁇ 2,6-sialic acid structure at the non-reducing end, a method for producing the oligosaccharide, an intermediate thereof, and an intermediate thereof. It is to provide a manufacturing method.
  • the present inventors have made intensive studies and found that a novel oligosaccharide represented by A-13 below, a novel method capable of efficiently producing the oligosaccharide, and its An intermediate and a method for producing the intermediate, a novel oligosaccharide represented by D-13 below, which is a biantennary glycan having an ⁇ 2,6-sialic acid structure at the non-reducing end, and an efficient production of the oligosaccharide
  • D-13 which is a biantennary glycan having an ⁇ 2,6-sialic acid structure at the non-reducing end
  • the inventors have completed the present invention by discovering a novel method that can be produced systematically, an intermediate thereof, and a method for producing the intermediate.
  • the present invention relates to, but is not limited to, the following.
  • the alkyl ester of perfluorocarboxylic acid is methyl trifluoroacetate, ethyl trifluoroacetate, propyl trifluoroacetate, isopropyl trifluoroacetate, butyl trifluoroacetate, methyl pentafluoropropionate, ethyl pentafluoropropionate, pentafluoropropionate.
  • propyl acid isopropyl pentafluoropropionate, methyl heptafluorobutyrate, ethyl heptafluorobutyrate, propyl heptafluorobutyrate, isopropyl heptafluorobutyrate, butyl heptafluorobutyrate, methyl nonafluorovalerate, ethyl nonafluorovalerate, propyl nonafluorovalerate, isopropyl nonafluorovalerate, butyl nonafluorovalerate, methyl undecafluorocaproate, ethyl undecafluorocaproate, propyl undecafluorocaproate, isopropyl undecafluorocaproate, or butyl undecafluorocaproate, [2 ] The method described in .
  • the strong base is sodium, lithium, and potassium salts of metal amides; sodium, lithium, potassium, cesium, and barium salts of C1-C20 alkoxides; sodium hydride, potassium hydride, lithium hydride. , butyl lithium, potassium carbonate, sodium carbonate, cesium carbonate, lithium carbonate, potassium phosphate, sodium phosphate, cesium phosphate, lithium phosphate, diazabicycloundecene (DBU), diazabicyclononene (DBN), and 1,1,3,3-tetramethylguanidine (TMG); and combinations thereof.
  • DBU diazabicycloundecene
  • DBN diazabicyclononene
  • TMG 1,1,3,3-tetramethylguanidine
  • step I-2 The reaction in step I-2 is performed by a C1-C10 alcohol solvent alone, or a C1-C10 alcohol solvent and an amide solvent, an ether solvent, an ester solvent, an aromatic solvent, a halogen solvent, a hydrocarbon solvent, or a nitrile.
  • step I-3 the compound represented by formula A-12 is reacted with DDQ (2,3-dichloro-5,6-dicyano-p-benzoquinone) in a mixed solvent of fluorous alcohol and water.
  • DDQ 2,3-dichloro-5,6-dicyano-p-benzoquinone
  • any one of [1] to [6] including producing the oligosaccharide represented by the formula A-13 by removing the 2-naphthylmethyl group in the compound represented by the formula A-12. or the method described in paragraph 1.
  • the fluorous alcohol is hexafluoro-2-propanol (HFIP), 2,2,2-trifluoroethanol (TFE), 2,2,3,3,4,4,5,5-octafluoro-1-pen
  • HFIP hexafluoro-2-propanol
  • TFE 2,2,2-trifluoroethanol
  • 2-but3,4,4,5,5-octafluoro-1-pen The method of [7], selected from the group consisting of tanol, nonafluoro-tert-butyl alcohol and combinations thereof.
  • step I-1 after stopping the reaction between the compound represented by the formula A-4 and the compound represented by the formula A-3, the generated compound represented by the formula A-5 and impurities are removed.
  • a hydrophobic carrier and water are added to the water-soluble organic solvent containing By washing with a mixed solution of and the water, the impurities are removed, and then the compound represented by the formula A-5 is eluted from the hydrophobic carrier using an organic solvent.
  • step I-2 after stopping the reaction between the compound represented by the formula A-7 and the compound represented by the formula A-8, the generated compound represented by the formula A-9 and impurities are A hydrophobic carrier and water are added to the water-soluble organic solvent containing By washing with the mixed solution with water, the impurities are removed, and then the compound represented by the formula A-9 is eluted from the hydrophobic carrier using an organic solvent.
  • the generated compound represented by the formula A-12 and contaminants are A hydrophobic carrier and water are added to the water-soluble organic solvent containing By washing with a mixed solution of and the water, the impurities are removed, and then the compound represented by the formula A-12 is eluted from the hydrophobic carrier using an organic solvent.
  • the reversed-phase partition chromatography packing resin is poly(styrene/divinylbenzene) polymer gel resin, polystyrene-divinylbenzene resin, polyhydroxymethacrylate resin, styrene-vinylbenzene copolymer resin, polyvinyl alcohol resin, polystyrene resin, polymethacrylate.
  • the method of [17], wherein the method is selected from the group consisting of resins, chemically bonded silica gel resins, and combinations thereof.
  • the chemically bonded silica gel resin includes (1) a resin obtained by reacting silica gel with a silane coupling agent, (2) silica gel, dimethyloctadecyl, octadecyl, trimethyloctadecyl, dimethyloctyl, octyl, butyl, ethyl, methyl , a resin obtained by chemically bonding a phenyl, cyanopropyl, or aminopropyl group, (3) a resin obtained by chemically bonding a docosyl or triacontyl group to silica gel, and (4) the above (1) to (3) ), the method of [18].
  • the method according to [18], wherein the chemically bonded silica gel resin is an octadecyl group-bonded silica gel resin (ODS resin).
  • ODS resin octadecyl group-bonded silica gel resin
  • the water-soluble organic solvent is a water-soluble alcohol solvent, a water-soluble nitrile solvent, a water-soluble ether solvent, a water-soluble ketone solvent, a water-soluble amide solvent, or a water-soluble sulfoxide solvent, or the water-soluble organic
  • the organic solvent used in the step of eluting the target substance from the hydrophobic carrier is a nitrile solvent, an ether solvent, an ester solvent, a ketone solvent, a halogen solvent, an aromatic solvent, or the solvent system described above.
  • the compound represented by the formula A-11 is (Step Y-1) Formula B-1 below:
  • the compound represented by the following formula B-2 By forming a ⁇ -1,4-glycoside bond with a compound represented by the following formula B-3: to produce a compound of formula B-4 below:
  • a step of producing a compound represented by (Step Y-2) Lithium tert-butoxide or lithium tert-amoxide is added to a solvent containing the compound represented by the formula B-4 and the benzyl halide or benzyl sulfonate to obtain the compound represented by the formula B-4.
  • the following formula B-5 A step of producing a compound represented by The method according to any one of [1] to [23], which is produced by a process comprising [25]
  • the solvent containing the compound represented by formula B-4 and the benzyl halide or benzyl sulfonate is an amide solvent, an ether solvent, an aromatic solvent, a hydrocarbon solvent, a urea solvent, or the solvent system described above.
  • the compound of formula B-5 is converted to a crystalline compound of formula B-6 by ring-opening the phthalimido group in the compound of formula B-5 and then forming a salt with cinchonidine: and after separating the crystalline compound represented by the formula B-6 and the non-crystalline substance, by adding an acidic aqueous solution and a solvent, the compound represented by the formula B-6 With cinchonidine removed, formula B-7 below: and then purified by closing the ring-opened phthalimido group in the compound of formula B-7. the method of.
  • the compound represented by the formula A-13 opens the phthalimido group in the compound represented by the formula A-13, and then (R)-(+)-1-(1-naphthyl)ethylamine and salt.
  • a crystalline compound of formula A-14 By forming a crystalline compound of formula A-14: and after separating the crystalline compound represented by the formula A-14 and the non-crystalline substance, the addition of an acidic aqueous solution and a solvent causes the compound represented by the formula A-14 to (R)-(+)-1-(1-Naphthyl)ethylamine is removed to give formula A-15 below: and then purifying by closing the ring-opened phthalimide group in the compound of formula A-15. or the method described in paragraph 1.
  • Equation D-13 A method for producing an oligosaccharide represented by (Step II-1) Formula A-13 below: The oligosaccharide represented by the following formula A-3: By forming an ⁇ -1,3-glycosidic bond with a compound represented by the following formula D-1: to produce a compound of formula D-2 below: A step of producing a compound represented by (Step II-2) The compound represented by the above formula D-2 is converted to the following formula D-3: By forming a ⁇ -1,2-glycosidic bond with a compound represented by the following formula D-4: to produce a compound of formula D-5 below: After producing the compound represented by the formula D-5, the amino group in the compound represented by the above formula D-5 is replaced with an aryloxycarbonyl (COOAr) group, an acetyl (Ac) group, a 2,2,2-trichloroethoxycarbonyl (Troc) group.
  • COOAr aryloxycarbonyl
  • Ac acetyl
  • a protecting group selected from a phthalimido (Pht) group the following formula D-6: wherein R 5 is an aryloxycarbonyl (COOAr) group, an acetyl (Ac) group, or a 2,2,2-trichloroethoxycarbonyl (Troc) group, and R 6 is hydrogen or R 5 and R 6 together with the nitrogen atom to which they are attached form a phthalimido group), or form an acetyl (Ac ) group to produce a compound of formula D-6 above, wherein R 5 and R 6 together with the nitrogen atom to which they are attached form a phthalimido group; (Step II-3)
  • the compound represented by the above formula D-6 is converted to the following formula D-7: By forming a ⁇ -1,4-glycosidic bond with a compound represented by the following formula D-8: wherein R 5 is an aryloxycarbonyl (COOAr) group, an acetyl (Ac) group
  • step II-1 the compound represented by the formula D-1 is reacted with a strong base in the presence of an alkyl ester of perfluorocarboxylic acid to produce the compound represented by the formula D-2.
  • the alkyl ester of perfluorocarboxylic acid is methyl trifluoroacetate, ethyl trifluoroacetate, propyl trifluoroacetate, isopropyl trifluoroacetate, butyl trifluoroacetate, methyl pentafluoropropionate, ethyl pentafluoropropionate, pentafluoropropionate.
  • propyl acid isopropyl pentafluoropropionate, methyl heptafluorobutyrate, ethyl heptafluorobutyrate, propyl heptafluorobutyrate, isopropyl heptafluorobutyrate, butyl heptafluorobutyrate, methyl nonafluorovalerate, ethyl nonafluorovalerate, propyl nonafluorovalerate, isopropyl nonafluorovalerate, butyl nonafluorovalerate, methyl undecafluorocaproate, ethyl undecafluorocaproate, propyl undecafluorocaproate, isopropyl undecafluorocaproate, or butyl undecafluorocaproate, [29 ] The method described in .
  • the strong base is sodium, lithium, and potassium salts of metal amides; sodium, lithium, potassium, cesium, and barium salts of C1-C20 alkoxides; sodium hydride, potassium hydride, lithium hydride. , butyl lithium, potassium carbonate, sodium carbonate, cesium carbonate, lithium carbonate, potassium phosphate, sodium phosphate, cesium phosphate, lithium phosphate, diazabicycloundecene (DBU), diazabicyclononene (DBN), and 1,1,3,3-tetramethylguanidine (TMG); and combinations thereof.
  • DBU diazabicycloundecene
  • DBN diazabicyclononene
  • TMG 1,1,3,3-tetramethylguanidine
  • the step of producing the compound represented by the formula D-6 from the compound represented by the formula D-5 is sodium hydrogen carbonate, potassium hydrogen carbonate, disodium hydrogen phosphate, or hydrogen phosphate.
  • the compound of formula D-12 is prepared by the following steps: Formula E-1: (wherein R 7 is a hydrogen atom, a methyl group, or a methoxy group) to give the following formula E-2: and isolating the crystalline compound, and then isolating the isolated crystalline compound extracting the compound represented by the formula D-12 from The method according to any one of [28] to [35], obtained by a purification method comprising [37] The method of [36], wherein the compound of formula D-12 after purification has a purity of 95% or higher as measured by HPLC. [38] The method of [37], wherein the purity is 98% or higher.
  • step II-1 after stopping the reaction between the compound represented by the formula A-13 and the compound represented by the formula A-3, the generated compound represented by the formula D-1 and impurities are removed.
  • a hydrophobic carrier and water are added to the water-soluble organic solvent containing By washing with a mixed solution of and the water, the impurities are removed, and then the compound represented by the formula D-1 is eluted from the hydrophobic carrier using an organic solvent.
  • step II-2 after stopping the reaction between the compound represented by the formula D-3 and the compound represented by the formula D-4, the generated compound represented by the formula D-5 and impurities are A hydrophobic carrier and water are added to the water-soluble organic solvent containing The impurities are removed by washing with a mixed solution of and the water, and then the compound represented by the formula D-5 is eluted from the hydrophobic carrier using an organic solvent.
  • step II-3 after stopping the reaction between the compound represented by the formula D-6 and the compound represented by the formula D-7, the generated compound represented by the formula D-8 and impurities are A hydrophobic carrier and water are added to the water-soluble organic solvent containing By washing with a mixed solution of and the water, the impurities are removed, and then the compound represented by the formula D-8 is eluted from the hydrophobic carrier using an organic solvent.
  • step II-3 the amino group on formula D-9 is protected with acetyl to give the following formula D-10:
  • a compound represented by the formula D-10 is produced, and a hydrophobic carrier and water are added to the produced water-soluble organic solvent containing the compound represented by the formula D-10 and contaminants to form the compound represented by the formula D- in the hydrophobic carrier.
  • the compound represented by 10 is adsorbed, and then the impurities are removed by filtering and washing the hydrophobic carrier with a mixed solution of the water-soluble organic solvent and the water, and then using an organic solvent.
  • any one of [28] to [41] comprising purifying the compound represented by the formula D-10 by eluting the compound represented by the formula D-10 from the hydrophobic carrier with described method.
  • the reversed-phase partition chromatography packing resin is poly(styrene/divinylbenzene) polymer gel resin, polystyrene-divinylbenzene resin, polyhydroxymethacrylate resin, styrene-vinylbenzene copolymer resin, polyvinyl alcohol resin, polystyrene resin, polymethacrylate.
  • the method of [47] selected from the group consisting of resins, chemically bonded silica gel resins, and combinations thereof.
  • the chemically bonded silica gel resin includes (1) a resin obtained by reacting silica gel with a silane coupling agent, (2) silica gel, dimethyloctadecyl, octadecyl, trimethyloctadecyl, dimethyloctyl, octyl, butyl, ethyl, methyl , a resin obtained by chemically bonding a phenyl, cyanopropyl, or aminopropyl group, (3) a resin obtained by chemically bonding a docosyl or triacontyl group to silica gel, and (4) the above (1) to (3) ), the method of [48].
  • the method of [48], wherein the chemically bonded silica gel resin is an octadecyl group-bonded silica gel resin (ODS resin).
  • ODS resin octadecyl group-bonded silica gel resin
  • the water-soluble organic solvent is a water-soluble alcohol solvent, a water-soluble nitrile solvent, a water-soluble ether solvent, a water-soluble ketone solvent, a water-soluble amide solvent, or a water-soluble sulfoxide solvent, or the water-soluble organic
  • the organic solvent used in the step of eluting the target substance from the hydrophobic carrier is a nitrile solvent, an ether solvent, an ester solvent, a ketone solvent, a halogen solvent, an aromatic solvent, or the solvent system described above.
  • [54] By forming a salt of the compound of formula D-5 with fumaric acid, the following crystalline formula D-5-FMA: and then separating and purifying the crystalline compound of formula D-5-FMA from the amorphous material, any one of [28] to [53]. The method described in .
  • Formula B-5 A method for producing a compound represented by the following formula B-4: Lithium tert-butoxide or lithium tert-amoxide is added to a solvent containing the compound represented by and benzyl halide or benzyl sulfonate to protect the hydroxyl group present in the compound represented by the above formula B-4 with a benzyl group. a method comprising the step of [56] The method of [55], wherein the solvent is an amide-based solvent, an ether-based solvent, an aromatic-based solvent, a urea-based solvent, a hydrocarbon-based solvent, or a mixed solvent containing at least one of the aforementioned solvent systems.
  • Formula A-10 below A method for producing a compound represented by the following formula A-9: with a strong base in the presence of an alkyl ester of perfluorocarboxylic acid.
  • the alkyl ester of perfluorocarboxylic acid is methyl trifluoroacetate, ethyl trifluoroacetate, propyl trifluoroacetate, isopropyl trifluoroacetate, butyl trifluoroacetate, methyl pentafluoropropionate, ethyl pentafluoropropionate, pentafluoropropionate.
  • propyl acid isopropyl pentafluoropropionate, methyl heptafluorobutyrate, ethyl heptafluorobutyrate, propyl heptafluorobutyrate, isopropyl heptafluorobutyrate, butyl heptafluorobutyrate, methyl nonafluorovalerate, ethyl nonafluorovalerate, propyl nonafluorovalerate, isopropyl nonafluorovalerate, butyl nonafluorovalerate, methyl undecafluorocaproate, ethyl undecafluorocaproate, propyl undecafluorocaproate, isopropyl undecafluorocaproate, or butyl undecafluorocaproate, [57 ] The method described in .
  • the strong base is sodium, lithium, potassium salts of metal amides; sodium, lithium, potassium, cesium, and barium salts of C1-C20 alkoxides; sodium hydride, potassium hydride, lithium hydride, butyl lithium, potassium carbonate, sodium carbonate, cesium carbonate, lithium carbonate, potassium phosphate, sodium phosphate, cesium phosphate, lithium phosphate, diazabicycloundecene (DBU), diazabicyclononene (DBN), and 1 , 1,3,3-tetramethylguanidine (TMG); and combinations thereof.
  • DBU diazabicycloundecene
  • DBN diazabicyclononene
  • TMG 1,3,3-tetramethylguanidine
  • Formula A-13 A method for producing an oligosaccharide represented by the following formula A-12: is reacted with DDQ (2,3-dichloro-5,6-dicyano-p-benzoquinone) in a mixed solvent of fluorous alcohol and water to obtain 2 in the compound of formula A-12 - a process comprising removing a naphthylmethyl group.
  • the fluorous alcohol is hexafluoro-2-propanol (HFIP), 2,2,2-trifluoroethanol (TFE), 2,2,3,3,4,4,5,5-octafluoro-1-pen
  • HFIP hexafluoro-2-propanol
  • TFE 2,2,2-trifluoroethanol
  • TFE 2,2,3,3,4,4,5,5-octafluoro-1-pen
  • the method of [62] selected from the group consisting of tanol, nonafluoro-tert-butyl alcohol and combinations thereof.
  • the method of [62] or [63] which is carried out at -35°C to 70°C.
  • the method of [62] or [63] which is carried out at -30°C to -10°C.
  • Formula A-5 A method for purifying the compound represented by the formula A-5, wherein a hydrophobic carrier and water are added to a water-soluble organic solvent containing the compound represented by the formula A-5 and contaminants, and the hydrophobic carrier contains the compound represented by the formula A
  • the compound represented by -5 is adsorbed, and then the impurities are removed by filtering and washing the hydrophobic carrier with a mixed solution of the water-soluble organic solvent and the water, and then the organic solvent is removed.
  • purifying said compound of formula A-5 by eluting said compound of formula A-5 from said hydrophobic carrier using a method.
  • Formula A-9 A method for purifying a compound represented by the formula A-9, wherein a hydrophobic carrier and water are added to a water-soluble organic solvent containing the compound represented by the formula A-9 and contaminants, and the hydrophobic carrier contains the compound represented by the formula A
  • the compound represented by -9 is adsorbed, and then the impurities are removed by filtering and washing the hydrophobic carrier with a mixed solution of the water-soluble organic solvent and the water, and then the organic solvent is removed.
  • purifying said compound of Formula A-9 by eluting said compound of Formula A-9 from said hydrophobic carrier using a method.
  • Formula A-12 A method for purifying a compound represented by the formula A-12, wherein a hydrophobic carrier and water are added to a water-soluble organic solvent containing the compound represented by the formula A-12 and contaminants, and the hydrophobic carrier contains the compound represented by the formula A
  • the compound represented by -12 is adsorbed, and then the impurities are removed by filtering and washing the hydrophobic carrier with a mixed solution of the water-soluble organic solvent and the water, and then the organic solvent is removed.
  • purifying said compound of formula A-12 by eluting said compound of formula A-12 from said hydrophobic carrier using a method.
  • Formula D-1 A method for purifying a compound represented by the formula D-1, wherein a hydrophobic carrier and water are added to a water-soluble organic solvent containing the compound represented by the formula D-1 and impurities, and the hydrophobic carrier contains the compound represented by the formula D
  • the compound represented by -1 is adsorbed, and then the impurities are removed by filtering and washing the hydrophobic carrier with a mixed solution of the water-soluble organic solvent and the water, and then the organic solvent is removed.
  • purifying said compound of formula D-1 by eluting said compound of formula D-1 from said hydrophobic carrier using a.
  • Formula D-5 A method for purifying the compound represented by the formula D-5 by adding a hydrophobic carrier and water to a water-soluble organic solvent containing the compound represented by the formula D-5 and impurities, and adding the above formula D to the hydrophobic carrier
  • the compound represented by -5 is adsorbed, and then the impurities are removed by filtering and washing the hydrophobic carrier with a mixed solution of the water-soluble organic solvent and the water, and then the organic solvent is removed.
  • purifying said compound of formula D-5 by eluting said compound of formula D-5 from said hydrophobic carrier using a method.
  • Formula D-8 below: wherein R 5 is an aryloxycarbonyl (COOAr) group, an acetyl (Ac) group, or a 2,2,2-trichloroethoxycarbonyl (Troc) group, and R 6 is hydrogen or R 5 and R 6 form a phthalimido group together with the nitrogen atom to which they are attached), wherein the compound of formula D-8 and contaminants are purified
  • a hydrophobic carrier and water are added to the water-soluble organic solvent containing By washing with a mixed solution of and the water, the impurities are removed, and then the compound represented by the formula D-8 is eluted from the hydrophobic carrier using an organic solvent.
  • a method comprising purifying a compound designated D-8.
  • Formula D-10 A method for purifying a compound represented by the formula D-10, wherein a hydrophobic carrier and water are added to a water-soluble organic solvent containing the compound represented by the formula D-10 and contaminants, and the hydrophobic carrier contains the compound represented by the formula D
  • the compound represented by -10 is adsorbed, and then the impurities are removed by filtering and washing the hydrophobic carrier with a mixed solution of the water-soluble organic solvent and the water, and then the organic solvent is removed.
  • the hydrophobic carrier is a resin for packing reversed-phase partition chromatography.
  • the reversed-phase partition chromatography packing resin is poly(styrene/divinylbenzene) polymer gel resin, polystyrene-divinylbenzene resin, polyhydroxymethacrylate resin, styrene-vinylbenzene copolymer resin, polyvinyl alcohol resin, polystyrene resin, polymethacrylate.
  • the chemically bonded silica gel resin includes (1) a resin obtained by reacting silica gel with a silane coupling agent, (2) silica gel, dimethyloctadecyl, octadecyl, trimethyloctadecyl, dimethyloctyl, octyl, butyl, ethyl, methyl , a resin obtained by chemically bonding a phenyl, cyanopropyl, or aminopropyl group, (3) a resin obtained by chemically bonding a docosyl or triacontyl group to silica gel, and (4) the above (1) to (3) ), the method of [78].
  • the method of [79], wherein the chemically bonded silica gel resin is octadecyl group bonded silica gel resin (ODS resin).
  • the water-soluble organic solvent is a water-soluble alcohol-based solvent, a water-soluble nitrile-based solvent, a water-soluble ether-based solvent, a water-soluble ketone-based solvent, a water-soluble amide-based solvent, a water-soluble sulfoxide-based solvent, or the water-soluble organic solvent described above.
  • the method of [81], wherein the water-soluble nitrile solvent is acetonitrile.
  • the organic solvent used in the step of eluting the target substance from the hydrophobic carrier is a nitrile solvent, an ether solvent, an ester solvent, a ketone solvent, a halogen solvent, an aromatic solvent, or the solvent system described above.
  • Formula D-8 wherein R 5 is an aryloxycarbonyl (COOAr) group, an acetyl (Ac) group, or a 2,2,2-trichloroethoxycarbonyl (Troc) group, and R 6 is hydrogen atom, or R5 and R6 together with the nitrogen atom to which they are attached form a phthalimido group).
  • R 5 is an aryloxycarbonyl (COOAr) group, an acetyl (Ac) group, or a 2,2,2-trichloroethoxycarbonyl (Troc) group
  • R 6 is hydrogen atom, or R5 and R6 together with the nitrogen atom to which they are attached form a phthalimido group.
  • Formula D-9 wherein M + is a sodium ion, lithium ion, potassium ion, or a protonated triethylamine cation.
  • Formula D-10 wherein M + is a sodium ion, lithium ion, potassium ion, or a
  • Formula D-11 wherein M + is a sodium ion, lithium ion, potassium ion, or a protonated triethylamine cation.
  • Formula E-2 A crystalline compound represented by (wherein R 7 is a hydrogen atom, a methyl group, or a methoxy group).
  • Formula D-12 having a purity of greater than or equal to 90% as determined by HPLC: A compound represented by [115] 110. The compound of claim 109, wherein said purity is 95% or greater.
  • Formula D-13 Oligosaccharides represented by.
  • an oligosaccharide represented by the above formula A-13 and a novel method for producing the same an intermediate for producing the oligosaccharide and a method for producing the same, and an oligosaccharide represented by the above formula D-13 and a novel method for producing the same , and an intermediate for the production of the oligosaccharide and a method for producing the same are provided.
  • oligosaccharide represented by formula A-13 means the following oligosaccharide.
  • a novel synthetic scheme for the oligosaccharide represented by the above formula A-13 includes the following steps I-1 to I-3.
  • Step I-1 comprises formula A-3: The compound represented by the following formula A-4: By forming an ⁇ -1,6-glycosidic bond with a compound represented by the following formula A-5: to produce a compound of formula A-7 below: is a step of producing a compound represented by The step I-1 includes the following steps I-1-1 to I-1-3.
  • step I-1-1 the compound represented by formula A-3 and the compound represented by formula A-4 are ⁇ -1,6-glycosidic bonded to produce the compound represented by formula A-5. It is a process. This step can be carried out by using or applying a known method, but can preferably be carried out, for example, by the method shown in Example 22.
  • the compound represented by formula A-3 can be , Molecular sieve 4A powder and trimethylsilyl trifluoromethanesulfonate (TMSOTf) are sequentially added in an organic solvent (toluene, etc.) to form an ⁇ -1,6-glycosidic bond with the compound represented by the above formula A-4.
  • TMSOTf trimethylsilyl trifluoromethanesulfonate
  • Compounds of formula A-5 above can be produced.
  • the compound represented by the formula A-3 and the compound represented by the formula A-4, which are starting materials can be produced as follows.
  • the compound represented by formula A-3 can be produced by the following steps, but is not limited to this production method.
  • formula A-1 (3,4,6-tri-O-benzyl-1,2-O-(1-methoxyethylidene)- ⁇ -D-mannopyranose), for example, water and p-TsOH.H 2
  • formula A-2 By adding O and then reacting with triethylamine, formula A-2 below: produces a compound represented by This step can be preferably carried out by the method shown in Example 1, for example.
  • the compound of formula A-3 is produced by adding, for example, trichloroacetonitrile and diazabicycloundecene (DBU) to the compound of formula A-2.
  • DBU diazabicycloundecene
  • compounds of formula A-4 are produced by the following Steps X-1 to X-14, or by the following Steps X-1 to X-8+X-15 to X-16 . Details of each step are exemplified below, and each step can also be carried out using a conventional method for producing monosaccharides or oligosaccharides, or by applying such a conventional method.
  • Step X-1 comprises the following formula C-1:
  • the following formula C-2 is a step of producing a compound represented by
  • the compound represented by formula C-1 which is the starting material for this step, can be produced by a known method, or a commercially available product can be used.
  • Commercially available products of the compound represented by formula C-1 include, for example, 1,2:5,6-di-O-isopropylidene- ⁇ -D-glucofuranose manufactured by Sigma-Aldrich.
  • This step can be performed by using or applying a known method, and preferably by the method shown in Example 10, for example.
  • Step X-2 converts a compound of formula C-2 by two-point acid hydrolysis of isopropylidene and pyranose ring formation to the following formula C-3: is a step of producing a compound represented by This step can be performed by using or applying a known method, and preferably by the method shown in Example 11, for example.
  • step X-3 the hydroxyl group on the compound represented by formula C-3 is protected with an acetyl group to give the following formula C-4: is a step of producing a compound represented by This step can be performed by using or applying a known method, and preferably by the method shown in Example 12, for example.
  • Step X-4 is carried out by selectively removing only the acetyl group in the acetyloxy group bonded to the carbon at the 1-position of the compound of formula C-4 to give the following formula C-5: is a step of producing a compound represented by This step can be performed by using or applying a known method, and preferably by the method shown in Example 12, for example.
  • the step of producing the compound represented by formula C-5 from the compound represented by formula C-3 above) may be carried out in one pot, for example, as shown in Example 12.
  • Step X-5 comprises reacting a compound of formula C-5 with trichloroacetonitrile to give the following formula C-6: is a step of producing a compound represented by This step can be performed by using or applying a known method, and preferably by the method shown in Example 13, for example.
  • Step X-6 converts a compound of formula C-6 to the following formula C-7: by reacting with a compound of formula C-8 below: is a step of producing a compound represented by Compounds of formula C-7 can be prepared by known methods or are commercially available.
  • Commercially available products of the compound represented by formula C-7 include, for example, 4-methoxyphenyl 3,6-di-O-benzyl-2-deoxy-2-phthalimide- ⁇ -D-glucopyranoside manufactured by Tokyo Chemical Industry Co., Ltd. can be mentioned.
  • This step can be performed by using or applying a known method, but preferably by the method shown in Example 14, for example.
  • Step X-7 is carried out by removing the acetyl group from the compound of formula C-8 to obtain the following formula C-9: is a step of producing a compound represented by This step can be performed by using or applying a known method, and preferably by the method shown in Example 15, for example.
  • step X-7 comprises reacting a compound of formula C-8 with a strong base in the presence of a trifluoroacetate to eliminate the acetyl group to give a compound of formula C- It is a step of producing a compound represented by 9.
  • the elimination reaction of the acetyl group has been reported to be carried out using sodium methoxide in methanol (Org. Biomol. Chem., 2018, 16, 4720-4727), in which case the ring opening of the phthalimide group An undesired side reaction may also occur at the same time.
  • alkyl ester of perfluorocarboxylic acid used in the above step is not limited as long as the reaction proceeds, but methyl trifluoroacetate, ethyl trifluoroacetate, propyl trifluoroacetate, isopropyl trifluoroacetate, butyl trifluoroacetate , methyl pentafluoropropionate, ethyl pentafluoropropionate, propyl pentafluoropropionate, isopropyl pentafluoropropionate, methyl heptafluorobutyrate, ethyl heptafluorobutyrate, propyl heptafluorobutyrate, isopropyl heptafluorobutyrate, butyl heptafluorobutyrate , methyl nonafluorovalerate, ethyl nonafluorovalerate, propyl nonafluorovalerate, isopropyl
  • strong base is not limited as long as the reaction proceeds, but for example, sodium, lithium, and potassium salts of metal amides; and barium salts; sodium hydride, potassium hydride, lithium hydride, butyllithium, potassium carbonate, sodium carbonate, cesium carbonate, lithium carbonate, potassium phosphate, sodium phosphate, cesium phosphate, lithium phosphate, diazabicyclo undecene (DBU), diazabicyclononene (DBN), and 1,1,3,3-tetramethylguanidine (TMG); and combinations thereof, for example sodium salts of C1-C20 alkoxides.
  • DBU diazabicyclo undecene
  • DBN diazabicyclononene
  • TMG 1,1,3,3-tetramethylguanidine
  • lithium salt and potassium salt include lithium methoxide, sodium methoxide, potassium methoxide, lithium ethoxide, sodium ethoxide, potassium ethoxide, lithium isopropoxide, sodium isopropoxide, potassium isopropoxide, lithium tert -butoxide, sodium tert-butoxide, potassium tert-butoxide, lithium tert-pentoxide, sodium tert-pentoxide or potassium tert-pentoxide, particularly preferably sodium tert-butoxide, lithium tert-butoxide, potassium Mention may be made of tert-butoxide, LHMDS (lithium hexamethyldisilazide).
  • LHMDS lithium hexamethyldisilazide
  • the solvent in this step is not limited as long as the reaction proceeds.
  • C1-C10 alcohol solvent can be substituted with alcohols having more carbon atoms
  • C1-C5 alcohols methanol, ethanol, propanol, butanol, etc.
  • the reaction temperature in this step is not limited as long as the reaction proceeds, but for example, -20°C to 80°C, preferably 0°C to 70°C, more preferably 20°C to 65°C, particularly preferably , 40°C to 60°C.
  • step X-8 in the compound represented by formula C-9, the hydroxyl groups bonded to the 4-position and 6-position carbons of D-glucopyranoside are selectively protected using benzaldehyde dimethylacetal to obtain the following Formula C-10: is a step of producing a compound represented by This step can be performed by using or applying a known method, but preferably by the method shown in Example 16, for example.
  • Step X-9 removes a compound represented by formula C-10 from the group consisting of a trifluoromethanesulfonyloxy group, a nonafluorobutanesulfonyloxy group, a 2-nitrobenzenesulfonyloxy group and a 4-nitrobenzenesulfonyloxy group.
  • the "compound imparting a leaving group selected from the group consisting of a trifluoromethanesulfonyloxy group, a nonafluorobutanesulfonyloxy group, a 2-nitrobenzenesulfonyloxy group and a 4-nitrobenzenesulfonyloxy group” includes, for example , trifluoromethanesulfonic anhydride, nonafluoro-1-butanesulfonyl fluoride, bis(nonafluoro-1-butanesulfonic acid) anhydride, 2-nitrobenzenesulfonyl chloride, or 4-nitrobenzenesulfonyl chloride, preferably can include trifluoromethanesulfonic anhydride.
  • the solvent in this step is not limited as long as the reaction proceeds.
  • Examples include ethyl acetate, toluene, dichloromethane, acetonitrile, cyclopentyl methyl ether, or tert-butyl methyl ether, preferably ethyl acetate, Mention may be made of toluene or dichloromethane.
  • the reaction temperature in this step is not limited as long as the reaction proceeds, but for example, -40°C to 60°C, preferably -30°C to 40°C, more preferably -20°C to 10°C. can be done.
  • This step can be preferably carried out in the presence of a base.
  • the base used in this step is not particularly limited as long as the reaction proceeds. Examples thereof include 1-methylimidazole, pyridine, 4-dimethylaminopyridine, picoline, lutidine and collidine. -methylimidazole.
  • Step X-10 comprises reacting a compound of formula C-11 with cesium acetate or tetrabutylammonium acetate to give the following formula C-12: wherein X 2 is an acetyl group, or by reacting a compound of formula C-11 with tetrabutylammonium benzoate to give the following formula C- 12: is a process for producing a compound represented by (wherein X 2 is a benzoyl group).
  • the solvent in this step is not limited as long as the reaction proceeds, but examples include dimethylsulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, N,N-dimethylimidazolidinone, sulfolane, tetrahydrofuran and acetonitrile. preferably dimethylsulfoxide.
  • the reaction temperature in this step is not limited as long as the reaction proceeds, but is, for example, 20° C. to 80° C., preferably 23° C. to 70° C., more preferably 26° C. to 60° C., particularly preferably 30°C to 50°C can be mentioned.
  • Step X-11 involves removing the X 2 group and ring-opening the phthalimido group in a compound of formula C-12 to give the following formula C-13: is a step of producing a compound represented by This step can be carried out by using or applying a known hydrolysis method, but preferably by the method shown in Example 18, for example.
  • the compound represented by formula C-13 produced may be dissolved in the solvent and used as it is in the next step, or may be isolated and purified by recrystallization.
  • a major advantage of the compound represented by formula C-13 is that it can be isolated and purified by crystallization. Crystallization can almost completely remove impurities having similar structures that are difficult to remove by column purification. In this case, the compound of formula C-13 can be obtained with an HPLC purity of 99% or more.
  • Isolation/purification by recrystallization in this step is, for example, a method of completely removing the solvent by drying under reduced pressure from a state dissolved in the solvent, or using tetrahydrofuran as a good solvent, in the presence of a trace amount of water, A method of dropping isopropanol as a poor solvent can be mentioned.
  • Recrystallization in this step can also be performed using seed crystals of the compound represented by formula C-13.
  • seed crystals for example, tetrahydrofuran is used as a good solvent, a portion of isopropanol is added dropwise as a poor solvent in the presence of a small amount of water, the seed crystals are added, crystal precipitation is confirmed, and the remaining isopropanol is added dropwise. Crystallization can be performed by
  • the step of producing the compound represented by formula C-13 from the compound represented by formula C-11 above may be carried out in one pot, for example, as shown in Example 18.
  • step X-12 the ring-opened phthalimido group in the compound represented by formula C-13 is ring-closed by dehydration condensation to obtain the following formula C-14: is a step of producing a compound represented by This step can be performed by using or applying a known method, but preferably by the method shown in Example 19, for example.
  • step X-13 in the compound represented by formula C-14, the hydroxyl group bonded to the carbon at the 2-position of D-mannopyranoside is protected with a benzyl group to obtain the following formula C-15: is a step of producing a compound represented by This step can be performed by using or applying a known method, but preferably by the method shown in Example 20, for example.
  • step X-13 is attached to the 2-carbon of D-mannopyranoside in the compound of formula C-14 in the presence of lithium tert-butoxide or lithium tert-amoxide. It involves protecting the hydroxyl group with a benzyl group to produce a compound of formula C-15. Ring opening of the phthalimide can be suppressed by performing step X-15 in the presence of lithium tert-butoxide or lithium tert-amoxide. In addition, compared to general conditions using sodium hydride, it can be carried out safely and can be easily scaled up.
  • the solvent in this step is not limited as long as the reaction proceeds, and examples thereof include dimethylacetamide, dimethylformamide, N-methylpyrrolidone and N,N-dimethylimidazolidinone, preferably dimethylacetamide. can be mentioned.
  • the reaction temperature in this step is not limited as long as the reaction proceeds, but is, for example, -20°C to 100°C, preferably -15°C to 70°C, particularly preferably -10°C to 50°C. can be done.
  • Step X-14 is carried out by selectively reducing the benzylidene protecting group in compounds of formula C-15 (for more details see Angew. Chem. Int. Ed. 2005, 44, 1665-1668 ), wherein only the hydroxyl group attached to the 6-carbon of D-mannopyranoside is deprotected, the following formula A-4: is a step of producing a compound represented by This step can be performed by using or applying a known method, but preferably by the method shown in Example 21, for example.
  • the compound represented by formula A-4 produced may be dissolved in the solvent and used as it is in the next step, or it may be isolated and purified by column purification or the like.
  • steps X-9 to X-12 including the step of performing the stereoinversion of glucose to mannose using an S N 2 reaction, it is performed using a redox reaction. Steps X-15 and X-16 shown below for
  • Step X-15 is performed by oxidizing the 2-position of the D-glucopyranoside in a compound of formula C-10 to give the following formula C-16: is a step of producing a compound represented by This step can be performed by using or applying a known method.
  • Step X-16 is carried out by reducing the ketone group attached to carbon 2 of 2-keto-D-glucopyranoside in a compound of formula C-16 to the following formula C-14: is a step of producing a compound represented by This step can be performed by using or applying a known method.
  • the solvent in this step is not limited as long as the reaction proceeds, but examples include diethyl ether, cyclopentyl methyl ether, tert-butyl methyl ether, diisopropyl ether, dipropyl ether, dibutyl ether, and 1,4-dioxane. preferably tetrahydrofuran.
  • the reaction temperature in this step is not limited as long as the reaction proceeds, but can be -80°C to 20°C, for example. As described below, the optimum reaction temperature differs depending on the reducing agent used.
  • the oxo group attached to the carbon at the 2-position of 2-keto-D-glucopyranoside in the compound represented by formula C-16 is L-selectride, LS-selectride, lithium diisobutyl -tert-butoxyaluminum hydride (LDBBA), formula W below:
  • L-selectride LS-selectride
  • LLBBA lithium diisobutyl -tert-butoxyaluminum hydride
  • the stereoselectivity was low (about 7:3), and it was difficult to efficiently obtain the desired stereoinversion from Gln to Man (Org. Biomol. Chem., 2018, 16, 4720-4727).
  • the selectivity of the Gln ⁇ Man stereoinversion is greatly improved compared to the case with NaBH 4 (93.6:6.4-98. 1:1.9).
  • compounds in which three R 3 are di-tert-butylmethylphenoxide can be prepared, for example, by adding 0 It can be obtained by adding dibutylhydroxytoluene (885.41 mg, 4.02 mmol) at °C and then stirring at 25 °C.
  • Compounds of Formula W in which two R 3 are di-tert-butylmethylphenoxide can be prepared in a similar manner using 2 molar equivalents of dibutylhydroxytoluene to 1 molar equivalent of lithium aluminum hydride. can be obtained by
  • the reaction temperature in this step is not limited as long as the reaction proceeds, but when L-selectride, LS-selectride or LDBBA is used as the reducing agent, the reaction temperature is preferably -80°C. to -20°C, more preferably -80°C to -30°C, more preferably -80°C to -40°C, and particularly preferably -80°C to -50°C.
  • the reaction temperature is preferably -20°C to 20°C, more preferably -15°C to 15°C, particularly preferably -10°C to 10°C. °C can be mentioned. Therefore, the compound represented by the formula W is particularly suitable as the reducing agent used in this step in that the reaction proceeds at a temperature that is easier to handle.
  • the compound represented by formula A-5 can be obtained in a purified form by the following purification method.
  • the purification method includes the compound represented by the above formula A-5 generated after the reaction between the compound represented by the above formula A-4 and the compound represented by the above formula A-3 and contaminants.
  • a hydrophobic carrier and water are added to a water-soluble organic solvent to adsorb the compound represented by the above formula A-5 in the hydrophobic carrier, and then filtration and the hydrophobic carrier are combined with the water-soluble organic solvent and water.
  • Contaminants are removed by washing with a mixed solution of and then, by eluting the compound represented by the above formula A-5 from the hydrophobic carrier using an organic solvent, the compound represented by the above formula A-5 including purifying compounds that are According to this purification method, in the liquid-phase synthesis of oligosaccharide chains, reagent residues remaining after the glycosylation reaction and impurities derived from the sugar donor and sugar acceptor are washed away using a small amount of a hydrophobic carrier. Since these impurities can be easily removed and reaction inhibition and side reactions caused by these impurities can be suppressed, it has become possible to produce high-quality oligosaccharides in large quantities and efficiently.
  • the present invention can reduce the number of steps for tag detachment and prevent deterioration of tag functionality during oligomerization by utilizing the hydrophobicity of the substrate itself, compared to conventionally developed methods. Therefore, it is possible to produce oligosaccharides more efficiently.
  • the compound represented by formula A-5 can be easily separated and purified from the decomposed product derived from the compound represented by formula A-3 by the above purification method.
  • the purification of the compound represented by formula A-5 above is not limited to the purification in this step I-1-1. Therefore, in one aspect of the present invention, a hydrophobic carrier and water are added to a water-soluble organic solvent containing the compound represented by the above formula A-5 and contaminants, and the above formula A-5 is added to the hydrophobic carrier. The compound represented by is adsorbed, and then the impurities are removed by filtering and washing the hydrophobic carrier with a mixed solution of the water-soluble organic solvent and water. Also provided is a method comprising purifying a compound of formula A-5 above by eluting the compound of formula A-5 from a hydrophobic carrier. Furthermore, the above purification method can also be applied to purification of organic compounds other than sugar compounds.
  • the organic compound to be purified is a sugar compound
  • a protected oligosaccharide having a sugar chain structure consisting of 3 to 15 sugar residues in which one or all of the hydroxyl groups in the sugar are protected can be preferably purified.
  • sugar chain-protecting groups include, but are not limited to, alkyl ethers, benzyl ethers, silyl ethers, esters, and carbonate esters.
  • contaminants refer to compounds and reagents other than the protected oligosaccharide (in this step, the compound represented by the above formula A-5), reagents used in the synthesis reaction of the protected oligosaccharide, residues thereof, protected oligosaccharide It mainly means sugars other than protected oligosaccharides such as monosaccharide or disaccharide compounds used in the elongation reaction of , or by-products produced by the deprotection reaction of protected oligosaccharides.
  • hydrophobic carrier refers to a hydrophobic adsorbent material that adsorbs to specific compounds including sugar compounds.
  • hydrophobic carrier is poly(styrene/divinylbenzene) polymer gel resin, polystyrene-divinylbenzene resin, polyhydroxymethacrylate resin, styrene vinylbenzene copolymer resin, polyvinyl alcohol resin, polystyrene resin, polymethacrylate resin, chemically bonded silica gel resin, and combinations thereof, but not limited thereto.
  • the above-mentioned "chemically bonded silica gel resin” includes (1) a resin obtained by reacting silica gel with a silane coupling agent, (2) silica gel, dimethyloctadecyl, octadecyl, trimethyloctadecyl, dimethyloctyl, octyl, butyl, and ethyl , a resin obtained by chemically bonding a methyl, phenyl, cyanopropyl, or aminopropyl group, (3) a resin obtained by chemically bonding a docosyl or triacontyl group to silica gel, and (4) (1) to It is selected from the group consisting of combinations of (3), but octadecyl group-bonded silica gel resins (ODS resins) are preferably used, but are not limited thereto.
  • ODS resins octadecyl group-bonded silica gel resins
  • water-soluble organic solvent is not particularly limited, but water-soluble alcohol solvents (preferably C1 to C4), water-soluble nitrile solvents (acetonitrile etc.), water-soluble ether solvents (tetrahydrofuran etc. ), water-soluble ketone-based solvents (acetone, etc.), water-soluble amide-based solvents (dimethylformamide, etc.), or water-soluble sulfoxide-based solvents (dimethylsulfoxide, etc.) can be used, and acetonitrile can be preferably used. .
  • water-soluble alcohol solvents preferably C1 to C4
  • water-soluble nitrile solvents acetonitrile etc.
  • water-soluble ether solvents tetrahydrofuran etc.
  • water-soluble ketone-based solvents acetone, etc.
  • water-soluble amide-based solvents dimethylformamide, etc.
  • water-soluble sulfoxide-based solvents dimethylsulfoxide, etc.
  • the "organic solvent” used in the elution step of the target substance from the hydrophobic carrier is not particularly limited, but nitrile solvents (acetonitrile etc.), ether solvents (tetrahydrofuran etc.), ester solvents ( ethyl acetate, etc.), ketone solvents (acetone, etc.), halogen solvents (dichloromethane, etc.), aromatic solvents (toluene, etc.), or mixed solvents containing at least one of the above solvent systems can be used.
  • acetonitrile, ethyl acetate, tetrahydrofuran, toluene can be preferably used.
  • the above purification step is not particularly limited, but can be performed at a temperature of 0°C to 50°C.
  • the compound represented by the above formula A-7 can be produced from the compound represented by the above formula A-5 by the following steps I-1-2 to I-1-3. However, it is not limited to these manufacturing processes.
  • Step I-1-2 comprises deprotecting the 4-methoxyphenyl group from the compound of formula A-5 above to give is a step of producing a compound represented by
  • this step comprises reacting a compound of formula A-5 above with ⁇ 3-iodane in a fluorous alcohol and water to deprotect the 4-methoxyphenyl group to obtain
  • This is the step of producing a compound represented by A-6.
  • This step can be preferably carried out by the method shown in Example 23, for example.
  • ⁇ 3-iodane means a trivalent hypervalent iodine compound.
  • R 4 is an unsubstituted or substituted phenyl group and R 5 is H, acetoxy, trifluoroacetoxy , tosyloxy, methanesulfonyloxy, and combinations thereof).
  • R 4 may be a "substituted phenyl group", and examples of such substituents include linear or branched saturated or unsaturated hydrocarbon groups, oxygen-containing groups (alkoxy, ester etc.), nitrogen-containing groups (cyano, azide, etc.), halogen atoms (e.g., fluorine atom, chlorine atom, bromine atom, iodine atom), etc., more preferably hydrocarbon groups, oxygen-containing substituents, halogen is an atom.
  • substituents contain carbon, for example, those having 1 to 5 carbons or those having 1 to 3 carbons can be preferably used.
  • ⁇ 3-iodane examples include [bis(trifluoroacetoxy)iodo]benzene (PIFA), [hydroxy(tosyloxy)iodo]benzene (HTIB), (diacetoxyiodo)benzene (PIDA), [bis(trifluoro Acetoxy)iodo]pentafluorobenzene, and [hydroxy(methanesulfonyloxy)iodo]benzene, but not limited to.
  • Fluorous alcohol used in the above process means a fluorine-containing alcohol compound in which all carbons except the carbons bonded to the alcohol have fluorine. As long as fluorine substitution is tolerated, the fluorous alcohol preferably has more fluorine. Fluorous alcohols include, but are not limited to, fluorous fatty alcohols. The hydrocarbon moiety in the fluorous fatty alcohol may be saturated or unsaturated, linear or branched, and cyclic. The fluorous fatty alcohol is, for example, a fluorous C 2 -C 8 fatty alcohol, preferably a fluorous C 2 -C 5 fatty alcohol, more preferably a fluorous C 2 -C 3 fatty alcohol. .
  • fluorous alcohols include hexafluoro-2-propanol (HFIP), 2,2,2-trifluoroethanol (TFE), 2,2,3,3,4,4,5,5-octafluoro-
  • HFIP hexafluoro-2-propanol
  • TFE 2,2,2-trifluoroethanol
  • Non-limiting examples include the group consisting of 1-pentanol, nonafluoro-tert-butyl alcohol, and combinations thereof.
  • This process is carried out in the coexistence of the fluorous alcohol and "water".
  • the amount of water can be appropriately set from the viewpoint of achieving a high yield of the product. about 1.5 equivalents or more, about 2.0 equivalents or more, or about 2.5 equivalents or more, and a volume ratio of about 10 or less, about 8 or less, about It can be 5 or less, or about 3 or less.
  • an "additive" may be added to the fluorous alcohol and water.
  • the additive is preferably selected from the group consisting of sodium dihydrogen phosphate, potassium dihydrogen phosphate, disodium hydrogen phosphate, trifluoroacetic acid, and combinations thereof.
  • the amount of the additive can be set as appropriate, for example, about 0.5 to 8 equivalents, about 1 to 6 equivalents, or about 1.5 to 5 equivalents relative to the compound represented by formula A-5. obtain.
  • Step I-1-3 is a step of producing a compound represented by the above formula A-7 from the compound represented by the above formula A-6. This step can be performed by using or applying a known method, but preferably by the method shown in Example 24, for example.
  • the process comprises reacting a compound of formula A-6 above with 2,2,2-trifluoro-N-phenylacetimidoyl chloride (TFPC) in the presence of DBU.
  • TFPC 2,2,2-trifluoro-N-phenylacetimidoyl chloride
  • DBU 2,2,2-trifluoro-N-phenylacetimidoyl chloride
  • the solvent in this step is not limited as long as the reaction proceeds, but examples include dichloromethane, toluene, ethyl acetate, acetonitrile, or tetrahydrofuran, preferably dichloromethane.
  • the reaction temperature in this step is not limited as long as the reaction proceeds, but is preferably -20°C to 40°C, more preferably -10°C to 35°C, and particularly preferably 0°C to 30°C. can be mentioned.
  • This step is preferably carried out in the presence of a dehydrating agent.
  • the dehydrating agent used in this step is not limited as long as the reaction proceeds, but for example, molecular sieves can be used, and molecular sieves 4A powder having a powder particle size of 10 ⁇ m or less can be preferably used.
  • the compound represented by A-7 produced may be dissolved in the solvent and used as it is in the next step, provided that the operation of removing the base used in the reaction has been performed.
  • it can be isolated and purified by column purification or the like. Examples of isolation/purification using a column include isolation/purification using silica gel as the stationary phase and dichloromethane or a toluene-ethyl acetate mixed solvent system as the mobile phase.
  • Step I-2 converts the compound of formula A-7 above to the following formula A-8:
  • Step I-2 converts the compound of formula A-7 above to the following formula A-8:
  • Step I-2-1 is a ⁇ -1,4-glycosidic linkage of a compound of formula A-7 with a compound of formula A-8 to produce a compound of formula A-9. It is a process.
  • Compounds of formula A-8 can be prepared by known methods or are commercially available.
  • Commercially available products of the compound represented by formula A-8 include, for example, 4-methoxyphenyl 3,6-di-O-benzyl-2-deoxy-2-phthalimide- ⁇ -D-glucopyranoside manufactured by Tokyo Chemical Industry Co., Ltd. can be mentioned.
  • This step can be performed by using or applying a known method, and preferably by the method shown in Example 25, for example.
  • the compound represented by formula A-9 can be obtained in a purified form by the following purification method.
  • the purification method includes the compound represented by the formula A-9 generated after the reaction between the compound represented by the formula A-7 and the compound represented by the formula A-8 and contaminants.
  • a hydrophobic carrier and water are added to a water-soluble organic solvent to adsorb the compound represented by the above formula A-9 on the hydrophobic carrier, and then filtration and the hydrophobic carrier are combined with the water-soluble organic solvent and water.
  • Contaminants are removed by washing with a mixed solution of and then, by eluting the compound represented by the above formula A-9 from the hydrophobic carrier using an organic solvent, the compound represented by the above formula A-9 including purifying compounds that are As described in the method for purifying the compound represented by formula A-5 above, this purification method uses a small amount of a hydrophobic carrier to produce a large amount of high-quality oligosaccharides in liquid-phase synthesis of oligosaccharide chains. and efficient production.
  • the compound of formula A-8 which is a monosaccharide
  • the compound of formula A-9 which is a tetrasaccharide
  • hexane which is a typical column solvent system.
  • the Rf values were the same and separation was difficult, but by using the purification method of the present invention, it is possible to easily separate monosaccharides and tetrasaccharides that are very close in polarity. became.
  • the purification of the compound represented by formula A-9 above is not limited to the purification in this step I-2-1. Therefore, in one aspect of the present invention, a hydrophobic carrier and water are added to a water-soluble organic solvent containing the compound represented by the above formula A-9 and contaminants, and the above formula A-9 is added to the hydrophobic carrier. The compound represented by is adsorbed, and then the impurities are removed by filtering and washing the hydrophobic carrier with a mixed solution of the water-soluble organic solvent and water. Also provided is a method comprising purifying a compound of formula A-9 above by eluting the compound of formula A-9 from a hydrophobic carrier.
  • contaminants refers to compounds and reagents other than the protected oligosaccharide (in this step, the compound represented by formula A-9), reagents used in the synthesis reaction of the protected oligosaccharide, their residues, and the protected oligosaccharide. It mainly means sugars other than protected oligosaccharides, such as monosaccharide or disaccharide compounds used in elongation reaction, or by-products produced by deprotection reaction of protected oligosaccharides.
  • the "hydrophobic carrier” reverse phase partition chromatography packing resin, etc.
  • the "water-soluble organic solvent” the "organic solvent”
  • purification temperature used in this step are the above formula A-5. Similar to those described for the purification methods of the indicated compounds.
  • Step I-2-2 is a step of producing a compound represented by formula A-10 from a compound represented by formula A-9.
  • step I-2-2 includes reacting the compound represented by formula A-9 with a strong base in the presence of a perfluorocarboxylic acid alkyl ester in a solvent to remove the acetyl group. It is a step of producing a compound represented by formula A-10 by separating (deacetylation reaction), which can be preferably carried out by the method shown in Example 26, for example.
  • the deacetylation reaction can be carried out in the same manner as the deacetylation reaction described in step X-7, except that the substrate is different.
  • the above deacetylation reaction is not limited to use in this step I-2-2. Accordingly, in one aspect of the present invention, in a method for producing a compound represented by the above formula A-10, the compound represented by the formula A-9 is strongly reacted in the presence of an alkyl ester of perfluorocarboxylic acid. A method is also provided comprising the step of reacting with a base.
  • the alkyl ester of perfluorocarboxylic acid, strong base, solvent, and reaction temperature used in this step are as described in above step X-7.
  • Step I-3 converts a compound of formula A-10 above to the following formula A-11: by forming a ⁇ -1,2-glycosidic bond with a compound represented by the following formula A-12: A step of producing an oligosaccharide of formula A-13 above, comprising producing a compound of formula A-13.
  • Step I-3 includes Steps I-3-1 to I-3-2 below.
  • step I-3-1 a compound represented by the above formula A-12 is obtained by forming a ⁇ -1,2-glycosidic bond between the compound represented by the above formula A-10 and the compound represented by the above formula A-11.
  • This is the process of generating.
  • the glycosidic bonding step described above can be performed by using or applying a known method, and preferably by the method shown in Example 27, for example.
  • the compound represented by formula A-11 can be produced as follows. Additionally, compounds of Formula A-12 may be purified as described below.
  • the compound of Formula A-11 above is (Step Y-1) Formula B-1 below:
  • a step of producing a compound represented by (Step Y-2) Lithium tert-butoxide or lithium tert-amoxide is added to a solvent containing the compound represented by the formula B-4 and the benzyl halide or benzyl sulfonate to obtain the compound represented by the formula B-4.
  • a step of producing a compound represented by The step Y-1 includes steps Y-1-1 and Y-1-2, and the step Y-2 includes steps Y-2-1 to Y-2-3.
  • step Y-1-1 a compound represented by the above formula B-3 is formed by forming a ⁇ 1,4-glycosidic bond between the compound represented by the above formula B-1 and the compound represented by the above formula B-2. is a step of generating Commercially available products of the compound represented by formula B-1 include 2,3,4,6-tetra-O-acetyl- ⁇ -D-galactopyranosyl 2,2,2-trichloroacetate available from Tokyo Chemical Industry Co., Ltd. Mention may be made of the imidate (86520-63-0).
  • commercial products of the compound represented by formula B-2 include, for example, 4-methoxyphenyl 3,6-di-O-benzyl-2-deoxy-2-phthalimide- ⁇ -D manufactured by Tokyo Chemical Industry Co., Ltd. - glucopyranosides may be mentioned.
  • This step can be performed by using or applying a known method, but can preferably be performed, for example, by the method shown in Example 3, for example, represented by the above formula B-2
  • a compound represented by the following formula B-3 is obtained by sequentially adding a solution containing the compound represented by the above formula B-1, molecular sieve 4A powder, and trimethylsilyl trifluoromethanesulfonate (TMSOTf) to the solution containing the compound. can be generated.
  • TMSOTf trimethylsilyl trifluoromethanesulfonate
  • step Y-1-2 the acetyl group is removed from the compound represented by B-3 to obtain the following formula B-4: is a step of producing a compound represented by
  • the above deprotection of the acetyl group (AcO) can be carried out by using a known method, preferably by the method shown in Example 4, for example, Elimination of the acetyl group by reacting compounds of formula B-3 with a strong base in the presence of a trifluoroacetate in a solvent can provide compounds of formula B-4. .
  • Step Y-2-1 is a step of producing a compound represented by the above formula B-5 by protecting multiple hydroxyl groups present in the compound represented by the above formula B-4 with a benzyl group.
  • this step Y-2-1 comprises a compound represented by formula B-4 above and a solvent containing benzyl halide (benzyl bromide, benzyl chloride, benzyl fluoride, or benzyl iodide) or benzyl sulfonate
  • benzyl halide benzyl bromide, benzyl chloride, benzyl fluoride, or benzyl iodide
  • benzyl sulfonate The compound represented by the above formula B-5 by adding lithium tert-butoxide or lithium tert-amoxide to protect multiple hydroxyl groups present in the compound represented by the above formula B-4 with a benzyl group.
  • a method for producing a compound represented by formula B-5 above comprises a compound represented by formula B-4 above and a benzyl halide (benzyl bromide, benzyl chloride, benzyl fluoride , or benzyl iodide) or benzyl sulfonate), lithium tert-butoxide or lithium tert-amoxide is added to replace the hydroxyl group present in the compound represented by the above formula B-4 with a benzyl group.
  • a method is also provided comprising the step of protecting.
  • the solvent used in this step is not particularly limited as long as the reaction proceeds, but amide solvents (dimethylformamide, dimethylacetamide, etc.), ether solvents (tetrahydrofuran, dimethoxyethane, etc.), aromatic solvents (toluene, etc.) , a hydrocarbon solvent (hexane, etc.), a urea solvent, or a mixed solvent containing at least one of the above solvent systems can be used, and an amide solvent (dimethylformamide, dimethylacetamide, etc.) is more preferably used. can do.
  • reaction in this step is preferably carried out at 0°C to 60°C, more preferably at 30°C to 50°C.
  • the compound represented by formula B-5 above can be purified by the following steps.
  • the process involves ring-opening the phthalimido group in the compound of formula B-5 and then forming a salt with cinchonidine to give a crystalline cinchonidine salt of formula B-6:
  • a solvent is added to remove cinchonidine in the compound represented by the formula B-6 and the following formula B-7:
  • a compound of formula B-5 can be regenerated by forming a compound of formula B-7 and then closing the ring-opened phthalimido group in the compound of formula B-7.
  • the compound of formula B-6 (the cinchonidine salt of the compound of formula B-7) is crystalline, whereas the compounds of formulas B-3, B-4, and B-5 above do not crystallize.
  • the phthalimide in the compound represented by formula B-5 is once ring-opened, and the carboxylic acid moiety in the phthalimide group thus generated and cinchonidine form a salt to form a salt represented by formula B-5.
  • the cinchonidine in the compound of formula B-6 above is removed, for example, by addition of an acidic aqueous solution and a solvent, and then , the phthalimide can be ring-closed again to obtain a highly purified compound represented by the formula B-5.
  • the ring-opening and ring-closing of phthalimide can be performed using a known method, and the ring-opening of phthalimide can be performed, for example, by adding sodium hydroxide in methanol-tetrahydrofuran. can be performed, for example, by adding carbonyldiimidazole (CDI) in tetrahydrofuran solvent. This step can be suitably carried out, for example, by the methods shown in Examples 6 and 7.
  • step Y-2-2 the 4-methoxyphenyl group is removed from the compound represented by formula B-5 to give the following formula B-8: is a step of producing a compound represented by
  • this step Y-2-2 comprises reacting the compound represented by formula B-5 with ⁇ 3-iodane in a fluorous alcohol and water to eliminate the 4-methoxyphenyl group,
  • This is a step of producing a compound represented by formula B-8 above, and can be suitably carried out, for example, by the method shown in Example 8.
  • This step can be carried out according to Step I-1-2 above, and the fluorous alcohol and ⁇ 3-iodane used in this step are the same as those used in Step I-1-2 above. can be used.
  • Step Y-2-3 is a step of producing the compound represented by the above formula A-11 from the compound represented by the above formula B-8.
  • step Y-2-3 the compound represented by formula B-8 above is treated with 2,2,2-trifluoro-N-phenylacetimide in the presence of N-methylimidazole.
  • TFPC yl chloride
  • the equivalent amount of TFPC is reduced compared to, for example, potassium carbonate. is possible, and the desired product can be obtained with a high yield.
  • the solvent and reaction temperature used, the fact that it is preferably carried out in the presence of a dehydrating agent, and the fact that it may be isolated and purified by column purification or the like are the same as those in Step I-1-3 above. is.
  • the compound represented by formula A-12 can be obtained in a purified form by the following purification method.
  • the purification method includes the compound represented by the above formula A-12 generated after the reaction between the compound represented by the above formula A-10 and the compound represented by the above formula A-11 and contaminants.
  • a hydrophobic carrier and water are added to a water-soluble organic solvent to adsorb the compound represented by the formula A-12 in the hydrophobic carrier, and then filtered and the hydrophobic carrier is combined with the water-soluble organic solvent.
  • Contaminants are removed by washing with a mixed solution with water, and then the compound represented by the above formula A-12 is eluted from the hydrophobic carrier using an organic solvent to obtain the above formula A-12.
  • a hydrophobic carrier and water are added to a water-soluble organic solvent containing the compound represented by the above formula A-12 and contaminants, and the hydrophobic carrier contains the above formula A-12
  • the compound represented by is adsorbed, and then the impurities are removed by filtering and washing the hydrophobic carrier with a mixed solution of the soluble organic solvent and water.
  • a method comprising purifying the compound of Formula A-12 above by eluting the compound of Formula A-12 from a hydrophobic carrier.
  • contaminants refers to compounds and reagents other than the protected oligosaccharide (in this step, the compound represented by formula A-12), reagents used in the synthesis reaction of the protected oligosaccharide, their residues, and the protected oligosaccharide. It mainly means sugars other than protected oligosaccharides, such as monosaccharide or disaccharide compounds used in elongation reaction, or by-products produced by deprotection reaction of protected oligosaccharides.
  • hydrophobic carrier reverse phase partition chromatography packing resin, etc.
  • water-soluble organic solvent the "organic solvent”
  • purification temperature used in the above steps are represented by the above formula A-5. It is the same as described in the purification method of the compound.
  • Step I-3-2 is a step of producing an oligosaccharide represented by formula A-13 from a compound represented by formula A-12.
  • step I-3-2 the compound represented by formula A-12 is treated with DDQ (2,3-dichloro-5,6-dicyano-) in a mixed solvent of fluorous alcohol and water.
  • DDQ 2,3-dichloro-5,6-dicyano-
  • p-benzoquinone to eliminate the 2-naphthylmethyl group in the compound represented by the above formula A-12 (de-2-naphthylmethylation reaction) to give the oligo represented by the above formula A-13
  • This is a step of producing sugar, and can be preferably carried out, for example, by the method shown in Example 28-1.
  • the present inventors prepared a 2,3-dichloro-5,6-dicyano- It has been found that by reacting (acting) p-benzoquinone, the reaction can be carried out under mild conditions with good stirring, and a de-2-naphthylmethylation product can be obtained in high yield. .
  • the advantages of the de-2-naphthylmethylation reaction are described in greater detail below.
  • a substrate such as a sugar having a 2-naphthylmethyl group bonded via an oxygen atom is de-2-naphthylmethylated in high yield under mild conditions.
  • a product can be obtained.
  • the by-product 2,3-dichloro-5,6-dicyano-p-benzohydroquinone does not cause deterioration of stirring properties or adhesion to the wall surface of the container, and the reaction can be carried out with good reproducibility. It is also suitable for mass synthesis of products.
  • due to the abnormal freezing point depression of HFIP-H 2 O solidification of the solvent was not confirmed even when the reaction temperature was lowered to -30°C, and a wide temperature range can be applied according to the reactivity of the reaction substrate (melting point HFIP: ⁇ 3.3° C., H 2 O: 0° C.).
  • the selectivity, especially for substrates with 10 or more benzylic groups, such as compounds of formula A-12, is not well understood.
  • DDQ and by-products derived from DDQ have the problem of causing deterioration in stirring properties, and the reaction conditions are not suitable for large-scale synthesis.
  • the DDQ/HFIP-H 2 O system of the present method realized a high selectivity of 85% or more for the compound represented by formula A-12 having 15 benzyl groups. In this method, deterioration of stirring properties due to DDQ as described above is not confirmed.
  • the de-2-naphthylmethylation reaction described above is not limited to the reaction in this step I-3-1. Therefore, in one aspect of the present invention, in the method for producing the oligosaccharide represented by formula A-13 above, the compound represented by formula A-12 is added to DDQ (2 ,3-dichloro-5,6-dicyano-p-benzoquinone) to eliminate the 2-naphthylmethyl group in the compound of formula A-12.
  • fluorous alcohol is not limited as long as the reaction proceeds, but is preferably hexafluoro-2-propanol (HFIP), 2,2,2-trifluoroethanol (TFE), 2,2,3,3, selected from the group consisting of 4,4,5,5-octafluoro-1-pentanol, nonafluoro-tert-butyl alcohol and combinations thereof.
  • HFIP hexafluoro-2-propanol
  • TFE 2,2,2-trifluoroethanol
  • 2,2,3,3 selected from the group consisting of 4,4,5,5-octafluoro-1-pentanol, nonafluoro-tert-butyl alcohol and combinations thereof.
  • de-2-naphthylmethylation reaction is not limited as long as the reaction proceeds, but it is preferably carried out at -35°C to 70°C, more preferably -30°C to -10°C.
  • the following formula A-13 An oligosaccharide represented by is provided.
  • the oligosaccharides of formula A-13 may include modifications thereof as long as they have the same functions or actions as the oligosaccharides, such as a chlorobenzyl group in place of the benzyl group in the oligosaccharides of formula A-13. Those having similar protective groups such as are also included.
  • the compound of formula A-13 above may be purified by the following steps. As the step, the phthalimido group in the compound represented by formula A-13 is ring-opened, and then a salt is formed with (R)-(+)-1-(1-naphthyl)ethylamine to obtain a crystalline
  • the following formula A-14 and after separating the compound represented by the crystalline compound represented by the formula A-14 and the non-crystalline substance, the compound represented by the formula A-14 is obtained by adding an acidic aqueous solution and a solvent.
  • a compound of formula A-13 can be regenerated by forming a compound of formula A-15 and then closing the ring-opened phthalimido group in the compound of formula A-15.
  • the compound represented by formula A-14 (the (R)-(+)-1-(1-naphthyl)ethylamine salt of the compound represented by formula A-15) is crystalline, whereas the compound represented by formula A-13 above is crystalline.
  • the phthalimide in the compound represented by formula A-13 is once ring-opened, and the carboxylic acid moiety in the phthalimide group thus generated and (R)-(+)-1-( After separating the resulting crystalline material from the non-crystalline material by forming a salt with 1-naphthyl)ethylamine, (R )-(+)-1-(1-naphthyl)ethylamine is removed to give a compound of formula A-15, which is then ring-closed again with the phthalimide to yield a purified formula A-13. can be obtained.
  • the ring-opening and ring-closing of phthalimide can be performed using a known method, and the ring-opening of phthalimide can be performed, for example, by adding sodium hydroxide in methanol-tetrahydrofuran. can be performed, for example, by adding carbonyldiimidazole (CDI) in tetrahydrofuran solvent. This step can be preferably carried out, for example, by the method shown in Example 28-2.
  • CDI carbonyldiimidazole
  • oligosaccharide represented by formula D-13 means the following oligosaccharide.
  • a novel synthetic scheme for the oligosaccharide represented by the above formula D-13 includes the following steps II-1 to II-4.
  • Step I-1 is a process of Formula A-13 below:
  • D-1 By forming an ⁇ -1,3-glycosidic bond with a compound represented by the following formula D-1: to produce a compound of formula D-2 below: is a step of producing a compound represented by
  • the step II-1 includes the following steps II-1-1 to II-1-2.
  • step II-1-1 the compound represented by formula D-1 is obtained by ⁇ -1,3-glycosidic bonding between the compound represented by formula A-13 and the compound represented by formula A-3. It is a manufacturing process. This step can be carried out by using or applying a known method, and is preferably carried out, for example, by the method shown in Example 52.
  • the compound represented by formula A-13 by sequentially adding molecular sieve 4A powder and trimethylsilyl trifluoromethanesulfonate (TMSOTf) in an organic solvent (toluene, etc.) to form an ⁇ -1,3-glycosidic bond with the compound represented by the above formula A-3, Compounds of formula D-1 above can be produced.
  • TMSOTf trimethylsilyl trifluoromethanesulfonate
  • the compound represented by formula D-1 can be obtained in a purified form by the following purification method.
  • the purification method includes the compound represented by the above formula D-1 generated after the reaction between the compound represented by the above formula A-13 and the compound represented by the above formula A-3, and contaminants.
  • a hydrophobic carrier and water are added to a water-soluble organic solvent to adsorb the compound represented by the above formula D-1 on the hydrophobic carrier, and then filtration and the hydrophobic carrier are combined with the water-soluble organic solvent and water.
  • Contaminants are removed by washing with a mixed solution of the above formula D-1 by eluting the compound represented by the above formula D-1 from the hydrophobic carrier using an organic solvent.
  • the purification of the compound represented by formula D-1 above is not limited to the purification in this step. Therefore, in one aspect of the present invention, a hydrophobic carrier and water are added to a water-soluble organic solvent containing the compound represented by the above formula D-1 and contaminants, and the above formula D-1 is added to the hydrophobic carrier. The compound represented by is adsorbed, and then the impurities are removed by filtering and washing the hydrophobic carrier with a mixed solution of the water-soluble organic solvent and water. Also provided is a method comprising purifying a compound of formula D-1 above by eluting the compound of formula D-1 from a hydrophobic carrier.
  • contaminants refers to compounds and reagents other than the protected oligosaccharide (in this step, the compound represented by formula D-1), reagents used in the synthesis reaction of the protected oligosaccharide, residues thereof, and protected oligosaccharide. It mainly means sugars other than protected oligosaccharides, such as monosaccharide or disaccharide compounds used in elongation reaction, or by-products produced by deprotection reaction of protected oligosaccharides.
  • the "hydrophobic carrier” reverse phase partition chromatography packing resin, etc.
  • the "water-soluble organic solvent”, the “organic solvent”, and the purification temperature used in the step I-1- 1 is the same as that described in the method for purifying the compound represented by formula A-5 in 1.
  • Step II-1-2 is a step of producing a compound of formula D-2 by eliminating the acetyl group from the compound of formula D-1. This step can be performed by using or applying a known method, but preferably by the method shown in Example 53, for example.
  • step II-1-2 includes reacting the compound represented by the above formula D-1 with a strong base in the presence of an alkyl ester of perfluorocarboxylic acid to eliminate the acetyl group.
  • This is a step of producing a compound represented by formula D-2.
  • the deacetylation reaction can be carried out in the same manner as the deacetylation reaction described in step X-7 above, except that the substrate is different. It is possible to carry out the deacetylation reaction while suppressing the ring opening of the phthalimide group by using the technique of reacting with a strong base under the following conditions.
  • the above deacetylation reaction is not limited to use in this step II-1-2. Accordingly, in one aspect of the present invention, in a method for producing a compound represented by the above formula D-2, the compound represented by the above formula D-1 is strongly reacted in the presence of an alkyl ester of perfluorocarboxylic acid. A method is also provided comprising the step of reacting with a base.
  • Step II-2 converts the compound of formula D-2 above to the following formula D-3: By forming a ⁇ -1,2-glycosidic bond with a compound represented by the following formula D-4: to produce a compound of formula D-5 below: After producing the compound represented by the formula D-5, the amino group in the compound represented by the above formula D-5 is replaced with an aryloxycarbonyl (COOAr) group, an acetyl (Ac) group, a 2,2,2-trichloroethoxycarbonyl (Troc) group.
  • COOAr aryloxycarbonyl
  • Ac acetyl
  • Tro 2,2,2-trichloroethoxycarbonyl
  • step II-2 includes the following steps II-2-1 to II-2-3.
  • step II-2-1 the compound represented by the above formula D-4 is formed by forming a ⁇ -1,2-glycosidic bond between the compound represented by the above formula D-2 and the compound represented by the above formula D-3.
  • the glycosidic bonding step described above can be performed by using or applying a known method, but can preferably be performed by, for example, the method shown in Example 54, for example, Molecular sieve 4A powder and trimethylsilyl trifluoromethanesulfonate (TMSOTf) are sequentially added in an organic solvent (toluene, etc.) to form a ⁇ -1,2-glycosidic bond with the compound represented by the above formula D-3.
  • TMSOTf trimethylsilyl trifluoromethanesulfonate
  • substep Z-2 comprises reacting a compound of formula F-1 with ⁇ 3-iodane in a fluorous alcohol and water to eliminate the 4-methoxyphenyl group.
  • a step of producing a compound represented by Formula F-2 can be preferably carried out by the method shown in Example 35, for example.
  • This step can be carried out according to Step I-1-2 above, and the fluorous alcohol and ⁇ 3-iodane used in this step are the same as those used in Step I-1-2 above. can be used.
  • substep Z-3 is performed by reacting with 2,2,2-trifluoro-N-phenylacetimidoyl chloride (TFPC) in the presence of N-methylimidazole to
  • TFPC 2,2,2-trifluoro-N-phenylacetimidoyl chloride
  • This is a step of producing a compound represented by D-3, and can be preferably carried out by the method shown in Example 36, for example.
  • N-methylimidazole as the base used, as described for the similar reaction in step I-1-3, the equivalent amount of TFPC is reduced compared to, for example, potassium carbonate. is possible, and the desired product can be obtained with a high yield.
  • the solvent and reaction temperature used, the fact that it is preferably carried out in the presence of a dehydrating agent, and the fact that it may be isolated and purified by column purification or the like are the same as those in Step I-1-3 above. is.
  • Step II-2-2 is a step of removing the phthalimido group, which is a protective group for the amino group on the compound of formula D-4 above, to produce a compound of formula D-5.
  • This step can be suitably carried out, for example, by the method shown in Example 55-1, for example, by adding n-butanol and ethylenediamine to the solution containing the compound represented by formula D-4. can be done, but is not limited to these.
  • the compound represented by formula D-5 can be obtained in a purified form by the following purification method.
  • the purification method includes the compound represented by the above formula D-5 produced after the reaction between the compound represented by the above formula D-3 and the compound represented by the above formula D-4, and contaminants.
  • a hydrophobic carrier and water are added to a water-soluble organic solvent to adsorb the compound represented by the formula D-5 in the hydrophobic carrier, and then filtration and the hydrophobic carrier are combined with the water-soluble organic solvent and water.
  • Contaminants are removed by washing with a mixed solution, and then the compound represented by the above formula D-5 is eluted from the hydrophobic carrier using an organic solvent, so that the compound represented by the above formula D-5 including purifying compounds that are As described in the method for purifying the compound represented by formula A-5 in step I-1-1 above, in this purification method, by using a small amount of hydrophobic carrier, in the liquid phase synthesis of oligosaccharide chains, It has become possible to produce high-quality oligosaccharides in large quantities and efficiently.
  • the purification of the compound represented by formula D-5 above is not limited to the purification in this step. Therefore, in one aspect of the present invention, a hydrophobic carrier and water are added to a water-soluble organic solvent containing the compound represented by the above formula D-5 and contaminants, and the above formula D-5 is added to the hydrophobic carrier. The compound represented by is adsorbed, and then the impurities are removed by filtering and washing the hydrophobic carrier with a mixed solution of the water-soluble organic solvent and water. Also provided is a method comprising purifying the compound of formula D-5 above by eluting the compound of formula D-5 from a hydrophobic carrier.
  • contaminants refers to compounds and reagents other than the protected oligosaccharide (in this step, the compound represented by formula D-5), reagents used in the synthesis reaction of the protected oligosaccharide, their residues, and the protected oligosaccharide. It mainly means sugars other than protected oligosaccharides, such as monosaccharide or disaccharide compounds used in elongation reaction, or by-products produced by deprotection reaction of protected oligosaccharides.
  • the "hydrophobic carrier” reverse phase partition chromatography packing resin, etc.
  • the "water-soluble organic solvent”, the “organic solvent”, and the purification temperature used in the step I-1- 1 is the same as that described in the method for purifying the compound represented by formula A-5 in 1.
  • the compound represented by formula D-5 above can also be purified by the following steps. This purification may be performed separately from or in addition to purification (1) of the compound represented by formula D-5 above.
  • the process includes first reacting a compound represented by formula D-5 with fumaric acid to obtain a crystalline fumarate salt of formula D-5-FMA: and the crystalline compound of formula D-5-FMA can be separated from the non-crystalline material.
  • the compound represented by formula D-5-FMA may be dissolved in a solvent and used as it is in the next step II-2-3, or converted to a compound represented by formula D-5. good too.
  • Conversion to the compound represented by the formula D-5 is carried out by removing fumaric acid in the compound represented by the formula D-5-FMA to the aqueous layer, such as by adding a basic aqueous solution and a solvent, and then concentrating the organic layer.
  • a highly purified compound represented by formula D-5 can be obtained.
  • impurities with similar structures such as stereoisomers, which are difficult to remove even in column purification, can be easily removed.
  • This step can be preferably carried out, for example, by the method shown in Example 55-2.
  • step II-2-3 the amino group in the compound represented by formula D-5 above is replaced with an aryloxycarbonyl (COOAr) group, an acetyl (Ac) group, a 2,2,2-trichloroethoxycarbonyl (Troc) group, and a phthalimido (Pht) group to protect the compound represented by the above formula D-6 (wherein R 5 is an aryloxycarbonyl (COOAr) group, an acetyl (Ac) group, or 2 , 2,2-trichloroethoxycarbonyl (Troc) group, and R 6 is a hydrogen atom, or R 5 and R 6 together with the nitrogen atom to which they are attached form a phthalimido group ) is generated.
  • COOAr aryloxycarbonyl
  • Ac acetyl
  • Troc 2,2,2-trichloroethoxycarbonyl
  • Pht phthalimido
  • the purpose of introducing such an amino-protecting group as described above is that it is more linear to use an acetyl group as the amino-protecting group for the production of the target compound (compound represented by formula D-13).
  • the amino group protected with an acetyl group (- NHAc group) is present in the reaction substrate, the reaction with the Lewis acid significantly reduces the reactivity of the desired glycosylation reaction, and an excess amount of the glycosyl donor is required for completion of the reaction. is.
  • a temporary protecting group on the glucosamine nitrogen is selected from aryloxycarbonyl (COOAr), 2,2,2-trichloroethoxycarbonyl (Troc), and phthalimido (Pht) groups.
  • COOAr aryloxycarbonyl
  • Troc 2,2,2-trichloroethoxycarbonyl
  • Pht phthalimido
  • Aryl (Ar) group in aryloxycarbonyl means a group formed by removing one hydrogen atom on an aromatic ring in an aromatic hydrocarbon, including, but not limited to, a phenyl group, 2-naphthyl group, 1-naphthyl group, 2-pyridyl group, 3-pyridyl group, nitrophenyl group, chlorophenyl group, fluorophenyl group, bromophenyl group, iodophenyl group, methoxyphenyl group, and C1-C4 alkylphenyl group and preferably a phenyl group.
  • An aryloxycarbonyl (COOAr) group undergoes a glycosylation reaction better than other protecting groups, and the subsequent deprotection reaction can be carried out under suitable conditions such as general hydrolysis conditions, room temperature, and within 1 hour. It has been found that deprotection of is possible.
  • the above step can be suitably carried out, for example, by the methods shown in Examples 56-59, for example, by adding tetrahydrofuran and sodium bicarbonate, carbonate to a solution of the compound of formula D-5 in tetrahydrofuran. It can be carried out by adding an aqueous solution obtained by dissolving potassium hydrogen phosphate, disodium hydrogen phosphate, or dipotassium hydrogen phosphate in water, but is not limited to these.
  • the compound represented by formula D-6 above is obtained by selectively removing the acetyl (Ac) group on the compound represented by formula D-4 above. wherein R 5 and R 6 together with the nitrogen atom to which they are attached form a phthalimido group.
  • the selective removal of the acetyl group can be performed under methyl trifluoroacetate conditions, but is not limited to this. This step yields the same results as when a phthalimide (Pht) group is selected as the amino-protecting group in the compound represented by formula D-5 above in steps II-2-2 and II-2-3. .
  • Step II-3 converts the compound of formula D-6 above to the following formula D-7:
  • a compound represented by the following formula D-8 (wherein R 5 is an aryloxycarbonyl (COOAr) group, an acetyl (Ac) group, or a 2,2,2-trichloroethoxycarbonyl (Troc) group, and R 6 is a hydrogen atom or R 5 and R 6 together with the nitrogen atom to which they are attached form a phthalimido group), then protect the amino group in the compound of formula D-8.
  • COOAr aryloxycarbonyl
  • Ac acetyl
  • Troc 2,2,2-trichloroethoxycarbonyl
  • Step II-3 includes the following Steps II-3-1 to II-3-4.
  • This step is a step of forming a compound represented by formula D-8 by forming a ⁇ -1,4-glycosidic bond between a compound represented by formula D-6 above and a compound represented by formula D-7 below.
  • the glycosidic bonding step described above can be performed by using or applying a known method, but can be preferably performed by, for example, the methods shown in Examples 60-63.
  • compounds of formula D-7 above can be prepared as in substeps V-1 to V-11 below.
  • This step includes, as an essential minor step, the minor step V-7 described later in which two molecules of monosaccharides are ⁇ -2,6-glycoside-bonded to synthesize a disaccharide block.
  • it can be carried out using conventional methods in oligosaccharide production or by applying such conventional methods.
  • Step V includes the following sub-steps.
  • Sub-step V-1 is the following formula G-1:
  • the following formula G-2 is a step of producing a compound represented by The compound of formula G-1, which is the starting material for this step, is the compound identified as CAS number 100759-10-2 and can be prepared by known methods, for example, as described in Examples 37 and 38. It can be manufactured by the method shown. This step can be performed by using or applying a known method, but preferably by the method shown in Example 39, for example.
  • Step V-2 is carried out by removing the benzylidene protecting group from the compound of formula G-2 to give the following formula G-3: is a step of producing a compound represented by This step can be performed by using or applying a known method, and preferably by the method shown in Example 40, for example.
  • this step is a step of solid phase extraction of the compound represented by formula G-3 by contacting a solvent in which the produced compound represented by formula G-3 is dissolved with silica gel. including. Since the unreacted compound represented by the formula G-2 and the desorbed benzaldehyde are not adsorbed on the silica gel, the compound represented by the formula G-3 can be efficiently purified by this step.
  • Solvents for dissolving the compound represented by formula G-3 include, for example, toluene, heptane, dichloromethane, chloroform, or combinations thereof, preferably toluene, dichloromethane, chloroform, or these Combinations can be mentioned, and particularly preferably toluene can be mentioned, but not limited to these.
  • silica gel in this step for example, silica gel in an amount of 2 to 5 times the amount of the raw material can be used, and preferably silica gel in an amount of 2 to 4 times the amount of the raw material can be used. Preferably, about three times the amount of silica gel can be used with respect to the starting material.
  • the solvent for eluting the compound represented by the formula G-3 adsorbed on silica gel is not particularly limited as long as it does not dissolve silica gel and can elute the desired product.
  • the solvent for eluting the compound represented by the formula G-3 adsorbed on silica gel is not particularly limited as long as it does not dissolve silica gel and can elute the desired product.
  • cyclopentyl methyl ether ethyl acetate, or tert-butyl methyl ether.
  • Sub-step V-3 is the following formula G-4:
  • the following formula G-5 is a step of producing a compound represented by The compound represented by formula G-4, which is the starting material for this step, can be produced by a known method, or a commercially available product can be used.
  • Commercially available products of the compound represented by formula G-4 include, for example, N-acetylneuraminic acid manufactured by Tokyo Kasei Kogyo Co., Ltd. This step can be performed by using or applying a known method, but preferably by the method shown in Example 41, for example.
  • ⁇ Small process V-4> in the compound represented by formula G-5, a hydroxyl group other than the hydroxyl group bonded to carbon at position 1 is selectively protected with an acetyl group to obtain the following formula G-6: is a step of producing a compound represented by This step can be performed by using or applying a known method, but preferably by the method shown in Example 42, for example.
  • Substep V-5 involves reacting a compound of formula G-6 with 2,2,2-trifluoro-N-phenylacetimidoyl chloride (TFPC) to give the following formula G-7: is a step of producing a compound represented by This step can be performed by using or applying a known method, but preferably by the method shown in Example 43, for example.
  • TFPC 2,2,2-trifluoro-N-phenylacetimidoyl chloride
  • this step is a step of producing a compound of formula G-7 by reacting a compound of formula G-6 with TFPC in the presence of N-methylimidazole. .
  • N-methylimidazole when N-methylimidazole is used, it is possible to reduce the equivalent amount of TFPC, and even in that case, the desired product can be obtained in high yield. Obtainable. Since TFPC is an expensive reagent, improving the yield of the process is very beneficial for commercial production.
  • the solvent in this step is not limited as long as the reaction proceeds, but examples include dichloromethane, toluene, ethyl acetate, acetonitrile, or tetrahydrofuran, preferably dichloromethane.
  • the reaction temperature in this step is not limited as long as the reaction proceeds, but is preferably 20°C to 40°C, more preferably 10°C to 35°C, and particularly preferably 0°C to 30°C. can be done.
  • This step is preferably carried out in the presence of a dehydrating agent.
  • the dehydrating agent used in this step is not limited as long as the reaction proceeds, but for example, molecular sieves can be used, and molecular sieves 4A powder having a powder particle size of 10 ⁇ m or less can be preferably used.
  • Step V-6 is carried out by protecting the nitrogen atom in the acetamide group of the compound of formula G-7 with a tert-butoxycarbonyl group to give the following formula G-8: is a step of producing a compound represented by This step can be performed by using or applying a known method, but preferably by the method shown in Example 44, for example.
  • the produced compound represented by formula G-8 may be dissolved in the solvent and used as it is in the next step, or may be isolated and purified by recrystallization.
  • the compound represented by the formula G-8 has a great advantage in that it can be isolated and purified by crystallization, and the compound represented by the formula G-8 with an HPLC purity of 99% or more can be obtained by crystallization. , Since it does not contain impurities, it becomes possible to stably carry out the glycosylation reaction in the next step. Isolation and purification by recrystallization can be performed, for example, by adding heptane to a solution of cyclopentyl methyl ether to crystallize.
  • ⁇ Small process V-7> the compound represented by formula G-8 and the compound represented by formula G-3 are ⁇ -2,6-glycosidic bonded to give the following formula G-9: is a step of producing a compound represented by It is difficult to bind an N-acetylneuraminic acid derivative and a galactose derivative selectively through an ⁇ -2,6-glycoside bond. (J.Org.Chem., 2016, 81, 10600-10616), but it is not easy to reproduce the reaction, and the desired yield, No selectivity could be obtained. In addition, in this reaction, the higher the scale, the lower the selectivity, the narrower the reaction temperature tolerance, and the greater the influence of reaction heat.
  • This step can be preferably carried out in the presence of a Lewis acid.
  • the Lewis acid in this step is not limited as long as the reaction proceeds. Examples include trimethylsilyl trifluoromethanesulfonate, triisopropylsilyl trifluoromethanesulfonate, and tert-butyldimethylsilyl trifluoromethanesulfonate. can include trimethylsilyl trifluoromethanesulfonate.
  • the solvent in this step is not limited as long as the reaction proceeds, but examples include diisopropyl ether, tert-butyl methyl ether, diethyl ether, dibutyl ether, dipropyl ether, 1,4-dioxane, dichloromethane, and 1,2-dichloroethane. , toluene, chlorobenzene, trifluoromethylbenzene, propionitrile or acetonitrile, preferably cyclopentyl methyl ether.
  • reaction temperature in this step is not limited as long as the reaction proceeds. -78°C to -40°C is particularly preferred.
  • a mixed solution of the compound represented by Formula G-8 and the compound represented by Formula G-3 is added to a Lewis acid. (preferably a cyclopentyl methyl ether solution) over a long period of time, or a solution of the compound represented by formula G-8 (preferably a cyclopentyl methyl ether solution) is added to a Lewis acid and formula G-3 can be carried out by adding dropwise to a solution containing the compound represented by (preferably cyclopentylmethyl ether solution) for a long period of time, preferably a solution of the compound represented by Formula G-8 (preferably cyclopentylmethyl ether solution) can be added dropwise over a long period of time to a solution containing a Lewis acid and the compound represented by formula G-3 (preferably a cyclopentylmethyl ether solution).
  • the dropwise addition time is not limited as long as the reaction proceeds, but is, for example
  • the step includes a step of solid phase extraction of the compound of formula G-9 by contacting a solvent in which the compound of formula G-9 is dissolved with silica gel.
  • N-phenyltrifluoroacetamide which is a by-product of the glycosylation reaction, and other trace impurities that are not adsorbed to silica gel in the toluene solvent are not adsorbed to silica gel. It can be refined well.
  • Solvents for dissolving the compound represented by formula G-9 include, for example, toluene, heptane, dichloromethane, chloroform, or combinations thereof, preferably toluene, dichloromethane, chloroform, or these Combinations can be mentioned, and particularly preferably toluene can be mentioned, but not limited to these.
  • silica gel in this step for example, silica gel in an amount of 2 to 5 times the amount of the raw material can be used, and preferably silica gel in an amount of 2 to 4 times the amount of the raw material can be used. Preferably, about 3.5 times the amount of silica gel can be used with respect to the starting material.
  • the solvent for eluting the compound represented by formula G-9 adsorbed on silica gel is not particularly limited as long as it does not dissolve silica gel and can elute the desired product.
  • examples include ethyl acetate, Cyclopentyl methyl ether or tert-butyl methyl ether can be mentioned, preferably ethyl acetate.
  • This step can be performed, for example, by the method shown in Example 45.
  • Step V-8 is carried out by removing the tert-butoxycarbonyl group from the compound of formula G-9 to give the following formula G-10: is a step of producing a compound represented by This step can be performed by using or applying a known method, but preferably by the method shown in Example 46, for example.
  • Step V-9 further protects the hydroxyl group of the compound of formula G-10 as well as the nitrogen atom in the acetamide group with an acetyl group to give the following formula G-11: is a step of producing a compound represented by This step can be performed by using or applying a known method, but preferably by the method shown in Example 47, for example.
  • the step includes a step of solid phase extraction of the compound of formula G-11 by contacting a solvent in which the compound of formula G-11 is dissolved with silica gel.
  • By-products such as the diacetyl form of the compound represented by formula G-3, which is produced by acetylation of the compound represented by formula G-3 used in excess in the upstream glycosylation reaction, are not adsorbed on silica gel.
  • the compound represented by formula G-11 can be efficiently purified.
  • Solvents for dissolving the compound represented by formula G-11 include, for example, toluene, heptane, dichloromethane, chloroform, or combinations thereof, preferably toluene, dichloromethane, chloroform, or these Combinations can be mentioned, and particularly preferably toluene can be mentioned, but not limited thereto.
  • silica gel in this step for example, silica gel in an amount of 2 to 5 times the amount of the raw material can be used, and preferably silica gel in an amount of 2 to 4 times the amount of the raw material can be used. Preferably, about 3.5 times the amount of silica gel can be used with respect to the starting material.
  • the solvent for eluting the compound represented by formula G-11 adsorbed on silica gel is not particularly limited as long as it does not dissolve silica gel and can elute the desired product.
  • examples include ethyl acetate, Cyclopentyl methyl ether or tert-butyl methyl ether can be mentioned, preferably ethyl acetate.
  • Substep V-10 is a compound represented by formula G-11, by removing the allyl group attached to the carbon at position 1 of D-galactopyranoside to obtain the following formula G-12: is a step of producing a compound represented by This step can be performed by using or applying a known method, but preferably by the method shown in Example 48, for example.
  • the produced compound represented by formula G-12 may be dissolved in the solvent and used as it is in the next step, or may be isolated and purified by recrystallization.
  • the compound represented by the formula G-12 has a great advantage in that it can be isolated and purified by crystallization, and the compound represented by the formula G-12 with an HPLC purity of 99% or more can be obtained by crystallization. , since it does not contain impurities, it is possible to carry out the reaction in the next step stably.
  • Isolation and purification by recrystallization can be carried out, for example, by adding 2-propanol to a solution of ethyl acetate in which the compound represented by formula G-12 is dissolved to crystallize, preferably, for example, It can be carried out by the method shown in Example 48.
  • Substep V-11 involves reacting a compound of formula G-12 with 2,2,2-trifluoro-N-phenylacetimidoyl chloride (TFPC) to give the following formula D-7: is a step of producing a compound represented by This step can be performed by using or applying a known method, but preferably by the method shown in Example 49, for example.
  • TFPC 2,2,2-trifluoro-N-phenylacetimidoyl chloride
  • the compound represented by formula D-8 can be obtained in a purified form by the following purification method.
  • the purification method includes the compound represented by the above formula D-8 produced after the reaction between the compound represented by the above formula D-6 and the compound represented by the above formula D-7 and contaminants.
  • a hydrophobic carrier and water are added to a water-soluble organic solvent to adsorb the compound represented by the formula D-8 in the hydrophobic carrier, and then filtration and the hydrophobic carrier are combined with the water-soluble organic solvent and water. Contaminants are removed by washing with a mixed solution, and then the compound represented by the above formula D-8 is eluted from the hydrophobic carrier using an organic solvent.
  • the purification of the compound represented by formula D-8 above is not limited to the purification in this step. Therefore, in one aspect of the present invention, a hydrophobic carrier and water are added to a water-soluble organic solvent containing the compound represented by the above formula D-8 and contaminants, and the above formula D-8 is added to the hydrophobic carrier. The compound represented by is adsorbed, and then the impurities are removed by filtering and washing the hydrophobic carrier with a mixed solution of the water-soluble organic solvent and water. Also provided is a method comprising purifying the compound of formula D-8 above by eluting the compound of formula D-8 from a hydrophobic carrier.
  • contaminants refers to compounds and reagents other than the protected oligosaccharide (in this step, the compound represented by the formula D-8), reagents used in the synthesis reaction of the protected oligosaccharide, their residues, protected oligosaccharide It mainly means sugars other than protected oligosaccharides, such as monosaccharide or disaccharide compounds used in elongation reaction, or by-products produced by deprotection reaction of protected oligosaccharides.
  • step I-1- 1 is the same as that described in the method for purifying the compound represented by formula A-5 in 1.
  • This step is a step of removing the amino group-protecting group on the compound of formula D-8 and the acyl-based protecting group of the alcohol to produce the compound of formula D-9.
  • the removal (deprotection) of the amino-protecting group described above can be carried out by using or applying a known method, preferably, for example, by the method shown in Example 64, For example, it can be carried out by sequentially adding 1,2-dimethoxyethane and an aqueous solution of potassium hydroxide, sodium hydroxide, or lithium hydroxide, but is not limited thereto.
  • Step II-3-3 to Step II-3-4 are exemplary embodiments for producing a compound represented by Formula D-11 from a compound represented by Formula D-9. It is not limited to processes.
  • Step II-3-3> the amino group on the compound represented by formula D-9 is protected with an acetyl group to give the following formula D-10: is a step of producing a compound represented by Protection of the amino group with the acetyl group can be carried out by using or applying a known method, preferably by the method shown in Example 65, for example.
  • the compound represented by formula D-10 can be obtained in a purified form by the following purification method.
  • a hydrophobic carrier and water are added to a water-soluble organic solvent containing the compound represented by the above formula D-10 and contaminants produced, and the above formula D-10 is added to the hydrophobic carrier.
  • Impurities are removed by adsorbing the compound shown, then filtering and washing the hydrophobic carrier with a mixed solution of the water-soluble organic solvent and water, and then using an organic solvent to obtain the compound of formula D- purifying the compound of formula D-10 above by eluting the compound of formula D-10 from a hydrophobic carrier.
  • the purification of the compound represented by formula D-10 above is not limited to the purification in this step. Therefore, in one aspect of the present invention, a hydrophobic carrier and water are added to a water-soluble organic solvent containing the compound represented by the above formula D-10 and contaminants, and the above formula D-10 is added to the hydrophobic carrier. The compound represented by is adsorbed, and then the impurities are removed by filtering and washing the hydrophobic carrier with a mixed solution of the water-soluble organic solvent and water. Also provided is a method comprising purifying a compound of formula D-10 above by eluting the compound of formula D-10 from a hydrophobic carrier.
  • contaminants refers to compounds and reagents other than the protected oligosaccharide (in this step, the compound represented by formula D-10), reagents used in the reaction for synthesizing the protected oligosaccharide, their residues, and the protected oligosaccharide. It mainly means sugars other than protected oligosaccharides, such as monosaccharide or disaccharide compounds used in elongation reaction, or by-products produced by deprotection reaction of protected oligosaccharides.
  • step I-1- 1 is the same as that described in the method for purifying the compound represented by formula A-5 in 1.
  • This step is a step of removing the benzyl group from the benzyloxy group on the compound of formula D-10 to produce the compound of formula D-11 above.
  • Removal of the above benzyl group can be carried out by using or applying a known method, but can preferably be carried out, for example, by the method shown in Example 66, for example, in formula D-10 It can be carried out by adding N-methylpyrrolidone and Pd/C to the represented compound, decompressing ⁇ nitrogen replacement and hydrogen pressurizing ⁇ depressurizing, but not limited to these.
  • Step II-4 converts a compound of formula D-11 above to an azide PEG linker of formula D-12 below: (11-azido-3,6,9-trioxaundecane-1-amine) to produce an oligosaccharide represented by the above formula D-13.
  • the binding of the compound represented by Formula D-11 and the compound represented by Formula D-12 can be carried out by using or applying known methods.
  • a compound represented by Formula D-12, N-ethyldiisopropylamine, and hexafluorophosphoric acid (benzotriazole-1 -yloxy)tripyrrolidinophosphonium, bromotripyrrolidinophosphonium hexafluorophosphate, or 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium It can be carried out by sequentially adding chloride and then stirring, but is not limited to these.
  • the purification method it is possible to obtain a compound represented by the formula D-12 with high purity, and the compound represented by the formula D-12 has a purity measured by HPLC (herein also referred to as "HPLC purity” preferably 95% or higher, more preferably 96% or higher or 97% or higher, and still more preferably 98% or higher or 99% or higher.
  • HPLC purity preferably 95% or higher, more preferably 96% or higher or 97% or higher, and still more preferably 98% or higher or 99% or higher.
  • HPLC purity preferably 95% or higher, more preferably 96% or higher or 97% or higher, and still more preferably 98% or higher or 99% or higher.
  • the purpose of purifying the compound represented by D-12 is that the commercially available reagent for the compound is contaminated with a plurality of other impurities, including dimers.
  • the present inventors investigated a purification method for obtaining a compound represented by the formula D-12 with high purity, and found three types of tartaric acid derivatives represented by the above formula E-1 (wherein R 7 is a hydrogen atom , a methyl group, or a methoxy group), the compounds represented by the formula D-12 form 1:1 salts with their tartaric acid derivatives and can be isolated as crystals.
  • the obtained compound represented by the above formula E-2 is a novel crystalline compound, and after isolation, liquid separation with ethyl acetate/hydrochloric acid aqueous solution, etc., followed by freeing and extraction, the HPLC purity is higher than before purification. (preferably 95% or higher HPLC purity) can be obtained.
  • the above purification method is as follows as an exemplary method.
  • the compound represented by Formula E-1 is added to a solution of the compound represented by Formula D-12 in a solvent such as acetonitrile and water, and the mixture is stirred.
  • a solvent such as acetonitrile is added.
  • the resulting slurry liquid is concentrated under reduced pressure, and the slurry liquid is stirred to filter precipitated crystals.
  • the filtered crystals are washed with acetonitrile and dried under reduced pressure to obtain crystals of the compound represented by formula E-2 (crystal formation step).
  • concentrated hydrochloric acid is added to a solution of the obtained crystalline compound in ethyl acetate and water, and after stirring, the layers are separated.
  • a compound represented by can be obtained. More preferably, for example, it can be carried out by the methods shown in Examples 67-71.
  • the purification of the compound represented by the above formula D-12 is not limited to the purification in this step. Accordingly, in one aspect of the present invention, a solution containing the crude compound of formula D-12 above is added with a compound of formula E-1 above (wherein R 7 is a hydrogen atom, a methyl group, or a methoxy is a group) to generate a crystalline compound represented by the above formula E-2 (wherein R 7 is a hydrogen atom, a methyl group, or a methoxy group), and the crystalline compound and then extracting the compound of formula D-12 from the isolated crystalline compound.
  • a compound of formula E-1 above wherein R 7 is a hydrogen atom, a methyl group, or a methoxy is a group
  • a crystalline compound represented by the above formula E-2 wherein R 7 is a hydrogen atom, a methyl group, or a methoxy group
  • the oligosaccharide intermediate represented by the above formula A-13 is useful in the production of the oligosaccharide, but is not limited to the production of the oligosaccharide and can be applied to all uses. Accordingly, the present invention provides oligosaccharides represented by formula A-13 above and intermediates thereof.
  • Formula A-13 An oligosaccharide represented by is provided.
  • Formula A-5 A compound represented by is provided.
  • Formula A-6 A compound represented by is provided.
  • Formula A-7 A compound represented by is provided.
  • Formula A-9 A compound represented by is provided.
  • Formula A-10 below A compound represented by is provided.
  • Formula A-14 below A compound represented by is provided.
  • Formula A-15 A compound represented by is provided.
  • the intermediate of the compound represented by formula A-11 above is useful in the production of the compound, but is not limited to the production of the compound, and can be applied to all uses. Accordingly, the present invention also provides intermediates to compounds of formula A-11 above.
  • Formula B-4 A compound represented by is provided.
  • Formula B-5 A compound represented by is provided.
  • Formula B-6 A compound represented by is provided.
  • Formula B-7 A compound represented by is provided.
  • Formula B-8 A compound represented by is provided.
  • the oligosaccharide intermediate represented by the above formula D-13 is useful in the production of the oligosaccharide, but is not limited to the production of the oligosaccharide, and can be applied to all uses.
  • the present invention provides oligosaccharides represented by formula D-13 above and intermediates thereof (including compounds represented by formula A-13 above and intermediates thereof).
  • Formula D-13 An oligosaccharide represented by is provided.
  • Formula D-1 A compound represented by is provided.
  • Formula D-4 A compound represented by is provided.
  • Formula D-5 A compound represented by is provided.
  • D-5-FMA of the following formula: A compound represented by is provided.
  • Formula D-6 (wherein R 5 is an aryloxycarbonyl (COOAr) group, an acetyl (Ac) group, or a 2,2,2-trichloroethoxycarbonyl (Troc) group, and R 6 is a hydrogen atom or R 5 and R 6 form a phthalimido group with the nitrogen atom to which they are attached).
  • R 5 is an aryloxycarbonyl (COOAr) group, an acetyl (Ac) group, or a 2,2,2-trichloroethoxycarbonyl (Troc) group
  • R 6 is a hydrogen atom or R 5 and R 6 form a phthalimido group with the nitrogen atom to which they are attached.
  • Formula D-8 (wherein R 5 is an aryloxycarbonyl (COOAr) group, an acetyl (Ac) group, or a 2,2,2-trichloroethoxycarbonyl (Troc) group, and R 6 is a hydrogen atom or R 5 and R 6 form a phthalimido group with the nitrogen atom to which they are attached).
  • R 5 is an aryloxycarbonyl (COOAr) group, an acetyl (Ac) group, or a 2,2,2-trichloroethoxycarbonyl (Troc) group
  • R 6 is a hydrogen atom or R 5 and R 6 form a phthalimido group with the nitrogen atom to which they are attached).
  • Formula D-9 is provided, wherein M + is a sodium ion, lithium ion, potassium ion, or a protonated triethylamine cation.
  • Formula D-10 is provided, wherein M + is a sodium ion, lithium ion, potassium ion, or a protonated triethylamine cation.
  • Formula D-11 is provided, wherein M + is a sodium ion, lithium ion, potassium ion, or a protonated triethylamine cation.
  • Formula E-2 is provided, wherein R 7 is a hydrogen atom, a methyl group, or a methoxy group.
  • Formula D-12 having a purity of 95% or greater as measured by HPLC A compound represented by is provided.
  • compounds of formula D-12 above are provided having a purity of 95% or greater as determined by HPLC.
  • a biantennary glycan having an ⁇ 2,6-sialic acid structure at the non-reducing end is converted to a glycoprotein or the like (particularly, a sugar chain remodeling antibody or Provided are novel glycoproteins and the like, which are used as donor molecules in synthesizing their FC region-containing molecules or antibody-drug conjugates, and novel production methods thereof.
  • the oligosaccharide represented by formula D-13 obtained by the production method of the present invention is a glycoprotein (particularly, a sugar chain remodeling antibody or Fc region-containing molecule, or an antibody-drug conjugate). It can be used for manufacturing (WO2019/065964, WO2020/050406, etc.), but is not limited to this, and can also be used for other uses.
  • hydrolytic enzymes are first used to excise heterogeneous sugar chains attached to proteins (antibodies, etc.), leaving only terminal N-acetylglucosamine (GlcNAc), and GlcNAc is added.
  • a homogenous protein moiety is prepared (hereinafter referred to as the "acceptor molecule”).
  • donor molecule a separately prepared arbitrary sugar chain is prepared (hereinafter referred to as “donor molecule”), and the acceptor molecule and the donor molecule are linked using a glycosyltransferase.
  • uniform glycoproteins with arbitrary sugar chain structures can be synthesized.
  • the oligosaccharide represented by the formula D-13 produced using the novel production method of the present invention is transformed into the uniform glycoprotein (particularly sugar It can be used as a donor molecule in synthesizing chain-remodeling antibodies (or Fc region-containing molecules thereof).
  • the room temperature is 15°C to 35°C.
  • Silica gel chromatography is Biotage Sfar HC D (20 ⁇ m, manufactured by Biotage)
  • reversed-phase column chromatography is Universal Column ODS Premium 30 ⁇ m L size (manufactured by Yamazen Co., Ltd.) and Inject column ODS L size (manufactured by Yamazen Co., Ltd.)
  • preparative HPLC was performed using an Agilent Preparative HPLC System (manufactured by Agilent Technology).
  • XBridge Prep OBD 5 ⁇ m, C18, 130 ⁇ , 250 ⁇ 30 mm, manufactured by Waters
  • Example 1 2-O-acetyl-3,4,6-tri-O-benzyl-D-mannopyranose (compound represented by formula A-2) 3,4,6-tri-O-benzyl-1,2-O-(1-methoxyethylidene)- ⁇ -D-mannopyranose (compound represented by formula A-1) (40.0 g, 78.9 mmol ) was added to a 1 L 4-bore flask followed by ethyl acetate (400 mL). Water (2 mL) and p-TsOH.H 2 O (45 mg, 0.237 mmol) were added at room temperature under a nitrogen atmosphere, and the mixture was stirred at the same temperature for 6 hours.
  • Toluene (400 mL) was added again, and the mixture was concentrated under reduced pressure to a liquid volume of 80 mL.
  • Dehydrated toluene (120 mL) was added to obtain a toluene solution of 2-O-acetyl-3,4,6-tri-O-benzyl-D-mannopyranose (compound represented by formula A-2) as a colorless solution. .
  • a toluene solution (78.9 mmol) of 2-O-acetyl-3,4,6-tri-O-benzyl-D-mannopyranose (compound represented by formula A-2) was added to a 1 L flask, and trichloroacetonitrile ( 12 mL, 118 mmol) and DBU (119 ⁇ L, 0.789 mmol) were added. Stir at 0° C. for 2 hours under nitrogen.
  • Ethyl acetate (2.4 L) and water (600 mL) were added to the acetonitrile layer and the layers were separated to obtain an organic layer A and an aqueous layer.
  • a mixed solution of ethyl acetate (1.5 L) and tetrahydrofuran (1.5 L) was again added to the aqueous layer to separate the layers to obtain an organic layer B and an aqueous layer.
  • the organic layers A and B were mixed, washed with saturated brine (600 mL), and concentrated under reduced pressure until the liquid volume reached 1.5 L (precipitation of crystals was confirmed at the concentration stage). Further ethyl acetate (4.5 L) was added and concentrated again until the liquid volume reached 3 L.
  • Silica gel 60N (manufactured by Kanto Kagaku, particle size: 40 to 50 ⁇ m, 150 g) was added to this solution, stirred for 1.5 hours, and then filtered. The silica gel was washed with dichloromethane (1.5 L), and the filtrate was concentrated under reduced pressure until the liquid volume became 450 mL. Dichloromethane (1.5 L) was further added, and the liquid volume was concentrated to 450 mL. -(2,2,2-Trichloroethanimidoyl)-D-glycero-hexopyranose (compound of formula C-6) was obtained as a dichloromethane solution. This product was directly used in the next step.
  • Methyl isobutyl ketone (2.1 L) was added to the resulting crude compound represented by formula C-8 (350.00 g) and dissolved at 50° C., followed by addition of ethylcyclohexane (1.4 L) over 1 hour. Dripped.
  • O-benzylidene-3-O-[(naphthalen-2-yl)methyl]- ⁇ -D-glucopyranosyl ⁇ -2-deoxy-2-(1,3-dioxo-1,3-dihydro-2H-isoindole- 2-yl)- ⁇ -D-glucopyranoside (compound represented by formula C-10) was obtained as a toluene solution containing 1-methylimidazole. This product was directly used in the next step.
  • Example 17 4-methoxyphenyl 3,6-di-O-benzyl-4-O- ⁇ 4,6-O-benzylidene-3-O-[(naphthalen-2-yl)methyl]-2-O-(trifluoromethanesulfonyl )- ⁇ -D-glucopyranosyl ⁇ -2-deoxy-2-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)- ⁇ -D-glucopyranoside (shown by formula C-11 compound (where X 1 is a Tf group))
  • trifluoromethanesulfonic anhydride (16.53 g, 58.59 mmol) was added dropwise over 1 hour and then stirred for 30 minutes. After confirming the completion of the reaction by HPLC, water (300 mL) was added and separated into an organic layer and an aqueous layer. The organic layer was washed twice with water (300 mL) and once with a saturated aqueous sodium chloride solution (150 mL), and concentrated under reduced pressure until the liquid volume reached 90 mL.
  • the reaction solution was partially subdivided and concentrated to precipitate a solid, which was used.
  • This reaction uses tetrabutylammonium acetate manufactured by Tokyo Chemical Industry Co., Ltd. (product code: T2694, purity: >90.0%) and Sigma-Aldrich (product code: 86849, purity: >90%). Then, the reaction progresses satisfactorily. Note that other manufacturers' tetrabutylammonium acetate may contain excess acetic acid, which tends to significantly retard the reaction. Alternatively, similar transformations are possible using cesium acetate (described in detail below).
  • Acetic acid (0.72 g, 11.95 mmol) was added to the solution and filtered. After washing the molecular sieve 4A with ethyl acetate (90 mL), water (60 mL) was added for liquid separation. The organic layer was washed twice with water (60 mL) and then concentrated under reduced pressure until the liquid volume reached 12 mL. Add toluene (30 mL), concentrate again until the liquid volume reaches 12 mL, add toluene (18 mL) and silica gel 60N (spherical, manufactured by Kanto Kagaku, particle size: 40 to 50 ⁇ m) (9 g), and stir at 25° C. for 30 minutes. bottom.
  • borane-tetrahydrofuran complex (0.91 mol/L tetrahydrofuran solution) (18.06 mL, 16.43 mmol) and copper (II) trifluoroacetate (0.59 g, 1.64 mmol) for 3 hours.
  • methanol 5.5 mL was added and the mixture was further stirred for 30 minutes.
  • This solution was filtered, the molecular sieve 4A was washed with ethyl acetate (110 mL), 0.5 N hydrochloric acid (55 mL) was added, and the mixture was stirred for 30 minutes.
  • trimethylsilyl trifluoromethanesulfonate (2.7 mL, 15.1 mmol) was added dropwise at ⁇ 15° C. over 15 minutes, and the mixture was stirred at the same temperature for 30 minutes.
  • triethylamine (4.2 mL, 30.2 mmol) was added and the temperature was raised to room temperature. The reaction solution was filtered through celite and then washed with acetonitrile (195 mL).
  • the filtrate was concentrated under reduced pressure, acetonitrile (650 mL) was added to the concentrated residue, and reverse phase silica gel 120RP-18 (manufactured by Kanto Kagaku, particle size: 40 to 50 ⁇ m, 97.5 g) was added.
  • Water 130 mL was added dropwise over 30 minutes to allow the target substance to be adsorbed on the solid phase, followed by filtration. After washing the solid phase with acetonitrile/water (3/1, 326 mL) (the filtrate was discarded), the desired product was desorbed with an acetonitrile (585 mL)-ethyl acetate (65 mL) solution.
  • trimethylsilyl trifluoromethanesulfonate (545 ⁇ L, 2.83 mmol) was added dropwise at ⁇ 15° C. over 5 minutes, and the mixture was stirred at the same temperature for 1 hour.
  • triethylamine (1.67 mL, 11.32 mmol) was added and the temperature was raised to room temperature.
  • the reaction solution was filtered and washed with acetonitrile (160 mL). The filtrate was concentrated under reduced pressure to 97.5 mL, acetonitrile (650 mL) was added, and concentrated under reduced pressure again to 97.5 mL.
  • Acetonitrile (488 mL) and reverse-phase silica gel 120RP-18 (manufactured by Kanto Kagaku, particle size 40-50 ⁇ m, 130 g) were added.
  • Water (146 mL) was added dropwise over 30 minutes to allow the target substance to be adsorbed on the solid phase, followed by filtration. It was washed with acetonitrile (536 mL)-water (146 mL) (the filtrate was discarded), and the desired product was desorbed with acetonitrile (975 mL)-ethyl acetate (244 mL).
  • t-butyldimethylsilyl trifluoromethanesulfonate (2.4 mL, 10.4 mmol) was added dropwise at ⁇ 78° C. over 5 minutes, and the mixture was stirred at the same temperature for 10 hours.
  • Triethylamine (4.6 mL, 33.2 mmol) was added and the temperature was raised to room temperature.
  • the reaction solution was filtered through Celite and washed with acetonitrile (150 mL). The filtrate was concentrated under reduced pressure to 150 mL, acetonitrile (600 mL) was added, and then concentrated under reduced pressure to 150 mL.
  • Acetonitrile (600 mL) and reverse-phase silica gel 120RP-18 (manufactured by Kanto Kagaku, particle size: 40 to 50 ⁇ m, 135 g) were added.
  • Water (120 mL) was added dropwise over 30 minutes to allow the solid phase to adsorb the desired product, followed by filtration. After washing the solid phase with acetonitrile (900 mL)-water (135 mL) (the washing solution was discarded), the desired product was desorbed from the solid phase with an acetonitrile (840 mL)-ethyl acetate (210 mL) solution.
  • Acetonitrile (1528 mL) and reverse phase silica gel 120RP-18 (manufactured by Kanto Kagaku, particle size 40 to 50 ⁇ m, 573 g) were added to the residue.
  • Water (1242 mL) was added dropwise over 30 minutes to allow the solid phase to adsorb the desired product, followed by filtration. After washing the solid phase with acetonitrile (1337 mL)-water (573 mL) (the washing liquid was discarded), the solid phase was washed with methanol (955 mL). After that, the desired product was desorbed from the solid phase with an acetonitrile (6876 mL)-tetrahydrofuran (764 mL) solution.
  • Example 28-2 Compounds of formula A-13 were purified by using the procedure according to the scheme below. As shown below, by this purification method, a highly pure compound represented by formula A-13 could be obtained without HPLC preparative purification.
  • reaction mixture was cooled to 0°C and neutralized by dropping hydrochloric acid (6M, 11 mL, 7.5 equivalents) at 10°C or lower.
  • hydrochloric acid 6M, 11 mL, 7.5 equivalents
  • Ethyl acetate (250 mL) and 3% brine (250 mL) were added, and the pH of the aqueous layer was adjusted to 2.0 or lower with hydrochloric acid (6 M) while stirring.
  • the aqueous layer was removed by liquid separation, and the resulting organic layer was washed with 3% saline (250 mL).
  • the organic layer was concentrated to 38 mL, ethyl acetate (250 mL) was added and concentrated to 38 mL.
  • Powder X-ray crystallographic analyzer Rigaku ⁇ measurement conditions> Wavelength: Cuka/1.541862 ⁇ Goniometer: MiniFlex 300/600 Scan speed: CONTINUOUS Scan speed/counting time: 10.00 Step width: 0.02deg Scan axis: 2 ⁇ / ⁇ Scan range: 3.00 to 40.00 deg Filter: K-beta (x1) Rotation: Yes ⁇ Powder X-ray crystallography measurement chart of compound of formula A-14>
  • This dichloromethane solution was passed through silica gel (36 g, Chromatorex SMB100-20/45 manufactured by Fuji Silysia) and eluted with a diisopropyl ether/dichloromethane mixed solvent (7/93, 720 mL) (90 mL Each fraction was divided and the solution was collected). Purity was measured by HPLC, fractions were selected, and the selected fractions were mixed and then concentrated to 18 mL. After cyclopentyl methyl ether (90 mL) was added to the concentrate to concentrate it to 36 mL, this solution was added dropwise to isopropanol (630 mL) cooled to 0° C. with stirring over 30 minutes.
  • Example 29 For the deacylation reaction to form the compound of Formula C-9 from the compound of Formula C-8 in Example 15 above, the reaction conditions shown in the table below were used for the deacylation reaction. A comparative experiment was conducted. Entries 1-3 are comparative examples, and Entries 4 and 5 are examples of the present invention.
  • Example 30 The de-2-naphthylmethylation reaction of the compound of formula A-12 containing 15 benzyl groups and 1 2-naphthylmethyl group was carried out under conventional conditions (CH 2 Cl 2 — H 2 O) (Entry 1) and the method of the present invention (HFIP-H 2 O) (Entry 2, 3), analyzed by HPLC, and the target product (compound represented by formula A-13) and excess reactant The area peak ratio of a certain debenzylated form was calculated. Results are shown in the table below.
  • Example 31 The de-2-naphthylmethylation reaction of compounds of Formula A-4 containing four benzyl groups and one 2-naphthylmethyl group was carried out under conventional conditions (CH 2 Cl 2 —H 2 O) (Entry 1), the method of the present invention (HFIP-H 2 O) (Entry 2), the acidic conditions (Entry 3), and the hydrogenation conditions (Entry 4) were reacted, and the target product (the following The area peak ratio of the compound represented by formula A-4') was calculated. Results are shown in the table below.
  • Example 32 The de-2-naphthylmethylation reaction of the compound of formula A-10 containing nine benzyl groups and one 2-naphthylmethyl group was carried out under conventional conditions (CH 2 Cl 2 —H 2 O) (Entry 1) and the method of the present invention (HFIP-H 2 O) (Entry 2) were reacted, and by analysis using HPLC, the area peak ratio of the target compound (compound represented by formula A-10′ below) was obtained. was calculated. Results are shown in the table below.
  • Example 33 ⁇ Separation and Purification of Compound Represented by Formula A-8 and Compound Represented by Formula A-9>
  • Examples of separating and purifying the compound represented by formula A-8 and the compound represented by formula A-9, which are sugar acceptors used in tetrasaccharide synthesis, are shown below.
  • the sugar acceptor compound of formula A-8 and the tetrasaccharide compound of formula A-9 are very close in polarity in normal-phase silica gel column chromatography, e.g. Under ethyl acetate conditions, the Rf values were the same and separation was difficult.
  • the experimental procedure is as follows. First, triethylamine was added to the post-reaction solution to terminate the reaction, followed by filtration through a molecular sieve, and after concentration, acetonitrile was added. After adding octadecyl-modified silica gel to the solution, water was added to adsorb the compound represented by formula A-9, which is a tetrasaccharide. When the filtrate at this time was analyzed by HPLC, it was found that the tetrasaccharide compound represented by formula A-9 was adsorbed and the monosaccharide compound represented by formula A-8 was present in the filtrate.
  • the resulting organic layer was concentrated under reduced pressure to 490 mL (precipitation of crystals was confirmed during concentration), and heptane (735 mL) was added dropwise. After cooling the resulting slurry liquid to 0° C. to 5° C., the mixture was stirred at the same temperature for 1 hour, and the precipitated crystals were filtered. The filtered crystals were washed with a mixture of ethyl acetate and heptane (39/118 mL) at 0°C to 5°C, dried under reduced pressure at 40°C, and 4-O-acetyl-3,6-di-O-benzyl.
  • N-methylimidazole (3.40 g, 41.39 mmol) and 2,2,2-trifluoro-N-phenylacetimidoyl chloride (8.20 g, 39.51 mmol) were sequentially added at 0° C. under nitrogen, The mixture was stirred at the same temperature for 18 hours. After confirming the completion of the reaction by HPLC, the reaction solution was filtered and washed with dichloromethane (100 mL). The filtrate was filtered through a neutral silica gel pad (silica gel 60N, manufactured by Kanto Kagaku, particle size: 40 to 50 ⁇ m, 60 g) filled with dichloromethane, and 100 mL portions were collected.
  • a neutral silica gel pad sica gel 60N, manufactured by Kanto Kagaku, particle size: 40 to 50 ⁇ m, 60 g
  • the silica gel pad was washed with dichloromethane (400 mL, 100 mL aliquots) and ethyl acetate/dichloromethane (1:4, 400 mL, 100 mL aliquots) and selected fractions were concentrated until the volume reached 40 mL. Add toluene (200 mL) and concentrate again until the liquid volume reaches 40 mL. Add toluene (200 mL) and concentrate until the liquid volume reaches 40 mL.
  • O-benzyl-2-deoxy-2-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-O-[2,2,2-trifluoro-N-phenylethanimide yl]- ⁇ -D-glucopyranoside (compound represented by formula D-3) was obtained as a toluene solution. This product was directly used in the next step.
  • D-galactopyranose (20.00 g, 111.01 mmol) was added to a 500 mL 4-diameter flask followed by allyl alcohol (200.0 mL). Under a nitrogen atmosphere, p-TsOH.H 2 O (2.11 g, 11.10 mmol) was added at room temperature, the temperature was raised to 70° C., and the mixture was stirred for 24 hours. The reaction solution was cooled to 40° C., added with triethylamine (1.69 g, 16.65 mmol), stirred for 5 minutes, and concentrated under reduced pressure to a volume of 100 mL. nBuOH (200 mL) was added dropwise to this concentrate over 30 minutes, and the mixture was stirred at room temperature for 1 hour.
  • reaction solution was concentrated under reduced pressure to a liquid volume of 80 mL, and stirred overnight at room temperature.
  • the suspension was filtered, and the crystals were washed with nBuOH (40 mL) at 0°C and dried under reduced pressure at 40°C to obtain allyl ⁇ -D-galactopyranoside (compound represented by G-0) ( 8.41 g, yield 34.4%) was obtained as white crystals.
  • reaction solution was concentrated under reduced pressure to a liquid volume of 25 mL, and stirred overnight at 0°C. Subsequently, after filtering the suspension, the obtained crystals were washed with isopropyl alcohol (5 mL) cooled to 0° C. and dried under reduced pressure at 40° C. to obtain prop-2-en-1-yl. 6-O-benzylidene- ⁇ -D-galactopyranoside (compound represented by formula G-1) (5.35 g, yield 76.3%) was obtained as white crystals.
  • a toluene (330 mL) slurry containing neutral silica gel (silica gel 60N, manufactured by Kanto Kagaku, particle size: 40 to 50 ⁇ m, 141 g) cooled to 0°C to 5°C was poured. The mixture was added and stirred at the same temperature for 15 minutes to adsorb the product onto silica gel, followed by filtration. After washing the silica gel solid phase containing the product with toluene (942 mL) at 0° C. to 5° C.
  • the temperature of the obtained concentrate was adjusted to 15° C., water (20 mL) and ethyl acetate (722 mL) were added, and after stirring at 25° C. for 1 hour, the slurry was cooled to 0° C. to 5° C. The mixture was stirred at warm temperature for 2 hours. The precipitated crystals are filtered, washed with ethyl acetate (80 mL) at 0° C.
  • reaction solution was cooled to 15° C.
  • acetic anhydride (12.05 g, 118.03 mmol) was added, and the mixture was stirred at the same temperature for 47 hours.
  • methanol 40 mL was added, the temperature was adjusted to 25° C., and the mixture was stirred at the same temperature for 2 hours.
  • sodium acetate (0.97 g, 11.82 mmol) was added, and the mixture was further stirred at the same temperature for 1 hour.
  • the reaction mixture was concentrated under reduced pressure to 120 mL, cooled to 0°C to 5°C, ethyl acetate (403 mL) and water (161 mL) were added, and triethylamine was added while stirring at 0°C to 5°C to adjust the pH to 7.0. adjusted to 0.
  • the organic layer obtained by liquid separation was washed twice with 10% brine (121 mL) and concentrated under reduced pressure to 200 mL.
  • Ethyl acetate (605 mL) was added to the concentrate, and the mixture was again concentrated under reduced pressure to 200 mL.
  • Ethyl acetate (40 mL) was added to the concentrate, seed crystals were inoculated, and after stirring at 25° C.
  • N-methylimidazole 11.03 g, 134.33 mmol
  • the reaction solution was filtered and washed with dichloromethane (88 mL) to obtain a filtrate.
  • the obtained filtrate was cooled to 0° C., cold water (440 mL) was added, and triethylamine was added while stirring at 0° C. to 5° C. to adjust the pH to 7.5. After stirring at 0° C. to 5° C.
  • Toluene (195 mL) was added to the concentrate, and the mixture was again concentrated under reduced pressure to 117 mL.
  • the concentrate was filtered using a silica gel-filled funnel (silica gel 60N, manufactured by Kanto Kagaku, particle size: 40 to 50 ⁇ m, 117 g, toluene wet filling), and filtered with a toluene/ethyl acetate mixture (8/2) (975 mL). After washing, a filtrate was obtained. The resulting filtrate was concentrated under reduced pressure (to a weight of 59 g) and cyclopentyl methyl ether (23 mL) was added.
  • aqueous hydrochloric acid 350 mL was added to the organic layer, and the mixture was stirred at 20°C for 2 hours. After confirming the decomposition of the by-products by HPLC, liquid separation was performed to obtain an organic layer. The organic layer was washed with water (350 mL) and 20% brine (175 mL), and concentrated under reduced pressure to 70 mL. Toluene (700 mL) was added to the concentrate, and the mixture was concentrated under reduced pressure to 70 mL.
  • toluene (700 mL) and neutral silica gel (silica gel 60N, manufactured by Kanto Kagaku, particle size: 40 to 50 ⁇ m, 158 g) were added to the concentrate, and the mixture was stirred at 20° C. for 30 minutes. After the product is adsorbed on silica gel, it is filtered, and the silica gel solid phase containing the product is washed with toluene (1575 mL) (the filtrate when washing with toluene is discarded), and the desired product is removed from the silica gel with ethyl acetate (875 mL). detached.
  • Example 48 4-O-acetyl-2,3-di-O-benzoyl-6-O-[4,7,8,9-tetra-O-acetyl-3,5-dideoxy-5-(diacetylamino)-1- Methyl-D-glycero- ⁇ -D-galacto-non-2-uropyranosyl]-D-galactopyranose (compound represented by Formula G-12)
  • the organic layer was washed four times with 20% aqueous methanol (580 mL) to remove 1,3-dimethylbarbituric acid in the aqueous layer, then concentrated under reduced pressure to 58 mL, toluene (435 mL) was added, and the pressure was reduced to 58 mL again. Concentrated. Toluene (383 mL), chloroform (197 mL), and neutral silica gel (silica gel 60N, manufactured by Kanto Kagaku, particle size: 40 to 50 ⁇ m, 145 g) were added to the concentrated solution, and the mixture was stirred for 30 minutes to allow the product to be adsorbed onto the silica gel. After that, it was filtered.
  • the resulting solution was concentrated under reduced pressure to 58 mL, toluene (145 mL) was added, and concentrated under reduced pressure again to 58 mL.
  • the concentrate was purified by a silica gel column (silica gel 60N, manufactured by Kanto Kagaku, particle size: 40-50 ⁇ m, 290 g, mobile phase hexane/ethyl acetate 50/50-30/70), and selected fractions were concentrated under reduced pressure to 29 mL.
  • Ethyl acetate (290 mL) and activated carbon (Shirasagi A, 14.5 g) were added to the concentrate, stirred for 30 minutes, filtered and washed with ethyl acetate (87 mL) to obtain a purified ethyl acetate solution containing the desired product. rice field.
  • N-methylimidazole (1.91 g, 23.3 mmol) and 2,2,2-trifluoro-N-phenylacetimidoyl chloride (4.39 g, 21.1 mmol) were added at the same temperature under nitrogen, and the mixture was cooled to room temperature. and stirred for 24 hours.
  • the reaction solution was filtered and washed with dichloromethane (100 mL).
  • the filtrate was filtered through a neutral silica gel pad (silica gel 60N, manufactured by Kanto Kagaku, particle size: 40 to 50 ⁇ m, 60 g) filled with dichloromethane, and 100 mL portions were collected.
  • the silica gel pad was washed with ethyl acetate/dichloromethane (1:9, 1000 mL, 200 mL each), and the selected fractions were concentrated under reduced pressure to give 4-O-acetyl-2,3-di-O-benzoyl-6.
  • a toluene solution (9.00 mmol) of 2-O-acetyl-3,4,6-tri-O-benzyl-D-mannopyranose (compound represented by formula A-2) was added to a 100 mL eggplant flask. After cooling to °C, trichloroacetonitrile (1.95 g, 13.5 mmol) and DBU (13.5 ⁇ L, 8.96 ⁇ mol) were added. Stir at 0° C. for 4 hours under nitrogen.
  • trimethylsilyl trifluoromethanesulfonate (38.5 ⁇ L, 0.212 mmol) was added dropwise at ⁇ 15° C. over 15 minutes, and the mixture was stirred at the same temperature for 1 hour.
  • triethylamine (0.19 mL, 1.06 mmol) was added, and the mixture was stirred at room temperature for 30 minutes.
  • the filtrate was washed with acetonitrile (30 mL), and the obtained filtrate was concentrated under reduced pressure to a liquid volume of 6 mL.
  • Acetonitrile (30 mL) was added again, and the mixture was concentrated under reduced pressure to a liquid volume of 6 mL.
  • Acetonitrile (30 mL) was added to this concentrate, and reversed-phase silica gel 120RP-18 (manufactured by Kanto Kagaku, particle size 40 to 50 ⁇ m, 9.0 g) was added.
  • Water (20 mL) was added dropwise over 30 minutes to allow the target substance to be adsorbed on the solid phase, followed by filtration. After washing the solid phase with acetonitrile/water (5:4, 90 mL) (the filtrate was discarded), the desired product was desorbed with acetonitrile/tetrahydrofuran (9:1, 180 mL). The resulting filtrate was concentrated under reduced pressure to a liquid volume of 6 mL.
  • Example 55-2 The compound represented by formula D-5 was purified by the following method, including obtaining crystals of the fumarate salt of the compound. This purification method achieved a significant improvement in the purity of the compound represented by the formula D-5-FMA, and made it possible to remove a plurality of impurities including anomeric isomers into the filtrate. .
  • the obtained organic layer was concentrated under reduced pressure, acetonitrile (25 mL) was added to the residue, and reverse phase silica gel 120RP-18 (manufactured by Kanto Kagaku, particle size 40 to 50 ⁇ m, 7.5 g) was added.
  • Water (10 mL) was added dropwise to allow the target substance to be adsorbed on the solid phase, followed by filtration. After the filter cake was washed with acetonitrile/water (5:1, 60 mL), it was washed with toluene (200 mL) in order to elute the target substance from the filter cake.
  • trimethylsilyl trifluoromethanesulfonate (24.4 ⁇ L, 0.11 mmol) was added dropwise at ⁇ 15° C. over 5 minutes, and the mixture was stirred at the same temperature for 1 hour.
  • triethylamine (0.15 mL, 1.06 mmol) was added, and the mixture was stirred at room temperature for 30 minutes.
  • the filtrate was washed with acetonitrile (40 mL), and the obtained filtrate was concentrated under reduced pressure to a liquid volume of 6 mL.
  • Acetonitrile (40 mL) was added to this solution, and reversed-phase silica gel 120RP-18 (manufactured by Kanto Kagaku, particle size 40 to 50 ⁇ m, 12.0 g) was added.
  • Water (40 mL) was added dropwise over 30 minutes to allow the target substance to be adsorbed on the solid phase, followed by filtration. After washing the solid phase with acetonitrile/water (3:2, 90 mL) (the filtrate was discarded), the desired product was desorbed with acetonitrile/tetrahydrofuran (9:1, 180 mL).
  • Triisopropylsilyl trifluoromethanesulfonate 50 ⁇ L was added dropwise at ⁇ 15° C., and the mixture was stirred at the same temperature for 1 hour. After confirming the completion of the reaction by HPLC, triethylamine (84 ⁇ L) was added and the temperature was raised to room temperature. After filtering the reaction mixture through a filter, the filtrate was washed with acetonitrile (50 mL), and the obtained filtrate was concentrated under reduced pressure.
  • reaction solution 1 Molecular sieves were filtered off from the resulting reaction suspension at room temperature and washed with dichloromethane (3 mL). The obtained solution was concentrated to dryness and acetonitrile (1 mL), methanol (0.1 mL) and trifluoroacetic acid (5 ⁇ L) were added sequentially. After stirring for 1 hour, triethylamine (10 ⁇ L) was added (reaction solution 1).
  • reaction solution 2 After 14 hours, triethylamine (20 ⁇ L) was added and the resulting reaction suspension was filtered at room temperature to remove molecular sieves and washed with dichloromethane (3 mL). The obtained solution was concentrated to dryness and acetonitrile (4 mL), methanol (0.1 mL) and trifluoroacetic acid (10 ⁇ L) were added sequentially. After stirring at 0° C. for 1 hour, triethylamine (25 ⁇ L) was added (reaction solution 2).
  • Trimethylsilyl trifluoromethanesulfonate (0.25 ⁇ L) was added dropwise at ⁇ 15° C., and the mixture was stirred at the same temperature for 1 hour. After confirming the completion of the reaction by HPLC, triethylamine was added and the temperature was raised to room temperature.
  • reaction solution was purified by preparative TLC (toluene-ethyl acetate), and 4-methoxyphenyl 4,7,8,9-tetra-O-acetyl-3,5-dideoxy-5-(diacetylamino)-1- O-methyl-D-glycero- ⁇ -D-galacto-non-2-uropyranosyl-(2 ⁇ 6)-4-O-acetyl-2,3-di-O-benzoyl- ⁇ -D-galactopyranosyl -(1 ⁇ 4)-3,6-di-O-benzyl-2-deoxy-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)]- ⁇ - D-glucopyranosyl-(1 ⁇ 2)-3,4,6-tri-O-benzyl- ⁇ -D-mannopyranosyl-(1 ⁇ 3)-[2,3,4,6-tetra-O
  • Example 67 A compound represented by D-12 was purified according to Synthetic Scheme W below. The compounds shown below at the bottom left are examples of compounds in which "R 7 " in formula E1 is methyl. [Synthesis scheme W]
  • 11-azido-3,6,9-trioxaundecane-1-amine (compound of formula D-12) (10.0 g, 45.82 mmol, 94.3% HPLC purity) in acetonitrile (24 mL) and water (-)-Di-p-toluoyl-L-tartaric acid (17.70 g, 45.82 mmol) was added to the solution of (6 mL), stirred at 35°C, and after confirming dissolution, acetonitrile (300 mL) was added at the same temperature. was added dropwise over 1 hour. The resulting slurry liquid was concentrated under reduced pressure to 200 mL, the slurry liquid was stirred at 25° C.
  • Example 68 11-azido-3,6,9-trioxaundecane-1-amine (-)-di-p-toluoyl-L-tartrate salt obtained in Example 68 (compound represented by formula E-2-PTTA)
  • Concentrated hydrochloric acid (2.41 g, 23.82 mmol) was added to a solution of (12.0 g, 19.85 mmol) in ethyl acetate (120 mL) and water (18 mL), and the mixture was stirred at 25°C and then separated.
  • the resulting aqueous layer was washed twice with ethyl acetate (120 mL), adjusted to pH 11 with 10 N aqueous sodium hydroxide solution (2.15 mL, 21.50 mmol), and dissolved by adding sodium chloride (0.6 g). .
  • Dichloromethane (120 mL) was added, and after stirring, the mixture was separated to obtain an organic layer.
  • dichloromethane (120 mL) was added to the aqueous layer, and after stirring, the layers were separated, and the obtained organic layers were combined.
  • the combined organic layers were concentrated under vacuum to 12 mL, acetonitrile (120 mL) was added and concentrated under vacuum to 12 mL.
  • ⁇ Preparation of blank solution 2 mL of acetonitrile and 100 ⁇ L of triethylamine were added to a 10 mL volumetric flask and mixed. 50 ⁇ L of acetic anhydride was added, and after mixing, the mixture was allowed to stand for 15 minutes. After adding 150 ⁇ L of 4N aqueous sodium hydroxide solution and mixing, the mixture was diluted with 50% acetonitrile water to prepare a sample solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Saccharide Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

[課題]本発明の課題は、非還元末端にα2,6-シアル酸構造を有する2分岐型グリカンを製造するために使用し得る新規なオリゴ糖及びその製造方法、及びその製造中間体及びその中間体の製造方法、並びに、非還元末端にα2,6-シアル酸構造を有する2分岐型グリカンである新規なオリゴ糖及び当該オリゴ糖の製造方法、並びにその中間体及びその中間体の製造方法を提供することである。 [解決手段]以下の式A-13及びD-13:で示される新規なオリゴ糖、図1及び図3等に示される当該式A-13及び式D-13で示されるオリゴ糖の製造方法、並びにその中間体及びその中間体の製造方法を提供する。

Description

新規なオリゴ糖、該オリゴ糖の製造中間体、及びそれらの製造方法
 本発明は、非還元末端にα2,6-シアル酸構造を有する2分岐型グリカンである新規なオリゴ糖及び当該オリゴ糖の製造方法、並びにその中間体及びその中間体の製造方法に関する。
 タンパク質の糖鎖付加(グリコシル化)は、タンパク質の機能及び構造に大きな影響を与えることが知られている。中でもN-結合型糖鎖は、タンパク質の生理活性に深く関わっており、その中で、非還元末端にα2,6-シアル酸構造を有する2分岐型N-グリカンは、抗体依存性細胞傷害活性(ADCC活性)、補体依存性細胞傷害活性(CDC活性)を高める上で最適な構造であることが報告されている(非特許文献1)。
 糖鎖を利用した医薬品を開発、商用化する上で、高純度な糖鎖を安定的に大量かつ産業上利用できる価格で製造できることが望まれる。これまでに報告されているα2,6-シアリル糖鎖の合成は、1)天然抽出物の分離精製、あるいは主骨格前駆体の化学合成と酵素化学変換を組み合わせた半化学合成法、2)純化学合成法の2つの方法に大別される。
 例えば、半化学合成法としては、鶏卵の卵黄から、酵素を用いた手法と化学的な手法とを組み合わせることによって、N結合型糖鎖を取得できることが報告されている(非特許文献2)。これらの手法は、純化学合成に比べて少ない工程数で目的とする糖鎖を合成できる一方で、大量の卵黄の調達が必要となり、その後の卵黄からの単離精製、化学変換後の水溶性無保護糖鎖の精製にも特殊な技術、精製装置が必要となる場合が多い(特許文献1~4)。
 一方、α2,6-シアリル糖鎖の純化学合成法としては、下記の報告例がある。
(1)α2,6-シアリル部位を有する複合型11糖グリカンの全合成(非特許文献3)
(2)α2,6-シアリル部位を有するイムノグロルビンG13糖ペプチドの全合成(非特許文献4)
(3)コアフコースを含むα2,6-シアリル12糖N結合型糖鎖の全合成(非特許文献5)
(4)3位がフッ素化されたα2,6-シアリル10糖オリゴ糖鎖の全合成(非特許文献6)
(5)非対称に重水素化されたα2,6-シアリル2分岐型11糖オリゴ糖鎖並びに4分岐型17糖オリゴ糖鎖の全合成(非特許文献7)
 糖鎖の純化学合成は、堅牢な製造法を確立した場合、通常の低分子化合物と同様、単糖からの誘導を行うことで、製造数量の自由度は極めて高いものと考えられる。また、保護基で修飾された糖の変換を行うため、大部分の精製操作は非水溶性化合物の取り扱いとなり、作業の煩雑さ、作業工数は半化学合成法に比べて、有意に軽減されることが期待できる。更に確立した化学合成手法を応用することで多種の非天然型糖鎖を容易に合成することができる。
 一方、上記に記載した過去の報告例では、1)β―マンノシド部、α―シアリル部の構築などの難易度の高い糖パーツの変換、また、それらの連結工程において、低選択性、低収率の工程が存在していること、2)糖パーツ変換、及び、連結工程のいずれにおいても、スケールアップに不向きなシリカゲルカラムクロマト精製を工程毎に多用しており、反応で副生する異性体、不純物の除去を目的として、多くの工程でのクロマト精密分取精製操作が必須であること、の二点が合成上の大きな課題として挙げられる。
 以上のように、糖鎖の純化学合成法は、大量合成を志向する上で、半化学合成法に比べて潜在的なメリットを有しているものの、収率、選択性、効率性、コストの観点で、十分に技術開発が進んでいる状態とは言い難く、実際の大量合成法として採用された例は極めて少ない。更に分岐点のマンノース3,6位に異なる糖鎖ユニットが連結している2分岐型の糖鎖(α2,6-シアリル糖鎖)に関しては、天然抽出物からの誘導、半化学合成、全化学合成のいずれにおいても、構造的にその大量合成は非常に難しい。
 また、フタルイミド基によって保護された糖誘導体において、複数の水酸基を同時にベンジル化することが必要な場合がある。この場合、フタルイミド基の開環を抑制しつつ反応を進行させる必要があるが、フタルイミド基は強塩基性条件下、微量の水酸化物イオンの存在により、容易に開環反応が進行するため、従来のベンジル化反応に用いられているNaH/DMAc条件では、NaH中の水酸化ナトリウム量に依存して、大きく収率が変動する。更に、NaH/DMAcは、その混触危険性、爆発懸念から大量合成法としての適用は容易ではない。従って、フタルイミド基の開環を抑制しつつ、より温和な条件で、複数の水酸基を同時にベンジル化する手法が求められている。
 また、フタルイミド基によって保護された糖誘導体において、脱アシル化が必要となる場合がある。しかしながら、系内に微量水分が存在した場合、フタルイミド基は塩基性条件において容易に開環反応が進行するため、系内の水分量を厳密に制御する必要性があり、ppmオーダーの水分値であっても開環を完全に抑制することは困難である。従って、フタルイミド基の開環を抑制しつつ、脱アシル化を高収率で進行することができる手法が求められている。
 また、水酸基(複数可)を有するオリゴ糖鎖等の化学合成において、効率的に目的とする化合物を得るためには、かかる水酸基の選択的保護や脱保護の手法を合理的に利用する必要性があり、特に2-ナフチルメチル基は水酸基の一般的保護基として広く利用されてきた。一方、2-ナフチルメチル基の脱保護法としては、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノンをジクロロメタン-水中で利用する方法が知られており、当該手法は、幅広い基質に対して、中程度から高収率で目的とする脱保護体を与えるが、一般的にジクロロメタンと水が混和しないこと及びジクロロメタン-水に対して2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン及びその副生成物である2,3-ジクロロ-5,6-ジシアノ-p-ベンゾヒドロキノンがほとんど溶解しないことから撹拌性状に影響を及ぼすため大量合成への適用に課題があった。また、適用する基質によっては必ずしも満足できる収率で目的の脱保護体が得られないケースが報告されている(非特許文献8)。また、基質におけるベンジル基の増加によって反応収率が低下する傾向があり(非特許文献9)、複雑な基質に適用可能なより温和で効率的な手法の開発が望まれていた。かかる目的を達成する手段として、β-ピネンを添加剤として用いる改良条件の報告がされているが(非特許文献10)、当該手法を用いてもベンジル基を複数有する複雑な基質においては収率は中程度にとどまっている(非特許文献11)。上記のような背景から、より温和な条件下において、2-ナフチルメチル基の保護基を脱保護し、高収率で脱保護体を取得できる脱2-ナフチルメチル化反応の開発が望まれている。
 さらに、オリゴ糖鎖の化学合成方法としては、液相合成法及び固相合成法が知られている。しかしながら、液相合成法は、通常の有機合成手法を用いることができるため、反応追跡やスケールアップに関しては容易であるものの、一段階ごとに後処理と精製を行うため、時間と労力がかかる欠点があり、また、固相合成法は、自動合成化が可能であり迅速に製造できる点で有利であるが、設備制約上スケールアップに制限があり、また、反応性が低いため糖伸長反応において使用される糖供与体を過剰に使用する必要があり、工業的な大量合成に適さず、また、途中段階での反応の進行状況の確認が困難という欠点がある(特許文献5)。これらの課題を解決すべく、ある環境に対して特異的に沈殿、分配、吸着等を起こす分子構造(タグ)を付加させた基質を用いてオリゴ糖を製造する手法がいくつか開発されている(特許文献6、非特許文献12、13、及び14)。これらの手法は、液相及び固相合成法の利点を併せ持っており、すなわち反応を均一系で行うことができるため分析が容易であるとともに、タグの特徴を利用することで試薬残骸等との分離が可能となっている。例えば、分岐長鎖アルカンを疎水性タグとして用い反応後の溶液にオクタデシル修飾シリカゲルで吸着を行うことにより、タグのついていない化合物を分離する手法が知られている(非特許文献14)。しかしながら、いずれの手法においてもタグの使用が必須であり、その脱着工程が必要なこと及び、オリゴ化を行うにつれ基質部位の方がタグよりも大きくなっていくため、徐々に基質の物性が優位になりタグの機能が弱くなる欠点があった。従って、オリゴ糖鎖の製造方法において、より効率的にオリゴ糖を精製することができる手法が求められている。
 グリコシル化反応において、-NHAc基が反応基質内に存在した場合、ルイス酸との相互作用により、目的のグリコシル化反応の著しい反応性の低下がみられ、過剰量の糖供与体が反応の完結に必要となる場合が多い。このことから、アセチルグルコサミンを含むオリゴ糖鎖の合成の場合、グリコシル化反応時はグルコサミンの窒素上の一時的な保護基としてTroc基(非特許文献5、6及び7)、フタルイミド基、又はスルホニル基(非特許文献4)を用い、その後、脱保護を行った後、N-Ac化を行う方法が採用されてきた。しかしながら、Troc基では亜鉛/AcOHによる脱保護反応条件、あるいは、過剰量の水酸化リチウムによる長時間反応を必要とし、複雑な糖鎖においては、脱保護反応条件下において基質の分解が伴う。また、フタルイミド基の脱保護では過剰量のエチレンジアミンの使用により、シアル酸エステル部位のアミド化が副反応として進行する問題点があり、これを回避するためには、事前にエステル部位を選択的に加水分解した後、脱保護を実施する2工程の処理が必要となる。さらにスルホニル基では、金属ナトリウムを用いたスケールアップ困難な反応条件下において脱保護が行われている。従って、アセチルグルコサミンを含むオリゴ糖鎖の製造方法において、グリコシル化反応の反応性を落とすことなく、なおかつ簡便にアセチル基への付け替えが可能な保護基の開発が求められている。
 また、ポリエチレングリコールは生体適合性の水溶性部分構造として、近年、医薬品等の開発に盛んに利用されている。当該医薬品の開発において、これらポリエチレングリコール構造はより均一かつ高純度であることが望まれるが、市販されている試薬中に多くの不純物が混入しており、また、それらの精製には厳密な蒸留精製、あるいは煩雑なカラム精製を実施する必要がある。また、ポリエチレングリコール構造を有する化合物がアジド構造を含む場合、その爆発懸念から加熱を要するような蒸留操作は適用できない。ごく最近、MgClを用いた金属錯体による精製手法が報告されているが(非特許文献15)、過剰量のMgClに目的物を吸着させる手法であるため、ろ液中へのロスが多く、結晶化による単離に比べ、その精製効果は小さいことが予測される。従って、上記ポリエチレングリコール構造を有する化合物の精製方法が望まれている。
 オリゴ糖鎖の合成においては、分子量が増大するにつれて中間体を結晶として単離精製することが困難となる。特に分子量が1000を超えるような保護された3糖以上の中間体の結晶化に関しては報告例がない。そのため、反応で微量に副生する異性体や残存した原料由来の不純物など類似構造を有する類縁体をいかに目的物から除去するかが大きな課題となる。従来は、これら類縁体を除去する目的から合成の各工程でシリカゲルカラム精製を実施する手法がとられており、効率的な大量合成を達成する上での大きな障害となっていた。上記のような背景から、オリゴ糖鎖合成中間体において、類似構造を有する不純物を効率的に除去することのできる結晶化、精製手法の開発が望まれている。
国際公開第2011/027868号 国際公開第96/02255号 国際公開第2014/208742号 国際公開第2017/110984号 国際公開第2002/16384号 特許第6001267号明細書
Proc.Natl.Acad.Sci.U.S.A.2015,112,10611-10616 BeilsteinJ.Org.Chem.2018,14,416-429 TetrahedronLett.1986,27,5739-5742 J.Am.Chem.Soc.2009,131,16669-16671 J.Org.Chem.2016,81,10600-10616 J.Am.Chem.Soc.2019,141,6484-6488 Angew.Chem.Int.Ed.2021,60,24686-24693 Org.Lett.2002,4、4551-4554 J.Am.Chem.Soc.2018,140,4632-4638 J.Org.Chem.,2017,82,3926-3934 Angew.Chem.Int.Ed.2021,60,19287-19296 有機合成協会紙、2002年60巻5号p.494-495 Org.Biomol.Chem.2018,16,4720-4727 J.AM.CHEM.SOC.2005,127,7296-7297 Org.Process.Res.Dev.2021,25,10,2270-2276
 本発明の課題の一つは、非還元末端にα2,6-シアル酸構造を有する2分岐型グリカンを製造するために使用し得る新規なオリゴ糖及び該オリゴ糖の製造方法、並びにその中間体及びその中間体の製造方法を提供することである。本発明のさらなる課題の一つは、非還元末端にα2,6-シアル酸構造を有する2分岐型グリカンである新規なオリゴ糖及び当該オリゴ糖の製造方法、並びにその中間体及びその中間体の製造方法を提供することである。
 本発明者らは、上記の課題を解決するため、鋭意検討した結果、下記のA-13で示される新規なオリゴ糖及び該オリゴ糖を効率的に製造することができる新規な方法、及びその中間体及びその中間体の製造方法、並びに、非還元末端にα2,6-シアル酸構造を有する2分岐型グリカンである下記のD-13で示される新規なオリゴ糖、及び該オリゴ糖を効率的に製造することができる新規な方法、及びその中間体及びその中間体の製造方法を見出したことにより、本発明を完成させたものである。
 すなわち本願発明は、以下に関するが、それらに限定されるものではない。
[1]
 以下の式A-13:
Figure JPOXMLDOC01-appb-C000086
で示されるオリゴ糖を製造する方法であって、
(工程I-1)式A-3:
Figure JPOXMLDOC01-appb-C000087
で示される化合物を、以下の式A-4:
Figure JPOXMLDOC01-appb-C000088
で示される化合物とα-1,6-グリコシド結合させることにより、以下の式A-5:
Figure JPOXMLDOC01-appb-C000089
で示される化合物を生成する工程を含む、以下の式A-7:
Figure JPOXMLDOC01-appb-C000090
で示される化合物を生成する工程、
(工程I-2)前記式A-7で示される化合物を、以下の式A-8:
Figure JPOXMLDOC01-appb-C000091
で示される化合物とβ-1,4-グリコシド結合させることにより、以下の式A-9:
Figure JPOXMLDOC01-appb-C000092
で示される化合物を生成する工程を含む、以下の式A-10:
Figure JPOXMLDOC01-appb-C000093
で示される化合物を生成する工程、
(工程I-3)前記式A-10で示される化合物を、以下の式A-11:
Figure JPOXMLDOC01-appb-C000094
で示される化合物とβ-1,2-グリコシド結合させることにより、以下の式A-12:
Figure JPOXMLDOC01-appb-C000095
で示される化合物を生成する工程を含む、前記式A-13で示されるオリゴ糖を生成する工程、
を含む、方法。
[2]
 前記工程I-2において、前記式A-9で示される化合物を、パーフルオロカルボン酸のアルキルエステルの存在下で、強塩基と反応させることにより、前記式A-10で示される化合物を生成することを含む、[1]に記載の方法。
[3]
 前記パーフルオロカルボン酸のアルキルエステルが、トリフルオロ酢酸メチル、トリフルオロ酢酸エチル、トリフルオロ酢酸プロピル、トリフルオロ酢酸イソプロピル、トリフルオロ酢酸ブチル、ペンタフルオロプロピオン酸メチル、ペンタフルオロプロピオン酸エチル、ペンタフルオロプロピオン酸プロピル、ぺンタフルオロプロピオン酸イソプロピル、ヘプタフルオロ酪酸メチル、ヘプタフルオロ酪酸エチル、ヘプタフルオロ酪酸プロピル、ヘプタフルオロ酪酸イソプロピル、ヘプタフルオロ酪酸ブチル、ノナフルオロ吉草酸メチル、ノナフルオロ吉草酸エチル、ノナフルオロ吉草酸プロピル、ノナフルオロ吉草酸イソプロピル、ノナフルオロ吉草酸ブチル、ウンデカフルオロカプロン酸メチル、ウンデカフルオロカプロン酸エチル、ウンデカフルオロカプロン酸プロピル、ウンデカフルオロカプロン酸イソプロピル、又はウンデカフルオロカプロン酸ブチルである、[2]に記載の方法。
[4]
 前記強塩基が、金属アミドのナトリウム塩、リチウム塩、及びカリウム塩;C1~C20アルコキシドのナトリウム塩、リチウム塩、カリウム塩、セシウム塩、及びバリウム塩;水素化ナトリウム、水素化カリウム、水素化リチウム、ブチルリチウム、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、炭酸リチウム、リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸リチウム、ジアザビシクロウンデセン(DBU)、ジアザビシクロノネン(DBN)、及び1,1,3,3-テトラメチルグアニジン(TMG);並びにこれらの組み合わせからなる群より選択される、[2]又は[3]に記載の方法。
[5]
 前記強塩基が、カリウムtert-ブトキシド、ナトリウムtert-ブトキシド、リチウムtert-ブトキシド、又はLHMDS(リチウムヘキサメチルジシラジド)である、[2]又は[3]に記載の方法。
[6]
 前記工程I-2の反応が、C1~C10アルコール溶媒単独又はC1~C10アルコール溶媒とアミド系溶媒、エーテル系溶媒、エステル系溶媒、芳香族系溶媒、ハロゲン系溶媒、炭化水素系溶媒、若しくはニトリル系溶媒との混合溶媒中で行われる、[2]~[5]のいずれか一項に記載の方法。
[7]
 前記工程I-3において、前記式A-12で示される化合物を、フルオラスアルコール及び水の混合溶媒中で、DDQ(2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン)と反応させて、前記式A-12で示される化合物中の2-ナフチルメチル基を脱離させることにより、前記式A-13で示されるオリゴ糖を生成することを含む、[1]~[6]のいずれか一項に記載の方法。
[8]
 前記フルオラスアルコールが、ヘキサフルオロ-2-プロパノール(HFIP)、2,2,2-トリフルオロエタノール(TFE)、2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール、ノナフルオロ-tert-ブチルアルコール及びこれらの組み合わせからなる群から選択される、[7]に記載の方法。
[9]
 前記工程I-3の反応が、-35℃~70℃で行われる、[7]又は[8]に記載の方法。
[10]
 前記工程I-3の反応が、-30℃~-10℃で行われる、[7]又は[8]に記載の方法。
[11]
 前記工程I-1において、前記式A-4で示される化合物と前記式A-3で示される化合物との反応を停止させた後、生成した前記式A-5で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式A-5で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式A-5で示される化合物を前記疎水性担体から溶出させることにより、前記式A-5で示される化合物を精製することを含む、[1]~[10]のいずれか一項に記載の方法。
[12]
 前記工程I-2において、前記式A-7で示される化合物と前記式A-8で示される化合物との反応を停止させた後、生成した前記式A-9で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式A-9で示される化合物を吸着させ、次いでろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式A-9で示される化合物を前記疎水性担体から溶出させることにより、前記式A-9で示される化合物を精製することを含む、[1]~[11]のいずれか一項に記載の方法。
[13]
 前記工程1-3において、前記式A-10で示される化合物と前記式A-11で示される化合物との反応を停止させた後、生成した前記式A-12で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式A-12で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式A-12で示される化合物を前記疎水性担体から溶出させることにより、前記式A-12で示される化合物を精製することを含む、[1]~[12]のいずれか一項に記載の方法。
[14]
 前記夾雑物が、前記式A-5で示される化合物以外の糖化合物、及び/又は前記精製される化合物を得るための反応試薬由来の化合物を含む、[11]に記載の方法。
[15]
 前記夾雑物が、前記式A-9で示される化合物以外の糖化合物、及び/又は前記精製される化合物を得るための反応試薬由来の化合物を含む、[12]に記載の方法。
[16]
 前記夾雑物が、前記式A-12で示される化合物以外の糖化合物、及び/又は前記精製される化合物を得るための反応試薬由来の化合物を含む、[13]に記載の方法。
[17]
 前記疎水性担体が、逆相分配クロマトグラフィー充填用樹脂である、[11]~[16]のいずれか一項に記載の方法。
[18]
 前記逆相分配クロマトグラフィー充填用樹脂が、ポリ(スチレン/ジビニルベンゼン)ポリマーゲル樹脂、ポリスチレン-ジビニルベンゼン樹脂、ポリヒドロキシメタクリレート樹脂、スチレンビニルベンゼン共重合体樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリメタクリレート樹脂、化学結合型シリカゲル樹脂、及びこれらの組み合わせからなる群から選択される、[17]に記載の方法。
[19]
 前記化学結合型シリカゲル樹脂が、(1)シリカゲルに、シランカップリング剤を反応させて得られる樹脂、(2)シリカゲルに、ジメチルオクタデシル、オクタデシル、トリメチルオクタデシル、ジメチルオクチル、オクチル、ブチル、エチル、メチル、フェニル、シアノプロピル、又はアミノプロピル基を化学結合して得られる樹脂、(3)シリカゲルに、ドコシル又はトリアコンチル基を化学結合して得られる樹脂、及び(4)前述の(1)~(3)の組み合わせからなる群から選択される、[18]に記載の方法。
[20]
 前記化学結合型シリカゲル樹脂が、オクタデシル基結合シリカゲル樹脂(ODS樹脂)である、[18]に記載の方法。
[21]
 前記水溶性有機溶媒が、水溶性アルコール系溶媒、水溶性ニトリル系溶媒、水溶性エーテル系溶媒、水溶性ケトン系溶媒、水溶性アミド系溶媒、又は水溶性スルホキシド系溶媒、もしくは前述の水溶性有機溶媒系を少なくとも1種以上含む混合溶媒である、[11]~[20]のいずれか一項に記載の方法。
[22]
 前記水溶性ニトリル系溶媒が、アセトニトリルである、[21]に記載の方法。
[23]
 前記疎水性担体から目的物の溶出工程で使用される前記有機溶媒が、ニトリル系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、ハロゲン系溶媒、芳香族系溶媒、又は前述の溶媒系を少なくとも1種以上含む混合溶媒である、[11]~[22]のいずれか一項に記載の方法。
[24]
 前記式A-11で示される化合物が、
(工程Y-1)以下の式B-1:
Figure JPOXMLDOC01-appb-C000096
で示される化合物を、以下の式B-2:
Figure JPOXMLDOC01-appb-C000097
で示される化合物とβ-1,4-グリコシド結合させることにより、以下の式B-3:
Figure JPOXMLDOC01-appb-C000098
で示される化合物を生成する工程を含む、以下の式B-4:
Figure JPOXMLDOC01-appb-C000099
で示される化合物を生成する工程、
(工程Y-2)前記式B-4で示される化合物及びハロゲン化ベンジル又はスルホン酸ベンジルを含む溶媒に、リチウムtert-ブトキシド又はリチウムtert-アモキシドを添加して、前記式B-4で示される化合物中に存在する水酸基をベンジル基で保護することにより、以下の式B-5:
Figure JPOXMLDOC01-appb-C000100
で示される化合物を生成する工程、
を含む工程により製造される、[1]~[23]のいずれか一項に記載の方法。
[25]
 前記式B-4で示される化合物及びハロゲン化ベンジル又はスルホン酸ベンジルを含む溶媒が、アミド系溶媒、エーテル系溶媒、芳香族系溶媒、又は炭化水素系溶媒、ウレア系溶媒、もしくは前述の溶媒系を少なくとも1種以上含む混合溶媒である、[24]に記載の方法。
[26]
 前記式B-5で示される化合物が、前記式B-5で示される化合物中のフタルイミド基を開環し、次いで、シンコニジンと塩を形成することにより、結晶性の以下の式B-6:
Figure JPOXMLDOC01-appb-C000101
で示される化合物を生成し、結晶性の前記式B-6で示される化合物と非結晶性物質とを分離した後、酸性水溶液及び溶媒の添加により、前記式B-6で示される化合物中のシンコニジンを除去して、以下の式B-7:
Figure JPOXMLDOC01-appb-C000102
で示される化合物を生成し、次いで、前記式B-7で示される化合物中の前記開環したフタルイミド基を閉環させることにより、精製される工程をさらに含む、[24]又は[25]に記載の方法。
[27]
 前記式A-13で示される化合物が、前記式A-13で示される化合物中のフタルイミド基を開環し、次いで、(R)-(+)-1-(1-ナフチル)エチルアミンと塩を形成することにより、結晶性の以下の式A-14で示される化合物:
Figure JPOXMLDOC01-appb-C000103
で示される化合物を生成し、結晶性の前記式A-14で示される化合物と非結晶性物質とを分離した後、酸性水溶液及び溶媒の添加により、前記式A-14で示される化合物中の(R)-(+)-1-(1-ナフチル)エチルアミンを除去して、以下の式A-15:
Figure JPOXMLDOC01-appb-C000104
で示される化合物を生成し、次いで、前記式A-15で示される化合物中の前記開環したフタルイミド基を閉環させることにより、精製される工程をさらに含む、[1]~[26]のいずれか一項に記載の方法。
[28]
 以下の式D-13
Figure JPOXMLDOC01-appb-C000105
で示されるオリゴ糖を製造する方法であって、
(工程II-1)以下の式A-13:
Figure JPOXMLDOC01-appb-C000106
で示されるオリゴ糖を、以下の式A-3:
Figure JPOXMLDOC01-appb-C000107
で示される化合物とα-1,3-グリコシド結合させることにより、以下の式D-1:
Figure JPOXMLDOC01-appb-C000108
で示される化合物を生成する工程を含む、以下の式D-2:
Figure JPOXMLDOC01-appb-C000109
で示される化合物を生成する工程、
(工程II-2)前記式D-2で示される化合物を、以下の式D-3:
Figure JPOXMLDOC01-appb-C000110
で示される化合物とβ-1,2-グリコシド結合させることにより、以下の式D-4:
Figure JPOXMLDOC01-appb-C000111
で示される化合物を生成する工程を含む、以下の式D-5:
Figure JPOXMLDOC01-appb-C000112
で示される化合物を生成した後、前記式D-5で示される化合物中のアミノ基をアリールオキシカルボニル(COOAr)基、アセチル(Ac)基、2,2,2-トリクロロエトキシカルボニル(Troc)基、及びフタルイミド(Pht)基から選択される保護基によって保護して、以下の式D-6:
Figure JPOXMLDOC01-appb-C000113
で示される化合物(式中、Rは、アリールオキシカルボニル(COOAr)基、アセチル(Ac)基、若しくは2,2,2-トリクロロエトキシカルボニル(Troc)基であり、かつ、Rは、水素原子であるか、又はR及びRは、これらが結合している窒素原子と一緒にフタルイミド基を形成する)を生成するか、又は上記式D-4で示される化合物上のアセチル(Ac)基を除去することによって、上記式D-6で示される化合物(式中、R及びRは、これらが結合している窒素原子と一緒にフタルイミド基を形成する)を生成する工程、
(工程II-3)前記式D-6で示される化合物を、以下の式D-7:
Figure JPOXMLDOC01-appb-C000114
で示される化合物とβ-1,4-グリコシド結合させることにより、以下の式D-8:
Figure JPOXMLDOC01-appb-C000115
で示される化合物(式中、Rは、アリールオキシカルボニル(COOAr)基、アセチル(Ac)基、若しくは2,2,2-トリクロロエトキシカルボニル(Troc)基であり、かつ、Rは、水素原子であるか、又はR及びRは、これらが結合している窒素原子と一緒にフタルイミド基を形成する)を生成し、次いで、前記式D-8で示される化合物上の前記アミノ基及びアルコールのアシル系保護基の保護基を除去して、以下の式D-9:
Figure JPOXMLDOC01-appb-C000116
で示される化合物(式中、Mは、ナトリウムイオン、リチウムイオン、カリウムイオン、又はプロトン化されたトリエチルアミンカチオンである)を生成する工程を含む、以下の式D-11:
Figure JPOXMLDOC01-appb-C000117
で示される化合物(式中、Mは、ナトリウムイオン、リチウムイオン、カリウムイオン、又はプロトン化されたトリエチルアミンカチオンである)を生成する工程、
(工程II-4)前記式D-11で示される化合物を、以下の式D-12:
Figure JPOXMLDOC01-appb-C000118
で示される化合物と反応させることにより、前記式D-13で示されるオリゴ糖を生成する工程を含む、方法。
[29]
 前記工程II-1において、前記式D-1で示される化合物を、パーフルオロカルボン酸のアルキルエステルの存在下で、強塩基と反応させることにより、前記式D-2で示される化合物を生成することを含む、[28]に記載の方法。
[30]
 前記パーフルオロカルボン酸のアルキルエステルが、トリフルオロ酢酸メチル、トリフルオロ酢酸エチル、トリフルオロ酢酸プロピル、トリフルオロ酢酸イソプロピル、トリフルオロ酢酸ブチル、ペンタフルオロプロピオン酸メチル、ペンタフルオロプロピオン酸エチル、ペンタフルオロプロピオン酸プロピル、ぺンタフルオロプロピオン酸イソプロピル、ヘプタフルオロ酪酸メチル、ヘプタフルオロ酪酸エチル、ヘプタフルオロ酪酸プロピル、ヘプタフルオロ酪酸イソプロピル、ヘプタフルオロ酪酸ブチル、ノナフルオロ吉草酸メチル、ノナフルオロ吉草酸エチル、ノナフルオロ吉草酸プロピル、ノナフルオロ吉草酸イソプロピル、ノナフルオロ吉草酸ブチル、ウンデカフルオロカプロン酸メチル、ウンデカフルオロカプロン酸エチル、ウンデカフルオロカプロン酸プロピル、ウンデカフルオロカプロン酸イソプロピル、又はウンデカフルオロカプロン酸ブチルである、[29]に記載の方法。
[31]
 前記強塩基が、金属アミドのナトリウム塩、リチウム塩、及びカリウム塩;C1~C20アルコキシドのナトリウム塩、リチウム塩、カリウム塩、セシウム塩、及びバリウム塩;水素化ナトリウム、水素化カリウム、水素化リチウム、ブチルリチウム、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、炭酸リチウム、リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸リチウム、ジアザビシクロウンデセン(DBU)、ジアザビシクロノネン(DBN)、及び1,1,3,3-テトラメチルグアニジン(TMG);並びにこれらの組み合わせからなる群より選択される、[29]又は[30]に記載の方法。
[32]
 前記強塩基が、カリウムtert-ブトキシド、ナトリウムtert-ブトキシド、リチウムtert-ブトキシド、又はLHMDS(リチウムヘキサメチルジシラジド)である、[29]又は[30]に記載の方法。
[33]
 前記式D-1で示される化合物を、トリフルオロ酢酸エステルの存在下で、強塩基と反応させることにより、前記式D-2で示される化合物を生成する工程が、C1~C10アルコール溶媒単独又はC1~C10アルコール溶媒とアミド系溶媒、エーテル系溶媒、エステル系溶媒、芳香族系溶媒、ハロゲン系溶媒、炭化水素系溶媒、若しくはニトリル系溶媒との混合溶媒中で行われる、[29]~[32]のいずれか一項に記載の方法。
[34]
 前記工程II-3において、前記式D-5で示される化合物中のアミノ基を、アリールオキシカルボニル(COOAr)基で保護することによって前記式D-6で示される化合物を生成する、[28]~[33]のいずれか一項に記載の方法。
[35]
 前記工程II-3において、前記式D-5で示される化合物から前記式D-6で示される化合物を生成する工程が、炭酸水素ナトリウム、炭酸水素カリウム、リン酸水素二ナトリウム、又はリン酸水素二カリウムの水溶液中で行われる、[28]~[34]のいずれか一項に記載の方法。
[36]
 前記式D-12で示される化合物が、以下の工程:
 粗製の前記式D-12で示される化合物を含む溶液に、以下の式E-1:
Figure JPOXMLDOC01-appb-C000119
で示される化合物(式中、Rは、水素原子、メチル基、又はメトキシ基である)を添加して、以下の式E-2:
Figure JPOXMLDOC01-appb-C000120
で示される結晶性化合物(式中、Rは、水素原子、メチル基、又はメトキシ基である)を生成させる工程と、該結晶性化合物を単離し、次いで、該単離された結晶性化合物から前記式D-12で示される化合物を抽出する工程と、
を含む精製方法により得られる、[28]~[35]のいずれか一項に記載の方法。
[37]
 精製後の前記式D-12で示される化合物が、HPLCで測定した際に95%以上の純度を有する、[36]に記載の方法。
[38]
 前記純度が、98%以上である、[37]に記載の方法。
[39]
 前記工程II-1において、前記式A-13で示される化合物と前記式A-3で示される化合物との反応を停止させた後、生成した前記式D-1で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式D-1で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式D-1で示される化合物を前記疎水性担体から溶出させることにより、前記式D-1で示される化合物を精製することを含む、[28]~[38]のいずれか一項に記載の方法。
[40]
 前記工程II-2において、前記式D-3で示される化合物と前記式D-4で示される化合物との反応を停止させた後、生成した前記式D-5で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式D-5で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式D-5で示される化合物を前記疎水性担体から溶出させることにより、前記式D-5で示される化合物を精製することを含む、[28]~[39]のいずれか一項に記載の方法。
[41]
 前記工程II-3において、前記式D-6で示される化合物と前記式D-7で示される化合物との反応を停止させた後、生成した前記式D-8で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式D-8で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式D-8で示される化合物を前記疎水性担体から溶出させることにより、前記式D-8で示される化合物を精製することを含む、[28]~[40]のいずれか一項に記載の方法。
[42]
 前記工程II-3において、前記式D-9上のアミノ基をアセチルで保護することにより、以下の式D-10:
Figure JPOXMLDOC01-appb-C000121
で示される化合物を生成し、生成した前記式D-10で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式D-10で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式D-10で示される化合物を前記疎水性担体から溶出させることにより、前記式D-10で示される化合物を精製することを含む、[28]~[41]のいずれか一項に記載の方法。
[43]
 前記夾雑物が、前記式D-1で示される化合物以外の糖化合物、及び/又は前記精製される化合物を得るための反応試薬由来の化合物を含む、[39]に記載の方法。
[44]
 前記夾雑物が、前記式D-5で示される化合物以外の糖化合物、及び/又は前記精製される化合物を得るための反応試薬由来の化合物を含む、[40]に記載の方法。
[45]
 前記夾雑物が、前記式D-8で示される化合物以外の糖化合物、及び/又は前記精製される化合物を得るための反応試薬由来の化合物を含む、[41]に記載の方法。
[46]
 前記夾雑物が、前記式C-10で示される化合物以外の糖化合物、及び/又は前記精製される化合物を得るための反応試薬由来の化合物を含む、[42]に記載の方法。
[47]
 前記疎水性担体が、逆相分配クロマトグラフィー充填用樹脂である、[39]~[46]のいずれか一項に記載の方法。
[48]
 前記逆相分配クロマトグラフィー充填用樹脂が、ポリ(スチレン/ジビニルベンゼン)ポリマーゲル樹脂、ポリスチレン-ジビニルベンゼン樹脂、ポリヒドロキシメタクリレート樹脂、スチレンビニルベンゼン共重合体樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリメタクリレート樹脂、化学結合型シリカゲル樹脂、及びこれらの組み合わせからなる群から選択される、[47]に記載の方法。
[49]
 前記化学結合型シリカゲル樹脂が、(1)シリカゲルに、シランカップリング剤を反応させて得られる樹脂、(2)シリカゲルに、ジメチルオクタデシル、オクタデシル、トリメチルオクタデシル、ジメチルオクチル、オクチル、ブチル、エチル、メチル、フェニル、シアノプロピル、又はアミノプロピル基を化学結合して得られる樹脂、(3)シリカゲルに、ドコシル又はトリアコンチル基を化学結合して得られる樹脂、及び(4)前述の(1)~(3)の組み合わせからなる群から選択される、[48]に記載の方法。
[50]
 前記化学結合型シリカゲル樹脂が、オクタデシル基結合シリカゲル樹脂(ODS樹脂)である、[48]に記載の方法。
[51]
 前記水溶性有機溶媒が、水溶性アルコール系溶媒、水溶性ニトリル系溶媒、水溶性エーテル系溶媒、水溶性ケトン系溶媒、水溶性アミド系溶媒、又は水溶性スルホキシド系溶媒、もしくは前述の水溶性有機溶媒系を少なくとも1種以上含む混合溶媒である、[39]~50]のいずれか一項に記載の方法。
[52]
 前記水溶性ニトリル系溶媒が、アセトニトリルである、[51]に記載の方法。
[53]
 前記疎水性担体から目的物の溶出工程で使用される前記有機溶媒が、ニトリル系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、ハロゲン系溶媒、芳香族系溶媒、又は前述の溶媒系を少なくとも1種以上含む混合溶媒である、[39]~[52]のいずれか一項に記載の方法。
[54]
 前記式D-5で示される化合物をフマル酸と塩を形成することにより、結晶性の以下の式D-5-FMA:
Figure JPOXMLDOC01-appb-C000122
で示される化合物を生成し、次いで、結晶性の前記式D-5-FMAで示される化合物を非結晶性物質から分離精製する工程をさらに含む、[28]~[53]のいずれか一項に記載の方法。
[55]
 以下の式B-5:
Figure JPOXMLDOC01-appb-C000123
で示される化合物を製造する方法であって、以下の式B-4:
Figure JPOXMLDOC01-appb-C000124
で示される化合物及びハロゲン化ベンジル又はスルホン酸ベンジルを含む溶媒に、リチウムtert-ブトキシド又はリチウムtert-アモキシドを添加して、前記式B-4で示される化合物中に存在する水酸基をベンジル基で保護する工程を含む、方法。
[56]
 前記溶媒が、アミド系溶媒、エーテル系溶媒、芳香族系溶媒、ウレア系溶媒、炭化水素系溶媒、もしくは前述の溶媒系を少なくとも1種以上含む混合溶媒である、[55]に記載の方法。
[57]
 以下の式A-10:
Figure JPOXMLDOC01-appb-C000125
で示される化合物を製造する方法であって、以下の式A-9:
Figure JPOXMLDOC01-appb-C000126
で示される化合物を、パーフルオロカルボン酸のアルキルエステルの存在下で、強塩基と反応させる工程を含む、方法。
[58]
 前記パーフルオロカルボン酸のアルキルエステルが、トリフルオロ酢酸メチル、トリフルオロ酢酸エチル、トリフルオロ酢酸プロピル、トリフルオロ酢酸イソプロピル、トリフルオロ酢酸ブチル、ペンタフルオロプロピオン酸メチル、ペンタフルオロプロピオン酸エチル、ペンタフルオロプロピオン酸プロピル、ぺンタフルオロプロピオン酸イソプロピル、ヘプタフルオロ酪酸メチル、ヘプタフルオロ酪酸エチル、ヘプタフルオロ酪酸プロピル、ヘプタフルオロ酪酸イソプロピル、ヘプタフルオロ酪酸ブチル、ノナフルオロ吉草酸メチル、ノナフルオロ吉草酸エチル、ノナフルオロ吉草酸プロピル、ノナフルオロ吉草酸イソプロピル、ノナフルオロ吉草酸ブチル、ウンデカフルオロカプロン酸メチル、ウンデカフルオロカプロン酸エチル、ウンデカフルオロカプロン酸プロピル、ウンデカフルオロカプロン酸イソプロピル、又はウンデカフルオロカプロン酸ブチルである、[57]に記載の方法。
[59]
 前記強塩基が、金属アミドのナトリウム塩、リチウム塩、カリウム塩;C1~C20アルコキシドのナトリウム塩、リチウム塩、カリウム塩、セシウム塩、及びバリウム塩;水素化ナトリウム、水素化カリウム、水素化リチウム、ブチルリチウム、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、炭酸リチウム、リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸リチウム、ジアザビシクロウンデセン(DBU)、ジアザビシクロノネン(DBN)、及び1,1,3,3-テトラメチルグアニジン(TMG);並びに、これらの組み合わせから選択される、[57]又は[58]に記載の方法。
[60]
 前記強塩基が、カリウムtert-ブトキシド、ナトリウムtert-ブトキシド、リチウムtert-ブトキシド、又はLHMDS(リチウムヘキサメチルジシラジド)である、[57]又は[58]に記載の方法。
[61]
 前記反応が、C1~C10アルコール溶媒単独又はC1~C10アルコール溶媒とアミド系溶媒、エーテル系溶媒、エステル系溶媒、芳香族系溶媒、ハロゲン系溶媒、炭化水素系溶媒、若しくはニトリル系溶媒との混合溶媒中で行われる、[57]~[60]のいずれか一項に記載の方法。
[62]
 以下の式A-13:
Figure JPOXMLDOC01-appb-C000127
で示されるオリゴ糖を製造する方法であって、以下の式A-12:
Figure JPOXMLDOC01-appb-C000128
で示される化合物を、フルオラスアルコール及び水の混合溶媒中で、DDQ(2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン)と反応させて、式A-12で示される化合物中の2-ナフチルメチル基を脱離させる工程を含む、方法。
[63]
 前記フルオラスアルコールが、ヘキサフルオロ-2-プロパノール(HFIP)、2,2,2-トリフルオロエタノール(TFE)、2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール、ノナフルオロ-tert-ブチルアルコール及びこれらの組み合わせからなる群から選択される、[62]に記載の方法。
[64]
 -35℃~70℃で行われる、[62]又は[63]に記載の方法。
[65]
 -30℃~-10℃で行われる、[62]又は[63]に記載の方法。
[66]
 下記の式A-5:
Figure JPOXMLDOC01-appb-C000129
で示される化合物の精製方法であって、前記式A-5で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式A-5で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式A-5で示される化合物を前記疎水性担体から溶出させることにより、前記式A-5で示される化合物を精製することを含む、方法。
[67]
 下記の式A-9:
Figure JPOXMLDOC01-appb-C000130
で示される化合物の精製方法であって、前記式A-9で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式A-9で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式A-9で示される化合物を前記疎水性担体から溶出させることにより、前記式A-9で示される化合物を精製することを含む、方法。
[68]
 下記の式A-12:
Figure JPOXMLDOC01-appb-C000131
で示される化合物の精製方法であって、前記式A-12で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式A-12で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式A-12で示される化合物を前記疎水性担体から溶出させることにより、前記式A-12で示される化合物を精製することを含む、方法。
[69]
 下記の式D-1:
Figure JPOXMLDOC01-appb-C000132
で示される化合物の精製方法であって、前記式D-1で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式D-1で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式D-1で示される化合物を前記疎水性担体から溶出させることにより、前記式D-1で示される化合物を精製することを含む、方法。
[70]
 下記の式D-5:
Figure JPOXMLDOC01-appb-C000133
で示される化合物の精製方法であって、前記式D-5で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式D-5で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式D-5で示される化合物を前記疎水性担体から溶出させることにより、前記式D-5で示される化合物を精製することを含む、方法。
[71]
 下記の式D-8:
Figure JPOXMLDOC01-appb-C000134
で示される化合物(式中、Rは、アリールオキシカルボニル(COOAr)基、アセチル(Ac)基、若しくは2,2,2-トリクロロエトキシカルボニル(Troc)基であり、かつ、Rは、水素原子であるか、又はR及びRは、これらが結合している窒素原子と一緒にフタルイミド基を形成する)の精製方法であって、前記式D-8で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式D-8で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式D-8で示される化合物を前記疎水性担体から溶出させることにより、前記式D-8で示される化合物を精製することを含む、方法。
[72]
 下記の式D-10:
Figure JPOXMLDOC01-appb-C000135
で示される化合物の精製方法であって、前記式D-10で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式D-10で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式D-10で示される化合物を前記疎水性担体から溶出させることにより、前記式D-10で示される化合物を精製することを含む、方法。
[73]
 前記夾雑物が、前記式D-1で示される化合物以外の糖化合物、及び/又は前記精製される化合物を得るための反応試薬由来の化合物を含む、[69]に記載の方法。
[74]
 前記夾雑物が、前記D-5で示される化合物以外の糖化合物、及び/又は前記精製される化合物を得るための反応試薬由来の化合物を含む、[70]に記載の方法。
[75]
 前記夾雑物が、前記D-8で示される化合物以外の糖化合物、及び/又は前記精製される化合物を得るための反応試薬由来の化合物を含む、[71]に記載の方法。
[76]
 前記夾雑物が、前記式D-10で示される化合物以外の糖化合物、及び/又は前記精製される化合物を得るための反応試薬由来の化合物を含む、[72]に記載の方法。
[77]
 前記疎水性担体が、逆相分配クロマトグラフィー充填用樹脂である、[69]~[76]のいずれか一項に記載の方法。
[78]
 前記逆相分配クロマトグラフィー充填用樹脂が、ポリ(スチレン/ジビニルベンゼン)ポリマーゲル樹脂、ポリスチレン-ジビニルベンゼン樹脂、ポリヒドロキシメタクリレート樹脂、スチレンビニルベンゼン共重合体樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリメタクリレート樹脂、化学結合型シリカゲル樹脂、及びこれらの組み合わせからなる群から選択される、[77]に記載の方法。
[79]
 前記化学結合型シリカゲル樹脂が、(1)シリカゲルに、シランカップリング剤を反応させて得られる樹脂、(2)シリカゲルに、ジメチルオクタデシル、オクタデシル、トリメチルオクタデシル、ジメチルオクチル、オクチル、ブチル、エチル、メチル、フェニル、シアノプロピル、又はアミノプロピル基を化学結合して得られる樹脂、(3)シリカゲルに、ドコシル又はトリアコンチル基を化学結合して得られる樹脂、及び(4)前述の(1)~(3)の組み合わせからなる群から選択される、[78]に記載の方法。
[80]
 前記化学結合型シリカゲル樹脂が、オクタデシル基結合シリカゲル樹脂(ODS樹脂)である、[79]に記載の方法。
[81]
 前記水溶性有機溶媒が、水溶性アルコール系溶媒、水溶性ニトリル系溶媒、水溶性エーテル系溶媒、水溶性ケトン系溶媒、水溶性アミド系溶媒、水溶性スルホキシド系溶媒、又は前述の水溶性有機溶媒系を少なくとも1種以上含む混合溶媒である、[69]~[80]のいずれか一項に記載の方法。
[82]
 前記水溶性ニトリル系溶媒が、アセトニトリルである、[81]に記載の方法。
[83]
 前記疎水性担体から目的物の溶出工程で使用される前記有機溶媒が、ニトリル系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、ハロゲン系溶媒、芳香族系溶媒、又は前述の溶媒系を少なくとも1種以上含む混合溶媒である、[69]~[82]のいずれか一項に記載の方法。
[84]
 以下の式D-8:
Figure JPOXMLDOC01-appb-C000136
で示される化合物(式中、Rは、アリールオキシカルボニル(COOAr)基、アセチル(Ac)基、若しくは2,2,2-トリクロロエトキシカルボニル(Troc)基であり、かつ、Rは、水素原子であるか、又はR及びRは、これらが結合している窒素原子と一緒にフタルイミド基を形成する)を生成する方法であって、以下の式D-6:
Figure JPOXMLDOC01-appb-C000137
で示される化合物(式中、Rは、アリールオキシカルボニル(COOAr)基、アセチル(Ac)基、若しくは2,2,2-トリクロロエトキシカルボニル(Troc)基であり、かつ、Rは、水素原子であるか、又はR及びRは、これらが結合している窒素原子と一緒にフタルイミド基を形成する)を生成し、次いで、前記式D-6で示される化合物を以下のD-7:
Figure JPOXMLDOC01-appb-C000138
で示される化合物とβ-1,4-グリコシド結合させることにより、前記式D-8で示される化合物を生成する工程を含む、方法。
[85]
 Rが、アリールオキシカルボニル(COOAr)基である、[84]に記載の方法。
[86]
 前記式D-8で示される化合物中のアミノ基の保護基及びアルコールのアシル系保護基を除去することにより、式D-9:
Figure JPOXMLDOC01-appb-C000139
で示される化合物(式中、Mは、ナトリウムイオン、リチウムイオン、カリウムイオン、又はプロトン化されたトリエチルアミンカチオンである)を生成することを含む、[84]又は[85]に記載の方法。
[87]
 以下の式D-12:
Figure JPOXMLDOC01-appb-C000140
で示される化合物を精製する方法であって、粗製の前記式D-12で示される化合物を含む溶液に、以下の式E-1:
Figure JPOXMLDOC01-appb-C000141
で示される化合物(式中、Rは、水素原子、メチル基、又はメトキシ基である)を添加して、以下の式E-2:
Figure JPOXMLDOC01-appb-C000142
で示される結晶性化合物(式中、Rは、水素原子、メチル基、又はメトキシ基である)を生成させる工程と、該結晶性化合物を単離し、次いで、該単離された結晶性化合物から前記式D-12で示される化合物を抽出する工程と、を含む、方法。
[88]
 以下の式A-13:
Figure JPOXMLDOC01-appb-C000143
で示されるオリゴ糖。
[89]
 以下の式A-5:
Figure JPOXMLDOC01-appb-C000144
で示される化合物。
[90]
 以下の式A-6:
Figure JPOXMLDOC01-appb-C000145
で示される化合物。
[91]
 以下の式A-7:
Figure JPOXMLDOC01-appb-C000146
で示される化合物。
[92]
 以下の式A-9:
Figure JPOXMLDOC01-appb-C000147
で示される化合物。
[93]
 以下の式A-10:
Figure JPOXMLDOC01-appb-C000148
で示される化合物。
[94]
 以下の式A-11:
Figure JPOXMLDOC01-appb-C000149
で示される化合物。
[95]
 以下の式A-12:
Figure JPOXMLDOC01-appb-C000150
で示される化合物。
[96]
 以下の式A-14:
Figure JPOXMLDOC01-appb-C000151
で示される化合物。
[97]
 以下の式A-15:
Figure JPOXMLDOC01-appb-C000152
で示される化合物。
[98]
 以下の式B-4:
Figure JPOXMLDOC01-appb-C000153
で示される化合物。
[99]
 以下の式B-5:
Figure JPOXMLDOC01-appb-C000154
で示される化合物。
[100]
 以下の式B-6:
Figure JPOXMLDOC01-appb-C000155
で示される化合物。
[101]
 以下の式B-7:
Figure JPOXMLDOC01-appb-C000156
で示される化合物。
[102]
 以下の式B-8:
Figure JPOXMLDOC01-appb-C000157
で示される化合物。
[103]
 以下の式D-1:
Figure JPOXMLDOC01-appb-C000158
で示される化合物。
[104]
 以下の式D-2:
Figure JPOXMLDOC01-appb-C000159
で示される化合物。
[105]
 以下の式D-4:
Figure JPOXMLDOC01-appb-C000160
で示される化合物。
[106]
 以下の式D-5:
Figure JPOXMLDOC01-appb-C000161
で示される化合物。
[107]
 以下の式D-5-FMA:
Figure JPOXMLDOC01-appb-C000162
で示される化合物。
[108]
 以下の式D-6:
Figure JPOXMLDOC01-appb-C000163
で示される化合物
(式中、Rは、アリールオキシカルボニル(COOAr)基、アセチル(Ac)基、若しくは2,2,2-トリクロロエトキシカルボニル(Troc)基であり、かつ、Rは、水素原子であるか、又はR及びRは、これらが結合している窒素原子と一緒にフタルイミド基を形成する)。
[109]
 以下の式D-8:
Figure JPOXMLDOC01-appb-C000164
で示される化合物(式中、Rは、アリールオキシカルボニル(COOAr)基、アセチル(Ac)基、若しくは2,2,2-トリクロロエトキシカルボニル(Troc)基であり、かつ、Rは、水素原子であるか、又はR及びRは、これらが結合している窒素原子と一緒にフタルイミド基を形成する)。
[110]
 以下の式D-9:
Figure JPOXMLDOC01-appb-C000165
で示される化合物(式中、Mは、ナトリウムイオン、リチウムイオン、カリウムイオン、又はプロトン化されたトリエチルアミンカチオンである)。
[111]
 以下の式D-10:
Figure JPOXMLDOC01-appb-C000166
で示される化合物(式中、Mは、ナトリウムイオン、リチウムイオン、カリウムイオン、又はプロトン化されたトリエチルアミンカチオンである)。
[112]
 以下の式D-11:
Figure JPOXMLDOC01-appb-C000167
で示される化合物(式中、Mは、ナトリウムイオン、リチウムイオン、カリウムイオン、又はプロトン化されたトリエチルアミンカチオンである)。
[113]
 以下の式E-2:
Figure JPOXMLDOC01-appb-C000168
で示される結晶性化合物(式中、Rは、水素原子、メチル基、又はメトキシ基である)。
[114]
 HPLCで測定した際に90%以上の純度を有する、以下の式D-12:
Figure JPOXMLDOC01-appb-C000169
で示される化合物。
[115]
 前記純度が、95%以上である、請求項109に記載の化合物。
[116]
 以下の式D-13:
Figure JPOXMLDOC01-appb-C000170
で示されるオリゴ糖。
 本発明により、上記式A-13で示されるオリゴ糖及びその新規製造方法、並びに当該オリゴ糖の製造中間体及びその製造方法、並びに、上記式D-13で示されるオリゴ糖及びその新規製造方法、並びに当該オリゴ糖の製造中間体及びその製造方法が提供される。
本発明において提供される、上記式A-13で示されるオリゴ糖の新規製造方法の一例を簡略的に示すものである。 本発明において提供される、上記式A-11で示される化合物の新規製造方法一例を簡略的に示すものである。 本発明において提供される、上記式D-13で示されるオリゴ糖の新規製造方法の一例を簡略的に示すものである。
 以下、本発明を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これによって本発明の範囲が狭く解釈されることはない。
<1.式A-13で示されるオリゴ糖の製造方法>
 本発明の一態様において、新規式A-13で示されるオリゴ糖及びその新規製造方法が提供される。本発明において、式A-13で示されるオリゴ糖は、以下のオリゴ糖を意味する。
Figure JPOXMLDOC01-appb-C000171
 上記式A-13で示されるオリゴ糖の新規合成スキームは、以下の工程I-1~工程I-3を含む。
<工程I-1>
 工程I-1は、式A-3:
Figure JPOXMLDOC01-appb-C000172
で示される化合物を、以下の式A-4:
Figure JPOXMLDOC01-appb-C000173
で示される化合物とα-1,6-グリコシド結合させることにより、以下の式A-5:
Figure JPOXMLDOC01-appb-C000174
で示される化合物を生成する工程を含む、以下の式A-7:
Figure JPOXMLDOC01-appb-C000175
で示される化合物を生成する工程である。当該工程I-1は、以下の工程I-1-1~工程I-1-3を含む。
<工程I-1-1>
 工程I-1-1は、式A-3で示される化合物と式A-4で示される化合物とをα-1,6-グリコシド結合させることにより、式A-5で示される化合物を製造する工程である。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例22に示した方法によって行うことができ、例えば、式A-3で示される化合物を、有機溶媒(トルエン等)中、モレキュラーシーブ4A粉末、トリフルオロメタンスルホン酸トリメチルシリル(TMSOTf)を順次添加して、上記式A-4で示される化合物とα-1,6-グリコシド結合させることにより、上記式A-5で示される化合物を生成することができる。また、出発材料である式A-3で示される化合物及び式A-4で示される化合物は、以下のようにして製造することができる。
<式A-3で示される化合物の製造>
 本発明の一態様において、式A-3で示される化合物は、以下の工程により製造することができるが、当該製造方法に限定するものではない。
 まず、以下の式A-1:
Figure JPOXMLDOC01-appb-C000176
で示される化合物(3,4,6-トリ-O-ベンジル-1,2-O-(1-メトキシエチリデン)-β-D-マンノピラノース)を、例えば、水及びp-TsOH・HOを添加し、次いで、トリエチルアミンと反応させることにより、以下の式A-2:
Figure JPOXMLDOC01-appb-C000177
で示される化合物を生成する。本工程は、好適には、例えば実施例1に示した方法によって行うことができる。
 次いで、式A-2で示される化合物に、例えば、トリクロロアセトニトリル及びジアザビシクロウンデセン(DBU)を添加することにより、式A-3で示される化合物を製造する。本工程は、好適には、例えば実施例2に示した方法によって行うことができる。
<式A-4で示される化合物の製造>
 本発明の一態様において、式A-4で示される化合物は、以下の工程X-1~工程X-14、又は以下の工程X-1~X-8+X-15~X-16により製造される。以下には、各工程の詳細を例示するが、各工程は、単糖又はオリゴ糖製造における常法を用いて、又はこのような常法を応用することによって、実施することもできる。
Figure JPOXMLDOC01-appb-C000178
Figure JPOXMLDOC01-appb-C000179
<工程X-1>
 工程X-1は、以下の式C-1:
Figure JPOXMLDOC01-appb-C000180
で示される化合物の3位の炭素に結合している水酸基を、2-ナフチルメチル(NAP)基で保護することにより、以下の式C-2:
Figure JPOXMLDOC01-appb-C000181
で示される化合物を製造する工程である。本工程の出発物質である式C-1で示される化合物は、既知の方法によって製造することができ、又は、市販品を使用することができる。式C-1で示される化合物の市販品としては、例えば、Sigma-Aldrich社製の1,2:5,6-ジ-O-イソプロピリデン-α-D-グルコフラノースを挙げることができる。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例10に示した方法によって行うことができる。
<工程X-2>
 工程X-2は、式C-2で示される化合物を、二箇所のイソプロピリデンの酸加水分解とピラノース環形成により、以下の式C-3:
Figure JPOXMLDOC01-appb-C000182
で示される化合物を製造する工程である。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例11に示した方法によって行うことができる。
<工程X-3>
 工程X-3は、式C-3で示される化合物上の水酸基をアセチル基にて保護することにより、以下の式C-4:
Figure JPOXMLDOC01-appb-C000183
で示される化合物を製造する工程である。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例12に示した方法によって行うことができる。
<工程X-4>
 工程X-4は、式C-4で示される化合物の1位の炭素に結合しているアセチルオキシ基におけるアセチル基のみを選択的に脱離させることにより、以下の式C-5:
Figure JPOXMLDOC01-appb-C000184
で示される化合物を製造する工程である。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例12に示した方法によって行うことができる。
 上記の式C-3で示される化合物から式C-5で示される化合物)の製造の工程は、例えば、実施例12に示すように、ワンポットで行ってもよい。
<工程X-5>
 工程X-5は、式C-5で示される化合物をトリクロロアセトニトリルと反応させることにより、以下の式C-6:
Figure JPOXMLDOC01-appb-C000185
で示される化合物を製造する工程である。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例13に示した方法によって行うことができる。
<工程X-6>
 工程X-6は、式C-6で示される化合物を、以下の式C-7:
Figure JPOXMLDOC01-appb-C000186
で示される化合物と反応させることにより、以下の式C-8:
Figure JPOXMLDOC01-appb-C000187
で示される化合物を製造する工程である。式C-7で示される化合物は、既知の方法によって製造することができ、又は、市販品を使用することができる。式C-7で示される化合物の市販品としては、例えば、東京化成工業株式会社製の4-メトキシフェニル3,6-ジ-O-ベンジル-2-デオキシ-2-フタルイミド-β-D-グルコピラノシドを挙げることができる。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例14に示した方法によって行うことができる。
<工程X-7>
 工程X-7は、式C-8で示される化合物より、アセチル基を脱離させることにより、以下の式C-9:
Figure JPOXMLDOC01-appb-C000188
で示される化合物を製造する工程である。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例15に示した方法によって行うことができる。
 本発明の一態様において、工程X-7は、式C-8で示される化合物を、トリフルオロ酢酸エステルの存在下で、強塩基と反応させてアセチル基を脱離させることにより、式C-9で示される化合物を生成させる工程である。当該アセチル基の脱離反応を、メタノール中ナトリウムメトキシドを用いて行うことが報告されているが(Org.Biomol.Chem.,2018,16,4720-4727)、その場合、フタルイミド基の開環という所望しない副反応も同時に生じ得る。他方、パーフルオロカルボン酸のアルキルエステルの存在下で、アルコキシド系の強塩基と反応させるという手法を用いることにより、フタルイミド基の開環を抑制しながら、アセチル基の脱離を行うことが可能となる。
 上記工程で使用される「パーフルオロカルボン酸のアルキルエステル」は、反応が進行する限り制限されないが、トリフルオロ酢酸メチル、トリフルオロ酢酸エチル、トリフルオロ酢酸プロピル、トリフルオロ酢酸イソプロピル、トリフルオロ酢酸ブチル、ペンタフルオロプロピオン酸メチル、ペンタフルオロプロピオン酸エチル、ペンタフルオロプロピオン酸プロピル、ぺンタフルオロプロピオン酸イソプロピル、ヘプタフルオロ酪酸メチル、ヘプタフルオロ酪酸エチル、ヘプタフルオロ酪酸プロピル、ヘプタフルオロ酪酸イソプロピル、ヘプタフルオロ酪酸ブチル、ノナフルオロ吉草酸メチル、ノナフルオロ吉草酸エチル、ノナフルオロ吉草酸プロピル、ノナフルオロ吉草酸イソプロピル、ノナフルオロ吉草酸ブチル、ウンデカフルオロカプロン酸メチル、ウンデカフルオロカプロン酸エチル、ウンデカフルオロカプロン酸プロピル、ウンデカフルオロカプロン酸イソプロピル、及びウンデカフルオロカプロン酸ブチルであり、好適には、トリフルオロ酢酸メチルが使用される。
 上記の「強塩基」としては、反応が進行する限り制限されないが、例えば、金属アミドのナトリウム塩、リチウム塩、及びカリウム塩;C1~C20アルコキシドのナトリウム塩、リチウム塩、カリウム塩、セシウム塩、及びバリウム塩;水素化ナトリウム、水素化カリウム、水素化リチウム、ブチルリチウム、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、炭酸リチウム、リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸リチウム、ジアザビシクロウンデセン(DBU)、ジアザビシクロノネン(DBN)、及び1,1,3,3-テトラメチルグアニジン(TMG);並びにこれらの組み合わせからなる群より選択され、例えば、C1~C20アルコキシドのナトリウム塩、リチウム塩、カリウム塩としては、リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、リチウムエトキシド、ナトリウムエトキシド、カリウムエトキシド、リチウムイソプロポキシド、ナトリウムイソプロポキシド、カリウムイソプロポキシド、リチウムtert-ブトキシド、ナトリウムtert-ブトキシド、カリウムtert-ブトキシド、リチウムtert-ペントキシド、ナトリウムtert-ペントキシド、又はカリウムtert-ペントキシドを挙げることができ、特に好適には、ナトリウムtert-ブトキシド、リチウムtert-ブトキシド、カリウムtert-ブトキシド、LHMDS(リチウムヘキサメチルジシラジド)を挙げることができる。
 本工程における溶媒としては、反応が進行する限り制限されないが、例えば、C1~C10アルコール溶媒単独又はC1~C10アルコール溶媒とアミド系溶媒(ジメチルホルムアミド、ジメチルアセトアミド等)、エーテル系溶媒(テトラヒドロフラン、ジメトキシエタン、シクロペンチルメチルエーテル等)、エステル系溶媒(酢酸エチル等)、芳香族系溶媒(トルエン等)、ハロゲン系溶媒(ジクロロメタン等)、炭化水素系溶媒(ヘキサン等)若しくはニトリル系溶媒(アセトニトリル等)との混合溶媒を使用することができるが、好適には、メタノール、又はメタノールとテトラヒドロフランの混合溶媒系を使用することができるが、これらに限定されるものではない。なお、上記の「C1~C10アルコール溶媒」は、より多くの炭素数を有するアルコールも代替可能である一方、入手のし易さや便宜性から、C1~C5アルコール(メタノール、エタノール、プロパノール、ブタノール等)を好適に利用できる。
 本工程の反応温度は、反応が進行する限り制限されないが、例えば、-20℃~80℃、好適には、0℃~70℃、より好適には、20℃~65℃、特に好適には、40℃~60℃を挙げることができる。
<工程X-8>
 工程X-8は、式C-9で示される化合物において、D-グルコピラノシドの4位及び6位の炭素に結合している水酸基を、ベンズアルデヒドジメチルアセタールを用いて選択的に保護することにより、以下の式C-10:
Figure JPOXMLDOC01-appb-C000189
で示される化合物を製造する工程である。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例16に示した方法によって行うことができる。
<工程X-9>
 工程X-9は、式C-10で示される化合物を、トリフルオロメタンスルホニルオキシ基、ノナフルオロブタンスルホニルオキシ基、2-ニトロベンゼンスルホニルオキシ基及び4-ニトロベンゼンスルホニルオキシ基からなる群より選択される脱離基を付与する化合物と反応させることにより、以下の式C-11:
Figure JPOXMLDOC01-appb-C000190
で示される化合物(式中、Xは、トリフルオロメタンスルホニル基、ノナフルオロブタンスルホニル基、2-ニトロベンゼンスルホニル基及び4-ニトロベンゼンスルホニル基からなる群より選択される置換基を示す)を製造する工程である。本工程は、既知の脱離基付与方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例17に示した方法によって行うことができる。
 本工程において、「トリフルオロメタンスルホニルオキシ基、ノナフルオロブタンスルホニルオキシ基、2-ニトロベンゼンスルホニルオキシ基及び4-ニトロベンゼンスルホニルオキシ基からなる群より選択される脱離基を付与する化合物」としては、例えば、トリフルオロメタンスルホン酸無水物、ノナフルオロ-1-ブタンスルホニル=フルオリド、ビス(ノナフルオロ-1-ブタンスルホン酸)無水物、2-ニトロベンゼンスルホニルクロリド、又は4-ニトロベンゼンスルホニルクロリドを挙げることができ、好適には、トリフルオロメタンスルホン酸無水物を挙げることができる。
 本工程における溶媒としては、反応が進行する限り制限されないが、例えば、酢酸エチル、トルエン、ジクロロメタン、アセトニトリル、シクロペンチルメチルエーテル、又はtert-ブチルメチルエーテルを挙げることができ、好適には、酢酸エチル、トルエン又はジクロロメタンを挙げることができる。
 本工程の反応温度は、反応が進行する限り制限されないが、例えば、-40℃~60℃、好適には、-30℃~40℃、より好適には、-20℃~10℃を挙げることができる。
 本工程は、好適には、塩基の存在下で行うことができる。本工程に用いられる塩基としては、反応が進行する限り特に限定されないが、例えば、1-メチルイミダゾール、ピリジン、4-ジメチルアミノピリジン、ピコリン、ルチジン又はコリジンを挙げることができ、好適には、1-メチルイミダゾールを挙げることができる。
<工程X-10>
 工程X-10は、式C-11で示される化合物を、酢酸セシウム又はテトラブチルアンモニウムアセテートと反応させることにより、以下の式C-12:
Figure JPOXMLDOC01-appb-C000191
で示される化合物(式中、Xは、アセチル基である)を製造するか、又は、式C-11で示される化合物を、安息香酸テトラブチルアンモニウムと反応させることにより、以下の式C-12:
Figure JPOXMLDOC01-appb-C000192
で示される化合物(式中、Xは、ベンゾイル基である)を製造する工程である。グルコース→マンノースの立体反転は公知の変換反応があるが、β-グリコシド結合で連結したグルコース-グルコサミン2糖のD-グルコピラノシド3位の炭素に結合する水酸基の保護基が2-ナフチルメチル(Nap)基である場合の変換は報告されていない。当該方法を採用することにより、グルコース→マンノースの立体反転を達成でき、高収率かつ高選択的にβ-グリコシド結合で連結したマンノース-グルコサミン2糖骨格を構築することができる。
 本工程における溶媒としては、反応が進行する限り制限されないが、例えば、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、N,N-ジメチルイミダゾリジノン、スルホラン、テトラヒドロフラン又はアセトニトリルを挙げることができ、好適には、ジメチルスルホキシドを挙げることができる。
 本工程の反応温度は、反応が進行する限り制限されないが、例えば、20℃~80℃、好適には、23℃~70℃、より好適には、26℃~60℃、特に好適には、30℃~50℃を挙げることができる。
<工程X-11>
 工程X-11は、式C-12で示される化合物において、X基を脱離させるともに、フタルイミド基を開環させることにより、以下の式C-13:
Figure JPOXMLDOC01-appb-C000193
で示される化合物を製造する工程である。本工程は、既知の加水分解方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例18に示した方法によって行うことができる。
 本工程において、生成された式C-13で示される化合物は、溶媒中に溶けているものを次工程にそのまま使用してもよく、又は、再結晶化により単離・精製することもできる。式C-13で示される化合物は、結晶化により単離・精製できる点が大きな利点であり、結晶化により、カラム精製では除去が難しい類似構造を有する不純物をほぼ完全に除去することができる。この場合、HPLC純度で99%以上の式C-13で示される化合物を取得することができる。
 本工程における再結晶化による単離・精製は、例えば、溶媒に溶けている状態から減圧乾燥操作により溶媒を完全に除去する方法、あるいは、テトラヒドロフランを良溶媒として使用し、微量の水存在下、貧溶媒としてイソプロパノールを滴下する方法を挙げることができる。
 本工程における再結晶化は、式C-13で示される化合物の種晶を用いて行うこともできる。種晶を用いる場合、例えば、テトラヒドロフランを良溶媒として使用し、微量の水存在下、貧溶媒としてイソプロパノールを一部滴下、種晶を添加後、結晶析出を確認し、残りのイソプロパノールを滴下する方法により結晶化を行うことができる。
 上記の式C-11で示される化合物から式C-13で示される化合物の製造の工程は、例えば、実施例18に示すように、ワンポットで行ってもよい。
<工程X-12>
 工程X-12は、式C-13で示される化合物における開環したフタルイミド基を脱水縮合により閉環することにより、以下の式C-14:
Figure JPOXMLDOC01-appb-C000194
で示される化合物を製造する工程である。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例19に示した方法によって行うことができる。
<工程X-13>
 工程X-13は、式C-14で示される化合物において、D-マンノピラノシドの2位の炭素に結合している水酸基をベンジル基で保護することにより、以下の式C-15:
Figure JPOXMLDOC01-appb-C000195
で示される化合物を製造する工程である。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例20に示した方法によって行うことができる。
 本発明の一態様において、工程X-13は、リチウムtert-ブトキシド又はリチウムtert-アモキシドの存在下で、式C-14で示される化合物において、D-マンノピラノシドの2位の炭素に結合している水酸基をベンジル基で保護することにより、式C-15で示される化合物を製造する工程を含む。工程X-15を、リチウムtert-ブトキシド又はリチウムtert-アモキシドの存在下で行うことにより、フタルイミドの開環を抑制できる。また、水素化ナトリウムを使った一般的条件に比べ、安全に実施可能であり、スケールアップも容易となる。
 本工程における溶媒としては、反応が進行する限り制限されないが、例えば、ジメチルアセトアミド、ジメチルホルムアミド、N-メチルピロリドン、N,N-ジメチルイミダゾリジノンを挙げることができ、好適には、ジメチルアセトアミドを挙げることができる。
 本工程の反応温度は、反応が進行する限り制限されないが、例えば、-20℃~100℃、好適には、-15℃~70℃、特に好適には、-10℃~50℃を挙げることができる。
<工程X-14>
 工程X-14は、式C-15で示される化合物において、ベンジリデン保護基を選択的に還元することにより(より詳細には、Angew. Chem. Int. Ed. 2005, 44, 1665-1668を参照のこと)、D-マンノピラノシドの6位の炭素に結合している水酸基のみが脱保護された、以下の式A-4:
Figure JPOXMLDOC01-appb-C000196
で示される化合物を製造する工程である。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例21に示した方法によって行うことができる。
 本工程において、生成された式A-4で示される化合物は、溶媒中に溶けているものを次工程にそのまま使用してもよく、又は、カラム精製等により単離・精製することもできる。
 本発明の一態様において、グルコース→マンノースの立体反転を、S2反応を利用して実行するための工程を含む工程X-9~X-12に代えて、酸化還元反応を利用して実行するための以下に示す工程X-15及びX-16を含む。
Figure JPOXMLDOC01-appb-C000197
<工程X-15>
 工程X-15は、式C-10で示される化合物において、D-グルコピラノシドの2位を酸化することにより、以下の式C-16:
Figure JPOXMLDOC01-appb-C000198
で示される化合物を製造する工程である。本工程は、既知の方法を利用又は応用することにより行うことができる。
<工程X-16>
 工程X-16は、式C-16で示される化合物において、2-ケト-D-グルコピラノシドの2位の炭素に結合しているケトン基を還元することにより、以下の式C-14:
Figure JPOXMLDOC01-appb-C000199
で示される化合物を製造する工程である。本工程は、既知の方法を利用又は応用することにより行うことができる。
 本工程における溶媒としては、反応が進行する限り制限されないが、例えば、ジエチルエーテル、シクロペンチルメチルエーテル、tert-ブチルメチルエーテル、ジイソプロピルエーテル、ジプロピルエーテル、ジブチルエーテル、1,4-ジオキサンを挙げることができ、好適には、テトラヒドロフランを挙げることができる。
 本工程の反応温度は、反応が進行する限り制限されないが、例えば、-80℃~20℃を挙げることができる。なお、以下に記載するとおり、使用する還元剤に応じて、最適な反応温度が異なる。
 本発明の一態様において、式C-16で示される化合物における、2-ケト-D-グルコピラノシドの2位の炭素に結合しているオキソ基は、L-セレクトリド、LS-セレクトリド、リチウムジイソブチル-tert-ブトキシアルミニウムヒドリド(LDBBA)、以下の式W:
Figure JPOXMLDOC01-appb-C000200
で示される化合物(式中、Rは、以下の式:
Figure JPOXMLDOC01-appb-C000201
で示されるジtert-ブチルメチルフェノキシド又はヒドリドであり、但し、少なくとも2つのRは、ジtert-ブチルメチルフェノキシドである)、及びこれらの組み合わせからなる群より選択される還元剤の存在下で還元される。当該還元工程においては、例えば、NaBHを用いた場合、立体選択性が低く(7:3程度)、所期のGln→Manへの立体反転を効率良く得ることは困難であった(Org.Biomol.Chem.,2018,16,4720-4727)。他方、上に挙げた還元剤を用いた場合、NaBHを用いた場合と比較して、Gln→Manへの立体反転の選択性が大きく改善される(93.6:6.4~98.1:1.9)。
 式Wで示される化合物のうち、3つのRがジtert-ブチルメチルフェノキシドである化合物は、例えば、リチウムアルミニウムヒドリド(50.0mg,1.32mmol)のテトラヒドロフラン懸濁液(2mL)に、0℃でジブチルヒドロキシトルエン(885.41mg,4.02mmol)を添加した後、25℃で攪拌することにより、得ることができる。式Wで示される化合物のうち、2つのRがジtert-ブチルメチルフェノキシドである化合物は、同様の手法において、1モル当量のリチウムアルミニウムヒドリドに対して、2モル当量のジブチルヒドロキシトルエンを用いることで得ることができる。
 上記のとおり、本工程の反応温度は、反応が進行する限り制限されないが、還元剤として、L-セレクトリド、LS-セレクトリド又はLDBBAを用いる場合、反応温度は、好適には、-80℃~-20℃、より好適には、-80℃~-30℃、さらに好適には、-80℃~-40℃、特に好適には、-80℃~-50℃を挙げることができ、還元剤として、式Aで示される化合物を用いる場合、反応温度は、好適には、-20℃~20℃、より好適には、-15℃~15℃、特に好適には、-10℃~10℃を挙げることができる。従って、より取り扱い易い温度で反応が進行するという点において、本工程に用いられる還元剤として、特に好適なものは、式Wで示される化合物である。
<A-5で示される化合物の精製>
 本工程I-1-1では、以下の精製方法により、式A-5で示される化合物を精製された形態で得ることができる。当該精製方法としては、上記式A-4で示される化合物と上記式A-3で示される化合物との反応を停止させた後、生成した上記式A-5で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に上記式A-5で示される化合物を吸着させ、次いで、ろ過及び疎水性担体を上記水溶性有機溶媒と水との混合溶液で洗浄することで、夾雑物の除去を行い、次いで、有機溶媒を用いて上記式A-5で示される化合物を疎水性担体から溶出させることにより、上記式A-5で示される化合物を精製することを含む。当該精製方法より、オリゴ糖鎖の液相合成において、グリコシル化反応後に残留する試薬残骸や糖供与体及び糖受容体由来の不純物を、少量の疎水性担体を用いて洗浄操作を行うことで、簡便に除去でき、これら不純物による反応阻害及び副反応も抑制できるため、高品質のオリゴ糖を大量かつ効率的に製造することが可能となった。また、本願発明は従来開発されてきた手法と比較して、基質自身が有する疎水性を利用することにより、タグ脱着の工程数の削減及びオリゴ化時のタグの機能性の低下を防ぐことが可能となっており、より効率的にオリゴ糖を製造することが可能である。特に、本工程では、上記精製方法により、式A-5で示される化合物を式A-3で示される化合物由来の分解物から容易に分離精製することができる。
 なお、上記の式A-5で示される化合物の精製は、本工程I-1-1での精製に限られない。従って、本発明の一態様において、上記式A-5で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に上記式A-5で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を上記水溶性有機溶媒と水との混合溶液で洗浄することで、夾雑物の除去を行い、次いで、有機溶媒を用いて上記式A-5で示される化合物を疎水性担体から溶出させることにより、上記式A-5で示される化合物を精製することを含む、方法も提供される。さらに、上記の精製方法は、糖化合物以外の有機化合物の精製についても適用可能である。また、精製される有機化合物が糖化合物である場合、糖中の水酸基の一又は全部が保護された3~15糖残基からなる糖鎖構造を有する保護オリゴ糖を好適に精製することができ、この際の糖鎖の保護基としては、アルキルエーテル、ベンジルエーテル、シリルエーテル、エステル、炭酸エステルが含まれるが、これらに限定されない。
 上記「夾雑物」とは、保護オリゴ糖(本工程では、上記式A-5で示される化合物)以外の化合物や試薬を指し、保護オリゴ糖の合成反応に用いる試薬やその残骸、保護オリゴ糖の伸長反応に用いる単糖もしくは2糖化合物等の保護オリゴ糖以外の糖、又は保護オリゴ糖の脱保護反応によって生じる副生成物を主に意味する。
 上記「疎水性担体」とは、糖化合物を含む特定の化合物に吸着する疎水性の吸着材料を指し、例えば、逆相分配クロマトグラフィー充填用樹脂が挙げられ、「逆相分配クロマトグラフィー充填用樹脂」は、ポリ(スチレン/ジビニルベンゼン)ポリマーゲル樹脂、ポリスチレン-ジビニルベンゼン樹脂、ポリヒドロキシメタクリレート樹脂、スチレンビニルベンゼン共重合体樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリメタクリレート樹脂、化学結合型シリカゲル樹脂、及びこれらの組み合わせからなる群から選択されるが、これらに限定されない。
 上記「化学結合型シリカゲル樹脂」は、(1)シリカゲルに、シランカップリング剤を反応させて得られる樹脂、(2)シリカゲルに、ジメチルオクタデシル、オクタデシル、トリメチルオクタデシル、ジメチルオクチル、オクチル、ブチル、エチル、メチル、フェニル、シアノプロピル、又はアミノプロピル基を化学結合して得られる樹脂、(3)シリカゲルに、ドコシル又はトリアコンチル基を化学結合して得られる樹脂、及び(4)前述の(1)~(3)の組み合わせからなる群から選択されるが、オクタデシル基結合シリカゲル樹脂(ODS樹脂)が好適に使用されるが、これらに限定されない。
 上記「水溶性有機溶媒」は、特に限定されるものではないが、水溶性アルコール系溶媒(好適にはC1~C4)、水溶性ニトリル系溶媒(アセトニトリル等)、水溶性エーテル系溶媒(テトラヒドロフラン等)、水溶性ケトン系溶媒(アセトン等)、水溶性アミド系溶媒(ジメチルホルムアミド等)、又は水溶性スルホキシド系溶媒(ジメチルスルホキシド等)を使用することができ、アセトニトリルを好適に使用することができる。
 上記の疎水性担体から目的物の溶出工程で使用される「有機溶媒」は、特に限定されるものではないが、ニトリル系溶媒(アセトニトリル等)、エーテル系溶媒(テトラヒドロフラン等)、エステル系溶媒(酢酸エチル等)、ケトン系溶媒(アセトン等)、ハロゲン系溶媒(ジクロロメタン等)、又は芳香族系溶媒(トルエン等)、又は前述の溶媒系を少なくとも1種以上含む混合溶媒を使用することができ、アセトニトリル、酢酸エチル、テトラヒドロフラン、トルエンを好適に使用することができる。
 上記の精製工程は、特に限定されるものではないが、0℃~50℃の温度で行うことができる。
 上記I-1-1工程後以下の工程I-1-2~I-1-3により、上記式A-5で示される化合物から、上記式A-7で示される化合物を製造することができるが、これらの製造工程に限定するものではない。
<工程I-1-2>
 工程I-1-2は、上記式A-5で示される化合物をから4-メトキシフェニル基を脱保護することにより、上記式A-6
Figure JPOXMLDOC01-appb-C000202
で示される化合物を生成する工程である。
 本発明の一態様において、本工程は、上記式A-5で示される化合物を、フルオラスアルコール及び水中で、λ3-ヨーダンと反応させて、4-メトキシフェニル基を脱保護することにより、上記式A-6で示される化合物を生成する工程である。本工程は、好適には、例えば、実施例23に示した方法によって行うことができる。
 上記「λ3-ヨーダン」とは、三価の超原子価ヨウ素化合物を意味する。一実施形態において、式R-I(ORで表される化合物である(式中、Rは、無置換又は置換フェニル基であり、Rは、H、アセトキシ、トリフルオロアセトキシ、トシルオキシ、メタンスルホニルオキシ、及びこれらの組み合わせからなる群から選択される)。上記式の定義の通り、Rは「置換フェニル基」であってもよく、当該置換基としては、例えば、直鎖若しくは分枝状飽和又は不飽和炭化水素基、含酸素基(アルコキシ、エステル等)、含窒素基(シアノ、アジド等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)等が挙げられるが、より好ましくは、炭化水素基、含酸素置換基、ハロゲン原子である。これらの置換基が炭素を含む場合、例えば、炭素を1~5個有するもの、又は炭素を1~3個有するものを好適に使用できる。λ3-ヨーダンの具体例には、[ビス(トリフルオロアセトキシ)ヨード]ベンゼン(PIFA)、[ヒドロキシ(トシルオキシ)ヨード]ベンゼン(HTIB)、(ジアセトキシヨード)ベンゼン(PIDA)、[ビス(トリフルオロアセトキシ)ヨード]ペンタフルオロベンゼン、及び[ヒドロキシ(メタンスルホニルオキシ)ヨード]ベンゼンが挙げられるが、これに限定されるものではない。
 上記工程で使用される「フルオラスアルコール」とは、アルコールに結合している炭素を除くすべての炭素がフッ素を有するフッ素含有アルコール化合物を意味する。フッ素置換が許容される限り、フルオラスアルコールは、より多くのフッ素を有することが好ましい。フルオラスアルコールには、フルオラス脂肪族アルコールが含まれるが、これに限定されるものではない。フルオラス脂肪族アルコール中の炭化水素部分は、飽和又は不飽和であってもよく、直鎖状又は分枝状であってもよく、環式であってもよい。フルオラス脂肪族アルコールは、例えば、フルオラスC~C脂肪族アルコールであり、好ましくは、フルオラスC~C脂肪族アルコールであり、より好ましくは、フルオラスC~C脂肪族アルコールである。フルオラスアルコールの具体例としては、ヘキサフルオロ-2-プロパノール(HFIP)、2,2,2-トリフルオロエタノール(TFE)、2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール、ノナフルオロ-tert-ブチルアルコール、及びこれらの組み合わせからなる群が挙げられるが、これらに限定されるものではない。
 本工程は、上記フルオラスアルコールと「水」との共存下において行われる。水の量は、生成物の高収率を達成するための観点等から適宜設定することができるが、例えば、式A-5で示される化合物に対してモル比で約1.0当量以上、約1.5当量以上、約2.0当量以上、又は約2.5当量以上であり得、また、式A-5で示される化合物に対して体積比で約10以下、約8以下、約5以下、又は約3以下であり得る。
 本工程では、フルオラスアルコール及び水中に、さらに「添加剤」を添加してもよい。添加剤は、好ましくは、リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸水素二ナトリウム、トリフルオロ酢酸、及びこれらの組み合わせからなる群から選択される。添加剤の量は、適宜設定することができ、例えば、式A-5で示される化合物に対して約0.5~8当量、約1~6当量、又は約1.5~5当量であり得る。
<工程I-1-3>
 工程I-1-3は、上記式A-6で示される化合物から上記式A-7で示される化合物を生成する工程である。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例24に示した方法によって行うことができる。
 本発明の一態様において、本工程は、上記式A-6で示される化合物を、DBUの存在下で、2,2,2-トリフルオロ-N-フェニルアセトイミドイルクロリド(TFPC)と反応させることにより、上記式A-7で示される化合物を生成する工程である。使用する塩基として上記DBUを用いることにより、例えば炭酸カリウムを用いた場合と比較して、TFPCの当量を削減することが可能となり、高収率で目的物を得ることができる。TFPCは高価な試薬であるから、当該工程の収率が向上することは、商業生産上、非常に有益である。
 本工程における溶媒としては、反応が進行する限り制限されないが、例えば、ジクロロメタン、トルエン、酢酸エチル、アセトニトリル、又はテトラヒドロフランを挙げることができ、好適には、ジクロロメタンを挙げることができる。
 本工程の反応温度は、反応が進行する限り制限されないが、好適には、-20℃~40℃、より好適には、-10℃~35℃、特に好適には、0℃~30℃を挙げることができる。
 本工程は、好適には、脱水剤の存在下で行われる。本工程における脱水剤としては、反応が進行する限り制限されないが、例えば、モレキュラーシーブスを挙げることができ、好適には、粉末粒径10μm以下のモレキュラーシーブス4A粉末を挙げることができる。
 本工程において、生成されたA-7で示される化合物は、反応で使用した塩基を除去する操作を行った後であれば、溶媒中に溶けているものを次工程にそのまま使用してもよく、又は、カラム精製等により単離・精製することもできる。カラムを用いた単離・精製としては、例えば、固定相としてシリカゲル、移動相としてジクロロメタン又はトルエン-酢酸エチル混合溶媒系を用いた単離・精製を挙げることができる。
<工程I-2>
 工程I-2は、上記式A-7で示される化合物を、以下の式A-8:
Figure JPOXMLDOC01-appb-C000203
で示される化合物とβ-1,4-グリコシド結合させることにより、以下の式A-9:
Figure JPOXMLDOC01-appb-C000204
で示される化合物を生成する工程を含む、以下の式A-10:
Figure JPOXMLDOC01-appb-C000205
で示される化合物を生成する工程である。工程I-2は、以下の工程I-2-1~工程I-2-2を含む。
<工程I-2-1>
 工程I-2-1は、式A-7で示される化合物を、式A-8で示される化合物とβ-1,4-グリコシド結合させることにより、式A-9で示される化合物を生成する工程である。式A-8で示される化合物は、既知の方法によって製造することができ、又は、市販品を使用することができる。式A-8で示される化合物の市販品としては、例えば、東京化成工業株式会社製の4-メトキシフェニル3,6-ジ-O-ベンジル-2-デオキシ-2-フタルイミド-β-D-グルコピラノシドを挙げることができる。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例25に示した方法によって行うことができる。
<式A-9で示される化合物の精製>
 本工程I-2-1では、以下の精製方法により、式A-9で示される化合物を精製された形態で得ることができる。当該精製方法としては、上記式A-7で示される化合物と上記式A-8で示される化合物との反応を停止させた後、生成した上記式A-9で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に上記式A-9で示される化合物を吸着させ、次いで、ろ過及び疎水性担体を上記水溶性有機溶媒と水との混合溶液で洗浄することで、夾雑物の除去を行い、次いで、有機溶媒を用いて上記式A-9で示される化合物を疎水性担体から溶出させることにより、上記式A-9で示される化合物を精製することを含む。上記式A-5で示される化合物の精製方法で述べたのと同様、当該精製方法では、少量の疎水性担体を用いることで、オリゴ糖鎖の液相合成において、高品質のオリゴ糖を大量かつ効率的に製造することが可能となった。特に、単糖である式A-8で示される化合物及び4糖である式A-9で示される化合物は順相シリカゲルカラムクロマトグラフィーにおいて極性が極めて近く、例えば典型的なカラム溶媒系であるヘキサン-酢酸エチル条件では同一のRf値であり分離は困難であったが、本発明の精製方法を利用することにより、極性の極めて近い単糖及び4糖を容易に分離することができることが可能となった。
 なお、上記の式A-9で示される化合物の精製は、本工程I-2-1での精製に限られない。従って、本発明の一態様において、上記式A-9で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に上記式A-9で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を上記水溶性有機溶媒と水との混合溶液で洗浄することで、夾雑物の除去を行い、次いで、有機溶媒を用いて上記式A-9で示される化合物を疎水性担体から溶出させることにより、上記式A-9で示される化合物を精製することを含む、方法も提供される。
 上記「夾雑物」とは、保護オリゴ糖(本工程では、式A-9で示される化合物)以外の化合物や試薬を指し、保護オリゴ糖の合成反応に用いる試薬やその残骸、保護オリゴ糖の伸長反応に用いる単糖もしくは2糖化合物等の保護オリゴ糖以外の糖、又は保護オリゴ糖の脱保護反応によって生じる副生成物を主に意味する。なお、本工程で使用される「疎水性担体」(逆相分配クロマトグラフィー充填用樹脂等)、「水溶性有機溶媒」、「有機溶媒」、及び精製の実施温度は、上記式A-5で示される化合物の精製方法で記載したものと同様である。
<工程I-2-2>
 工程I-2-2は、式A-9で示される化合物から式A-10で示される化合物を生成する工程である。
 本発明の一態様において、本工程I-2-2は、溶媒中、パーフルオロカルボン酸のアルキルエステルの存在下で、式A-9で示される化合物を強塩基と反応させてアセチル基を脱離させること(脱アセチル化反応)により、式A-10で示される化合物を生成させる工程であり、好適には、例えば、実施例26に示した方法によって行うことができる。当該脱アセチル化反応は、基質が異なることを除き、工程X-7で記載する脱アセチル化反応の場合と同様に行うことができ、パーフルオロカルボン酸のアルキルエステルの存在下で、強塩基と反応させるという手法を用いることにより、フタルイミド基の開環を抑制しながら、脱アセチル化反応を行うことが可能となる。
 なお、上記の脱アセチル化反応は、本工程I-2-2での使用に限定されるものではない。従って、本発明の一態様において、上記式A-10で示される化合物を製造する方法であって、記式A-9で示される化合物を、パーフルオロカルボン酸のアルキルエステルの存在下で、強塩基と反応させる工程を含む、方法も提供される。
 当該工程で使用されるパーフルオロカルボン酸のアルキルエステル、強塩基、溶媒、及び当該工程の反応温度は、上記工程X-7で記載した通りである。
<工程I-3>
 工程I-3は、上記式A-10で示される化合物を、以下の式A-11:
Figure JPOXMLDOC01-appb-C000206
で示される化合物とβ-1,2-グリコシド結合させることにより、以下の式A-12:
Figure JPOXMLDOC01-appb-C000207
で示される化合物を生成する工程を含む、上記式A-13で示されるオリゴ糖を生成する工程である。本発明の一態様において、工程I-3は、以下の工程I-3-1~工程I-3-2を含む。
<工程I-3-1>
 工程I-3-1は、上記式A-10で示される化合物を上記式A-11で示される化合物とβ-1,2-グリコシド結合させることにより、上記式A-12で示される化合物を生成する工程である。上記のグリコシド結合工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例27に示した方法によって行うことができる。また、式A-11で示される化合物は、以下のようにして製造することができる。さらに、式A-12で示される化合物は後述のようにして精製されてもよい。
<式A-11で示される化合物の製造>
 一実施形態において、上記式A-11で示される化合物は、
(工程Y-1)以下の式B-1:
Figure JPOXMLDOC01-appb-C000208
で示される化合物を、以下の式B-2:
Figure JPOXMLDOC01-appb-C000209
で示される化合物とβ-1,4-グリコシド結合させることにより、以下の式B-3:
Figure JPOXMLDOC01-appb-C000210
で示される化合物を生成する工程を含む、以下の式B-4:
Figure JPOXMLDOC01-appb-C000211
で示される化合物を生成する工程、
(工程Y-2)前記式B-4で示される化合物及びハロゲン化ベンジル又はスルホン酸ベンジルを含む溶媒に、リチウムtert-ブトキシド又はリチウムtert-アモキシドを添加して、前記式B-4で示される化合物中に存在する水酸基をベンジル基で保護することにより、以下の式B-5:
Figure JPOXMLDOC01-appb-C000212
で示される化合物を生成する工程、を含む工程により製造される。上記工程Y-1は、工程Y-1-1及び工程Y-1-2を含み、上記工程Y-2は、工程Y-2-1~工程Y-2-3を含む。
<工程Y-1-1>
 工程Y-1-1は、上記の式B-1で示される化合物を上記の式B-2で示される化合物とβ1,4-グリコシド結合させることにより、上記の式B-3で示される化合物を生成する工程である。式B-1で示される化合物の市販品としては、東京化成工業株式会社の2,3,4,6-テトラ-O-アセチル-α-D-ガラクトピラノシル2,2,2-トリクロロアセトイミデート(86520-63-0)を挙げることができる。また、式B-2で示される化合物の市販品としては、例えば、東京化成工業株式会社製の4-メトキシフェニル3,6-ジ-O-ベンジル-2-デオキシ-2-フタルイミド-β-D-グルコピラノシドを挙げることができる。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例3に示した方法によって行うことができ、例えば、上記の式B-2で示される化合物を含む溶液に、上記の式B-1で示される化合物を含む溶液、モレキュラーシーブ4A粉末、トリフルオロメタンスルホン酸トリメチルシリル(TMSOTf)を順次添加することにより、以下の式B-3で示される化合物を生成させることができる。
<工程Y-1-2>
 工程Y-1-2は、B-3で示される化合物からアセチル基を脱離させることにより、以下の式B-4:
Figure JPOXMLDOC01-appb-C000213
で示される化合物を生成させる工程である。上記のアセチル基(AcO)の脱保護は、既知の方法を利用することにより行うことができるが、好適には、例えば、実施例4に示した方法によって行うことができ、例えば、トルエン等の溶媒中、トリフルオロ酢酸エステルの存在下で、式B-3で示される化合物を強塩基と反応させてアセチル基を脱離させることにより、式B-4で示される化合物を生成させることができる。
<工程Y-2-1>
 工程Y-2-1は、上記式B-4で示される化合物中に存在する複数の水酸基をベンジル基で保護することにより、上記式B-5で示される化合物を生成する工程である。
 一実施態様において、本工程Y-2-1は、上記式B-4で示される化合物及びハロゲン化ベンジル(臭化ベンジル、塩化ベンジル、フッ化ベンジル、又はヨウ化ベンジル)又はスルホン酸ベンジル含む溶媒に、リチウムtert-ブトキシド又はリチウムtert-アモキシドを添加して、上記式B-4で示される化合物中に存在する複数の水酸基をベンジル基で保護することにより、上記式B-5で示される化合物を生成する工程である。上記のB-4で示される化合物N-2)のようなフタルイミド基によって保護された糖誘導体中の複数の水酸基を同時にベンジル化することが必要な場合にはフタルイミド基の開環を抑制しつつ反応を進行させる必要がある。しかし、フタルイミド基は強塩基性条件下、微量の水酸化物イオンの存在によって容易に開環反応が進行するため、従来のベンジル化反応に用いられているNaH/DMAc条件では、NaH中の水酸化ナトリウム量に依存して、大きく収率が変動し、更に、NaH/DMAcは、その混触危険性、爆発懸念から大量合成法としての適用は容易ではないという欠点を有していた。本発明者らは、上記のベンジル化反応を行うことにより、フタルイミド基の開環を抑制しつつ、より温和な条件で、複数の水酸基を同時にベンジル化することができる方法を見出したものである。
 なお、上記のベンジル化反応は、本工程Y-2-1での使用に限定されるものではない。従って、本発明の一態様において、上記式B-5で示される化合物を製造する方法であって、上記式B-4で示される化合物及びハロゲン化ベンジル(臭化ベンジル、塩化ベンジル、フッ化ベンジル、又はヨウ化ベンジル)又はスルホン酸ベンジルを含む溶媒を含む溶液に、リチウムtert-ブトキシド又はリチウムtert-アモキシドを添加して、上記式B-4で示される化合物中に存在する水酸基をベンジル基で保護する工程を含む、方法も提供される。
 本工程で使用される溶媒は、反応が進行する限り特に限定されないが、アミド系溶媒(ジメチルホルムアミド、ジメチルアセトアミド等)、エーテル系溶媒(テトラヒドロフラン、ジメトキシエタン等)、芳香族系溶媒(トルエン等)、炭化水素系溶媒(ヘキサン等)、ウレア系溶媒、もしくは前述の溶媒系を少なくとも1種以上含む混合溶媒を使用することができ、アミド系溶媒(ジメチルホルムアミド、ジメチルアセトアミド等)をより好適に使用することができる。
 また、本工程の反応は、0℃~60℃で行われることが好ましく、30℃~50℃で行われることがより好ましい。
<式B-5で示される化合物の精製>
 上記式B-5で示される化合物は、以下の工程により精製することができる。当該工程としては、式B-5で示される化合物中のフタルイミド基を開環し、次いで、シンコニジンと塩を形成することにより、シンコニジン塩である結晶性の以下の式B-6:
Figure JPOXMLDOC01-appb-C000214
で示される化合物を生成し、結晶性の該式B-6で示される化合物と非結晶性物質とを分離した後、溶媒の添加により、式B-6で示される化合物中のシンコニジンを除去して、以下の式B-7:
Figure JPOXMLDOC01-appb-C000215
で示される化合物を生成し、次いで、式B-7で示される化合物中の前記開環したフタルイミド基を閉環させることにより、式B-5で示される化合物を再生成することができる。式B-6で示される化合物(式B-7で示される化合物のシンコニジン塩)は結晶性である一方、上記式B-3、B-4、及びB-5で示される化合物は結晶化しない化合物のため、式B-5で示される化合物中のフタルイミドを一旦開環し、それによって生成したフタルイミド基中のカルボン酸部位とシンコニジンとが塩を形成することにより、式B-5で示される化合物を結晶化させることができ、該結晶性物質を非結晶性物質と分離した後、例えば、酸性水溶液及び溶媒の添加により、上記式B-6で示される化合物中のシンコニジンを除去し、次いで、再びフタルイミドを閉環させることにより、高純度化の式B-5で示される化合物を得ることができる。なお、フタルイミドの開環及び閉環は、公知の方法を使用して行うことができ、フタルイミドの開環は、例えば、メタノール-テトラヒドロフラン中で水酸化ナトリウムを添加することによって行うことができ、フタルイミド閉環は、例えば、テトラヒドロフラン溶媒中でカルボニルジイミダゾール(CDI)を添加することにより行うことができる。本工程は、好適には、例えば、実施例6及び7に示した方法によって行うことができる。
<工程Y-2-2>
 工程Y-2-2は、式B-5で示される化合物より、4-メトキシフェニル基を脱離させることにより、以下の式B-8:
Figure JPOXMLDOC01-appb-C000216
で示される化合物を生成する工程である。
 一実施態様において、本工程Y-2-2は、式B-5で示される化合物を、フルオラスアルコール及び水中で、λ3-ヨーダンと反応させて、4-メトキシフェニル基を脱離させることにより、上記の式B-8で示される化合物を生成する工程であり、好適には、例えば、実施例8に示した方法によって行うことができる。当該工程は、上記工程I-1-2に準じて行うことができ、当該工程において使用されるフルオラスアルコール及びλ3-ヨーダンは、上記工程I-1-2で使用されるものと同様のものを使用することができる。
<工程Y-2-3>
 工程Y-2-3は、上記式B-8で示される化合物より上記式A-11で示される化合物を生成する工程である。
 本発明の一態様において、本工程Y-2-3は、上記式B-8で示される化合物を、N-メチルイミダゾールの存在下で、2,2,2-トリフルオロ-N-フェニルアセトイミドイルクロリド(TFPC)と反応させることにより、上記式A-11で示される化合物を生成する工程であり、好適には、例えば、実施例9に示した方法によって行うことができる。工程I-1-3での同様の反応に関して述べたように、使用する塩基として上記N-メチルイミダゾールを用いることにより、例えば炭酸カリウムを用いた場合と比較して、TFPCの当量を削減することが可能となり、高収率で目的物を得ることができる。なお、使用される溶媒及び反応温度、また、好適には脱水剤の存在下で行われること、カラム精製等により単離・精製してもよいことも上記工程I-1-3のものと同様である。
<A-12で示される化合物の精製>
 上記工程I-3-1では、以下の精製方法により、式A-12で示される化合物を精製された形態で得ることができる。当該精製方法としては、上記式A-10で示される化合物と上記式A-11で示される化合物との反応を停止させた後、生成した上記式A-12で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に上記式A-12で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を上記水溶性有機溶媒と水との混合溶液で洗浄することで、夾雑物の除去を行い、次いで、有機溶媒を用いて上記式A-12で示される化合物を疎水性担体から溶出させることにより、上記式A-12で示される化合物を精製することを含む。上記式A-5で示される化合物の精製方法で述べたのと同様、上記精製方法より、少量の疎水性担体を用いることで、オリゴ糖鎖の液相合成において、高品質のオリゴ糖を大量かつ効率的に製造することが可能となった。
 なお、上記の式A-12で示される化合物の精製は、本工程I-3-1での精製に限られない。従って、本発明の一態様において、上記式A-12で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に上記式A-12で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を上記溶性有機溶媒と水との混合溶液で洗浄することで、夾雑物の除去を行い、次いで、有機溶媒を用いて上記式A-12で示される化合物を疎水性担体から溶出させることにより、上記式A-12で示される化合物を精製することを含む、方法も提供される。
 上記「夾雑物」とは、保護オリゴ糖(本工程では、式A-12で示される化合物)以外の化合物や試薬を指し、保護オリゴ糖の合成反応に用いる試薬やその残骸、保護オリゴ糖の伸長反応に用いる単糖もしくは2糖化合物等の保護オリゴ糖以外の糖、又は保護オリゴ糖の脱保護反応によって生じる副生成物を主に意味する。
 上記工程で使用される「疎水性担体」(逆相分配クロマトグラフィー充填用樹脂等)、「水溶性有機溶媒」、「有機溶媒」、及び精製の実施温度は、上記式A-5で示される化合物の精製方法で記載したものと同様である。
<工程I-3-2>
 工程I-3-2は、式A-12で示される化合物から式A-13で示されるオリゴ糖を生成する工程である。
 本発明の一態様において、本工程I-3-2は、式A-12で示される化合物を、フルオラスアルコール及び水の混合溶媒中で、DDQ(2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン)と反応させて、上記式A-12で示される化合物中の2-ナフチルメチル基を脱離させること(脱2-ナフチルメチル化反応)により、上記式A-13で示されるオリゴ糖を生成する工程であり、好適には、例えば、実施例28-1に示した方法によって行うことができる。
 上記脱2-ナフチルメチル化反応について、本発明者らは、フルオラスアルコール及び水中で、2-ナフチルメチル基が酸素原子を介して結合された基質に2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノンを反応(作用)させることにより温和な条件下において、良好な撹拌性状状態で反応を実施でき、なおかつ高収率で脱2-ナフチルメチル化生成物が取得できることを見出したものである。以下、当該脱2-ナフチルメチル化反応の利点をさらにより詳細に説明する。上記の本発明の脱2-ナフチルメチル化反応では、2-ナフチルメチル基が酸素原子を介して結合された糖等の基質から、温和な条件下において、高収率で脱2-ナフチルメチル化生成物を取得することができる。副生成物である2,3-ジクロロ-5,6-ジシアノ-p-ベンゾヒドロキノンによる撹拌性状の悪化や容器壁面への付着等も見られず、再現性よく反応を実施可能であり、かかる生成物の大量合成にも適している。また、HFIP-HOの異常凝固点降下により、反応温度を-30℃まで下げても溶媒の凝固は確認されず、反応基質の反応性に応じて、広い温度範囲を適用可能である(融点HFIP:-3.3℃、HO:0℃)。また、ベンジル基を多数有する式A-12で示される化合物の脱ナフチルメチル化反応を行う際に、酸化剤としてDDQ、溶媒としてHFIP-HOを用いることで従来条件に比べて、優れた選択性で反応進行することを見出した。本変換反応に対しては、多くの報告例では、ジクロロメタン-水系の二層系反応条件が適用されるが、その場合、複数存在するベンジル基の脱ベンジル化が一定速度で進行し、収率は中程度に留まる。β-ピネンを添加剤として用いる改良条件の報告例はあるものの(J.Org.Chem.,2017,82,3926等を参照)、複数箇所のBn基を有した化合物に対しては、収率は中程度に留まる(Angew.Chem.Int.Ed.2021,60,19287.等を参照)。更に、特に、式A-12で示される化合物のような10か所以上のベンジル基を持つような基質に対する選択性に関しては、十分な理解がなされていない。また、ジクロロメタン-水系においてはDDQ及びDDQ由来の副生物が攪拌性状の悪化を引き起こす課題があり、大量合成に適した反応条件とは言えない。一方で、本法のDDQ/HFIP-HO系では、15か所のベンジル基を有する式A-12で示される化合物において、85%以上の高い選択性を実現した。本法は、上述したようなDDQ由来の攪拌性状の悪化は確認されない。更に、HFIP-HOの異常凝固点降下により、反応温度を-30℃まで下げても溶媒の凝固は確認されず、反応基質の反応性に応じて、広い温度範囲を適用可能である(融点HFIP:-3.3℃、HO:0℃)。
 なお、上記の脱2-ナフチルメチル化反応は、本工程I-3-1での反応に限られない。従って、本発明の一態様において、上記式A-13で示されるオリゴ糖を製造する方法であって、式A-12で示される化合物を、フルオラスアルコール及び水の混合溶媒中で、DDQ(2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン)と反応させて、式A-12で示される化合物中の2-ナフチルメチル基を脱離させる工程を含む、方法も提供される。
 上記「フルオラスアルコール」は、反応が進行する限り制限されないが、好ましくは、ヘキサフルオロ-2-プロパノール(HFIP)、2,2,2-トリフルオロエタノール(TFE)、2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール、ノナフルオロ-tert-ブチルアルコール及びこれらの組み合わせからなる群から選択される。
 上記の脱2-ナフチルメチル化反応は、反応が進行する限り制限されないが、-35℃~70℃で行うことが好ましく、-30℃~-10℃で行われることがより好ましい。
 上記の製造法により、以下の式A-13:
Figure JPOXMLDOC01-appb-C000217
で示されるオリゴ糖が提供される。式A-13で示されるオリゴ糖には、該オリゴ糖と同様の機能又は作用を有する限り、その変形物、例えば、式A-13で示されるオリゴ糖中のベンジル基に代えてクロロベンジル基等の類似の保護基を有するものも包含される。
<式A-13で示される化合物の精製>
 上記式A-13で示される化合物は、以下の工程により精製してもよい。当該工程としては、式A-13で示される化合物中のフタルイミド基を開環し、次いで、(R)-(+)-1-(1-ナフチル)エチルアミンと塩を形成することにより、結晶性の以下の式A-14:
Figure JPOXMLDOC01-appb-C000218
で示される化合物を生成し、結晶性の式A-14で示される化合物で示される化合物と非結晶性物質とを分離した後、酸性水溶液及び溶媒の添加により、式A-14で示される化合物中の(R)-(+)-1-(1-ナフチル)エチルアミンを除去して、以下の式A-15:
Figure JPOXMLDOC01-appb-C000219
で示される化合物を生成し、次いで、式A-15で示される化合物中の開環したフタルイミド基を閉環させることにより、式A-13で示される化合物を再生成することができる。式A-14で示される化合物(式A-15で示される化合物の(R)-(+)-1-(1-ナフチル)エチルアミン塩)は結晶性である一方、上記式A-13で示される化合物は結晶化しない化合物のため、式A-13で示される化合物中のフタルイミドを一旦開環し、それによって生成したフタルイミド基中のカルボン酸部位と(R)-(+)-1-(1-ナフチル)エチルアミンとが塩を形成することにより、得られた結晶性物質を非結晶性物質と分離した後、酸性水溶液及び溶媒の添加により、式A-14で示される化合物中の(R)-(+)-1-(1-ナフチル)エチルアミンを除去して式A-15で示される化合物を得て、次いで、再びフタルイミドを閉環させることにより、高純度化の式A-13で示される化合物を得ることができる。なお、フタルイミドの開環及び閉環は、公知の方法を使用して行うことができ、フタルイミドの開環は、例えば、メタノール-テトラヒドロフラン中で水酸化ナトリウムを添加することによって行うことができ、フタルイミド閉環は、例えば、テトラヒドロフラン溶媒中でカルボニルジイミダゾール(CDI)を添加することにより行うことができる。本工程は、好適には、例えば、実施例28-2に示した方法によって行うことができる。
<2.式D-13で示されるオリゴ糖の製造方法>
 本発明の一態様において、新規式D-13で示されるオリゴ糖及びその新規製造方法が提供される。本発明において、式D-13で示されるオリゴ糖は、以下のオリゴ糖を意味する。
Figure JPOXMLDOC01-appb-C000220
 上記式D-13で示されるオリゴ糖の新規合成スキームは、以下の工程II-1~工程II-4を含む。
<工程II-1>
 工程I-1は、以下の式A-13:
Figure JPOXMLDOC01-appb-C000221
で示されるオリゴ糖を、以下の式A-3:
Figure JPOXMLDOC01-appb-C000222
で示される化合物とα-1,3-グリコシド結合させることにより、以下の式D-1:
Figure JPOXMLDOC01-appb-C000223
で示される化合物を生成する工程を含む、以下の式D-2:
Figure JPOXMLDOC01-appb-C000224
で示される化合物を生成する工程である。本発明の一態様において、当該工程II-1は、以下の工程II-1-1~工程II-1-2を含む。
<工程II-1-1>
 工程II-1-1は、上記式A-13で示される化合物と上記式A-3で示される化合物とをα-1,3-グリコシド結合させることにより、式D-1で示される化合物を製造する工程である。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例52に示した方法によって行うことができ、例えば、式A-13で示される化合物を、有機溶媒(トルエン等)中、モレキュラーシーブ4A粉末、トリフルオロメタンスルホン酸トリメチルシリル(TMSOTf)を順次添加して、上記式A-3で示される化合物とα-1,3-グリコシド結合させることにより、上記式D-1で示される化合物を生成することができる。
<式D-1で示される化合物の精製>
 本工程II-1-1では、以下の精製方法により、式D-1で示される化合物を精製された形態で得ることができる。当該精製方法としては、上記式A-13で示される化合物と上記式A-3で示される化合物との反応を停止させた後、生成した上記式D-1で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に上記式D-1で示される化合物を吸着させ、次いで、ろ過及び疎水性担体を上記水溶性有機溶媒と水との混合溶液で洗浄することで、夾雑物の除去を行い、次いで、有機溶媒を用いて上記式D-1で示される化合物を疎水性担体から溶出させることにより、上記式D-1で示される化合物を精製することを含む。上記工程I-1-1における式A-5で示される化合物の精製方法で述べたのと同様、当該精製方法では、少量の疎水性担体を用いることで、オリゴ糖鎖の液相合成において、高品質のオリゴ糖を大量かつ効率的に製造することが可能となった。
 なお、上記の式D-1で示される化合物の精製は、本工程での精製に限られない。従って、本発明の一態様において、上記式D-1で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に上記式D-1で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を上記水溶性有機溶媒と水との混合溶液で洗浄することで、夾雑物の除去を行い、次いで、有機溶媒を用いて上記式D-1で示される化合物を疎水性担体から溶出させることにより、上記式D-1で示される化合物を精製することを含む、方法も提供される。
 上記「夾雑物」とは、保護オリゴ糖(本工程では、式D-1で示される化合物)以外の化合物や試薬を指し、保護オリゴ糖の合成反応に用いる試薬やその残骸、保護オリゴ糖の伸長反応に用いる単糖もしくは2糖化合物等の保護オリゴ糖以外の糖、又は保護オリゴ糖の脱保護反応によって生じる副生成物を主に意味する。なお、本工程で使用される「疎水性担体」(逆相分配クロマトグラフィー充填用樹脂等)、「水溶性有機溶媒」、「有機溶媒」、及び精製の実施温度は、上記工程I-1-1における式A-5で示される化合物の精製方法で記載したものと同様である。
<工程II-1-2>
 工程II-1-2は、上記式D-1で示される化合物より、アセチル基を脱離させることにより、式D-2で示される化合物を生成する工程である。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例53に示した方法によって行うことができる。
 本発明の一態様において、工程II-1-2は、上記式D-1で示される化合物を、パーフルオロカルボン酸のアルキルエステルの存在下で、強塩基と反応させてアセチル基を脱離させることにより、式D-2で示される化合物を生成する工程である。当該脱アセチル化反応は、基質が異なることを除き、上記工程X-7で記載する脱アセチル化反応の場合と同様にして行うことができ、当該方法により、パーフルオロカルボン酸のアルキルエステルの存在下で、強塩基と反応させるという手法を用いることにより、フタルイミド基の開環を抑制しながら、脱アセチル化反応を行うことが可能となる。
 なお、上記の脱アセチル化反応は、本工程II-1-2での使用に限定されるものではない。従って、本発明の一態様において、上記式D-2で示される化合物を製造する方法であって、上記式D-1で示される化合物を、パーフルオロカルボン酸のアルキルエステルの存在下で、強塩基と反応させる工程を含む、方法も提供される。
<工程II-2>
 工程II-2は、上記式D-2で示される化合物を、以下の式D-3:
Figure JPOXMLDOC01-appb-C000225
で示される化合物とβ-1,2-グリコシド結合させることにより、以下の式D-4:
Figure JPOXMLDOC01-appb-C000226
で示される化合物を生成する工程を含む、以下の式D-5:
Figure JPOXMLDOC01-appb-C000227
で示される化合物を生成した後、前記式D-5で示される化合物中のアミノ基をアリールオキシカルボニル(COOAr)基、アセチル(Ac)基、2,2,2-トリクロロエトキシカルボニル(Troc)基、及びフタルイミド(Pht)基から選択される保護基によって保護して、以下の式D-6:
Figure JPOXMLDOC01-appb-C000228
で示される化合物(式中、Rは、アリールオキシカルボニル(COOAr)基、アセチル(Ac)基、若しくは2,2,2-トリクロロエトキシカルボニル(Troc)基であり、Rは、水素原子であるか、又はR及びRは、これらが結合している窒素原子と一緒にフタルイミド基を形成する)を生成するか、又は上記式D-4で示される化合物からアセチル(Ac)基を除去することによって、上記式D-6で示される化合物(式中、R及びRは、これらが結合している窒素原子と一緒にフタルイミド基を形成する)を生成する工程である。本発明の一態様において、工程II-2は、以下の工程II-2-1~工程II-2-3を含む。
<工程II-2-1>
 工程II-2-1は、上記式D-2で示される化合物を上記式D-3で示される化合物とβ-1,2-グリコシド結合させることにより、上記式D-4で示される化合物を生成する工程である。上記のグリコシド結合工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例54に示した方法によって行うことができ、例えば、式D-2で示される化合物を、有機溶媒(トルエン等)中、モレキュラーシーブ4A粉末、トリフルオロメタンスルホン酸トリメチルシリル(TMSOTf)を順次添加して、上記式D-3で示される化合物とβ-1,2-グリコシド結合させることにより、上記式D-4で示される化合物を生成することができる。
<式D-3で示される化合物の製造>
 上記式D-3で示される化合物は、以下の小工程Z-1~Z-3のようにして製造することができる。
<小工程Z-1>
 まず、上記工程Y-1でも使用した式A-8:
Figure JPOXMLDOC01-appb-C000229
で示される化合物上の水酸基をアセチル基にて保護することにより、以下の式F-1:
Figure JPOXMLDOC01-appb-C000230
で示される化合物を生成する。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例34に示した方法によって行うことができ、式A-8で表される化合物の酢酸エチル溶液に、トリエチルアミン、ジメチルアミノピリジン及び無水酢酸を添加することによって行うことができるが、当該方法に限定されない。
<小工程Z-2>
 次いで、式F-1で示される化合物から4-メトキシフェニル基を脱離させることにより、以下の式F-2:
Figure JPOXMLDOC01-appb-C000231
で示される化合物を生成する。
 本発明の一態様において、小工程Z-2は、式F-1で示される化合物を、フルオラスアルコール及び水中で、λ3-ヨーダンと反応させと反応させて、4-メトキシフェニル基を脱離させることにより、式F-2で示される化合物を製造する工程であり、好適には、例えば、実施例35に示した方法によって行うことができる。当該工程は、上記工程I-1-2に準じて行うことができ、当該工程において使用されるフルオラスアルコール及びλ3-ヨーダンは、上記工程I-1-2で使用されるものと同様のものを使用することができる。
<小工程Z-3>
 次いで、式F-2で示される化合物を、2,2,2-トリフルオロ-N-フェニルアセトイミドイルクロリド(TFPC)と反応させることにより、式D-3:
Figure JPOXMLDOC01-appb-C000232
で示される化合物を製造する工程である。本工程は、既知の方法を利用又は応用することにより行うことができる。
 本発明の一態様において、小工程Z-3は、N-メチルイミダゾールの存在下で、2,2,2-トリフルオロ-N-フェニルアセトイミドイルクロリド(TFPC)と反応させることにより、上記式D-3で示される化合物を生成する工程であり、好適には、例えば、実施例36に示した方法によって行うことができる。工程I-1-3での同様の反応に関して述べたように、使用する塩基として上記N-メチルイミダゾールを用いることにより、例えば炭酸カリウムを用いた場合と比較して、TFPCの当量を削減することが可能となり、高収率で目的物を得ることができる。なお、使用される溶媒及び反応温度、また、好適には脱水剤の存在下で行われること、カラム精製等により単離・精製してもよいことも上記工程I-1-3のものと同様である。
<工程II-2-2>
 工程II-2-2は、上記式D-4で示される化合物上のアミノ基の保護基であるフタルイミド基を除去して、式D-5で示される化合物を生成する工程である。当該工程は、好適には、例えば、実施例55-1に示した方法によって行うことができ、例えば、式D-4で示される化合物を含む溶液に、n-ブタノール及びエチレンジアミンを添加することにより行うことができるが、これらに限定されない。
<式D-5で示される化合物の精製(1)>
 本工程II-2-2では、以下の精製方法により、式D-5で示される化合物を精製された形態で得ることができる。当該精製方法としては、上記式D-3で示される化合物と上記式D-4で示される化合物との反応を停止させた後、生成した上記式D-5で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に上記式D-5で示される化合物を吸着させ、次いで、ろ過及び疎水性担体を上記水溶性有機溶媒と水との混合溶液で洗浄することで、夾雑物の除去を行い、次いで、有機溶媒を用いて上記式D-5で示される化合物を疎水性担体から溶出させることにより、上記式D-5で示される化合物を精製することを含む。上記工程I-1-1における式A-5で示される化合物の精製方法で述べたのと同様、当該精製方法では、少量の疎水性担体を用いることで、オリゴ糖鎖の液相合成において、高品質のオリゴ糖を大量かつ効率的に製造することが可能となった。
 なお、上記の式D-5で示される化合物の精製は、本工程での精製に限られない。従って、本発明の一態様において、上記式D-5で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に上記式D-5で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を上記水溶性有機溶媒と水との混合溶液で洗浄することで、夾雑物の除去を行い、次いで、有機溶媒を用いて上記式D-5で示される化合物を疎水性担体から溶出させることにより、上記式D-5で示される化合物を精製することを含む、方法も提供される。
 上記「夾雑物」とは、保護オリゴ糖(本工程では、式D-5で示される化合物)以外の化合物や試薬を指し、保護オリゴ糖の合成反応に用いる試薬やその残骸、保護オリゴ糖の伸長反応に用いる単糖もしくは2糖化合物等の保護オリゴ糖以外の糖、又は保護オリゴ糖の脱保護反応によって生じる副生成物を主に意味する。なお、本工程で使用される「疎水性担体」(逆相分配クロマトグラフィー充填用樹脂等)、「水溶性有機溶媒」、「有機溶媒」、及び精製の実施温度は、上記工程I-1-1における式A-5で示される化合物の精製方法で記載したものと同様である。
<式D-5で示される化合物の精製(2)>
 上記式D-5で示される化合物は、以下の工程によっても精製することができる。なお、当該精製は、上記の式D-5で示される化合物の精製(1)とは別に、またはこれに加えて行ってもよい。当該工程としては、まず、式D-5で示される化合物をフマル酸と反応させることにより、フマル酸塩である結晶性の以下の式D-5-FMA:
Figure JPOXMLDOC01-appb-C000233
で示される化合物を生成し、結晶性の式D-5-FMAで示される化合物を非結晶性物質と分離することができる。式D-5-FMAで示される化合物は、溶媒中に溶けているものを次工程II-2-3でそのまま使用してもよいし、又は、式D-5で示される化合物に変換してもよい。式D-5で示される化合物への変換は、塩基性水溶液及び溶媒の添加等により、式D-5-FMAで示される化合物中のフマル酸を水層に除去し、次いで、有機層を濃縮することにより行うことができ、その結果、高純度化の式D-5で示される化合物を得ることができる。本操作においては、カラム精製においても除去が困難な立体異性体などの類似構造不純物も容易に除去することができる。本工程は、好適には、例えば、実施例55-2に示した方法によって行うことができる。
<工程II-2-3>
 工程II-2-3は、上記式D-5で示される化合物中のアミノ基をアリールオキシカルボニル(COOAr)基、アセチル(Ac)基、2,2,2-トリクロロエトキシカルボニル(Troc)基、及びフタルイミド(Pht)基から選択される保護基によって保護して、上記式D-6で示される化合物(式中、Rは、アリールオキシカルボニル(COOAr)基、アセチル(Ac)基、若しくは2,2,2-トリクロロエトキシカルボニル(Troc)基であり、かつ、Rは、水素原子であるか、又はR及びRは、これらが結合している窒素原子と一緒にフタルイミド基を形成する)を生成する工程である。上記のようなアミノ基の保護基を導入する目的は、目的化合物(式D-13で示される化合物)の製造のためには、当該アミノ基の保護基はアセチル基とする方が直線的なルートとなり、より効率的ではあるが、次工程II-3における式D-6で示される化合物と式D-7で示される化合物とのグリコシル化反応において、アセチル基で保護されたアミノ基(-NHAc基)が反応基質内に存在する場合、ルイス酸との相互作用により、目的のグリコシル化反応の著しい反応性の低下がみられ、過剰量の糖供与体が反応の完結に必要となるためである。したがって、上記グリコシル化反応時はグルコサミンの窒素上の一時的な保護基としてアリールオキシカルボニル(COOAr)基、2,2,2-トリクロロエトキシカルボニル(Troc)基、及びフタルイミド(Pht)基から選択される保護基によって保護して、グリコシル化反応後に脱保護し、-NHAc基とすることにより、上記の不利益を回避することができる。また、上記保護基としては、アリールオキシカルボニル(COOAr)基を使用することが最も好ましい。アリールオキシカルボニルにおける「アリール(Ar)基」は、芳香族炭化水素において芳香環上の1個の水素原子を除去することにより生成される基を意味し、限定するものではないが、フェニル基、2-ナフチル基、1-ナフチル基、2-ピリジル基、3-ピリジル基、ニトロフェニル基、クロロフェニル基、フルオロフェニル基、ブロモフェニル基、ヨードフェニル基、メトキシフェニル基、及びC1~C4アルキルフェニル基が挙げられ、好ましくはフェニル基である。アリールオキシカルボニル(COOAr)基は、他の保護基よりもグリコシル化反応が良好に進行し、更にその後の脱保護反応では一般的な加水分解条件下、室温、1時間以内等の好適な条件での脱保護が可能であることが見出されている。
 上記工程は、好適には、例えば、実施例56~59に示した方法によって行うことができ、例えば、テトラヒドロフラン中の式D-5で表される化合物の溶液に、テトラヒドロフラン及び炭酸水素ナトリウム、炭酸水素カリウム、リン酸水素二ナトリウム、又はリン酸水素二カリウムを水に溶解した水溶液を添加することによって行うことができるが、これらに限定されない。
 上記工程II-2-2及び工程II-2-3に代えて、上記式D-4で示される化合物上のアセチル(Ac)基を選択的に除去することによって、上記式D-6で示される化合物(式中、R及びRは、これらが結合している窒素原子と一緒にフタルイミド基を形成する)を生成してもよい。当該アセチル基の選択的な除去は、トリフルオロ酢酸メチル条件下で行うことができるが、これに限定されない。本工程は、工程II-2-2及び工程II-2-3において、上記式D-5で示される化合物中のアミノ基の保護基としてフタルイミド(Pht)基を選択した場合と同じ結果をもたらす。
<工程II-3>
 工程II-3は、上記式D-6で示される化合物を、以下の式D-7:
Figure JPOXMLDOC01-appb-C000234
で示される化合物とβ-1,4-グリコシド結合させることにより、以下の式D-8:
Figure JPOXMLDOC01-appb-C000235
で示される化合物(式中、Rは、アリールオキシカルボニル(COOAr)基、アセチル(Ac)基、若しくは2,2,2-トリクロロエトキシカルボニル(Troc)基であり、Rは、水素原子であるか、又はR及びRは、これらが結合している窒素原子と一緒にフタルイミド基を形成する)を生成し、次いで、式D-8で示される化合物中のアミノ基の保護基を除去して、以下の式D-9:
Figure JPOXMLDOC01-appb-C000236
で示される化合物(式中、Mは、ナトリウムイオン、リチウムイオン、カリウムイオン、又はプロトン化されたトリエチルアミンカチオンである)を生成する工程を含む、以下の式D-11:
Figure JPOXMLDOC01-appb-C000237
で示される化合物(式中、Mは、ナトリウムイオン、リチウムイオン、カリウムイオン、又はプロトン化されたトリエチルアミンカチオンである)を生成する工程である。本発明の一態様において、工程II-3は、以下の工程II-3-1~工程II-3-4を含む。
<工程II-3-1>
 本工程は、上記式D-6で示される化合物を、以下の式D-7で示される化合物とβ-1,4-グリコシド結合させることにより、式D-8で示される化合物を生成する工程である。上記のグリコシド結合工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例60~63に示した方法によって行うことができる。
<式D-7で示される化合物の製造>
 本発明の一態様において、上記式D-7で示される化合物は、以下の小工程V-1~V-11のようにして製造することができる。当該工程は、2分子の単糖をα-2,6-グリコシド結合させて二糖ブロックを合成する後述の小工程V-7を必須の小工程として含むものであるが、それ以外については、単糖又はオリゴ糖製造における常法を用いて、又はこのような常法を応用することによって、実施することができる。
 本発明の一態様において、工程Vは、以下に示す小工程を含む。
Figure JPOXMLDOC01-appb-C000238
<小工程V-1>
 小工程V-1は、以下の式G-1:
Figure JPOXMLDOC01-appb-C000239
で示される化合物上の水酸基をベンゾイル基で保護することにより、以下の式G-2:
Figure JPOXMLDOC01-appb-C000240
で示される化合物を製造する工程である。本工程の出発物質である式G-1で示される化合物は、CAS番号100759-10-2として特定される化合物であり、既知の方法によって製造することができ、例えば、実施例37及び38に示した方法によって製造することができる。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例39に示した方法によって行うことができる。
<小工程V-2>
 小工程V-2は、式G-2で示される化合物より、ベンジリデン保護基を脱離させることにより、以下の式G-3:
Figure JPOXMLDOC01-appb-C000241
で示される化合物を製造する工程である。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例40に示した方法によって行うことができる。
 本発明の一態様において、本工程は、生成した式G-3で示される化合物が溶解している溶媒を、シリカゲルと接触させることにより、式G-3で示される化合物を固相抽出する工程を含む。未反応の式G-2で示される化合物や、脱離したベンズアルデヒドは、シリカゲルに吸着しないことから、当該工程により、式G-3で示される化合物を効率よく精製することできる。
 式G-3で示される化合物を溶解させるための溶媒としては、例えば、トルエン、ヘプタン、ジクロロメタン、クロロホルム、又はこれらの組み合わせを挙げることができ、好適には、トルエン、ジクロロメタン、クロロホルム、又はこれらの組み合わせを挙げることができ、特に好適には、トルエンを挙げることができるがこれらに限定されない。
 本工程におけるシリカゲルとしては、例えば、原料に対して、2~5倍量のシリカゲルを挙げることができ、好適には、原料に対して、2~4倍量のシリカゲルを挙げることができ、より好適には、原料に対して、約3倍量のシリカゲルを挙げることができる。
 本工程において、シリカゲルに吸着した式G-3で示される化合物を溶離するための溶媒としては、シリカゲルを溶解せず、目的物を溶出できる溶媒であれば特に制限されないが、例えば、シクロペンチルメチルエーテル、酢酸エチル、又はtert-ブチルメチルエーテルを挙げることができる。
<小工程V-3>
 小工程V-3は、以下の式G-4:
Figure JPOXMLDOC01-appb-C000242
で示される化合物のカルボン酸をエステル化し、次いで、水を注加することにより、以下の式G-5:
Figure JPOXMLDOC01-appb-C000243
で示される化合物を製造する工程である。本工程の出発物質である式G-4で示される化合物は、既知の方法によって製造することができ、又は、市販品を使用することができる。式G-4で示される化合物の市販品としては、例えば、東京化成工業製のN-アセチルノイラミン酸を挙げることができる。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例41に示した方法によって行うことができる。
<小工程V-4>
 小工程V-4は、式G-5で示される化合物において、1位の炭素に結合している水酸基以外の水酸基を選択的にアセチル基で保護することにより、以下の式G-6:
Figure JPOXMLDOC01-appb-C000244
で示される化合物を製造する工程である。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例42に示した方法によって行うことができる。
<小工程V-5>
 小工程V-5は、式G-6で示される化合物を、2,2,2-トリフルオロ-N-フェニルアセトイミドイルクロリド(TFPC)と反応させることにより、以下の式G-7:
Figure JPOXMLDOC01-appb-C000245
で示される化合物を製造する工程である。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例43に示した方法によって行うことができる。
 本発明の一態様において、本工程は、式G-6で示される化合物を、N-メチルイミダゾールの存在下でTFPCと反応させることにより、式G-7で示される化合物を製造する工程である。本工程における塩基として、KCOを用いた場合と比較して、N-メチルイミダゾールを用いた場合、TFPCの当量を削減することが可能となり、その場合においても高収率で目的物を得ることができる。TFPCは高価な試薬であるから、当該工程の収率が向上することは、商業生産上、非常に有益である。
 本工程における溶媒としては、反応が進行する限り制限されないが、例えば、ジクロロメタン、トルエン、酢酸エチル、アセトニトリル、又はテトラヒドロフランを挙げることができ、好適には、ジクロロメタンを挙げることができる。
 本工程の反応温度は、反応が進行する限り制限されないが、好適には、20℃~40℃、より好適には、10℃~35℃、特に好適には、0℃~30℃を挙げることができる。
 本工程は、好適には、脱水剤の存在下で行われる。本工程における脱水剤としては、反応が進行する限り制限されないが、例えば、モレキュラーシーブスを挙げることができ、好適には、粉末粒径10μm以下のモレキュラーシーブス4A粉末を挙げることができる。
<小工程V-6>
 小工程V-6は、式G-7で示される化合物のアセトアミド基中の窒素原子を、tert-ブトキシカルボニル基で保護することにより、以下の式G-8:
Figure JPOXMLDOC01-appb-C000246
で示される化合物を製造する工程である。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例44に示した方法によって行うことができる。
 本工程において、生成された式G-8で示される化合物は、溶媒中に溶けているものを次工程にそのまま使用してもよく、又は、再結晶化により単離・精製することもできる。式G-8で示される化合物は、結晶化により単離・精製できる点が大きな利点であり、結晶化により、HPLC純度で99%以上の式G-8で示される化合物を取得することができ、不純物を含まないため、次工程のグリコシル化反応を安定的に実施することが可能となる。再結晶化による単離・精製は、例えば、シクロペンチルメチルエーテルの溶液にヘプタンを加えて結晶化する方法により行うことができる。       
<小工程V-7>
 小工程V-7は、式G-8で示される化合物と、式G-3で示される化合物を、α-2,6-グリコシド結合させることにより、以下の式G-9:
Figure JPOXMLDOC01-appb-C000247
で示される化合物を製造する工程である。N-アセチルノイラミン酸誘導体と、ガラクトース誘導体を、α-2,6-グリコシド結合選択的に結合させることは困難であり、例えば、式G-7で示される化合物と、式G-3で示される化合物を反応させることにより二糖を合成する方法が報告されているが(J.Org.Chem.,2016,81,10600-10616)、反応の再現が容易ではなく、所期の収率、選択性を得ることができなかった。また、この反応では、スケールが上がるほど選択性が低下し、反応温度許容幅も狭く、反応熱の影響が大きいという課題もあった。当該反応の原料化合物の1つである式G-7で示される化合物は非常に高価であることから、この反応における低い再現性、収率、選択性は、特に、スケールアップが要請される商業生産上は、大きな問題であった。他方、原料化合物として、式G-7で示される化合物に代えて、tert-ブトキシカルボニル基を付加した式G-8で示される化合物を使用すると、再現性良く、α-2,6-グリコシド結合への高い選択性(α:β=93:7)を達成でき、収率も向上する。加えて、温度許容幅も広くなり、また、スケールアップした際も高い再現性、収率、選択性を達成できる。これは、商業生産上、極めて有益な効果をもたらすものである。
 本工程は、好適には、ルイス酸の存在下で行うことができる。本工程におけるルイス酸としては、反応が進行する限り制限されないが、例えば、トリフルオロメタンスルホン酸トリメチルシリル、トリフルオロメタンスルホン酸トリイソプロピルシリル、トリフルオロメタンスルホン酸tert-ブチルジメチルシリルを挙げることができ、好適には、トリフルオロメタンスルホン酸トリメチルシリルを挙げることができる。
 本工程における溶媒としては、反応が進行する限り制限されないが、例えば、ジイソプロピルエーテル、tert-ブチルメチルエーテル、ジエチルエーテル、ジブチルエーテル、ジプロピルエーテル、1,4-ジオキサン、ジクロロメタン、1,2-ジクロロエタン、トルエン、クロルベンゼン、トリフルオロメチルベンゼン、プロピオニトリル又はアセトニトリルを挙げることができ、好適には、シクロペンチルメチルエーテルを挙げることができる。
 本工程の反応温度は、反応が進行する限り制限されないが、例えば、-78℃~0℃、好適には、-78℃~-20℃、より好適には、-78℃~-30℃、特に好適には、-78℃~-40℃を挙げることができる。
 本工程においては、1当量の式G-8で示される化合物に対して、1~3当量の式G-3で示される化合物を投入することが好適であり、1当量の式G-8で示される化合物に対して、1.4~2当量の式G-3で示される化合物を投入することがより好適である。
 本工程は、反応が進行する限り制限されないが、例えば、式G-8で示される化合物と式G-3で示される化合物の混合溶液(好適には、シクロペンチルメチルエーテル混合溶液)を、ルイス酸を含む溶液(好適には、シクロペンチルメチルエーテル溶液)に長時間滴下する、または、式G-8で示される化合物の溶液(好適には、シクロペンチルメチルエーテル溶液)を、ルイス酸と式G-3で示される化合物を含む溶液(好適には、シクロペンチルメチルエーテル溶液)に長時間滴下することによって行うことができ、好適には、式G-8で示される化合物の溶液(好適には、シクロペンチルメチルエーテル溶液)を、ルイス酸と式G-3で示される化合物を含む溶液(好適には、シクロペンチルメチルエーテル溶液)に長時間滴下することによって行うことができる。滴下時間は、反応が進行する限り制限されないが、例えば、30分間~5時間、好適には、1時間~4時間、より好適には2時間~3.5時間、特に好適には、約3時間である。
 本発明の一態様において、本工程は、式G-9で示される化合物が溶解している溶媒を、シリカゲルと接触させることにより、式G-9で示される化合物を固相抽出する工程を含む。グリコシル化反応で副生するN-フェニルトリフルオロアセトアミドや、トルエン溶媒中、シリカゲルに吸着されないその他の微量不純物は、シリカゲルに吸着しないことから、当該工程により、式G-9で示される化合物を効率よく精製することできる。
 式G-9で示される化合物を溶解させるための溶媒としては、例えば、トルエン、ヘプタン、ジクロロメタン、クロロホルム、又はこれらの組み合わせを挙げることができ、好適には、トルエン、ジクロロメタン、クロロホルム、又はこれらの組み合わせを挙げることができ、特に好適には、トルエンを挙げることができるがこれらに限定されない。
 本工程におけるシリカゲルとしては、例えば、原料に対して、2~5倍量のシリカゲルを挙げることができ、好適には、原料に対して、2~4倍量のシリカゲルを挙げることができ、より好適には、原料に対して、約3.5倍量のシリカゲルを挙げることができる。
 本工程において、シリカゲルに吸着した式G-9で示される化合物を溶離するための溶媒としては、シリカゲルを溶解せず、目的物を溶出できる溶媒であれば特に制限されないが、例えば、酢酸エチル、シクロペンチルメチルエーテル、又はtert-ブチルメチルエーテルを挙げることができ、好適には、酢酸エチルを挙げることができる。
 本工程は、例えば、実施例45に示した方法によって行うことができる。
<小工程V-8>
 小工程V-8は、式G-9で示される化合物より、tert-ブトキシカルボニル基を脱離させることにより、以下の式G-10:
Figure JPOXMLDOC01-appb-C000248
で示される化合物を製造する工程である。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例46に示した方法によって行うことができる。
<小工程V-9>
 小工程V-9は、式G-10で示される化合物の水酸基、並びにアセトアミド基中の窒素原子をアセチル基でさらに保護することにより、以下の式G-11:
Figure JPOXMLDOC01-appb-C000249
で示される化合物を製造する工程である。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例47に示した方法によって行うことができる。
 本発明の一態様において、本工程は、式G-11で示される化合物が溶解している溶媒を、シリカゲルと接触させることにより、式G-11で示される化合物を固相抽出する工程を含む。上流のグリコシル化反応で過剰に用いた式G―3で示される化合物がアセチル化されて生成した式G―3で示される化合物のジアセチル体等の副生成物は、シリカゲルに吸着しないことから、当該工程により、式G-11で示される化合物を効率よく精製することできる。
 式G-11で示される化合物を溶解させるための溶媒としては、例えば、トルエン、ヘプタン、ジクロロメタン、クロロホルム、又はこれらの組み合わせを挙げることができ、好適には、トルエン、ジクロロメタン、クロロホルム、又はこれらの組み合わせを挙げることができ、特に好適には、トルエンを挙げることができるがこれらに限定されない。
 本工程におけるシリカゲルとしては、例えば、原料に対して、2~5倍量のシリカゲルを挙げることができ、好適には、原料に対して、2~4倍量のシリカゲルを挙げることができ、より好適には、原料に対して、約3.5倍量のシリカゲルを挙げることができる。
 本工程において、シリカゲルに吸着した式G-11で示される化合物を溶離するための溶媒としては、シリカゲルを溶解せず、目的物を溶出できる溶媒であれば特に制限されないが、例えば、酢酸エチル、シクロペンチルメチルエーテル、又はtert-ブチルメチルエーテルを挙げることができ、好適には、酢酸エチルを挙げることができる。
<小工程V-10>
 小工程V-10は、式G-11で示される化合物において、D-ガラクトピラノシドの1位の炭素に結合しているアリル基を脱離させることにより、以下の式G-12:
Figure JPOXMLDOC01-appb-C000250
で示される化合物を製造する工程である。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例48に示した方法によって行うことができる。
 本工程において、生成された式G-12で示される化合物は、溶媒中に溶けているものを次工程にそのまま使用してもよく、又は、再結晶化により単離・精製することもできる。式G-12で示される化合物は、結晶化により単離・精製できる点が大きな利点であり、結晶化により、HPLC純度で99%以上の式G-12で示される化合物を取得することができ、不純物を含まないため、次工程での反応を安定的に実施することが可能となる。再結晶化による単離・精製は、例えば、式G-12で示される化合物を溶解した酢酸エチルの溶液に2-プロパノールを加えて結晶化する方法により行うことができ、好適には、例えば、実施例48に示した方法によって行うことができる。
<小工程V-11>
 小工程V-11は、式G-12で示される化合物を、2,2,2-トリフルオロ-N-フェニルアセトイミドイルクロリド(TFPC)と反応させることにより、以下の式D-7:
Figure JPOXMLDOC01-appb-C000251
で示される化合物を製造する工程である。本工程は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例49に示した方法によって行うことができる。
<式D-8で示される化合物の精製>
 本工程II-3-1では、以下の精製方法により、式D-8で示される化合物を精製された形態で得ることができる。当該精製方法としては、上記式D-6で示される化合物と上記式D-7で示される化合物との反応を停止させた後、生成した上記式D-8で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に上記式D-8で示される化合物を吸着させ、次いで、ろ過及び疎水性担体を上記水溶性有機溶媒と水との混合溶液で洗浄することで、夾雑物の除去を行い、次いで、有機溶媒を用いて上記式D-8で示される化合物を疎水性担体から溶出させることにより、上記式D-8で示される化合物を精製することを含む。上記工程I-1-1における式A-5で示される化合物の精製方法で述べたのと同様、当該精製方法では、少量の疎水性担体を用いることで、オリゴ糖鎖の液相合成において、高品質のオリゴ糖を大量かつ効率的に製造することが可能となった。
 なお、上記の式D-8で示される化合物の精製は、本工程での精製に限られない。従って、本発明の一態様において、上記式D-8で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に上記式D-8で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を上記水溶性有機溶媒と水との混合溶液で洗浄することで、夾雑物の除去を行い、次いで、有機溶媒を用いて上記式D-8で示される化合物を疎水性担体から溶出させることにより、上記式D-8で示される化合物を精製することを含む、方法も提供される。
 上記「夾雑物」とは、保護オリゴ糖(本工程では、式D-8で示される化合物)以外の化合物や試薬を指し、保護オリゴ糖の合成反応に用いる試薬やその残骸、保護オリゴ糖の伸長反応に用いる単糖もしくは2糖化合物等の保護オリゴ糖以外の糖、又は保護オリゴ糖の脱保護反応によって生じる副生成物を主に意味する。なお、本工程で使用される「疎水性担体」(逆相分配クロマトグラフィー充填用樹脂等)、「水溶性有機溶媒」、「有機溶媒」、及び精製の実施温度は、上記工程I-1-1における式A-5で示される化合物の精製方法で記載したものと同様である。
<工程II-3-2>
 本工程は、式D-8で示される化合物上のアミノ基の保護基並びにアルコールのアシル系保護基を除去して、式D-9で示される化合物を生成する工程である。上記のアミノ基の保護基の除去(脱保護)は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例64に示した方法によって行うことができ、例えば、1,2-ジメトキシエタン及び水酸化カリウム、水酸化ナトリウム、又は水酸化リチウム水溶液を順次添加することによって行うことができるが、これらに限定されない。
 以下の工程II-3-3~工程II-3-4は、式D-9で示される化合物から式D-11で示される化合物を製造するための例示的な実施態様であり、これらの製造工程に限定するものではない。
<工程II-3-3>
 本工程は、式D-9で示される化合物上のアミノ基をアセチル基で保護して、以下の式D-10:
Figure JPOXMLDOC01-appb-C000252
で示される化合物を生成する工程である。上記アセチル基によるアミノ基の保護は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例65に示した方法によって行うことができる。
<式D-10で示される化合物の精製>
 本工程II-3-3では、以下の精製方法により、式D-10で示される化合物を精製された形態で得ることができる。当該精製方法としては、生成した上記式D-10で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に上記式D-10で示される化合物を吸着させ、次いで、ろ過及び疎水性担体を上記水溶性有機溶媒と水との混合溶液で洗浄することで、夾雑物の除去を行い、次いで、有機溶媒を用いて上記式D-10で示される化合物を疎水性担体から溶出させることにより、上記式D-10で示される化合物を精製することを含む。上記工程I-1-1における式A-5で示される化合物の精製方法で述べたのと同様、当該精製方法では、少量の疎水性担体を用いることで、オリゴ糖鎖の液相合成において、高品質のオリゴ糖を大量かつ効率的に製造することが可能となった。
 なお、上記の式D-10で示される化合物の精製は、本工程での精製に限られない。従って、本発明の一態様において、上記式D-10で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に上記式D-10で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を上記水溶性有機溶媒と水との混合溶液で洗浄することで、夾雑物の除去を行い、次いで、有機溶媒を用いて上記式D-10で示される化合物を疎水性担体から溶出させることにより、上記式D-10で示される化合物を精製することを含む、方法も提供される。
 上記「夾雑物」とは、保護オリゴ糖(本工程では、式D-10で示される化合物)以外の化合物や試薬を指し、保護オリゴ糖の合成反応に用いる試薬やその残骸、保護オリゴ糖の伸長反応に用いる単糖もしくは2糖化合物等の保護オリゴ糖以外の糖、又は保護オリゴ糖の脱保護反応によって生じる副生成物を主に意味する。なお、本工程で使用される「疎水性担体」(逆相分配クロマトグラフィー充填用樹脂等)、「水溶性有機溶媒」、「有機溶媒」、及び精製の実施温度は、上記工程I-1-1における式A-5で示される化合物の精製方法で記載したものと同様である。
<工程II-3-4>
 本工程は、式D-10で示される化合物上のベンジルオキシ基からベンジル基を除去して、上記の式D-11で示される化合物を生成する工程である。上記のベンジル基の除去は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例66に示した方法によって行うことができ、例えば、式D-10で表される化合物にN―メチルピロリドン、Pd/Cを加え、減圧→窒素置換及び水素加圧→解圧を行うことによって行うことができるが、これらに限定されない。
<工程II-4>
 工程II-4は、上記式D-11で示される化合物を、アジドPEGリンカーである以下の式D-12:
Figure JPOXMLDOC01-appb-C000253
で示される化合物(11-アジド-3,6,9-トリオキサウンデカン-1-アミン)と反応させることにより、上記式D-13で示されるオリゴ糖を生成する工程を含む工程である。上記の式D-11で示される化合物と式D-12で示される化合物の結合は、既知の方法を利用又は応用することにより行うことができるが、好適には、例えば、実施例72に示した方法によって行うことができ、例えば、式D-11で表される化合物を含む溶液に、式D-12で表される化合物、N-エチルジイソプロピルアミン、及びヘキサフルオロリン酸(ベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウム、ブロモトリピロリジノホスホニウム=ヘキサフルオロリン酸塩、又は4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホルホリニウムクロリドを順次添加した後、撹拌することによって行うことができるが、これらに限定されない。
<式D-12で示される化合物の精製>
 本発明の一態様において、上記の式D-12で示される化合物は、粗製の式D-12で示される化合物を含む溶液に、以下の式E-1:
Figure JPOXMLDOC01-appb-C000254
で示される化合物(式中、Rは、水素原子、メチル基、又はメトキシ基である)を添加して、以下の式E-2:
Figure JPOXMLDOC01-appb-C000255
で示される結晶性化合物(式中、Rは、水素原子、メチル基、又はメトキシ基である)を生成させる工程と、該結晶性化合物を単離し、次いで、該単離された結晶性化合物から式D-12で示される化合物を抽出する工程と、を含む精製方法により得られる。当該精製方法により、純度の高い式D-12で示される化合物を得ることができ、該式D-12で示される化合物は、HPLCで測定した際の純度(本明細書では「HPLC純度」とも称する)として、好ましくは95%以上、より好ましくは96%以上又は97%以上、さらにより好ましくは98%以上又は99%以上の純度を有する。このように、D-12で示される化合物を精製する目的は、当該化合物の市販の試薬中に、二量体をはじめとして、その他複数の不純物が混入しているためであり、また、従来技術では、それらの精製には厳密な蒸留精製又は煩雑なカラム精製を実施する必要があり、さらに、アジド構造を含む場合、その爆発懸念から加熱を要するような蒸留操作は適用できないという不都合があった。本発明者らは、純度の高い式D-12で示される化合物を得るための精製方法を検討した結果、上記式E-1で示される3種類の酒石酸誘導体(式中、Rが水素原子、メチル基、又はメトキシ基であるもの)を用いた際に、式D-12で示される化合物がそれらの酒石酸誘導体と1対1の塩を形成し、結晶として単離できることを見出した。得られる上記式E-2で示される化合物は新規な結晶性化合物であり、単離後、酢酸エチル/塩酸水溶液等での分液、その後のフリー化、抽出により、精製前よりも高いHPLC純度(好適には95%以上のHPLC純度)を有する式D-12で示される化合物を取得することできる。
 上記の精製方法は、例示的な方法としては以下の通りである。まず、式D-12で示される化合物のアセトニトリル等の溶媒及び水の溶液に、式E-1で示される化合物を加え、攪拌し、溶解を確認後、アセトニトリル等の溶媒を添加する。得られたスラリー液を減圧濃縮し、スラリー液を攪拌することで、析出した結晶をろ過する。濾別した結晶をアセトニトリルで洗浄して、減圧乾燥することで、式E-2で示される化合物の結晶を得る(結晶生成工程)。次いで、得られた結晶性化合物の酢酸エチル及び水の溶液に濃塩酸を加え、攪拌後、分液し、得られた水層を酢酸エチル等で洗浄し、水酸化ナトリウム水溶液等で塩基性に調整後、塩化ナトリウム等を加え、溶解する。ジクロロメタン等の溶媒を加え、攪拌後、分液し、得られた有機層を減圧濃縮する。アセトニトリル等の溶媒を加え、減圧濃縮した後、得られた溶液をろ過し、アセトニトリル等の溶媒で洗浄し、得られた溶液を減圧濃縮して(抽出工程)、HPLC高純度の式D-12で示される化合物を得ることができる。より好適には、例えば、実施例67~71に示した方法によって行うことができる。
 なお、上記の式D-12で示される化合物の精製は、本工程での精製に限られない。従って、本発明の一態様において、粗製の上記式D-12で示される化合物を含む溶液に、上記式E-1で示される化合物(式中、Rは、水素原子、メチル基、又はメトキシ基である)を添加して、上記式E-2で示される結晶性化合物(式中、Rは、水素原子、メチル基、又はメトキシ基である)を生成させる工程と、該結晶性化合物を単離し、次いで、該単離された結晶性化合物から式D-12で示される化合物を抽出する工程と、を含む、式D-12で示される化合物の精製方法も提供される。
<新規化合物>
 上記式A-13で示されるオリゴ糖の中間体は、該オリゴ糖の製造において有用であるが、該オリゴ糖の製造に限定されず、あらゆる用途に適用することが可能である。従って、本発明により、上記式A-13で示されるオリゴ糖及びその中間体が提供される。
 本発明の一態様において、以下の式A-13:
Figure JPOXMLDOC01-appb-C000256
で示されるオリゴ糖が提供される。
 本発明の一態様において、以下の式A-5:
Figure JPOXMLDOC01-appb-C000257
で示される化合物が提供される。
 本発明の一態様において、以下の式A-6:
Figure JPOXMLDOC01-appb-C000258
で示される化合物が提供される。
 本発明の一態様において、以下の式A-7:
Figure JPOXMLDOC01-appb-C000259
で示される化合物が提供される。
 本発明の一態様において、以下の式A-9:
Figure JPOXMLDOC01-appb-C000260
で示される化合物が提供される。
 本発明の一態様において、以下の式A-10:
Figure JPOXMLDOC01-appb-C000261
で示される化合物が提供される。
 本発明の一態様において、以下の式A-11:
Figure JPOXMLDOC01-appb-C000262
で示される化合物が提供される。
 本発明の一態様において、以下の式A-12:
Figure JPOXMLDOC01-appb-C000263
で示される化合物が提供される。
 本発明の一態様において、以下の式A-14:
Figure JPOXMLDOC01-appb-C000264
で示される化合物が提供される。
 本発明の一態様において、以下の式A-15:
Figure JPOXMLDOC01-appb-C000265
で示される化合物が提供される。
 さらに、上記式A-11で示される化合物の中間体は、該化合物の製造において有用であるが、該化合物の製造に限定されず、あらゆる用途に適用することが可能である。従って、本発明により、上記式A-11で示される化合物の中間体も提供される。
 本発明の一態様において、以下の式B-4:
Figure JPOXMLDOC01-appb-C000266
で示される化合物が提供される。
 本発明の一態様において、以下の式B-5:
Figure JPOXMLDOC01-appb-C000267
で示される化合物が提供される。
 本発明の一態様において、以下の式B-6:
Figure JPOXMLDOC01-appb-C000268
で示される化合物が提供される。
 本発明の一態様において、以下の式B-7:
Figure JPOXMLDOC01-appb-C000269
で示される化合物が提供される。
 本発明の一態様において、以下の式B-8:
Figure JPOXMLDOC01-appb-C000270
で示される化合物が提供される。
 さらに、上記式D-13で示されるオリゴ糖の中間体は、該オリゴ糖の製造において有用であるが、該オリゴ糖の製造に限定されず、あらゆる用途に適用することが可能である。以下の通り、本発明により、上記式D-13で示されるオリゴ糖及びその中間体(上記式A-13に示される化合物及びその中間体も含む)が提供される。
 本発明の一態様において、以下の式D-13:
Figure JPOXMLDOC01-appb-C000271
で示されるオリゴ糖が提供される。
 本発明の一態様において、以下の式D-1:
Figure JPOXMLDOC01-appb-C000272
で示される化合物が提供される。
 以下の式D-2:
Figure JPOXMLDOC01-appb-C000273
で示される化合物が提供される。
 本発明の一態様において、以下の式D-4:
Figure JPOXMLDOC01-appb-C000274
で示される化合物が提供される。
 本発明の一態様において、以下の式D-5:
Figure JPOXMLDOC01-appb-C000275
で示される化合物が提供される。
 本発明の一態様において、以下の式D-5-FMA:
Figure JPOXMLDOC01-appb-C000276
で示される化合物が提供される。
 本発明の一態様において、以下の式D-6:
Figure JPOXMLDOC01-appb-C000277
で示される化合物(式中、Rは、アリールオキシカルボニル(COOAr)基、アセチル(Ac)基、若しくは2,2,2-トリクロロエトキシカルボニル(Troc)基であり、Rは、水素原子であるか、又はR及びRは、これらが結合している窒素原子と一緒にフタルイミド基を形成する)が提供される。
 本発明の一態様において、以下の式D-8:
Figure JPOXMLDOC01-appb-C000278
で示される化合物(式中、Rは、アリールオキシカルボニル(COOAr)基、アセチル(Ac)基、若しくは2,2,2-トリクロロエトキシカルボニル(Troc)基であり、Rは、水素原子であるか、又はR及びRは、これらが結合している窒素原子と一緒にフタルイミド基を形成する)が提供される。
 本発明の一態様において、以下の式D-9:
Figure JPOXMLDOC01-appb-C000279
で示される化合物(式中、Mは、ナトリウムイオン、リチウムイオン、カリウムイオン、又はプロトン化されたトリエチルアミンカチオンである)が提供される。
 本発明の一態様において、以下の式D-10:
Figure JPOXMLDOC01-appb-C000280
で示される化合物(式中、Mは、ナトリウムイオン、リチウムイオン、カリウムイオン、又はプロトン化されたトリエチルアミンカチオンである)が提供される。
 本発明の一態様において、以下の式D-11:
Figure JPOXMLDOC01-appb-C000281
で示される化合物(式中、Mは、ナトリウムイオン、リチウムイオン、カリウムイオン、又はプロトン化されたトリエチルアミンカチオンである)が提供される。
 本発明の一態様において、以下の式E-2:
Figure JPOXMLDOC01-appb-C000282
で示される結晶性化合物(式中、Rは、水素原子、メチル基、又はメトキシ基である)が提供される。
 本発明の一態様において、HPLCで測定した際に95%以上の純度を有する、以下の式D-12:
Figure JPOXMLDOC01-appb-C000283
で示される化合物が提供される。本発明の一態様において、HPLCで測定した際に95%以上の純度を有する、上記式D-12で示される化合物が提供される。
<糖タンパク質等及びその製造方法>
 本発明の一態様において、非還元末端にα2,6-シアル酸構造を有する2分岐型グリカン(即ち、式D-13で示されるオリゴ糖)を糖タンパク質等(特に、糖鎖リモデリング抗体若しくはそのFC領域含有分子、又は抗体薬物コンジュゲート)を合成する際のドナー分子として利用した、新規な糖タンパク質等及びその新規製造方法が提供される。以下に詳述するとおり、本発明の製造方法により得られた式D-13で示されるオリゴ糖は、糖タンパク質(特に、糖鎖リモデリング抗体若しくはFc領域含有分子、又は抗体薬物コンジュゲート)の製造のために使用することができる(WO2019/065964、WO2020/050406等)が、これに限定されず、その他の用途のために使用することもできる。
 近年、不均一な抗体の糖鎖を、酵素反応によってリモデリングし、官能基を有する糖鎖を均一に導入する方法が報告されている(ACS Chem.Biol.2012,7,110-122,ACS Med.Chem.Lett.2016,7,1005-1008)。この糖鎖リモデリング技術を用いて、部位特異的に薬物を導入し、均一な抗体薬物コンジュゲート(ADC)を合成する試みもなされている(Bioconjugate Chem.2015,26,2233-2242,Angew.Chem.Int.Ed.2016,55,2361-2367,US2016361436)。
 糖鎖のリモデリングでは、まず加水分解酵素を利用して、タンパク質(抗体等)に付加されている不均一な糖鎖を末端のN-アセチルグルコサミン(GlcNAc)のみ残して切除し、GlcNAcが付加した均一なタンパク質部分を調製する(以下、「アクセプター分子」という)。次に、別途調製した任意の糖鎖を用意し(以下、「ドナー分子」と言う)、このアクセプター分子とドナー分子とを、糖転移酵素を用いて連結する。これにより、任意の糖鎖構造を持った均一な糖タンパク質を合成できる。
 本発明の一態様において、本発明における新規製造方法を利用して製造された式D-13で示されるオリゴ糖は、その末端構造を活性化することにより、上記均一な糖タンパク質(特に、糖鎖リモデリング抗体又はそのFc領域含有分子)を合成する際のドナー分子として使用することできる。
 以下の実施例において、室温は15℃~35℃を示す。シリカゲルクロマトグラフィーはBiotage Sfar HC D(20μm,Biotage製)、逆相カラムクロマトグラフィーはUniversal Column ODS Premium 30μm Lサイズ(山善株式会社製)とInject column ODS Lサイズ(山善株式会社製)、分取HPLCはAgilent Preparative HPLC System(Agilent Technology製)を用いて実施した。分取カラムは、XBridge Prep OBD(5μm,C18,130Å,250×30mm,Waters製)を用いた。
 各種スペクトルデータの測定には以下の機器を用いた。H-NMR及び13C-NMRスペクトルは、JEOL製ECZ500R並びにECX400Pを用いて測定した。マススペクトルはShimadzu LCMS-2010及びLCMS-2020(島津製作所製)、XEVO Q-Tof MS(Waters)、Q-Exactive(Thermo Fisher)を用いて測定した。
<式A-3で示される化合物の合成>
 式A-3で示される化合物を以下の合成スキーム1に従って合成した。
 [合成スキーム1]
Figure JPOXMLDOC01-appb-C000284
 実施例1
 2-O-アセチル-3,4,6-トリ-O-ベンジル-D-マンノピラノース(式A-2で示される化合物)
Figure JPOXMLDOC01-appb-C000285
 3,4,6-トリ-O-ベンジル-1,2-O-(1-メトキシエチリデン)-β-D-マンノピラノース(式A-1で示される化合物)(40.0g,78.9mmol)を1L4径フラスコに添加後、酢酸エチル(400mL)を加えた。窒素雰囲気下、室温にて水(2mL)及びp-TsOH・HO(45mg,0.237mmol)を添加し、同温にて6時間撹拌した。HPLCにより反応終了を確認後、トリエチルアミン(7.99g,78.9mmol)を加え、同温にて終夜撹拌した。HPLCによりアセチル基の転位終了を確認後、反応液に5%重曹水(400mL)を加え分液した。有機層に20%食塩水(200mL)を加え分液した。有機層を80mLまで減圧濃縮し、トルエン(400mL)を加えて、液量80mLまで減圧濃縮した。再度、トルエン(400mL)を加えて、液量80mLまで減圧濃縮した。脱水トルエン(120mL)を加え、2-O-アセチル-3,4,6-トリ-O-ベンジル-D-マンノピラノース(式A-2で示される化合物)のトルエン溶液を無色溶液として取得した。
 実施例2
 2-O-アセチル-3,4,6-トリ-O-ベンジル-1-O-(2,2,2-トリクロロエタンイミドイル)-D-マンノピラノース(式A-3で示される化合物)
Figure JPOXMLDOC01-appb-C000286
 2-O-アセチル-3,4,6-トリ-O-ベンジル-D-マンノピラノース(式A-2で示される化合物)のトルエン溶液(78.9mmol)を1Lフラスコに加え、トリクロロアセトニトリル(12mL,118mmol)及びDBU(119μL,0.789mmol)を加えた。窒素下、0℃にて2時間撹拌した。HPLCにより反応終了を確認後、0℃にて反応液に酢酸(45μL,0.789mmol)を加え、2-O-アセチル-3,4,6-トリ-O-ベンジル-1-O-(2,2,2-トリクロロエタンイミドイル)-D-マンノピラノースのトルエン溶液(78.9mmol)を褐色溶液として取得した。本溶液をそのまま次工程に使用した。
<式A-11で示される化合物の合成>
 式A-11で示される化合物を以下の合成スキーム2に従って合成した。
 [合成スキーム2]
Figure JPOXMLDOC01-appb-C000287
 実施例3
 4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-(2,3,4,6-テトラ-O-アセチル-β-D-ガラクトピラノシル)-β-D-グルコピラノシド(式B-3で示される化合物)
Figure JPOXMLDOC01-appb-C000288
 4-メトキシフェニル3,6-ジ-O-ベンジル-2-デオキシ-2-フタルイミド-β-D-グルコピラノシド(式B-2で示される化合物)(2.508kg、4.211mol)のジクロロメタン(17.5L)溶液に、2,3,4,6-テトラ-O-アセチル-1-O(2,2,2-トリクロロエタンイミドイル)-α-D-ガラクトピラノース(式B-1で示される化合物)(2.275kg、4.618mol)及びモレキュラーシーブ4A粉末(10μm以下,375g)を添加し、20℃~30℃にて20分間撹拌後、-20℃~-10℃に冷却してトリフルオロメタンスルホン酸トリメチルシリル(140g、0.630mol)を3分間かけて滴下した。-5℃~-10℃にて3時間撹拌後、トリエチルアミン(106g、1.05mol)を添加し、0℃~5℃に昇温してモレキュラーシーブス4Aをろ過後、トルエン(5L)で洗浄した。得られた溶液を12.5Lになるまで減圧濃縮した後、トルエン(12.5L)を添加し、メタノール(6.5L)―水(18.5L)混合溶液による分液洗浄を4回実施した。得られた有機層を9Lになるまで減圧濃縮し、トルエン(25L)を添加した後、7.5Lになるまで減圧濃縮することで、4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-(2,3,4,6-テトラ-O-アセチル-β-D-ガラクトピラノシル)-β-D-グルコピラノシド(式B-3で示される化合物)のトルエン溶液(7.5L)を得た。
 実施例4
 4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-β-D-ガラクトピラノシル-β-D-グルコピラノシド(式B-4で示される化合物)
Figure JPOXMLDOC01-appb-C000289
 4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-(2,3,4,6-テトラ-O-アセチル-β-D-ガラクトピラノシル)-β-D-グルコピラノシド(式B-3で示される化合物)のトルエン溶液(7.5L)にテトラヒドロフラン(10L)、メタノール(5L)及びトリフルオロ酢酸メチル(538g、4.20mol)をそれぞれ添加した後、カリウムt-ブトキシド-テトラヒドロフラン溶液(1M、2.1L、2.1mol)を添加し、40℃~45℃で2時間撹拌した。20℃~25℃に冷却した後、酢酸(151g)及び酢酸エチル(25L)をそれぞれ添加し、炭酸水素ナトリウム(750g)―塩化ナトリウム(750g)―水(20L)溶液による分液洗浄を3回、及び、塩化ナトリウム(2.5kg)―水(10L)溶液による分液洗浄を1回行った。得られた有機層を7.5Lになるまで減圧濃縮し、N,N-ジメチルアセトアミド(25L)及びシクロペンチルメチルエーテル(37.5L)をそれぞれ添加して27.5Lになるまで減圧濃縮した後、シクロペンチルメチルエーテル(12.5L)を添加して27.5Lになるまで減圧濃縮することで、4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-β-D-ガラクトピラノシル-β-D-グルコピラノシド(式B-4で示される化合物)のN,N-ジメチルアセトアミド溶液(27.5L)を得た。
 実施例5
 4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-(2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル)-β-D-グルコピラノシド(式B-5で示される化合物)
Figure JPOXMLDOC01-appb-C000290
 t-ブチルアルコール(1.56kg、21.0mol)のヘキサン(3.28kg)溶液に、-15℃~0℃にてn-ブチルリチウム-ヘキサン溶液(15.2%、8.88kg、21.0mol)を4時間かけて滴下した。トリフルオロ酢酸メチル(26.9g、0.170mol)を添加し、リチウムt-ブトキシド-ヘキサン溶液を得た。4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-β-D-ガラクトピラノシル-β-D-グルコピラノシド(式B-4で示される化合物)のN,N-ジメチルアセトアミド溶液(27.5L)に臭化ベンジル(5.03kg、29.4mol)及びモレキュラーシーブ4A粉末(10μm以下,750g)を添加し、35℃~45℃にてリチウムt-ブトキシド-ヘキサン溶液(12.1kg)を3時間かけて滴下した。20℃~25℃に冷却した後、酢酸(378g、6.29mol)を添加し、モレキュラーシーブス4Aをろ過後、N,N-ジメチルアセトアミド(7.5L)で洗浄した。ヘプタン(12.5L)を添加し分液洗浄した後、得られたN,N-ジメチルアセトアミド層にt-ブチルメチルエーテル(25L)を添加し、水(20L)による分液洗浄を3回行った。得られた有機層を7.5Lになるまで減圧濃縮し、4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-(2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル)-β-D-グルコピラノシド(式B-5で示される化合物)のt-ブチルメチルエーテル溶液(7.5L)を得た。
 実施例6
 4-メトキシフェニル 3,6-ジ-O-ベンジル-2-(2-カルボキシベンズアミド)-2-デオキシ-4-O-(2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル)-β-D-グルコピラノシド シンコニジン塩(式B-6で示される化合物)
Figure JPOXMLDOC01-appb-C000291
 4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-(2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル)-β-D-グルコピラノシド(式B-5で示される化合物)のt-ブチルメチルエーテル溶液(7.5L)にテトラヒドロフラン(12.5L)、メタノール(5L)及び水(1L)をそれぞれ添加し、0℃~10℃に冷却後、4規定水酸化ナトリウム水溶液(2.6L、10.4mol)を5分間かけて滴下した。0℃~10℃にて6時間撹拌した後、トリエチルアミン(1.70kg、16.8mol)を添加し、20℃~30℃で16時間撹拌した。0℃~10℃に冷却した後、6M塩酸(3.0L、18.0mol)を20分間かけて滴下し、20℃~25℃に昇温した。酢酸エチル(20L)を添加し、水(17.5L)による分液洗浄後、塩化ナトリウム(2.5kg)―水(10L)溶液にて分液洗浄を行った。得られた有機層を7.5Lになるまで減圧濃縮した後、酢酸エチル(17.5L)を添加して7.5Lになるまで減圧濃縮した。得られた溶液に酢酸エチル(30L)及びシンコニジン(1.36kg、4.62mol)をそれぞれ添加して20℃~25℃にて18時間撹拌した後、1時間かけて0℃~5℃に冷却し、ヘプタン(20L)を1時間かけて滴下した。そのままの温度で1.5時間撹拌した後、生じた結晶をろ過し、得られた結晶を0℃~5℃に冷却した酢酸エチル(7.5L)―ヘプタン(5.6L)混合溶媒にて洗浄した。得られた結晶を40℃にて減圧乾燥し、4-メトキシフェニル 3,6-ジ-O-ベンジル-2-(2-カルボキシベンズアミド)-2-デオキシ-4-O-(2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル)-β-D-グルコピラノシド シンコニジン塩(式B-6で示される化合物)(5.10kg、4工程通算収率85.0%)を得た。
 H-NMR(500MHz,CDCl)δ8.78(d,4.6Hz,1H),8.75(d,J=8.0Hz,1H),8.07(d,J=8.5Hz,1H),8.06(d,J=8.0Hz,2H),7.65-7.68(m,3H),7.61(dd,3.9,7.7Hz,1H),7.55(d,J=4.6Hz,1H),7.43(dd,3.7,7.4Hz,2H),7.19-7.33(m,28H),6.98-7.04(m,5H),6.68-6.70(m,2H),6.32(brd,1H),5.39-5.46(m,1H),5.35(d,J=6.9Hz,1H),4.97(d,J=11Hz,1H),4.83-4.91(m,3H),4.66-4.73(m,5H),4.55(d,J=12Hz,1H),4.46(s,1H),4.43(d,J=4.0Hz,1H),4.35(dd,J=5.7,12Hz,2H),4.26(d,J=12Hz,1H),4.22(dd,J=4.2,8.4Hz,1H),4.03-4.09(m,3H),3.92(d,J=2.6Hz,1H),3.74(d,J=3.7Hz,2H),3.67-3.70(m,4H),3.57-3.60(m,1H),3.54(t,J=7.9Hz,1H),3.36-3.44(m,3H),3.31(t,J=9.2Hz,1H),3.12(dd,10,14Hz,1H),3.02(d,J=13Hz,1H),2.93(m,1H),2.36(s,1H),1.86-1.89(m,2H),1.81(dd,J=9.0,13Hz,1H),1.53(dd,J=4.7,9.5Hz,1H),1.09(dd,J=5.7,11Hz,1H).
 13C-NMR(125MHz,CDCl)δ176.2,169.5,155.3,151.6,150.1,148.0,146.4,138.88,138.7,138.53,138.48,138.39,138.35,138.26,137.8,133.4,130.15,130.07,129.11,128.73,128.70,128.51,128.4,128.34,128.22,128.2,128.16,127.95,127.92,127.83,127.75,127.57,127.55,127.43,127.41,127.19,127.12,124.9,122.8,119.5,118.7,116.2,114.3,103.2,100.3,82.4,79.8,78.7,76.2,75.2,75.1,74.8,73.7,73.4,73.03,72.99,72.7,68.7,68.1,59.8,55.5,55.3,54.1,43.4,37.6,27.0,25.0,19.1
 HRMS(ESI)[M+HNEt calcd for C758514:1237.5995;found 1237.5977.
[α] 20=-21.889(c 1.003,CDCl).
 実施例7
 4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-(2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル)-β-D-グルコピラノシド(式B-5で示される化合物)
Figure JPOXMLDOC01-appb-C000292
 4-メトキシフェニル 3,6-ジ-O-ベンジル-2-(2-カルボキシベンズアミド)-2-デオキシ-4-O-(2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル)-β-D-グルコピラノシド シンコニジン塩(式B-6で示される化合物)(4.50kg、3.15mol)の酢酸エチル(33.8L)懸濁液に15℃~25℃にて0.5M塩酸(33.8L、16.9mol)を添加し、撹拌して溶解させた。水層を除去後、塩化ナトリウム(4.5kg)―水(18L)溶液による分液洗浄を行い、得られた有機層を6.8Lまで減圧濃縮した。酢酸エチル(33.8L)を添加した後、6.8Lまで減圧濃縮して、式B-7で示される化合物:
Figure JPOXMLDOC01-appb-C000293
を酢酸エチル溶液として得た。次いで、得られた溶液にテトラヒドロフラン(18L)を添加した。0℃~5℃に冷却後、1,1′-カルボニルジイミダゾール(765g、4.12mol)を添加し、17時間撹拌した。酢酸エチル(22.5L)、水(22.5L)及び6M塩酸(1.57L、9.42mol)をそれぞれ添加した後、水層を除去した。得られた有機層を水(22.5L)、及び、塩化ナトリウム(4.5kg)―水(18L)溶液にて順次分液洗浄を行った。得られた有機層を4.5Lになるまで減圧濃縮した後、トルエン(22.5L)を添加して4.5Lになるまで減圧濃縮することで4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-(2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル)-β-D-グルコピラノシド(式B-5で示される化合物)のトルエン溶液(4.5L)を得た。
 実施例8
 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-(2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル)-β-D-グルコピラノース(式B-8で示される化合物)
Figure JPOXMLDOC01-appb-C000294
 4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-(2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル)-β-D-グルコピラノシド(式B-5で示される化合物)のトルエン溶液(4.5L)に15℃~25℃にてジクロロメタン(6.75L)、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール(6.75L)及び水(675mL)をそれぞれ添加した。ビス(トリフルオロアセトキシ)ヨードベンゼン(2.16kg、5.02mol)のジクロロメタン(6.75L)懸濁液を10分割にて添加し、15℃~25℃で20時間撹拌した。0℃~5℃に冷却し、トルエン(31.5L)を添加後、炭酸水素ナトリウム(900g)―亜硫酸ナトリウム(900g)―水(22.5L)溶液による分液洗浄を2回、0℃~20℃で行った。得られた有機層を、塩化ナトリウム(4.5kg)―水(18L)溶液で分液洗浄した後、9Lになるまで減圧濃縮し、トルエン(22.5L)を添加して9Lになるまで減圧濃縮した。得られた溶液にトルエン(36L)を添加し、2分割した。分割した溶液に対してそれぞれシリカゲル(4.5kg)を添加し、20℃~25℃で3時間撹拌した後、シリカゲルをろ過し、トルエン(45L)で洗浄した。得られたシリカゲルに対して酢酸エチル(7.5L)―トルエン(22.5L)―混合溶液で洗浄することでシリカゲルから脱着を行った。得られた有機層を混合した後、9Lになるまで減圧濃縮し、3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-(2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル)-β-D-グルコピラノース(式B-8で示される化合物)のトルエン溶液(9L)を得た。
 1H-NMR(500MHz,CDCl)δ7.60-7.87(m,4H),7.18-7.36(m,25H),6.96(d,J=6.9Hz,2H),6.89(m,1H),6.83(dd,J=7.4,10Hz,2H),5.33(dd,J=1.9,3.7Hz,0.2H),5.30(dd,J=4.3,8.6Hz,0.8H),4.92(dd,J=9.9,12Hz,2H),4.78-4.86(m,2H),4.71(d,J=2.3Hz,2H),4.44-4.61(m,3H),4.36-4.14(m,3H),4.34(d,J=4.6Hz,1H),4.26(d,J=12Hz,1H),4.03-4.12(m,2H),3.89(d,J=2.8Hz,1H),3.85(dd,J=4.0,11Hz,1H),3.77(dd,J=7.7,9.7Hz,1H),3.67(dd,J=1.6,11Hz,1H),3.56-3.60(m,1H),3.35-3.49(m,4H),2.88(d,J=8.6Hz,1H).
 13C-NMR(125MHz,CDCl)δ168.2,139.06,139.04,138.98,138.91,138.7,138.6,138.5,138.10,138.06,133.8,131.7,128.40,128.38,128.32,128.27,128.24,128.10,127.99,127.96,127.90,127.84,127.78,127.76,127.72,127.68,127.65,127.63,127.55,127.51,127.49,127.44,127.42,127.3,126.8,123.6,123.3,102.9,102.8,93.1,92.8,82.34,82.32,80.02,79.99,77.8,77.7,76.6,75.43,75.39,75.31,74.53,74.49,74.33,73.98,73.72,73.63,73.41,73.24,73.20,73.07,72.63,72.59,70.6,68.3,68.0,67.8,57.7,55.8,
 HRMS(ESI)[M+Na] calcd for C6261NNaO12:1034.4092;found 1034.4071.
 [α] 20=+33.243(c 1.002,CDCl).
 実施例9
 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-(2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル)-1-O-(2,2,2-トリフルオロ-N-フェニルエタンイミドイル)-β-D-グルコピラノース(式A-11で示される化合物)
Figure JPOXMLDOC01-appb-C000295
 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-(2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル)-β-D-グルコピラノース(式B-8で示される化合物)(式B-6で示される化合物500g、0.349molから誘導した実施例7、8より取得した溶液)のトルエン溶液(総量:1002g)にジクロロメタン(2.0L)、モレキュラーシーブ4A粉末(10μm以下,250g)及びN-メチルイミダゾール(34.4g、0.419mol)を20℃~30℃にて添加した。その後2,2,2-トリフルオロ-N-フェニルアセトイミドイルクロリド(79.8g、0.384mol)を添加し、20℃~30℃で17時間撹拌した。モレキュラーシーブス4Aをろ過した後、トルエン(500mL)で洗浄し、得られた溶液を0℃~10℃に冷却した。0℃~5℃に冷却したジクロロメタンにより湿潤させたシリカゲル(1.5kg)を詰めたカラムに溶液を通液させ、0℃~5℃に冷却したジクロロメタン(15L)で洗浄し、2.5L~3Lずつ分画してフラクションを得た。次に3%酢酸エチル含有ジクロロメタン(10L)混合液で洗浄し、2.5L~3Lずつ分画してフラクションを得た。得られたフラクションの1~7番目までを合わせて1Lになるまで減圧濃縮し、3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-(2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル)-1-O-(2,2,2-トリフルオロ-N-フェニルエタンイミドイル)-β-D-グルコピラノース(式A-11で示される化合物)のトルエン-ジクロロメタン混合溶液を得た。本溶液を実施例27でそのまま使用した。
 H-NMR(500MHz,CDCl)δ7.62-7.82(m,4H),7.01-7.53(m,31H),6.98-7.01(m,1H),6.95(d,J=7.2Hz,2H),6.80-6.88(m,3H),6.64(brd,2H),4.93(d,J=12Hz,1H),4.89(d,J=12Hz,1H),4.83(d,J=11Hz,1H),4.77(d,J=11Hz,1H),4.67-4.72(m,2H),4.56(d,J=12Hz,1H),4.53(d,J=12Hz,1H),4.36-4.48(m,5H),4.28(d,J=12Hz,1H),4.14(t,J=8.7Hz,1H),3.89(d,J=2.6Hz,1H),3.85(d,J=7.7Hz,1H),3.76(t,J=8.4Hz,1H),3.38-3.50(m,4H).
 13C-NMR(125MHz,CDCl)δ167.6,143.4,143.1,139.0,138.68,138.66,138.5,137.08,137.06,135.2,133.92,131.5,129.3,129.1,129.0,128.5,128.41,128.37,128.31,128.27,128.22,128.90,127.86,127.69,127.56,127.45,127.44,127.2,126.9,126.2,124.3,123.4,120.6,120.5,119.3,116.3(q,J=148.5Hz),102.9,93.5,82.3,79.9,76.6,76.0,75.4,74.5,73.61,73.41,73.08,73.05,72.6,68.3,67.2,54.8. 
 HRMS(ESI) [M+Na] calcd for C7065NaO12:1205.4387;found 1205.43835.
 [α] 20=+66.645(c 1.099,CDCl).
<式A-13で示される化合物の合成>
 式A-13で示される化合物を以下の合成スキーム3に従って合成した。
 [合成スキーム3]
Figure JPOXMLDOC01-appb-C000296
 実施例10
 1,2:5,6-ビス-O-(1-メチルエチリデン)-3-O-(2-ナフチルメチル)-α-D-グルコフラノース(式C-2で示される化合物)
Figure JPOXMLDOC01-appb-C000297
 水素化ナトリウム(55.32g,1.38mol,含量:50-72%)のテトラヒドロフラン(900mL)溶液を0℃に冷却後、1,2:5,6-ビス-O-(1-メチルエチリデン)-α-D-グルコフラノース(式C-1で示される化合物)(300.00g,1.15mol)のテトラヒドロフラン(1.05L)溶液を1時間かけて滴下した。その後、25℃に昇温し、1,3-ジメチルー2-イミダゾリジノン(150mL)及び2-ブロモメチルナフタレン(280.31g,1.27mol)を加えた。25℃で6時間撹拌後、HPLCで反応の終了を確認し、エチレンジアミン(無水)(13.85g,230.52mmol)を加え、さらに1時間撹拌した。この溶液を0℃に冷却し、10%クエン酸水溶液(1.2L)を1時間かけて加えた。反応液をヘプタン(3L)で希釈し、有機層と水層に分離した。有機層を水(900mL)で洗浄後、減圧条件下、液量が900mLに達するまで濃縮した。さらにアセトニトリル(3L)を加え、再度液量が900mLに達するまで濃縮し、粗体の1,2:5,6-ビス-O-(1-メチルエチリデン)-3-O-(2-ナフチルメチル)-α-D-グルコフラノース(式C-2で示される化合物)をアセトニトリル溶液として得た。このものを次工程にそのまま使用した。
 実施例11
 3-O-(2-ナフチルメチル)-D-グルコピラノース(式C-3で示される化合物)
Figure JPOXMLDOC01-appb-C000298
 実施例10で得られた粗体の式C-2で示される化合物の溶液(900mL)にアセトニトリル(1.5L)、水(600mL)及び濃塩酸(17.51g,172.89mmol)を加え、55℃で18.5時間撹拌した。HPLCで反応の終了を確認後、反応液を0℃に冷却し、4規定水酸化ナトリウム水溶液(43.22mL)で系内のpHを6.25に調整した。反応液をヘプタン(900mL)で希釈し、アセトニトリル層とヘプタン層に分離した。アセトニトリル層に酢酸エチル(2.4L)及び水(600mL)を加えて分液し、有機層Aと水層を得た。水層に再度、酢酸エチル(1.5L)及びテトラヒドロフラン(1.5L)の混合溶液を加えて分液し、有機層Bと水層を得た。有機層AとBを混合し、飽和食塩水(600mL)で洗浄後、減圧条件下、液量が1.5Lに達するまで濃縮した(濃縮段階で結晶の析出を確認)。さらに酢酸エチル(4.5L)を加え、再度液量が3Lに達するまで濃縮した。この懸濁液に酢酸エチル(1.5L)及びシクロペンチルメチルエーテル(1.5L)を加え、55℃で1時間撹拌した。ヘプタン(3L)を1.5時間かけて滴下し、1時間撹拌後、0℃に冷却した。その後、析出した結晶をろ過し、結晶を0℃に冷却した酢酸エチル(1.2L)及びヘプタン(600mL)の混合溶液で洗浄した。得られた結晶を減圧下40℃で乾燥し、3-O-(2-ナフチルメチル)-D-グルコピラノース(式C-3で示される化合物)(356.95g,収率96.7%)を得た。
 1H-NMR(500MHz,DMSO-d)δ7.85-7.90(m,4H),7.59(dd,J=8.0,1.5Hz,1H),7.46-7.51(m,2H),6.69(d,J=6.0Hz,1H),5.12(dd,J=5.0,3.0Hz,2H),4.94-5.00(m,2H),4.53(t,J=6.0Hz,1H),4.35(dd,J=8.0,6.5Hz,1H),3.70(ddd,J=11.5,5.0,2.0Hz,1H),3.45-3.50(m,1H),3.25-3.31(m,2H),3.11-3.16(m,2H).
 13C-NMR(125MHz,DMSO-d)δ137.3,132.8,132.3,127.6,127.5,127.4,126.1,126.0,125.6,125.5,96.9,85.4,76.7,74.8,73.7,69.9,61.1.
 HRMS(ESI)[M-H] calcd for C1720:320.1260;found 319.1175.
 実施例12
 2,4,6-トリ-O-アセチル-3-O-(2-ナフチルメチル)-D-グルコピラノース(式C-5で示される化合物)
Figure JPOXMLDOC01-appb-C000299
 3-O-(2-ナフチルメチル)-D-グルコピラノース(式C-3で示される化合物)(150.00g,468.25mmol)のテトラヒドロフラン(675mL)溶液に、トリエチルアミン(236.92g,2.34mol)及び4-ジメチルアミノピリジン(0.29g,2.34mmol)を加えて0℃に冷却後、無水酢酸(195.99g,1.92mol)を30分間かけて滴下した。その後、25℃に昇温し、3時間撹拌後、HPLCで反応の終了を確認した。反応液を10℃に冷却し、1ーメチルピペラジン(60.97g,608.73mmol)を加えた。35℃で18時間撹拌後、HPLCで反応の終了を確認し、0℃に冷却した。6規定塩酸(480mL)でpHを6.36に調整後、ヘプタン(375mL)で希釈し、有機層と水層を分離した。有機層を飽和炭酸水素ナトリウム水溶液(450mL)及び水(450mL)で洗浄後、減圧条件下、液量が450mLに達するまで濃縮した。酢酸エチル(2.25L)を加え、再度液量が450mLになるまで濃縮、さらにもう1度同様の操作を繰り返した。この溶液にジクロロメタン(2.25L)を加え、液量が450mLになるまで濃縮、さらにもう1度同様の操作を繰り返し、粗体の2,4,6-トリ-O-アセチル-3-O-(2-ナフチルメチル)-D-グルコピラノース(式C-5で示される化合物)をジクロロメタン溶液として得た。このものを次工程にそのまま使用した。
 なお、式C-3で示される化合物→式C-5で示される化合物の工程はワンポットで実施している。
 実施例13
 2,4,6-トリ-O-アセチル-3-O-[(ナフタレン-2-イル)メチル]-1-O-(2,2,2-トリクロロエタンイミドイル)-D-グリセロ-ヘキソピラノース(式C-6で示される化合物)
Figure JPOXMLDOC01-appb-C000300
 実施例12で得られた粗体の2,4,6-トリ-O-アセチル-3-O-(2-ナフチルメチル)-D-グルコピラノース(式C-5で示される化合物)の溶液(450mL)に、ジクロロメタン(450mL)及びトリクロロアセトニトリル(338.03g,2.34mol)を加えて0℃に冷却後、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(5.70g,37.46mmol)を滴下した。0℃で14.5時間撹拌後、HPLCで反応の終了を確認し、酢酸(2.25g,37.46mmol)を加えた。この溶液にシリカゲル60N(関東化学製,粒子径:40~50μm,150g)を加えて1.5時間撹拌した後、ろ過した。シリカゲルをジクロロメタン(1.5L)で洗浄し、ろ液を減圧条件下、液量が450mLになるまで濃縮した。さらにジクロロメタン(1.5L)を加え、液量が450mLになるまで濃縮し、2,4,6-トリ-O-アセチル-3-O-[(ナフタレン-2-イル)メチル]-1-O-(2,2,2-トリクロロエタンイミドイル)-D-グリセロ-ヘキソピラノース(式C-6で示される化合物)をジクロロメタン溶液として得た。このものを次工程にそのまま使用した。
 実施例14
 4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-{2,4,6-トリ-O-アセチル-3-O-[(ナフタレン-2-イル)メチル]-β-D-グルコピラノシル}-β-D-グルコピラノシド(式C-8で示される化合物)
Figure JPOXMLDOC01-appb-C000301
 実施例13で得られた2,4,6-トリ-O-アセチル-3-O-[(ナフタレン-2-イル)メチル]-1-O-(2,2,2-トリクロロエタンイミドイル)-D-グリセロ-ヘキソピラノース(式C-6で示される化合物)の溶液(450mL)に、4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式C-7で示される化合物)(276.66g,468.25mmol)、ジクロロメタン(4.2L)及びモレキュラーシーブ4A粉末(10μm以下,83.00g)を加え、-5℃に冷却した。この懸濁液にトリフルオロメタンスルホン酸トリメチルシリル(10.41g,46.83mmol)を20分間かけて滴下した後、3時間撹拌した。HPLCで反応の終了を確認後、トリエチルアミン(23.69g,234.13mmol)を加えた。懸濁液をろ過後、酢酸エチル(2.8L)で洗浄し、ろ液を減圧条件下、液量が1.4Lになるまで濃縮した。さらに酢酸エチル(4.2L)を加え、液量が1.4Lになるまで濃縮、さらにもう1度同様の操作を繰り返した。この溶液に酢酸エチル(2.8L)を加え、飽和炭酸水素ナトリウム水溶液(830mL)及び水(830mL)で洗浄し、有機層を減圧条件下、液量が830mLになるまで濃縮した。さらに2-プロパノール(4.2L)を加え、液量が1.4Lになるまで濃縮後、懸濁液を65℃に温調した。酢酸エチル(830mL)を加えて65℃で2時間撹拌した後、2-プロパノール(5.53L)を2時間かけて滴下した。この懸濁液を0℃に冷却した後、結晶をろ過し、結晶を0℃に冷却した2-プロパノール(1.4L)で洗浄した。得られた結晶を減圧下40℃で乾燥し、4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-{2,4,6-トリ-O-アセチル-3-O-[(ナフタレン-2-イル)メチル]-β-D-グルコピラノシル}-β-D-グルコピラノシド(式C-8で示される化合物)(355.34g,収率90.5%, 式C-3で示される化合物基準)の粗体を得た。
 得られた粗体の式C-8で示される化合物(350.00g)にメチルイソブチルケトン(2.1L)を加え、50℃で溶解した後、エチルシクロヘキサン(1.4L)を1時間かけて滴下した。4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-{2,4,6-トリ-O-アセチル-3-O-[(ナフタレン-2-イル)メチル]-β-D-グルコピラノシル}-β-D-グルコピラノシド(式C-8で示される化合物)(70.00mg)を加えて1時間攪拌し、結晶の析出を確認後、エチルシクロヘキサン(4.9L)を2時間かけて滴下した。懸濁液を室温に冷却し、14.5時間撹拌後、析出した結晶をろ過し、結晶をメチルイソブチルケトン(350mL)及びエチルシクロヘキサン(1.4L)の混合溶液で洗浄した。得られた結晶を減圧下40℃で乾燥し、4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-{2,4,6-トリ-O-アセチル-3-O-[(ナフタレン-2-イル)メチル]-β-D-グルコピラノシル}-β-D-グルコピラノシド(式C-8で示される化合物)(331.74g,収率94.8%)を得た。
 H-NMR(500MHz,CDCl)δ7.81-7.84(m,4H),7.69(br,1H),7.65(br,3H),7.46-7.51(m,2H),7.28-7.36(m,6H),7.00(dd,J=7.0,1.5Hz,2H),6.77-6.84(m,5H),6.66-6.69(m,2H),5.59,(d,J=9.0Hz,1H),5.09-5.15(m,2H),4.82(d,J=12.5Hz,1H),4.77(d,J=12.0Hz,1H),4.71-4.77(m,2H),4.60(d,J=8.0Hz,1H),4.50(d,J=12.5Hz,1H),4.45(d,J=13.0Hz,1H),4.36(dd,J=11.0,8.5Hz,1H),4.28(dd,J=11.0,8.5Hz,1H),4.20(dd,J=12.5,5.0Hz,1H),4.10(dd,J=10.0,8.5Hz,1H),3.99(dd,J=12.0,2.0Hz,1H),3.80(br,2H),3.69(s,3H),3.58-3.62(m,2H),3.44(ddd,J=10.0,4.5,2.5Hz,1H),1.98(s,3H),1.938(s,3H),1.937(s,3H).
 13C-NMR(125MHz,CDCl)δ171.0,169.5,169.1,155.6,151.0,138.7,138.2,135.5,133.9,133.4,133.2,128.7,128.4,128.23,128.20,128.06,128.05,127.9,127.2,126.5,126.2,125.7,123.5,118.9,114.5,100.7,97.8,80.6,78.5,76.8,75.2,74.8,74.1,73.8,73.1,72.1,69.9,67.8,62.2,55.78,55.75,21.1,20.94,20.85.
 HRMS(ESI)[M+H] calcd for C5858NO16:1024.3750;found 1024.3706.
 下記文献とスペクトルの一致を確認した:
Org.Biomol.Chem.,2018,16,4720-4727。
 実施例15
 4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-{3-O-[(ナフタレン-2-イル)メチル]-β-D-グルコピラノシル}-β-D-グルコピラノシド(式C-9で示される化合物)
Figure JPOXMLDOC01-appb-C000302
 4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-{2,4,6-トリ-O-アセチル-3-O-[(ナフタレン-2-イル)メチル]-β-D-グルコピラノシル}-β-D-グルコピラノシド(式C-8で示される化合物)(30.00g,29.29mmol)のテトラヒドロフラン(150mL)溶液に、メタノール(90mL)及びトリフルオロ酢酸メチル(3.75g,29.29mmol)を加えて25℃で10分間撹拌後、カリウムtert-ブトキシド(1mol/Lのテトラヒドロフラン溶液)(14.7mL,14.65mmol)を加えた。その後、55℃に昇温し、2時間撹拌後、HPLCで反応の終了を確認した。反応液を25℃に冷却し、酢酸(1.76g,29.29mmol)及び酢酸エチル(300mL)の順に加えた。この溶液を1%塩化ナトリウム水溶液(300mL)で2度洗浄後、減圧条件下、液量が90mLになるまで濃縮した。酢酸エチル(450mL)を加え、再度液量が90mLになるまで濃縮、さらにアセトニトリル(450mL)を加え、液量が90mLになるまで濃縮し、4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-{3-O-[(ナフタレン-2-イル)メチル]-β-D-グルコピラノシル}-β-D-グルコピラノシド(式C-9で示される化合物)をアセトニトリル溶液として得た。このものを次工程にそのまま使用した。
 実施例16
 4-メトキシフェニル 3,6-ジ-O-ベンジル-4-O-{4,6-O-ベンジリデン-3-O-[(ナフタレン-2-イル)メチル]-β-D-グルコピラノシル}-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式C-10で示される化合物)
Figure JPOXMLDOC01-appb-C000303
 4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-{3-O-[(ナフタレン-2-イル)メチル]-β-D-グルコピラノシル}-β-D-グルコピラノシド(式C-9で示される化合物)の溶液(90mL)に、アセトニトリル(210mL)、ベンズアルデヒドジメチルアセタール(5.13g,33.69mmol)及びp-トルエンスルホン酸一水和物(0.17g,0.88mmol)を加え、25℃で30分間撹拌した。この溶液にトルエン(600mL)を加え、液量が300mLになるまで濃縮、この時点でHPLCにより反応の終了を確認した。さらに1-メチルイミダゾール(12.03g,146.47mmol)を加え、液量が90mLになるまで濃縮し、4-メトキシフェニル 3,6-ジ-O-ベンジル-4-O-{4,6-O-ベンジリデン-3-O-[(ナフタレン-2-イル)メチル]-β-D-グルコピラノシル}-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式C-10で示される化合物)を1-メチルイミダゾール含有のトルエン溶液として得た。このものを次工程にそのまま使用した。
 実施例17
 4-メトキシフェニル 3,6-ジ-O-ベンジル-4-O-{4,6-O-ベンジリデン-3-O-[(ナフタレン-2-イル)メチル]-2-O-(トリフルオロメタンスルホニル)-β-D-グルコピラノシル}-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式C-11で示される化合物(式中、XはTf基である))
Figure JPOXMLDOC01-appb-C000304
 実施例16で得られた4-メトキシフェニル 3,6-ジ-O-ベンジル-4-O-{4,6-O-ベンジリデン-3-O-[(ナフタレン-2-イル)メチル]-β-D-グルコピラノシル}-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式C-10で示される化合物)の溶液(90mL、1-メチルイミダゾール含有)に酢酸エチル(210mL)を加えて、0℃に冷却した。この溶液に、トリフルオロメタンスルホン酸無水物(16.53g,58.59mmol)を1時間かけて滴下し、その後30分間撹拌した。HPLCにより反応の終了を確認後、水(300mL)を加え、有機層と水層に分離した。有機層を水(300mL)で2度、飽和塩化ナトリウム水溶液(150mL)で1度洗浄後、減圧条件下、液量が90mLになるまで濃縮した。酢酸エチル(300mL)を加え、再度液量が90mLになるまで濃縮し、4-メトキシフェニル 3,6-ジ-O-ベンジル-4-O-{4,6-O-ベンジリデン-3-O-[(ナフタレン-2-イル)メチル]-2-O-(トリフルオロメタンスルホニル)-β-D-グルコピラノシル}-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式C-11で示される化合物(式中、XはTf基である))を酢酸エチル溶液として得た。このものを次工程にそのまま使用した。
 実施例18
 4-メトキシフェニル 3,6-ジ-O-ベンジル-4-O-{4,6-O-ベンジリデン-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル}-2-(2-カルボキシベンズアミド)-2-デオキシ-β-D-グルコピラノシド(式C-13で示される化合物)
Figure JPOXMLDOC01-appb-C000305
 実施例17で得られた4-メトキシフェニル 3,6-ジ-O-ベンジル-4-O-{4,6-O-ベンジリデン-3-O-[(ナフタレン-2-イル)メチル]-2-O-(トリフルオロメタンスルホニル)-β-D-グルコピラノシル}-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式C-11で示される化合物(式中、XはTf基である))の溶液(90mL)にジメチルスルホキシド(150mL)及び酢酸テトラブチルアンモニウム(17.67g,58.59mmol)を加えて、30℃に昇温し、17時間撹拌後、HPLCにより反応の終了を確認した。この反応液にトルエン(150mL)を加え、減圧条件下、液量が165mLになるまで濃縮した。メタノール(45mL)及び50%水酸化ナトリウム水溶液(3.52g,87.88mmol)を加え、25℃で1.5時間撹拌した。HPLCにより反応の終了を確認後、酢酸エチル(450mL)及び水(300mL)を加えて分液した。有機層に水(300mL)を加えて、0℃に冷却し、強撹拌下、6規定塩酸でpH2.73に調整した。分液した有機層にテトラヒドロフラン(300mL)を加え、減圧条件下、液量が150mLになるまで濃縮した。テトラヒドロフラン(300mL)を加え、再度液量が90mLになるまで濃縮し、内温45℃に温度調整した。テトラヒドロフラン(60mL)を加えた後、25℃に冷却し、2-プロパノール(150mL)及び水(15mL)を加え、4-メトキシフェニル 3,6-ジ-O-ベンジル-4-O-{4,6-O-ベンジリデン-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル}-2-(2-カルボキシベンズアミド)-2-デオキシ-β-D-グルコピラノシド(式C-13で示される化合物)(30mg)を添加した。25℃で14時間撹拌し、結晶の析出を確認した後、2-プロパノール(210mL)を1時間かけて滴下し、0℃に冷却した。2時間撹拌後、析出した結晶をろ過し、結晶を0℃に冷却した2-プロパノール(150mL)で洗浄した。得られた結晶を減圧下40℃で乾燥し、4-メトキシフェニル 3,6-ジ-O-ベンジル-4-O-{4,6-O-ベンジリデン-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル}-2-(2-カルボキシベンズアミド)-2-デオキシ-β-D-グルコピラノシド(式C-13で示される化合物)(27.74g,収率94.3%,式C-8で示される化合物基準)を得た。
※式C-12で示される化合物→式C-13で示される化合物の工程はワンポットで実施した。
※種晶に関しては、反応液を一部小分けし、濃縮して固体を析出させたものを使用した。
※本反応は、東京化成工業株式会社製(製品コード:T2694、純度:>90.0%)及びSigma-Aldrich社製(製品コード:86849、純度:>90%)の酢酸テトラブチルアンモニウムを使用すると良好に反応が進行する。なお、その他のメーカーにおいては、酢酸テトラブチルアンモニウムに過剰の酢酸が含まれる場合があり、そういった場合、反応は大幅に遅延する傾向がある。代替法として、酢酸セシウムを用いて同様の変換反応が可能である(以下に詳細を記載)。
※式C-11で示される化合物→式C-12で示される化合物への変換は、酢酸セシウム(3当量)、ジメチルスルホキシド、50℃、24時間の条件においても実施可能であった。その後、同様の反応(式C-12で示される化合物→式C-13で示される化合物)、後処理を行うことで、式C-13で示される化合物を取得できた。
 H-NMR(500MHz,CDCl)δ8.02(dd,J=6.0,2.0Hz,1H),7.69-7.83(m,4H),7.38-7.49(m,12H),7.32-7.34(m,2H),7.16-7.29(m,8H),6.97(ddd,J=9.0,4.0,2.5Hz,2H),6.76(ddd,J=9.5,3.5,2.5Hz,2H),5.51(s,1H),5.40(d,J=6.0Hz,1H),4.83-4.91(m,3H),4.76(d,J=11.5Hz,1H),4.55(d,J=0.5Hz,1H),4.49(d,J=12.0Hz,1H),4.36(d,J=12.0Hz,1H),4.26-4.30(m,1H),4.16(t,J=6.5Hz,1H),4.05-4.09(m,2H),3.99(dd,J=3.0,0.5Hz,1H),3.93(t,J=9.5Hz,1H),3.80-3.86(m,2H),3.71(s,3H),3.65-3.69(m,1H),3.56(t,J=10.0Hz,1H),3.51(dd,J=10.0,3.5Hz,1H),3.13(td,J=9.5,5.0Hz,1H).
 13C-NMR(125MHz,CDCl)δ170.9,168.4,155.3,151.4,138.7,138.0,137.6,136.2,135.4,133.4,133.3.,132.2,132.1,130.7,130.3,129.2,128.6,128.49,128.45,128.11,128.07,128.0,127.89,127.87,127.8,126.8,126.4,126.3,126.2,125.8,118.6,114.7,101.7,100.4,99.1,78.3,76.7,76.4,75.1,73.7,73.3,72.5,69.9,69.4,68.5,67.0,55.8,54.4.
 HRMS(ESI)[M+H] calcd for C5958NO14:1004.3852;found 1004.3873.
 実施例19
 4-メトキシフェニル 3,6-ジ-O-ベンジル-4-O-{4,6-O-ベンジリデン-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル}-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式C-14で示される化合物)
Figure JPOXMLDOC01-appb-C000306
 4-メトキシフェニル 3,6-ジ-O-ベンジル-4-O-{4,6-O-ベンジリデン-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル}-2-(2-カルボキシベンズアミド)-2-デオキシ-β-D-グルコピラノシド(式C-13で示される化合物)(6.00g,5.98mmol)のジクロロメタン(30mL)溶液に、1-ヒドロキシベンゾトリアゾール一水和物(0.18g,1.20mmol)、N,N-ジイソプロピルエチルアミン(0.85g,6.57mmol)及び1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(1.26g,6.57mmol)を加えて40℃に昇温し、31時間撹拌した。HPLCにより反応の終了を確認後、反応溶液を0℃に冷却後、酢酸エチル(90mL)及び水(60mL)を加え、強撹拌下で6規定塩酸をpH7になるまで添加した。有機層と水層を分離後、有機層を水(60mL)及び飽和食塩水(30mL)で洗浄した。この溶液を減圧条件下、液量が12mLに達するまで濃縮した。テトラヒドロフラン(60mL)を加え、再度液量が9mLに達するまで濃縮し、粗体の4-メトキシフェニル 3,6-ジ-O-ベンジル-4-O-{4,6-O-ベンジリデン-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル}-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式C-14で示される化合物)のテトラヒドロフラン溶液を得た。このものを次工程にそのまま使用した。
 実施例20
 4-メトキシフェニル 3,6-ジ-O-ベンジル-4-O-{2-O-ベンジル-4,6-O-ベンジリデン-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル}-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式C-15で示される化合物)
Figure JPOXMLDOC01-appb-C000307
 粗体の4-メトキシフェニル 3,6-ジ-O-ベンジル-4-O-{4,6-O-ベンジリデン-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル}-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式C-14で示される化合物)の溶液に、N,N-ジメチルアセトアミド(60mL)、ベンジルブロミド(1.53g,8.96mmol)、トリフルオロ酢酸メチル(0.15g,1.20mmol)及びモレキュラーシーブ4A(1.8g)を加えて0℃に冷却し、リチウムtert-ブトキシドのテトラヒドロフラン溶液(注:本溶液は、2-メチル-2-プロパノール(0.66g,8.96mmol)及びテトラヒドロフラン(2.4mL)の混合溶液を0℃に冷却し、ノルマルブチルリチウムのヘキサン溶液(1.55mol/L)(5.78mL,8.96mmol)を加えて30分間撹拌したものを使用した)を添加して3時間撹拌した。HPLCにより反応の終了を確認後、エチレンジアミン(無水)(0.18g,2.99mmol)を加え、さらに1時間撹拌した。この溶液に酢酸(0.72g,11.95mmol)を加え、ろ過した。酢酸エチル(90mL)でモレキュラーシーブ4Aを洗浄後、水(60mL)を加え、分液した。有機層を水(60mL)で2度洗浄後、減圧条件下、液量が12mLに達するまで濃縮した。トルエン(30mL)を加え、再度液量が12mLに達するまで濃縮、トルエン(18mL)及びシリカゲル60N(球状、関東化学製,粒子径:40~50μm)(9g)を加え、25℃で30分間撹拌した。懸濁液をろ過、シリカゲルをトルエン(191mL)及び酢酸エチル(19mL)の混合溶液で洗浄した。ろ液を減圧条件下、液量が9mLに達するまで濃縮し、粗体の4-メトキシフェニル 3,6-ジ-O-ベンジル-4-O-{2-O-ベンジル-4,6-O-ベンジリデン-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル}-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式C-15で示される化合物)のトルエン溶液を得た。
 実施例21
 4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-4-O-{2,4-ジ-O-ベンジル-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル}-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式A-4で示される化合物)
Figure JPOXMLDOC01-appb-C000308
 得られた粗体の4-メトキシフェニル 3,6-ジ-O-ベンジル-4-O-{2-O-ベンジル-4,6-O-ベンジリデン-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル}-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式C-15で示される化合物)の溶液(式C-14で示される化合物基準で5.50g(5.48mmol)分を使用)に、ジクロロメタン(16.5mL)及びモレキュラーシーブ4A(550mg)を加えて0℃に冷却し、ボランーテトラヒドロフラン錯体(0.91mol/Lのテトラヒドロフラン溶液)(18.06mL,16.43mmol)及びトリフルオロ酢酸銅(II)(0.59g,1.64mmol)を添加して3時間撹拌した。HPLCにより反応の終了を確認後、メタノール(5.5mL)を加え、さらに30分間撹拌した。この溶液をろ過し、酢酸エチル(110mL)でモレキュラーシーブ4Aを洗浄後、0.5規定塩酸(55mL)を加え、30分間撹拌した。有機層と水層を分離後、有機層を0.5規定塩酸(55mL)及び飽和食塩水(27.5mL)で洗浄し、この溶液を減圧下、濃縮乾固した。このものをシリカゲルカラムクロマトグラフィー(シリカゲル300g,ヘキサン:酢酸エチル=55:45→30:70)によって精製し、4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-4-O-{2,4-ジ-O-ベンジル-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル}-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式A-4で示される化合物)(4.94g,収率83.6%,HPLC面積:98.54%)を得た。
 1H-NMR(500MHz,CDCl)δ7.67-7.84(m,8H),7.44-7.49(m,4H),7.40(dd,J=8.0,1.5Hz,1H),7.21-7.33(m,13H),6.87-6.93(m,5H),6.82(ddd,J=9.5,4.0,2.5Hz,2H),6.70(ddd,J=9.0,4.0,2.0Hz,2H),5.64(d,J=8.5Hz,1H),4.94(d,J=12.5Hz,1H),4.91(d,J=10.0Hz,1H),4.90(s,2H),4.66(s,2H),4.60(d,J=11.0Hz,1H),4.59(d,J=12.0Hz,1H),4.55(s,1H),4.40-4.46(m,3H),4.33(dd,J=11.0,9.0Hz,1H),4.06(dd,J=9.5,8.5Hz,1H),3.80-3.85(m,2H),3.70-3.76(m,2H),3.71(s,3H),3.61-3.68(m,2H),3.45-3.48(m,1H),3.44(dd,J=9.5,3.0Hz,1H),3.23(ddd,J=9.5,5.5,2.5Hz,1H),1.97(br-t,1H).
13C-NMR(125MHz,CDCl)δ155.6,151.1,138.9,138.64,138.56,138.0,135.9,134.0,133.5,133.2,131.8,128.7,128.6,128.4,128.3,128.20,128.19,128.15,128.1,120.04,128.01,127.9,127.7,127.6,127.3,126.4,126.3,126.1,125.8,123.6,119.0,114.6,101.2,98.0,82.6,79.0,77.2,75.9,75.4,75.3,75.2,75.1,74.8,74.7,73.8,72.1,68.7,62.6,55.82,55.78,34.4,30.5.
 HRMS(ESI)[M+HCO calcd for C6764NO15:1122.4281;found 1122.4285.
 実施例22
Figure JPOXMLDOC01-appb-C000309
 4-メトキシフェニル3,6-ジ-O-ベンジル-2-デオキシ-4-O-{2,4-ジ-O-ベンジル-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル}-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式A-4で示される化合物)(65.0g,60.3mmol)及び2-O-アセチル-3,4,6-トリ-O-ベンジル-1-O-(2,2,2-トリクロロエタンイミドイル)-D-マンノピラノース(式A-3で示される化合物)のトルエン溶液(78.4mmol相当)を1L4径フラスコに加え、トルエン650mLに溶解させ、モレキュラーシーブ4A粉末(10μm以下,13.0g)を加えた。窒素下、-15℃にてトリフルオロメタンスルホン酸トリメチルシリル(2.7mL,15.1mmol)を15分間かけて滴下し、同温にて30分間撹拌した。HPLCにより反応終了を確認後、トリエチルアミン(4.2mL,30.2mmol)を加え、室温に昇温した。反応液をセライトろ過後、アセトニトリル(195mL)にて洗浄した。ろ液を減圧濃縮し、濃縮残渣にアセトニトリル(650mL)を加え、逆相用シリカゲル120RP-18(関東化学製、粒子径:40~50μm,97.5g)を添加した。水(130mL)を30分間かけて滴下し、目的物を固相に吸着させた後、ろ過した。アセトニトリル/水(3/1,326mL)にて固相を洗浄後(ろ液は廃棄)、アセトニトリル(585mL)-酢酸エチル(65mL)溶液にて目的物を脱着させた。ろ液を減圧濃縮することで、4-メトキシフェニル 2-O-アセチル-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)-2,4-ジ-O-ベンジル-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式A-5で示される化合物)(70.5g),単離収率94%)を白色アモルファスとして得た。
 H-NMR(CDCl)σ 7.85-7.80(m,1H),7.78(d,J =8.6Hz,1H),7.74-7.58(m,5H),7.50-7.43(m,5H),7.39(dd,J=8.6,1.7Hz,1H),7.32-7.02(m,30H),6.92-6.89(m,2H),6.78-6.76(m,2H),6.71-6.62(m,5H),5.59(d,J=8.6Hz,1H),5.36(dd,J=2.9,2.3Hz,1H),5.00-4.90(m,4H),4.87(d,J=12.6Hz,1H),4.79(d,J=11.5Hz,1H),4.66-4.50(m,7H),4.43(dd,J=11.5,2.3Hz,1H),4.40-4.34(m,3H),4.28(dd,J=10.3,8.6Hz,1H),4.22(d,J=11.5Hz,1H),4.08(dd,J=9.7,9.2Hz,1H),3.94(dd,J=9.2,9.2Hz,1H),3.89-3.83(m,3H),3.83-3.58(m,10H),3.55-3.50(m,1H),3.42(dd,J=9.2,2.9Hz,1H),3.37-3.31(m,1H),1.90(s,3H).
 13C-NMR(CDCl)σ 167.0,155.3,150.8,138.8,138.7,138.51,138.49,138.4,138.0,137.9,135.6,133.6,133.2,132.9,131.6,128.44,128.41,128.32,128.26,128.22,128.19,128.12,127.86,127.81,127.75,127.71,127.69,127.63,127.56,127.44,127.37,127.27,127.0,126.3,126.2,125.9,125.7,123.2,118.7,114.3,101.9,98.3,97.6,82.7,79.6,77.8,76.6,75.04,74.98,74.91,74.89,74.75,74.4,74.3,74.1,74.0,73.4,73.3,71.70,71.65,71.3,68.8,68.6,68.3,67.1,55.6,55.5,20.9.
 HRMS(ESI)[M+HNEt+ calcd for C10110919 :1654.7653;found 1654.7618.
 [α] 20=+31.589(c 1.002,CDCl).
 実施例23
Figure JPOXMLDOC01-appb-C000310
 4-メトキシフェニル 2-O-アセチル-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)-2,4-ジ-O-ベンジル-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式A-5で示される化合物)(44.0g,28.3mmol)を1L4径フラスコに加え、ジクロロメタン(228mL)、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール(163mL)及び水(14mL)を加えた。窒素下、2℃にて[ビス(トリフルオロアセトキシ)ヨード]ベンゼン(25.9g,56.6mmol)のジクロロメタン(80mL)溶液及びトリフルオロ酢酸(6.9mL,84.9mmol)を添加し、同温にて8時間撹拌した。HPLCにより反応終了を確認後、炭酸水素ナトリウム(18.7g)―水(228mL)溶液を加えた後5分間撹拌し、亜硫酸ナトリウム(11.7g)―水(228mL)溶液を加えた。5分間撹拌した後に静置しジクロロメタン層を分液した。得られた有機層を97.5mLまで減圧濃縮後、酢酸エチル(325mL)及び塩化ナトリウム(23.4g)- 水(211mL)溶液をそれぞれ加えた。5分間撹拌した後に静置し有機層を分液した。得られた有機層を97.5mLまで減圧濃縮後、トルエン(890mL)を加え、97.5mLまで再度減圧濃縮した。トルエン(164mL)及びジクロロメタン(65mL)を加え、シリカゲル60N(関東化学製,粒子径:40~50μm,130g)を添加し、目的物をシリカゲルに吸着させた後、ろ過した。ジクロロメタン(130mL)―トルエン(520mL)溶液にて洗浄し(ろ液は廃棄)、酢酸エチル(220mL)―ジクロロメタン(455mL)溶液にて、目的物を固相から脱着した。ろ液を減圧濃縮後、トルエン(228mL)を加え97.5mLまで減圧濃縮することで、2-O-アセチル-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)-2,4-ジ-O-ベンジル-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-D-グルコピラノース(式A-6で示される化合物)のトルエン溶液として得た。本溶液を次工程にそのまま使用した。
 H-NMR(CDCl)σ 7.85-7.80(m,1H),7.78(d,J =8.6Hz,1H),7.72(s,1H),7.70-7.64(m,1H),7.63(brs,2H),7.48-7.43(m,4H),7.39(dd,J=8.6,1.7Hz,1H),7.33-7.10(m,30H),6.92-6.87(m,2H),6.77-6.66(m,3H),5.38(dd,J=3.4,1.7Hz,1H),5.23(dd,J=8.6,8.6Hz,1H),4.97-4.86(m,4H),4.84(d,J=12.6Hz,1H),4.79(d,J=10.9Hz,1H),4.63(d,J=11.5Hz,1H),4.60-4.48(m,7H),4.46(d,J=11.5Hz,1H),4.37(dd,J=12.0,3.4Hz,1H),4.32(dd,J=10.9,8.6Hz,1H),4.23(d,J=10.9Hz,1H),4.06(dd,J=9.2,9.2Hz,1H),4.01(dd,J=10.9,9.2Hz,1H),3.92(dd,J=9.2,3.4Hz,1H),3.89-3.74(m,6H),3.72-3.65(m,2H),3.64-3.57(m,2H),3.48(dd,J=10.9,1.1Hz,1H),3.42-3.34(m,2H),2.68(dd,J=9.2,1.1Hz,1H),1.95(s,3H).
 13C-NMR(CDCl)σ 170.2,167.9,138.85,138.79,138.6,138.5,138.4,138.0,137.8,135.6,133.6,133.2,132.9,131.6,128.55,128.50,128.33,128.24,128.20,128.16,127.9,127.80,127.75,127.69,127.66,127.62,127.54,127.45,127.36,127.33,126.97,126.22,126.17,125.9,125.6,123.2,101.1,97.9,92.9,82.6,78.6,78.0,76.1,74.9,74.8,74.4,74.15,74.13,74.0,73.5,73.2,71.7,71.6,71.3,68.8,68.768.4,67.0,57.6,20.9.
 HRMS(ESI)[M+HNEt+ calcd for C9410318 :1548.7234;found 1548.7237.
 [α] 20=+32.528(c 1.006,CDCl).
 実施例24
Figure JPOXMLDOC01-appb-C000311
 実施例23で得られた2-O-アセチル-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)-2,4-ジ-O-ベンジル-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-D-グルコピラノース(式A-6で示される化合物)のトルエン溶液を1L4径フラスコに加え、ジクロロメタン(260mL)及びモレキュラーシーブ4A粉末(10μm以下,21.8g)を加えて、0℃まで冷却した。窒素下、同温にて1,8-ジアザビシクロ[5.4.0]ウンデ-7-エン(5.08mL,34.0mmol)及び2,2,2-トリフルオロ-N-フェニルアセトイミドイルクロリド(5.25mL,31.1mmol)を加え、5時間撹拌した。反応液をジクロロメタンにて充填した中性シリカゲルパッド(シリカゲル60N,関東化学製,粒子径:40~50μm,130g)でろ過した。シリカゲルパッドを10%酢酸エチル/ジクロロメタン(1760mL,220mLずつ分取)にて洗浄し、主留を減圧濃縮したあと、トルエン(228mL)を加え97.5mLまで減圧濃縮することで、2-O-アセチル-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)-2,4-ジ-O-ベンジル-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-1-O-(2,2,2-トリフルオロ-N-フェニルエタンイミドイル)-D-グルコピラノース(式A-7で示される化合物)のトルエン溶液として得た。本溶液を次工程にそのまま使用した。
 H-NMR(CDCl)σ 7.85-7.80(m,1H),7.78(d,J =8.6Hz,1H),7.72(s,1H),7.70-7.64(m,3H),7.50-7.43(m,4H),7.39(dd,J=8.6,1.7Hz,1H),7.33-7.08(m,30H),7.06-7.01(m,1H),6.88(d,J=6.9Hz,2H),6.70-6.60(m,4H),5.35(dd,J=2.9,1.7Hz,1H),4.97-4.88(m,4H),4.84(d,J=13.2Hz,1H),4.79(d,J=10.9Hz,1H),4.65-4.49(m,7H),4.43(dd,J=11.5,4.0Hz,1H),4.36(dd,J=12.0,7.4Hz,1H),4.22(d,J=11.5Hz,1H),4.11-4.04(m,1H),3.93(dd,J=9.7,9.7Hz,1H),3.89-3.83(m,2H),3.82-3.69(m,4H),3.64(dd,J=10.9,4.0Hz,1H),3.52(dd,J=10.9,1.1Hz,1H),3.39(dd,J=9.7,2.9Hz,1H),3.33-3.28(m,1H),1.89(s,3H).
 13C-NMR(CDCl)σ 170.0,167.4,143.0,138.8,138.7,138.5,138.4,138.0,137.6,135.6,133.7,133.2,133.0,131.5,128.56,128.53,128.4,128.32.128.30,128.26,128.22,128.19,128.14,128.12,127.90,127.86,127.81,127.74,127.72,127.69,127.54,127.46,127.38,127.28,127.0,126.3,126.2,126.0,125.6,124.3,123.3,119.3,101.8,98.2,82.6,79.0,77.8,76.2,75.5,75.0,74.91,74.89,74.7,74.5,74.3,74.1,74.0,73.4,73.3,71.7,71.7,71.3,68.8,68.3,68.0,67.0,54.7,20.8.
 HRMS(ESI)[M+HNH+ calcd for C969118 :1635.6591;found 1635.6549.
 [α] 20=+62.169(c 1.002,CDCl).
 実施例25
Figure JPOXMLDOC01-appb-C000312
 実施例24で得られた2-O-アセチル-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)-2,4-ジ-O-ベンジル-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-1-O-(2,2,2-トリフルオロ-N-フェニルエタンイミドイル)-D-グルコピラノース(式A-7で示される化合物)のトルエン溶液、トルエン(488mL)及び4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式A-8で示される化合物)(21.55g,36.2mmol)を1L4径フラスコに加え、モレキュラーシーブ4A粉末(14.6g)を加えた。窒素下、-15℃にてトリフルオロメタンスルホン酸トリメチルシリル(545μL,2.83mmol)を5分間かけて滴下し、同温にて1時間撹拌した。HPLCにより反応終了を確認後、トリエチルアミン(1.67mL,11.32mmol)を加え、室温に昇温した。反応液をろ過し、アセトニトリル(160mL)にて洗浄した。ろ液を97.5mLまで減圧濃縮し、アセトニトリル(650mL)を加えて再び97.5mLまで減圧濃縮を行った。アセトニトリル(488mL)及び逆相用シリカゲル120RP-18(関東化学製、粒子径40~50μm,130g)を加えた。30分間かけて水(146mL)を滴下し、目的物を固相に吸着させ、ろ過した。アセトニトリル(536mL)―水(146mL)にて洗浄し(ろ液は廃棄)、アセトニトリル(975mL)―酢酸エチル(244mL)にて目的物を脱着した。ろ液を減圧濃縮し、トルエン(325mL)にて2度共沸するし最終液量を97.5mLとすることで4-メトキシフェニル 2-O-アセチル-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)-2,4-ジ-O-ベンジル-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式A-9で示される化合物)のトルエン溶液として得た。本溶液を一部分取(90mL、式A-4で示される化合物基準:26.1mmol)して次工程に使用した。
 H-NMR(CDCl)σ 7.86-7.81(m,1H),7.81-7.75(m,2H),7.74-7.60(m,7H),7.56-7.44(m,5H),7.40(dd,J=8.6,1.1Hz,1H),7.28-7.05(m,35H),6.95-6.91(m,2H),6.91-6.88(m,2H),6.78-6.62(m,8H),6.61-6.55(m,2H),5.42(d,J=8.6Hz,1H),5.33(dd,J=2.9,1.7Hz,1H),5.23(d,J=8.0Hz,1H),4.98(d,J=12.6Hz,1H),4.94-4.85(m,4H),4.82(d,J=13.2Hz,1H),4.76(d,J=10.9Hz,1H),4.65-4.29(m,16H),4.25-4.12(m,5H),4.04(dd,J=10.3,8.0Hz,1H),3.95(dd,J=9.2,9.2Hz,1H),3.89-3.80(m,3H),3.77(d,J=9.2Hz,1H),3.73(d,J=10.9Hz,1H),3.70-3.65(m,1H),3.64(s,3H),3.63-3.57(m,2H),3.53-3.46(m,2H),3.44-3.35(m,4H),3.30-3.23(m,2H),1.83(s,3H).
 13C-NMR(CDCl)σ 169.8,168.1,167.4,155.2,150.8,138.9,138.71,138.68,138.55,138.48,138.36,137.9,135.6,133.8,133.6,133.2,133.0,131.8,131.6,131.5,128.5,128.34,128.32,128.29,128.26,128.20,128.17,128.12,128.10,127.89,127.85,127.80,127.77,127.69,127.65,127.52,127.47,127.44,127.36,127.29,127.28,126.90,126.87,126.3,126.2,126.0,125.7,123.5,123.2,123.1,118.5,114.2,102.1,98.2,97.4,97.1,82.7,80.0,77.8,76.6,75.9,74.9,74.8,74.63,74.61,74.56,74.49,74.3,74.06,74.03,73.3,73.2,72.6,71.7,71.6,71.2,68.7,68.3,68.11,68.06,68.8,56.5,55.6,55.5,20.8.
 HRMS(ESI)[M+HNEt+ calcd for C12913425 :2125.9334;found 2125.9267.
 [α] 20=+30.098(c 1.008,CDCl).
 実施例26
Figure JPOXMLDOC01-appb-C000313
 実施例25で得られた4-メトキシフェニル 2-O-アセチル-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)-2,4-ジ-O-ベンジル-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式A-9で示される化合物)のトルエン溶液(90mL、式A-4で示される化合物基準:26.1mmol)を1L4径フラスコに加え、テトラヒドロフラン(165mL)、メタノール(75mL)及びトリフルオロ酢酸メチル(2.76mL,27.8mmol)を加えた。窒素下、室温にて5分間撹拌した後、1Mt-ブトキシカリウムのテトラヒドロフラン溶液(13.9mL,13.9mmol)を加えて、40℃にて1時間撹拌した。HPLCにより反応終了を確認後、室温まで冷却した。酢酸(1.11mL,19.4mmol)を加えた後、酢酸エチル(330mL)及び水(270mL)を加えた。トリエチルアミンをpH7になるまで加えた後、塩化ナトリウム(2.7g)を加え5分間撹拌した。静置後、分液を行い得られた有機層を水(270mL)で2回洗浄した。有機層を90mLまで減圧濃縮し、トルエン(300mL)を加え、90mLまで減圧濃縮し、トルエン(300mL)を加え、90mLまで再度減圧濃縮することで4-メトキシフェニル 3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)-2,4-ジ-O-ベンジル-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式A-10で示される化合物)のトルエン溶液として得た。溶液を次工程にそのまま使用した。
 H-NMR(CDCl)σ 7.85-7.81(m,1H),7.79(d,J=8.6Hz,1H),7.78-7.72(m,2H),7.72-7.60(m,6H),7.59-7.54(m,1H),7.50-7.44(m,4H),7.41(dd,J=8.6,1.1Hz,1H),7.31-7.13(m,32H),7.10-7.05(m,2H),6.97-6.93(m,2H),6.90-6.86(m,2H),6.78-6.67(m,8H),6.61-6.56(m,2H),5.43(d,J=8.6Hz,1H),5.25(d,J=8.0Hz,1H),4.99-4.86(m,4H),4.83(d,J=12.6Hz,1H),4.71(d,J=10.9Hz,1H),4.64(d,J=12.0Hz,1H),4.61(d,J=12.0Hz,1H),4.56(d,J=6.9Hz,1H),4.53-4.39(m,7H),4.39-4.31(m,5H),4.30(d,J=11.5Hz,1H),4.25-4.14(m,4H),4.05(dd,J=9.7,8.6Hz,1H),3.94-3.88(m,2H),3.86-3.80(m,2H),3.76-3.68(m,3H),3.68-3.59(m,5H),3.57-3.35(m,7H),3.31-3.25(m,2H),2.15(d,J=4.0Hz,1H).
 13C-NMR(CDCl)σ 168.2,167.5,155.2,150.8,138.91,138.88,138.6,138.52,138.47,138.38,128.32,128.0,137.9,135.7,133.9,133.6,133.3,133.0,131.8,131.6,131.4,128.5,128.29,128.23,128.19,128.13,128.0,127.92,127.87,127.82,127.79,127.76,127.70,127.56,127.53,127.46,127.36,127.31,127.28,126.9,126.3,126.2,126.0,125.7,123.5,123.2,123.1,118.6,114.2,101.9,99.7,97.4,97.1,82.7,79.7,79.6,76.7,75.9,75.3,74.9,74.8,74.73,74.68,74.63,74.5,74.4,74.2,74.1,73.2,73.2,72.6,71.8,71.3,71.2,68.9,68.13,68.07,67.8,66.6,56.5,55.6,55.5.
 HRMS(ESI)[M+HNEt+ calcd for C12713224 :2083.9229;found 2083.9150.
 [α] 20=+27.776(c 1.007,CDCl).
 実施例27
Figure JPOXMLDOC01-appb-C000314
 実施例26で得られた4-メトキシフェニル 3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)-2,4-ジ-O-ベンジル-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式A-10で示される化合物)のトルエン溶液に、ジクロロメタン(450mL)及び3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-4-O-(2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル)-1-O-(2,2,2-トリフルオロ-N-フェニルエタンイミドイル)-β-D-グルコピラノース(式A-11で示される化合物)のトルエン溶液(118.2g,36.2mmol)を1L4径フラスコに加え、モレキュラーシーブ4A粉末(10μm以下,15.0g)を加えた。窒素下、-78℃にてトリフルオロメタンスルホン酸t-ブチルジメチルシリル(2.4mL,10.4mmol)を5分間かけて滴下し、同温にて10時間撹拌した。トリエチルアミン(4.6mL,33.2mmol)を加え、室温にて昇温した。反応液をセライトろ過し、アセトニトリル(150mL)にて洗浄した。ろ液を150mLまで減圧濃縮し、アセトニトリル(600mL)を加えた後150mLまで減圧濃縮を行った。アセトニトリル(600mL)及び逆相用シリカゲル120RP-18(関東化学製、粒子径:40~50μm,135g)を加えた。30分間かけて水(120mL)を滴下し、固相に目的物を吸着させた後、ろ過した。アセトニトリル(900mL)―水(135mL)にて固相を洗浄後(洗浄液は廃棄)、アセトニトリル(840mL)―酢酸エチル(210mL)溶液にて目的物を固相から脱着させた。脱着液を減圧濃縮後、トルエン(300mL)を加えて、90mLまで減圧濃縮することで、4-メトキシフェニル 2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)-2,4-ジ-O-ベンジル-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式A-12で示される化合物)のトルエン溶液として得た。溶液を次工程にそのまま使用した。
 H-NMR(CDCl)σ 7.84-7.73(m,4H),7.70-7.57(7H),7.55-7.03(m,68H),6.99-6.89(m,11H),6.88-6.83(m,1H),6.82-6.67(m,7H),6.67-6.62(m,2H),6.62-6.56(m,3H),5.42(d,J=8.6Hz,1H),5.23(d,J=8.6Hz,1H),5.02(d,J=8.6Hz,1H),4.95-4.89(m,3H),4.86-4.79(m,5H),4.77-4.66(m,4H),4.64-4.08(m,30H),4.06-3.98(m,3H),3.91-3.68(m,9H),3.65(s,3H),3.58(d,J=Hz,1H),3.54-3.32(m,13H),3.32-3.27(m,1H),3.22-3.16(m,3H),2.84(dd,J=10.9, 5.7Hz,1H).
 13C-NMR(CDCl)σ 168.4,168.2,167.4,155.2,150.8,139.1,139.02,139.99,138.93,138.8,138.7,138.52,138.48,138.38,138.32,138.06,138.01,135.6,133.7,133.61.133.56,133.3,133.2,132.9,131.8,131.6,131.4,128.54,128.50,128.39,128.34,128.17,128.13,128.10,128.00,127.96,127.89,127.82,127.78,127.67,127.64,127.62,127.59,127.51,127.48,127.46,127.41,127.39,127.29,127.20,127.05,127.01,126.9,126.7,126.3,126.2,125.9,125.7,123.5,123.2,123.1,123.0,118.6,114.2,102.9,102.7,97.8,97.4,97.0,96.9,83.1,82.5,80.4,79.9,77.7,77.4,76.9,76.6,75.7,75.3,75.175.0,74.8,74.7,74.6,74.52,74.46,74.0,73.95,73.85,73.7,73.4,73.2,73.0,72.9,72.58,72.55,72.52,72.48,72.0,71.9,69.8,69.7,68.2,3,68.20,68.06,68.03,67.0,56.6,55.6,55.5
 HRMS(ESI)[M+HNEt+ calcd for C19117535 :3078.3350;found 3078.3200.
 [α] 20=+9.276(c 1.002,CDCl).
 実施例28-1
Figure JPOXMLDOC01-appb-C000315
 実施例27で得られた4-メトキシフェニル 2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)-2,4-ジ-O-ベンジル-3-O-[(ナフタレン-2-イル)メチル]-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式A-12で示される化合物)のトルエン溶液(64.2mmol相当)を3L4径フラスコに加え、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール(1337mL)及び水(133.7mL)を加えた。反応溶液を約―30℃に冷却した後に、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(17.48g,77.0mmol)を加え、38時間撹拌した。反応の十分な進行を確認した後に、亜硫酸ナトリウム(4.04g,32.1mmol)-水(95.6mL)溶液を加えて反応を停止させ1時間かけて室温に昇温した。ジクロロメタン(1910mL)及び炭酸水素ナトリウム(38.2g)―亜硫酸ナトリウム(38.2g)―水(1910mL)溶液をそれぞれ加え5分間撹拌した。静置後分液を行い、有機層を573mLまで減圧濃縮を行った。残渣にトルエン(955mL)を加え573mLまで減圧濃縮し、酢酸エチル(955mL)及び塩化ナトリウム(95.5g)―水(860mL)溶液を加えて五分間撹拌した。静置後分液を行い、有機層を382mLまで減圧濃縮を行った後アセトニトリル(1910mL)を加えて再び382mLまで減圧濃縮を行った。残渣にアセトニトリル(1528mL)及び逆相用シリカゲル120RP-18(関東化学製、粒子径40~50μm,573g)を加えた。30分間かけて水(1242mL)を滴下し、固相に目的物を吸着させた後、ろ過した。アセトニトリル(1337mL)―水(573mL)にて固相を洗浄後(洗浄液は廃棄)、メタノール(955mL)にて固相を洗浄した。その後アセトニトリル(6876mL)―テトラヒドロフラン(764mL)溶液にて目的物を固相から脱着させた。脱着液を減圧濃縮後、乾燥を行い粗体として4-メトキシフェニル 2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式A-13で示される化合物)を167g得た。
 得られた粗体を分取HPLCによる精製を行うことで精製品として4-メトキシフェニル 2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式A-13で示される化合物)を96g(式C-13で示される化合物)からの通算収率として36.1%)得た。
 H-NMR(CDCl)σ 7.75(d,J=8.0Hz,1H),7.69-7.40(10H),7.55-7.10(m,54H),7.06-6.97(5H),6.97-6.89(m,8H),6.88-6.84(m,1H),6.82-6.73(m,5H),6。72-6.67(m,2H),6.62-6.56(m,5H),5.42(d,J=8.6Hz,1H),5.22(d,J=8.0Hz,1H),5.03(d,J=12.0Hz,1H),4.99(d,J=8.6Hz,1H),4.92(d,J=10.9Hz,1H),4.87-4.79(m,5H),4.75(d,J=11.5Hz,1H),4.70(d,J=12.0Hz,1H),4.67(d,J=12.0Hz,1H),4.63(d,J=6.3Hz,1H),4.61(d,J=6.9Hz,1H),4.60-3.97(m,30H),3.88(d,J=2.9Hz,1H),3.84(d,J=12.0Hz,1H),3.82-3.67(m,5H),3.66-3.60(m,5H),3.54-3.33(m,14H),3.27-3.23(m,1H),3.20(d,J=10.9Hz,1H),3.15-3.09(m,2H),2.83-2.78(m,1H),2.27-2.21(m,1H).
 13C-NMR(CDCl)σ 168.4,168.2,167.4,167.3,155.2,150.8,139.1,139.0,138.9,138.8,138.7,138.51,138.49,138.44,138.38,138.37,138.35,138.26,138.0,137.7,133.8,133.6,122.49,133.41,133.36,131.8,131.4,128.6,128.52,128.49,128.39,128.34,128.30,128.2,128.14,128.10,128.06,128.0,127.85,127.82,127.7,127.69,127.65,127.56,127.53,127.48,127.38,127.33,127.26,127.1,127.0,126.9,126.7,123.5,123.2,123.09,123.05,122.98,118.5,114.2,102.9,102.6,97.8,97.4,97.0,96.9,82.5,80.5,79.9,78.5,77.8,77.4,76.9,76.7,75.87,75.80,75.2,75.0,74.79,74.77,74.62,74.59,74.48,74.41,74.2,74.0,73.9,73.6,73.4,73.0,72.9,72.7,72.62,72.56,72.0,69.8,68.24,68.20,68.1,67.8,67.2,56.6,55.6,55.5,53.4.
 HRMS(ESI)[M+HNEt+ calcd for C17218335 :2938.2725;found 2938.2516.
[α] 20=+14.385(c 1.005,CDCl).
 実施例28-2
 式A-13で示される化合物を下記のスキームによる手法を用いることにより精製した。以下に示される通り、当該精製方法により、HPLC分取精製を行うことなく高純度の式A-13で示される化合物を取得することができた。
Figure JPOXMLDOC01-appb-C000316
 メトキシフェニル 2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(2-カルボキシベンズアミド)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(2-カルボキシベンズアミド)-β-D-グルコピラノシル-(1→4)-3,6-ジ-0-ベンジル-2-デオキシ-2-(2-カルボキシベンズアミド)-β-D-グルコピラノシド トリ(R)-(+)-1-(1-ナフチル)エチルアミン塩(式A-14で示される化合物)の合成
Figure JPOXMLDOC01-appb-C000317
 4-メトキシフェニル2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式A-13で示される化合物)(25.00g,8.82mmol,純度72.2PA%)をジクロロメタン(250mL)に溶解した後、シリカゲル(62.5g、富士シリシア製Chromatorex SMB100-20/45)に通液し、ジイソプロピルエーテル/ジクロロメタン混合溶媒(7/93、1000mL)で溶出操作を行った(通液および溶出操作において125mLずつフラクション分けを行い、溶液を回収した)。HPLCにて純度測定を実施してフラクションを選定し、選定したフラクションを混合後、38mLまで濃縮した。濃縮液にテトラヒドロフラン(125mL)加え、38mLまで濃縮した後、テトラヒドロフラン(100mL)、メタノール(38mL)、水酸化ナトリウム水溶液(4M、16.5mL、7.5当量)を滴下し、45℃まで昇温して1時間攪拌した。反応終了を確認後、0℃まで冷却し、10℃以下で塩酸(6M、11mL、7.5当量)を滴下して中和した。酢酸エチル(250mL)と3%食塩水(250mL)を加え、攪拌下、塩酸(6M)で水層のpHを2.0以下に調整した。分液にて水層を除去し、得られた有機層を3%食塩水(250mL)で洗浄した。有機層を38mLに濃縮し、酢酸エチル(250mL)を加えて38mLに濃縮した。濃縮液に酢酸エチル(138mL)、(R)-(+)-1-(1-ナフチル)エチルアミン(5.28g、3.5当量)と種晶(0.03g)を加え、25℃で12時間以上攪拌した後、0℃まで冷却した。ヘプタン(88mL)を1時間かけて滴加し、2時間攪拌後、析出した結晶をろ過して、湿品結晶を得た(純度92.9PA%)。得られた湿品結晶に酢酸エチル(125mL)を加え、35℃で30分間攪拌した後、25℃まで冷却して、12時間攪拌した。スラリー液を1時間かけて0℃まで冷却し、ヘプタン(75mL)を1時間以上かけて滴下した。0℃で2時間攪拌した後、析出した結晶をろ過し、減圧乾燥して、4-メトキシフェニル 2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(2-カルボキシベンズアミド)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(2-カルボキシベンズアミド)-β-D-グルコピラノシル-(1→4)-3,6-ジ-0-ベンジル-2-デオキシ-2-(2-カルボキシベンズアミド)-β-D-グルコピラノシド トリ(R)-(+)-1-(1-ナフチル)エチルアミン塩(式A-14で示される化合物)(18.93g,収率63.1%,純度97.2PA%)を白色結晶として得た。得られた結晶の粉末X線結晶解析を下記に示す。
<測定機器>
粉末X線結晶解析測定装置 : リガク
<測定条件>
波長           : Cuka / 1.541862 Å
ゴニオメーター      : MiniFlex 300/600
スキャンスピード     : CONTINUOUS
スキャンスピード/計数時間: 10.00
ステップ幅        : 0.02deg
スキャン軸        : 2θ/θ
スキャン範囲       : 3.00~40.00 deg
フィルター        : K-beta(×1)
回転           : 有り
<式A-14の化合物の粉末X線結晶解析測定チャート>
Figure JPOXMLDOC01-appb-C000318
 式A-14で示される化合物から式A-13で示される化合物の変換
Figure JPOXMLDOC01-appb-C000319
 4-メトキシフェニル 2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(2-カルボキシベンズアミド)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(2-カルボキシベンズアミド)-β-D-グルコピラノシル-(1→4)-3,6-ジ-0-ベンジル-2-デオキシ-2-(2-カルボキシベンズアミド)-β-D-グルコピラノシド トリ(R)-(+)-1-(1-ナフチル)エチルアミン塩(式A-14で示される化合物)(18.00g,純度97.2PA%)にシクロペンチルメチルエーテル(90mL)を加え、1M塩酸水溶液(180mL)で3回、5%食塩水(90mL)で順次洗浄した。得られた有機層を18mLまで濃縮し、シクロペンチルメチルエーテル(90mL)を加えて、18mLまで減圧濃縮した。濃縮液にテトラヒドロフラン(90mL)を加え、カルボニルジイミダゾール(6.86g、8当量)を添加した。35℃で1時間攪拌し、反応終了を確認後(フタルイミドの閉環反応に加え、水酸基のイミダゾールカルボニル化が進行した生成物が確認された)、水(9mL)、トリフルオロ酢酸(12.1g、20当量)を添加した。60℃まで加熱し、20時間攪拌して、脱イミダゾールカルボニル化の進行を確認後、室温まで冷却した。酢酸エチル(90mL)と水(90mL)を加えて分液した後、有機層を5%重曹水(90mL)、水(90mL)で順次洗浄し、得られた有機層を18mLまで減圧濃縮した。トルエン(90mL)を加えて18mLまで濃縮した後、ジクロロメタン(162mL)を加えた。本ジクロロメタン溶液をシリカゲル(36g、富士シリシア製Chromatorex SMB100-20/45)に通液し、ジイソプロピルエーテル/ジクロロメタン混合溶媒(7/93、720mL)で溶出操作を行った(通液および溶出操作において90mLずつフラクション分けを行い、溶液を回収した)。HPLCにて純度測定を実施してフラクションを選定し、選定したフラクションを混合後、18mLまで濃縮した。濃縮液にシクロペンチルメチルエーテル(90mL)を加えて36mLまで濃縮した後、本溶液を0℃に冷却したイソプロパノール(630mL)に攪拌下、30分以上かけて滴下した。0℃で2時間攪拌した後、スラリー液をろ過して0℃のイソプロパノール(180mL)で洗浄後、得られた粉末を減圧乾燥して、4-メトキシフェニル2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式A-13で示される化合物)(14.1g,収率93%,純度97.0PA%)を白色粉末として得た。
[分析条件]
カラム: Xbridge Phenyl 3.5μm, 4.6φX150mm (Waters)
波 長:220nm
オーブン:40℃
溶離液:
(A)10mM AcONH水溶液、(B)アセトニトリル
グラジエント: 0分    (B)濃度85%
        30分   (B)濃度100%
        30.01分(B)濃度85%
        35分   (B)濃度85%
流速:
1mL/分
インジェクション:
5μL 
HRMS(ESI)[M+NHcalcd forC17216835:2852.1718;found:2852.1694
 1H-NMR(500MHz,CDCl)δσ7.75(d,J=8.0Hz,1H),7.69-7.40(10H),7.55-7.10(m,54H),7.06-6.97(5H),6.97-6.89(m,8H),6.88-6.84(m,1H),6.82-6.73(m,5H),6。72-6.67(m,2H),6.62-6.56(m,5H),5.42(d,J=8.6Hz,1H),5.22(d,J=8.0Hz,1H),5.03(d,J=12.0Hz,1H),4.99(d,J=8.6Hz,1H),4.92(d,J=10.9Hz,1H),4.87-4.79(m,5H),4.75(d,J=11.5Hz,1H),4.70(d,J=12.0Hz,1H),4.67(d,J=12.0Hz,1H),4.63(d,J=6.3Hz,1H),4.61(d,J=6.9Hz,1H),4.60-3.97(m,30H),3.88(d,J=2.9Hz,1H),3.84(d,J=12.0Hz,1H),3.82-3.67(m,5H),3.66-3.60(m,5H),3.54-3.33(m,14H),3.27-3.23(m,1H),3.20(d,J=10.9Hz,1H),3.15-3.09(m,2H),2.83-2.78(m,1H),2.27-2.21(m,1H)
 13C-NMR(125MHz,CDCl)δ168.4,168.2,167.4,167.3,155.2,150.8,139.1,139.0,138.9,138.8,138.7,138.51,138.49,138.44,138.38,138.37,138.35,138.26,138.0,137.7,133.8,133.6,122.49,133.41,133.36,131.8,131.4,128.6,128.52,128.49,128.39,128.34,128.30,128.2,128.14,128.10,128.06,128.0,127.85,127.82,127.7,127.69,127.65,127.56,127.53,127.48,127.38,127.33,127.26,127.1,127.0,126.9,126.7,123.5,123.2,123.09,123.05,122.98,118.5,114.2,102.9,102.6,97.8,97.4,97.0,96.9,82.5,80.5,79.9,78.5,77.8,77.4,76.9,76.7,75.87,75.80,75.2,75.0,74.79,74.77,74.62,74.59,74.48,74.41,74.2,74.0,73.9,73.6,73.4,73.0,72.9,72.7,72.62,72.56,72.0,69.8,68.24,68.20,68.1,67.8,67.2,56.6,55.6,55.5,53.4
 実施例29
 上記の実施例15での式C-8で示される化合物から式C-9で示される化合物を生成する脱アシル化反応について、以下の表に示される反応条件を用いて、脱アシル化反応の比較実験を行った。Entry1~3は比較例であり、Entry4及び5は本発明の実施例である。
Figure JPOXMLDOC01-appb-C000320
Figure JPOXMLDOC01-appb-T000321
・NaOMeでは試薬中の水分影響から開環反応が完全に進行した(Entry1)。
・酸性条件下では、フタルイミド基の開環は抑制可能なものの、反応速度は遅く、分解が進行した(Entry2)。
・t-BuOKを用いたところ、85%程度で目的物は生成したものの、試薬、溶媒中の水分の影響から開環体が8%程度副生した(Entry3)。
・CFCOMeを添加したところ、開環体をほぼ完全に抑制して反応は完結した。塩基としてt-BuOK及びLHMDSが同等の結果を与えた(Entry4、5)。
 実施例30
 15個のベンジル基と1個の2-ナフチルメチル基を含む式A-12で示される化合物の脱2-ナフチルメチル化反応を、以下の表に示すように、従来条件(CHCl-HO)(Entry1)及び本発明方法(HFIP-HO)(Entry2、3)で行い、HPLCにて分析を行い、目的物(式A-13で示される化合物)及び過剰反応体である脱ベンジル体の面積ピーク比を算出した。結果を以下の表に示す。
Figure JPOXMLDOC01-appb-C000322
Figure JPOXMLDOC01-appb-T000323
・Entry1 従来法の条件では脱ベンジル体との選択性が中程度であった。
・Entry2 HFIPを用いることで選択性が改善された。
・Entry3 HFIPを用いてさらに低温で反応を行うことで最も良い結果となった。
 実施例31
 4つのベンジル基と一つの2-ナフチルメチル基を含む式A-4で示される化合物の脱2-ナフチルメチル化反応を、以下の表に示すように、従来条件(CHCl-HO)(Entry1)、本発明方法(HFIP-HO)(Entry2)、酸性条件(Entry3)、及び水素添加条件(Entry4)に関して反応を行い、HPLCを用いた分析により、目的物(以下の式A-4’で示される化合物)の面積ピーク比を算出した。結果を以下の表に示す。
Figure JPOXMLDOC01-appb-C000324
Figure JPOXMLDOC01-appb-T000325
・Entry1 従来法の条件においても中程度から高収率で反応が進行した
・Entry2 HFIPを用いることでより反応が改善された。
・Entry3 論文(J.Org.Chem.2015,80,8796-8806 )で報告されていたHCl/HFIP条件を適用したが反応が複雑化し、低収率という結果になった。
・Entry4 水素添加条件を用いると、ベンジル基の脱離も観測され、低収率という結果になった。
 実施例32
 9つのベンジル基と一つの2-ナフチルメチル基を含む式A-10で示される化合物の脱2-ナフチルメチル化反応を、以下の表に示すように、従来条件(CHCl-HO)(Entry1)及び本発明方法(HFIP-HO)(Entry2)に関して反応を行い、HPLCを用いた分析により、目的物(以下の式A-10’で示される化合物)の面積ピーク比を算出した。結果を以下の表に示す。
Figure JPOXMLDOC01-appb-C000326
Figure JPOXMLDOC01-appb-T000327
 実施例33
<式A-8で示される化合物と式A-9で示される化合物との分離精製>
 以下に、4糖合成の際に用いる糖受容体である式A-8で示される化合物と式A-9で示される化合物との分離精製の実施例を示す。糖受容体である式A-8で示される化合物及び4糖である式A-9で示される化合物は順相シリカゲルカラムクロマトグラフィーにおいて極性が極めて近く、例えば典型的なカラム溶媒系であるヘキサン-酢酸エチル条件では同一のRf値であり分離は困難であった。本願発明を利用することでシリカゲルにおいて極性の極めて近い単糖及び4糖を容易に分離することが可能となった。
 実験操作は、以下の通りである。まず、反応後溶液にトリエチルアミンを加えて反応を停止させたのちに、モレキュラーシーブのろ過を行い、濃縮後アセトニトリルを加えた。溶液にオクタデシル修飾シリカゲルを加えた後、水を加えて4糖である式A-9で示される化合物を吸着させた。このときのろ液をHPLCで分析すると、4糖である式A-9で示される化合物が吸着され、単糖である式A-8で示される化合物はろ液中に存在することが分かった。任意のアセトニトリル-水の添加により、単糖である式A-8で示される化合物を洗浄した後に、アセトニトリル及びトルエンで4糖である式A-9で示される化合物を抽出した。以下の表1及び表2に、式A-8で示される化合物の精製結果を示す。
Figure JPOXMLDOC01-appb-C000328
Figure JPOXMLDOC01-appb-T000329
<式D-3で表される化合物の合成>
 式D-3で表される化合物を、以下の合成スキームZに従って合成した。
 [合成スキームZ]
Figure JPOXMLDOC01-appb-C000330
 実施例34
 4-メトキシフェニル 4-O-アセチル-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式F-1で表される化合物)
Figure JPOXMLDOC01-appb-C000331
(小工程Z-1)
 4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式A-8で表される化合物)(50.0g,83.94mmol)の酢酸エチル(200mL)溶液にトリエチルアミン(11.04g,109.12mmol)、ジメチルアミノピリジン(0.31g,2.52mmol)及び無水酢酸(11.10g,109.12mmol)を加え、20℃で4時間攪拌した。反応終了をHPLCにより確認後、エタノール(500mL)及び水(150mL)を滴下した。スラリー液を1時間攪拌し、析出した結晶をろ過して、濾別した結晶をエタノールと水の混合液(150/50mL)で洗浄して、40℃で減圧乾燥し、4-メトキシフェニル 4-O-アセチル-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式F-1で表される化合物)(49.0g,収率91%)を白色結晶として得た。
 1H-NMR(500MHz,CDCl)δ7.85-7.60(m,4H),7.24-7.34(m,5H),7.04-7.00(m,2H),6.96-6.87(m,3H),6.84(dt,J=9.0,3.0Hz,2H),6.67(dt,J=8.5,2.5Hz,2H),5.66(t,J=4.0Hz,1H),5.22-5.18(m,1H),4.64(d,J=12.0Hz,1H),4.55-4.48(m,4H),4.36(d,J=12.0Hz,1H),3.90-3.84(m,1H),3.68(s,3H),3.68-3.64(m,2H),1.98(s,3H).
 13C-NMR(125MHz,CDCl)δ169.6,155.3,150.6,137.8,137.5,133.9,128.2,128.0,127.7,127.7,127.5,127.4,123.3,118.4,114.3,97.4,76.8,73.9,73.7,73.5,72.2,69.4,55.4,55.3,20.8.
 HRMS(ESI)[M+H] calcd for C3736NO:638.2385;found 638.2401.
 実施例35
 4-O-アセチル-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-D-グルコピラノシド(式F-2で表される化合物)
Figure JPOXMLDOC01-appb-C000332
(小工程Z-2)
 4-メトキシフェニル 4-O-アセチル-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式F-1で表される化合物)(49.0g,76.84mmol)のジクロロメタン(392mL)、ヘキサフルオロ-2-プロパノール(245mL)及び水(25mL)の溶液に、25℃以下で[ビス(トリフルオロアセトキシ)ヨード]ベンゼン(46.3g,107.58mmol)を加え、同温にて4時間攪拌した。反応終了をHPLCにより確認後、酢酸エチル(1225mL)を加えて、氷冷した後、炭酸水素ナトリウム(24.5g)及び亜硫酸ナトリウム(24.5g)を溶解した水(490mL)を注加し、分液して、有機層を得た。得られた有機層を炭酸水素ナトリウム(24.5g)及び亜硫酸ナトリウム(24.5g)を溶解した水(490mL)で再度洗浄し、さらに20%食塩水(245g)で洗浄した。得られた有機層を490mLまで減圧濃縮し(濃縮中に結晶の析出を確認した)、ヘプタン(735mL)を滴下した。得られたスラリー液を0℃~5℃に冷却後、同温にて1時間攪拌し、析出した結晶をろ過した。濾別した結晶を0℃~5℃の酢酸エチルとヘプタンの混合液(39/118mL)で洗浄して、40℃で減圧乾燥し、4-O-アセチル-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-D-グルコピラノシド(式F-2で表される化合物)(37.5g,収率92%)を白色結晶として得た。
 1H-NMR(400MHz,CDCl)δ7.71-7.65(m,4H),7.34-7.26(m,5H),7.01-6.87(m,5H),5.36(dd,J=8.0,8.0 Hz,1H),5.13(dd,J=8.4,10.0 Hz,1H ),4.59(d,J=12.4 Hz,1H),4.54(s,2H),4.50(dd,J=8.4,10.4Hz,1H),4.33(d,J=12.4 Hz,1H),4.17(dd,J=8.4,10.4 Hz,1H),3.79(ddd,J=8.4,5.2,4.8 Hz,1H ),3.61-3.53(m,2H),3.41(d,J=8.0 Hz,1H),1.93(s,3H).
 13C-NMR(100MHz,CDCl)δ169.8,168.1,137.7,137.7,134.0,131.6,128.4,128.2,128.0,127.8. 127.7,127.5,123.4,116.2,92.9,73.9,73.7,73.5,72.2,69.3,57.1,20.9.
 HRMS(ESI)[M-H] calcd for C3028NO:530.1820;found 530.1841.
 実施例36
 4-O-アセチル-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-O-[2,2,2-トリフルオロ-N-フェニルエタンイミドイル]-β-D-グルコピラノシド(式D-3で表される化合物)
Figure JPOXMLDOC01-appb-C000333
(小工程Z-3)
 4-O-アセチル-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-D-グルコピラノシド(式F-2で表される化合物)(20.0g,37.63mmol)を500mLナスフラスコに加え、ジクロロメタン(200mL)及びモレキュラーシーブ4A粉末(10μm以下,10.0g)を加えた。窒素下、0℃にてN-メチルイミダゾール(3.40g,41.39mmol)及び2,2,2-トリフルオロ-N-フェニルアセトイミドイルクロリド(8.20g,39.51mmol)を順次加え、同温にて18時間撹拌した。HPLCにより反応終了を確認した後、反応液をフィルターろ過し、ジクロロメタン(100mL)にて洗浄した。ろ液をジクロロメタンにて充填した中性シリカゲルパッド(シリカゲル60N,関東化学製,粒子径:40~50μm,60g)でろ過し、100mLずつ分取した。シリカゲルパッドをジクロロメタン(400mL,100mLずつ分取)及び酢酸エチル/ジクロロメタン(1:4,400mL,100mLずつ分取)にて洗浄し、選定フラクションを、液量が40mLに達するまで濃縮した。トルエン(200mL)を加え、再度液量が40mLに達するまで濃縮、さらにトルエン(200mL)を加え、液量が40mLに達するまで濃縮し、粗体の4-O-アセチル-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-O-[2,2,2-トリフルオロ-N-フェニルエタンイミドイル]-β-D-グルコピラノシド(式D-3で表される化合物)をトルエン溶液として得た。このものを次工程にそのまま使用した。
<式D-7で表される化合物の合成>
 式D-7で表される化合物を、以下の合成スキームVに従って合成した。
 [合成スキームV]
Figure JPOXMLDOC01-appb-C000334
 まず、式G-1で表される化合物を、以下の合成スキームWに従って合成した。
 [合成スキームW]
Figure JPOXMLDOC01-appb-C000335
 実施例37
 アリルα―D-ガラクトピラノシド(G-0で示される化合物)
Figure JPOXMLDOC01-appb-C000336
 D-ガラクトピラノース(20.00g,111.01mmol)を500mL四径フラスコに添加後、アリルアルコール(200.0mL)を加えた。窒素雰囲気下、室温にてp-TsOH・HO(2.11g,11.10mmol)を添加し、70℃に昇温し、24時間攪拌した。反応液を40℃まで冷却し、トリエチルアミン(1.69g、16.65mmol)を添加して5分間攪拌した後、反応液を液量100mLまで減圧濃縮した。この濃縮液にnBuOH(200mL)を30分間かけて滴下し、室温にて1時間攪拌した。その後、反応液を液量80mLまで減圧濃縮し、室温下終夜攪拌した。懸濁液をろ過し、結晶を0℃のnBuOH(40mL)にて洗浄し、40℃にて減圧乾燥を行って、アリルα―D-ガラクトピラノシド(G-0で示される化合物)(8.41g,収率34.4%)を白色結晶として得た。
 1H-NMR(500MHz,METHANOL-D4)δ5.97(qd,J=11.2,5.7Hz,1H),5.33(dd,J=17.2,1.7Hz,1H),5.17(dd,J=10.6,1.4Hz,1H),4.22(dd,J=13.2,5.2Hz,1H),4.04(dd,J=13.0,6.0Hz,1H),3.88(d,J=1.7Hz,1H),3.82-3.66(m,5H).
 13C-NMR(125MHz,METHANOL-D4)δ62.74,69.36,70.21,71.08,71.51,72.49,99.46,117.47,135.69.
 MS(ESI)m/z:221(M+H),219(M-H)
 実施例38
 プロパ-2-エン-1-イル 4.6-O-ベンジリデン-α-D-ガラクトピラノシド(式G-1で表される化合物)
Figure JPOXMLDOC01-appb-C000337
 窒素雰囲気下、アセトニトリル(5.0mL)、ベンズアルデヒドジメチルアセタール(5.18g,34.1mmol)及びp-TsOH・HO(431.9mg,2.27mmol)を100mLナスフラスコに添加後、アリルα―D-ガラクトピラノシド(5.00g,22.7mmol)を少しずつ加えた。溶液を40℃に昇温し、30分間攪拌した。続いて、トリエチルアミン(344.6mg、3.41mmol)を添加して5分間攪拌した後、40℃下イソプロピルアルコール(75mL)を滴加した。反応液を液量25mLまで減圧濃縮し、0℃で終夜攪拌を行った。続いて、懸濁液をろ過後、得られた結晶を0℃に冷やしたイソプロピルアルコール(5mL)にて洗浄し、40℃にて減圧乾燥を行ってプロパ-2-エン-1-イル 4.6-O-ベンジリデン-α-D-ガラクトピラノシド(式G-1で表される化合物)(5.35g,収率76.3%)を白色結晶として得た。
 1H-NMR(500MHz,METHANOL-D4)δ7.53-7.52(dd,J=7.5,2.0Hz,2H),7.34(m,3H),5.98(qd,J=11.1,5.4Hz,1H),5.59(s,1H),5.35(d,J=18.9Hz,1H),5.19(d,J=10.3Hz,1H),4.95(d,J=4.0Hz,1H),4.26(d,J=3.4Hz,1H),4.22(dd,J=13.2,5.2Hz,1H),4.13(s,2H),4.08(q,J=6.5Hz,1H),3.92(ddd,J=24.1,10.3,3.4Hz,2H),3.74(s,1H). 13C-NMR(125MHz,METHANOL-D4)δ64.60,69.70,70.03,70.08,70.34,78.07,100.22,102.28,117.58,127.54,129.02,129.86,135.59,139.77.
 MS(ESI)m/z:309(M+H),307(M-H)
 実施例39
 プロプ-2-エン-1-イル 2,3-ジ-О-ベンゾイル-4,6-О-ベンジリデン-α-D-ガラクトピラノシド(式G-2で表される化合物)
Figure JPOXMLDOC01-appb-C000338
(小工程V-1)
 プロプ-2-エン-1-イル 4,6-О-ベンジリデン-α-D-ガラクトピラノシド(式G-1で表される化合物)(30.0g,97.30mmol)のピリジン(150mL)溶液に、塩化ベンゾイル(47.87g,340.54mmol)を40℃以下で滴下し、同温で2時間攪拌した。反応終了をHPLCにて確認後、20℃-30℃に冷却し、エタノール(450mL)を注加後、水(300mL)を30分間かけて滴下した。スラリー液を20℃-30℃で1時間攪拌後、析出した結晶をろ過し、濾別した結晶をエタノールと水の混合液(75/75mL)で洗浄して、40℃で減圧乾燥し、プロプ-2-エン-1-イル 2,3-ジ-О-ベンゾイル-4,6-О-ベンジリデン-α-D-ガラクトピラノシド(式G-2で表される化合物)(47.9g,収率95%)を白色結晶として得た。
 1H-NMR(500MHz,CDCl)δ8.03-7.98(m,4H),7.55-7.46(m,4H),7.40-7.30(m,7H),5.90-5.78(m,2H),5.82(s,1H),5.57(s,1H),5.42(d,J=1.7Hz,1H),5.31(dd,J=17.2,1.7Hz,1H),5.15(dd,J=1.7,10.5Hz,1H),4.66(s,2H),4.33(d,J=12.5Hz,1H),4.26(dd,J=12.5,4.5Hz,1H),4.12(dd,J=12.5,1.0Hz,1H),4.08(dd,J=6.5,13.5Hz,1H),3.95(s,1H).
 13C-NMR(125MHz,CDCl)δ166.1,165.8,137.5,133.4,133.2,133.1,129.8,129.7,129.5,129.4,128.8,128.3,128.1,126.1,117.5,100.6,96.2,74.2,69.3,69.1,68.7,68.6,62.4.
 HRMS(ESI)[M+H] calcd for C3029:517.1857;found 517.1880.
 実施例40
 プロプ-2-エン-1-イル 2,3-ジ-О-ベンゾイル-α-D-ガラクトピラノシド(式G-3で表される化合物)
Figure JPOXMLDOC01-appb-C000339
(小工程V-2)
 プロプ-2-エン-1-イル 2,3-ジ-О-ベンゾイル-4,6-О-ベンジリデン-α-D-ガラクトピラノシド(式G-2で表される化合物)(47.1g,91.18mmol)のアセトニトリル(377mL)溶液を45℃に加温し、水(24mL)及び濃塩酸(9.2g,91.18mmol)を加え、同温で30分間攪拌した。水(353mL)を45℃~50℃で3時間かけて滴下後、さらに30分間攪拌した。反応終了をHPLCにより確認後、酢酸ナトリウム(11.22g,136.78mmol)を加え、酢酸エチル(942mL)及び水(471mL)を注加し、25℃以下に冷却後、分液して、有機層を得た。得られた有機層を水(471mL)で二回洗浄後、20%食塩水(236mL)でさらに洗浄した。有機層を141mLまで減圧濃縮し、トルエン(707mL)を加え、再度、141mLまで減圧濃縮した。得られた濃縮液にトルエン(236mL)を加え、141mLまで減圧濃縮した。濃縮液を0℃~5℃に冷却後、0℃~5℃に冷却した中性シリカゲル(シリカゲル60N,関東化学製、粒子径:40~50μm,141g)を含むトルエン(330mL)スラリー液を注加し、同温で15分間攪拌して生成物をシリカゲルに吸着させた後、ろ過した。生成物を含むシリカゲル固相を0℃~5℃のトルエン(942mL)で洗浄後(トルエン洗浄時のろ液は廃棄)、シクロペンチルメチルエーテル(707mL)で目的物をシリカゲルより脱着させ、プロプ-2-エン-1-イル 2,3-ジ-О-ベンゾイル-α-D-ガラクトピラノシド(式G-3で表される化合物)のシクロペンチルメチルエーテル溶液(定量値36.2g,定量収率93%)を得た。本溶液を次工程に使用した。
 実施例41
 メチル 5-アセトアミド-3,5-ジデオキシ-D-グリセロ-D-ガラクト-ノン-2-ウロピラノソナート 一水和物(式G-5で表される化合物)
Figure JPOXMLDOC01-appb-C000340
(小工程V-3)
 5-アセトアミド-3,5-ジデオキシ-D-グリセロ-D-ガラクト-ノン-2-ウロピラノソニック酸(式G-4で表される化合物)(40.1g,129.66mmol)及びオルトギ酸メチル(15.60mL,142.59mmol)のメタノール(321mL)溶液に硫酸(1.0g,10.20mmol)を加え、40℃に加温し、3時間攪拌した。反応終了をHPLCにより確認後、25℃に冷却し、ジメチルアセトアミド(40mL)を加え、160mLまで減圧濃縮した。得られた濃縮液を15℃に温度調整し、水(20mL)及び酢酸エチル(722mL)を注加して、25℃で1時間攪拌後、スラリー液を0℃~5℃に冷却し、同温で2時間攪拌した。析出した結晶をろ過し、濾別した結晶を0℃~5℃の酢酸エチル(80mL)で洗浄して、40℃で減圧乾燥し、メチル 5-アセトアミド-3,5-ジデオキシ-D-グリセロ-D-ガラクト-ノン-2-ウロピラノソナート 一水和物(式G-5で表される化合物)(41.1g,収率93%)を白色結晶として得た。
 1H-NMR(500MHz,CDOD)δ4.07-3.98(m,2H),3.85-3.77(m,2H),3.78(s,3H),3.72-3.68(m,1H),3.62(dd,J=10.9,5.7Hz,1H),3.48(dd,J=9.2,1.1Hz,1H),2.22(dd,J=12.9,4.9Hz,1H),2.02(s,3H),1.89(dd,J=12.6,11.5Hz,1H).
 13C-NMR(125MHz,CDOD)δ175.2,175.1,171.8,96.6,72.1,72.0,71.6,70.1,67.9,64.8,54.4,54.3,53.2,40.7,22.7,22.7.
 HRMS(ESI)[M+H] calcd for C1222NO:324.1289;found 324.1288.
 実施例42
 メチル 5-アセトアミド-4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-D-グリセロ-D-ガラクト-ノン-2-ウロピラノソナート(式G-6で表される化合物)
Figure JPOXMLDOC01-appb-C000341
(小工程V-4)
 メチル 5-アセトアミド-3,5-ジデオキシ-D-グリセロ-D-ガラクト-ノン-2-ウロピラノソナート 一水和物(式G-5で表される化合物)(40.3g,118.07mmol)のアセトニトリル(403mL)スラリー液を25℃に温度調整し、無水酢酸(60.27g,590.36mmol)及びパラトルエンスルホン酸一水和物(1.12g,5.89mmol)を加え、25℃で24時間攪拌した。その後、反応液を15℃に冷却し、無水酢酸(12.05g,118.03mmol)を加え、同温で47時間攪拌した。HPLCにより反応終了を確認後、メタノール(40mL)を加え、25℃に温度調整し、同温にて2時間攪拌した。次に、酢酸ナトリウム(0.97g,11.82mmol)を加え、更に同温にて1時間攪拌した。反応液を120mLまで減圧濃縮し、0℃~5℃に冷却後、酢酸エチル(403mL)及び水(161mL)を注加し、0℃~5℃攪拌下、トリエチルアミンを加えて、pHを7.0に調整した。分液により得られた有機層を10%食塩水(121mL)で2回洗浄し、200mLまで減圧濃縮した。濃縮液に酢酸エチル(605mL)を加え、再度、200mLまで減圧濃縮した。濃縮液に酢酸エチル(40mL)を加え、種晶を接種し、25℃で4時間攪拌後、ヘプタン(302mL)を30分間かけて滴下した。スラリー液を25℃で2時間攪拌後、析出した結晶をろ過し、濾別した結晶を酢酸エチルとヘプタンの混合液(67/135mL)で洗浄して、35℃で減圧乾燥し、メチル 5-アセトアミド-4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-D-グリセロ-D-ガラクト-ノン-2-ウロピラノソナート(式G-6で表される化合物)(44.1g,収率76%)を白色結晶として得た。
 1H-NMR(500MHz,CDCl)δ6.28(d,J=10.3Hz,1H),5.41(dd,J=4.6,2.3Hz,1H),5.28-5.23(m,1H),5.21-5.14(m,1H),5.09(s,1H),4.62(dd,J=12.3,2.6Hz,1H),4.28(dd,J=10.3,2.3Hz,1H),4.21-4.11(m,1H),4.04(dd,J=12.3,8.3Hz,1H),3.85(s,3H),2.24-2.20(m,2H),2.16(s,3H),2.12(s,3H),2.03(s,3H),2.01(s,3H),1.91(s,3H).
 13C-NMR(125MHz,CDCl)δ171.5,171.1,170.8,170.3,170.2,168.9,94.9,72.1,71.4,69.1,68.3,62.5,53.2,49.1,36.1,23.0,21.0,20.8,20.7,20.7.
 HRMS(ESI)[M+H] calcd for C2030NO13:492.1712;found 492.1712.
 実施例43
 メチル 5-アセトアミド-4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-2-O-(2,2,2-トリフルオロ-N-フェニルエタンイミドイル)-D-グリセロ-β-D-ガラクト-ノン-2-ウロピラノソナート(式G-7で表される化合物)
Figure JPOXMLDOC01-appb-C000342
(小工程V-5)
 メチル 5-アセトアミド-4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-D-グリセロ-D-ガラクト-ノン-2-ウロピラノソナート(式G-6で表される化合物)(44.0g,89.53mmol)及びモレキュラーシーブス4A粉末(粉末粒径10μm以下)(22g)のジクロロメタン(352mL)スラリー液を20℃に温度調整し、同温で30分間攪拌後、2,2,2-トリフルオロ-N-フェニルアセトイミドイルクロリド(26.02g,125.35mmol)を加えた。続いて、N-メチルイミダゾール(11.03g,134.33mmol)を滴下し、20℃で7.5時間攪拌した。HPLCにより反応終了を確認後、反応液をろ過し、ジクロロメタン(88mL)で洗浄して、ろ液を得た。得られたろ液を0℃に冷却し、冷水(440mL)を加え、0℃~5℃攪拌下、トリエチルアミンを加えて、pHを7.5に調整した。0℃~5℃にて30分間攪拌後、分液し、得られた有機層を冷水(440mL)で2回、冷却した20%食塩水(220mL)で洗浄し、88mLまで減圧濃縮した。濃縮液に酢酸エチル(440mL)を加え、再度、88mLまで減圧濃縮した。濃縮液にt-ブチルメチルエーテル(308mL)を加え、種晶を接種し、20℃で4時間攪拌した。得られたスラリー液にヘプタン(264mL)を1時間かけて滴下し、同温にて2時間攪拌後、析出した結晶をろ過し、濾別した結晶をt-ブチルメチルエーテルとヘプタンの混合液(132/88mL)で洗浄して、35℃で減圧乾燥し、メチル 5-アセトアミド-4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-2-O-(2,2,2-トリフルオロ-N-フェニルエタンイミドイル)-D-グリセロ-β-D-ガラクト-ノン-2-ウロピラノソナート(式G-7で表される化合物)(39.5g,収率67%)を白色結晶として得た。
 1H-NMR(500MHz,CDCl)δ7.30-7.24(m,2H),7.09(t,J=7.4Hz,1H),6.72(d,J=8.0Hz,2H),5.76(d,J=9.7Hz,1H),5.48-5.45(m,1H),5.30(td,J=10.9,4.8Hz,1H),5.15-5.10(m,1H),4.60(dd,J=12.6,2.3Hz,1H),4.30(q,J=10.3Hz,1H),4.23(dd,J=10.3,2.3Hz,1H),4.11(dd,J=12.3Hz,7.7Hz,1H),3.81(s,3H),2.79(dd,J=13.5,4.9Hz,1H),2.21-2.15(m,1H),2.16(s,3H),2.10(s,3H),2.07(s,3H),1.90(s,3H),1.75(s,3H).
 13C-NMR(125MHz,CDCl)δ171.0,170.7,170.4,170.2,170.1,165.3,142.6,141.0(q,C-F=36.0Hz),128.8,124.6,119.0,115.1(q,C-F=284.4Hz),99.7,73.6,71.9,68.3,68.0,62.4,53.1,48.6,35.6,23.0,20.8,20.8,20.7,20.3.
 HRMS(ESI)[M+NH calcd for C283713:680.2273;found 680.2314.
 実施例44
 メチル 4,7,8,9-テトラ-O-アセチル-5-[アセチル(tert-ブトキシカルボニル)アミノ]-3,5-ジデオキシ-2-O-(2,2,2-トリフルオロ-N-フェニルエタンイミドイル)-D-グリセロ-β-D-ガラクト-ノン-2-ウロピラノソナート(式G-8で表される化合物)
Figure JPOXMLDOC01-appb-C000343
(小工程V-6)
 メチル 5-アセトアミド-4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-2-O-(2,2,2-トリフルオロ-N-フェニルエタンイミドイル)-D-グリセロ-β-D-ガラクト-ノン-2-ウロピラノソナート(式G-7で表される化合物)(39.0g,58.86mmol)のテトラヒドロフラン(390mL)溶液に2炭酸ジ-tert-ブチル(27.05g,123.94mmol)及びジメチルアミノピリジン(1.80g,14.73mmol)を加え、還流温度まで加温した。還流下で30分間攪拌後、HPLCにより反応終了を確認し、反応液を117mLまで減圧濃縮した。濃縮液にトルエン(195mL)を加え、再度、117mLまで減圧濃縮した。濃縮液をシリカゲル充填した漏斗(シリカゲル60N,関東化学製,粒子径:40~50μm、117g、トルエン湿式充填)を用いて、ろ過し、トルエン・酢酸エチル混液(8/2)(975mL)にて洗浄して、ろ液を得た。得られたろ液を減圧濃縮し(重量59gとなるまで)、シクロペンチルメチルエーテル(23mL)を加えた。溶液を20℃に温度調整し、ヘプタン(156mL)を15分間かけて滴下し、同温にて1時間攪拌した。結晶の析出を確認後、ヘプタン(312mL)を1時間かけて滴下し、析出した結晶をろ過し、濾別した結晶をヘプタン(78mL)で洗浄して、35℃で減圧乾燥し、メチル 4,7,8,9-テトラ-O-アセチル-5-[アセチル(tert-ブトキシカルボニル)アミノ]-3,5-ジデオキシ-2-O-(2,2,2-トリフルオロ-N-フェニルエタンイミドイル)-D-グリセロ-β-D-ガラクト-ノン-2-ウロピラノソナート(式G-8で表される化合物)(37.0g,収率82%)を白色結晶として得た。
 1H-NMR(500MHz,CDCl
 注)ca.1/4異性体混合物として検出された。Major isomer:δ7.27(t,J=8.9Hz,2H),7.09(t,J=7.2Hz,1H),6.73(d,J=8.0Hz,2H),5.75-5.65(m,1H),5.31(d,J=4.6Hz,1H),5.18-5.14(m,1H),5.15(d,J=6.0Hz,2H),4.54(dd,J=12.0,2.0Hz,1H),4.08(dd,J=12.6,6.9Hz,1H),3.84(s,3H),2.90(dd,J=13.7,5.2Hz,1H),2.39(s,3H),2.25(dd,J=13.7,11.2Hz,1H),2.09(s,3H),2.07(s,3H),1.99(s,3H),1.77(s,3H),1.62(s,9H).Minor isomer:δ 6.76(d,J=8.0Hz,2H),5.85-5.80(m,1H),5.29-5.25(m,1H),5.22-5.19(m,1H),4.44(d,J=11.0Hz,1H),4.15-4.11(m,1H),3.03(dd,J=14.0,5.0Hz,1H),2.41(s,3H),2.12(s,3H),2.00(s,3H),1.88(s,3H),1.74(s,3H),1.54(s,9H).13C-NMR(125MHz,CDCl) Mixture:δ173.7,170.4,170.2,170.0,169.9,165.4,151.7,142.8,128.7,124.5,119.1,100.6,85.2,72.8,71.3,67.7,65.9,62.0,53.1,52.0,36.7,27.9,27.7,26.6,20.8,20.7,20.6,20.3.
 HRMS(ESI)[M+NH calcd for C334515:780.2797;found 780.2801.
 実施例45
 プロプ-2-エン-1-イル 2,3-ジ-O-ベンゾイル-6-O-{4,7,8,9-テトラ-O-アセチル-5-[アセチル(tert-ブトキシカルボニル)アミノ]-3,5-ジデオキシ-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル}-α-D-ガラクトピラノシド(式G-9で表される化合物)
Figure JPOXMLDOC01-appb-C000344
(小工程V-7)
 プロプ-2-エン-1-イル 2,3-ジ-О-ベンゾイル-α-D-ガラクトピラノシド(式G-3で表される化合物)のシクロペンチルメチルエーテル溶液(定量値31.46g,73.43mmol)を105mLまで減圧濃縮した後、メチル 4,7,8,9-テトラ-O-アセチル-5-[アセチル(tert-ブトキシカルボニル)アミノ]-3,5-ジデオキシ-2-O-(2,2,2-トリフルオロ-N-フェニルエタンイミドイル)-D-グリセロ-β-D-ガラクト-ノン-2-ウロピラノソナート(式G-8で表される化合物)(35.0g,45.89mmol)のシクロペンチルメチルエーテル(175mL)溶液に加えた。次に、得られた混合溶液にシクロペンチルメチルエーテルを加え、全量を350mLに調整した(式G-3で表される化合物及び式G-8で表される化合物のシクロペンチルメチルエーテル混合溶液)。別容器にシクロペンチルメチルエーテル(525mL)及びモレキュラーシーブス4A粉末(粉末粒径10μm以下)(17.5g)を加え、-60℃に冷却後、トリフルオロメタンスルホン酸トリメチルシリル(4.2mL,23.24mmol)を加えた。この溶液に対し、-60℃、強攪拌下、式G-3で表される化合物及び式G-8で表される化合物のシクロペンチルメチルエーテル混合溶液を4.5時間かけて滴下し、同温にて2時間攪拌した。HPLCにより反応終了を確認した後、トリエチルアミン(4.5mL,32.12mmol)を加え、反応液を0℃まで昇温した。その後、セライト545(35.00g)を加えた後、反応液をろ過し、シクロペンチルメチルエーテル(175mL)で洗浄した。ろ液に水(350mL)を加え、分液した。次に、有機層に0.5N塩酸水(350mL)を加え、20℃で2時間攪拌した。HPLCにより副生成物の分解を確認した後、分液して有機層を得た。有機層を水(350mL)及び20%食塩水(175mL)で洗浄後、70mLまで減圧濃縮した。濃縮液にトルエン(700mL)を加え、70mLまで減圧濃縮した。再度、濃縮液にトルエン(700mL)及び中性シリカゲル(シリカゲル60N,関東化学製,粒子径:40~50μm,158g)を加え、20℃で30分間攪拌した。生成物をシリカゲルに吸着させた後、ろ過し、生成物を含むシリカゲル固相をトルエン(1575mL)で洗浄後(トルエン洗浄時のろ液は廃棄)、酢酸エチル(875mL)で目的物をシリカゲルより脱着させた。得られた酢酸エチル溶液を70mLまで減圧濃縮し、トルエン(175mL)を加え、再度、70mLまで減圧濃縮して、プロプ-2-エン-1-イル 2,3-ジ-O-ベンゾイル-6-O-{4,7,8,9-テトラ-O-アセチル-5-[アセチル(tert-ブトキシカルボニル)アミノ]-3,5-ジデオキシ-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル}-α-D-ガラクトピラノシド(式G-9で表される化合物)のトルエン溶液を得た。本溶液を次工程に使用した。
 実施例46
 プロプ-2-エン-1-イル 6-O-{5-アセトアミド-4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル}-2,3-ジ-O-ベンゾイル-α-D-ガラクトピラノシド(式G-10で表される化合物)
Figure JPOXMLDOC01-appb-C000345
(小工程V-8)
 実施例45で取得したプロプ-2-エン-1-イル 2,3-ジ-O-ベンゾイル-6-O-{4,7,8,9-テトラ-O-アセチル-5-[アセチル(tert-ブトキシカルボニル)アミノ]-3,5-ジデオキシ-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル}-α-D-ガラクトピラノシド(式G-9で表される化合物)のトルエン溶液に、ジクロロメタン(525mL)及びトリフルオロメタンスルホン酸銅(II)(8.30g,22.95mmol)を加え、40℃で昇温し、同温にて2時間攪拌した。HPLCにより反応終了を確認した後、25℃に冷却し、70mLまで減圧濃縮した。濃縮液に酢酸エチル(525mL)を加え、5%食塩水(350mL)で3回洗浄後、有機層にヘプタン(263mL)を加え、20%メタノール水(525mL)で4回洗浄した。HPLCにより、グリコシル化反応で副生した化合物8のβ脱離体由来の不純物が水層に除去されていることを確認後、有機層を70mLまで減圧濃縮した。濃縮液に酢酸イソプロペニル(525mL)を加え、350mLまで減圧濃縮して、プロプ-2-エン-1-イル 6-O-{5-アセトアミド-4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル}-2,3-ジ-O-ベンゾイル-α-D-ガラクトピラノシド(式G-10で表される化合物)の酢酸イソプロペニル溶液を得た。本溶液を次工程に使用した。
 実施例47
 プロプ-2-エン-1-イル 4-O-アセチル-2,3-ジ-O-ベンゾイル-6-O-[4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル]-α-D-ガラクトピラノシド(式G-11で表される化合物)
Figure JPOXMLDOC01-appb-C000346
(小工程V-9)
 実施例46で取得したプロプ-2-エン-1-イル 6-O-{5-アセトアミド-4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル}-2,3-ジ-O-ベンゾイル-α-D-ガラクトピラノシド(式G-10で表される化合物)の酢酸イソプロペニル溶液に、パラトルエンスルホン酸一水和物(0.88g,4.62mmol)を加え、還流温度まで昇温し(内温90℃付近)、同温にて3時間攪拌した。HPLCにより反応終了を確認した後、25℃に冷却し、トリエチルアミン(0.95mL,6.85mmol)を加え、70mLまで減圧濃縮した。濃縮液にトルエン(350mL)を加え、再度、70mLまで減圧濃縮した。濃縮液にトルエン(630mL)を加え、中性シリカゲル(シリカゲル60N,関東化学製,粒子径:40~50μm,123g)を加えて、同温で30分攪拌して生成物をシリカゲルに吸着させた後、ろ過した。生成物を含むシリカゲル固相をトルエン(1925mL)及びトルエン/酢酸エチル混液(97/3,1400mL)で洗浄後(洗浄時のろ液は廃棄)、生成物を含むシリカゲル固相から酢酸エチル(1050mL)で目的物を脱着させ、得られた酢酸エチル溶液を減圧濃縮することにより、プロプ-2-エン-1-イル 4-O-アセチル-2,3-ジ-O-ベンゾイル-6-O-[4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル]-α-D-ガラクトピラノシド(式G-11で表される化合物)(30.1g,収率67%(式G-8で表される化合物基準))を白色泡沫固体として得た(0.42当量のトルエン(約4重量%)を含む)。
 1H-NMR(500MHz,CDCl)δ7.99(d,J=8.4 Hz,2H),7.88(dd,J=8.4,1.4 Hz,2H),7.53-7.47(m,2H),7.37(dt,J=14.7,6.9 Hz,4H),5.90-5.82(m,1H),5.82(dd,J=10.9,3.4 Hz,1H),5.73(d,J=2.9 Hz,1H),5.58(dd,J=10.9,4.0 Hz,1H),5.51(td,J=10.6,5.0 Hz,1H),5.35-5.30(m,3H),5.17-5.15(m,2H),4.94(dd,J=10.3,1.7 Hz,1H),4.38-4.27(m,3H),4.20-4.13(m,2H),4.08(dd,J=13.2,5.7 Hz,1H),3.94(dd,J=10.3,6.3 Hz,1H),3.82(s,3H),3.50(dd,J=9.7,7.4 Hz,1H),2.73(dd,J=13.2,5.2 Hz,1H),2.37(s,3H),2.31(s,3H),2.19(s,3H),2.15(s,3H),2.14(s,3H),2.03(s,3H),1.97(s,3H),1.86(dd,J=13.2,10.9 Hz,1H).
  13C-NMR(125MHz,CDCl)δ174.5,173.6,170.5,170.1,169.9,169.8,169.6,167.3,166.0,165.5,133.5,133.3,133.1,129.8,129.5,129.4,128.4,128.3,117.5,98.6,95.5,77.2,69.8,68.9,68.6,68.6,68.3,68.3,67.5,67.0,66.7,62.4,61.8,57.0,52.9,38.7,27.9,25.9,21.0,20.9,20.7,20.7,20.6.
 HRMS(ESI)[M+H] calcd for C4756NO22:986.3288;found 986.3277.
 得られた化合物について、下記文献とスペクトルの一致を確認した:
J.Org.Chem.2016,81,10600-10616。
 実施例48
 4-O-アセチル-2,3-ジ-O-ベンゾイル-6-O-[4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル]-D-ガラクトピラノース(式G-12で表される化合物)
Figure JPOXMLDOC01-appb-C000347
(小工程V-10)
 プロプ-2-エン-1-イル 4-O-アセチル-2,3-ジ-O-ベンゾイル-6-O-[4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル]-α-D-ガラクトピラノシド(式G-11で表される化合物)(29.00g,29.41mmol)、1,3-ジメチルバルビツール酸(9.19g,58.86mmol)、及びトリフェニルホスフィン(2.31g,8.81mmol)のメタノール溶液(290mL)を減圧、窒素置換を5回繰り返して、脱気操作を行った後、酢酸パラジウム(II)(0.66g,2.94mmol)を加え、40℃で12時間攪拌した。HPLCにより反応終了を確認した後、トルエン(580mL)及び水(1015mL)を加え、分液し、有機層を得た。有機層を20%メタノール水(580mL)で4回洗浄し、1,3-ジメチルバルビツール酸を水層に除去した後、58mLまで減圧濃縮し、トルエン(435mL)を加え、再度、58mLまで減圧濃縮した。濃縮液にトルエン(383mL)、クロロホルム(197mL)、及び中性シリカゲル(シリカゲル60N,関東化学製,粒子径:40~50μm,145g)を加えて、30分間攪拌して生成物をシリカゲルに吸着させた後、ろ過した。生成物を含むシリカゲル固相をトルエン、クロロホルム混液(2/1,4350mL)で洗浄後(洗浄時のろ液は廃棄)、生成物を含むシリカゲル固相から酢酸エチル(870mL)で目的物を脱着させた。得られた酢酸エチル溶液にSHシリカゲル(29.00g)を加え、30分間攪拌後、ろ過して、酢酸エチル(145mL)で洗浄し、目的物を含む酢酸エチル溶液を得た。得られた溶液を58mLまで減圧濃縮し、トルエン(145mL)を加えて、再度58mLまで減圧濃縮した。濃縮液をシリカゲルカラム精製し(シリカゲル60N,関東化学製,粒子径:40~50μm,290g,移動相 ヘキサン/酢酸エチル 50/50~30/70)、選定したフラクションを29mLまで減圧濃縮した。濃縮液に、酢酸エチル(290mL)及び活性炭(白鷺A,14.5g)を加え、30分間攪拌後、ろ過して、酢酸エチル(87mL)で洗浄し、目的物を含む精製酢酸エチル溶液を得た。得られた溶液を減圧濃縮し、4-O-アセチル-2,3-ジ-O-ベンゾイル-6-O-[4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル]-D-ガラクトピラノース(式G-12で表される化合物)(18.70g,収率67%)を白色泡沫固体として得た。
 1H-NMR(500MHz,CDCl)Major isomer:δ7.98-8.03(m,2H),7.89(t,2H,J=8.9 Hz),7.52-7.48(m,2H),7.39-7.34(m,4H),5.92(dd,1H,J=10.3,2.9 Hz),5.82(d,1H,J=3.4Hz),5.68(t,1H,J=2.3 Hz),5.59-5.48(m,2H),5.37(td,1H,J=7.5,2.5 Hz),5.17(d,1H,J=7.5 Hz),5.02(d,1H,J=10.5 Hz),4.74-4.71(m,1H),4.44-4.38(m,1H),4.16-4.08(m,2H),3.85(s,3H),3.80(m,1H),3.60-3.54(m,1H),2.76(dd,1H,J=13.0,6.0 Hz),2.38(s,3H),2.33(s,3H),2.31(s,3H),2.15(s,3H),2.12(s,3H),2.04(s,3H),1.98(s,3H),1.93-1.87(m,1H).
 13C-NMR(125MHz,CDCl)α/β mixture:174.5,173.8,173.6,171.7,171.0,170.5,170.3,170.3,169.9,169.8,169.8,169.6,167.6,167.3,166.3,166.0,165.6,165.4,133.3,133.2,133.2,133.1,129.8,129.7,129.5,129.4,129.4,129.3,129.0,128.4,128.3,99.1,98.8,95.9,91.0,72.2,71.6,71.5,69.9,69.9,69.3,69.3,68.8,68.5,68.1,67.5,67.5,67.3,67.0,66.6,62.9,62.6,62.4,60.3,57.2,56.8,53.0,52.9,38.6,38.3,27.9,27.8,26.1,25.7,21.0,20.9,20.8,20.7,20.7,20.6,20.5.
 HRMS(ESI)[M+HCOO] calcd for C4552NO24:990.2885;found 990.2873.
 4-O-アセチル-2,3-ジ-O-ベンゾイル-6-O-[4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル]-D-ガラクトピラノース(式G-12で示される化合物)の結晶化による精製法
Figure JPOXMLDOC01-appb-C000348
 4-O-アセチル-2,3-ジ-O-ベンゾイル-6-O-[4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル]-D-ガラクトピラノース(式G-12で示される化合物)(3.00g,3.17mmol,シアリル部α/β比=95.7/4.3)を酢酸エチル(4mL)で溶解後、2-プロパノール(60mL)を加え、25℃で撹拌した後、18mLまで減圧濃縮した。スラリー液を0℃で3時間撹拌し、析出した結晶を濾過した。濾別した結晶を冷2-プロパノール(9mL)で洗浄して、40℃で減圧乾燥し、4-O-アセチル-2,3-ジ-O-ベンゾイル-6-O-[4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル]-D-ガラクトピラノース(式G-12で示される化合物)(2.66g,収率88.7%,シアリル部α/β比=>99.9/N.D.)を白色結晶として得た。
[分析条件]
カラム:CAPCELL PAK ADME φ4.6×150mm,膜厚3μm
波長:220nm
オーブン:40℃
溶離液:(A)0.1%トリフルオロ酢酸水溶液、(B)アセトニトリル
グラジエント:0~150m分(B)濃度40%
       150.1分(B)濃度95%
       155分  (B)濃度95%
       155.1分(B)濃度40%
       160分  (B)濃度40%
流速: 1mL/分
インジェクション: 5μL
 実施例49
 4-O-アセチル-2,3-ジ-O-ベンゾイル-6-O-[4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル]-1-O-(2,2,2-トリフルオロ-N-フェニルエタンイミドイル)-D-ガラクトピラノース(式D-7で表される化合物)
Figure JPOXMLDOC01-appb-C000349
(小工程V-11)
 4-O-アセチル-2,3-ジ-O-ベンゾイル-6-O-[4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル]-D-ガラクトピラノース(式G-12で表される化合物)(20.0g,21.1mmol)を500mLナスフラスコに加え、ジクロロメタン(200mL)及びモレキュラーシーブ4A粉末(10μm以下,10.0g)を加えて、0℃まで冷却した。窒素下、同温にてN-メチルイミダゾール(1.91g,23.3mmol)及び2,2,2-トリフルオロ-N-フェニルアセトイミドイルクロリド(4.39g,21.1mmol)を加え、室温に昇温して24時間撹拌した。HPLCにより反応終了を確認した後、反応液をフィルターろ過し、ジクロロメタン(100mL)にて洗浄した。ろ液をジクロロメタンにて充填した中性シリカゲルパッド(シリカゲル60N,関東化学製,粒子径:40~50μm,60g)でろ過し、100mLずつ分取した。シリカゲルパッドを酢酸エチル/ジクロロメタン(1:9,1000mL,200mLずつ分取)にて洗浄し、選定フラクションを減圧濃縮することで、4-O-アセチル-2,3-ジ-O-ベンゾイル-6-O-[4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル]-1-O-(2,2,2-トリフルオロ-N-フェニルエタンイミドイル)-D-ガラクトピラノース(式D-7で表される化合物)(20.1g,収率85%)を白色アモルファスとして得た。
 1H-NMR(500MHz,CDCl)δ7.99(dd,2H,J=8.3,1.4Hz),7.91-7.88(m,2H),7.59-7.56(m,1H),7.51(tt,1H,J=9.7,2.4Hz),7.44-7.34(m,4H),7.12(t,2H,J=7.7Hz),7.01(t,1H,J=7.4Hz),6.82(brs,1H),6.43(brs,2H),5.87-5.77(m,3H),5.52(td,1H,J=11.0,5.0Hz),5.38-5.34(m,1H),5.18(dd,1H,J=8.6,1.7Hz),4.95(dd,1H,J=10.0,2.0Hz),4.53(brs,1H),4.29(dd,1H,J=12.6,2.9Hz),4.21-4.09(m,3H),4.04(dd,1H,J=10.0,6.0Hz),3.84(s,3H),3.53(dd,1H,J=10.3,7.4Hz),2.76(dd,1H,J=12.9,5.4Hz),2.39(s,3H),2.31(s,3H),2.18(s,3H),2.17(s,3H),2.14(s,3H),2.02(s,3H),1.98(s,3H),1.86(dd,1H,J=13.0,11.0Hz). 13C-NMR(125MHz,CDCl)δ174.5,173.5,170.5,170.1,169.8,169.7,169.6,167.2,165.5,165.4,165.3,142.9,133.6,133.3,129.8,129.7,129.6,129.5,129.0,128.7,128.6,128.5,128.4,124.2,119.0,98.7,98.5,70.4,69.8,68.3,68.2,67.5,67.5,66.9,66.7,62.0,61.7,60.3,56.9,53.7,52.9,38.7,31.7,29.2,27.9,26.0,25.8,21.0,21.0,20.9,20.8,20.7,20.6,20.5.
 HRMS(ESI)[M+NH calcd for C525922:1134.3537;found 1134.3564.
 下記文献とスペクトルの一致を確認した:
J.Org.Chem.2016,81,10600-10616。
<式D-13で示される化合物の合成>
 式D-13で示される化合物を以下の合成スキーム4に従って合成した。
 [合成スキーム4]
Figure JPOXMLDOC01-appb-C000350
 実施例50
Figure JPOXMLDOC01-appb-C000351
 3,4,6-トリ-O-ベンジル-1,2-O-(1-メトキシエチリデン)-β-D-マンノピラノース(式A-1で表される化合物)(4.56g,9.00mmol)を200mLナスフラスコに添加後、酢酸エチル(45.6mL)を加えた。窒素雰囲気下、室温にて水(0.23mL)及びp-TsOH・HO(5.1mg,0.027mmol)を添加し、同温にて8時間撹拌した。HPLCにより反応終了を確認後、トリエチルアミン(1.25mL,9.00mmol)を加え、同温にて終夜撹拌した。HPLCによりアセチル基の転移終了を確認後、反応液に5%重曹水(45mL)を加え分液した。有機層に20%食塩水(22.8mL)を加え分液した。有機層を9mLまで減圧濃縮し、トルエン(45.6mL)を加えて、液量9mLまで減圧濃縮した。再度、トルエン(45.6mL)を加えて、液量9mLまで減圧濃縮した。脱水トルエン(13.7mL)を加え、2-O-アセチル-3,4,6-トリ-O-ベンジル-D-マンノピラノース(式A-2で表される化合物)のトルエン溶液を無色溶液として取得した。
 実施例51
Figure JPOXMLDOC01-appb-C000352
 2-O-アセチル-3,4,6-トリ-O-ベンジル-D-マンノピラノース(式A-2で表される化合物)のトルエン溶液(9.00mmol)を100mLナスフラスコに加え、0℃に冷却後、トリクロロアセトニトリル(1.95g,13.5mmol)及びDBU(13.5μL,8.96μmol)を加えた。窒素下、0℃にて4時間撹拌した。HPLCにより反応終了を確認後、0℃にて反応液に酢酸(5.2μL,8.96μmol)を加え、2-O-アセチル-3,4,6-トリ-O-ベンジル-1-O-(2,2,2-トリクロロエタンイミドイル)-D-マンノピラノース(式A-3で表される化合物)のトルエン溶液(9.00mmol)を褐色溶液として取得した。本溶液をそのまま次工程に使用した。
 実施例52
Figure JPOXMLDOC01-appb-C000353
 4-メトキシフェニル 2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式A-13で表される化合物)(3.0g,1.06mmol)及び2-O-アセチル-3,4,6-トリ-O-ベンジル-1-O-(2,2,2-トリクロロエタンイミドイル)-D-マンノピラノース(式A-3で表される化合物)のトルエン溶液(1.27mmol相当)を100mLナスフラスコに加え、トルエン(30mL)及びモレキュラーシーブ4A粉末(10μm以下,600mg)を加えた。窒素下、-15℃にてトリフルオロメタンスルホン酸トリメチルシリル(38.5μL,0.212mmol)を15分間かけて滴下し、同温にて1時間撹拌した。HPLCにより反応終了を確認後、トリエチルアミン(0.19mL,1.06mmol)を加え、室温にて30分間撹拌した。反応液をフィルターろ過後、アセトニトリル(30mL)にて洗浄し、得られたろ液を液量6mLまで減圧濃縮した。再度アセトニトリル(30mL)を加え、液量6mLまで減圧濃縮した。この濃縮液にアセトニトリル(30mL)を加え、逆相用シリカゲル120RP-18(関東化学製、粒子径40~50μm,9.0g)を添加した。水(20mL)を30分間かけて滴下し、目的物を固相に吸着させた後、ろ過した。アセトニトリル/水(5:4,90mL)にて固相を洗浄後(ろ液は廃棄)、アセトニトリル/テトラヒドロフラン(9:1,180mL)にて目的物を脱着させた。得られたろ液を液量6mLまで減圧濃縮した。得られた溶液にトルエン(30mL)を加え、液量6mLまで減圧濃縮した。再度トルエン(30mL)を加え、液量6mLまで減圧濃縮することで、粗体の4-メトキシフェニル 2-O-アセチル-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式D-1で表される化合物)のトルエン溶液として得た。このものを次工程にそのまま使用した。
 実施例53
Figure JPOXMLDOC01-appb-C000354
 4-メトキシフェニル 2-O-アセチル-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式D-1で表される化合物)のトルエン溶液(1.06mmol相当)を100mLナスフラスコに加え、テトラヒドロフラン(17.6mL)、メタノール(10.5mL)及びトリフルオロ酢酸メチル(0.11mL,1.06mmol)を加えて25℃で10分間撹拌後、カリウムtert-ブトキシド(1mol/Lのテトラヒドロフラン溶液)(0.53mL,0.53mmol)を加えた。その後、40℃に昇温し、2時間撹拌後、HPLCで反応の終了を確認した。反応液を25℃に冷却し、酢酸(0.06mL,1.03mmol)及び酢酸エチル(35mL)の順に加えた。この溶液を3%食塩水(35mL)で2度、及び、20%食塩水(17.5mL)で1度洗浄後、減圧条件下、液量が6mLに達するまで濃縮した。トルエン(35mL)を加え、再度液量が6mLに達するまで濃縮、さらにトルエン(35mL)を加え、液量が6mLに達するまで濃縮し、粗体の4-メトキシフェニル 3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式D-2で表される化合物)をトルエン溶液として得た。このものを次工程にそのまま使用した。
 実施例54
Figure JPOXMLDOC01-appb-C000355
 4-メトキシフェニル 3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式D-2で表される化合物)のトルエン溶液(1.06mmol相当)及び4-O-アセチル-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-O-[2,2,2-トリフルオロ-N-フェニルエタンイミドイル]-β-D-グルコピラノシド(式D-3で表される化合物)のトルエン溶液(実施例39で得られたトルエン溶液を定量し、1.38mmol相当を加えた)を100mLナスフラスコに加え、ジクロロメタン(34.7mL)及びモレキュラーシーブ4A粉末(700mg)を加えた。窒素下、-78℃にてトリフルオロメタンスルホン酸tert-ブチルジメチルシリル(0.12mL,0.53mmol)を5分間かけて滴下し、同温にて9時間撹拌した。HPLCにより反応終了を確認後、トリエチルアミン(0.15mL,1.06mmol)を加え、室温にて30分間撹拌した。反応液をフィルターろ過し、トルエン(30mL)にて洗浄した。得られたろ液を液量6mLまで減圧濃縮することで、粗体の4-メトキシフェニル 4-アセチル-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式D-4で表される化合物)をトルエン溶液として得た。このものを次工程にそのまま使用した。
 実施例55-1
Figure JPOXMLDOC01-appb-C000356
 4-メトキシフェニル 4-アセチル-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式D-4で表される化合物)のトルエン溶液(1.06mmol相当)を200mLナスフラスコに加え、n-ブタノール(12mL)及びエチレンジアミン(12mL)を加えた。窒素下、95℃にて12時間撹拌した。HPLCにより反応終了を確認後、室温まで冷却、反応液を液量6mLまで減圧濃縮した。この濃縮液にアセトニトリル(40mL)を加え、逆相用シリカゲル120RP-18(関東化学製、粒子径40~50μm,12.0g)を添加した。水(40mL)を30分間かけて滴下し、目的物を固相に吸着させた後、ろ過した。アセトニトリル/水(3:2,120mL)にて固相を洗浄後(ろ液は廃棄)、アセトニトリル/テトラヒドロフラン(9:1,180mL)にて目的物を脱着させた。得られたろ液を液量6mLまで減圧濃縮した。さらにテトラヒドロフラン(40mL)を加え、液量6mLまで減圧濃縮することで、粗体の4-メトキシフェニル 2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシド(式D-5で表される化合物)のテトラヒドロフラン溶液として得た。このものを次工程(実施例56)にそのまま使用した。
 実施例55-2
 式D-5で表される化合物を、当該化合物のフマル酸塩結晶を取得する工程を含む下記方法によって精製した。当該精製方法により、式D-5-FMAで表される化合物の純度の大幅な向上が達成され、また、アノマー異性体をはじめとする複数の不純物をろ液に除去することが可能となった。
 4-メトキシフェニル 2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシド 五フマル酸塩(式D-5-FMAで示される化合物)の結晶化による精製法
Figure JPOXMLDOC01-appb-C000357
 4-メトキシフェニル 2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシド(式D-5で表される化合物)のアセトニトリル-酢酸エチル混合溶媒(2.5mL、6糖中間体から4工程をかけて非単離で誘導した溶液であり、理論量として式D-5で表される化合物1.14gを含む溶液)に、フマル酸(143mg)のテトラヒドロフラン溶液(3.5mL)を注加し、25℃で撹拌しながら酢酸イソプロピル(10mL)を30分以上かけて滴下した。種晶(1mg)を接種して1時間以上攪拌した後、フマル酸(82mg)のテトラヒドロフラン溶液(2mL)を1時間以上かけて滴下し、25℃で30分撹拌した。ヘプタン(10mL)を1時間以上かけて滴下し、30分以上攪拌し、スラリー液をろ過し、得られた結晶を25℃で減圧乾燥して、4-メトキシフェニル 2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシド 五フマル酸塩(式D-5-FMAで示される化合物)(1.15g,収率86%(6糖中間体からの4工程通算収率),HPLC純度97.0%PA%)を白色結晶として得た。
[分析条件]
カラム:Xselect Fluoro-Phenyl 3.5μm, 4.6φX150mm (Waters)
波長:220nm
オーブン:40℃
溶離液:(A)10 mM NHHCO水溶液、(B)アセトニトリル
グラジエント: 0分 (B)濃度.75%
        25分(B)濃度80%
        30分(B)濃度100%
        30.01分(B)濃度75%
        35分  (B)濃度75%
流速:
1mL/分
インジェクション:
5μL
 HRMS(ESI)[M+H]calcld for
19521338 :3218.4852;found 3218.4861
1H-NMR(500MHz,CDOD)δ7.54(d,J=7.0Hz,2H),7.48-7.15(m,100H),6.94(d,J=9.5Hz,2H),6.84(s,10H),5.43(s,1H),5.34(d,J=9,5Hz,1H),5.25-5.01(m,6H),4.93-4.29(m,40H),4.21-3.43(m,41H),3.42-3.40(m,24H),3.23-2.93(m,6H),
 13C-NMR(125MHz,CDOD)δ155.3,151.4,139.3,139.2,139.06,139.02,138.85,138.83,138.78,138.69,138.5,138.34,133.31,138.19,138.16,138.14,138.07,137.5,128.5,128.45,128.43,128.37,128.34,128.31,128.28,128.26,128.20,128.15,128.10,128.04,127.95,127.86,127.80,127.75,127.72,127.65,127.62,127.59,127.52,127.50,127.4,127.36,127.33, 127.31,127.2,126.0,118.6,114.4,103.40,103.36,102.7,102.63,102.59,101.2,99.8,97.9,84.3,83.2,83.1,82.8,82.4,81.6,79.9,78.4,78.2,77.9,77.5,76.1,76.0,75.6,75.5,75.2,75.2,75.1,74.91,74.89,74.8,74.7,74.58,74.55,74.5,74.4,74.3,74.2,74.1,73.9,73.84,73.77,73.4,73.26,73.23,73.1,73.06,72.98,72.93,72.8,72.6,72.5,71.6,71.5,71.3,70.5,69.4,68.79,68.75,68.3,68.2,67.1,57.1,56.4,55.6,55.4.
 実施例56
Figure JPOXMLDOC01-appb-C000358
 4-メトキシフェニル 2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシド(式D-5で表される化合物)のテトラヒドロフラン溶液(1.06mmol相当)を100mLナスフラスコに加え、テトラヒドロフラン(17.1mL)及び炭酸水素ナトリウム(0.58g,6.89mmol)を水(10.2mL)に溶解した水溶液を加えた。クロロギ酸フェニル(0.83g,5.30mmol)を添加した後、1時間撹拌した。HPLCにより反応終了を確認後、酢酸エチル(34mL)と水(34mL)を加え、分液操作を行った。得られた有機層を液量6mLまで減圧濃縮し、アセトニトリル(34mL)を加え、逆相用シリカゲル120RP-18(関東化学製、粒子径40~50μm,10.2g)を添加した。水(34mL)を30分間かけて滴下し、目的物を固相に吸着させた後、ろ過した。アセトニトリル/水(3:2,90mL)にて固相を洗浄後(ろ液は廃棄)、アセトニトリル/テトラヒドロフラン(9:1,180mL)にて目的物を脱着させた。得られたろ液を液量6mLまで減圧濃縮した。さらにトルエン(34mL)を加え、液量6mLまで減圧濃縮する操作を2度行うことで、粗体の4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-[(フェノキシカルボニル)アミノ]-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(フェノキシカルボニル)アミノ]-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(フェノキシカルボニル)アミノ]-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(フェノキシカルボニル)アミノ]-β-D-グルコピラノシド(式D-6-PHCBで表される化合物)をトルエン溶液として得た。このものを次工程にそのまま使用した。
 実施例57
Figure JPOXMLDOC01-appb-C000359
 窒素雰囲気下、4-メトキシフェニル 4-アセチル-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式D-4で表される化合物)(2.44g)に、n-ブタノール(12mL)及びエチレンジアミン(12mL)を加えた。窒素下、90℃にて12時間撹拌した。HPLCにより反応終了を確認後、室温まで冷却、反応液を減圧濃縮した。残渣にアセトニトリル(50mL)を加え、逆相用シリカゲル120RP-18(関東化学製、粒子径40~50μm,7.5g)を添加した。水(50mL)を滴下したあとろ過を行い、ろ物をアセトニトリル/水(1:1,200mL)で洗浄した。その後、ろ物から目的物を溶出させるために、アセトニトリル(25mL)及びトルエン(200mL)でそれぞれ洗浄した。目的物を含むろ液を減圧濃縮した。得られた残渣に、テトラヒドロフラン(25mL)及び炭酸水素ナトリウム(0.36g)を水(12。5mL)に溶解した水溶液を加えた。クロロギ酸2,2,2-トリエチル(0.43mL)を添加した後、1時間撹拌した。HPLCにより反応終了を確認後、酢酸エチル(25mL)と水(25mL)を加え、分液操作を行った。得られた有機層を減圧濃縮し、残渣にアセトニトリル(25mL)を加え、逆相用シリカゲル120RP-18(関東化学製、粒子径40~50μm,7.5g)を添加した。水(10mL)を滴下し、目的物を固相に吸着させた後、ろ過した。ろ物をアセトニトリル/水(5:1,60mL)にて洗浄したあと、ろ物から目的物を溶出させるためにトルエン(200mL)で洗浄を行った。目的物を含むろ液を減圧濃縮し、その後乾燥を行うことで粗体の4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-[(2,2,2-トリクロロエトキシカルボニル)アミノ]-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(2,2,2-トリクロロエトキシ)アミノ]-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(2,2,2-トリクロロエトキシ)アミノ]-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(2,2,2-トリクロロエトキシ)アミノ]-β-D-グルコピラノシド(式D-6-TROCで表される化合物)を2.39g得た。このものを次工程にそのまま使用した。
 実施例58
Figure JPOXMLDOC01-appb-C000360
 4-メトキシフェニル 4-アセチル-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式D-4で表される化合物)(330mg,0.088mmol)のn-ブタノール(1.65mL)/エチレンジアミン(3.3mL)溶液を90℃で44時間攪拌した。2-メチルテトラヒドロフラン(5.0mL)を加えた後に室温に冷却し、水(3mL)を添加した。水層を除去した後、得られた有機層を10%メタノール水(3mL)で3回洗浄した後、濃縮乾固して4-メトキシフェニル 2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシド(式D-5で表される化合物)を粗体として取得した。
 得られた粗体の4-メトキシフェニル 2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシド(式D-5で表される化合物)に2-メチルテトラヒドロフラン(6.6mL)、メタノール(3.3mL)、無水酢酸(124.1μL,1.31mmol)及びトリエチルアミン(145μL,1.56mmol)を順次添加した。6時間攪拌後、反応液を濃縮乾固して得られる粗体を分取HPLC(アセトニトリル/水93%→100%)で精製して、4-メトキシフェニル 2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→4)-2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシド(式D-6-ACで表される化合物)(295.60mg,収率80%)を得た。
 実施例59
Figure JPOXMLDOC01-appb-C000361
 窒素雰囲気下、4-メトキシフェニル 4-アセチル-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式D-4で表される化合物)(0.24g)に、テトラヒドロフラン(2mL)、メタノール(1mL)、トリフルオロ酢酸メチル(0.04mL)及び1Mt-ブトキシカリウムテトラヒドロフラン溶液(0.25mL)を加えた。HPLCにより反応終了を確認後、酢酸(0.02mL)を加え、反応液を減圧濃縮した。残渣に酢酸エチル(2mL)及び水(1mL)を加え分液を行い、有機層を濃縮後、残渣をシリカゲルカラムクロマトグラフィーにて精製し、4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式D-6-PHTHで示される化合物)を0.14g得た。
 実施例60
Figure JPOXMLDOC01-appb-C000362
 上記実施例56で得られた4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-[(フェノキシカルボニル)アミノ]-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(フェノキシカルボニル)アミノ]-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(フェノキシカルボニル)アミノ]-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(フェノキシカルボニル)アミノ]-β-D-グルコピラノシド(式D-6-PHCBで表される化合物)のトルエン溶液(1.06mmol相当)及び4-O-アセチル-2,3-ジ-O-ベンゾイル-6-O-[4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル]-1-O-(2,2,2-トリフルオロ-N-フェニルエタンイミドイル)-D-ガラクトピラノース(式D-7で表される化合物)(1.78g,1.59mmol)を100mLナスフラスコに加え、ジクロロメタン(39.2mL)及びモレキュラーシーブ4A粉末(10μm以下,0.78g)を添加した。窒素下、-15℃にてトリフルオロメタンスルホン酸トリメチルシリル(24.4μL,0.11mmol)を5分間かけて滴下し、同温にて1時間撹拌した。HPLCにより反応終了を確認後、トリエチルアミン(0.15mL,1.06mmol)を加え、室温にて30分間撹拌した。反応液をフィルターろ過後、アセトニトリル(40mL)にて洗浄し、得られたろ液を液量6mLまで減圧濃縮した。この溶液にアセトニトリル(40mL)を加え、逆相用シリカゲル120RP-18(関東化学製、粒子径40~50μm,12.0g)を添加した。水(40mL)を30分間かけて滴下し、目的物を固相に吸着させた後、ろ過した。アセトニトリル/水(3:2,90mL)にて固相を洗浄後(ろ液は廃棄)、アセトニトリル/テトラヒドロフラン(9:1,180mL)にて目的物を脱着させた。得られたろ液を濃縮乾固することで、粗体の4-メトキシフェニル 4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-O-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル-(2→6)-4-O-アセチル-2,3-ジ-O-ベンゾイル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(フェノキシカルボニル)アミノ]-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(フェノキシカルボニル)アミノ]-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(フェノキシカルボニル)アミノ]-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(フェノキシカルボニル)アミノ]-β-D-グルコピラノシド(式D-8-PHCBで表される化合物)(4.53g,92.3%(式A-13で表される化合物からの通算収率))を白色アモルファスとして得た。このものを次工程にそのまま使用した。
 実施例61
Figure JPOXMLDOC01-appb-C000363
 窒素雰囲気下、上記実施例57で得られた3,6-ジ-O-ベンジル-2-デオキシ-2-[(2,2,2-トリクロロエトキシカルボニル)アミノ]-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(2,2,2-トリクロロエトキシ)アミノ]-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(2,2,2-トリクロロエトキシ)アミノ]-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(2,2,2-トリクロロエトキシ)アミノ]-β-D-グルコピラノシド(式D-6-TROCで表される化合物)(2.37g)のジクロロメタン(25mL)溶液に4-O-アセチル-2,3-ジ-O-ベンゾイル-6-O-[4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル]-1-O-(2,2,2-トリフルオロ-N-フェニルエタンイミドイル)-D-ガラクトピラノース(式D-7で表される化合物)(1.01g)及びモレキュラーシーブ4A粉末(10μm以下,0.50g)を添加した。-15℃にてトリフルオロメタンスルホン酸トリイソプロピルシリル(50μL)を滴下し、同温にて1時間撹拌した。HPLCにより反応終了を確認後、トリエチルアミン(84μL)を加え、室温に昇温した。反応液をフィルターろ過後、アセトニトリル(50mL)にて洗浄し、得られたろ液を減圧濃縮した。残渣を逆相シリカゲルクロマトグラフィー(Biotage SfarBio C4 D 50g、95%MeCNaq.)にて精製し、4-メトキシフェニル 4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-O-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル-(2→6)-4-O-アセチル-2,3-ジ-O-ベンゾイル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(2,2,2-トリクロロエトキシカルボニル)アミノ]-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(2,2,2-トリクロロエトキシカルボニル)アミノ]-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(2,2,2-トリクロロエトキシカルボニル)アミノ]-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(2,2,2-トリクロロエトキシカルボニル)アミノ]-β-D-グルコピラノシド(式D-8-TROCで表される化合物)を白色アモルファスとして1.38g得た。
 実施例62
Figure JPOXMLDOC01-appb-C000364
 上記実施例58で得られた4-メトキシフェニル 2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→4)-2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシド(式D-6-ACで表される化合物)(30mg,8.85μmol)と4-O-アセチル-2,3-ジ-O-ベンゾイル-6-O-[4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル]-1-O-(2,2,2-トリフルオロ-N-フェニルエタンイミドイル)-D-ガラクトピラノース(式D-7で表される化合物)(29.7mg,0.03mmol)のジクロロメタン溶液(0.9mL)にモレキュラーシーブ4A粉末(6mg,0.2wt)を添加後、0℃に冷却した。10分間攪拌後、トリフルオロメタンスルホン酸トリイソプロピルシリル(0.95μL,3.54μmol)を添加した。1時間攪拌後、トリフルオロメタンスルホン酸tert-ブチルジメチルシリル(0.81μL,3.54μmol)を加え、さらに1時間後にトリフルオロメタンスルホン酸tert-ブチルジメチルシリル(0.81μL,3.54μmol)を添加した。2時間後に4-O-アセチル-2,3-ジ-O-ベンゾイル-6-O-[4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル]-1-O-(2,2,2-トリフルオロ-N-フェニルエタンイミドイル)-D-ガラクトピラノース(式D-7で表される化合物)(10.0mg,0.01mmol)を加え、さらに15時間撹拌した後、トリエチルアミン(10μL)を添加した。得られた反応懸濁液から室温でモレキュラーシーブを濾去し、ジクロロメタン(3mL)で洗浄した。取得した溶液を濃縮乾固し、アセトニトリル(1mL)、メタノール(0.1mL)及びトリフルオロ酢酸(5μL)を順次添加した。1時間撹拌後、トリエチルアミン(10μL)を加えた(反応液1)。
 4-メトキシフェニル 2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→4)-2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシド(式D-6-ACで表される化合物)(206.5mg,0.06mmol)と4-O-アセチル-2,3-ジ-O-ベンゾイル-6-O-[4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル]-1-O-(2,2,2-トリフルオロ-N-フェニルエタンイミドイル)-D-ガラクトピラノース(式D-7で表される化合物)(238.3mg,0.21mmol)のジクロロメタン溶液(6.3mL)にモレキュラーシーブ4A粉末(20mg,0.2wt)を添加後、0℃に冷却した。10分間攪拌後、トトリフルオロメタンスルホン酸tert-ブチルジメチルシリル(7.0μL,0.03mmol)を加えた。24時間撹拌後、4-O-アセチル-2,3-ジ-O-ベンゾイル-6-O-[4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル]-1-O-(2,2,2-トリフルオロ-N-フェニルエタンイミドイル)-D-ガラクトピラノース(式D-7で表される化合物)(68mg,0.06mmol)とトリフルオロメタンスルホン酸tert-ブチルジメチルシリル(7.0μL,0.03mmol)を順次添加し、さらに7時間後に4-O-アセチル-2,3-ジ-O-ベンゾイル-6-O-[4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル]-1-O-(2,2,2-トリフルオロ-N-フェニルエタンイミドイル)-D-ガラクトピラノース式D-7で表される化合物)(68mg,0.06mmol)とトリフルオロメタンスルホン酸tert-ブチルジメチルシリル(7.0μL,0.03mmol)を加えた。14時間後、トリエチルアミン(20μL)を添加し、得られた反応懸濁液から室温でモレキュラーシーブを濾去した後、ジクロロメタン(3mL)で洗浄した。取得した溶液を濃縮乾固し、アセトニトリル(4mL)、メタノール(0.1mL)及びトリフルオロ酢酸(10μL)を順次添加した。0℃で1時間撹拌後、トリエチルアミン(25μL)を加えた(反応液2)。
 両溶液を混合後、濃縮乾固した粗体を逆相クロマトグラフィーアセトニトリル/水90%→100%)で精製した。目的物を含むフラクションを濃縮乾固した混合物をシリカゲルクロマトグラフィー(酢酸エチル/ヘキサン50%→85%)で精製して、4-メトキシフェニル 4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-O-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル-(2→6)-4-O-アセチル-2,3-ジ-O-ベンゾイル-β-D-ガラクトピラノシル-(1→4)-2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→4)-2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシド(式D-8-ACで表される化合物)(210.5mg,収率70%)を得た。
 実施例63
Figure JPOXMLDOC01-appb-C000365
 窒素雰囲気下、上記実施例59で得られた4-メトキシフェニル 3,6-ジ-O-ベンジル-2-デオキシ-2-1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)-β-D-グルコピラノシド(式D-6-PHTHで示される化合物)(14.8mg)のジクロロメタン(0.15mL)溶液に、4-O-アセチル-2,3-ジ-O-ベンゾイル-6-O-[4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル]-1-O-(2,2,2-トリフルオロ-N-フェニルエタンイミドイル)-D-ガラクトピラノース(式D-7で表される化合物)(9.1mg)及びモレキュラーシーブ4A粉末(10μm以下,3.6mg)を添加した。-15℃にてトリフルオロメタンスルホン酸トリメチルシリル(0.25μL)を滴下し、同温にて1時間撹拌した。HPLCにより反応終了を確認後、トリエチルアミンを加え、室温に昇温した。反応液を分取TLC(トルエン―酢酸エチル)にて精製し、4-メトキシフェニル 4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-O-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル-(2→6)-4-O-アセチル-2,3-ジ-O-ベンゾイル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)]-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)]-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)]-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(1,3-ジオキソ-1,3-ジヒドロ-2H-イソインドール-2-イル)]-β-D-グルコピラノシド(式D-8-PHTHで表される化合物)を白色アモルファスとして7.9mg得た。
 実施例64
Figure JPOXMLDOC01-appb-C000366
 上記実施例60で得られた4-メトキシフェニル 4,7,8,9-テトラ-O-アセチル-3,5-ジデオキシ-5-(ジアセチルアミノ)-1-O-メチル-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル-(2→6)-4-O-アセチル-2,3-ジ-O-ベンゾイル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(フェノキシカルボニル)アミノ]-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(フェノキシカルボニル)アミノ]-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(フェノキシカルボニル)アミノ]-β-D-グルコピラノシル-(1→4)-3,6-ジ-O-ベンジル-2-デオキシ-2-[(フェノキシカルボニル)アミノ]-β-D-グルコピラノシド(式D-8-PHCBで表される化合物)(3.14g,0.678mmol)を100mLナスフラスコに加え、1,2-ジメトキシエタン(28.3mL)、水(9.4mL)及び水酸化リチウム水溶液(4M,3.39mL,13.6mmol)を順次添加した後、1時間撹拌した。HPLCにより反応終了を確認後、酢酸(0.19mL,4.89mmol)を加えた。次に水(31mL)を加えると、ゲル状の固体が析出した。生じた固体をろ過、1,2-ジメトキシエタン/水(9:10,31mL)にて固相を洗浄し、粗体の4-メトキシフェニル 5-アセトアミド-3,5-ジデオキシ-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル-(2→6)-β-D-ガラクトピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシド(式D-9で表される化合物)を湿品状の固体として得た。このものを次工程にそのまま使用した。
 上記実施例61~63で得られた式D-8で表される化合物についても、以下の表に示される脱保護反応条件でアミノ基の保護基を除去し、得られた式D-9で表される化合物のHPLC純度も同表に示した。表に示されるように、特に、アミノ基の保護基としてフェニルオキシカルボニル(COOPh)基を利用した場合に、一般的な加水分解条件下、室温、1時間以内での脱保護が可能であり、基質を分解することなく、グリコシル化、脱保護、さらにはその後のアミノ基のアセチル化の一連の工程を最も良好な収率で実施することができる。
Figure JPOXMLDOC01-appb-T000367
 実施例65
Figure JPOXMLDOC01-appb-C000368
 4-メトキシフェニル 5-アセトアミド-3,5-ジデオキシ-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル-(2→6)-β-D-ガラクトピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→4)-2-アミノ-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシド(式D-9で表される化合物)の湿品状固体(0.678mmol相当)を100mLナスフラスコに加え、テトラヒドロフラン(18.8mL)、メタノール(9.4mL)及びトリエチルアミン(3.31mL,23.7mmol)を順次加えた。その後、無水酢酸(1.59mL,17.0mmol)を添加し、室温で2時間撹拌した。HPLCにより反応終了を確認後、反応液に水(31.4mL)、酢酸エチル(62.8mL)を加えて分液し、得られた有機層を濃縮乾固することで、粗体の4-メトキシフェニル 5-アセトアミド-3,5-ジデオキシ-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル-(2→6)-β-D-ガラクトピラノシル-(1→4)-2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→4)-2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシド(式D-10で表される化合物)を得た。
 実施例66
Figure JPOXMLDOC01-appb-C000369
 4-メトキシフェニル 5-アセトアミド-3,5-ジデオキシ-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル-(2→6)-β-D-ガラクトピラノシル-(1→4)-2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→3)-[2,3,4,6-テトラ-O-ベンジル-β-D-ガラクトピラノシル-(1→4)-2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→2)-3,4,6-トリ-O-ベンジル-α-D-マンノピラノシル-(1→6)]-2,4-ジ-O-ベンジル-β-D-マンノピラノシル-(1→4)-2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシル-(1→4)-2-アセトアミド-3,6-ジ-O-ベンジル-2-デオキシ-β-D-グルコピラノシド(式D-10で表される化合物)(0.678mmol相当)にN―メチルピロリドン(26.1mL)及び5%Pd/C(川研製,EA型,54.9%含水品,3.92g)を加え、減圧→窒素置換を3回繰り返した。その後、水素加圧→解圧を3回繰り返した。外温50℃、水素圧0.5MPa下で48時間撹拌した。HPLCにより反応終了を確認後、反応液を窒素置換したグローブボックス内で減圧ろ過し、ろ物をN―メチルピロリドン(35mL)で洗浄した。ろ液にトルエン(45mL)を加え、55mLまで濃縮した。この操作を3回繰り返して、脱水操作を行うことで、粗体の4-メトキシフェニル 5-アセトアミド-3,5-ジデオキシ-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル-(2→6)-β-D-ガラクトピラノシル-(1→4)-2-アセトアミド-2-デオキシ-β-D-グルコピラノシル-(1→2)-α-D-マンノピラノシル-(1→3)-[β-D-ガラクトピラノシル-(1→4)-2-アセトアミド-2-デオキシ-β-D-グルコピラノシル-(1→2)-α-D-マンノピラノシル-(1→6)]-β-D-マンノピラノシル-(1→4)-2-アセトアミド-2-デオキシ-β-D-グルコピラノシル-(1→4)-2-アセトアミド-2-デオキシ-β-D-グルコピラノシド(式D-11で表される化合物)をN―メチルピロリドン溶液として得た。このものを次工程にそのまま使用した。なお、触媒に関して、上記5%Pd/C(川研製,EA型)の代わりに、5%Pd/C(川研製,PE型)又はASCA-2(エヌ・イー ケムキャット製)を用いてもほぼ同等の反応性が得られる。
 実施例67
 D-12で表される化合物を、以下の合成スキームWに従って精製した。下記の左下に示す化合物は、式E1中の「R」がメチルである化合物の例示である。
[合成スキームW]
Figure JPOXMLDOC01-appb-C000370
 実施例68
 11-アジド-3,6,9-トリオキサウンデカン-1-アミン (-)-ジ-p-トルオイル-L-酒石酸塩(式E-2で示される化合物(R=Me))
Figure JPOXMLDOC01-appb-C000371
 11-アジド-3,6,9-トリオキサウンデカン-1-アミン(式D-12で示される化合物)(10.0g,45.82mmol,94.3%HPLC純度)のアセトニトリル(24mL)及び水(6mL)の溶液に(-)-ジ-p-トルオイル-L-酒石酸(17.70g,45.82mmol)を加え、35℃で攪拌し、溶解を確認後、同温にてアセトニトリル(300mL)を1時間かけて滴下した。得られたスラリー液を200mLまで減圧濃縮し、スラリー液を25℃で30分間攪拌し、析出した結晶をろ過した。濾別した結晶をアセトニトリル(30mL)で洗浄して、40℃で減圧乾燥し、11-アジド-3,6,9-トリオキサウンデカン-1-アミン (-)-ジ-p-トルオイル-L-酒石酸塩(式E-2-PTTAで示される化合物)(24.40g,収率88.0%,99.2%HPLC純度)を白色結晶として得た(融点152℃)。
 1H-NMR(500MHz,DMSO)δ7.82(d,J=9.0Hz,4H), 7.30(d,J=9.0Hz,4H),5.61(s,2H),3.59(t,J=5.0Hz,2H),3.56-3.47(m,10H),3.39(t,J=5.5Hz,2H),2.91(t,J=6.0Hz,2H),2.36(s,6H). 13C-NMR(125MHz,DMSO)δ168.06,164.80,143.63,129.25,129.18,126.93,71.68,69.72,69.63,69.59,69.57,69.20,66.68,49.96,38.40,21.14.
 なお、(-)-ジ-p-トルオイル-L-酒石酸の替わりに、(+)-ジ-p-トルオイル-D-酒石酸を用いても同様の操作が可能である。
 実施例69
 11-アジド-3,6,9-トリオキサウンデカン-1-アミン (-)-ジベンゾイル-L-酒石酸塩(式E-2-BZTAで示される化合物)
Figure JPOXMLDOC01-appb-C000372
 11-アジド-3,6,9-トリオキサウンデカン-1-アミン(式D-12で示される化合物)(5.0g,22.91mmol)のアセトニトリル(12mL)及び水(3mL)の溶液に(-)-ジベンゾイル-L-酒石酸(8.21g,22.91mmol)を加え、35℃で攪拌し、溶解を確認後、同温にてアセトニトリル(150mL)を1時間かけて滴下した。得られたスラリー液を125mLまで減圧濃縮し、アセトニトリル(100mL)を加え、再度、125mLまで減圧濃縮した。スラリー液を25℃で30分間攪拌し、析出した結晶をろ過した。濾別した結晶をアセトニトリル(15mL)で洗浄して、40℃で減圧乾燥し、11-アジド-3,6,9-トリオキサウンデカン-1-アミン (-)-ジベンゾイル-L-酒石酸塩(式E-2-BZTAで示される化合物)(10.6g,収率80%)を白色結晶として得た(融点131℃)。
 H-NMR(500MHz,DMSO)δ7.94(d,J=8.5Hz,4H),7.64(t,J=7.5Hz,2H),7.51(t,J=7.5Hz,4H),5.65(s,2H),3.59(t,J=5.0Hz,2H),3.56-3.47(m,10H),3.39(t,J=5.5Hz,2H),2.90(t,J=5.0Hz,2H).
 13C-NMR(125MHz,DMSO)δ167.98,164.86,133.38,129.63,129.22,128.66,72.10,69.73,69.63,69.59,69.57,69.21,66.69,49.97,38.38.
 なお、(-)-ジベンゾイル-L-酒石酸の替わりに、(+)-ジベンゾイル-D-酒石酸を用いても同様の操作が可能である。
 実施例70
 11-アジド-3,6,9-トリオキサウンデカン-1-アミン (-)-ジ-p-アニソイル-L-酒石酸塩(式E-2で示される化合物(R=OMe))
Figure JPOXMLDOC01-appb-C000373
 11-アジド-3,6,9-トリオキサウンデカン-1-アミン(式D-12で示される化合物)(5.0g,22.91mmol)のアセトニトリル(12mL)及び水(3mL)の溶液に(-)-ジ-p-アニソイル-L-酒石酸(9.58g,22.91mmol)を加え、35℃で攪拌し、溶解を確認後、同温にてアセトニトリル(150mL)を1時間かけて滴下した。得られたスラリー液を100mLまで減圧濃縮し、スラリー液を25℃で30分間攪拌し、析出した結晶をろ過した。濾別した結晶をアセトニトリル(15mL)で洗浄して、40℃で減圧乾燥し、11-アジド-3,6,9-トリオキサウンデカン-1-アミン (-)-ジ-p-アニソイル-L-酒石酸塩(式E-2-PATAで示される化合物(R=OMe))(11.4g,収率78%)を白色結晶として得た(融点153℃)。
 H-NMR(500MHz,DMSO)δ7.89(d,J=9.0Hz,4H),7.02(d,J=9.0Hz,4H),5.59(s,2H),3.82(s,6H),3.59(t,J=5.0Hz,2H),3.56-3.47(m,10H),3.39(t,J=5.5Hz,2H),2.91(t,J=5.5Hz,2H). 13C-NMR(125MHz,DMSO)δ168.25,164.50,163.14,131.34,121.88,113.92,71.64,69.73,69.63,69.59,69.21,66.70,55.48,49.97,38.38.
 (-)-ジ-p-アニソイル-L-酒石酸の替わりに、(+)-ジ-p-アニソイル-D-酒石酸を用いても同様の操作が可能である。
 実施例71
 11-アジド-3,6,9-トリオキサウンデカン-1-アミン(式D-12で示される化合物)
Figure JPOXMLDOC01-appb-C000374
 実施例68で得られた11-アジド-3,6,9-トリオキサウンデカン-1-アミン (-)-ジ-p-トルオイル-L-酒石酸塩(式E-2-PTTAで示される化合物)(12.0g,19.85mmol)の酢酸エチル(120mL)及び水(18mL)の溶液に濃塩酸(2.41g,23.82mmol)を加え、25℃で攪拌後、分液した。得られた水層を酢酸エチル(120mL)で二回洗浄し、10規定水酸化ナトリウム水溶液(2.15mL, 21.50mmol)でpH11に調整後、塩化ナトリウム(0.6g)を加え、溶解した。ジクロロメタン(120mL)を加え、攪拌後、分液し、有機層を得た。更に、水層にジクロロメタン(120mL)を加え、攪拌後、分液し、得られた有機層を合致した。合致した有機層を12mLまで減圧濃縮し、アセトニトリル(120mL)を加え、12mLまで減圧濃縮した。得られた溶液をろ過し、無機塩を除去後、アセトニトリル(6mL)で洗浄し、得られた溶液を減圧濃縮して、HPLC純度99.2%の11-アジド-3,6,9-トリオキサウンデカン-1-アミン(式D-12で示される化合物)(3.7g,収率85%)を淡黄色油状化合物として得た。
 1H-NMR(500MHz,CDCl)δ3.69-3.62(m,10H),3.51(t,J=5.5Hz,2H),3.39(t,J=5.5Hz,2H),2.87(t,J=5.5Hz,2H).
<式D-12で示される化合物の純度分析条件>
 下記のHPLC分析条件において、式D-12で示される化合物の純度の測定を実施した。サンプル溶液を測定後、ブランク溶液を測定し、ブランクピークを削除することにより、式D-12で示される化合物のHPLC純度を算出した。
<サンプル溶液の調製>
 10mLメスフラスコに、式D-12で示される化合物50mgを秤量し、アセトニトリル2mL、トリエチルアミン100μLを加え、混合した。無水酢酸50μLを添加し、混合後、15分静置し、式D-12で示される化合物をアセチル誘導体化した。4規定水酸化ナトリウム水溶液150μLを加え、混合後、50%アセトニトリル水でメスアップしてサンプル溶液を調製した。
<ブランク溶液の調製>
 10mLメスフラスコにアセトニトリル2mL、トリエチルアミン100μLを加え、混合した。無水酢酸50μL を添加し、混合後、15分静置した。4規定水酸化ナトリウム水溶液150μLを加え、混合後、50%アセトニトリル水でメスアップしてサンプル溶液を調製した。
<HPLC分析条件>
使用機器:SHIMAZU HPLC(LC-20AD)
カラム:Xbrige C18 3.5μm,4.6×150mm(Waters)
移動相A:10mM AcONH水溶液
移動相B:CHCN
Figure JPOXMLDOC01-appb-T000375
流速:1mL/分
検出波長:210nm
カラム温度:40℃
注入量:5μL
保持時間:7.3分(アセチル化された式D-12で示される化合物),9.0分(アセチル化された式D-12で示される化合物の二量体)
 実施例72
Figure JPOXMLDOC01-appb-C000376
 4-メトキシフェニル 5-アセトアミド-3,5-ジデオキシ-D-グリセロ-α-D-ガラクト-ノン-2-ウロピラノシル-(2→6)-β-D-ガラクトピラノシル-(1→4)-2-アセトアミド-2-デオキシ-β-D-グルコピラノシル-(1→2)-α-D-マンノピラノシル-(1→3)-[β-D-ガラクトピラノシル-(1→4)-2-アセトアミド-2-デオキシ-β-D-グルコピラノシル-(1→2)-α-D-マンノピラノシル-(1→6)]-β-D-マンノピラノシル-(1→4)-2-アセトアミド-2-デオキシ-β-D-グルコピラノシル-(1→4)-2-アセトアミド-2-デオキシ-β-D-グルコピラノシド(式D-11で表される化合物)(0.678mmol相当)のN―メチルピロリドン溶液を100mLナスフラスコに加え、11-アジド-3,6,9-トリオキサウンデカン-1-アミン(式D-12で表される化合物)(0.45g,2.03mmol)、N-エチルジイソプロピルアミン(0.36mL,2.03mmol)、ヘキサフルオロリン酸(ベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウム(1.06g,2.03mmol)を順次加え、室温で1時間撹拌した。HPLCにより反応終了を確認後、反応液にアセトニトリル(300mL)を滴下すると、ゲル状固体が析出した。その懸濁液を遠心分離した。白色ゲル状固体をアセトニトリル(30mL)で2回洗浄し、得られた白色ゲル状固体に水(10mL)を加え、メンブレンフィルターでろ過し、ろ液をHPLCにて分取精製した(1回あたりのチャージ量:2mL)。目的物を含むフラクションを減圧濃縮した後、凍結乾燥することで、4-メトキシフェニル N-(2-{2-[2-(2-アジドエトキシ)エトキシ]エトキシ}エチル)-5-アセチル-ノイラムアミド-(2→6)-β-D-ガラクトピラノシル-(1→4)-2-アセトアミド-2-デオキシ-β-D-グルコピラノシル-(1→2)-α-D-マンノピラノシル-(1→3)-[β-D-ガラクトピラノシル-(1→4)-2-アセトアミド-2-デオキシ-β-D-グルコピラノシル-(1→2)-α-D-マンノピラノシル-(1→6)]-β-D-マンノピラノシル-(1→4)-2-アセトアミド-2-デオキシ-β-D-グルコピラノシル-(1→4)-2-アセトアミド-2-デオキシ-β-D-グルコピラノシド(式D-13で表される化合物)(1.01g,収率 66%(D8で表される化合物からの通算収率))を白色固体として取得した(HPLC純度 98.2%(検出波長220nm))。
 1H-NMR(500MHz,DO)δ1.73(t,J=12.0Hz,1H),1.87-2.07(brs,15H),2.59(dd,J=4,12.0Hz,1H),3.26-3.90(m,77H),4.00(brs,1H),4.08(brs,1H),4.14(brs,1H),4.30-4.38(m,2H),4.50-4.54(m,3H),4.65(brs,1H),4.78(d,J=5.5Hz,1H),4.83(brs,1H),4.93(d,J=8.5Hz,1H),5.03(brs,1H),6.86(d,J=9.5Hz,2H),6.93(d,J=9.5Hz,2H).
 13C-NMR(125MHz,DO)δ22.71,22.76,22.89,22.99,23.06,23.91,38.85,39.41,50.80,52.35,55.22,55.50,55.62,56.45,60.58,60.62,60.84,61.64,62.28,62.34,63.29,63.68,66.31,66.43,67.63,67.91,67.92,67.99,68.45,68.97,69.14,69.18,69.80,69.85,70.06,70.10,70.16,70.28,70.83,71.29,71.62,71.73,72.66,72.71,72.73,73.09,73.16,73.50,74.12,74.16,74.19,75.02,75.05,75.34,75.36,75.99,76.98,77.06,79.19,79.65,80.10,81.11,81.48,97.67,100.02,100.10,100.18,101.07,102.03,103.60,104.29,115.72,118.92,151.66,155.49,163.48,169.72,175.26,175.28,175.39,175.46,175.64.
 HRMS(ESI)[M+H](m/z):calcd for C8814457:2238.8641;found 2238.8604[M+H]).

Claims (116)

  1.  以下の式A-13:
    Figure JPOXMLDOC01-appb-C000001
    で示されるオリゴ糖を製造する方法であって、
    (工程I-1)式A-3:
    Figure JPOXMLDOC01-appb-C000002
    で示される化合物を、以下の式A-4:
    Figure JPOXMLDOC01-appb-C000003
    で示される化合物とα-1,6-グリコシド結合させることにより、以下の式A-5:
    Figure JPOXMLDOC01-appb-C000004
    で示される化合物を生成する工程を含む、以下の式A-7:
    Figure JPOXMLDOC01-appb-C000005
    で示される化合物を生成する工程、
    (工程I-2)前記式A-7で示される化合物を、以下の式A-8:
    Figure JPOXMLDOC01-appb-C000006
    で示される化合物とβ-1,4-グリコシド結合させることにより、以下の式A-9:
    Figure JPOXMLDOC01-appb-C000007
    で示される化合物を生成する工程を含む、以下の式A-10:
    Figure JPOXMLDOC01-appb-C000008
    で示される化合物を生成する工程、
    (工程I-3)前記式A-10で示される化合物を、以下の式A-11:
    Figure JPOXMLDOC01-appb-C000009
    で示される化合物とβ-1,2-グリコシド結合させることにより、以下の式A-12:
    Figure JPOXMLDOC01-appb-C000010
    で示される化合物を生成する工程を含む、前記式A-13で示されるオリゴ糖を生成する工程、
    を含む、方法。
  2.  前記工程I-2において、前記式A-9で示される化合物を、パーフルオロカルボン酸のアルキルエステルの存在下で、強塩基と反応させることにより、前記式A-10で示される化合物を生成することを含む、請求項1に記載の方法。
  3.  前記パーフルオロカルボン酸のアルキルエステルが、トリフルオロ酢酸メチル、トリフルオロ酢酸エチル、トリフルオロ酢酸プロピル、トリフルオロ酢酸イソプロピル、トリフルオロ酢酸ブチル、ペンタフルオロプロピオン酸メチル、ペンタフルオロプロピオン酸エチル、ペンタフルオロプロピオン酸プロピル、ぺンタフルオロプロピオン酸イソプロピル、ヘプタフルオロ酪酸メチル、ヘプタフルオロ酪酸エチル、ヘプタフルオロ酪酸プロピル、ヘプタフルオロ酪酸イソプロピル、ヘプタフルオロ酪酸ブチル、ノナフルオロ吉草酸メチル、ノナフルオロ吉草酸エチル、ノナフルオロ吉草酸プロピル、ノナフルオロ吉草酸イソプロピル、ノナフルオロ吉草酸ブチル、ウンデカフルオロカプロン酸メチル、ウンデカフルオロカプロン酸エチル、ウンデカフルオロカプロン酸プロピル、ウンデカフルオロカプロン酸イソプロピル、又はウンデカフルオロカプロン酸ブチルである、請求項2に記載の方法。
  4.  前記強塩基が、金属アミドのナトリウム塩、リチウム塩、及びカリウム塩;C1~C20アルコキシドのナトリウム塩、リチウム塩、カリウム塩、セシウム塩、及びバリウム塩;水素化ナトリウム、水素化カリウム、水素化リチウム、ブチルリチウム、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、炭酸リチウム、リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸リチウム、ジアザビシクロウンデセン(DBU)、ジアザビシクロノネン(DBN)、及び1,1,3,3-テトラメチルグアニジン(TMG);並びにこれらの組み合わせからなる群より選択される、請求項2又は3に記載の方法。
  5.  前記強塩基が、カリウムtert-ブトキシド、ナトリウムtert-ブトキシド、リチウムtert-ブトキシド、又はLHMDS(リチウムヘキサメチルジシラジド)である、請求項2又は3に記載の方法。
  6.  前記工程I-2の反応が、C1~C10アルコール溶媒単独又はC1~C10アルコール溶媒とアミド系溶媒、エーテル系溶媒、エステル系溶媒、芳香族系溶媒、ハロゲン系溶媒、炭化水素系溶媒、若しくはニトリル系溶媒との混合溶媒中で行われる、請求項2~5のいずれか一項に記載の方法。
  7.  前記工程I-3において、前記式A-12で示される化合物を、フルオラスアルコール及び水の混合溶媒中で、DDQ(2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン)と反応させて、前記式A-12で示される化合物中の2-ナフチルメチル基を脱離させることにより、前記式A-13で示されるオリゴ糖を生成することを含む、請求項1~6のいずれか一項に記載の方法。
  8.  前記フルオラスアルコールが、ヘキサフルオロ-2-プロパノール(HFIP)、2,2,2-トリフルオロエタノール(TFE)、2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール、ノナフルオロ-tert-ブチルアルコール及びこれらの組み合わせからなる群から選択される、請求項7に記載の方法。
  9.  前記工程I-3の反応が、-35℃~70℃で行われる、請求項7又は8に記載の方法。
  10.  前記工程I-3の反応が、-30℃~-10℃で行われる、請求項7又は8に記載の方法。
  11.  前記工程I-1において、前記式A-4で示される化合物と前記式A-3で示される化合物との反応を停止させた後、生成した前記式A-5で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式A-5で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式A-5で示される化合物を前記疎水性担体から溶出させることにより、前記式A-5で示される化合物を精製することを含む、請求項1~10のいずれか一項に記載の方法。
  12.  前記工程I-2において、前記式A-7で示される化合物と前記式A-8で示される化合物との反応を停止させた後、生成した前記式A-9で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式A-9で示される化合物を吸着させ、次いでろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式A-9で示される化合物を前記疎水性担体から溶出させることにより、前記式A-9で示される化合物を精製することを含む、請求項1~11のいずれか一項に記載の方法。
  13.  前記工程1-3において、前記式A-10で示される化合物と前記式A-11で示される化合物との反応を停止させた後、生成した前記式A-12で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式A-12で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式A-12で示される化合物を前記疎水性担体から溶出させることにより、前記式A-12で示される化合物を精製することを含む、請求項1~12のいずれか一項に記載の方法。
  14.  前記夾雑物が、前記式A-5で示される化合物以外の糖化合物、及び/又は前記精製される化合物を得るための反応試薬由来の化合物を含む、請求項11に記載の方法。
  15.  前記夾雑物が、前記式A-9で示される化合物以外の糖化合物、及び/又は前記精製される化合物を得るための反応試薬由来の化合物を含む、請求項12に記載の方法。
  16.  前記夾雑物が、前記式A-12で示される化合物以外の糖化合物、及び/又は前記精製される化合物を得るための反応試薬由来の化合物を含む、請求項13に記載の方法。
  17.  前記疎水性担体が、逆相分配クロマトグラフィー充填用樹脂である、請求項11~16のいずれか一項に記載の方法。
  18.  前記逆相分配クロマトグラフィー充填用樹脂が、ポリ(スチレン/ジビニルベンゼン)ポリマーゲル樹脂、ポリスチレン-ジビニルベンゼン樹脂、ポリヒドロキシメタクリレート樹脂、スチレンビニルベンゼン共重合体樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリメタクリレート樹脂、化学結合型シリカゲル樹脂、及びこれらの組み合わせからなる群から選択される、請求項17に記載の方法。
  19.  前記化学結合型シリカゲル樹脂が、(1)シリカゲルに、シランカップリング剤を反応させて得られる樹脂、(2)シリカゲルに、ジメチルオクタデシル、オクタデシル、トリメチルオクタデシル、ジメチルオクチル、オクチル、ブチル、エチル、メチル、フェニル、シアノプロピル、又はアミノプロピル基を化学結合して得られる樹脂、(3)シリカゲルに、ドコシル又はトリアコンチル基を化学結合して得られる樹脂、及び(4)前述の(1)~(3)の組み合わせからなる群から選択される、請求項18に記載の方法。
  20.  前記化学結合型シリカゲル樹脂が、オクタデシル基結合シリカゲル樹脂(ODS樹脂)である、請求項18に記載の方法。
  21.  前記水溶性有機溶媒が、水溶性アルコール系溶媒、水溶性ニトリル系溶媒、水溶性エーテル系溶媒、水溶性ケトン系溶媒、水溶性アミド系溶媒、又は水溶性スルホキシド系溶媒、もしくは前述の水溶性有機溶媒系を少なくとも1種以上含む混合溶媒である、請求項11~20のいずれか一項に記載の方法。
  22.  前記水溶性ニトリル系溶媒が、アセトニトリルである、請求項21に記載の方法。
  23.  前記疎水性担体から目的物の溶出工程で使用される前記有機溶媒が、ニトリル系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、ハロゲン系溶媒、芳香族系溶媒、又は前述の溶媒系を少なくとも1種以上含む混合溶媒である、請求項11~22のいずれか一項に記載の方法。
  24.  前記式A-11で示される化合物が、
    (工程Y-1)以下の式B-1:
    Figure JPOXMLDOC01-appb-C000011
    で示される化合物を、以下の式B-2:
    Figure JPOXMLDOC01-appb-C000012
    で示される化合物とβ-1,4-グリコシド結合させることにより、以下の式B-3:
    Figure JPOXMLDOC01-appb-C000013
    で示される化合物を生成する工程を含む、以下の式B-4:
    Figure JPOXMLDOC01-appb-C000014
    で示される化合物を生成する工程、
    (工程Y-2)前記式B-4で示される化合物及びハロゲン化ベンジル又はスルホン酸ベンジルを含む溶媒に、リチウムtert-ブトキシド又はリチウムtert-アモキシドを添加して、前記式B-4で示される化合物中に存在する水酸基をベンジル基で保護することにより、以下の式B-5:
    Figure JPOXMLDOC01-appb-C000015
    で示される化合物を生成する工程、
    を含む工程により製造される、請求項1~23のいずれか一項に記載の方法。
  25.  前記式B-4で示される化合物及びハロゲン化ベンジル又はスルホン酸ベンジルを含む溶媒が、アミド系溶媒、エーテル系溶媒、芳香族系溶媒、又は炭化水素系溶媒、ウレア系溶媒、もしくは前述の溶媒系を少なくとも1種以上含む混合溶媒である、請求項24に記載の方法。
  26.  前記式B-5で示される化合物が、前記式B-5で示される化合物中のフタルイミド基を開環し、次いで、シンコニジンと反応させることにより、結晶性の以下の式B-6:
    Figure JPOXMLDOC01-appb-C000016
    で示される化合物を生成し、結晶性の前記式B-6で示される化合物と非結晶性物質とを分離した後、酸性水溶液及び溶媒の添加により、前記式B-6で示される化合物中のシンコニジンを除去して、以下の式B-7:
    Figure JPOXMLDOC01-appb-C000017
    で示される化合物を生成し、次いで、前記式B-7で示される化合物中の前記開環したフタルイミド基を閉環させることにより、精製される工程をさらに含む、請求項24又は25に記載の方法。
  27.  前記式A-13で示される化合物が、前記式A-13で示される化合物中のフタルイミド基を開環し、次いで、(R)-(+)-1-(1-ナフチル)エチルアミンと塩を形成することにより、結晶性の以下の式A-14で示される化合物:
    Figure JPOXMLDOC01-appb-C000018
    で示される化合物を生成し、結晶性の前記式A-14で示される化合物と非結晶性物質とを分離した後、酸性水溶液及び溶媒の添加により、前記式A-14で示される化合物中の(R)-(+)-1-(1-ナフチル)エチルアミンを除去して、以下の式A-15:
    Figure JPOXMLDOC01-appb-C000019
    で示される化合物を生成し、次いで、前記式A-15で示される化合物中の前記開環したフタルイミド基を閉環させることにより、精製される工程をさらに含む、請求項1~26のいずれか一項に記載の方法。
  28.  以下の式D-13
    Figure JPOXMLDOC01-appb-C000020
    で示されるオリゴ糖を製造する方法であって、
    (工程II-1)以下の式A-13:
    Figure JPOXMLDOC01-appb-C000021
    で示されるオリゴ糖を、以下の式A-3:
    Figure JPOXMLDOC01-appb-C000022
    で示される化合物とα-1,3-グリコシド結合させることにより、以下の式D-1:
    Figure JPOXMLDOC01-appb-C000023
    で示される化合物を生成する工程を含む、以下の式D-2:
    Figure JPOXMLDOC01-appb-C000024
    で示される化合物を生成する工程、
    (工程II-2)前記式D-2で示される化合物を、以下の式D-3:
    Figure JPOXMLDOC01-appb-C000025
    で示される化合物とβ-1,2-グリコシド結合させることにより、以下の式D-4:
    Figure JPOXMLDOC01-appb-C000026
    で示される化合物を生成する工程を含む、以下の式D-5:
    Figure JPOXMLDOC01-appb-C000027
    で示される化合物を生成した後、前記式D-5で示される化合物中のアミノ基をアリールオキシカルボニル(COOAr)基、アセチル(Ac)基、2,2,2-トリクロロエトキシカルボニル(Troc)基、及びフタルイミド(Pht)基から選択される保護基によって保護して、以下の式D-6:
    Figure JPOXMLDOC01-appb-C000028
    で示される化合物(式中、Rは、アリールオキシカルボニル(COOAr)基、アセチル(Ac)基、若しくは2,2,2-トリクロロエトキシカルボニル(Troc)基であり、かつ、Rは、水素原子であるか、又はR及びRは、これらが結合している窒素原子と一緒にフタルイミド基を形成する)を生成するか、又は上記式D-4で示される化合物上のアセチル(Ac)基を除去することによって、上記式D-6で示される化合物(式中、R及びRは、これらが結合している窒素原子と一緒にフタルイミド基を形成する)を生成する工程、
    (工程II-3)前記式D-6で示される化合物を、以下の式D-7:
    Figure JPOXMLDOC01-appb-C000029
    で示される化合物とβ-1,4-グリコシド結合させることにより、以下の式D-8:
    Figure JPOXMLDOC01-appb-C000030
    で示される化合物(式中、Rは、アリールオキシカルボニル(COOAr)基、アセチル(Ac)基、若しくは2,2,2-トリクロロエトキシカルボニル(Troc)基であり、かつ、Rは、水素原子であるか、又はR及びRは、これらが結合している窒素原子と一緒にフタルイミド基を形成する)を生成し、次いで、前記式D-8で示される化合物上の前記アミノ基及びアルコールのアシル系保護基の保護基を除去して、以下の式D-9:
    Figure JPOXMLDOC01-appb-C000031
    で示される化合物(式中、Mは、ナトリウムイオン、リチウムイオン、カリウムイオン、又はプロトン化されたトリエチルアミンカチオンである)を生成する工程を含む、以下の式D-11:
    Figure JPOXMLDOC01-appb-C000032
    で示される化合物(式中、Mは、ナトリウムイオン、リチウムイオン、カリウムイオン、又はプロトン化されたトリエチルアミンカチオンである)を生成する工程、
    (工程II-4)前記式D-11で示される化合物を、以下の式D-12:
    Figure JPOXMLDOC01-appb-C000033
    で示される化合物と反応させることにより、前記式D-13で示されるオリゴ糖を生成する工程を含む、方法。
  29.  前記工程II-1において、前記式D-1で示される化合物を、パーフルオロカルボン酸のアルキルエステルの存在下で、強塩基と反応させることにより、前記式D-2で示される化合物を生成することを含む、請求項28に記載の方法。
  30.  前記パーフルオロカルボン酸のアルキルエステルが、トリフルオロ酢酸メチル、トリフルオロ酢酸エチル、トリフルオロ酢酸プロピル、トリフルオロ酢酸イソプロピル、トリフルオロ酢酸ブチル、ペンタフルオロプロピオン酸メチル、ペンタフルオロプロピオン酸エチル、ペンタフルオロプロピオン酸プロピル、ぺンタフルオロプロピオン酸イソプロピル、ヘプタフルオロ酪酸メチル、ヘプタフルオロ酪酸エチル、ヘプタフルオロ酪酸プロピル、ヘプタフルオロ酪酸イソプロピル、ヘプタフルオロ酪酸ブチル、ノナフルオロ吉草酸メチル、ノナフルオロ吉草酸エチル、ノナフルオロ吉草酸プロピル、ノナフルオロ吉草酸イソプロピル、ノナフルオロ吉草酸ブチル、ウンデカフルオロカプロン酸メチル、ウンデカフルオロカプロン酸エチル、ウンデカフルオロカプロン酸プロピル、ウンデカフルオロカプロン酸イソプロピル、又はウンデカフルオロカプロン酸ブチルである、請求項29に記載の方法。
  31.  前記強塩基が、金属アミドのナトリウム塩、リチウム塩、及びカリウム塩;C1~C20アルコキシドのナトリウム塩、リチウム塩、カリウム塩、セシウム塩、及びバリウム塩;水素化ナトリウム、水素化カリウム、水素化リチウム、ブチルリチウム、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、炭酸リチウム、リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸リチウム、ジアザビシクロウンデセン(DBU)、ジアザビシクロノネン(DBN)、及び1,1,3,3-テトラメチルグアニジン(TMG);並びにこれらの組み合わせからなる群より選択される、請求項29又は30に記載の方法。
  32.  前記強塩基が、カリウムtert-ブトキシド、ナトリウムtert-ブトキシド、リチウムtert-ブトキシド、又はLHMDS(リチウムヘキサメチルジシラジド)である、請求項29又は30に記載の方法。
  33.  前記式D-1で示される化合物を、トリフルオロ酢酸エステルの存在下で、強塩基と反応させることにより、前記式D-2で示される化合物を生成する工程が、C1~C10アルコール溶媒単独又はC1~C10アルコール溶媒とアミド系溶媒、エーテル系溶媒、エステル系溶媒、芳香族系溶媒、ハロゲン系溶媒、炭化水素系溶媒、若しくはニトリル系溶媒との混合溶媒中で行われる、請求項29~32のいずれか一項に記載の方法。
  34.  前記工程II-3において、前記式D-5で示される化合物中のアミノ基を、アリールオキシカルボニル(COOAr)基で保護することによって前記式D-6で示される化合物を生成する、請求項28~33のいずれか一項に記載の方法。
  35.  前記工程II-3において、前記式D-5で示される化合物から前記式D-6で示される化合物を生成する工程が、炭酸水素ナトリウム、炭酸水素カリウム、リン酸水素二ナトリウム、又はリン酸水素二カリウムの水溶液中で行われる、請求項28~34のいずれか一項に記載の方法。
  36.  前記式D-12で示される化合物が、以下の工程:
     粗製の前記式D-12で示される化合物を含む溶液に、以下の式E-1:
    Figure JPOXMLDOC01-appb-C000034
    で示される化合物(式中、Rは、水素原子、メチル基、又はメトキシ基である)を添加して、以下の式E-2:
    Figure JPOXMLDOC01-appb-C000035
    で示される結晶性化合物(式中、Rは、水素原子、メチル基、又はメトキシ基である)を生成させる工程と、該結晶性化合物を単離し、次いで、該単離された結晶性化合物から前記式D-12で示される化合物を抽出する工程と、
    を含む精製方法により得られる、請求項28~35のいずれか一項に記載の方法。
  37.  精製後の前記式D-12で示される化合物が、HPLCで測定した際に95%以上の純度を有する、請求項36に記載の方法。
  38.  前記純度が、98%以上である、請求項37に記載の方法。
  39.  前記工程II-1において、前記式A-13で示される化合物と前記式A-3で示される化合物との反応を停止させた後、生成した前記式D-1で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式D-1で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式D-1で示される化合物を前記疎水性担体から溶出させることにより、前記式D-1で示される化合物を精製することを含む、請求項28~38のいずれか一項に記載の方法。
  40.  前記工程II-2において、前記式D-3で示される化合物と前記式D-4で示される化合物との反応を停止させた後、生成した前記式D-5で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式D-5で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式D-5で示される化合物を前記疎水性担体から溶出させることにより、前記式D-5で示される化合物を精製することを含む、請求項28~39のいずれか一項に記載の方法。
  41.  前記工程II-3において、前記式D-6で示される化合物と前記式D-7で示される化合物との反応を停止させた後、生成した前記式D-8で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式D-8で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式D-8で示される化合物を前記疎水性担体から溶出させることにより、前記式D-8で示される化合物を精製することを含む、請求項28~40のいずれか一項に記載の方法。
  42.  前記工程II-3において、前記式D-9上のアミノ基をアセチルで保護することにより、以下の式D-10:
    Figure JPOXMLDOC01-appb-C000036
    で示される化合物を生成し、生成した前記式D-10で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式D-10で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式D-10で示される化合物を前記疎水性担体から溶出させることにより、前記式D-10で示される化合物を精製することを含む、請求項28~41のいずれか一項に記載の方法。
  43.  前記夾雑物が、前記式D-1で示される化合物以外の糖化合物、及び/又は前記精製される化合物を得るための反応試薬由来の化合物を含む、請求項39に記載の方法。
  44.  前記夾雑物が、前記式D-5で示される化合物以外の糖化合物、及び/又は前記精製される化合物を得るための反応試薬由来の化合物を含む、請求項40に記載の方法。
  45.  前記夾雑物が、前記式D-8で示される化合物以外の糖化合物、及び/又は前記精製される化合物を得るための反応試薬由来の化合物を含む、請求項41に記載の方法。
  46.  前記夾雑物が、前記式C-10で示される化合物以外の糖化合物、及び/又は前記精製される化合物を得るための反応試薬由来の化合物を含む、請求項42に記載の方法。
  47.  前記疎水性担体が、逆相分配クロマトグラフィー充填用樹脂である、請求項39~46のいずれか一項に記載の方法。
  48.  前記逆相分配クロマトグラフィー充填用樹脂が、ポリ(スチレン/ジビニルベンゼン)ポリマーゲル樹脂、ポリスチレン-ジビニルベンゼン樹脂、ポリヒドロキシメタクリレート樹脂、スチレンビニルベンゼン共重合体樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリメタクリレート樹脂、化学結合型シリカゲル樹脂、及びこれらの組み合わせからなる群から選択される、請求項47に記載の方法。
  49.  前記化学結合型シリカゲル樹脂が、(1)シリカゲルに、シランカップリング剤を反応させて得られる樹脂、(2)シリカゲルに、ジメチルオクタデシル、オクタデシル、トリメチルオクタデシル、ジメチルオクチル、オクチル、ブチル、エチル、メチル、フェニル、シアノプロピル、又はアミノプロピル基を化学結合して得られる樹脂、(3)シリカゲルに、ドコシル又はトリアコンチル基を化学結合して得られる樹脂、及び(4)前述の(1)~(3)の組み合わせからなる群から選択される、請求項48に記載の方法。
  50.  前記化学結合型シリカゲル樹脂が、オクタデシル基結合シリカゲル樹脂(ODS樹脂)である、請求項48に記載の方法。
  51.  前記水溶性有機溶媒が、水溶性アルコール系溶媒、水溶性ニトリル系溶媒、水溶性エーテル系溶媒、水溶性ケトン系溶媒、水溶性アミド系溶媒、又は水溶性スルホキシド系溶媒、もしくは前述の水溶性有機溶媒系を少なくとも1種以上含む混合溶媒である、請求項39~50のいずれか一項に記載の方法。
  52.  前記水溶性ニトリル系溶媒が、アセトニトリルである、請求項51に記載の方法。
  53.  前記疎水性担体から目的物の溶出工程で使用される前記有機溶媒が、ニトリル系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、ハロゲン系溶媒、芳香族系溶媒、又は前述の溶媒系を少なくとも1種以上含む混合溶媒である、請求項39~52のいずれか一項に記載の方法。
  54.  前記式D-5で示される化合物をフマル酸と塩を形成することにより、結晶性の以下の式D-5-FMA:
    Figure JPOXMLDOC01-appb-C000037
    で示される化合物を生成し、次いで、結晶性の前記式D-5-FMAで示される化合物を非結晶性物質から分離精製する工程をさらに含む、請求項28~53のいずれか一項に記載の方法。
  55.  以下の式B-5:
    Figure JPOXMLDOC01-appb-C000038
    で示される化合物を製造する方法であって、以下の式B-4:
    Figure JPOXMLDOC01-appb-C000039
    で示される化合物及びハロゲン化ベンジル又はスルホン酸ベンジルを含む溶媒に、リチウムtert-ブトキシド又はリチウムtert-アモキシドを添加して、前記式B-4で示される化合物中に存在する水酸基をベンジル基で保護する工程を含む、方法。
  56.  前記溶媒が、アミド系溶媒、エーテル系溶媒、芳香族系溶媒、ウレア系溶媒、炭化水素系溶媒、もしくは前述の溶媒系を少なくとも1種以上含む混合溶媒である、請求項55に記載の方法。
  57.  以下の式A-10:
    Figure JPOXMLDOC01-appb-C000040
    で示される化合物を製造する方法であって、以下の式A-9:
    Figure JPOXMLDOC01-appb-C000041
    で示される化合物を、パーフルオロカルボン酸のアルキルエステルの存在下で、強塩基と反応させる工程を含む、方法。
  58.  前記パーフルオロカルボン酸のアルキルエステルが、トリフルオロ酢酸メチル、トリフルオロ酢酸エチル、トリフルオロ酢酸プロピル、トリフルオロ酢酸イソプロピル、トリフルオロ酢酸ブチル、ペンタフルオロプロピオン酸メチル、ペンタフルオロプロピオン酸エチル、ペンタフルオロプロピオン酸プロピル、ぺンタフルオロプロピオン酸イソプロピル、ヘプタフルオロ酪酸メチル、ヘプタフルオロ酪酸エチル、ヘプタフルオロ酪酸プロピル、ヘプタフルオロ酪酸イソプロピル、ヘプタフルオロ酪酸ブチル、ノナフルオロ吉草酸メチル、ノナフルオロ吉草酸エチル、ノナフルオロ吉草酸プロピル、ノナフルオロ吉草酸イソプロピル、ノナフルオロ吉草酸ブチル、ウンデカフルオロカプロン酸メチル、ウンデカフルオロカプロン酸エチル、ウンデカフルオロカプロン酸プロピル、ウンデカフルオロカプロン酸イソプロピル、又はウンデカフルオロカプロン酸ブチルである、請求項57に記載の方法。
  59.  前記強塩基が、金属アミドのナトリウム塩、リチウム塩、カリウム塩;C1~C20アルコキシドのナトリウム塩、リチウム塩、カリウム塩、セシウム塩、及びバリウム塩;水素化ナトリウム、水素化カリウム、水素化リチウム、ブチルリチウム、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、炭酸リチウム、リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸リチウム、ジアザビシクロウンデセン(DBU)、ジアザビシクロノネン(DBN)、及び1,1,3,3-テトラメチルグアニジン(TMG);並びに、これらの組み合わせから選択される、請求項57又は58に記載の方法。
  60.  前記強塩基が、カリウムtert-ブトキシド、ナトリウムtert-ブトキシド、リチウムtert-ブトキシド、又はLHMDS(リチウムヘキサメチルジシラジド)である、請求項57又は58に記載の方法。
  61.  前記反応が、C1~C10アルコール溶媒単独又はC1~C10アルコール溶媒とアミド系溶媒、エーテル系溶媒、エステル系溶媒、芳香族系溶媒、ハロゲン系溶媒、炭化水素系溶媒、若しくはニトリル系溶媒との混合溶媒中で行われる、請求項57~60のいずれか一項に記載の方法。
  62.  以下の式A-13:
    Figure JPOXMLDOC01-appb-C000042
    で示されるオリゴ糖を製造する方法であって、以下の式A-12:
    Figure JPOXMLDOC01-appb-C000043
    で示される化合物を、フルオラスアルコール及び水の混合溶媒中で、DDQ(2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン)と反応させて、式A-12で示される化合物中の2-ナフチルメチル基を脱離させる工程を含む、方法。
  63.  前記フルオラスアルコールが、ヘキサフルオロ-2-プロパノール(HFIP)、2,2,2-トリフルオロエタノール(TFE)、2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール、ノナフルオロ-tert-ブチルアルコール及びこれらの組み合わせからなる群から選択される、請求項62に記載の方法。
  64.  -35℃~70℃で行われる、請求項62又は63に記載の方法。
  65.  -30℃~-10℃で行われる、請求項62又は63に記載の方法。
  66.  下記の式A-5:
    Figure JPOXMLDOC01-appb-C000044
    で示される化合物の精製方法であって、前記式A-5で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式A-5で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式A-5で示される化合物を前記疎水性担体から溶出させることにより、前記式A-5で示される化合物を精製することを含む、方法。
  67.  下記の式A-9:
    Figure JPOXMLDOC01-appb-C000045
    で示される化合物の精製方法であって、前記式A-9で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式A-9で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式A-9で示される化合物を前記疎水性担体から溶出させることにより、前記式A-9で示される化合物を精製することを含む、方法。
  68.  下記の式A-12:
    Figure JPOXMLDOC01-appb-C000046
    で示される化合物の精製方法であって、前記式A-12で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式A-12で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式A-12で示される化合物を前記疎水性担体から溶出させることにより、前記式A-12で示される化合物を精製することを含む、方法。
  69.  下記の式D-1:
    Figure JPOXMLDOC01-appb-C000047
    で示される化合物の精製方法であって、前記式D-1で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式D-1で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式D-1で示される化合物を前記疎水性担体から溶出させることにより、前記式D-1で示される化合物を精製することを含む、方法。
  70.  下記の式D-5:
    Figure JPOXMLDOC01-appb-C000048
    で示される化合物の精製方法であって、前記式D-5で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式D-5で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式D-5で示される化合物を前記疎水性担体から溶出させることにより、前記式D-5で示される化合物を精製することを含む、方法。
  71.  下記の式D-8:
    Figure JPOXMLDOC01-appb-C000049
    で示される化合物(式中、Rは、アリールオキシカルボニル(COOAr)基、アセチル(Ac)基、若しくは2,2,2-トリクロロエトキシカルボニル(Troc)基であり、かつ、Rは、水素原子であるか、又はR及びRは、これらが結合している窒素原子と一緒にフタルイミド基を形成する)の精製方法であって、前記式D-8で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式D-8で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式D-8で示される化合物を前記疎水性担体から溶出させることにより、前記式D-8で示される化合物を精製することを含む、方法。
  72.  下記の式D-10:
    Figure JPOXMLDOC01-appb-C000050
    で示される化合物の精製方法であって、前記式D-10で示される化合物及び夾雑物を含む水溶性有機溶媒に、疎水性担体及び水を添加して、該疎水性担体中に前記式D-10で示される化合物を吸着させ、次いで、ろ過及び該疎水性担体を前記水溶性有機溶媒と前記水との混合溶液で洗浄することで、前記夾雑物の除去を行い、次いで、有機溶媒を用いて前記式D-10で示される化合物を前記疎水性担体から溶出させることにより、前記式D-10で示される化合物を精製することを含む、方法。
  73.  前記夾雑物が、前記式D-1で示される化合物以外の糖化合物、及び/又は前記精製される化合物を得るための反応試薬由来の化合物を含む、請求項69に記載の方法。
  74.  前記夾雑物が、前記D-5で示される化合物以外の糖化合物、及び/又は前記精製される化合物を得るための反応試薬由来の化合物を含む、請求項70に記載の方法。
  75.  前記夾雑物が、前記D-8で示される化合物以外の糖化合物、及び/又は前記精製される化合物を得るための反応試薬由来の化合物を含む、請求項71に記載の方法。
  76.  前記夾雑物が、前記式D-10で示される化合物以外の糖化合物、及び/又は前記精製される化合物を得るための反応試薬由来の化合物を含む、請求項72に記載の方法。
  77.  前記疎水性担体が、逆相分配クロマトグラフィー充填用樹脂である、請求項69~76のいずれか一項に記載の方法。
  78.  前記逆相分配クロマトグラフィー充填用樹脂が、ポリ(スチレン/ジビニルベンゼン)ポリマーゲル樹脂、ポリスチレン-ジビニルベンゼン樹脂、ポリヒドロキシメタクリレート樹脂、スチレンビニルベンゼン共重合体樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリメタクリレート樹脂、化学結合型シリカゲル樹脂、及びこれらの組み合わせからなる群から選択される、請求項77に記載の方法。
  79.  前記化学結合型シリカゲル樹脂が、(1)シリカゲルに、シランカップリング剤を反応させて得られる樹脂、(2)シリカゲルに、ジメチルオクタデシル、オクタデシル、トリメチルオクタデシル、ジメチルオクチル、オクチル、ブチル、エチル、メチル、フェニル、シアノプロピル、又はアミノプロピル基を化学結合して得られる樹脂、(3)シリカゲルに、ドコシル又はトリアコンチル基を化学結合して得られる樹脂、及び(4)前述の(1)~(3)の組み合わせからなる群から選択される、請求項78に記載の方法。
  80.  前記化学結合型シリカゲル樹脂が、オクタデシル基結合シリカゲル樹脂(ODS樹脂)である、請求項79に記載の方法。
  81.  前記水溶性有機溶媒が、水溶性アルコール系溶媒、水溶性ニトリル系溶媒、水溶性エーテル系溶媒、水溶性ケトン系溶媒、水溶性アミド系溶媒、水溶性スルホキシド系溶媒、又は前述の水溶性有機溶媒系を少なくとも1種以上含む混合溶媒である、請求項69~80のいずれか一項に記載の方法。
  82.  前記水溶性ニトリル系溶媒が、アセトニトリルである、請求項81に記載の方法。
  83.  前記疎水性担体から目的物の溶出工程で使用される前記有機溶媒が、ニトリル系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、ハロゲン系溶媒、芳香族系溶媒、又は前述の溶媒系を少なくとも1種以上含む混合溶媒である、請求項69~82のいずれか一項に記載の方法。
  84.  以下の式D-8:
    Figure JPOXMLDOC01-appb-C000051
    で示される化合物(式中、Rは、アリールオキシカルボニル(COOAr)基、アセチル(Ac)基、若しくは2,2,2-トリクロロエトキシカルボニル(Troc)基であり、かつ、Rは、水素原子であるか、又はR及びRは、これらが結合している窒素原子と一緒にフタルイミド基を形成する)を生成する方法であって、以下の式D-6:
    Figure JPOXMLDOC01-appb-C000052
    で示される化合物(式中、Rは、アリールオキシカルボニル(COOAr)基、アセチル(Ac)基、若しくは2,2,2-トリクロロエトキシカルボニル(Troc)基であり、かつ、Rは、水素原子であるか、又はR及びRは、これらが結合している窒素原子と一緒にフタルイミド基を形成する)を生成し、次いで、前記式D-6で示される化合物を以下のD-7:
    Figure JPOXMLDOC01-appb-C000053
    で示される化合物とβ-1,4-グリコシド結合させることにより、前記式D-8で示される化合物を生成する工程を含む、方法。
  85.  Rが、アリールオキシカルボニル(COOAr)基である、請求項84に記載の方法。
  86.  前記式D-8で示される化合物中のアミノ基の保護基及びアルコールのアシル系保護基を除去することにより、式D-9:
    Figure JPOXMLDOC01-appb-C000054
    で示される化合物(式中、Mは、ナトリウムイオン、リチウムイオン、カリウムイオン、又はプロトン化されたトリエチルアミンカチオンである)を生成することを含む、請求項84又は85に記載の方法。
  87.  以下の式D-12:
    Figure JPOXMLDOC01-appb-C000055
    で示される化合物を精製する方法であって、粗製の前記式D-12で示される化合物を含む溶液に、以下の式E-1:
    Figure JPOXMLDOC01-appb-C000056
    で示される化合物(式中、Rは、水素原子、メチル基、又はメトキシ基である)を添加して、以下の式E-2:
    Figure JPOXMLDOC01-appb-C000057
    で示される結晶性化合物(式中、Rは、水素原子、メチル基、又はメトキシ基である)を生成させる工程と、該結晶性化合物を単離し、次いで、該単離された結晶性化合物から前記式D-12で示される化合物を抽出する工程と、を含む、方法。
  88.  以下の式A-13:
    Figure JPOXMLDOC01-appb-C000058
    で示されるオリゴ糖。
  89.  以下の式A-5:
    Figure JPOXMLDOC01-appb-C000059
    で示される化合物。
  90.  以下の式A-6:
    Figure JPOXMLDOC01-appb-C000060
    で示される化合物。
  91.  以下の式A-7:
    Figure JPOXMLDOC01-appb-C000061
    で示される化合物。
  92.  以下の式A-9:
    Figure JPOXMLDOC01-appb-C000062
    で示される化合物。
  93.  以下の式A-10:
    Figure JPOXMLDOC01-appb-C000063
    で示される化合物。
  94.  以下の式A-11:
    Figure JPOXMLDOC01-appb-C000064
    で示される化合物。
  95.  以下の式A-12:
    Figure JPOXMLDOC01-appb-C000065
    で示される化合物。
  96.  以下の式A-14:
    Figure JPOXMLDOC01-appb-C000066
    で示される化合物。
  97.  以下の式A-15:
    Figure JPOXMLDOC01-appb-C000067
    で示される化合物。
  98.  以下の式B-4:
    Figure JPOXMLDOC01-appb-C000068
    で示される化合物。
  99.  以下の式B-5:
    Figure JPOXMLDOC01-appb-C000069
    で示される化合物。
  100.  以下の式B-6:
    Figure JPOXMLDOC01-appb-C000070
    で示される化合物。
  101.  以下の式B-7:
    Figure JPOXMLDOC01-appb-C000071
    で示される化合物。
  102.  以下の式B-8:
    Figure JPOXMLDOC01-appb-C000072
    で示される化合物。
  103.  以下の式D-1:
    Figure JPOXMLDOC01-appb-C000073
    で示される化合物。
  104.  以下の式D-2:
    Figure JPOXMLDOC01-appb-C000074
    で示される化合物。
  105.  以下の式D-4:
    Figure JPOXMLDOC01-appb-C000075
    で示される化合物。
  106.  以下の式D-5:
    Figure JPOXMLDOC01-appb-C000076
    で示される化合物。
  107.  以下の式D-5-FMA:
    Figure JPOXMLDOC01-appb-C000077
    で示される化合物。
  108.  以下の式D-6:
    Figure JPOXMLDOC01-appb-C000078
    で示される化合物
    (式中、Rは、アリールオキシカルボニル(COOAr)基、アセチル(Ac)基、若しくは2,2,2-トリクロロエトキシカルボニル(Troc)基であり、かつ、Rは、水素原子であるか、又はR及びRは、これらが結合している窒素原子と一緒にフタルイミド基を形成する)。
  109.  以下の式D-8:
    Figure JPOXMLDOC01-appb-C000079
    で示される化合物(式中、Rは、アリールオキシカルボニル(COOAr)基、アセチル(Ac)基、若しくは2,2,2-トリクロロエトキシカルボニル(Troc)基であり、かつ、Rは、水素原子であるか、又はR及びRは、これらが結合している窒素原子と一緒にフタルイミド基を形成する)。
  110.  以下の式D-9:
    Figure JPOXMLDOC01-appb-C000080
    で示される化合物(式中、Mは、ナトリウムイオン、リチウムイオン、カリウムイオン、又はプロトン化されたトリエチルアミンカチオンである)。
  111.  以下の式D-10:
    Figure JPOXMLDOC01-appb-C000081
    で示される化合物(式中、Mは、ナトリウムイオン、リチウムイオン、カリウムイオン、又はプロトン化されたトリエチルアミンカチオンである)。
  112.  以下の式D-11:
    Figure JPOXMLDOC01-appb-C000082
    で示される化合物(式中、Mは、ナトリウムイオン、リチウムイオン、カリウムイオン、又はプロトン化されたトリエチルアミンカチオンである)。
  113.  以下の式E-2:
    Figure JPOXMLDOC01-appb-C000083
    で示される結晶性化合物(式中、Rは、水素原子、メチル基、又はメトキシ基である)。
  114.  HPLCで測定した際に90%以上の純度を有する、以下の式D-12:
    Figure JPOXMLDOC01-appb-C000084
    で示される化合物。
  115.  前記純度が、95%以上である、請求項109に記載の化合物。
  116.  以下の式D-13:
    Figure JPOXMLDOC01-appb-C000085
    で示されるオリゴ糖。
PCT/JP2022/040346 2021-10-29 2022-10-28 新規なオリゴ糖、該オリゴ糖の製造中間体、及びそれらの製造方法 WO2023074843A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3236388A CA3236388A1 (en) 2021-10-29 2022-10-28 Novel oligosaccharide, manufacturing intermediate for novel oligosaccharide, and method for manufacturing these

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021178383 2021-10-29
JP2021-178383 2021-10-29
JP2022-005353 2022-01-17
JP2022005353 2022-01-17

Publications (1)

Publication Number Publication Date
WO2023074843A1 true WO2023074843A1 (ja) 2023-05-04

Family

ID=86160002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040346 WO2023074843A1 (ja) 2021-10-29 2022-10-28 新規なオリゴ糖、該オリゴ糖の製造中間体、及びそれらの製造方法

Country Status (3)

Country Link
CA (1) CA3236388A1 (ja)
TW (1) TW202334175A (ja)
WO (1) WO2023074843A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053574A1 (ja) * 2022-09-09 2024-03-14 第一三共株式会社 新規なオリゴ糖、該オリゴ糖の製造中間体、及びそれらの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008431A1 (fr) * 2001-06-19 2003-01-30 Otsuka Chemical Co.,Ltd. Methode de production d'un derive d'asparagine de chaines des sucres
JP2019515876A (ja) * 2016-03-08 2019-06-13 アカデミア シニカAcademia Sinica N−グリカンおよびそのアレイのモジュール合成のための方法
JP2021504439A (ja) * 2017-11-30 2021-02-15 ヴァクシロン アーゲー クレブシエラ ニューモニエ(Klebsiella pneumoniae)に対するワクチン

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008431A1 (fr) * 2001-06-19 2003-01-30 Otsuka Chemical Co.,Ltd. Methode de production d'un derive d'asparagine de chaines des sucres
JP2019515876A (ja) * 2016-03-08 2019-06-13 アカデミア シニカAcademia Sinica N−グリカンおよびそのアレイのモジュール合成のための方法
JP2021504439A (ja) * 2017-11-30 2021-02-15 ヴァクシロン アーゲー クレブシエラ ニューモニエ(Klebsiella pneumoniae)に対するワクチン

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KATSUNORI TANAKA, YOHEI FUJII, HIROOMI TOKIMOTO, YASUTAKA MORI, SHIN-ICHI TANAKA, GUANG-MING BAO, ERIC R. O. SIWU, AIKO NAK: "Synthesis of a Sialic Acid Containing Complex-Type N -Glycan on a Solid Support", CHEMISTRY - AN ASIAN JOURNAL, WILEY-VCH, HOBOKEN, USA, vol. 4, no. 4, 6 April 2009 (2009-04-06), Hoboken, USA, pages 574 - 580, XP055414595, ISSN: 1861-4728, DOI: 10.1002/asia.200800411 *
NAKAHARA, Y. SHIBAYAMA, S. NAKAHARA, Y. OGAWA, T.: "Rationally designed syntheses of high-mannose and complex type undecasaccharides", CARBOHYDRATE RESEARCH, PERGAMON, GB, vol. 280, no. 1, 4 January 1996 (1996-01-04), GB , pages 67 - 84, XP004018834, ISSN: 0008-6215, DOI: 10.1016/0008-6215(95)00262-6 *
OGAWA TOMOYA, MAMORU SUGIMOTO, TOORU KITAJIMA, KHALID KHAN SADOZAI, TOMOO NUKADA: "Total synthesis of a undecasaccharide: A typical carbohydrate sequence for the complex type of glycan chains of a glycoprotein", TETRAHEDRON LETTERS, vol. 27, no. 47, 1 January 1986 (1986-01-01), pages 5739 - 5742, XP093061770 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053574A1 (ja) * 2022-09-09 2024-03-14 第一三共株式会社 新規なオリゴ糖、該オリゴ糖の製造中間体、及びそれらの製造方法

Also Published As

Publication number Publication date
TW202334175A (zh) 2023-09-01
CA3236388A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
EP2382226B1 (en) Process for the synthesis of l-fucosyl di- or oligosaccharides and novel 2,3,4 tribenzyl-fucosyl derivatives intermediates thereof
EP2417144B1 (en) Synthesis of 2'-o-fucosyllactose
JP2009533345A (ja) リポキトオリゴ糖の化学合成法
WO2023074843A1 (ja) 新規なオリゴ糖、該オリゴ糖の製造中間体、及びそれらの製造方法
Barroca-Aubry et al. Towards a modular synthesis of well-defined chitooligosaccharides: Synthesis of the four chitodisaccharides
Wang et al. Expedient synthesis of an α-S-(1→ 6)-linked pentaglucosyl thiol
Nishiyama et al. Synthesis of fluorescence-labeled Galβ1-3Fuc and Galβ1-4Fuc as probes for the endogenous glyco-epitope recognized by galectins in Caenorhabditis elegans
Gallo-Rodriguez et al. Synthesis of β-d-Galp-(1→ 3)-β-d-Galp-(1→ 6)-[β-d-Galf-(1→ 4)]-d-GlcNAc, a tetrasaccharide component of mucins of Trypanosoma cruzi
WO2022191313A1 (ja) 糖鎖及び糖鎖を含む医薬品の製造方法
Eklind et al. Large-Scale Synthesis of a Lewis b Tetrasaccharide Derivative, its Acrylamide Copolymer, and Related DI-and Trisaccharides for Use in Adhesion Inhibition Studies with Helicobacter Pylori.
Jain et al. Chemical synthesis of a hexasaccharide comprising the Lewisx determinant linked β-(1→ 6) to a linear trimannosyl core and the precursor pentasaccharide lacking fucose
WO2024053574A1 (ja) 新規なオリゴ糖、該オリゴ糖の製造中間体、及びそれらの製造方法
JPH10502093A (ja) レジオ選択的硫酸化
US10759823B2 (en) Regioselective silyl exchange of per-silylated oligosaccharides
WO2007048974A2 (fr) Heterooligomeres de d-glucosamine et n-acetyl-d-glucosamine, leur procede de preparation et leur utilisation
JP2629852B2 (ja) グリコシル化合物の製造方法
Spijker et al. Synthesis of Modified Di-and Trisaccharide Fragments of N-Glycoproteins
JP4813838B2 (ja) コア6型構造を有するo−結合型糖アミノ酸誘導体およびその製造方法
JP5015505B2 (ja) コア4型構造を有するo−結合型糖タンパク質糖鎖関連化合物およびその製造方法
EP1849794A1 (en) Process for producing 1,2-trans-glycoside compound
CA3131096A1 (en) Sialidase-resistant saccharide and method of making and using the same
Zeng et al. Synthesis of a hexasaccharide fragment of group E streptococci polysaccharide and the tetrasaccharide repeating unit of E. coli O7: K98: H6
JPH0952902A (ja) フッ素含有シアリルルイスx誘導体及びその合成中間体
Andersen et al. An efficient synthesis of linear β-(1→ 6)-galactan oligosaccharides
JPH09241288A (ja) グリコシル化合物の立体選択的な製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887168

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023556666

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 312410

Country of ref document: IL

Ref document number: 3236388

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024007885

Country of ref document: BR