WO2023074407A1 - 光測距装置 - Google Patents

光測距装置 Download PDF

Info

Publication number
WO2023074407A1
WO2023074407A1 PCT/JP2022/038354 JP2022038354W WO2023074407A1 WO 2023074407 A1 WO2023074407 A1 WO 2023074407A1 JP 2022038354 W JP2022038354 W JP 2022038354W WO 2023074407 A1 WO2023074407 A1 WO 2023074407A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pulse
target
reflected light
normal
Prior art date
Application number
PCT/JP2022/038354
Other languages
English (en)
French (fr)
Inventor
謙太 東
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202280071149.1A priority Critical patent/CN118140153A/zh
Publication of WO2023074407A1 publication Critical patent/WO2023074407A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection

Definitions

  • the present disclosure relates to an optical ranging device that detects the distance to an object using SPAD (Single Photon Avalanche Diode).
  • SPAD Single Photon Avalanche Diode
  • An optical rangefinder is known that measures the distance to a target by detecting the flight time of light emitted from a light source and reflected by the target until it reaches a sensor.
  • Japanese Patent Laid-Open No. 2002-200002 discloses an optical distance measuring device using a SPAD as one of them. That is, on the premise that the optical rangefinder disclosed in Patent Document 1 is provided with a plurality of SPADs for each pixel, the controller controls the number of pixels corresponding to the number of SPADs responding to the reflected light from the target. Determine the received light intensity for each Then, the distance value for each pixel is calculated based on the time from the irradiation of light from the light source until the peak of the received light intensity is obtained.
  • a SPAD is a photodetector that uses “avalanche multiplication,” which amplifies electrons from a single incident photon like an avalanche, and can detect even weaker light than other photodetectors. can. In other words, the SPAD can respond to even weak light, so it has the advantage of enabling long-distance and highly accurate distance measurement.
  • the intensity value (that is, the pixel value) of each pixel is saturated by unnecessary reflected light (so-called clutter).
  • clutter unnecessary reflected light
  • the state in which the pixel value is saturated refers to the state in which the observable received light intensity range reaches the upper limit value.
  • the unnecessary reflected light includes internally scattered light generated by elements inside the housing of the optical distance measuring device, adherent scattered light that is scattered light due to adherents adhering to the outside of the irradiation window, and multiplexed light. Reflected light or the like is assumed.
  • the observed light pulse is determined whether it is the reflected light from the target or the unnecessary reflected light. and the unnecessary reflected light are combined. If the entire received light pulse, in which the unwanted reflected light and the reflected light from the target are combined, is assumed to be the reflected light from the target, then the feature values such as the peak position and rising position corresponding to the reflected light from the target can be obtained. can result in erroneous determination of the target position.
  • the present disclosure has been made based on the above considerations or points of focus, and one of its purposes is to provide light that can reduce the risk of erroneously calculating the distance to a target without reducing the ranging range. To provide a distance measuring device.
  • the optical rangefinder disclosed herein is an optical rangefinder that detects the distance to a target using the round-trip time of light to the target, wherein sensing light, which is light having a predetermined wavelength, is detected by a predetermined detection.
  • An irradiation unit that emits light toward a target direction, a plurality of photodetectors that respond to sensing light and are arranged in a matrix, and the irradiation intensity of the sensing light output from the irradiation unit, or a plurality of photodetectors.
  • Sensing light is reflected by an object based on a level adjustment unit that switches the detection sensitivity of the device from a predetermined normal level to a suppression level that is lower than the normal level by a predetermined amount, and based on time-series data of the number of responses of the photodetector.
  • a pulse information acquisition unit for acquiring normal pulse information, which is pulse information when the normal level is applied, and suppressed pulse information, which is pulse information when the suppression level is applied; and a normal pulse a distance calculation unit that calculates a distance value to the target based on the information and the suppression pulse information.
  • the normal pulse information which is the pulse information observed when the normal level is applied
  • the suppressed pulse information which is the pulse information observed when the suppression level is applied
  • the waveforms of the received light pulses are different when the reflected light from the target is received, when only the unwanted reflected light is received, and when the reflected light from the target and the unwanted reflected light are combined. becomes different.
  • the normal pulse information and the suppression pulse information it is possible to determine whether the observed received light pulse is the reflected light from the target or the unnecessary reflected light, and the reflected light from the target and the unnecessary reflected light. It becomes possible to determine whether or not they are combined. Also, by using not only the suppression pulse information but also the normal pulse information, it becomes possible to detect relatively distant targets. In other words, it is possible to reduce the risk of erroneously calculating the distance to the target without reducing the ranging range.
  • FIG. 1 is a block diagram showing the configuration of an optical distance measuring device
  • FIG. FIG. 2 is a conceptual diagram for explaining the configuration of a light receiving array
  • FIG. 10 is a diagram showing a modified example of allocation of cell groups corresponding to pixels
  • FIG. 4 is a diagram for explaining a feature amount of a received light pulse
  • FIG. 4 is a diagram for explaining a method of determining a peak arrival time when peak intensity is saturated; It is a figure for demonstrating the near-body scattered light.
  • FIG. 4 is a diagram for explaining multiple reflected light
  • FIG. 4 is a diagram for explaining the effects on the rise determination time and pulse width depending on the type of unwanted reflected light
  • 4 is a functional block diagram of a control unit
  • FIG. 4 is a diagram for explaining the operation of the optical distance measuring device; It is a figure which shows an example of the arithmetic expression corresponding to each observation pattern.
  • FIG. 10 is a diagram showing another example of an arithmetic expression corresponding to each observation pattern; It is a figure which shows an example of the arithmetic expression corresponding to each observation pattern.
  • 4 is a flow chart showing a method of discriminating an observation pattern;
  • FIG. 4 is a conceptual diagram showing the difference in peak arrival time observed between normal light receiving and emitting processing and suppressed light receiving and emitting processing when target reflected light is combined with scattered light.
  • FIG. 4 is a conceptual diagram showing the difference in peak arrival times observed between normal light receiving and emitting processing and suppressed light receiving and emitting processing when target reflected light is combined with multiple reflected light.
  • 9 is a flow chart showing another example of a method for discriminating observation patterns.
  • 9 is a flow chart showing another example of a method for discriminating observation patterns.
  • FIG. 10 is a conceptual diagram showing the difference in rise determination time observed between normal light receiving and emitting processing and suppressed light receiving and emitting processing when target reflected light is combined with multiple reflected light.
  • FIG. 10 is a conceptual diagram showing a difference in rise determination time observed between normal light receiving/emitting processing and suppressed light receiving/emitting processing when target reflected light is combined with scattered light. It is a figure which shows the modification of a structure of an optical distance measuring device.
  • An optical rangefinder 1 shown in FIG. 1 is a device that measures the distance to an object from the round trip time of light to the target.
  • the optical rangefinder 1 is also called LiDAR (Light Detection and Ranging/Laser Imaging Detection and Ranging).
  • a target in this disclosure refers to a wide variety of objects that can reflect light.
  • a target can be a feature/moving object that exists independently of the own vehicle, such as another vehicle, a pedestrian, a median strip, a guardrail, etc., and that can become an obstacle to the vehicle's travel control.
  • the self-vehicle in the present disclosure refers to a vehicle on which the optical ranging device 1 is mounted/mounted.
  • the optical distance measuring device 1 includes an irradiation unit 4 that emits sensing light, which is pulsed light, and a light receiving array 5 in which a plurality of light receiving elements are arranged in an array.
  • the optical distance measuring device 1 measures based on the time (so-called ToF: Time of Flight) from when the irradiating unit 4 irradiates the sensing light until each light receiving element receives the reflected light corresponding to the sensing light.
  • ToF Time of Flight
  • a distance image is data that includes a plurality of pixels, and the value of each pixel indicates the distance to an object.
  • the optical distance measuring device 1 is connected to a vehicle state sensor 101 and an in-vehicle ECU 102, as shown in FIG. ECU in the present disclosure is an abbreviation for Electronic Control Unit and means an electronic control unit.
  • the optical distance measuring device 1 is connected to a vehicle state sensor 101 and an in-vehicle ECU 102 via an in-vehicle network.
  • the optical distance measuring device 1 may be directly connected to some sensors/ECUs using dedicated communication lines.
  • the irradiation pattern of the sensing light in the optical distance measuring device 1 may be a scanning method or a flash method.
  • the scanning method refers to a method of sweeping irradiation of sensing light by dynamically changing the angle of the reflecting mirror with respect to the irradiation unit 4 using an actuator.
  • the scanning direction may be horizontal or vertical.
  • the flash method is a method of irradiating diffused sensing light all at once toward an angle range corresponding to a desired detection range. The present disclosure is applicable to both the scan method and the flash method.
  • the vehicle state sensor 101 is a sensor for detecting information related to the behavior of the own vehicle and information related to driving operations that affect the behavior of the own vehicle (hereinafter referred to as vehicle information).
  • vehicle information includes, for example, the traveling speed of the own vehicle, the acceleration acting on the own vehicle, the yaw rate, the pedal operation amount, the steering angle, and the like.
  • the pedal operation amount refers to the depression amount/depression force for each of the accelerator pedal and the brake pedal.
  • a signal indicating the status of the vehicle power supply can also be included in the vehicle information.
  • the state of the vehicle power supply includes whether or not the running power supply is on.
  • the running power source is a power source for the vehicle to run, and refers to an ignition power source when the own vehicle is an engine vehicle.
  • the running power source refers to the system main relay.
  • Electric vehicles include not only electric vehicles but also plug-in hybrid vehicles and hybrid vehicles.
  • a plurality of vehicle state sensors 101 that detect different objects can be connected to the optical rangefinder 1 .
  • the vehicle state sensor 101 outputs a signal indicating the detection result to the optical distance measuring device 1 .
  • the in-vehicle ECU 102 is an arbitrary ECU installed in the own vehicle.
  • the optical distance measuring device 1 is used in connection with a driving support ECU or the like.
  • the driving assistance ECU is an ECU that executes processing for assisting the driving operation of the driver. Based on the detection result of the optical distance measuring device 1, the driving support ECU notifies the driver of a collision with another moving object or a stationary object.
  • the driving support ECU may be an ECU that performs not only information presentation but also automatic braking control and steering according to the detection result of the optical distance measuring device 1 .
  • Other moving bodies refer to pedestrians, other vehicles, cyclists, and the like.
  • the driving support ECU may be an automatic operation device that autonomously drives the vehicle to a preset destination.
  • a driver in the present disclosure refers to a person sitting in the driver's seat, that is, a driver's seat occupant.
  • the description of the driver refers to a person who should receive driving operation authority from the automatic driving system during automatic driving.
  • the concept of driver can include an operator who remotely controls a vehicle.
  • the optical distance measuring device 1 includes a control section 2, an irradiation control circuit 3, an irradiation section 4, a light receiving array 5, a response determiner 6, an adder 7, and a peak detection section 8, as shown in FIG.
  • the optical distance measuring device 1 includes a housing 9 that accommodates them.
  • the housing 9 is provided with an irradiation window 91 for irradiating the sensing light.
  • the irradiation window 91 is realized using a translucent member such as a transparent resin panel or glass.
  • the irradiation window 91 can also function as a window for the light receiving array 5 to receive reflected light from the target. Note that the irradiation window 91 and the light receiving window may be provided separately.
  • the illumination window 91 may also be called an optical window.
  • the control unit 2 controls the operation of the optical distance measuring device 1.
  • the control unit 2 inputs a signal related to the irradiation setting of the sensing light to the irradiation control circuit 3 .
  • the control unit 2 acquires pulse information of the received light pulse corresponding to the reflected light from the peak detection unit 8 .
  • the control unit 2 is implemented using a processor 21 , a RAM (Random Access Memory) 22 and a storage 23 .
  • the control unit 2 includes a DSP (Digital Signal Processor), a CPU (Central Processing Unit), etc. as the processor 21 .
  • Various functions of the control unit 2 are realized by the processor 21 executing programs stored in the storage 23 . Details of the functions of the control unit 2 will be described separately later.
  • the irradiation control circuit 3 Based on the command from the control unit 2, the irradiation control circuit 3 causes the irradiation unit 4 to irradiate the sensing light at predetermined irradiation intervals.
  • the irradiation control circuit 3 controls the pulse width of the sensing light emitted from the irradiation unit 4, the irradiation intensity, the irradiation interval, and the like.
  • the irradiation intensity corresponds to the peak height (so-called peak power) of pulsed light output as sensing light.
  • the sensing light emitted from the irradiation unit 4 is also referred to as irradiation light in order to distinguish it from the sensing light received as reflected light.
  • the pulse width of the irradiation light is set to 5 nanoseconds, for example.
  • the pulse width of the irradiation light may be 20 nanoseconds, 10 nanoseconds, or 1 nanosecond.
  • the pulse width of the irradiation light may be set to a value less than 1 nanosecond, such as 50 picoseconds, 100 picoseconds, or 200 picoseconds.
  • the irradiation control circuit 3 is configured to be able to switch the irradiation intensity of the sensing light between a normal level and a suppressed level.
  • the normal level is set to a predetermined value for realizing a desired ranging range.
  • the ranging range corresponds to a detectable distance, which is a distance at which a predetermined object set as a target can be detected.
  • the normal level is set to an intensity capable of achieving a distance measurement range of approximately 250m or 300m.
  • the suppression level is set to a value about 1/50 of the normal level.
  • the suppression level may be 1/10, 1/100, 1/200, or 1/1000 of the normal level.
  • the suppression level is set to a value, such as within 3 m, that allows detection of an object within a nearby area, which will be described later.
  • Adjustment of the irradiation intensity may be realized using a variable gain amplifier capable of adjusting the degree of amplification, or may be realized by switching the drive voltage of the irradiation section 4 .
  • switching between the normal level and the suppression level may be realized by switching the light source itself, the number of light sources, or the like.
  • a normal level light source and a suppression level light source are separately prepared, and the irradiation control circuit 3 selectively uses them to control irradiation at the normal level and irradiation at the suppression level. and alternately/selectively.
  • the irradiation unit 4 includes, for example, a laser diode serving as a light source, and irradiates light of a predetermined wavelength as sensing light from this light source toward a predetermined detection target direction.
  • the detection target direction corresponds to a region in which a target to be range-finished is to be detected.
  • the detection target direction may be dynamically changed using a mirror or the like.
  • the detection target direction can have a predetermined angular range in the vertical direction and the horizontal direction.
  • the sensing light is infrared light, but it may be visible light.
  • the sensing light is light belonging to a band of 900 ⁇ 50 nm, which is generally used as laser light.
  • the irradiation unit 4 may be configured to output laser light having a wavelength of 1400 nm or longer, such as 1550 nm.
  • the configuration that employs electromagnetic waves of 1400 nm or more as sensing light it becomes easier to increase resistance (for example, signal-to-noise ratio) against white noise such as sunlight.
  • IEC International Electrotechnical Commission
  • the light-receiving array 5 has a plurality of light-receiving cells 5s capable of outputting pulse signals in response to incidence of reflected light from an object.
  • Each light receiving cell 5s has a SPAD (Single Photon Avalanche Diode) as a light receiving element.
  • a SPAD is a type of avalanche photodiode.
  • a SPAD operates by applying a voltage higher than the breakdown voltage as a reverse bias voltage.
  • the light receiving cell 5s is configured to detect a voltage change when the SPAD breaks down due to incident photons, and output a digital pulse (hereinafter referred to as a pulse signal) having a predetermined pulse width.
  • the light-receiving cell 5s includes a quench circuit connected in series with the SPAD as a light-receiving element.
  • the quench circuit can be configured using, for example, a resistive element (so-called quench resistor) having a predetermined resistance value, or a MOSFET or the like.
  • quench resistor a resistive element having a predetermined resistance value
  • MOSFET MOSFET
  • the plurality of light receiving cells 5s are arranged in a two-dimensional matrix (lattice).
  • the light receiving array 5 is configured as a silicon photo multiplier (SiPM) in which a plurality of light receiving cells 5s are arranged in an array.
  • SiPM silicon photo multiplier
  • the number of rows and the number of columns of the light receiving array 5 are appropriately designed based on the required resolution/number of pixels.
  • the value of a certain pixel that constitutes the distance image is determined by the number of responses among the plurality of light-receiving cells 5s assigned in advance to the pixel. In other words, one set of a plurality of light receiving cells 5s constitutes one pixel.
  • the dashed lines in the drawing indicate boundaries of pixels.
  • the number of light receiving cells 5s forming one pixel is not limited to 16, and may be 64, 128, 256, or the like.
  • the value of one pixel may be determined based on the outputs of 128 light-receiving cells 5s of 8 horizontal ⁇ 16 vertical.
  • a collection of the plurality of light receiving cells 5s corresponding to one pixel is also referred to as a cell group Sgr.
  • the size of the cell group Sgr corresponds to the size of one element (that is, pixel) forming the range image.
  • Each cell group Sgr outputs 0 to 16 pulse signals according to the intensity of the received light.
  • FIG. 2 shows a mode in which individual pixels are set so as not to share the light receiving cell 5s, the present invention is not limited to this.
  • each cell group Sgr may be set so as to overlap another adjacent cell group Sgr, as illustrated in FIG. That is, one light receiving cell 5s may belong to a plurality of cell groups Sgr.
  • the shape of the cell group Sgr is not limited to square, and may be rectangular. That is, the number of rows and the number of columns of the light receiving cells 5s corresponding to one pixel may be different.
  • the light-receiving array 5 has a number of light-receiving cells 5s capable of generating a range image of, for example, one million pixels.
  • the light-receiving array 5 is switched to a light-receiving state in which light can be detected by a control signal from the control unit 2 .
  • the control unit 2 outputs a signal instructing irradiation of sensing light to the irradiation control circuit 3 and inputs a predetermined control signal to the light receiving array 5 to drive each light receiving cell 5s for a predetermined time.
  • each light-receiving cell 5s may be configured to always maintain a driven state in which it can respond according to the intensity of incident light.
  • the response determiner 6 is configured to determine whether or not the pulse signal is input from the light receiving cell 5s, that is, whether or not the SPAD is responding.
  • the response determiner 6 is provided for each light receiving cell 5s.
  • the output of the light receiving cell 5s is sampled at a predetermined clock frequency.
  • the response determiner 6 is configured to output a high level when the light receiving cell 5s responds and a low level when the light receiving cell 5s does not respond.
  • the response determiner 6 may be configured integrally with the light receiving cell 5 s and the light receiving array 5 .
  • the adder 7 adds and outputs the pulses output from the plurality of response determiners 6 .
  • the adder 7 is provided for each pixel, in other words, for each cell group Sgr.
  • Each adder 7 may be implemented as software or as hardware.
  • the multiple adders 7 can be implemented using FPGAs (Field-Programmable Gate Arrays), ASICs (Application Specific Integrated Circuits), and the like. The same applies to the peak detector 8, which will be described later.
  • the output of the adder 7 indicates the response number of the light receiving cells 5s in the cell group Sgr corresponding to the adder 7.
  • the output from the adder 7 is also referred to as received light intensity or level value.
  • the level value can also be said to be a value indicating the intensity of incident light. Therefore, the output level of each adder 7 indicates the received light intensity at each pixel.
  • a pulse signal is output from each of the plurality of light-receiving cells 5s that constitute the light-receiving array 5 at a frequency corresponding to the amount of ambient light. Therefore, when the reflected light from the target is incident on the light receiving cell 5s, the number of pulse signals output from the light receiving cell 5s per unit time, that is, the pulse rate increases significantly.
  • the output level of the adder 7 can also change in a pulsed manner at the timing corresponding to the reception of the reflected light. For convenience, a series of signals whose peak exceeds a predetermined level is referred to as a received light pulse.
  • the peak detector 8 detects the peak of the received light intensity based on the time-series data of the received light intensity output by the adder 7 .
  • the peak corresponds to the time at which the intensity of the received light rises and then begins to fall.
  • a peak detector 8 is provided for each adder 7, in other words, for each pixel.
  • the peak detector 8 generates, for example, a histogram indicating received light intensity (level value) for each time.
  • the generated histogram is held in a predetermined format such as a table in a memory (not shown) or RAM 22 .
  • the peak detection unit 8 detects the received light pulse and its peak based on the time-series data (histogram) of the level values, and acquires the pulse information associated with the peak. Since the light-receiving pulse and the peak correspond one-to-one, the description of the light-receiving pulse in the following description can be understood by replacing it with the peak.
  • the pulse information includes, for example, peak intensity Pq, peak arrival time Tp, rise determination time Ta, fall determination time Tb, and pulse width Tw. It can be understood that the peak detector 8 is configured to extract the feature quantity of the received light pulse.
  • a series of processes for irradiating sensing light and acquiring pulse information for each pixel as a result of light reception within a certain period of time from the irradiation is also referred to as light receiving and emitting process.
  • the light emitting/receiving process can be referred to as light emitting/receiving process based on the order of actions to be performed.
  • the light receiving/emitting process can also be called a sensing process or a scanning process.
  • the peak intensity Pq indicates the intensity (that is, peak value) at the time when the intensity in the waveform reaches its maximum.
  • the peak intensity Pq corresponds to the value immediately before the received light intensity begins to decrease, in other words, the intensity at the time when the slope becomes zero.
  • the slope here corresponds to the time rate of change of the received light intensity. If the intensity of the received light pulse reaches the measurement upper limit Pmx as shown in FIG. 5, the measurement upper limit Pmx becomes the peak intensity Pq.
  • the measurement upper limit value Pmx corresponds to the maximum value of the range of values that the adder 7 can output.
  • the measurement upper limit value Pmx corresponds to the number of light receiving cells 5s that constitute the cell group Sgr. If the number of light-receiving cells 5s constituting one cell group Sgr is assumed to be 256, the sensor upper limit value is 256.
  • Ta shown in FIGS. 4 and 5 is the timing at which the received light intensity reaches the determination threshold value Pth in the rising section, in other words, the elapsed time from the irradiation of the sensing light until the received light intensity reaches the determination threshold value Pth. It shows judgment time.
  • the rise determination time Ta can also be called a threshold reaching time.
  • the rising determination time Ta corresponds to the rising position of the received light pulse.
  • Tb shown in the figure indicates the timing at which the received light intensity reaches the determination threshold value Pth in the falling interval, in other words, the falling determination time, which is the elapsed time until the received light intensity falls below the determination threshold value Pth.
  • the fall determination time Tb can also be called a sub-threshold time.
  • the trailing edge determination time Tb corresponds to the trailing edge position of the received light pulse.
  • the point in time when the received light intensity reaches the determination threshold value Pth in the rising section is also referred to as the rising point
  • the point in time when the received light intensity reaches the determination threshold value Pth in the falling section is also referred to as the falling point.
  • the determination threshold Pth is set to a value obtained by multiplying the actually observed peak intensity Pq by a predetermined coefficient k.
  • k is set to 0.55 (equivalent to 55%) as an example.
  • the determination threshold Pth is a parameter that defines the so-called half-value point, which is the timing at which the received light intensity becomes half of the peak.
  • the half-value point here is not limited to the point at exactly 50%, and may be the point at 45%, 60%, or the like, as described above.
  • the received light intensity output by the adder 7 may contain a stationary noise component, which is stationary noise due to sunlight or the like. Therefore, the peak intensity Pq can be a value obtained by superimposing the stationary noise component on the target reflected light component. If 50% of the raw value of the peak intensity Pq is regarded as the rising position, the rising position will be determined at a point lower than the true rising position due to the stationary noise component.
  • the peak detector 8 dynamically adjusts the coefficient k according to the magnitude of stationary disturbance components such as sunlight so that the half-value point of the pure target reflected light component can be detected as the rising position/falling position. can be For example, the larger the stationary noise component, the larger the coefficient k may be set.
  • the peak detector 8 may be configured to detect the points where (Pq ⁇ Pn) ⁇ k+Pn as the rising and falling positions.
  • the magnitude of the stationary noise component can be determined based on the received light intensity before irradiation of the sensing light.
  • the peak detector 8 may determine the peak intensity Pq, the rising position/falling position, etc. from the time-series data of the corrected received light intensity obtained by removing the stationary noise component from the output value of the adder 7. .
  • Tpa shown in FIG. 5 indicates the upper limit reaching time, which is the time when the intensity reaches the measurement upper limit Pmx in the waveform.
  • Tpb indicates the upper limit withdrawal time, which is the time immediately before the intensity starts to fall (leaves) from the measurement upper limit Pmx in the waveform.
  • the upper limit detachment time Tpb is a point corresponding to the latest time in the period in which the received light intensity is saturated. corresponds to the point of Tpc indicates an intermediate time between the upper limit reaching time Tpa and the upper limit leaving time Tpb.
  • the observation point corresponding to the upper limit arrival time Tpa is also referred to as the upper limit arrival point
  • the observation point corresponding to the upper limit departure time Tpb is also referred to as the fall start point or the upper limit departure point.
  • the peak arrival time Tp is the elapsed time from the irradiation of the sensing light until the peak intensity Pq is observed.
  • the peak arrival time Tp can be expressed by the number of clocks from the irradiation of the sensing light to the observation of the peak intensity Pq.
  • the peak arrival time Tp indicates the peak position on the time axis. If the peak detected by the peak detector 8 corresponds to the reflected light from the target, the peak arrival time Tp corresponding to the peak corresponds to the round-trip flight time (ToF: Time of Flight) to the target. do. Therefore, the control unit 2 can calculate the distance to the target for each pixel by multiplying the peak arrival time Tp by C/2 (where C is the speed of light).
  • the peak detector 8 adopts the intermediate time Tpc as the peak arrival time Tp.
  • the peak detection unit 8 may employ the upper limit arrival time Tpa as the peak arrival time Tp.
  • the peak detector 8 may estimate the peak arrival time Tp based on the slope at the determination threshold value Pth in the rising interval and the slope at the determination threshold value Pth in the trailing interval.
  • the pulse width Tw is a parameter that indicates the width of the received light pulse.
  • the pulse width Tw corresponds to the length of time during which the received light intensity is equal to or greater than the determination threshold value Pth. That is, the pulse width Tw can be identified by subtracting the rise determination time Ta from the fall determination time Tb.
  • the determination threshold Pth can be dynamically determined according to the peak intensity, such as 50% of the maximum intensity within the waveform.
  • the method of calculating the determination threshold value Pth and the rising/falling position is such that the peak detector 8 calculates the pulse width of the pure target reflected light component. (Evaluation) It is designed to be possible.
  • the peak detection unit 8 does not necessarily acquire all the parameters described above as detected object information.
  • the peak detector 8 may be configured to acquire only predetermined parameters necessary for distance calculation processing among all the parameters described above. "Obtaining" in this disclosure also includes generating/detecting by internal computation.
  • multiple light-receiving pulses may appear for one pixel. For example, when reflected light from different objects reaches the same pixel, when light scattered by an object is received, when internally scattered light is received, and when multiple reflections occur with a target some distance away. and so on.
  • the peak detector 8 of the present embodiment When a plurality of light-receiving pulses are detected in one light receiving/emitting process, the peak detector 8 of the present embodiment outputs pulse information about the light-receiving pulse with the highest peak intensity Pq among the plurality of light-receiving pulses.
  • the operation of the peak detection unit 8 is not limited to this, and the above feature amount may be calculated for each received light pulse and output as pulse information.
  • selection of peak information for each observed received light pulse may be performed by the control unit 2 instead of the peak detection unit 8 .
  • the peak detector 8 may be configured to output pulse information about two received light pulses having the highest peak intensities Pq.
  • the attached matter scattered light of the present disclosure refers to sensing light reflected/scattered by the attached matter 10, which is an object adhering to the irradiation window 91, as indicated by xSL in FIG.
  • the irradiation window 91 is a window for outputting light from the light source to the outside of the housing 9 . Since the irradiation window 91 also corresponds to a part of the housing, the adhering matter 10 can be understood as an object adhering to the housing.
  • the deposits 10 are, for example, mud, dust, raindrops, bird droppings, and the like.
  • the adhering matter scattered light refers to light reflected by raindrops, mud, or the like adhering to the outer surface of the irradiation window 91 .
  • Internally scattered light refers to light reflected by the inner surface of the irradiation window 91 and components inside the housing.
  • TgL in each figure indicates the target reflected light, which is the reflected light from the target.
  • light scattered by a body near the sensor such as adherent scattered light and internally scattered light, is also referred to as near body scattered light or simply scattered light.
  • the sensor proximity body is an object existing within 0.1 m from the irradiation unit 4, and refers to the irradiation window 91, the internal parts of the housing, the adhering matter 10 on the irradiation window 91, and the like. If the optical distance measuring device 1 is attached to the indoor surface of the windshield and used, the windshield can also be a sensor proximity body.
  • the multiple reflected light in the present disclosure means that part of the reflected light from the target is reflected by the housing 9 of the optical rangefinder 1, the vehicle body, or a peripheral object, as indicated by MRL in FIG. It refers to the light that is reflected back by the target again.
  • the dashed-dotted line shown in FIG. 7 indicates re-emerged light, which is part of the target-reflected light reflected by the housing 9 of the optical rangefinder 1 or the like.
  • a chain double-dashed line indicates multiple reflected light, that is, double reflected light that is light that is returned after being reflected by the target.
  • proximate body scattered light and multiple reflected light are collectively referred to as unnecessary reflected light.
  • the pulse width of the sensing light is very short, about several nanoseconds.
  • the target pulse which is the light receiving pulse corresponding to the target reflected light
  • the noise pulse which is the light receiving pulse corresponding to the unnecessary reflected light
  • the target pulse and the noise pulse can combine. More specifically, the received light pulse corresponding to the adherent scattered light and the internally scattered light can be combined with the target pulse in such a manner that it is positioned ahead of the target pulse on the time axis.
  • the received light pulse corresponding to the multiple reflected light can be combined with the target pulse so as to be positioned behind the target pulse on the time axis. This is because the optical path length is long due to the multiple reflection.
  • the intensity value (that is, pixel value) of each pixel can be saturated by unnecessary reflected light (so-called clutter).
  • a state in which the pixel value is saturated refers to a state in which the output level of the adder 7 has reached the measurement upper limit value Pmx.
  • FIG. 8 conceptually shows the transition of the intensity output when the received light pulse corresponding to the nearby body scattered light is coupled with the target pulse.
  • FIG. 8(C) conceptually shows the transition of the intensity output when the received light pulse originating from the multiple reflected light is coupled with the target pulse.
  • FIG. 8B shows transition of the intensity output when not affected by unnecessary reflected light. The case where the unwanted reflected light is not affected means the case where the unwanted reflected light is not superimposed (combined) with the target reflected light (target pulse).
  • the upper graph shows transitions in the intensity of light incident on the light receiving array 5
  • the lower graphs show transitions in the output level of the adder 7. showing. It should be noted that the intensity of the incident light is assumed to have a wave shape with one vertex as shown in the upper graph of FIG.
  • the output level can be trapezoidal.
  • the optical distance measuring device 1 of the present disclosure has been created by paying attention to the above problems, and at least one of the parameters and the arithmetic expression used for arithmetic processing based on the observation results of the light receiving and emitting processing at the normal/suppressed level. By changing one of them, processing for improving the accuracy of distance measurement is incorporated.
  • the vicinity area of the optical distance measuring device 1 is a range in which the noise pulse and the target pulse can be combined.
  • the near field refers to a range that is less than a predetermined near distance determined according to the pulse width of the irradiation light from the optical distance measuring device 1 .
  • the proximity distance can be a value obtained by adding a predetermined value determined according to the response characteristics of the circuit to half the distance obtained by multiplying the pulse width of the irradiation light by the speed of light.
  • the response characteristics of the circuit include the SPAD recharge time (dead time) and the like.
  • the proximity distance can be set to, for example, about 2m to 3m, assuming that the pulse width is several nanoseconds.
  • a state in which the target is sufficiently distant from the optical rangefinder 1 corresponds to a state in which the target exists outside the vicinity area.
  • the control unit 2 provides functions corresponding to various functional blocks shown in FIG. 9 by executing programs stored in the storage 23 . That is, the control unit 2 includes, as functional blocks, an external information acquisition unit F1, a pulse information acquisition unit F2, a level adjustment unit F3, a distance calculation unit F4, and an image generation unit F5. The control unit 2 also includes a calculation parameter storage unit M1.
  • the calculation parameter storage unit M1 is a storage unit that stores various parameters used in the distance calculation process, which will be described later.
  • the parameters used for distance calculation processing are the rising offset value and the like.
  • the calculation parameter storage unit M1 is implemented using part of the storage area of the storage 23 .
  • the calculation parameter storage unit M1 may be implemented using a non-volatile storage medium that is physically independent of the storage 23 .
  • the calculation parameter storage unit M1 is configured so that the processor 21 can write, read, and delete data.
  • the external information acquisition unit F1 acquires various information regarding the state of the own vehicle and the external environment from the vehicle state sensor 101 and the in-vehicle ECU 102.
  • the external information acquisition unit F1 may acquire information on a three-dimensional object existing around the optical distance measuring device 1 from the in-vehicle ECU 102 corresponding to the driving support ECU.
  • Peripheral three-dimensional objects can be identified based on the image analysis results of an in-vehicle camera that captures images of the outside of the vehicle, or the output signals of sonar. For example, assuming scenes immediately before and after parking, other parked vehicles and walls may exist within several meters from the own vehicle.
  • the control unit 2 determines whether or not a three-dimensional object exists in the vicinity of the optical distance measuring device 1 based on detection results of the external environment by other sensors such as an in-vehicle camera and a sonar. good. On the condition that another sensor determines that a three-dimensional object exists within a predetermined distance from the optical distance measuring device 1, the control unit 2 preferentially uses the results of light reception and emission at the suppression level described later to calculate the distance. processing may be performed.
  • the pulse information acquisition unit F2 acquires pulse information from the peak detection unit 8 corresponding to each pixel. That is, the pulse information acquisition unit F2 acquires pulse information for each pixel. Each pixel can be distinguished by a pixel number, which is a unique number for each pixel. A part of the functions of the peak detection section 8 may be provided in the pulse information acquisition section F2. For example, the peak detection unit 8 may perform only peak detection, and the pulse information acquisition unit F2 may perform the process of extracting the feature amount of the received light pulse including the detected peak. The functional arrangement can be changed as appropriate.
  • the level adjustment unit F3 is configured to adjust the irradiation intensity of the sensing light.
  • the level adjustment unit F3 switches the irradiation intensity from the normal level to the suppression level, or switches the irradiation intensity from the suppression level to the normal level, based on a switching pattern registered in advance. For example, the level adjustment unit F3 alternately switches between a normal level setting state and a suppression level setting state for each light receiving and emitting process.
  • This control mode corresponds to a configuration in which light receiving/emitting processing at a normal level and light emitting/receiving processing at a suppressed level are alternately performed.
  • normal light receiving and emitting processing light receiving and emitting processing at the normal level
  • suppressed light receiving and emitting processing light receiving and emitting processing at the suppressed level
  • the pulse information obtained in the normal light receiving/emitting process is also referred to as normal pulse information
  • the pulse information obtained in the suppressed light receiving/emitting process is referred to as suppressed pulse information.
  • the peak arrival time Tp observed in the normal light receiving/emitting process is also referred to as the normal peak time Tp1
  • the peak arrival time Tp observed in the suppressed light receiving/emitting process is also referred to as the suppressed peak time Tp2.
  • the rising determination time Ta observed in the normal light receiving/emitting process is also referred to as normal rising time Ta1, and the rising determination time Ta observed in the suppressed light emitting/receiving process is also referred to as suppressed fall time Ta2.
  • the pulse width Tw observed in the normal light receiving/emitting process is also referred to as the normal pulse width Tw1
  • the pulse width Tw observed in the suppressed light emitting/receiving process is also referred to as the suppressed pulse width Tw2.
  • the distance calculation unit F4 generates a distance value for each pixel based on the feature amount of the light receiving pulse for each pixel observed in the normal/suppressed light receiving/emitting processing. The details of the operation of the distance calculator F4 will be described separately later.
  • the image generation unit F5 generates a data set in which the distance value for each pixel calculated by the distance calculation unit F4 is assigned as the element value of each pixel as the distance image.
  • the image generator F5 may generate intensity image data, which is a data set in which the peak intensity Pq detected by the peak detector 8 is associated with each pixel. Also, the image generator F5 may generate image data in which each pixel includes distance information and intensity information.
  • FIG. 10 is a flowchart showing an example of the flow of distance measurement processing, which is processing in which the optical distance measurement device 1 calculates the distance value for each pixel.
  • the distance measurement process shown in FIG. 10 is performed at a predetermined sensing cycle on condition that the traveling power supply is turned on.
  • the sensing period can be set to, for example, 100 ms or 200 ms.
  • the ranging process includes steps S101 to S106. Note that the flowcharts in the present disclosure are all examples, and the number of steps, processing order, execution conditions, and the like can be changed as appropriate.
  • Step S101 is a step for executing normal light receiving/emitting processing.
  • the level adjustment unit F3 cooperates with the irradiation control circuit 3 to cause the irradiation unit 4 to irradiate the sensing light at a normal level.
  • the light receiving array 5 is set to the standby state.
  • the light receiving array 5 may always be set to a standby state in which light can be detected.
  • the control unit 2 may set the light receiving array 5 to the standby state prior to irradiation of the sensing light.
  • the response state of each light receiving cell 5s constituting the light receiving array 5 is input to the peak detector 8 via the adder 7 corresponding to each pixel.
  • Each peak detector 8 generates pulse information for each pixel based on the time-series data of the output value of the corresponding adder 7 and inputs it to the controller 2 .
  • the pulse information acquisition unit F2 acquires pulse information for each pixel as a result of the normal light receiving/emitting process (that is, step S101).
  • the pulse information can include predetermined types of feature quantities such as the aforementioned peak arrival time Tp, peak arrival time Tp, rise determination time Ta, and fall determination time Tb.
  • Step S103 is a step for executing the suppression light receiving/emitting process.
  • the level adjustment unit F3 cooperates with the irradiation control circuit 3 to cause the irradiation unit 4 to irradiate the sensing light at a suppression level.
  • the pulse information acquisition unit F2 acquires pulse information for each pixel as a result of the suppression light reception/emission process (that is, step S103).
  • the output level tends to saturate even in the unwanted reflected light component, and it is difficult to distinguish which side of the target pulse the unwanted reflected light component is coupled to.
  • the suppression light reception/emission processing makes it difficult for the output level to saturate in the unnecessary reflected light component.
  • the control unit 2 as the distance calculation unit F4 refers to the time-series data of the received light intensity at the suppression level to determine the type of unnecessary reflected light coupled to the target reflected light or the coupling position of the unnecessary reflected light. can be identifiable.
  • the coupling position of the unnecessary reflected light corresponds to whether the unnecessary reflected light is coupled to the front side of the target reflected light or whether the unnecessary reflected light is coupled to the rear side of the target reflected light.
  • the normal sequence consisting of steps S101 and S102 and the suppression sequence consisting of steps S103 and S104 differ only in the irradiation intensity of the sensing light, and other signal processing can be the same.
  • Combinations of feature amounts acquired in each sequence may be the same or may be different. According to the configuration in which the same combination of feature amounts is acquired in each sequence, the operations of the peak detection section 8 and the pulse information acquisition section F2 can be made common in each sequence. In addition, it is possible to increase judgment materials for selecting an observation pattern, which will be described later.
  • the combination of feature amounts to be extracted in the suppression sequence is set to be the same as the extraction target in the normal sequence.
  • the number of feature values to be extracted in the suppression sequence may be set to be less than the number of feature values to be obtained in the normal sequence.
  • the suppression sequence may be configured to extract only a part of the feature quantity that is extracted in the normal sequence. For example, in the normal sequence, five items of peak intensity Pq, peak arrival time Tp, rise determination time Ta, fall determination time Tb, and pulse width Tw are extracted.
  • the suppression sequence three items of peak arrival time Tp, rise determination time Ta, and fall determination time Tb may be extracted. Further, the three items of the pulse width Tw, the rise determination time Ta, and the fall determination time Tb may be extracted in the suppression sequence. According to the configuration in which the number of feature values to be extracted (calculated) for the suppression sequence is narrowed down compared to the normal sequence, it is possible to reduce computational resources (time, memory, etc.).
  • FIG. 10 exemplifies the procedure of executing the normal sequence and then the suppression sequence
  • the order of these executions may be reversed. It may be configured to perform the normal sequence after performing the suppression sequence.
  • the execution interval between the normal light emitting/receiving process and the suppressed light emitting/receiving process is set to a sufficiently small value such as 1 millisecond or 10 milliseconds so as to reduce the influence of changes in the surrounding environment.
  • the execution interval between the normal light receiving/emitting process and the suppressed light receiving/emitting process may be set longer than the response waiting time, which is the time for waiting for the response of the light receiving array 5 .
  • Step S105 is a step of determining an observation pattern of received light pulses to be processed based on the pulse information observed in the normal light receiving/emitting process and the pulse information observed in the suppressed light receiving/emitting process for each pixel. .
  • Observation patterns are classified into three, for example, (A) normal, (B) multiple reflection light coupling, and (C) scattered light coupling.
  • B) Multiple reflection light coupling corresponds to the case where the target pulse is coupled with multiple reflection light.
  • Scattered light coupling corresponds to the case where the target pulse is coupled with nearby body scattered light.
  • step S105 based on the pulse information observed in the normal/suppressed light receiving/emitting processing, it is determined whether or not the light receiving pulse observed in the normal light receiving/emitting processing is affected by the unwanted reflected light, and if so. corresponds to the step of identifying the type. In one aspect, step S105 corresponds to determining whether or not the received light pulse is affected by nearby body scattered light.
  • Step S106 is a step of calculating the distance using an arithmetic expression corresponding to the observation pattern selected in step S105.
  • An arithmetic expression for each observation pattern is registered in advance.
  • An arithmetic expression for each observation pattern is individually designed to match whether or not unnecessary reflected light is superimposed and the kind of superimposed unnecessary reflected light.
  • the various arithmetic expressions may differ in feature quantity and the like to be used. However, depending on the feature values used in the calculation, the calculation formula for when the observation pattern is determined to be normal and the calculation formula when it is determined that multiple reflected light is combined may be integrated (common). can be The details of the calculation formula for each observation pattern will be described separately later.
  • Steps S102, S104, S105, and S106 described above are executed for each pixel. Further, the processing of steps S105 and S106 is processing for the received light pulse/peak detected at a position common to both the normal light receiving/emitting processing and the suppressed light receiving/emitting processing in the same pixel.
  • the distance calculator F4 can perform the above process for each received light pulse observed in the normal light receiving/emitting process.
  • a received light pulse to be processed is also referred to as a target pulse in the present disclosure.
  • the processing after step S105 can be processing for the light reception pulses/peaks observed until the elapsed time from the irradiation of the sensing light reaches the proximity time, which is the time corresponding to the proximity distance.
  • the neighborhood time can be set to, for example, twice the neighborhood distance divided by the speed of light.
  • a time period from the irradiation of the sensing light to the near time is also referred to as a near time period.
  • the control unit 2 regards the peak as noise derived from unnecessary reflected light and discards it. Also good. This is because when a target exists in the neighboring area, there is a high possibility that a peak corresponding to the target will be detected at the same position even at the suppression level. A peak observed in the neighboring time period as a result of the normal light receiving/emitting process and not observed in the suppressed light receiving/emitting process can be regarded as a peak derived from unnecessary reflected light.
  • the light receiving pulse observed outside the neighboring time zone is judged to be noise derived from unnecessary reflected light even if the light receiving pulse cannot be detected at the corresponding position by the suppression light receiving/emitting processing. It is preferably configured so as not to A different algorithm may be used to determine whether or not a received light pulse observed outside the nearby time zone as a result of normal light receiving and emitting processing is noise.
  • FIG. 11 is a diagram summarizing an example of an arithmetic expression applied to each observation pattern as one embodiment.
  • the calculation method for the normal pattern is also referred to as the normal method
  • the calculation method for the multiple reflected light combination pattern is also referred to as the multiple reflected light method
  • the calculation method for the scattered light combination pattern is also referred to as the scattered light method.
  • Each calculation method is set so as to correspond to the case where there is no influence of unnecessary reflected light, the case where the influence is caused by multiple reflected light, and the case where the influence is caused by scattered light.
  • Formula 1a shown in FIG. 11 is an arithmetic formula employed in the normal pattern and the multiple reflection light coupling pattern.
  • Formula 1c is an arithmetic formula employed in the scattered light coupling pattern.
  • a value obtained by multiplying the rise determination time (Ta) observed in the normal light receiving and emitting process by half the speed of light (C/2) is calculated as follows: A value obtained by subtracting the offset value ( ⁇ a) is adopted as the distance value (L).
  • the rising offset value ( ⁇ a) used in Equation 1a is a parameter for canceling (correcting) the response delay of the circuit.
  • the rising offset value ( ⁇ a) can be designed as appropriate.
  • a predetermined fall offset value ( The value obtained by subtracting ⁇ b) is adopted as the distance value (L).
  • the trailing offset value ( ⁇ b) is also a parameter for canceling the response delay of the circuit.
  • the trailing offset value is designed to be larger than the trailing offset value so as to compensate for the error component resulting from the time difference from the rising edge to the trailing edge of the received light pulse.
  • the target reflected light is affected by multiple reflected light, the trailing point and the like are derived from the multiple reflected light, so it can be incorrect information. Therefore, when affected by multiple reflected light, the distance is calculated with the rising point as a reference, as shown in Equation 1a.
  • the scattered light is coupled, the rising section is due to the scattered light component, so the distance is calculated based on the falling point/upper limit separation point.
  • the control unit 2 may employ equations 2a to 2c as the computational equations for each observation pattern.
  • FIG. 12 is a diagram summarizing computational expressions for each observation pattern.
  • Expression 2a is an arithmetic expression for normal patterns.
  • Equation 2b is an arithmetic equation for the multiple reflection light coupling pattern.
  • Equation 2c is an arithmetic equation for the scattered light coupling pattern.
  • Formula 2a: L C/2 ⁇ Ta ⁇ 1 ⁇ Pq ⁇ Tw ⁇ a
  • Equations 2a to 2c values observed in normal light receiving and emitting processing can be adopted.
  • ⁇ 1, ⁇ 2, and ⁇ 3 are coefficients for performing correction according to the intensity of the received light pulse (that is, peak intensity Pq).
  • ⁇ 1, ⁇ 2, and ⁇ 3 can be set to different values.
  • is a coefficient for performing correction according to the width of the received light pulse (that is, pulse width Tw).
  • the rising offset values ( ⁇ a) used in equations 2a and 2b may be the same, or different values may be applied.
  • the peak intensity Pq and pulse width Tw indicate the shape of the received light pulse, in other words, the rising speed and falling speed. It is empirically known that there is a correlation between the intensity of the target reflected light and the deviation amount of the distance calculation value. In addition, when the received light intensity is saturated, the relationship between the received light intensity and the true intensity of the target reflected light becomes unclear. I know there is. In other words, the pulse width can function as a parameter that indirectly indicates the true intensity of the target reflected light. Therefore, when the observed light-receiving pulse is not the target reflected light superimposed on the unnecessary reflected light, the introduction of the correction value using the pulse width Tw can improve the distance measurement accuracy.
  • the pulse width Tw becomes a value that deviates from the width of the target pulse. If the correction term using the pulse width Tw is introduced, there is a concern that the accuracy of distance measurement may be deteriorated when the measurement is affected by multiple reflected light or scattered light.
  • control unit 2 may employ equations 3a1, 3a2, 3c1, and 3c2 as the arithmetic equations for each observation pattern, as shown in FIG.
  • Expression 3a1 is an arithmetic expression applied when the normal peak intensity Pq1, which is the peak intensity Pq observed in the normal light receiving and emitting process, in the normal pattern and the multiple reflection light coupling pattern is less than a predetermined computational material switching threshold Thx.
  • Expression 3a2 is an arithmetic expression applied when the normal peak intensity Pq1 is equal to or greater than the computational material switching threshold Thx in the normal pattern and the multiple reflection light coupling pattern.
  • Formula 3c1 is a computational formula applied when the normal peak intensity Pq1 in the scattered light coupling pattern is less than the computational material switching threshold Thx.
  • Expression 3c2 is an arithmetic expression applied when the normal peak intensity Pq is equal to or greater than the arithmetic material switching threshold Thx in the scattered light coupling pattern.
  • the calculation material switching threshold Thx can be set to, for example, the measurement upper limit Pmx.
  • the calculation material switching threshold Thx may be, for example, 90% of the measurement upper limit value Pmx.
  • Ta1 included in formula 3a1 is the normal rise time.
  • Ta2 included in equation 3a2 is the suppression rise time.
  • Both ⁇ a1 included in Equation 3a1 and ⁇ a2 included in Equation 3a2 are rising offset values, and are parameters for canceling errors due to the delay time required for rising. Different predetermined values can be set for ⁇ a1 and ⁇ a2.
  • Tb1 included in Equation 3c1 is the normal fall time
  • Tb2 included in Equation 3c2 is the suppressed fall time.
  • Both ⁇ b1 included in Equation 3c1 and ⁇ b2 included in Equation 3c2 are rise offset values, and are parameters for canceling errors due to the delay time required for rise. Different predetermined values can be set for ⁇ b1 and ⁇ b2.
  • the developers of the present disclosure have obtained the knowledge that the distance accuracy can be degraded when the received light intensity is saturated while repeating tests and simulations. This is because when saturation occurs, the waveform of the target reflected light cannot be sampled correctly. For example, when the received light intensity is saturated, the true peak value can be obscured.
  • the configuration using the above formula 3a1 and the like was created based on the above knowledge, and the control unit 2 controls the suppression The distance is calculated based on the data of the light receiving/emitting process. In other words, when saturation occurs in the normal light receiving and emitting process, the result of the suppressed light receiving and emitting process, which is relatively less likely to cause saturation, is used. According to the configuration, an effect of further improving the distance measurement accuracy can be expected.
  • the embodiment of calculating the distance using the rising determination time Ta/falling determination time Tb as the main variables has been described above, but the distance may be calculated using the peak arrival time Tp.
  • the offset value such as .delta.a may be changed according to the feature quantity used in the arithmetic processing.
  • the distance value correction processing using the peak intensity Pq and the pulse width Tw can also be applied to Equations 3a to 3c described above.
  • FIG. 14 is a flowchart showing an example of observation pattern discrimination processing.
  • the observation pattern discrimination process is executed as step S105 described above.
  • the observation pattern discrimination process includes steps S201 to S205.
  • the processing of steps S201 to S205 is performed for each pixel.
  • a pixel to be processed is also called a target pixel.
  • Step S201 is a step for determining whether or not there is a possibility that the light-receiving pulse observed in the normal light-receiving and light-receiving process is combined with the target pulse with a component derived from unnecessary reflected light.
  • a received light pulse in which a component derived from unwanted reflected light is combined with a target pulse is also referred to as an unwanted reflected light coupled pulse.
  • the process of determining whether or not the received light pulse is the unnecessary reflected light coupling pulse such as step S201 and steps S301 and S401 to be described later, is also referred to as an unnecessary reflected light coupling determination process.
  • step S201 the distance calculation unit F4 determines whether or not the normal pulse width Tw1 is less than a predetermined pulse width threshold value Thw. If the target reflected light is combined with unwanted reflected light, the normal pulse width Tw1 can be longer than a predetermined default value.
  • Step S201 corresponds to a step of determining whether or not there is an influence of unnecessary reflected light from the viewpoint of the pulse width.
  • the pulse width threshold Thw is set to a value corresponding to the pulse width of the irradiation light. For example, the pulse width threshold Thw is set to 0.8 times, 1.0 times, or 1.2 times the pulse width of the irradiation light.
  • Step S202 corresponds to a step of determining that the observed received light pulse is a target pulse that has not been affected by unwanted reflected light.
  • step S203 is executed.
  • Step S203 corresponds to a step of identifying the type of unnecessary reflected light coupled (superimposed) on the target pulse based on the sequential relationship between the normal peak time Tp1 and the suppression peak time Tp2.
  • the peak detection unit 8 determines the intermediate time Tpc, which is located between the upper limit arrival time Tpa and the upper limit departure time Tpb, as the peak arrival time Tp. It shall be configured to be adopted as
  • step S203 are diagrams for explaining the technical idea of step S203.
  • the solid line graph in the lower graphs of FIGS. 15 and 16 indicates transition of the output level due to the normal light emitting/receiving process
  • the dashed line graph indicates transition of the output level due to the suppressed light emitting/receiving process.
  • the suppression peak time Tp2 is normally located behind the peak time Tp1. This is because in the normal light receiving and emitting process, the received light intensity is saturated even for the near-body scattered light component, and the normal peak time Tp1 is calculated to be the middle point of the saturation period, that is, the value before the true peak.
  • the fact that the value obtained by subtracting the normal peak time Tp1 from the suppression peak time Tp2 is positive suggests the possibility that the unnecessary reflected light (hereinafter referred to as coupling noise) coupled to the target reflected light is proximate body scattered light. do.
  • the suppression peak time Tp2 is usually positioned before the peak time Tp1. This is because the normal peak time Tp1 is located in the middle of the saturation period and is calculated after the true peak. Therefore, the fact that the value obtained by subtracting the normal peak time Tp1 from the suppression peak time Tp2 is negative suggests the possibility that the coupling noise is multiple reflected light.
  • the peak time difference ⁇ Tp is a value obtained by subtracting the normal peak time Tp1 from the suppression peak time Tp2.
  • the peak time difference threshold Thdp used in step S203 may be 0, or may be 0.5 nanoseconds or the like. Alternatively, it may be dynamically determined according to the length of the saturation period obtained by subtracting the upper limit reaching time Tpa from the upper limit leaving time Tpb observed in the normal light receiving/emitting process. For example, the peak time difference threshold Thdp may be set to a value corresponding to 1% or 10% of the saturation time.
  • FIG. 17 is also a flow chart showing an example of the observation pattern discrimination process executed in step S105 described above.
  • the observation pattern discrimination process shown in FIG. 17 includes steps S301 to S305.
  • Step S301 is a step of determining whether or not the target reflected light is combined with the unnecessary reflected light based on the pulse width change amount ⁇ Tw, which is the change amount (difference) between the normal pulse width Tw1 and the suppression pulse width Tw2. Equivalent to.
  • the pulse width change amount ⁇ Tw is a value obtained by subtracting the suppression pulse width Tw2 from the normal pulse width Tw1.
  • the target reflected light is not combined with the unnecessary reflected light, it can be expected that the difference between the normal pulse width Tw1 and the suppression pulse width Tw2 will be a predetermined value or less.
  • the normal pulse width Tw1 can be longer than the suppression pulse width Tw2 by the combined noise.
  • the suppression pulse width Tw2 is highly likely to be the width of the component purely derived from the target reflected light, and can be a smaller value than the normal pulse width Tw1. In other words, the fact that the pulse width change amount ⁇ Tw is equal to or greater than a predetermined value suggests that the pulse width is affected by unwanted reflected light.
  • Step S301 of the present disclosure is created based on the above idea, and when the pulse width change amount ⁇ Tw is less than the predetermined width difference threshold Thdw, the process moves to step S302, and the observed pattern is determined to be a normal pattern. do.
  • Step S302 corresponds to a step of assuming that the observed light-receiving pulse is a target pulse that has not been affected by unwanted reflected light.
  • step S303 when the pulse width change amount ⁇ Tw is equal to or greater than the predetermined width difference threshold Thdw, step S303 is executed. Since the processes of steps S303 to S305 are the same as those of steps S203 to S205 described above, the description thereof is omitted.
  • a specific value of the width difference threshold Thdw used in the determination process of step S301 can be designed as appropriate.
  • the width difference threshold Thdw may be dynamically determined according to the normal pulse width Tw1 or the suppression pulse width Tw2.
  • the width difference threshold Thdw may be a value obtained by multiplying the normal pulse width Tw1 by a predetermined coefficient (for example, 0.2).
  • FIG. 18 is a flow chart showing an example of the observation pattern discrimination process executed in step S105 described above.
  • the observation pattern discrimination process shown in FIG. 18 includes steps S401 to S405.
  • Step S401 is a determination step similar to step S201 described above. If the normal pulse width Tw1 is less than the pulse width threshold Thw, the process moves to step S402, and the observed pattern is determined to be a normal pattern. On the other hand, when the normal pulse width Tw1 is equal to or greater than the pulse width threshold Thw, step S403 is executed.
  • Step S403 corresponds to a step of identifying the type of coupled noise based on the rise time difference ⁇ Ta, which is the variation (difference) between the normal rise time Ta1 and the suppression rise time Ta2.
  • the rise time difference ⁇ Ta is a value obtained by subtracting the normal rise time Ta1 from the suppression rise time Ta2.
  • FIGS. 19 and 20 are diagrams for explaining the technical concept of step S403.
  • the solid line graph in the lower graphs of FIGS. 19 and 20 shows the transition of the output level of the adder 7 in the normal light receiving/emitting process
  • the broken line graph shows the transition of the output level of the adder 7 in the suppressed light emitting/receiving process.
  • the rise interval is derived from the target reflected light in both the normal light receiving/emitting process and the suppressed light receiving/emitting process, so the difference between the normal rise time Ta1 and the suppressed rise time Ta2 is small.
  • the suppression rise time Ta2 can be longer than the normal rise time Ta1 by the amount corresponding to the proximity body scattered light, as shown in FIG. This is because when the coupling noise is proximate body scattered light, the rising interval in the normal light receiving/emitting process is derived from the proximate body scattered light as the coupling noise.
  • the difference between the normal rise time Ta1 and the suppressed rise time Ta2 is relatively large compared to when the combined noise is multiple reflected light. In other words, the fact that the rise time difference ⁇ Ta is equal to or greater than a predetermined value suggests that the light is affected by proximity versus scattered light.
  • Step S403 of the present disclosure is created based on the above idea, and when the rise time difference ⁇ Ta is less than the predetermined rise time difference threshold Thda, the process proceeds to step S404, and the observation pattern is a multiple reflection light coupling pattern. judge. Step S404 corresponds to a step of assuming that the observed received light pulse is affected by multiple reflected light.
  • Step S405 corresponds to the step of assuming that the coupling noise is proximate body scattered light.
  • the rise time difference threshold Thda used in step S403 can be a constant value such as 0.5 nanoseconds or 1.0 nanoseconds.
  • the rising time difference threshold Thda may be dynamically determined according to the suppression peak intensity Pq2, which is the peak intensity Pq observed in the suppression light receiving/emitting process, or the rising speed observed in the normal light emitting/receiving process.
  • the rise time difference threshold Thda may be applied to a larger value as the suppression peak intensity Pq2 is smaller.
  • the above configuration corresponds to switching the feature amount used for distance calculation depending on whether the time difference between the normal rise time Ta1 and the suppression rise time Ta2 is less than a predetermined value. That is, when the time difference between the normal rise time Ta1 and the suppression rise time Ta2 is less than a predetermined value, it is assumed that coupling with multiple reflected light occurs or that coupling with unnecessary reflected light does not occur. , the rise determination time Ta is used as a reference to calculate the distance. On the other hand, when the time difference between the normal rise time Ta1 and the suppression rise time Ta2 is equal to or greater than a predetermined value, it is assumed that coupling with nearby body scattered light occurs, and the distance is determined using the fall determination time Tb as a reference.
  • the rising determination time Ta/falling determination time Tb used in the calculation may be values observed in the normal light emitting/receiving process or may be values observed in the suppressed light emitting/receiving process.
  • the control unit 2 may switch which of the light receiving/emitting processes to use the observed value based on the peak intensity Pq observed in the normal light emitting/receiving process.
  • the rise time difference ⁇ Ta may be a value obtained by subtracting the suppression rise time Ta2 from the normal rise time Ta1, or may be its absolute value.
  • the rising time difference threshold Thda may be adjusted according to the definition of the rising time difference ⁇ Ta.
  • the fall time difference is the difference between the normal fall time, which is the fall time Tb observed in the normal light emitting/receiving process, and the suppressed fall time, which is the fall time Tb observed in the suppressed light emitting/receiving process.
  • the control unit 2 can determine that the superimposed noise is multiple reflected light based on the fact that the fall time difference is equal to or greater than a predetermined value.
  • the control unit 2 uses the normal pulse width Tw1 to determine whether or not the received light pulse observed in the normal light receiving/emitting process is combined with unnecessary reflected light. Since the amount of change in pulse width ⁇ Tw is also a parameter that is determined by the normal pulse width Tw1, the mode in which the control unit 2 makes the above determination based on the amount of change in pulse width ⁇ Tw also uses the normal pulse width Tw1 to detect unnecessary reflected light. is included in the configuration for determining the presence or absence of coupling between
  • the normal pulse width Tw1 is a parameter that can be extracted by signal analysis, and does not require a new special circuit or the like for extracting the parameter. Therefore, according to the above configuration, it is possible to determine whether or not the received light pulse is affected by the unwanted reflected light without introducing a special configuration.
  • the normal pulse width Tw1 may vary depending on the reflection characteristics of the target or the distance from the target. Given such circumstances, it is practically difficult to determine a pulse width threshold Thw that is suitable for all scenes.
  • the pulse may be regarded as an unnecessary reflected light coupled pulse but not an unnecessary reflected light coupled pulse. can also happen.
  • a configuration in which the unnecessary reflected light coupling determination process is performed using the pulse width change amount ⁇ Tw can suppress erroneous determinations due to the target distance and reflection characteristics.
  • control unit 2 identifies the type of unnecessary reflected light coupled with the target reflected light based on the pulse information obtained by the normal light receiving/emitting process and the pulse information obtained by the suppressed light receiving/emitting process. . Specifically, the control unit 2 uses the peak time difference ⁇ Tp or the rise time difference ⁇ Ta to determine whether or not the unnecessary reflected light coupled with the target reflected light is proximate body scattered light. Then, when the unnecessary reflected light coupled with the target reflected light is determined to be proximate body scattered light, the distance value is calculated using an arithmetic expression/feature quantity different from the normal pattern.
  • the rise determination time Ta is used to calculate the distance
  • the fall determination time Tb is used to calculate the distance.
  • the normal pattern is corrected using the pulse width Tw, while the scattered light coupling pattern is not corrected using the pulse width Tw. According to this configuration, it is possible to reduce the possibility that the distance to the target is calculated to be shorter than the actual value due to the proximate body scattered light component.
  • control unit 2 compares the pulse information obtained by the normal light reception/emission process and the pulse information obtained by the suppression light reception/emission process to determine whether the unwanted reflected light coupled with the target reflected light is multi-reflected light. It is determined whether or not.
  • the normal pulse width Tw1 is not used for distance calculation. According to this configuration, it is possible to reduce the possibility that the distance to the target is calculated to be longer than the actual value due to the multiple reflected light component.
  • the distance calculation is performed using the feature amount obtained by the normal light receiving/emitting process, while the normal peak intensity Pq1 is greater than or equal to the predetermined value.
  • distance calculation is performed using the feature amount obtained by the suppression light reception/emission processing.
  • the distance calculation is performed using the feature amount observed under conditions where saturation is relatively difficult. The longer the saturation period, the more degraded the ranging accuracy. According to the above configuration, the effect of further increasing the distance measurement accuracy can be expected.
  • the suppression light reception/emission processing is implemented by suppressing the intensity of the irradiation light.
  • the suppression light reception/emission processing may be implemented by lowering the detection sensitivity of the light receiving system.
  • the optical distance measuring device 1 may be provided with a transmittance adjustment panel 11 which is arranged in front of the light receiving array 5 and has a configuration capable of switching the transmittance.
  • a liquid crystal panel can be employed as the transmittance adjustment panel 11 .
  • the level adjustment unit F3 realizes the normal light receiving/emitting process and the suppressed light receiving/emitting process by dynamically switching the transmittance of the transmittance adjusting panel 11 between a predetermined normal level and a suppressed level. According to this configuration, there is no need to adjust the irradiation intensity.
  • the optical distance measuring device 1 is configured to perform normal light receiving/emitting processing and suppressed light receiving/emitting processing by executing adjustment of irradiation intensity and adjustment of light receiving sensitivity (detection sensitivity) in parallel. Also good.
  • the optical ranging device 1 is usually designed so that as little internally scattered light as possible reaches the receiving array 5 . Therefore, contaminants (sand, soil, water droplets, snow, etc.) adhering substantially to the outside of the irradiation window 91 can be considered as a factor of near-body scattered light. These deposits 10 are inadvertently deposited and can be removed by washing. Therefore, the control unit 2 may be configured to perform cleaning processing for cleaning the surface of the irradiation window 91 when it is determined that the superimposed noise is proximate body scattered light.
  • the cleaning process may include, for example, some or all of spraying cleaning liquid, driving wipers, and spraying compressed air.
  • receiving the proximate body scattered light corresponds to losing part of the irradiation light. If the intensity of the irradiation light is impaired, there is a concern that the detection distance will be reduced. Under such circumstances, the control unit 2 may be configured to increase the irradiation intensity by a predetermined amount when it is determined that the light is affected by the nearby body scattered light. According to this configuration, it is possible to reduce the possibility that the detection distance will decrease even when the object 10 adheres to the irradiation window 91 .
  • the control unit 2 determines that it is affected by the nearby body scattered light, it outputs an alert signal indicating that the detection performance is impaired or that the operation is not normal to the driving support ECU or the like.
  • the driving support ECU can respond to the input of the alert signal by, for example, limiting the running speed or transferring the driving authority to the driver.
  • the alert signal may be a signal instructing a stop or a handover.
  • the control unit 2 displays an image indicating that the detection performance is impaired or that the operation is not normal on the vehicle-mounted display,
  • the message may be output by voice from a speaker.
  • the notification destination of the influence of the scattered light from the nearby body is not limited to the passenger, but may be an operator outside the vehicle such as a center. Even if the control unit 2 is configured to wirelessly transmit an alert signal to an external server/center/surrounding vehicle in cooperation with an in-vehicle communication device when it is determined that it is affected by nearby body scattered light. good.
  • control unit 2 may be configured to transmit an alert signal to other ECUs, external servers/centers, and surrounding vehicles when multiple reflected light is detected.
  • the content of the alert signal output when multiple reflected light is detected may be the same as or different from that when proximate body scattered light is detected.
  • the content of the alert signal output when multiple reflected light is detected may be a signal indicating that the distance accuracy/credibility is declining.
  • control unit 2 may be configured to output an image or voice message indicating that the distance accuracy/credibility is degraded when multiple reflected light is detected.
  • the passenger can easily recognize the operating state of the optical distance measuring device 1 .
  • receiving multiple reflected light there is a case where a highly reflective object exists relatively nearby.
  • the case where the multiple reflected light is detected can be rephrased as the case where a highly reflective object exists within a predetermined distance from the optical distance measuring device 1 .
  • a highly reflective object is a retroreflective object.
  • the optical distance measuring device 1 may dynamically change the discriminant of the observation pattern based on the input signal from the outside.
  • the optical distance measuring device 1 sets various threshold values for determining observation patterns so that it can be easily determined that multiple reflected light is received. may be changed.
  • the apparatus, systems, and techniques described in the present disclosure may be implemented by a special purpose computer comprising a processor programmed to perform one or more functions embodied by the computer program. .
  • the apparatus and techniques described in this disclosure may also be implemented using dedicated hardware logic.
  • the apparatus and techniques described in this disclosure may be implemented by one or more special purpose computers configured in combination with a processor executing a computer program and one or more hardware logic circuits.
  • part or all of the functions of the optical distance measuring device 1 may be implemented as hardware.
  • Implementation of a function as hardware includes implementation using one or more ICs.
  • a CPU, an MPU, a GPU, a DFP (Data Flow Processor), or the like can be used as a processor (arithmetic core).
  • optical distance measuring device 1 may be implemented by combining multiple types of arithmetic processing devices. Some or all of the functions of the optical distance measuring device 1 may be implemented using a system-on-chip (SoC), FPGA, ASIC, or the like.
  • SoC system-on-chip
  • FPGA Field-Programmable Gate Array
  • ASIC is an abbreviation for Application Specific Integrated Circuit.
  • the computer program may be stored in a computer-readable non-transitory tangible storage medium as instructions executed by a computer.
  • a HDD Hard-disk Drive
  • an SSD Solid State Drive
  • a flash memory or the like can be used as a program storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

光測距装置は、照射強度を通常レベルで照射する通常受発光処理と、照射強度を抑制した抑制受発光処理とを交互に実施する。光測距装置は、通常受発光処理と抑制受発光処理とで互いに対応する位置に観測された受光パルスの立ち上がり位置を比較する。2つの立ち上がり位置に所定値以上の差がない場合には、光測距装置は、当該受光パルスはターゲットからの反射光に近接体散乱光が結合したものではないと見なし、立ち上がり位置を基準として距離を演算する。一方、2つの立ち上がり位置に所定値以上の差がある場合には、立ち下がり位置を基準として距離を算出する。

Description

光測距装置 関連出願の相互参照
 この出願は、2021年10月25日に日本に出願された特許出願第2021-173995号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。
 本開示は、SPAD(Single Photon Avalanche Diode)を用いて物体との距離を検出する光測距装置に関する。
 光源から発せられた光がターゲットで反射されてセンサに届くまでの光の飛行時間を検出することにより、ターゲットまでの距離を測定する光測距装置が知られている。特許文献1には、その一種として、SPADを用いた光測距装置が開示されている。すなわち、特許文献1に開示の光測距装置は、画素ごとに複数のSPADを設けられていることを前提として、コントローラは、ターゲットからの反射光に応答しているSPADの数に応じて画素ごとの受光強度を特定する。そして、光源から光を照射してから受光強度のピークが得られるまでの時間に基づいて、画素ごとの距離値を算出する。
特開2019-7950号公報
 SPADは、入射した1つの光子(フォトン)から、雪崩のように電子を増幅させる「アバランシェ増倍」を利用する光検出器であって、他の光検出器よりも弱い光でも検出することができる。つまり、SPADは微弱な光でも反応しうるため、長距離かつ高精度な距離測定が可能となりうるといった利点を有する。
 しかしながら、SPADを光検出器として用いた構成では、SPADの応答性の高さが故に、実環境においては、画素ごとの強度値(つまり画素値)は不要反射光(いわゆるクラッタ)によっても飽和しやすい。また、物体を検知可能な距離である測距レンジを伸ばそうとするとセンシング光の強度を高める必要があり、測距レンジを伸ばそうとするほど、不要反射光でも画素値が飽和しやすくなる。なお、画素値が飽和している状態とは、観測可能な受光強度範囲の上限値に達している状態を指す。また、不要反射光としては、光測距装置の筐体内部に存在する要素で生じた内部散乱光や、照射窓の外側に付着している付着物による散乱光である付着物散乱光、多重反射光などが想定される。
 そして、画素値が飽和するレベルでの不要反射光を受光している場合、観測された受光パルスが、ターゲットからの反射光によるものなのか、不要反射光によるものなのか、ターゲットからの反射光と不要反射光とが結合したものなのかが判別しづらい。仮に不要反射光とターゲットからの反射光とが結合している受光パルス全体をターゲットからの反射光によるものと見なしてしまうと、ターゲットからの反射光に対応するピーク位置や立ち上がり位置などといった特徴量に誤差が生じ、ターゲットの位置を誤判定しうる。
 本開示は、上記の検討又は着眼点に基づいて成されたものであり、その目的の1つは、測距レンジを低減することなく、ターゲットとの距離を誤算出する恐れを低減可能な光測距装置を提供することにある。
 ここに開示される光測距装置は、ターゲットまでの光の往復時間を用いてターゲットとの距離を検出する光測距装置であって、所定波長を有する光であるセンシング光を、所定の検出対象方向に向けて照射する照射部と、センシング光に対して応答する、行列状に配置されている複数の光検出器と、照射部から出力するセンシング光の照射強度、又は、複数の光検出器の検知感度を、所定の通常レベルから、通常レベルよりも所定量小さい抑制レベルへと切り替えるレベル調整部と、光検出器の応答数の時系列データに基づいて、センシング光が物体で反射されて返ってきた光である反射光に対応する受光パルス及びそのピークを検出するピーク検出部と、ピーク検出部が検出した受光パルスにかかる所定の特徴量を示すデータセットをパルス情報として取得する構成であって、通常レベルが適用されている場合のパルス情報である通常パルス情報と、抑制レベルが適用されている場合のパルス情報である抑制パルス情報とを取得するパルス情報取得部と、通常パルス情報と抑制パルス情報とに基づいて、ターゲットとの距離値を算出する距離演算部と、を備える。
 上記構成では、通常レベルが適用されている場合に観測されるパルス情報である通常パルス情報だけでなく、抑制レベルが適用されている場合に観測されるパルス情報である抑制パルス情報を併用して、ターゲットとの距離を算出する。抑制レベル適用時には、通常レベルに比べてセンシング光の照射強度又は検知感度が低減されているため、不要反射光によって画素値が飽和する事象は生じにくくなる。それに伴い、ターゲットからの反射光を受光している場合と、不要反射光のみを受光している場合と、ターゲットからの反射光と不要反射光とが結合している場合とで受光パルスの波形が異なるようになる。故に、通常パルス情報と抑制パルス情報を併用することで、観測された受光パルスがターゲットからの反射光によるものなのか、不要反射光によるものなのか、ターゲットからの反射光と不要反射光とが結合したものなのかが判別可能となる。また、抑制パルス情報だけでなく、通常パルス情報を使用することで、相対的に遠方のターゲットも検出可能となる。つまり測距レンジを低減することなく、ターゲットとの距離を誤算出する恐れを低減可能となる。
 なお、請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本開示の技術的範囲を限定するものではない。
光測距装置の構成を示すブロック図である。 受光アレイの構成を説明するための概念図である。 各画素に対応するセルグループの割当態様の変形例を示す図である。 受光パルスの特徴量について説明するための図である。 ピーク強度が飽和した場合のピーク到来時間の決定方法について説明するための図である。 近接体散乱光を説明するための図である。 多重反射光を説明するための図である。 不要反射光のタイプに応じた立ち上がり判定時間及びパルス幅への影響を説明するための図である。 制御部の機能ブロック図である。 光測距装置の作動を説明するための図である。 各観測パターンに対応する演算式の一例を示す図である。 各観測パターンに対応する演算式の他の例を示す図である。 各観測パターンに対応する演算式の一例を示す図である。 観測パターンの判別方法を示すフローチャートである。 ターゲット反射光が散乱光と結合している場合において、通常受発光処理と抑制受発光処理とで観測されるピーク到来時間の差を示す概念図である。 ターゲット反射光が多重反射光と結合している場合において、通常受発光処理と抑制受発光処理とで観測されるピーク到来時間の差を示す概念図である。 観測パターンの判別方法の他の例を示すフローチャートである。 観測パターンの判別方法の他の例を示すフローチャートである。 ターゲット反射光が多重反射光と結合している場合において、通常受発光処理と抑制受発光処理とで観測される立ち上がり判定時間の差を示す概念図である。 ターゲット反射光が散乱光と結合している場合において、通常受発光処理と抑制受発光処理とで観測される立ち上がり判定時間の差を示す概念図である。 光測距装置の構成の変形例を示す図である。
 以下、本開示の実施形態について図を用いて説明する。図1に示す光測距装置1は、ターゲットまでの光の往復時間から、対象物までの距離を計測する装置である。当該光測距装置1は、LiDAR(Light Detection and Ranging / Laser Imaging Detection and Ranging)とも呼ばれる。本開示におけるターゲットとは、光を反射しうる多様な物体を指す。他車両や歩行者、中央分離帯、ガードレールなどといった自車両とは独立した存在であって、車両の走行制御上の障害物となりうる地物/移動体などがターゲットに該当しうる。本開示における自車両とは、光測距装置1が搭載される/搭載されている車両を指す。
 光測距装置1は、後述するように、パルス状の光であるセンシング光を照射する照射部4と、複数の受光素子がアレイ状に配置された受光アレイ5と、を備える。光測距装置1は、照射部4からセンシング光を照射してから、当該センシング光に対応する反射光を各受光素子が受光するまでの時間(いわゆるToF:Time of Flight)に基づいて、測距結果を示すデータとしての距離画像を生成する。
 距離画像は、複数の画素を備え、個々の画素の値が物体との距離を示すデータである。光測距装置1は、図1に示すように、車両状態センサ101や車載ECU102と接続されている。本開示におけるECUは、Electronic Control Unitの略であり、電子制御装置を意味する。光測距装置1は、車両状態センサ101及び車載ECU102と車両内ネットワークを介して接続されている。もちろん、光測距装置1は一部のセンサ/ECUと、専用の通信線を用いて直接的に接続されていても良い。
 なお、光測距装置1におけるセンシング光の照射パターンは、スキャン方式であってもよいし、フラッシュ方式であってもよい。スキャン方式とは、アクチュエータを用いて照射部4に対する反射鏡の角度を動的に変更することで、センシング光を掃引照射する方式を指す。スキャン方向は、水平方向であってもよく、垂直方向であってもよい。フラッシュ方式は、所望の検出範囲に対応する角度範囲に向けて、拡散されたセンシング光を一度に照射する方式である。本開示は、スキャン方式、フラッシュ方式のどちらにも適用可能である。
 車両状態センサ101は、自車両の挙動に関する情報、および自車両の挙動に影響を与える運転操作に関する情報(以降、車両情報)を検出するためのセンサである。車両情報とは、例えば、自車両の走行速度や、自車両に作用する加速度、ヨーレート、ペダル操作量、操舵角などである。ペダル操作量とは、アクセルペダル及びブレーキペダルのそれぞれについての踏込量/踏込力を指す。車両電源の状態を示す信号も、車両情報に含めることができる。車両電源の状態には、走行用電源がオンであるか否かを含む。走行用電源は、車両が走行するための電源であって、自車両がエンジン車である場合にはイグニッション電源を指す。自車両が電動車である場合、走行用電源とはシステムメインリレーを指す。電動車には、電気自動車のみならず、プラグインハイブリッド車、ハイブリッド車なども含まれる。光測距装置1には、それぞれ検出対象が異なる、複数の車両状態センサ101が接続されうる。車両状態センサ101は、検出結果を示す信号を光測距装置1に出力する。
 車載ECU102は、自車両に搭載されている任意のECUである。例えば、光測距装置1は、運転支援ECUなどと接続されて使用される。運転支援ECUは、ドライバの運転操作を支援する処理を実行するECUである。運転支援ECUは、光測距装置1の検出結果に基づいて、他の移動体や静止物との衝突にかかる報知をドライバに対して実施する。運転支援ECUは情報提示にとどまらず、光測距装置1の検出結果に応じた自動的な制動制御や操舵を実施するECUであってもよい。他の移動体とは、歩行者や他車両、サイクリストなどを指す。運転支援ECUは、予め設定されている目的地まで車両を自律的に走行させる自動運行装置であってもよい。本開示におけるドライバとは、運転席に着座している人物、つまり運転席乗員を指す。ドライバとの記載は、自動運転中においては自動運転システムから運転操作の権限を受け取るべき人物を指す。ドライバの概念には、車両を遠隔操作するオペレータを含めることができる。
 <光測距装置1の構成>
 光測距装置1は、図1に示すように、制御部2、照射制御回路3、照射部4、受光アレイ5、応答判定器6、加算器7、及びピーク検出部8を備える。また、別途図示するように光測距装置1は、これらを収容する筐体9を備える。筐体9には、センシング光を照射するための照射窓91が設けられている。照射窓91は透光性を有する部材、例えば透明な樹脂パネルやガラスなどを用いて実現されている。照射窓91は、受光アレイ5がターゲットからの反射光を受光するための窓としても機能しうる。なお、照射窓91と受光用の窓部は、別々に設けられていても良い。照射窓91は光学窓とも呼ばれうる。
 制御部2は、光測距装置1の動作を制御する。制御部2は、照射制御回路3に対してセンシング光の照射設定に係る信号を入力する。また、制御部2はピーク検出部8から反射光に対応する受光パルスのパルス情報を取得する。当該制御部2は、プロセッサ21、RAM(Random Access Memory)22、ストレージ23を用いて実現されている。制御部2は、プロセッサ21として、DSP(Digital Signal Processor)やCPU(Central Processing Unit)などを備える。制御部2の各種機能は、プロセッサ21がストレージ23に格納されたプログラムを実行することにより実現される。制御部2の機能の詳細については別途後述する。
 照射制御回路3は、制御部2からの指令に基づき、照射部4からセンシング光を所定の照射間隔で照射させる。照射制御回路3は、照射部4から照射するセンシング光のパルス幅や、照射強度、照射間隔などを制御する。照射強度は、センシング光として出力するパルス光のピークの高さ(いわゆるピークパワー)に相当する。本開示では、反射光として受信するセンシング光との区別のため、照射部4から照射するセンシング光のことを照射光とも記載する。照射光のパルス幅は例えば5ナノ秒に設定されている。もちろん照射光のパルス幅は、20ナノ秒や10ナノ秒、1ナノ秒であってもよい。また、照射光のパルス幅は、50ピコ秒や100ピコ秒、200ピコ秒など、1ナノ秒未満の値に設定されていてもよい。
 照射制御回路3は、センシング光の照射強度を通常レベルと抑制レベルに切り替え可能に構成されている。通常レベルは、所望の測距レンジを実現するための所定値に設定されている。測距レンジは、ターゲットに設定されている所定の物体を検出可能な距離である検出可能距離に相当する。例えば通常レベルは250mまたは300m程度の測距レンジを実現可能な強度に設定されている。抑制レベルは、通常レベルの50分の1程度の値に設定されている。抑制レベルは、通常レベルの10分の1や、100分の1、200分の1、1000分の1であってもよい。抑制レベルは、例えば3m以内など、後述する近傍領域内の物体を検出可能な値に設定されている。照射強度の調整は、増幅度合いを調整可能な可変利得アンプを用いて実現されても良いし、照射部4の駆動電圧を切り替えることで実現されても良い。また、通常レベル、抑制レベルの切り替えは、光源そのもの、又は、光源の数等を切り替えることで実現されても良い。つまり、通常レベル用の光源と、抑制レベル用の光源とが別に用意されてあって、照射制御回路3はそれらを選択的に使用することにより、通常レベルでの照射と、抑制レベルでの照射とを交互に/選択的に実施可能に構成されていても良い。
 照射部4は、例えば、光源となるレーザダイオードを備え、この光源から所定の検出対象方向に向けて、センシング光として、所定波長の光を照射する。検出対象方向は、測距の対象となるターゲットを検知しようとする領域に対応する。スキャン方式の光測距装置1においては、検出対象方向は鏡等を用いて動的に変更されても良い。フラッシュ方式の光測距装置1においては、検出対象方向は、上下方向及び左右方向に所定の角度範囲を有しうる。
 センシング光は、赤外線とするが、可視光であってもよい。例えばセンシング光は、レーザ光として一般的な900±50nmの帯域に属する光である。照射部4は、1550nmなど、1400nm以上の波長のレーザ光を出力するように構成されていても良い。1400nm以上の電磁波をセンシング光として採用する構成によれば、太陽光などのホワイトノイズに対する耐性(例えば信号対雑音比)を高めやすくなる。また、人体保護の観点からIEC(国際電気標準会議)が規定する出力制限を緩和可能となるといった利点を有する。
 受光アレイ5は、物体からの反射光の入射に応じてパルス信号を出力可能な受光セル5sを複数有する。個々の受光セル5sは、受光素子として、SPAD(Single Photon Avalanche Diode)を備える。SPADはアバランシェフォトダイオードの一種である。SPADは、逆バイアス電圧としてブレイクダウン電圧よりも高い電圧を印加することにより動作する。受光セル5sは、フォトンの入射によりSPADがブレイクダウンしたときの電圧変化を検出して、所定パルス幅のデジタルパルス(以下、パルス信号)を出力するよう構成されている。
 例えば受光セル5sは、受光素子としてのSPADに対し、直列的に接続するクエンチ回路を含む。クエンチ回路は、例えば、所定の抵抗値を有する抵抗素子(いわゆるクエンチ抵抗)、又は、MOSFET等を用いて構成されうる。受光セル5sは、SPADがブレイクダウンしてクエンチ回路に電流が流れると、上述したパルス信号として、値0となるデジタルパルスを出力する。このように個々の受光セル5sは、SPADが応答するとパルス信号を出力するように構成される。受光セル5sが光検出器に相当する。
 複数の受光セル5sは、2次元の行列状(格子状)に配置されている。例えば受光アレイ5は、複数の受光セル5sをアレイ状に配置したシリコンフォトマルチプライヤ(SiPM:Silicon Photo Multipliers)として構成されている。受光アレイ5の行数及び列数は、要求される解像度/画素数を元に適宜設計される。距離画像を構成する或る画素の値は、当該画素に対して予め割り当てられている複数の受光セル5sのうちの応答数によって定まる。換言すれば、複数の受光セル5sが1セットとなって1つの画素を構成する。図2では4×4の16個の受光セル5sが1つの画素を構成する場合を例示している。図中の破線は、画素の境界を示している。もちろん、1つの画素を構成する受光セル5sの数は、16に限らず、64や128、256などであってもよい。1つの画素の値は、横8×縦16の128個の受光セル5sの出力に基づいて決定されてもよい。
 なお、本開示では、1つの画素に対応する複数の受光セル5sのまとまりをセルグループSgrとも称する。セルグループSgrのサイズは、距離画像を構成する1つの要素(つまり画素)のサイズに対応する。各セルグループSgrは、受光した光の強度に応じて、0~16個のパルス信号を出力する。図2では、個々の画素が受光セル5sを共用しないように設定されている態様を示しているが、これに限らない。他の態様として図3に例示するように、各セルグループSgrは、隣接する他のセルグループSgrとオーバーラップするように設定されていても良い。つまり、1つの受光セル5sを複数のセルグループSgrに所属させてもよい。また、セルグループSgrの形状は正方形に限らず長方形状であってもよい。つまり、1つの画素に対応する受光セル5sの行数と列数は異なっていても良い。受光アレイ5は、例えば100万画素の距離画像を生成可能な数の受光セル5sを有する。
 受光アレイ5は、制御部2から制御信号により光を検知可能な受光状態に切り替えられる。例えば制御部2は、センシング光の照射を指示する信号を照射制御回路3に出力するとともに、受光アレイ5に所定の制御信号を入力することで各受光セル5sを一定時間駆動させる。もちろん、他の態様として各受光セル5sは常時、入射光の強度に応じて応答可能な駆動状態を維持するように構成されていても良い。
 応答判定器6は、受光セル5sからパルス信号が入力されているか否か、すなわちSPADが応答しているか否かを判定する構成である。応答判定器6は、受光セル5sごとに設けられている。受光セル5sの出力を所定のクロック周波数でサンプリングする。応答判定器6は、受光セル5sが応答している場合にはハイレベルを、応答していない場合にはローレベルを出力するように構成されている。応答判定器6は、受光セル5sひいては受光アレイ5と一体的に構成されていても良い。
 加算器7は、複数の応答判定器6から出力されたパルスを加算して出力する。加算器7は、画素ごと、換言すればセルグループSgrごとに設けられている。個々の加算器7は、ソフトウェアとして実現されていても良いし、ハードウェアとして実現されていても良い。例えば複数の加算器7は例えばFPGA(Field-Programmable Gate Array)や、ASIC(Application Specific Integrated Circuit)などを用いて実現されうる。後述するピーク検出部8についても同様である。
 加算器7の出力は、当該加算器7に対応するセルグループSgrにおける受光セル5sの応答数を示す。本開示では加算器7からの出力を受光強度或いはレベル値とも表記する。レベル値は、入射される光の強さを示す値ともいえる。故に、加算器7ごとの出力レベルは、各画素での受光強度を示す。
 上記の通り、受光アレイ5を構成する複数の受光セル5sのそれぞれからは、周囲の光量に応じた頻度でパルス信号が出力される。このため、受光セル5sにターゲットからの反射光が入射したときには、受光セル5sから単位時間当たりに出力されるパルス信号の数、つまり、パルスレートが著しく増加する。それに伴い、加算器7の出力レベルも、反射光の受光に呼応するタイミングでパルス状に推移しうる。便宜上、ピークが所定の水準を超える1つながりの信号系列を受光パルスと称する。
 ピーク検出部8は、加算器7が出力する受光強度の時系列データに基づいて、受光強度のピークを検出する。ピークは、受光強度が上昇してから下降に転じる時刻に相当する。ピーク検出部8は、加算器7ごとに、換言すれば画素ごとに設けられている。ピーク検出部8は、例えば時間ごとの受光強度(レベル値)を示すヒストグラムを生成する。生成されたヒストグラムは、図示しないメモリ又はRAM22にテーブル等の所定の形式で保持される。
 ピーク検出部8は、図4に示すように、レベル値の時系列データ(ヒストグラム)に基づいて、受光パルス及びそのピークを検出するとともに、当該ピークに付随するパルス情報を取得する。受光パルスとピークは1対1で対応するため、以降の説明における受光パルスとの記載はピークと置き換えて理解することができる。パルス情報には、例えばピーク強度Pq、ピーク到来時間Tp、立ち上がり判定時間Ta、立ち下がり判定時間Tb、及びパルス幅Twが含まれる。ピーク検出部8は、受光パルスの特徴量を抽出する構成と解することができる。本開示では、センシング光を照射させるとともに、当該照射から一定時間以内における受光結果としての画素ごとのパルス情報を取得する一連の処理を受発光処理とも称する。受発光処理は、実施するアクションの順番に基づき発受光処理と呼ぶことができる。また、受発光処理は、センシング処理又はスキャン処理と呼ぶこともできる。
 ピーク強度Pqは、波形内の強度が最大となった時点での強度(つまりピーク値)を示す。ピーク強度Pqは、受光強度が減少し始める直前の値、換言すれば傾きが0となる時刻での強度に相当する。ここでの傾きとは受光強度の時間変化率に対応する。仮に、図5に示すように受光パルスの強度が、計測上限値Pmxに到達している場合には、計測上限値Pmxがピーク強度Pqとなる。計測上限値Pmxは、加算器7の出力可能な値の範囲の最大値に相当する。計測上限値Pmxは、セルグループSgrを構成する受光セル5sの数に対応する。仮に1つのセルグループSgrを構成する受光セル5sの数を256とすると、センサ上限値は256となる。
 図4及び図5に示すTaは、立ち上がり区間において受光強度が判定閾値Pthとなるタイミング、換言すれば、センシング光を照射してから受光強度が判定閾値Pthに到達するまでの経過時間である立ち上がり判定時間を示している。立ち上がり判定時間Taは、閾値到達時間と呼ぶこともできる。立ち上がり判定時間Taは受光パルスの立ち上がり位置に相当する。また、図に示すTbは、立ち下がり区間において受光強度が判定閾値Pthとなるタイミング、換言すれば、受光強度が判定閾値Pthを下回るまでの経過時間である立下がり判定時間を示している。立下がり判定時間Tbは閾値下回時間と呼ぶこともできる。立ち下がり判定時間Tbは受光パルスの立ち下がり位置に相当する。本開示では立ち上がり区間において受光強度が判定閾値Pthとなる時点を立ち上がり点、立ち下がり区間において受光強度が判定閾値Pthとなる時点を立ち下がり点とも称する。
 判定閾値Pthは、実際に観測されているピーク強度Pqに所定の係数kを乗じた値に設定される。係数kの値としては、例えば0.45や、0.50、0.55、0.60などが採用される。ここでは一例としてk=0.55(55%相当)に設定されている。判定閾値Pthは、受光強度がピークの半分となるタイミングである、いわゆる半値点を定義するパラメータである。ここでの半値点とは、ちょうど50%となる点に限定されず、上述の通り、45%や、60%などとなる点であっても良い。
 なお、加算器7が出力する受光強度には、太陽光などによる定常的なノイズである定常ノイズ成分が含まれうる。そのため、ピーク強度Pqは、ターゲット反射光成分に定常ノイズ成分が重畳した値となりうる。仮にピーク強度Pqの生値の50%を立ち上がり位置と見なすと、定常ノイズ成分に由来して、立ち上がり位置を真の立ち上がり位置よりも低いポイントで判断することとなってしまう。純粋なターゲット反射光成分の半値点を立ち上がり位置/立ち下がり位置として検出できるように、ピーク検出部8は太陽光などによる定常的な外乱成分の大きさに応じて係数kを動的に調整しても良い。例えば定常ノイズ成分が大きいほど係数kは大きい値に設定されても良い。あるいは、定常ノイズ成分の大きさをPnとすると、ピーク検出部8は、(Pq-Pn)・k+Pnとなる点を立ち上がり位置及び立ち下がり位置として検出するように構成されていても良い。定常ノイズ成分の大きさは、センシング光の照射前の受光強度をもとに決定可能である。その他、ピーク検出部8は、加算器7の出力値から定常ノイズ成分を除去してなる補正済み受光強度の時系列データから、ピーク強度Pqや立ち上がり位置/立ち下がり位置等を決定してもよい。
 図5に示すTpaは、波形内において強度が計測上限値Pmxに到達した時間である上限到達時間を示している。Tpbは、波形内において強度が計測上限値Pmxから下がり始める(離脱する)直前の時間である上限離脱時間を示している。上限離脱時間Tpbは、受光強度が飽和している期間で最も遅い時間に対応する点であって、具体的には強度から計測上限値Pmxから離脱した時点の1ビン(bin)/1フレーム前の点に相当する。Tpcは、上限到達時間Tpaと上限離脱時間Tpbの中間に位置する中間時間を示している。本開示では上限到達時間Tpaに対応する観測点を上限到達点、上限離脱時間Tpbに対応する観測点を立ち下がり開始点、あるいは、上限離脱点とも称する。
 ピーク到来時間Tpは、センシング光を照射してからピーク強度Pqが観測されるまでの経過時間である。ピーク到来時間Tpは、センシング光を照射してからピーク強度Pqが観測されるまでのクロック数によって表現されうる。ピーク到来時間Tpは時間軸上のピーク位置を示す。仮にピーク検出部8が検出したピークが、ターゲットからの反射光に対応するものとすれば、当該ピークに対応するピーク到来時間Tpは、ターゲットまでの往復飛行時間(ToF:Time of Flight)に相当する。故に制御部2は、ピーク到来時間Tpに、C/2(Cは光速)を乗算することにより、画素ごとにターゲットまでの距離を算出することができる。
 なお、図5に示すように受光強度が計測上限値Pmxに到達することによって真のピークが不明瞭である場合に関しては、ピーク検出部8は、中間時間Tpcをピーク到来時間Tpとして採用する。他の態様として、ピーク検出部8は、ピーク到来時間Tpとして、上限到達時間Tpaをピーク到来時間Tpとして採用してもよい。ピーク検出部8は、立ち上がり区間における判定閾値Pthでの傾きと、立ち下がり区間における判定閾値Pthでの傾きとに基づいてピーク到来時間Tpを推定してもよい。
 パルス幅Twは、受光パルスの幅を示すパラメータである。パルス幅Twは、受光強度が判定閾値Pth以上となっている時間の長さに相当する。つまり、パルス幅Twは、立下がり判定時間Tbから立ち上がり判定時間Taを減算することで特定されうる。前述の通り、判定閾値Pthは、例えば波形内の最大強度の50%など、ピーク強度に応じて動的に決定されうる。また、加算器7の出力は定常ノイズ成分が重畳していることを踏まえ、判定閾値Pthや立ち上がり/立ち下がり位置の算出方法は、ピーク検出部8が純粋なターゲット反射光成分のパルス幅を算出(評価)可能なように設計されている。
 上述したピーク強度Pq、ピーク到来時間Tp、立ち上がり判定時間Ta、立下がり判定時間Tb、及びパルス幅Twといった種々のパラメータは、受光パルスの特徴量に相当する。上限到達時間Tpaや、上限離脱時間Tpbなどもまた、受光パルスの特徴量に含めることができる。なお、ピーク検出部8は上述した全てのパラメータを必ずしも検出物情報として取得しなくとも良い。ピーク検出部8は上述した全てのパラメータのうち、距離演算処理において必要な所定パラメータのみを取得するように構成されていても良い。本開示の「取得」には、内部演算によって生成/検出することも含まれる。
 なお、1つの画素に対して、受光パルス(ピーク)が複数出現する場合がある。例えば、異なる物体からの反射光が同じ画素に届いた場合の他、付着物散乱光を受光した場合や、内部散乱光を受光した場合、ある程度離れたターゲットとの間で多重反射が生じた場合などである。
 本実施形態のピーク検出部8は、1回の受発光処理において複数の受光パルスが検出された場合、複数の受光パルスのうち、最もピーク強度Pqが大きい受光パルスについてのパルス情報を出力する。なお、ピーク検出部8の作動はこれに限らず、受光パルスごとに、上記の特徴量を算出し、パルス情報として出力してもよい。例えば、観測された受光パルスごとのピーク情報の取捨選択は、ピーク検出部8の代わりに制御部2にて実行されても良い。ピーク検出部8は、例えば、ピーク強度Pqが上位2つの受光パルスについてのパルス情報を出力するように構成されていても良い。
 なお、本開示の付着物散乱光とは図6においてxSLで指し示すように、照射窓91に付着している物体である付着物10で反射/散乱されたセンシング光を指す。照射窓91は、光源からの光を筐体9の外部に出力するための窓部である。照射窓91もまた筐体の一部に相当するため、付着物10は、筐体へ付着している物体と解することができる。付着物10は例えば泥や、砂塵、雨滴、鳥の糞などである。つまり、付着物散乱光は、照射窓91の外側面に付着している雨滴や泥などによる反射光を指す。
 内部散乱光とは、照射窓91の内面や、筐体内の構成要素で反射された光を指す。なお、各図におけるTgLは、ターゲットからの反射光であるターゲット反射光を示す。本開示では付着物散乱光や内部散乱光といった、センサ近接体による散乱光を近接体散乱光、或いは単に散乱光とも記載する。センサ近接体とは、照射部4から0.1m以内に存在する物体であって、照射窓91や筐体内部品、照射窓91への付着物10などを指す。仮に光測距装置1がウインドシールドの室内側の面に取り付けられて使用される場合、ウインドシールドもセンサ近接体となりうる。
 また、本開示における多重反射光とは、図7においてMRLで指し示すよう、ターゲットからの反射光の一部が光測距装置1の筐体9や車体、或いは周辺物体で反射された光が、再びターゲットで反射されて戻ってきた光を指す。図7に示す一点鎖線は、ターゲット反射光の一部が光測距装置1の筐体9等で反射された光である再出光を示している。二点鎖線が多重反射光、すなわち再出光がターゲットで反射されて戻ってきた光である2重反射光を示している。また本開示では、近接体散乱光及び多重反射光をまとめて不要反射光とも記載する。
 ところで、センシング光のパルス幅は数ナノ秒程度と非常に短い。そのような事情を踏まえると、ターゲットが照射窓91から十分に離れている場合には、ターゲット反射光に対応する受光パルスであるターゲットパルスと、不要反射光に対応する受光パルスであるノイズパルスは分離しうる。しかしながら、ターゲットが光測距装置1の近傍領域に存在する場合、ターゲットパルスと、ノイズパルスが結合しうる。より具体的には、付着物散乱光や内部散乱光に対応する受光パルスは、時間軸においてターゲットパルスの前側に位置する形でターゲットパルスと結合しうる。照射窓91や付着物10等は、ターゲットよりも受光アレイ5に近い位置に存在するためである。多重反射光に対応する受光パルスは、時間軸においてターゲットパルスの後ろ側に位置する形でターゲットパルスと結合しうる。多重反射されている分だけ光路長が長くためである。
 また、SPADの応答性の高さが故に、実環境においては、画素ごとの強度値(つまり画素値)は、不要反射光(いわゆるクラッタ)によっても飽和しうる。画素値が飽和している状態とは、加算器7の出力レベルが計測上限値Pmxに達している状態を指す。
 図8の(A)は、近接体散乱光に対応する受光パルスがターゲットパルスと結合している場合の強度出力の推移を概念的に示している。また図8(C)は多重反射光に由来する受光パルスがターゲットパルスと結合している場合の強度出力の推移を概念的に示している。なお、図8の(B)は、不要反射光の影響を受けていない場合の強度出力の推移を示している。不要反射光の影響を受けていない場合とは、不要反射光がターゲット反射光(ターゲットパルス)に重畳(結合)していない場合を指す。
 図8の(A)、(B)、(C)のそれぞれにおいて上側グラフは、受光アレイ5に入射する光の強さの推移を示し、下側グラフは、加算器7の出力レベルの推移を示している。なお、入射光の強度は図8の(B)の上側グラフに示すように1つの頂点を有する波形状となることが想定されるが、加算器7には計測上限値Pmxが存在するため、出力レベルは台形状となりうる。
 図8の(A)と(B)を比較すれば分かるように、ターゲット反射光が近接体散乱光と結合している場合には、立ち上がり点又は上限到達点が前側にシフトする。その結果、ターゲットとの距離を実際よりも短く算出しうる。一方、ターゲット反射光が多重反射光と結合している場合には、立ち下がり点や上限離脱点が後ろ側にシフトする。また、何れのケースもパルス幅Tw自体が長くなる。
 このように不要反射光による受光パルスと、ターゲットパルスとが結合していると、ターゲット反射光に対応する受光パルスの真の特徴量が不明確となり、ターゲットの位置を誤判定しうる。つまり、ターゲットとの距離を実際よりも短く/長く算出しうる。本開示の光測距装置1は上記課題に着眼して創出されたものであり、通常/抑制レベルでの受発光処理の観測結果をもとに演算処理に使用するパラメータ及び演算式の少なくとも何れか一方を変更することにより、測距精度の向上を図る処理が組み込まれている。
 なお、光測距装置1の近傍領域とは、ノイズパルスとターゲットパルスとが結合しうる範囲である。近傍領域は、光測距装置1から照射光のパルス幅に応じて定まる所定の近傍距離未満となる範囲を指す。近傍距離は、照射光のパルス幅に光速を乗じた距離の半分に、回路の応答特性に応じて定まる所定値を加えた値とすることができる。回路の応答特性には、SPADのリチャージ時間(デッドタイム)などが含まれる。近傍距離は、例えば、パルス幅が数ナノ秒であることを想定すると、2mから3m程度に設定されうる。光測距装置1に対してターゲットが十分に離れている状態とは、ターゲットが近傍領域外に存在する状態に相当する。
 <制御部の機能及び作動について>
 制御部2は、ストレージ23に保存されているプログラムを実行することにより、図9に示す種々の機能ブロックに対応する機能を提供する。すなわち、制御部2は機能ブロックとして、外部情報取得部F1、パルス情報取得部F2、レベル調整部F3、距離演算部F4、及び画像生成部F5を備える。また、制御部2は、演算パラメータ記憶部M1を備える。
 演算パラメータ記憶部M1は、後述する距離演算処理で使用する種々のパラメータが保存されている記憶部である。距離演算処理に使用するパラメータとは立ち上がりオフセット値などである。演算パラメータ記憶部M1は、ストレージ23が備える記憶領域の一部を用いて実現されている。なお、演算パラメータ記憶部M1は、ストレージ23とは物理的に独立した不揮発性の記憶媒体を用いて実現されていても良い。演算パラメータ記憶部M1はプロセッサ21によるデータの書き込み、読出、削除等が実施可能に構成されている。
 外部情報取得部F1は、車両状態センサ101や車載ECU102から、自車両の状態や外部環境に関する種々の情報を取得する。例えば外部情報取得部F1は、運転支援ECUに相当する車載ECU102から、光測距装置1の周辺に存在する立体物の情報を取得してもよい。周辺立体物は、車外を撮像する車載カメラの画像解析結果や、ソナーの出力信号を元に特定されうる。例えば駐車直前、直後のシーンを想定すると、自車両から数m以内に他の駐車車両や壁などが存在しうる。制御部2は、参考情報として、車載カメラやソナーといった、他センサによる外部環境の検出結果をもとに、光測距装置1の近傍領域に立体物が存在するか否かを判断しても良い。制御部2は、他のセンサで光測距装置1から所定距離以内に立体物が存在すると判定されていることを条件として、後述する抑制レベルでの受発光結果を優先的に用いた距離演算処理を実施しても良い。
 パルス情報取得部F2は、各画素に対応するピーク検出部8からパルス情報を取得する。つまり、パルス情報取得部F2は画素ごとのパルス情報を取得する。各画素は画素ごとに固有の番号である画素番号にて区別されうる。なお、ピーク検出部8の一部の機能はパルス情報取得部F2が備えていても良い。例えばピーク検出部8はピークの検出のみを実行し、その検出されたピークを含む受光パルスの特徴量の抽出処理はパルス情報取得部F2が実行しても良い。機能配置は適宜変更可能である。
 レベル調整部F3は、センシング光の照射強度を調整する構成である。レベル調整部F3は、予め登録されている切替パターンに基づき、照射強度を通常レベルから抑制レベルに切り替えたり、抑制レベルから通常レベルに切り替えたりする。例えばレベル調整部F3は、通常レベルに設定した状態と、抑制レベルに設定した状態とを受発光処理ごとに交互に切り替える。当該制御態様は、通常レベルでの受発光処理と、抑制レベルでの受発光処理を交互に実施する構成に相当する。
 以降では記載の簡略化のため、通常レベルでの受発光処理を通常受発光処理と称するとともに、抑制レベルでの受発光処理を抑制受発光処理とも称する。また、通常受発光処理で取得したパルス情報を通常パルス情報、抑制受発光処理で取得したパルス情報を抑制パルス情報とも称する。さらに、通常受発光処理で観測されるピーク到来時間Tpを通常ピーク時間Tp1、抑制受発光処理で観測されるピーク到来時間Tpを抑制ピーク時間Tp2とも記載する。通常受発光処理で観測される立ち上がり判定時間Taを通常立ち上がり時間Ta1、抑制受発光処理で観測される立ち上がり判定時間Taを抑制立下がり時間Ta2とも記載する。さらに通常受発光処理で観測されるパルス幅Twを通常パルス幅Tw1、抑制受発光処理で観測されるパルス幅Twを抑制パルス幅Tw2とも記載する。
 距離演算部F4は、通常/抑制受発光処理で観測された画素ごとの受光パルスの特徴量に基づいて、画素ごとの距離値を生成する。距離演算部F4の作動の詳細は別途後述する。画像生成部F5は、距離画像として、距離演算部F4が算出した画素ごとの距離値を、各画素の要素値として割り当てたデータセットを生成する。なお、画像生成部F5は、ピーク検出部8によって検出されたピーク強度Pqを、各画素に対応付けたデータセットである強度画像データを生成してもよい。また、画像生成部F5は、個々の画素が距離情報と強度情報とを含む画像データを生成しても良い。
 図10は、光測距装置1が各画素における距離値を算出する処理である測距処理の流れの一例を示したフローチャートである。図10に示す測距処理は、走行用電源がオンになっていることを条件として所定のセンシング周期で実施される。センシング周期は、例えば100ミリ秒や200ミリ秒などに設定されうる。本実施形態では一例として測距処理はステップS101~S106を備える。なお、本開示におけるフローチャートは何れも一例であって、ステップ数や処理順序、実行条件などは適宜変更可能である。
 ステップS101は通常受発光処理を実行するステップである。具体的には、レベル調整部F3が照射制御回路3との協働によりセンシング光を照射部4から通常レベルで照射させる。また、それと連動させて受光アレイ5を待受状態に設定する。もちろん受光アレイ5は常時、光を検知可能な待受状態に設定されていても良い。また、制御部2はセンシング光の照射に先立って受光アレイ5を待ち受け状態に設定しても良い。受光アレイ5を構成する受光セル5sごとの応答状態は、各画素に対応する加算器7を介してピーク検出部8に入力される。各ピーク検出部8は、対応する加算器7の出力値の時系列データに基づいて画素ごとのパルス情報を生成し、制御部2に入力する。
 ステップS102は、パルス情報取得部F2が通常受発光処理(つまりステップS101)の結果として、画素ごとのパルス情報を取得する。パルス情報は前述のピーク到来時間Tpや、ピーク到来時間Tp、立ち上がり判定時間Ta、立下がり判定時間Tbなど、所定種類の特徴量を含みうる。
 ステップS103は抑制受発光処理を実行するステップである。具体的には、レベル調整部F3が照射制御回路3との協働によりセンシング光を照射部4から抑制レベルで照射させる。ステップS104は、パルス情報取得部F2が抑制受発光処理(つまりステップS103)の結果として、画素ごとのパルス情報を取得する。
 通常受発光処理では不要反射光成分でも出力レベルが飽和しやすく、また、ターゲットパルスの前後どちら側に不要反射光の成分が結合しているかの区別が難しい。一方、抑制受発光処理によれば不要反射光成分では出力レベルが飽和しにくくなる。抑制受発光処理によればターゲット反射光に結合している不要反射光が散乱光であるか、多重反射光であるかに応じて異なる波形出力が得られる。つまり、距離演算部F4としての制御部2は、抑制レベルでの受光強度の時系列データを参照することにより、ターゲット反射光に結合している不要反射光の種類あるいは不要反射光の結合位置を識別可能となりうる。不要反射光の結合位置は、ターゲット反射光の前側に不要反射光が結合しているのか、ターゲット反射光の後ろ側に不要反射光が結合しているのかに相当する。
 なお、ステップS101とステップS102からなる通常シーケンスと、ステップS103とステップS104からなる抑制シーケンスは、センシング光の照射強度が相違するだけで、その他の信号処理は同様とすることができる。各シーケンスで取得する特徴量の組み合わせは同じであってもよいし、異なっていても良い。各シーケンスのそれぞれで同じ組み合わせの特徴量を取得する構成によれば、ピーク検出部8やパルス情報取得部F2の作動を各シーケンスで共通化させることができる。また、後述する観測パターンの選定にかかる判断材料を増やすことができる。ここでは一例として、抑制シーケンスにおいて抽出対象とする特徴量の組み合わせは、通常シーケンスにおける抽出対象と同じに設定されている。
 他の態様として、抑制シーケンスで抽出する特徴量の数は、通常シーケンスで取得する特徴量の数よりも少なく設定されても良い。換言すれば、抑制シーケンスでは通常シーケンスで抽出される特徴量の一部のみを抽出するように構成されていても良い。例えば通常シーケンスではピーク強度Pq、ピーク到来時間Tp、立ち上がり判定時間Ta、立下がり判定時間Tb、及びパルス幅Twの5項目を抽出する。一方、抑制シーケンスではピーク到来時間Tp、立ち上がり判定時間Ta、及び立下がり判定時間Tbの3項目を抽出してもよい。また、抑制シーケンスにおける抽出対象は、パルス幅Tw、立ち上がり判定時間Ta、及び立ち下がり判定時間Tbの3項目であってもよい。通常シーケンスに比べて抑制シーケンスの抽出対象(算出対象)とする特徴量の数を絞る構成によれば、演算リソース(時間、メモリなど)を低減可能となる。
 また、図10では通常シーケンスを実施してから抑制シーケンスを実施する手順を例示しているが、これらの実行順序は逆転していても良い。抑制シーケンスを実施してから通常シーケンスを実施するように構成されていても良い。通常受発光処理と抑制受発光処理の実行間隔は、周辺環境の変化による影響が小さくなるように、例えば1ミリ秒や10ミリ秒など、十分に小さい値に設定されている。通常受発光処理と抑制受発光処理の実行間隔は、受光アレイ5での応答を待機する時間である応答待機時間よりも長く設定されていれば良い。
 ステップS105は、画素ごとに、通常受発光処理で観測されたパルス情報と、抑制受発光処理で観測されたパルス情報とに基づいて、処理対象とする受光パルスの観測パターンを判定するステップである。観測パターンは、例えば(A)通常、(B)多重反射光結合、及び、(C)散乱光結合、の3つに区分される。(A)通常は、ターゲットパルスが不要反射光と結合していない場合に相当する。(B)多重反射光結合は、ターゲットパルスが多重反射光と結合している場合に相当する。(C)散乱光結合は、ターゲットパルスが近接体散乱光と結合している場合に相当する。ステップS105は、通常/抑制受発光処理で観測されたパルス情報から、通常受発光処理で観測された受光パルスが、不要反射光の影響を受けているか否か、及び、影響を受けている場合にはその種別を識別するステップに相当する。またステップS105は、1つの側面において、受光パルスが近接体散乱光の影響を受けているか否かを判定することに対応する。
 ステップS106では、ステップS105で選択された観測パターンに対応する演算式を用いて距離を算出するステップである。観測パターンごとの演算式は予め登録されている。観測パターンごとの演算式は、不要反射光が重畳しているか否か、及び、重畳している不要反射光の種類に適合するように個別に設計されている。種々の演算式は、それぞれ使用する特徴量等が異なりうる。ただし、演算に使用する特徴量によっては、観測パターンが通常と判定された場合の演算式と、多重反射光が結合していると判定された場合の演算式は、統合(共通化)されていても良い。観測パターンごとの演算式の詳細については別途後述する。
 以上で述べたステップS102、S104、S105、及びS106は画素ごとに実行される。また、ステップS105~S106の処理は、同一の画素において、通常受発光処理と抑制受発光処理とで互いに共通する位置に検出された受光パルス/ピークに対する処理である。距離演算部F4は、通常受発光処理で観測された受光パルスごとに上記の処理を実行しうる。処理対象とする受光パルスのことを本開示では対象パルスとも称する。
 なお、ステップS105以降の処理は、センシング光の照射からの経過時間が近傍距離に対応する時間である近傍時間となるまでに観測された受光パルス/ピークに対する処理とすることができる。近傍時間は、例えば近傍距離の2倍を光速で除算した値に設定されうる。センシング光を照射してから近傍時間となるまでの時間帯を近傍時間帯とも称する。
 また、通常受発光処理の結果として近傍時間帯に観測されたピークが、抑制受発光処理では観測されなかった場合、制御部2は、当該ピークは不要反射光由来のノイズとみなし、破棄しても良い。近傍領域にターゲットが存在する場合には、抑制レベルでも同様の位置に当該ターゲットに対応するピークが検出される可能性が高いためである。通常受発光処理の結果として近傍時間帯に観測され、かつ、抑制受発光処理で観測されなかったピークは不要反射光由来のピークとみなすことができる。なお、遠方に存在するターゲットからの反射光に関しては、照射強度の関係から、通常受発光処理では観測できる一方、抑制受発光処理では観測できないことが想定される。よって、通常受発光処理の結果として近傍時間帯の外側で観測された受光パルスに関しては、抑制受発光処理にて対応する位置に受光パルスを検出できなくとも、不要反射光由来のノイズとは判定しないように構成されていることが好ましい。通常受発光処理の結果として近傍時間帯の外側で観測された受光パルスに関しては、別のアルゴリズムを用いてノイズかどうかが判別されても良い。
 <観測パターンごとの演算式の例(1)>
 ここでは観測パターンごとの演算式について説明する。図11は1つの実施例としての観測パターンごとに適用する演算式の一例をまとめた図である。本開示では通常パターン用の演算方式を通常方式、多重反射光結合パターン用の演算方式を多重反射光対応方式、散乱光結合パターン用の演算方式を散乱光対応方式とも称する。各演算方式は、不要反射光の影響を受けていない場合、多重反射光の影響を受けている場合、散乱光の影響を受けている場合のそれぞれに対応するように設定されている。
 図11に示す式1aは通常パターン及び多重反射光結合パターンで採用される演算式である。式1cは、散乱光結合パターンで採用される演算式である。
 式1a:L=C/2×Ta-δa
 式1c:L=C/2×Tb-δb
 通常パターン及び多重反射光結合パターンに適用される式1aによれば、通常受発光処理で観測された立ち上がり判定時間(Ta)に光速の半分(C/2)を乗じた値から、所定の立ち上がりオフセット値(δa)を減算した値を、距離値(L)として採用する。式1aで使用される立ち上がりオフセット値(δa)は、回路の応答遅延などを相殺(補正)するためのパラメータである。立ち上がりオフセット値(δa)は適宜設計されうる。また、散乱光対応方式では、式1cの通り、通常受発光処理で観測された立下がり判定時間(Tb)に光速の半分(C/2)を乗じた値から、所定の立ち下がりオフセット値(δb)を減算した値を、距離値(L)として採用する。立ち下がりオフセット値(δb)もまた、回路の応答遅延などを相殺するためのパラメータである。立ち下がりオフセット値は、受光パルスの立ち上がりから立ち下がりまでの時間差に由来する誤差成分を補償するよう、立ち上がりオフセット値よりも大きい値に設計されている。
 前述の通り、ターゲット反射光が多重反射光の影響を受けている場合、立ち下がり点等は多重反射光に由来するため、不正な情報となりうる。そのため、多重反射光の影響を受けている場合は、式1aとして示すように、立ち上がり点を基準として距離を算出する。一方、散乱光結合時は、立ち上がり区間は散乱光成分によるものであるため、立ち下がり点/上限離脱点を基準として距離を算出する。このように不要反射光のタイプに応じた演算式を採用することにより、距離の精度を高めることが可能となる。
 <観測パターンごとの演算式の例(2)>
 制御部2は、他の態様として、観測パターンごとの演算式として式2a~2cを採用しても良い。図12は観測パターンごとの演算式をまとめた図である。式2aは通常パターン用の演算式である。式2bは多重反射光結合パターン用の演算式である。式2cは、散乱光結合パターン用の演算式である。
 式2a:L=C/2×Ta-α1×Pq-β×Tw-δa
 式2b:L=C/2×Ta-α2×Pq-δa
 式2c:L=C/2×Tb-α3×Pq-δb
 各式2a~2cで使用される立ち上がり判定時間Ta、立下がり判定時間Tb、パルス幅Tw、及び、ピーク強度Pqは、通常受発光処理で観測された値を採用することができる。α1、α2、α3は、受光パルスの強度(つまりピーク強度Pq)に応じた補正を行うための係数である。α1、α2、α3はそれぞれ異なる値に設定されうる。βは、受光パルスの幅(つまりパルス幅Tw)に応じた補正を行うための係数である。式2a、2bで使用される立ち上がりオフセット値(δa)は同じであってもよいし、異なる値が適用されても良い。
 ピーク強度Pqやパルス幅Twは、受光パルスの形状、換言すれば、立ち上がり速度や立ち下がり速度などを示す。ターゲット反射光の強度と距離演算値のずれ量の間には相関があることは実験的に分かっている。また、受光強度が飽和している場合には受光強度とターゲット反射光の真の強度との関係が不明瞭となるが、ターゲット反射光の強度とパルス幅との間には実験的に相関があることが分かっている。つまり、パルス幅は、ターゲット反射光の真の強度を間接的に示すパラメータとして機能しうる。そのため、観測された受光パルスがターゲット反射光に不要反射光が重畳したものではない場合には、パルス幅Twを用いた補正値を導入することにより、測距精度が高まりうる。しかしながら、対象パルスが多重反射光や近接体散乱光の影響を受けている場合、パルス幅Twはターゲットパルスの幅と乖離した値となる。多重反射光や散乱光の影響を受けている場合には、パルス幅Twを用いた補正項を導入すると、かえって測距精度が劣化することが懸念される。
 上記の式2a~2cは上記懸念に基づいて創出されたものであって、当該方式では観測パターンに応じて、距離の補正方法を切り替える。当該構成によれば、測距精度のさらなる向上が期待できる。本開示における結合とは重畳と言い換える事もできる。
 <観測パターンごとの演算式の例(3)>
 制御部2は、さらなる他の態様として、図13に示すように、観測パターンごとの演算式として式3a1、3a2、3c1、及び3c2を採用しても良い。式3a1は、通常パターン及び多重反射光結合パターンにおいて、通常受発光処理で観測されたピーク強度Pqである通常ピーク強度Pq1が所定の演算材料切替閾値Thx未満である場合に適用される演算式である。式3a2は、通常パターン及び多重反射光結合パターンにおいて、通常ピーク強度Pq1が演算材料切替閾値Thx以上である場合に適用される演算式である。式3c1は、散乱光結合パターンにおいて通常ピーク強度Pq1が演算材料切替閾値Thx未満である場合に適用される演算式である。式3c2は、散乱光結合パターンにおいて、通常ピーク強度Pqが演算材料切替閾値Thx以上である場合に適用される演算式である。
 演算材料切替閾値Thxは例えば計測上限値Pmxとすることができる。演算材料切替閾値Thxは計測上限値Pmxの90%などであってもよい。
 式3a1:L=C/2×Ta1-δa1
 式3a2:L=C/2×Ta2-δa2
 式3c1:L=C/2×Tb1-δb1
 式3c2:L=C/2×Tb2-δb2
 前述の通り、式3a1に含まれるTa1は、通常立ち上がり時間である。式3a2に含まれるTa2は、抑制立ち上がり時間である。式3a1に含まれるδa1、及び式3a2に含まれるδa2は何れも立ち上がりオフセット値であって、立ち上がりに要する遅延時間等による誤差を相殺するためのパラメータである。δa1、δa2には、それぞれ異なる所定値が設定されうる。
 また、式3c1に含まれるTb1は、通常立ち下がり時間であり、式3c2に含まれるTb2は、抑制立ち下がり時間である。式3c1に含まれるδb1、及び、式3c2に含まれるδb2は何れも立ち上がりオフセット値であって、立ち上がりに要する遅延時間等による誤差を相殺するためのパラメータである。δb1、δb2には、それぞれ異なる所定値が設定されうる。
 本開示の開発者らは、試験及びシミュレーションを繰り返す中で受光強度が飽和した場合には距離精度が劣化しうるといった知見を得た。飽和が生じるとターゲット反射光の波形を正しくサンプリング出来なくなるためである。例えば受光強度が飽和している場合には真のピーク値が不明瞭となりうる。上記式3a1等を用いる構成は上記の知見に基づいて創出されたものであり、制御部2は、通常受発光処理で得られた受光強度が演算材料切替閾値Thx以上である場合には、抑制受発光処理のデータに基づいて距離を算出する。つまり、通常受発光処理で飽和が生じる場合においては、相対的に飽和が生じにくい抑制受発光処理の結果を使用する。当該構成によれば、測距精度がより一層向上する効果が期待できる。
 その他、以上では立ち上がり判定時間Ta/立ち下がり判定時間Tbを主たる変数として距離演算を行う態様について述べたが、ピーク到来時間Tpを用いて距離を演算しても良い。演算処理に使用する特徴量に応じてδa等のオフセット値が変更されれば良い。また、ピーク強度Pqやパルス幅Twを用いた距離値の補正処理は、前述の式3a~3cにも適用可能である。
 <観測パターンの判別方法(1)>
 ここでは図14を用いて観測パターンの判別方法について説明する。図14は、観測パターン判別処理の一例を示すフローチャートである。観測パターン判別処理は前述のステップS105として実行される。ここでは一例として観測パターン判別処理はステップS201~S205を含む。ステップS201~S205の処理は画素ごとに実行される。便宜上、処理の対象とする画素を対象画素とも称する。
 ステップS201は、通常受発光処理で観測された受光パルスが、ターゲットパルスに不要反射光に由来する成分が結合している可能性があるか否かを判定するステップである。便宜上、ターゲットパルスに不要反射光に由来する成分が結合している受光パルスを不要反射光結合パルスとも称する。また、ステップS201や、後述するステップS301、S401のように、受光パルスが不要反射光結合パルスであるか否かを判定する処理を不要反射光結合判定処理とも称する。
 ステップS201では例えば距離演算部F4が、通常パルス幅Tw1が所定のパルス幅閾値Thw未満であるか否かを判定する。仮にターゲット反射光が不要反射光と結合している場合、通常パルス幅Tw1は所定の既定値よりも長くなりうる。ステップS201は、パルス幅の観点から、不要反射光の影響を受けているか否かを判別するステップに相当する。パルス幅閾値Thwは照射光のパルス幅に応じた値が設定されている。例えばパルス幅閾値Thwは照射光のパルス幅の0.8倍や、1.0倍、1.2倍などに設定されている。
 通常パルス幅Tw1がパルス幅閾値Thw未満である場合には、ステップS202に移り、観測パターンは通常パターンであると判定する。ステップS202は、観測された受光パルスは、不要反射光の影響を受けていないターゲットパルスであると判定するステップに相当する。一方、通常パルス幅Tw1がパルス幅閾値Thw以上である場合には、ステップS203を実行する。
 ステップS203は、通常ピーク時間Tp1と抑制ピーク時間Tp2の前後関係に基づいて、ターゲットパルスに結合(重畳)している不要反射光の種別を識別するステップに相当する。なお、ステップS203の前提として、ピーク検出部8は、受光強度が計測上限値Pmxに到達している場合、上限到達時間Tpaと上限離脱時間Tpbの中間に位置する中間時間Tpcをピーク到来時間Tpとして採用するように構成されているものとする。
 図15及び図16はステップS203の技術思想を説明するための図である。図15、図16の下側グラフにおける実線グラフは通常受発光処理による出力レベルの推移を示しており、破線グラフは抑制受発光処理による出力レベルの推移を示している。仮にターゲット反射光に近接体散乱光が結合している場合、図15に示すように、抑制ピーク時間Tp2は、通常ピーク時間Tp1よりも後ろ側に位置する。通常受発光処理では近接体散乱光成分でも受光強度が飽和し、通常ピーク時間Tp1が飽和期間の中間点、すなわち真のピークよりも前側となる値が算出されるためである。よって、抑制ピーク時間Tp2から通常ピーク時間Tp1を減算した値が正であることは、ターゲット反射光に結合している不要反射光(以降、結合ノイズ)が近接体散乱光である可能性を示唆する。
 また、仮にターゲット反射光に多重反射光が結合している場合、図16に示すように、抑制ピーク時間Tp2は通常ピーク時間Tp1よりも前側に位置する。通常ピーク時間Tp1は飽和期間の中間に位置するため、真のピークよりも後ろ側に算出されるためである。よって、抑制ピーク時間Tp2から通常ピーク時間Tp1を減算した値が負であることは、結合ノイズが多重反射光である可能性を示唆する。
 ステップS203は上記の傾向に着眼して創出されたものであって、ピーク時間差ΔTp(=Tp2-Tp1)が所定のピーク時差閾値Thdp未満である場合には、結合ノイズが多重反射光と判定する。つまり、ピーク時間差ΔTpがピーク時差閾値Thdp未満である場合にはステップS204に移り、観測パターンは多重反射光結合パターンと判定する。ピーク時間差ΔTpは、抑制ピーク時間Tp2から通常ピーク時間Tp1を減算した値である。
 一方、ピーク時間差ΔTpがピーク時差閾値Thdp以上である場合には、結合ノイズは近接体散乱光であると見なし、観測パターンは散乱光結合パターンと判定する(ステップS205)。なお、ステップS203で使用するピーク時差閾値Thdpは0であっても良いし、0.5ナノ秒などであってもよい。また、通常受発光処理で観測された上限離脱時間Tpbから上限到達時間Tpaを差し引いてなる飽和期間の長さに応じて動的決定されても良い。例えばピーク時差閾値Thdpは飽和時間の1%や10%に相当する値に設定されても良い。
 <観測パターンの判別方法(2)>
 ここでは図17を用いて観測パターンの判別方法の他の例について説明する。図17もまた、前述のステップS105として実行される、観測パターン判別処理の一例を示すフローチャートである。図17に示す観測パターン判別処理はステップS301~S305を含む。
 ステップS301は、通常パルス幅Tw1と抑制パルス幅Tw2との変化量(差)であるパルス幅変化量ΔTwに基づいて、ターゲット反射光が不要反射光と結合しているか否かを判別するステップに相当する。パルス幅変化量ΔTwは、通常パルス幅Tw1から抑制パルス幅Tw2を減算した値である。
 仮に、ターゲット反射光が不要反射光と結合していない場合には、通常パルス幅Tw1と抑制パルス幅Tw2の差は所定値以下となることが期待できる。一方、ターゲット反射光が不要反射光と結合している場合、通常パルス幅Tw1は抑制パルス幅Tw2よりも結合ノイズの分だけ長くなりうる。あるいは、抑制パルス幅Tw2は、純粋にターゲット反射光に由来する成分の幅となっている可能性が高く、通常パルス幅Tw1に比べて小さい値となりうる。つまり、パルス幅変化量ΔTwが所定値以上であることは、不要反射光の影響を受けていることを示唆する。
 本開示のステップS301は上記着想に基づいて創出されたものであって、パルス幅変化量ΔTwが所定の幅差閾値Thdw未満である場合には、ステップS302に移り、観測パターンは通常パターンと判定する。ステップS302は、観測された受光パルスは不要反射光の影響を受けていないターゲットパルスであるとみなすステップに相当する。
 一方、パルス幅変化量ΔTwが所定の幅差閾値Thdw以上である場合には、ステップS303を実行する。ステップS303~S305の処理は、前述のステップS203~S205と同様であるため説明は省略する。ステップS301の判定処理で使用される幅差閾値Thdwの具体的な値は、適宜設計されうる。幅差閾値Thdwは、通常パルス幅Tw1又は抑制パルス幅Tw2に応じて動的に決定されても良い。幅差閾値Thdwは、通常パルス幅Tw1に所定の係数(例えば0.2)を乗じた値としてもよい。
 <観測パターンの判別方法(3)>
 ここでは図18を用いて観測パターンの判別方法の他の例について説明する。図18は、前述のステップS105として実行される観測パターン判別処理の一例を示すフローチャートである。図18に示す観測パターン判別処理はステップS401~S405を含む。
 ステップS401は前述のステップS201と同様の判定ステップである。通常パルス幅Tw1がパルス幅閾値Thw未満である場合には、ステップS402に移り、観測パターンは通常パターンと判定する。一方、通常パルス幅Tw1がパルス幅閾値Thw以上である場合には、ステップS403を実行する。
 ステップS403は、通常立ち上がり時間Ta1と、抑制立ち上がり時間Ta2の変化量(差)である立ち上がり時間差ΔTaに基づいて、結合ノイズの種別を識別するステップに相当する。立ち上がり時間差ΔTaは抑制立ち上がり時間Ta2から通常立ち上がり時間Ta1を減算した値である。
 図19及び図20はステップS403の技術思想を説明するための図である。図19、図20の下側グラフにおける実線グラフは通常受発光処理による加算器7の出力レベルの推移を示しており、破線グラフは抑制受発光処理による加算器7の出力レベルの推移を示している。仮にターゲット反射光に多重反射光が結合している場合、図19に示すように、抑制立ち上がり時間Ta2と通常立ち上がり時間Ta1との差は相対的に小さい値となる。多重反射光は、光路長の関係からターゲット反射光の前方には結合しないためである。換言すれば、結合ノイズが多重反射光である場合、通常受発光処理でも抑制受発光処理でも立ち上がり区間はターゲット反射光に由来するため、通常立ち上がり時間Ta1と抑制立ち上がり時間Ta2の差は小さくなる。
 一方、ターゲット反射光が近接体散乱光成分と結合している場合、図20に示すように抑制立ち上がり時間Ta2は通常立ち上がり時間Ta1よりも近接体散乱光に対応する分だけ長くなりうる。結合ノイズが近接体散乱光である場合、通常受発光処理での立ち上がり区間は結合ノイズとしての近接体散乱光に由来するためである。結合ノイズが近接体散乱光である場合、結合ノイズが多重反射光である場合に比べて、通常立ち上がり時間Ta1と抑制立ち上がり時間Ta2の差は相対的に大きくなる。つまり、立ち上がり時間差ΔTaが所定値以上であることは、近接対散乱光の影響を受けていることを示唆する。
 本開示のステップS403は上記着想に基づいて創出されたものであって、立ち上がり時間差ΔTaが所定の立ち上がり時差閾値Thda未満である場合には、ステップS404に移り、観測パターンは多重反射光結合パターンと判定する。ステップS404は、観測された受光パルスは多重反射光の影響を受けているとみなすステップに相当する。
 一方、立ち上がり時間差ΔTaが立ち上がり時差閾値Thda以上である場合には、ステップS405に移り、観測パターンは散乱光結合パターンと判定する。ステップS405は、結合ノイズは近接体散乱光であるとみなすステップに相当する。ステップS403で使用する立ち上がり時差閾値Thdaは例えば0.5ナノ秒や1.0ナノ秒などの一定値とすることができる。また、立ち上がり時差閾値Thdaは、抑制受発光処理で観測されたピーク強度Pqである抑制ピーク強度Pq2、又は、通常受発光処理で観測された立ち上がり速度に応じて動的決定されても良い。例えば立ち上がり時差閾値Thdaは、抑制ピーク強度Pq2が小さいほど大きい値が適用されても良い。
 上記構成は、1つの側面において、通常立ち上がり時間Ta1と、抑制立ち上がり時間Ta2との時間差が所定値未満であるか否かに応じて、距離演算に使用する特徴量を切り替える構成に相当する。すなわち、通常立ち上がり時間Ta1と、抑制立ち上がり時間Ta2との時間差が所定値未満である場合には、多重反射光との結合が発生している又は不要反射光との結合が生じていないと推定し、立ち上がり判定時間Taを基準として距離を算出する。一方、通常立ち上がり時間Ta1と、抑制立ち上がり時間Ta2との時間差が所定値以上である場合には、近接体散乱光との結合が発生していると推定し、立ち下がり判定時間Tbを基準として距離を算出する。演算に使用する立ち上がり判定時間Ta/立ち下がり判定時間Tbは、通常受発光処理での観測値であってもよいし、抑制受発光処理での観測値であってもよい。制御部2は、図13で述べたように通常受発光処理で観測されたピーク強度Pqに基づいて、どちらの受発光処理での観測値を使用するかを切り替えても良い。
 なお、立ち上がり時間差ΔTaは、通常立ち上がり時間Ta1から抑制立ち上がり時間Ta2を減算した値であってもよいし、その絶対値であってもよい。立ち上がり時差閾値Thdaは、立ち上がり時間差ΔTaの定義に応じて調整されればよい。
 また、以上では立ち上がり時間差ΔTaをもとに、重畳ノイズの種別を判定する構成について述べたが、重畳ノイズの種別を切り分けるためのパラメータとしては立ち下がり時間差も採用可能である。立ち下がり時間差は、通常受発光処理で観測される立ち下がり時間Tbである通常立ち下がり時間と、抑制受発光処理で観測される立ち下がり時間Tbである抑制立ち下がり時間の差である。重畳ノイズが多重反射光である場合には、重畳ノイズが近接体散乱光である場合に比べて立ち下がり時間差は大きくなりうる。よって、制御部2は、立ち下がり時間差が所定値以上であることに基づいて重畳ノイズが多重反射光と判定することができる。
 <効果等について>
 以上の光測距装置1は、まず、制御部2が通常パルス幅Tw1を用いて通常受発光処理で観測された受光パルスが不要反射光と結合しているか否かを判定する。なお、パルス幅変化量ΔTwもまた通常パルス幅Tw1によって定まるパラメータであるため、制御部2がパルス幅変化量ΔTwに基づいて上記判定を行う態様も、通常パルス幅Tw1を用いて不要反射光との結合の有無を判定する構成に含まれる。
 通常パルス幅Tw1は信号解析によって抽出可能なパラメータであり、当該パラメータ抽出のための特別な回路等を新規に必要としない。よって、上記構成によれば、特別な構成を導入することなく、受光パルスが不要反射光の影響を受けているか否かを判別可能となる。
 また、ターゲットの反射特性又はターゲットとの距離に応じて通常パルス幅Tw1は変動しうる。そのような事情を踏まえると、全てのシーンに対して適合可能なパルス幅閾値Thwを決定することは現実的には難しい。また、通常パルス幅Tw1とパルス幅閾値Thwとの比較によって不要反射光結合判定を行う構成では、状況によっては不要反射光結合パルスであるにも関わらず、不要反射光結合パルスではないと見なすことも起こりうる。そのような課題に対し、パルス幅変化量ΔTwを用いて不要反射光結合判定処理を行う構成によれば、ターゲットの距離や反射特性に由来する誤判定を抑制することができる。
 また、制御部2は、通常受発光処理によって得られたパルス情報と、抑制受発光処理によって得られたパルス情報とに基づいて、ターゲット反射光に結合している不要反射光のタイプを識別する。具体的には制御部2は、ピーク時間差ΔTp又は立ち上がり時間差ΔTaを用いてターゲット反射光に結合している不要反射光が近接体散乱光であるか否かを判定する。そして、ターゲット反射光に結合している不要反射光は近接体散乱光と判定している場合には、通常パターンとは異なる演算式/特徴量を用いて距離値を演算する。
 例えば通常パターンでは立ち上がり判定時間Taを用いて距離演算する一方、散乱光結合パターンでは立ち下がり判定時間Tbを用いて距離演算する。また、例えば通常パターンではパルス幅Twを用いた補正を行う一方、散乱光結合パターンではパルス幅Twを用いた補正を実施しない。当該構成によれば、近接体散乱光成分に由来してターゲットとの距離を実際よりも短い値に算出する恐れを低減できる。
 さらに制御部2は、通常受発光処理によって得られたパルス情報と、抑制受発光処理によって得られたパルス情報とを比較することにより、ターゲット反射光に結合している不要反射光が多重反射光であるか否かを判定する。そして、ターゲット反射光に結合している不要反射光は多重反射光と判定している場合には、距離演算に通常パルス幅Tw1を用いない。当該構成によれば、多重反射光成分に由来してターゲットとの距離を実際よりも長い値に算出する恐れを低減できる。
 また、上記構成では一例として、通常ピーク強度Pq1が所定値未満である場合には通常受発光処理で得られた特徴量を用いて距離演算を行う一方、通常ピーク強度Pq1が所定値以上である場合には抑制受発光処理で得られた特徴量を用いて距離演算を行う。当該構成によれば、相対的に飽和しにくい条件で観測された特徴量を用いて距離演算が行われることとなる。飽和期間が長いほど測距精度が劣化しうる。上記構成によれば、測距精度をより一層高める効果が期待できる。
 なお、不要反射光の影響による距離の誤算出を抑制するための他の構成である想定構成としては、通常レベルでのセンシング光の出力強度を十分に弱くする構成、換言すれば通常レベルでの受発光処理を行わず、抑制受発光処理のみを行う構成も考えられる。当該想定構成は、確かに画素値が飽和する恐れを低減でき、ひいては不要反射波の影響を抑制可能となることが期待できる。しかしながら、不要反射光の結合の有無を判別可能なほど通常レベルとしての設定値を小さくしてしまうと、測距レンジが短くなってしまう。そのような想定構成の課題に対し、上記実施形態によれば、測距レンジを維持しつつ、画素ごとの距離値の精度を高めることができる。
 以上、本開示の実施形態を説明したが、本開示は上述の実施形態に限定されるものではなく、以降で述べる種々の変形例も本開示の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。例えば下記の種々の補足や変形例などは、技術的な矛盾が生じない範囲において適宜組み合わせて実施することができる。なお、以上で述べた部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略することがある。また、構成の一部のみに言及している場合、他の部分については上記説明を適用することができる。
 <装置の構成について>
 以上では、照射光の強度を抑制することで抑制受発光処理を実現する態様について述べたが、抑制受発光処理は、受光系の検知感度を低下させることで実現されても良い。例えば、光測距装置1は、図21に示すように、受光アレイ5の前方に配置されてあって、透過率を切り替え可能な構成である透過率調整パネル11を備えていても良い。透過率調整パネル11としては液晶パネルを採用可能である。その場合、レベル調整部F3は、透過率調整パネル11の透過率を所定の通常レベルと抑制レベルとの間で動的に切り替えることによって、通常受発光処理と抑制受発光処理とを実現する。当該構成によれば照射強度を調整する必要はない。もちろん、光測距装置1は、照射強度の調整と、受光感度(検知感度)の調整を並列的に実行することで通常受発光処理と抑制受発光処理とを実現するように構成されていても良い。
 <制御部の挙動>
 光測距装置1は通常、可能な限り内部散乱光が受光アレイ5に到達しないように設計される。故に近接体散乱光の要因としては実質的に照射窓91の外側に付着した汚れ(砂、土、水滴、雪など)が考えられる。これらの付着物10は、偶発的に付着したものであって洗浄により除去可能である。そこで、制御部2は、重畳ノイズが近接体散乱光であると判定した場合には、照射窓91の表面を洗浄する洗浄処理を実行するように構成されていても良い。洗浄処理は、例えば洗浄液の吹付け、ワイパーの駆動、及び圧縮空気の吹き付けの一部又は全部を含みうる。
 また、近接体散乱光を受光しているということは、照射光の一部をロスしていることに対応する。照射光の強度が損なわれていると、検知距離が低下する懸念がある。そのような事情から、制御部2は、近接体散乱光の影響を受けていると判定した場合には、照射強度を所定量増やすように構成されていても良い。当該構成によれば、照射窓91に付着物10が付着している場合であっても、検知距離が低下する恐れを低減可能となる。
 制御部2は、近接体散乱光の影響を受けていると判定した場合、検出性能が損なわれていること、或いは正常に動作していないことを示すアラート信号を、運転支援ECUなどに出力しても良い。当該構成によれば、運転支援ECUは、アラート信号が入力されたことに基づいて、走行速度に制限をかけたり、ドライバに運転権限を移譲したりするなどの応答を実施可能となる。アラート信号は、停車又はハンドオーバーを指示する信号であっても良い。
 また、制御部2は、近接体散乱光の影響を受けていると判定した場合、検出性能が損なわれていること、或いは正常に動作していないことを示す画像を車載ディスプレイに表示したり、上記メッセージをスピーカから音声出力したりしても良い。当該構成によれば、乗員は照射窓91の外面部の洗浄が必要な状態であることを認識しやすくなる。ひいては、洗浄のために停車するなどの処置が迅速に行われやすくなる。つまり、自動運行装置においては、システムを正常に機能させるためのメンテナンスを適正に実施しやすくなる。
 近接体散乱光の影響を受けていることの通知先は、乗員に限らず、センタなどの車両外部にいるオペレータなどであってもよい。制御部2は、近接体散乱光の影響を受けていると判定した場合、車載通信機との協働により、アラート信号を外部サーバ/センタ/周辺車両に無線送信するように構成されていても良い。
 制御部2は、多重反射光を検知した場合も同様に、アラート信号を他のECUや、外部サーバ/センタ、周辺車両に送信するように構成されていても良い。多重反射光を検知した場合に出力するアラート信号の内容は、近接体散乱光を検知した場合と同じであってもよいし、異なっていても良い。多重反射光を検知した場合に出力するアラート信号の内容は、距離精度/信用度が低下していることを示す信号であっても良い。
 また、制御部2は、多重反射光を検知した場合、距離精度/信用度が低下していることを示す画像又は音声メッセージを出力するように構成されていても良い。当該構成によれば、乗員は光測距装置1の作動状態を認識しやすくなる。なお、多重反射光を受光する場合の一例としては、高反射物が比較的に近くに存在する場合が挙げられる。上記の多重反射光を検知した場合とは、高反射物が光測距装置1から所定距離以内に存在する場合と言い換えることができる。高反射物とは再帰性反射物である。
 また、車載カメラ等の画像を解析することにより外部装置にて光測距装置1の近傍領域に高反射物として定義されている物体が検出されている場合には、当該外部装置から光測距装置1に対して、高反射物の存在を示す信号が入力されても良い。光測距装置1は、外部からの上記入力信号に基づいて、観測パターンの判別式を動的に変更しても良い。光測距装置1は、外部から高反射物の存在が通知されている場合には、多重反射光を受光していると判定しやすいように、観測パターンの判別に係る種々の閾値の設定値を変更しても良い。
 <付言>
 本開示に記載の装置、システム、並びにそれらの手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサを構成する専用コンピュータにより、実現されてもよい。また、本開示に記載の装置及びその手法は、専用ハードウェア論理回路を用いて実現されてもよい。さらに、本開示に記載の装置及びその手法は、コンピュータプログラムを実行するプロセッサと一つ以上のハードウェア論理回路との組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。例えば光測距装置1が備える機能の一部又は全部はハードウェアとして実現されても良い。或る機能をハードウェアとして実現する態様には、1つ又は複数のICなどを用いて実現する態様が含まれる。プロセッサ(演算コア)としては、CPUや、MPU、GPU、DFP(Data Flow Processor)などを採用可能である。また、光測距装置1が備える機能の一部又は全部は、複数種類の演算処理装置を組み合わせて実現されていてもよい。光測距装置1が備える機能の一部又は全部は、システムオンチップ(SoC:System-on-Chip)や、FPGA、ASICなどを用いて実現されていても良い。FPGAはField-Programmable Gate Arrayの略である。ASICはApplication Specific Integrated Circuitの略である。
 また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体(non- transitory tangible storage medium)に記憶されていてもよい。プログラムの保存媒体としては、HDD(Hard-disk Drive)やSSD(Solid State Drive)、フラッシュメモリ等を採用可能である。

Claims (19)

  1.  ターゲットまでの光の往復時間を用いて前記ターゲットとの距離を検出する光測距装置であって、
     所定波長を有する光であるセンシング光を、所定の検出対象方向に向けて照射する照射部(4)と、
     前記センシング光に対して応答する、行列状に配置されている複数の光検出器(5s)と、
     前記照射部から出力する前記センシング光の照射強度、又は、複数の前記光検出器の検知感度を、所定の通常レベルから、前記通常レベルよりも所定量小さい抑制レベルへと切り替えるレベル調整部(F3)と、
     前記光検出器の応答数の時系列データに基づいて、前記センシング光が物体で反射されて返ってきた光である反射光に対応する受光パルス及びそのピークを検出するピーク検出部(8)と、
     前記ピーク検出部が検出した前記受光パルスにかかる所定の特徴量を示すデータセットをパルス情報として取得する構成であって、前記通常レベルが適用されている場合の前記パルス情報である通常パルス情報と、前記抑制レベルが適用されている場合の前記パルス情報である抑制パルス情報とを取得するパルス情報取得部(F2)と、
     前記通常パルス情報と前記抑制パルス情報とに基づいて、前記ターゲットとの距離値を算出する距離演算部(F4)と、を備える光測距装置。
  2.  請求項1に記載の光測距装置であって、
     前記通常パルス情報は、少なくともパルス幅を含み、
     前記距離演算部は、
     処理対象とする前記受光パルスである対象パルスについての前記通常パルス情報に含まれる前記パルス幅の値に基づいて、当該対象パルスが、前記ターゲットからの反射光に不要反射光が結合したものであるか否かを判定することと、
     前記対象パルスが前記ターゲットからの反射光に前記不要反射光が結合したものであるか否かに応じて、前記距離値の算出に使用する演算式及び特徴量の少なくとも何れか一方を変更するように構成されている光測距装置。
  3.  請求項2に記載の光測距装置であって、
     前記距離演算部は、
     前記対象パルスについての前記通常パルス情報に含まれるパルス幅が所定値以上であることに基づいて、前記対象パルスは前記ターゲットからの反射光に前記不要反射光が結合したものであると判定するように構成されている光測距装置。
  4.  請求項2又は3に記載の光測距装置であって、
     前記抑制パルス情報にはパルス幅が含まれており、
     前記距離演算部は、
     前記対象パルスについての前記通常パルス情報に含まれるパルス幅と前記抑制パルス情報に含まれるパルス幅との差が所定値以上であることに基づいて、前記対象パルスは前記ターゲットからの反射光に前記不要反射光が結合したものであると判定する光測距装置。
  5.  請求項2から4の何れか1項に記載の光測距装置であって、
     前記距離演算部は、
     前記対象パルスが前記ターゲットからの反射光に前記不要反射光が結合したものであると判定した場合には、前記対象パルスについての前記通常パルス情報と前記抑制パルス情報とを比較することによって前記不要反射光の種別を判別することと、
     判定された前記不要反射光の種別に応じて、前記距離値の算出に使用する演算式及び特徴量の少なくとも何れか一方を変更するように構成されている光測距装置。
  6.  請求項5に記載の光測距装置であって、
     前記通常パルス情報及び前記抑制パルス情報にはそれぞれ、前記センシング光が照射されてからピークが観測されるまでの時間であるピーク到来時間(Tp)が含まれており、
     前記距離演算部は、
     前記対象パルスが前記ターゲットからの反射光に前記不要反射光が結合したものであると判定した場合には、前記対象パルスについての前記通常パルス情報に含まれる前記ピーク到来時間と、前記抑制パルス情報に含まれる前記ピーク到来時間とを比較することで前記不要反射光である結合ノイズの種別を判別するように構成されている光測距装置。
  7.  請求項6に記載の光測距装置であって、
     前記通常パルス情報及び前記抑制パルス情報にはそれぞれ、前記ピーク到来時間に加えて、前記受光パルスの強度が閾値以上となる立ち上がり判定時間(Ta)と、前記受光パルスの強度が前記閾値以下となるタイミングを示す立ち下がり判定時間(Tb)が含まれており、
     前記距離演算部は、
     前記対象パルスについての前記通常パルス情報に含まれる前記ピーク到来時間と、前記抑制パルス情報に含まれる前記ピーク到来時間とを比較することで前記結合ノイズが、照射窓への付着物又は筐体内部での散乱光である近接体散乱光に該当するか否かを判別し、
     前記結合ノイズは近接体散乱光であると判定した場合には、前記立ち下がり判定時間を用いて前記距離値を算出する一方、
     前記結合ノイズは近接体散乱光ではないと判定した場合には前記立ち上がり判定時間を用いて前記距離値を算出するように構成されている光測距装置。
  8.  請求項5に記載の光測距装置であって、
     前記通常パルス情報及び前記抑制パルス情報にはそれぞれ、前記受光パルスの強度が閾値以上となる立ち上がり判定時間(Ta)が含まれており、
     前記距離演算部は、
     前記対象パルスが前記ターゲットからの反射光に前記不要反射光が結合したものであると判定した場合には、前記対象パルスについての前記通常パルス情報に含まれる前記立ち上がり判定時間と、前記抑制パルス情報に含まれる前記立ち上がり判定時間とを比較することで前記不要反射光である結合ノイズの種別を判別するように構成されている光測距装置。
  9.  請求項8に記載の光測距装置であって、
     前記通常パルス情報及び前記抑制パルス情報にはそれぞれ、前記立ち上がり判定時間に加えて、前記受光パルスの強度が前記閾値以下となるタイミングを示す立ち下がり判定時間(Tb)が含まれており、
     前記距離演算部は、
     前記対象パルスについての前記通常パルス情報に含まれる前記立ち上がり判定時間と、前記抑制パルス情報に含まれる前記立ち上がり判定時間とを比較することで前記結合ノイズが、照射窓への付着物又は筐体内部での散乱光である近接体散乱光に該当するか否かを判別し、
     前記結合ノイズは近接体散乱光であると判定した場合には、前記立ち下がり判定時間を用いて前記距離値を算出する一方、
     前記結合ノイズは近接体散乱光ではないと判定した場合には前記立ち上がり判定時間を用いて前記距離値を算出するように構成されている光測距装置。
  10.  請求項2から4の何れか1項に記載の光測距装置であって、
     前記距離演算部は、
     前記対象パルスが前記ターゲットからの反射光に前記不要反射光が結合したものであると判定した場合には、前記対象パルスについての前記通常パルス情報と前記抑制パルス情報とを比較することによって、前記ターゲットからの反射光に結合している前記不要反射光である結合ノイズが、照射窓への付着物又は筐体内部での散乱光である近接体散乱光に該当するか否かを判別し、
     前記結合ノイズが近接体散乱光であるか否かに応じて前記距離値の算出に使用する演算式及び特徴量の少なくとも何れか一方を変更するよう構成されている光測距装置。
  11.  請求項2から10の何れか1項に記載の光測距装置であって、
     前記通常パルス情報には、前記受光パルスの強度が閾値以上となるタイミングを示す立ち上がり判定時間が含まれており、
     前記距離演算部は、
     前記対象パルスは前記不要反射光が結合していない前記ターゲットからの反射光によるものであると判定した場合には、前記通常パルス情報に含まれる前記立ち上がり判定時間を用いて前記距離値を算出するように構成されている光測距装置。
  12.  請求項11に記載の光測距装置であって、
     前記距離演算部は、
     前記対象パルスは前記不要反射光が結合していない前記ターゲットからの反射光によるものであると判定した場合には、前記立ち上がり判定時間に光速の半分を乗じた値に対して前記パルス幅に応じた補正を行うことにより前記距離値を決定する一方、
     前記対象パルスは前記ターゲットからの反射光に前記不要反射光が結合したものであると判定した場合には、前記パルス幅を用いた補正を実施しないように構成されている光測距装置。
  13.  請求項1から12の何れか1項に記載の光測距装置であって、
     前記通常パルス情報には、ピークにおける強度を示すピーク強度が含まれており、
     前記距離演算部は、
     前記通常パルス情報に含まれる前記ピーク強度が所定値以上である場合には、前記抑制パルス情報を用いて前記距離値を演算する一方、
     前記通常パルス情報に含まれる前記ピーク強度が所定値未満である場合には、前記通常パルス情報を用いて前記距離値を演算するように構成されている光測距装置。
  14.  請求項1に記載の光測距装置であって、
     前記通常パルス情報及び前記抑制パルス情報にはそれぞれ、前記受光パルスが所定の閾値以上となる立ち上がり判定時間(Ta)が含まれており、
     前記距離演算部は、
     処理対象とする前記受光パルスである対象パルスについての前記通常パルス情報に含まれる前記立ち上がり判定時間と、前記抑制パルス情報に含まれる前記立ち上がり判定時間の差である立ち上がり時間差が所定値未満であるか否かに応じて前記距離値の算出に使用する演算式及び特徴量の少なくとも何れか一方を変更するように構成されている光測距装置。
  15.  請求項14に記載の光測距装置であって、
     前記通常パルス情報及び前記抑制パルス情報にはそれぞれ、前記立ち上がり判定時間(Ta)以外のパラメータとして、前記受光パルスの強度が前記閾値以下となるタイミングを示す立ち下がり判定時間(Tb)と、前記センシング光が照射されてからピークが観測されるまでの時間であるピーク到来時間(Tp)の少なくとも何れか一方が含まれており、
     前記距離演算部は、
     前記立ち上がり時間差が所定値未満である場合には、前記立ち上がり判定時間を用いて前記距離値を算出する一方、
     前記立ち上がり時間差が前記所定値以上である場合には、前記立ち上がり判定時間以外のパラメータを用いて前記距離値を算出するように構成されている光測距装置。
  16.  請求項1から15の何れか1項に記載の光測距装置であって、
     前記距離演算部は、
     前記通常レベルで前記センシング光が照射されてから所定時間以内に観測された前記受光パルスが、前記抑制レベルを適用した場合には観測されなかった場合、当該受光パルスは不要反射光によるものと見なすように構成されている光測距装置。
  17.  請求項1から16の何れか1項に記載の光測距装置であって、
     前記距離演算部は、
     前記通常パルス情報と前記抑制パルス情報とを比較することで照射窓への付着物を検出することと、
     前記照射窓への付着物を検出した場合には、前記照射窓を洗浄するための処理を実行するように構成されている光測距装置。
  18.  請求項1から17の何れか1項に記載の光測距装置であって、
     前記距離演算部は、
     前記通常パルス情報と前記抑制パルス情報とを比較することで照射窓への付着物を検出することと、
     前記照射窓への付着物を検出した場合には、前記照射窓に付着物がついていることを乗員、車両外部に存在するオペレータ、又は、他の装置に通知する処理を実行するように構成されている光測距装置。
  19.  請求項1から18の何れか1項に記載の光測距装置であって、
     前記距離演算部は、
     前記通常パルス情報と前記抑制パルス情報とを比較することで、多重反射光を受光しやすい状況であるか否かを判定することと、
     前記多重反射光を受光しやすい状況であると判定した場合には、前記ターゲットとの測距精度が低下していることを、乗員、車両外部に存在するオペレータ、又は、他の装置に通知する処理を実行するように構成されている光測距装置。
PCT/JP2022/038354 2021-10-25 2022-10-14 光測距装置 WO2023074407A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280071149.1A CN118140153A (zh) 2021-10-25 2022-10-14 光测距装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021173995A JP2023063915A (ja) 2021-10-25 2021-10-25 光測距装置
JP2021-173995 2021-10-25

Publications (1)

Publication Number Publication Date
WO2023074407A1 true WO2023074407A1 (ja) 2023-05-04

Family

ID=86157976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038354 WO2023074407A1 (ja) 2021-10-25 2022-10-14 光測距装置

Country Status (3)

Country Link
JP (1) JP2023063915A (ja)
CN (1) CN118140153A (ja)
WO (1) WO2023074407A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200555A (ja) * 2014-04-08 2015-11-12 パナソニックIpマネジメント株式会社 距離測定装置
US20180356502A1 (en) * 2017-06-13 2018-12-13 Hexagon Technology Center Gmbh Distance measuring device with spad array and range walk compensenation
JP2020003446A (ja) * 2018-07-02 2020-01-09 株式会社デンソー 光測距装置
JP2021076589A (ja) * 2019-11-12 2021-05-20 株式会社デンソー 距離測定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200555A (ja) * 2014-04-08 2015-11-12 パナソニックIpマネジメント株式会社 距離測定装置
US20180356502A1 (en) * 2017-06-13 2018-12-13 Hexagon Technology Center Gmbh Distance measuring device with spad array and range walk compensenation
JP2020003446A (ja) * 2018-07-02 2020-01-09 株式会社デンソー 光測距装置
JP2021076589A (ja) * 2019-11-12 2021-05-20 株式会社デンソー 距離測定装置

Also Published As

Publication number Publication date
CN118140153A (zh) 2024-06-04
JP2023063915A (ja) 2023-05-10

Similar Documents

Publication Publication Date Title
JP5238868B2 (ja) 車両の物体距離認識システム及び作動方法
KR101401399B1 (ko) 주차 지원 장치 및 방법과 이를 이용한 주차 지원 시스템
US9827956B2 (en) Method and device for detecting a braking situation
JP4697072B2 (ja) レーダ装置
CN109804266B (zh) 测距装置及测距方法
JP2005257405A (ja) レーダ装置
US11961306B2 (en) Object detection device
JP6270746B2 (ja) 物体検出装置、及び、車両用衝突防止制御装置
JP2015148899A (ja) 衝突回避制御装置
JP4940458B2 (ja) 物体検出装置
US10996319B2 (en) Distance measuring system and control method of distance measuring system
JP5632352B2 (ja) 物体検知装置
JP2006105688A (ja) 車両用レーダ装置
JP2019028039A (ja) 距離測定装置及び距離測定方法
JP5637117B2 (ja) 距離測定装置、および距離測定プログラム
WO2014038527A1 (ja) 車両用のレーダ装置及び同装置における検出範囲の制御方法
WO2023074407A1 (ja) 光測距装置
WO2019164959A1 (en) Time-resolved contrast imaging for lidar
JP2016048179A (ja) レーザレーダ装置及び物体検出方法
WO2020196367A1 (ja) 検出装置及び検出方法
WO2023149335A1 (ja) 測距装置及び測距方法
CN113614564B (zh) 一种探测控制方法及装置
US12007475B2 (en) Object detection apparatus
WO2024120491A1 (en) Method and apparatus for detecting obstruction for lidar, and storage medium
US20230051395A1 (en) Scout pulsing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE