WO2014038527A1 - 車両用のレーダ装置及び同装置における検出範囲の制御方法 - Google Patents

車両用のレーダ装置及び同装置における検出範囲の制御方法 Download PDF

Info

Publication number
WO2014038527A1
WO2014038527A1 PCT/JP2013/073613 JP2013073613W WO2014038527A1 WO 2014038527 A1 WO2014038527 A1 WO 2014038527A1 JP 2013073613 W JP2013073613 W JP 2013073613W WO 2014038527 A1 WO2014038527 A1 WO 2014038527A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance measurement
vehicle
target
state
determined
Prior art date
Application number
PCT/JP2013/073613
Other languages
English (en)
French (fr)
Inventor
鵜飼 敦
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2014038527A1 publication Critical patent/WO2014038527A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/003Bistatic lidar systems; Multistatic lidar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the present invention relates to a radar apparatus for a vehicle and a detection range control method in the apparatus.
  • a radar device that detects a target existing in front of a vehicle by transmitting a transmission wave such as infrared rays in front of the vehicle and receiving the reflected wave.
  • This type of radar device detects a target in a bad weather situation such as rain, snow, fog, etc. due to factors such as attenuation of transmitted waves and generation of noise due to reception of unnecessary reflected waves (clutter). There was a problem that accuracy decreased.
  • a reflector such as a reflector is installed on the side of the road on which the vehicle travels.
  • the reflected light from such a reflector is a virtual image ( ghost) may be detected.
  • erroneous detection such as detection of a virtual image of the reflector as a target to be detected (for example, a preceding vehicle) is likely to occur, and target detection accuracy is reduced. It is difficult to take measures against such a problem with the above-described conventional technology.
  • a radar device for a vehicle includes a transmission / reception unit, a detection unit, a determination unit, and a first setting unit.
  • the transmission / reception means transmits a transmission wave in front of the vehicle and receives the reflected wave.
  • the detection means detects a target within a detection range extending in the vehicle width direction in front of the vehicle based on the reflected wave received by the transmission / reception means.
  • the determination means determines whether or not the state of the atmosphere in front of the vehicle is a deteriorated state that reduces the accuracy of target detection according to a predetermined determination condition.
  • the first setting unit sets the detection range to be narrower when the determination unit determines that the deterioration state is present, as compared with the case where it is determined that the deterioration state is not the deterioration state.
  • the detection range is set narrow, so that the radar device is installed on the side of the road. It becomes difficult to detect the virtual image of the reflector, and a decrease in the detection accuracy of the target can be suppressed. It is also possible to control the detection range in the vehicular radar apparatus so as to exhibit the same function as the above-described radar apparatus.
  • FIG. 1 is a block diagram showing the configuration of the radar apparatus.
  • FIG. 2 is a timing chart showing the transmission timing signal and the operation timing of each part of the apparatus.
  • FIG. 3 is a diagram showing the distance measurement principle of the single distance measurement method and the integrated distance measurement method.
  • FIG. 4 is a graph showing the relationship between reflection intensity and distance accuracy.
  • FIG. 5 is a flowchart illustrating processing executed by the signal processing unit.
  • 6A is a diagram illustrating a light receiving state in a normal mode
  • FIG. 6B is a diagram illustrating a light receiving state in a bad weather mode.
  • FIG. 7 is a graph showing the relationship between the light receiving angle of the light receiving element and the sensitivity.
  • (A) in FIG. 8 is a diagram showing target detection in the prior art
  • (B) is a diagram showing target detection in the present embodiment.
  • a vehicle radar apparatus and a detection range control method according to an embodiment to which the present invention is applied will be described below with reference to the drawings.
  • a radar apparatus 1 shown in FIG. 1 is an apparatus that is mounted on a vehicle and detects various targets existing in front of the vehicle, and includes a light emitting unit 10, a light receiving unit 20, a distance measuring unit 30, and signal processing. Unit 40.
  • the light emitting unit 10 is for irradiating (transmitting) laser light (transmission wave) in front of the vehicle, and includes a light emitting element 11 and a collimating lens 12.
  • the light emitting element 11 includes a laser diode, and emits pulsed laser light in accordance with a transmission timing signal ST (details will be described later) supplied from the distance measuring unit 30.
  • ST transmission timing signal supplied from the distance measuring unit 30.
  • the laser light emitted from the light emitting element 11 passes through the collimating lens 12 and is irradiated toward an irradiation region that spreads at a certain angle in the vehicle width direction (horizontal direction) in front of the vehicle.
  • the light receiving unit 20 is for receiving the reflected light (reflected wave) of the laser light emitted from the light emitting unit 10, and includes a condensing lens 21 and a plurality (three in the present embodiment) of light receiving elements 22a to 22a. 22c and a plurality of (three in this embodiment) amplifier circuits 23a to 23c.
  • the condensing lens 21 condenses the reflected light reflected by the target that the laser light emitted from the light emitting unit 10 is present in front of the vehicle.
  • the light receiving elements 22a to 22c are photodiodes, and generate electric signals (received signals) R1 to R3 having voltage values corresponding to the received light intensity of the reflected light received through the condenser lens 21. As shown in FIG. 6A, the light receiving elements 22a to 22c are arranged in a line along the vehicle width direction (horizontal direction), and each of them receives reflected light with different incident angles in the vehicle width direction. .
  • the light receiving element 22b disposed at the center receives reflected light incident from the front of the vehicle in the traveling direction (straight forward direction), and the light receiving elements 22a and 22c disposed at both left and right end portions of the vehicle The reflected light incident from the diagonally right side or diagonally left side with respect to the traveling direction is received. Since the light receiving elements 22a to 22c have the same configuration, hereinafter, each is simply referred to as the light receiving element 22 unless it is necessary to distinguish between them.
  • the amplification circuits 23a to 23c are provided for each light receiving element 22 in order to individually amplify the received signals from the light receiving elements 22a to 22c. Note that, since the amplifier circuits 23a to 23c have the same configuration, hereinafter, each of them is simply referred to as the amplifier circuit 23 unless it is necessary to distinguish between them.
  • the distance measuring unit 30 is for measuring the distance from the target reflecting the laser beam based on the reflected light received by the light receiving unit 20, and includes a control circuit 31, distance measuring circuits 32a to 32c, .
  • Tcycl, N, and Tw is an example, and should just be set so that Tcycl> NxTw may be satisfied.
  • the distance measuring circuits 32a to 32c are provided for each of the reception signals R1 to R3, and based on the reception signals Ri and the transmission timing signal ST, the distances to the target reflecting the laser beam are set to two types. Measure with the distance measuring method. Since the distance measuring circuits 32a to 32c have the same configuration, hereinafter, each of the distance measuring circuits 32a to 32c will be simply referred to as the distance measuring circuit 32 unless it is necessary to distinguish between them.
  • the distance measuring circuit 32 includes a single distance measuring circuit 321 and an integrated distance measuring circuit 322.
  • the single distance measurement circuit 321 uses the single distance measurement method to measure the distance using an arbitrary one (for example, the 50th) of the N pulse signals emitted every measurement cycle Tcycl. Is generated.
  • the integrated distance measuring circuit 322 generates a second distance value by an integrated distance measuring method that measures the distance using all N pulse signals.
  • the distance measuring circuit 32 outputs both the first distance value and the second distance value for each measurement cycle Tcycl by constantly operating both the single distance measuring circuit 321 and the integrated distance measuring circuit 322. .
  • the single distance measuring circuit 321 generates the first distance value as follows. That is, the timing when the reception signal Ri exceeds (crosses) the detection threshold is set as the previous timing, and the timing when the reception signal Ri falls below (detects) the detection threshold is set as the subsequent timing. Then, the elapsed time Tf from the transmission timing to the previous timing and the elapsed time Tb from the transmission timing to the subsequent timing are measured by a timer.
  • the single distance measuring circuit 321 starts timing at the transmission timing of the pulse signal to be used (the rising edge of the transmission timing signal ST), and the first threshold when the reception signal Ri exceeds the lower threshold, the upper threshold.
  • Four timers (first timers) for measuring each elapsed time until the second timing exceeding the value, the third timing falling below the upper threshold, and the fourth timing falling below the lower threshold To 4th timer).
  • the LSB (unit time) of the first to fourth timers coincides with the cycle of the operation clock for operating the timer, and is set to 0.125 ns in this embodiment.
  • the first distance value is calculated using the time value (elapsed time Tf) of the second timer and the time value (elapsed time Tb) of the third timer. Desired. Further, when the received signal Ri exceeds the lower threshold value and is equal to or lower than the upper threshold value, the time value (elapsed time Tf) of the first timer and the time value (elapsed time Tb) of the fourth timer are obtained. The first distance value is obtained by using this. On the other hand, when the received signal Ri is equal to or lower than the lower threshold value, the first distance measurement value has no data.
  • a value obtained by multiplying the peak value of the integrated sampling value by a coefficient (0.5 in the present embodiment) that is larger than 0 and smaller than 1 is set as a detection threshold value (50% threshold value). Set as. Then, using the detection threshold value, the same pre-timing and post-timing as those in the single distance measuring circuit 321 are detected. Furthermore, the sampling value corresponding to the detected previous timing and subsequent timing is specified as the sampling value from the transmission timing (the previous timing is Mf-th and the subsequent timing is Mb-th). Then, an elapsed time Tf from the transmission timing to the previous timing and an elapsed time Tb from the transmission timing to the subsequent timing are calculated using the following equations (1) and (2).
  • Tf Mf ⁇ Tsmpl (1)
  • Tb Mb ⁇ Tsmpl (2)
  • the distance accuracy characteristic for the received signal Ri differs between the distance measurement value obtained by the single distance measurement circuit 321 and the distance measurement value obtained by the integrated distance measurement circuit 322. Specifically, as shown in FIG. 4, the single distance measuring circuit 321 obtains a distance measurement value when the reflection intensity (signal level of the received signal Ri) exceeds the lower threshold value, and the reflection intensity is high. The better the distance accuracy. On the other hand, the integrated distance measuring circuit 322 deteriorates the distance accuracy when the reflection intensity is high enough to saturate the amplifier circuit 23 or when the reflection intensity is low enough to be less than the average level of noise.
  • the lower threshold value used in the one-shot ranging circuit 321 is set to a value obtained by adding a preset margin to the average noise level of the received signal (100 mV in this embodiment).
  • the upper threshold value is such that the accuracy of the measurement result (first distance value) by the single distance measurement method exceeds the accuracy of the measurement result (second distance value) by the integrated distance measurement method (this embodiment) In the form, it is set to 500 mV).
  • an effective distance measurement value cannot be obtained in an area where the reflection intensity is below the average noise level (area X in the figure). Even in a region where the reflection intensity is higher than the average noise level, distance measurement by the single distance measuring circuit 321 is impossible in a region where the reflection intensity is equal to or lower than the lower threshold value (region A in the figure). Therefore, the first distance value cannot be obtained, and only the second distance value generated by the integrated distance measuring circuit 322 can be obtained. On the other hand, in the region where the reflection intensity exceeds the lower threshold value, both the first distance value and the second distance value are obtained.
  • the distance accuracy of the second distance value is higher than the distance accuracy of the first distance value, and the reflection intensity is higher than the upper threshold value.
  • the distance accuracy of the first distance value is higher than the distance accuracy of the second distance value.
  • the second distance measurement value is used as distance data
  • the signal level of the reception signal Ri belongs to the region C
  • the first distance value based on the threshold is used as distance data.
  • the weighted average value of the first distance value based on the lower threshold and the second distance value is used as distance data.
  • the signal processing unit 40 detects a target within the detection range according to the distance data generated by the distance measuring unit 30, and generates information (distance, relative speed, etc.) regarding the detected target. It is composed mainly of a CPU (central processing unit) 41, a ROM (read-only memory) 42, and a RAM (random access memory) 43.
  • a CPU central processing unit
  • ROM read-only memory
  • RAM random access memory
  • the signal processing unit 40 first determines in S11 whether or not the bad weather mode is set to ON.
  • the bad weather mode is an operation mode in which target detection is performed under conditions specialized for bad weather conditions in order to suppress a decrease in target detection accuracy in bad weather conditions (other than fine weather). That is, the radar apparatus 1 of the present embodiment is configured to be able to switch the operation mode for target detection to one of the normal mode and the bad weather mode.
  • the user for example, a vehicle driver
  • the user can set on / off of the bad weather mode, and when the bad weather mode is set to off, the object is always in the normal mode regardless of the weather. Mark detection is performed. For this reason, it is determined whether or not the bad weather mode is set to ON before determining the current weather in S13 described later.
  • the signal processing unit 40 determines in S11 that the bad weather mode is not set to ON (set to OFF)
  • the signal processing unit 40 shifts the process to S12 and sets the operation mode to the normal mode. Thereafter, the process proceeds to S19 described later. That is, when the bad weather mode is set to OFF, target detection is performed under a certain condition (a condition based on a clear sky condition) regardless of the current weather. The details of the target detection conditions in the normal mode will be described later.
  • step S11 if it is determined in step S11 that the bad weather mode is set to ON, the signal processing unit 40 shifts the process to step S13 and determines whether or not the current weather is bad weather.
  • the current weather when at least one of the following conditions C1 to C5 is satisfied, it is determined that the current weather is bad weather. That is, it is determined according to a predetermined determination condition whether or not the state of the atmosphere in front of the vehicle is a deteriorated state that lowers the detection accuracy of the target.
  • these determination conditions are examples, and one or more determination conditions may be deleted, or another determination condition may be added.
  • C1 Rain is detected by the rain sensor.
  • C2 The wiper is operating.
  • C3 The fog lamp is lit.
  • C4 The humidity measured by the in-vehicle humidity sensor is greater than or equal to the set value.
  • C5 The current precipitation probability of the current location acquired from the outside (for example, a web server that provides weather information) is greater than or equal to the set value.
  • step S13 When the signal processing unit 40 determines in step S13 that the current weather is not bad weather (sunny weather), the signal processing unit 40 shifts the processing to step S12, and sets the operation mode to the normal mode as described above. Then, the process proceeds to step S19 described later.
  • the signal processing unit 40 determines in step S13 that the current weather is bad weather, the signal processing unit 40 sets the operation mode to bad weather mode in the following steps S14 to S18. Specifically, the signal processing unit 40 first stops (invalidates) ranging by the single ranging method in step S14. That is, in the normal mode, as described above, the single ranging circuit 321 and the integrated ranging circuit 322 are simultaneously operated in parallel, and the first ranging value by the single ranging system and the second ranging system by the integrating ranging system are used. A distance measurement value is used together.
  • the operation of the single ranging circuit 321 is stopped regardless of the signal level of the reception signal Ri so that the first ranging value by the single ranging method is not used. That is, in the bad weather mode, the second distance value by the integrated distance measuring method is used regardless of the reflection intensity.
  • the distance measurement by the single distance measurement method is always stopped.
  • the present invention is not limited to this. The user may be allowed to set whether or not to stop distance measurement using the distance method.
  • the signal processing unit 40 determines whether or not the light reception direction switching function for switching the light reception direction of the reflected light in the bad weather mode to a range narrower than the normal mode is set to ON.
  • the light receiving direction of the reflected light is an angular range where the reflected light can be received (a detection range where the target can be detected).
  • the radar apparatus 1 according to the present embodiment has a function (light receiving direction switching function) that can switch the light receiving direction of reflected light between a range for normal mode and a range for bad weather mode that is narrower than the range for normal mode. ).
  • the three light receiving elements 22a, 22b, and 22c are all made effective so that the light receiving direction becomes the maximum range.
  • the bad weather mode as shown in FIG. 6B, one light receiving element 22b that detects reflected light from the front of the vehicle (front in the running direction) is enabled, and reflected light from the left and right oblique directions.
  • the two light receiving elements 22a and 22c for detecting the above are invalidated. That is, the light receiving range is narrowed down to a narrow angle range in front of the vehicle.
  • the user can set on / off of the light receiving direction switching function, and when the light receiving direction switching function is set to off, the light receiving direction is within the range for the normal mode even in bad weather mode. Is set. Therefore, it is determined whether or not the light receiving direction switching function is set to ON. In this example, the user can set on / off of the light reception direction switching function.
  • the present invention is not limited to this. For example, when the operation mode is set to the bad weather mode, the light reception direction is always set. May be switched to the range for the bad weather mode.
  • step S15 If the signal processing unit 40 determines in step S15 that the light reception direction switching function is set to ON, the signal processing unit 40 shifts the processing to step S16 and sets the light reception direction of the reflected light to the range for the bad weather mode. Switch. Specifically, as described above, among the three light receiving elements 22a, 22b, and 22c, the left and right light receiving elements 22a and 22c are invalidated.
  • the signal processing unit 40 determines whether or not the viewing angle switching function for switching the viewing angle of the light receiving element 22 in the bad weather mode to a range narrower than the normal mode is set to ON.
  • the viewing angle of the light receiving element 22 is an angle range in which each light receiving element can detect reflected light, and specifically, an angle range in the vehicle width direction (on the horizontal plane). That is, as shown in FIG. 7, the light receiving element 22 has a property that the reflected light can be detected with higher sensitivity as the angle from the reference direction (0 deg) is narrower, and the sensitivity determination threshold is set higher. By doing so, the viewing angle becomes narrow (high directivity).
  • the viewing angle for the bad weather mode can be made narrower than the viewing angle for the normal mode.
  • the user can set the viewing angle switching function on / off, and in the state where the viewing angle switching function is set to off, the determination threshold for the normal mode is set even in the bad weather mode. Used. Therefore, it is determined whether or not the viewing angle switching function is set to ON. In this example, the user can set on / off of the viewing angle switching function.
  • the present invention is not limited to this. For example, when the operation mode is set to the bad weather mode, the bad weather mode must be set. You may make it switch to the determination threshold value for.
  • step S17 If the signal processing unit 40 determines in step S17 that the viewing angle switching function is set to ON, the signal processing unit 40 shifts the process to step S18 and sets the determination threshold value of the light receiving element 22 for the bad weather mode. By switching to the determination threshold, the viewing angle for the bad weather mode is switched. Thereafter, the signal processing unit 40 shifts the processing to step S19.
  • step S17 if the signal processing unit 40 determines in step S17 that the viewing angle switching function is not set to ON (set to OFF), it skips step S18 and proceeds to step S19. Transition. In this case, the determination threshold value of the light receiving element 22 is set to the determination threshold value for the normal mode.
  • step S15 If the signal processing unit 40 determines in step S15 described above that the light receiving direction switching function is not set to ON (set to OFF), it skips steps S16 to S18, The process proceeds to step S19.
  • the light receiving azimuth of the reflected light is set to a range for the normal mode, and the determination threshold value of the light receiving element 22 is set to the determination threshold value for the normal mode.
  • the signal processing part 40 performs the target detection process which detects the target ahead of a vehicle in step S19. Specifically, clustering (grouping) processing is performed based on distance data obtained by distance measurement, and each group is detected as a target. And the distance and relative speed with respect to a vehicle are calculated about each detected target. Thereafter, the signal processing unit 40 ends the process of FIG.
  • step S13 determines that the current weather is bad weather (step S13: YES)
  • the radar apparatus 1 narrows the light receiving azimuth and the viewing angle of the reflected light as compared to the case of fine weather (step S13). S15 to S18). For this reason, in bad weather conditions, it is possible to suppress a decrease in the detection accuracy of the target due to a reflector installed on the side of the road or the like.
  • the reflected light from the reflector 5 such as a reflector installed on the side of the road on which the vehicle travels is affected by water droplets in the atmosphere.
  • it is detected as a virtual image (ghost) in front of the actual installation position (vehicle side).
  • the phenomenon that the virtual image of the reflector 5 is detected by being integrated with the reflected light from the reflector 6 of the preceding vehicle by the clustering process is likely to occur, and as a result, an object to be originally detected such as the preceding vehicle. The detection accuracy of the mark will decrease.
  • the radar apparatus 1 of the present embodiment as shown in FIG.
  • the reflector 5 installed on the side of the road It becomes difficult to detect a virtual image. Therefore, the phenomenon that the virtual image of the reflector 5 is detected by being integrated with the reflected light from the reflector 6 of the preceding vehicle can be made difficult to occur, and the decrease in the detection accuracy of the target that should be detected can be suppressed. it can.
  • the radar apparatus 1 includes a plurality (three in this example) of light receiving elements 22a to 22c that share and receive reflected light having different incident angles in the vehicle width direction, and determine that the current weather is bad weather. If so (step S13: YES), the detection range is set narrow by invalidating some of them (step S16). For this reason, according to the radar apparatus 1, the light receiving azimuth
  • a plurality (three in this example) of light receiving elements 22a to 22c are arranged along the vehicle width direction.
  • the radar device 1 determines that the current weather is bad weather (step S13: YES)
  • the radar device 1 enables the light receiving element 22b disposed closest to the center in the vehicle width direction, while maintaining the vehicle width direction.
  • the detection range is narrowed by invalidating the light receiving elements 22a and 22c arranged at the ends (step S16). For this reason, according to the radar apparatus 1, the influence of the reflector installed on the side of the road or the like can be reduced while suppressing a decrease in detection accuracy of the target existing in front of the traveling direction of the vehicle.
  • step S13 determines that the current weather is bad weather (step S13: YES)
  • the radar apparatus 1 sets the viewing angle of each light receiving element 22 to be narrower than in the case of fine weather (Ste S18). For this reason, according to the radar apparatus 1, unnecessary reflected light can be made more difficult to detect.
  • step S17 since the user can set such on / off of the viewing angle switching function (step S17), for example, when the degree of weather deterioration is not high, the field of view is determined by the user's judgment. It is possible not to switch the corner.
  • the radar apparatus 1 determines that the current weather is bad weather (step S13: YES)
  • the radar apparatus 1 does not use the distance measurement value based on the single-range distance measurement method (step S14), and uses the integrated distance measurement method.
  • a target is detected based on the distance measurement value (step S19).
  • the single-range ranging method is superior to the integrated ranging method in ranging performance close to the light-receiving surface (for example, within about 5 m), but the reflection cross-sectional area of raindrops, snow particles, etc. increases as the distance decreases. As a result, the amount of reflected light also increases, which is easily affected by bad weather conditions. Therefore, in bad weather conditions, limiting to the integrated ranging method can suppress detection of unnecessary reflected light by the single-shot ranging method, making it less susceptible to the effects of rain, snow, fog, etc. it can.
  • the radar apparatus 1 determines that the current weather is bad when at least one of the above-described conditions C1 to C5 is satisfied (step S13). Therefore, it is possible to easily and relatively accurately determine whether or not the current weather is bad weather.
  • the light emitting unit 10 and the light receiving unit 20 correspond to an example of a transmission / reception unit, and in particular, the three light receiving elements 22a to 22c correspond to an example of a plurality of receiving units.
  • Step S13 corresponds to an example of processing as a determination unit
  • step S19 corresponds to an example of processing as a detection unit.
  • Step S16 corresponds to an example of processing as the first setting means
  • step S18 corresponds to an example of processing as the second setting means
  • step S14 corresponds to an example of processing as the third setting means. Equivalent to.
  • the light receiving elements 22a and 22c at the left and right ends of the three light receiving elements 22a, 22b, and 22c arranged in a row in the horizontal direction are disabled in the bad weather mode.
  • the number of light receiving elements 22 to be disabled and the number of light receiving elements 22 to be invalidated are not limited thereto.
  • the number of light receiving elements 22 to be arranged is larger than that of the above embodiment (3) (for example, 7), and a plurality (for example, 3) of light receiving elements 22 are provided at both right and left ends in the bad weather mode. May be disabled.
  • the number of light receiving elements 22 to be enabled (not disabled) in the bad weather mode is not necessarily one.
  • the number of light receiving elements 22 to be arranged is seven, one on each of the left and right sides ( Alternatively, two light receiving elements may be disabled, and the remaining five (or three) light receiving elements may be enabled.
  • the number of light receiving elements 22 to be invalidated does not have to be the same number (left-right symmetric) on the left and right, and may be left-right asymmetric. That is, the ratio of narrowing the target detection range may be varied between the left and right in the vehicle width direction. For example, the side facing the road in the detection range (left side in the case of left-side traveling) may be narrower than the opposite side.
  • the lane in which the vehicle is traveling may be detected, and the light receiving element 22 on the side where the reflector is likely to exist such as a roadside or a median strip may be preferentially disabled.
  • the left side in the detection range is narrower than the right side when traveling on the left lane
  • the right side in the detection range is narrower than the left side when traveling on the right lane.
  • the left and right sides in the detection range may be narrowed at the same rate (or the detection range is not narrowed).
  • the present invention is not limited to this, and the state of the atmosphere in front of the vehicle is a deteriorated state that lowers the accuracy of target detection. What is necessary is just to determine whether or not. For example, an atmospheric state that may occur regardless of the weather, such as water splash or exhaust gas from a puddle, may be directly detected, or the user may make a determination.
  • the range on the light reception (reception) side is switched to a narrow range, but is not limited to this.
  • the irradiation (transmission) side range may be switched to a narrow range.
  • the irradiation range may be switched by switching the position of the collimating lens 12 with respect to the light emitting element 11 or adding another lens.
  • the scanning range in the vehicle width direction (horizontal direction) may be switched to a narrow range.
  • the mounting position of the radar device 1 in the vehicle is not particularly limited.
  • it may be the back of a room mirror (inside the windshield) or a bumper. Further, if it can be used for a vehicle, it may be configured as a portable device (separate from the vehicle).
  • each component of the above embodiment may be realized by software instead of hardware, may be realized by hardware instead of software, or realized by a combination of hardware and software. May be.
  • Each component is conceptual and is not limited to the above embodiment. For example, the functions of one component may be distributed to a plurality of components, or the functions of a plurality of components may be integrated into one component. Further, at least a part of the configuration of the above embodiment may be replaced with a known configuration having the same function.
  • the above embodiment is merely an example of an embodiment to which the present invention is applied.
  • the present invention can be realized in various forms such as a system, an apparatus, a method, a program, and a recording medium on which the program is recorded (an optical disc such as a CD-ROM or a DVD, a magnetic disc, or a semiconductor memory).
  • 1 ... Radar device, 10 ... light emitting part, 11 ... light emitting element, 12 ... Collimating lens, 20 ... light receiving part, 21 ... Condensing lens, 22a, 22b, 22c ... light receiving element, 23a, 23b, 23c ... amplification circuit, 30 ... Ranging unit, 31 ... Control circuit, 32a, 32b, 32c ... distance measuring circuit, 40: Signal processing unit, 321 ... single range finding circuit, 322 ... Integrated distance measuring circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 レーダ装置では、車両の前方へレーザ光を照射し、その反射光に基づいて、車両の前方において車幅方向に広がる検出範囲内の物標が検出される。車両の前方における大気の状態が、物標の検出精度を低下させる悪化状態であるか否かが、定められた判定条件に従い判定される。悪化状態であると判定した場合には、悪化状態でないと判定された場合と比較して、検出範囲を狭く設定される。

Description

車両用のレーダ装置及び同装置における検出範囲の制御方法
 本発明は、車両用のレーダ装置及び同装置における検出範囲の制御方法に関する。
 従来、車両の前方へ赤外線等の送信波を送信し、その反射波を受信することで、車両の前方に存在する物標を検出するレーダ装置が知られている。この種のレーダ装置は、雨、雪、霧などの悪天候の状況において、送信波の減衰や、不要な反射波(クラッタ)が受信されることによるノイズの発生などの要因により、物標の検出精度が低下するという問題を有していた。
 なお、このような問題を解決するための従来技術として、ワイパやフォグランプの作動状態などに基づいて悪天候の状況であることを検出した場合に、レーダ受信信号の積算時間を長くすることで、信号対雑音電力比(S/N)を高くする構成が知られている(特許文献1参照)。
特開2008-170323号公報
 ところで、車両が走行する道路の脇には、反射板等の反射体が設置されており、悪天候の状況においては、こうした反射体からの反射光が、大気中の水滴等の影響により、虚像(ゴースト)として検出される場合がある。この場合、反射体の虚像が、本来検出すべき物標(例えば先行車両)として検出されるなどの誤検出が生じやすくなり、物標の検出精度が低下してしまうという問題があった。なお、このような問題は、前述した従来技術で対策することは困難である。
 このような事情に鑑みて、道路脇等に設置された反射体を要因とする物標の検出精度の低下を抑制することが望まれている。
 一例に係る車両用のレーダ装置は、送受信手段と、検出手段と、判定手段と、第1の設定手段と、を備える。
 このうち、送受信手段は、車両の前方へ送信波を送信し、その反射波を受信する。検出手段は、送受信手段により受信された反射波に基づいて、車両の前方において車幅方向に広がる検出範囲内の物標を検出する。判定手段は、車両の前方における大気の状態が、物標の検出精度を低下させる悪化状態であるか否かを、定められた判定条件に従い判定する。第1の設定手段は、判定手段により悪化状態であると判定された場合には、悪化状態でないと判定された場合と比較して、検出範囲を狭く設定する。
 このようなレーダ装置によれば、車両の前方における大気の状態が、物標の検出精度を低下させる悪化状態である場合には、検出範囲が狭く設定されるため、道路脇等に設置された反射体の虚像が検出されにくくなり、物標の検出精度の低下を抑制することができる。
 上述のレーダ装置と同等の機能を発揮するように、車両用のレーダ装置における検出範囲を制御することもできる。
 なお、この欄及び特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本発明の技術的範囲を限定するものではない。
図1は、レーダ装置の構成を示すブロック図である。 図2は、送信タイミング信号や装置各部の動作タイミングを示すタイミング図である。 図3は、単発測距方式及び積算測距方式の測距原理を示す図である。 図4は、反射強度と距離精度との関係を示すグラフである。 図5は、信号処理部により実行される処理を示すフローチャートである。 図6における(A)は平常モードでの受光状態を示す図、(B)は悪天候モードでの受光状態を示す図である。 図7は、受光素子の受光角度と感度との関係を示すグラフである。 図8における(A)は従来技術の物標検出を示す図、(B)は本実施形態の物標検出を示す図である。
 以下、本発明が適用された一実施形態に係る車両のレーダ装置及びその検出範囲の制御方法に、図面を用いて説明する。
 [1.構成]
 図1に示すレーダ装置1は、車両に搭載され、車両の前方に存在する各種物標を検出するための装置であり、発光部10と、受光部20と、測距部30と、信号処理部40と、を備える。
 発光部10は、車両の前方へレーザ光(送信波)を照射(送信)するためのものであり、発光素子11と、コリメートレンズ12と、を備える。
 発光素子11は、レーザダイオードを備え、測距部30から供給される送信タイミング信号ST(詳細は後述する。)に従って、パルス状のレーザ光を放射する。発光素子11から放射されたレーザ光は、コリメートレンズ12を通過することにより、車両の前方において車幅方向(水平方向)に一定の角度で広がる照射領域へ向けて照射される。
 受光部20は、発光部10により照射されたレーザ光の反射光(反射波)を受信するためのものであり、集光レンズ21と、複数(本実施形態では3個)の受光素子22a~22cと、複数(本実施形態では3個)の増幅回路23a~23cと、を備える。
 集光レンズ21は、発光部10により照射されたレーザ光が車両の前方に存在する物標によって反射された反射光を集光する。
 受光素子22a~22cは、フォトダイオードであり、集光レンズ21を介して受光した反射光の受光強度に応じた電圧値を有する電気信号(受信信号)R1~R3を発生させる。受光素子22a~22cは、図6(A)に示すように、車幅方向(水平方向)に沿って一列に配置され、それぞれが車幅方向における入射角度が異なる反射光を分担して受光する。具体的には、中央に配置された受光素子22bが、車両の走行方向(直進方向)正面から入射される反射光を受信し、左右両端部に配置された受光素子22a,22cが、車両の走行方向に対して斜め右側又は斜め左側から入射される反射光を受信する。なお、受光素子22a~22cは、構成が同一であるため、以下では、特に区別する必要がない場合にはそれぞれを単に受光素子22と称する。
 図1に戻ると、増幅回路23a~23cは、受光素子22a~22cによる受信信号を個別に増幅するために、受光素子22ごとに設けられている。なお、増幅回路23a~23cは、構成が同一であるため、以下では、特に区別する必要がない場合にはそれぞれを単に増幅回路23と称する。
 測距部30は、受光部20により受信された反射光に基づいて、レーザ光を反射した物標との距離を測定するためのものであり、制御回路31と、測距回路32a~32cと、を備える。
 制御回路31は、発光部10へ供給する送信タイミング信号STを生成する。具体的には、図2に示すように、制御回路31は、測定周期Tcycl(本実施形態ではTcycl=33ms)を表す周期信号を発生させ、この周期信号に同期して送信タイミング信号STを発生させる。送信タイミング信号STは、測定周期Tcyclごとに出力されるN(本実施形態ではN=100)個の連続するパルス信号からなる。また、パルス信号は、レーダ装置1の最大検知距離(本実施形態では50m)をレーザ光が往復するのに要する最大計測期間(本実施形態では0.33μs)よりも十分に長い時間間隔Tw(本実施形態ではTw=18μs)で出力される。なお、Tcycl,N,Twの値は一例であり、Tcycl>N×Twを満たすように設定されていればよい。
 図1に戻り、測距回路32a~32cは、受信信号R1~R3ごとに設けられ、各受信信号Ri及び送信タイミング信号STに基づいて、レーザ光を反射した物標との距離を2種類の測距方式で測定する。なお、測距回路32a~32cは、構成が同一であるため、以下では、特に区別する必要がない場合にはそれぞれを単に測距回路32と称する。
 測距回路32は、単発測距回路321と、積算測距回路322と、を備える。
 単発測距回路321は、測定周期Tcyclごとに照射されるN個のパルス信号のうち、任意の一つ(例えば50番目)を使用して測距する単発測距方式により、第1測距値を生成する。一方、積算測距回路322は、N個のパルス信号をすべて使用して測距する積算測距方式により、第2測距値を生成する。そして、測距回路32は、これら単発測距回路321及び積算測距回路322をいずれも常時動作させることで、測定周期Tcyclごとに第1測距値及び第2測距値の両方を出力する。
 ここで、単発測距回路321による第1測距値の生成方法及び積算測距回路322による第2測距値の生成方法について、図3(A),(B)を用いて説明する。
 単発測距回路321では、次のように第1測距値が生成される。すなわち、受信信号Riが検出しきい値を越えた(横切った)タイミングを前タイミング、その後、受信信号Riが検出しきい値を下回った(横切った)タイミングを後タイミングとする。そして、送信タイミングから前タイミングまでの経過時間Tfと、送信タイミングから後タイミングまでの経過時間Tbと、をタイマで計測する。こうして計測した経過時間Tf,Tbの平均値を、送信タイミングから受信タイミングまでの経過時間Tr(={Tf+Tb}/2)として算出する。つまり、前タイミングと後タイミングとの中間のタイミングを、受信タイミング(受信信号Riがピークとなるタイミング)とする。そして、算出した経過時間Trを距離に換算した値を、第1測距値として出力する。
 具体的には、単発測距回路321では、検出しきい値として、大小2種類のしきい値(上しきい値及び下しきい値)が用意されている。つまり、単発測距回路321は、使用するパルス信号の送信タイミング(送信タイミング信号STの立ち上がりエッジ)で計時を開始し、受信信号Riが下しきい値を越えた第1のタイミング、上しきい値を越えた第2のタイミング、上しきい値を下回った第3のタイミング、及び、下しきい値を下回った第4のタイミング、までの各経過時間を計測する4個のタイマ(第1~第4タイマ)として機能する。なお、第1~第4タイマのLSB(単位時間)は、タイマを動作させる動作クロックの周期と一致し、本実施形態では0.125nsに設定されている。
 そして、受信信号Riが上しきい値を越えている場合は、第2タイマの計時値(経過時間Tf)と第3タイマの計時値(経過時間Tb)とを用いて第1測距値が求められる。また、受信信号Riが下しきい値を越えておりかつ上しきい値以下である場合は、第1タイマの計時値(経過時間Tf)と第4タイマの計時値(経過時間Tb)とを用いて第1測距値が求められる。一方、受信信号Riが下しきい値以下である場合は、第1測距値はデータなしとなる。
 一方、積算測距回路322では、次のように第2測距値が生成される。すなわち、まず、N個のパルス信号のそれぞれについて、送信タイミングから最大計測期間が経過するまでの間、所定のサンプリング間隔Tsmpl(本実施形態ではTsmpl=25ns)で、受信信号Riをサンプリングする。そして、各パルス信号の送信タイミングを基準として同一時間にサンプリングされたサンプリング値を積算することで、積算サンプリング値を求める。つまり、積算サンプリング値とは、N個のパルス信号を、送信タイミングを基準として同じタイミングで足し合わせた積算信号のサンプリング値に相当する。このような積算信号は、元の受信信号と比較して、ノイズが抑制されS/Nが向上したものとなる。
 続いて、積算サンプリング値のピーク値に、あらかじめ設定された0よりも大きく1よりも小さい係数(本実施形態では0.5)を乗じた値を、検出しきい値(50%しきい値)として設定する。そして、その検出しきい値を用いて、単発測距回路321の場合と同様の前タイミング及び後タイミングを検出する。さらに、検出した前タイミング及び後タイミングに対応するサンプリング値が、送信タイミングから何番目(前タイミングをMf番目、後タイミングをMb番目とする。)のサンプリング値であるかを特定する。そして、送信タイミングから前タイミングまでの経過時間Tf、送信タイミングから後タイミングまでの経過時間Tbを、下記の式(1),(2)式を用いて算出する。
 Tf=Mf×Tsmpl …(1)
 Tb=Mb×Tsmpl …(2)
 以降は単発測距回路321の場合と同様に、経過時間Tf,Tbに基づいて送信タイミングから受信タイミングまでの経過時間Trを算出し、算出した経過時間Trを距離に換算した値を、第2測距値として出力する。なお、積算測距回路322は、上しきい値を越える受信信号Riが入力された場合は、積算サンプリング値が積算測距回路322における計測電圧範囲を超えてしまい、第2測距値の精度が低下する。
 以上のように、単発測距回路321により得られる測距値と積算測距回路322により得られる測距値とでは、受信信号Riに対する距離精度の特性が異なる。具体的には、図4に示すように、単発測距回路321は反射強度(受信信号Riの信号レベル)が下しきい値を越えている場合に測距値が得られ、反射強度が大きいほど距離精度が向上する。一方、積算測距回路322は、増幅回路23が飽和する程度に反射強度が大きい場合や、ノイズの平均レベルに満たない程度に反射強度が小さい場合に、距離精度が劣化する。
 なお、単発測距回路321で使用される下しきい値は、受信信号の平均的なノイズレベルにあらかじめ設定されたマージンを加えた値(本実施形態では100mV)に設定されている。また、上しきい値は、単発測距方式による測定結果(第1測距値)の精度が、積算測距方式による測定結果(第2測距値)の精度を上回るような値(本実施形態では500mV)に設定されている。
 つまり、反射強度が平均的なノイズレベル以下となる領域(図中の領域X)では、有効な測距値を得ることができない。そして、反射強度が平均的なノイズレベルよりも大きい領域であっても、反射強度が下しきい値以下の領域(図中の領域A)では、単発測距回路321による測距が不可能であるため、第1測距値は得られず、積算測距回路322によって生成される第2測距値しか得ることができない。一方、反射強度が下しきい値を上回る領域では、第1測距値及び第2測距値の両方が得られる。特に、反射強度が上しきい値以下の領域(図中の領域B)では、第2測距値の距離精度が第1測距値の距離精度よりも高くなり、反射強度が上しきい値を上回る領域(図中の領域C)では、第1測距値の距離精度が第2測距値の距離精度よりも高くなる。
 そこで、本実施形態では、受信信号Riの信号レベルが領域Aに属する場合には、第2測距値を距離データとして使用し、受信信号Riの信号レベルが領域Cに属する場合には、上しきい値に基づく第1測距値を距離データとして使用する。一方、受信信号Riの信号レベルが領域Bに属する場合には、下しきい値に基づく第1測距値と、第2測距値と、の加重平均値(領域Bにおける測距値の距離精度に応じて重み付けされた平均値)を距離データとして使用する。
 図1に戻り、信号処理部40は、測距部30により生成された距離データに従って検出範囲内の物標を検出し、その検出した物標に関する情報(距離や相対速度等)を生成するためのものであり、CPU(central processing unit)41、ROM(read-only memory)42、RAM(random access memory)43を中心に構成されている。
 [2.処理]
 ここで、信号処理部40のCPU41が、ROM42に記憶されているプログラムに従い実行する処理の詳細を、図5に示すフローチャートに沿って説明する。なお、図5の処理は、信号処理部40により微小な一定間隔で周期的に実行される。
 信号処理部40は、図5の処理を開始すると、まずS11において、悪天候モードがオンに設定されているか否かを判定する。ここで、悪天候モードとは、悪天候(晴天以外)の状況における物標の検出精度の低下を抑制するために、悪天候の状況に特化した条件で物標検出を行う動作モードである。すなわち、本実施形態のレーダ装置1は、物標検出のための動作モードを、平常モード及び悪天候モードのうちのいずれか一方に切り替え可能に構成されている。ただし、本実施形態では、悪天候モードのオン/オフをユーザ(例えば車両の運転者)が設定可能であり、悪天候モードがオフに設定されている状態では、天候に関係なく、常に平常モードで物標検出が行われる。このため、後述するS13で現在の天候を判定する前に、悪天候モードがオンに設定されているか否かを判定する。
 そして、信号処理部40は、S11において、悪天候モードがオンに設定されていない(オフに設定されている)と判定した場合には、処理をS12へ移行させ、動作モードを平常モードに設定した後、処理を後述するS19へ移行させる。つまり、悪天候モードがオフに設定されている場合には、現在の天候に関係なく一定の条件(晴天の状況を基準とする条件)で物標検出が行われる。なお、平常モードにおける物標検出の条件の詳細については後述する。
 一方、信号処理部40は、ステップS11において、悪天候モードがオンに設定されていると判定した場合には、処理をステップS13へ移行させ、現在の天候が悪天候であるか否かを判定する。本実施形態では、次のC1~C5の条件のうち少なくとも1つが満たされる場合に、現在の天候が悪天候であると判定する。つまり、車両の前方における大気の状態が、物標の検出精度を低下させる悪化状態であるか否かを、あらかじめ定められた判定条件に従い判定する。なお、これらの判定条件は一例であり、1つ以上の判定条件を削除してもよく、また、別の判定条件を追加してもよい。
 C1:レインセンサにより降雨が検出されている。
 C2:ワイパが作動している。
 C3:フォグランプが点灯している。
 C4:車載湿度センサにより測定される湿度が設定値以上である。
 C5:外部(例えば天候情報を提供するウェブサーバ)から取得される現在地の現時点での降水確率が設定値以上である。
 そして、信号処理部40は、ステップS13において、現在の天候が悪天候でない(晴天である)と判定した場合には、処理をステップS12へ移行させ、前述したように、動作モードを平常モードに設定した後、処理を後述するステップS19へ移行させる。
 一方、信号処理部40は、ステップS13において、現在の天候が悪天候であると判定した場合には、以下のステップS14~ステップS18で、動作モードを悪天候モードに設定する。
 具体的には、信号処理部40は、まずステップS14において、単発測距方式による測距を停止する(無効にする)。すなわち、平常モードでは、前述したように、単発測距回路321と積算測距回路322とを同時に並行して動作させ、単発測距方式による第1測距値と、積算測距方式による第2測距値と、を併用する。これに対し、悪天候モードでは、受信信号Riの信号レベルに関係なく、単発測距回路321の動作を停止させ、単発測距方式による第1測距値を用いないようにする。つまり、悪天候モードでは、反射強度に関係なく、積算測距方式による第2測距値を用いる。なお、この例では、動作モードを悪天候モードに設定する場合には必ず単発測距方式による測距を停止するようにしているが、これに限定されるものではなく、例えば、悪天候モードにおいて単発測距方式による測距を停止するか否かをユーザが設定できるようにしてもよい。
 続いて、信号処理部40は、ステップS15において、悪天候モードにおける反射光の受光方位を平常モードよりも狭い範囲に切り替える受光方位切替機能がオンに設定されているか否かを判定する。ここで、反射光の受光方位とは、反射光を受光可能な角度範囲(物標を検出可能な検出範囲)のことであり、詳細には、車両の前方において車幅方向(水平面上)に広がる角度範囲のことである。すなわち、本実施形態のレーダ装置1は、反射光の受光方位を、平常モード用の範囲と、平常モード用の範囲よりも狭い悪天候モード用の範囲と、に切り替え可能な機能(受光方位切替機能)を備えている。具体的には、平常モードでは、図6(A)に示すように、3個の受光素子22a,22b,22cをすべて有効にすることで、受光方位を最大範囲にする。これに対し、悪天候モードでは、図6(B)に示すように、車両の正面(走行方向前方)からの反射光を検出する1個の受光素子22bを有効にし、左右斜め方向からの反射光を検出する2個の受光素子22a,22cを無効にする。つまり、受光範囲を車両の正面における狭い角度範囲に絞り込む。ただし、本実施形態では、受光方位切替機能のオン/オフをユーザが設定可能であり、受光方位切替機能がオフに設定されている状態では、悪天候モードにおいても受光方位が平常モード用の範囲に設定される。このため、受光方位切替機能がオンに設定されているか否かを判定する。なお、この例では、受光方位切替機能のオン/オフをユーザが設定できるようにしているが、これに限定されるものではなく、例えば、動作モードを悪天候モードに設定する場合には必ず受光方位を悪天候モード用の範囲に切り替えるようにしてもよい。
 そして、信号処理部40は、ステップS15において、受光方位切替機能がオンに設定されていると判定した場合には、処理をステップS16へ移行させ、反射光の受光方位を悪天候モード用の範囲に切り替える。具体的には、前述したように、3個の受光素子22a,22b,22cのうち、左右両側の受光素子22a,22cを無効にする。
 続いて、信号処理部40は、ステップS17において、悪天候モードにおける受光素子22の視野角を平常モードよりも狭い範囲に切り替える視野角切替機能がオンに設定されているか否かを判定する。ここで、受光素子22の視野角とは、個々の受光素子が反射光を検出可能な角度範囲のことであり、詳細には車幅方向(水平面上)における角度範囲のことである。すなわち、図7に示すように、受光素子22は、基準方向(0deg)からの角度が狭いほど高い感度で反射光を検出可能な性質を有しており、感度の判定しきい値を高く設定することで視野角が狭く(指向性が高く)なる。したがって、悪天候モード用の判定しきい値を、平常モード用の判定しきい値よりも高くすることで、悪天候モード用の視野角を、平常モード用の視野角よりも狭い範囲にすることができる。ただし、本実施形態では、視野角切替機能のオン/オフをユーザが設定可能であり、視野角切替機能がオフに設定されている状態では、悪天候モードにおいても平常モード用の判定しきい値が用いられる。このため、視野角切替機能がオンに設定されているか否かを判定する。なお、この例では、視野角切替機能のオン/オフをユーザが設定できるようにしているが、これに限定されるものではなく、例えば、動作モードを悪天候モードに設定する場合には必ず悪天候モード用の判定しきい値に切り替えるようにしてもよい。
 そして、信号処理部40は、ステップS17において、視野角切替機能がオンに設定されていると判定した場合には、処理をステップS18へ移行させ、受光素子22の判定しきい値を悪天候モード用の判定しきい値に切り替えることで、悪天候モード用の視野角に切り替える。その後、信号処理部40は、処理をステップS19へ移行させる。
 一方、信号処理部40は、ステップS17において、視野角切替機能がオンに設定されていない(オフに設定されている)と判定した場合には、ステップS18をスキップして、処理をステップS19へ移行させる。この場合、受光素子22の判定しきい値は平常モード用の判定しきい値に設定される。
 また、信号処理部40は、前述したステップS15において、受光方位切替機能がオンに設定されていない(オフに設定されている)と判定した場合には、ステップS16~ステップS18をスキップして、処理をステップS19へ移行させる。この場合、反射光の受光方位は正常モード用の範囲に設定され、受光素子22の判定しきい値は平常モード用の判定しきい値に設定される。
 そして、信号処理部40は、ステップS19において、車両前方の物標を検出する物標検出処理を行う。具体的には、測距により得られた距離データを元にクラスタリング(グループ化)処理を行い、各グループを物標として検出する。そして、検出した各物標について、車両に対する距離及び相対速度を算出する。その後、信号処理部40は、図5の処理を終了する。
 以上詳述した本実施形態によれば、以下の効果が得られる。
 (1)レーダ装置1は、現在の天候が悪天候であると判定した場合には(ステップS13:YES)、晴天である場合と比較して、反射光の受光方位及び視野角を狭くする(ステップS15~S18)。このため、悪天候の状況において、道路脇等に設置された反射体を要因とする物標の検出精度の低下を抑制することができる。
 すなわち、悪天候の状況においては、図8(A)に示すように、車両が走行する道路の脇に設置された反射板等の反射体5からの反射光が、大気中の水滴等の影響により、実際の設置位置よりも手前(車両側)において虚像(ゴースト)として検出される場合がある。このような場合、反射体5の虚像が、クラスタリング処理により先行車両のリフレクタ6からの反射光と一体化して検出されるといった現象が生じやすくなり、その結果、先行車両などの本来検出すべき物標の検出精度が低下してしまう。これに対し、本実施形態のレーダ装置1では、図8(B)に示すように、悪天候の状況において反射光の受光方位及び視野角を狭くするため、道路脇に設置された反射体5の虚像が検出されにくくなる。したがって、反射体5の虚像が先行車両のリフレクタ6からの反射光と一体化して検出されるといった現象を生じにくくすることができ、本来検出すべき物標の検出精度の低下を抑制することができる。
 (2)レーダ装置1は、車幅方向における入射角度が異なる反射光を分担して受信する複数(この例では3個)の受光素子22a~22cを備え、現在の天候が悪天候であると判定した場合には(ステップS13:YES)、それらのうちの一部を無効にすることで、検出範囲を狭く設定する(ステップS16)。このため、レーダ装置1によれば、レーザ光の照射範囲を切り替えることなく、反射光の受光方位を簡易的に切り替えることができる。しかも、レーダ装置1によれば、このような受光方位切替機能のオン/オフをユーザが設定可能であるため(ステップS15)、例えば降雨量が少ない場合などのように、天候の悪化度合いが高くない場合には、ユーザの判断により受光方位を切り替えないようにすることができる。
 (3)レーダ装置1において、複数(この例では3個)の受光素子22a~22cは、車幅方向に沿って配置されている。そして、レーダ装置1は、現在の天候が悪天候であると判定した場合には(ステップS13:YES)、車幅方向において最も中央寄りに配置された受光素子22bを有効にしつつ、車幅方向の端部に配置された受光素子22a,22cを無効にすることで、検出範囲を狭くする(ステップS16)。このため、レーダ装置1によれば、車両の走行方向正面に存在する物標の検出精度の低下を抑制しつつ、道路脇等に設置された反射体の影響を少なくすることができる。
 (4)レーダ装置1は、現在の天候が悪天候であると判定した場合には(ステップS13:YES)、晴天である場合と比較して、個々の受光素子22の視野角を狭く設定する(ステップS18)。このため、レーダ装置1によれば、不要な反射光を一層検出されにくくすることができる。しかも、レーダ装置1によれば、このような視野角切替機能のオン/オフをユーザが設定可能であるため(ステップS17)、例えば天候の悪化度合いが高くない場合には、ユーザの判断により視野角を切り替えないようにすることができる。
 (5)レーダ装置1は、現在の天候が悪天候であると判定した場合には(ステップS13:YES)、単発測距方式による測距値を用いずに(ステップS14)、積算測距方式による測距値に基づいて物標を検出する(ステップS19)。単発測距方式は、積算測距方式と比較して、受光面に近い領域(例えば約5m以内)の測距性能が優れるが、雨滴や雪粒等の反射断面積は距離が近くなるほど増大し、これに伴い反射光量も増加することから、悪天候の状況において影響を受けやすい。したがって、悪天候の状況においては、積算測距方式に限定することで、単発測距方式による不要な反射光の検出を抑制することができ、雨、雪、霧などの影響を受けにくくすることができる。
 (6)レーダ装置1は、前述したC1~C5の条件のうち少なくとも1つが満たされる場合に、現在の天候が悪天候であると判定する(ステップS13)。したがって、現在の天候が悪天候であるか否かを簡易的かつ比較的正確に判定することができる。
 なお、発光部10及び受光部20が送受信手段の一例に相当し、特に、3個の受光素子22a~22cが複数の受信手段の一例に相当する。また、ステップS13が判定手段としての処理の一例に相当し、ステップS19が検出手段としての処理の一例に相当する。また、ステップS16が第1の設定手段としての処理の一例に相当し、ステップS18が第2の設定手段としての処理の一例に相当し、ステップS14が第3の設定手段としての処理の一例に相当する。
 [4.他の実施形態]
 以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されることなく、種々の形態を採り得ることは言うまでもない。
 (1)上記実施形態では、悪天候モードにおいて、水平方向に一列に配置された3個の受光素子22a,22b,22cのうち、左右両端部の受光素子22a,22cを無効にしたが、配置される受光素子22の数や、無効にする受光素子22の数は、これに限定されない。例えば、配置される受光素子22の数を上記実施形態(3個)よりも多い数(例えば7個)とし、悪天候モードにおいて、左右両端部においてそれぞれ複数個(例えば3個)ずつの受光素子22を無効にしてもよい。また、悪天候モードにおいて有効にする(無効にしない)受光素子22の数は1個である必要はなく、例えば配置される受光素子22の数が7個の場合、左右両側のそれぞれ1個ずつ(又は2個ずつ)の受光素子を無効にし、残りの5個(又は3個)を有効にしてもよい。また、無効にする受光素子22の数は、左右で同数(左右対称)とする必要はなく、左右非対称としてもよい。つまり、物標の検出範囲を狭くする割合を、車幅方向の左右で異ならせてもよい。例えば、検出範囲における道路脇に面する側(左側走行の場合には左側)を、反対側よりも狭くするようにしてもよい。また、車両が走行中の車線を検出し、道路脇や中央分離帯など、反射体の存在する可能性の高い側の受光素子22を優先的に無効にしてもよい。例えば、片側3車線の道路において、左側の車線を走行中の場合には検出範囲における左側を右側よりも狭くし、右側の車線を走行中の場合には検出範囲における右側を左側よりも狭くし、中央の車線を走行中の場合には検出範囲における左右を同じ割合で狭くする(又は検出範囲を狭くしない)ようにしてもよい。
 (2)上記実施形態では、悪天候であるか否かを判定しているが、これに限定されるものではなく、車両の前方における大気の状態が物標の検出精度を低下させる悪化状態であるか否かを判定するものであればよい。例えば、水たまりによる水しぶきや排ガスなど、天候に関係なく生じ得る大気の状態を直接検出するようにしてもよく、また、ユーザが判定するようにしてもよい。
 (3)上記実施形態では、悪天候モードにおいて、物標の検出範囲を狭くするために、受光(受信)側の範囲を狭い範囲に切り替えるようにしているが、これに限定されるものではなく、照射(送信)側の範囲を狭い範囲に切り替えるようにしてもよい。例えば、発光素子11に対するコリメートレンズ12の位置を切り替えたり、別のレンズを追加したりすることで、照射範囲を切り替えるようにしてもよい。また、ポリゴンミラー等の偏向手段によりレーザ光を走査する構成の場合には、車幅方向(水平方向)における走査範囲を狭い範囲に切り替えるようにしてもよい。
 (4)車両におけるレーダ装置1の搭載位置は、特に限定されない。例えば、ルームミラーの裏(フロントガラスの内側)でもよく、バンパーでもよい。また、車両用に使用可能であれば、可搬型(車両とは別体)の装置として構成してもよい。
 (5)上記実施形態の各構成要素が有する機能は、ハードウェアに代えてソフトウェアで実現してもよく、ソフトウェアに代えてハードウェアで実現してもよく、ハードウェア及びソフトウェアの組合せで実現してもよい。また、各構成要素は概念的なものであり、上記実施形態に限定されない。例えば、1つの構成要素が有する機能を複数の構成要素に分散させたり、複数の構成要素が有する機能を1つの構成要素に統合したりしてもよい。また、上記実施形態の構成の少なくとも一部を、同様の機能を有する公知の構成に置き換えてもよい。
 (6)上記実施形態は、本発明が適用された実施形態の一例に過ぎない。本発明は、システム、装置、方法、プログラム、プログラムを記録した記録媒体(CD-ROMやDVD等の光ディスク、磁気ディスク、半導体製メモリ等)、などの種々の形態で実現することができる。
1…レーダ装置、
10…発光部、
11…発光素子、
12…コリメートレンズ、
20…受光部、
21…集光レンズ、
22a,22b,22c…受光素子、
23a,23b,23c…増幅回路、
30…測距部、
31…制御回路、
32a,32b,32c…測距回路、
40…信号処理部、
321…単発測距回路、
322…積算測距回路

Claims (14)

  1.  車両用のレーダ装置であって、
     前記車両の前方へ送信波を送信し、その反射波を受信する送受信手段と、
     前記送受信手段により受信された前記反射波に基づいて、前記車両の前方において車幅方向に広がる検出範囲内の物標を検出する検出手段と、
     前記車両の前方における大気の状態が、前記物標の検出精度を低下させる悪化状態であるか否かを、定められた判定条件に従い判定する判定手段と、
     前記判定手段により前記悪化状態であると判定された場合には、前記悪化状態でないと判定された場合と比較して、前記検出範囲を狭く設定する第1の設定手段と、
     を備える。
  2.  請求項1に記載のレーダ装置であって、
     前記送受信手段は、前記車幅方向における入射角度が異なる前記反射波を分担して受信する複数の受信手段を備え、
     前記第1の設定手段は、前記判定手段により前記悪化状態であると判定された場合には、前記複数の受信手段のうちの一部を無効にすることで、前記検出範囲を狭く設定するように構成されている。
  3.  請求項2に記載のレーダ装置であって、
     前記複数の受信手段は、前記車幅方向に沿って配置され、
     前記第1の設定手段は、前記判定手段により前記悪化状態であると判定された場合には、前記車幅方向において最も中央寄りに配置された1つ以上の前記受信手段を有効にしつつ、前記車幅方向の端部に配置された1つ以上の前記受信手段を無効にすることで、前記検出範囲を狭く設定するように構成されている。
  4.  請求項3に記載のレーダ装置であって、
     前記判定手段により前記悪化状態であると判定された場合には、前記悪化状態でないと判定された場合と比較して、前記複数の受信手段のそれぞれについて、前記車幅方向における前記反射波を検出可能な角度範囲を狭く設定する第2の設定手段を更に備える。
  5.  請求項4に記載のレーダ装置であって、
     前記送受信手段は、連続する複数のパルス信号を前記送信波として送信し、
     前記検出手段は、前記複数のパルス信号のうちの一つを使用して測距する単発測距方式による測距値と、前記複数のパルス信号を使用して測距する積算測距方式による測距値と、のうちの少なくとも一方に基づいて前記物標を検出可能であり、
     前記判定手段により前記悪化状態であると判定された場合には、前記単発測距方式による測距値を用いずに、前記積算測距方式による測距値に基づいて前記物標を検出する第3の設定手段を更に備える。
  6.  請求項5に記載のレーダ装置であって、
     前記判定手段は、
     [1]降雨が検出されている、
     [2]ワイパが作動している、
     [3]フォグランプが点灯している、
     [4]湿度が設定値以上である、
     [5]降水確率が設定値以上である、
    の5つの条件のうち少なくとも1つが満たされる場合に、前記悪化状態であると判定するように構成されている。
  7.  請求項2に記載のレーダ装置であって、
     前記判定手段により前記悪化状態であると判定された場合には、前記悪化状態でないと判定された場合と比較して、前記複数の受信手段のそれぞれについて、前記車幅方向における前記反射波を検出可能な角度範囲を狭く設定する第2の設定手段を更に備える。
  8.  請求項7に記載のレーダ装置であって、
     前記送受信手段は、連続する複数のパルス信号を前記送信波として送信し、
     前記検出手段は、前記複数のパルス信号のうちの一つを使用して測距する単発測距方式による測距値と、前記複数のパルス信号を使用して測距する積算測距方式による測距値と、のうちの少なくとも一方に基づいて前記物標を検出可能であり、
     前記判定手段により前記悪化状態であると判定された場合には、前記単発測距方式による測距値を用いずに、前記積算測距方式による測距値に基づいて前記物標を検出する第3の設定手段を更に備える。
  9.  請求項8に記載のレーダ装置であって、
     前記判定手段は、
     [1]降雨が検出されている、
     [2]ワイパが作動している、
     [3]フォグランプが点灯している、
     [4]湿度が設定値以上である、
     [5]降水確率が設定値以上である、
    の5つの条件のうち少なくとも1つが満たされる場合に、前記悪化状態であると判定するように構成されている。
  10.  請求項1に記載のレーダ装置であって、
     前記送受信手段は、連続する複数のパルス信号を前記送信波として送信し、
     前記検出手段は、前記複数のパルス信号のうちの一つを使用して測距する単発測距方式による測距値と、前記複数のパルス信号を使用して測距する積算測距方式による測距値と、のうちの少なくとも一方に基づいて前記物標を検出可能であり、
     前記判定手段により前記悪化状態であると判定された場合には、前記単発測距方式による測距値を用いずに、前記積算測距方式による測距値に基づいて前記物標を検出する第3の設定手段を更に備える。
  11.  請求項10に記載のレーダ装置であって、
     前記判定手段は、
     [1]降雨が検出されている、
     [2]ワイパが作動している、
     [3]フォグランプが点灯している、
     [4]湿度が設定値以上である、
     [5]降水確率が設定値以上である、
    の5つの条件のうち少なくとも1つが満たされる場合に、前記悪化状態であると判定するように構成されている。
  12.  請求項1に記載のレーダ装置であって、
     前記判定手段は、
     [1]降雨が検出されている、
     [2]ワイパが作動している、
     [3]フォグランプが点灯している、
     [4]湿度が設定値以上である、
     [5]降水確率が設定値以上である、
    の5つの条件のうち少なくとも1つが満たされる場合に、前記悪化状態であると判定するように構成されている。
  13.  車両用のレーダ装置の検出範囲を制御する制御方法において、
     前記車両の前方へ送信波を送信して、その反射波を受信し、
     前記受信された前記反射波に基づいて、前記車両の前方において車幅方向に広がる検出範囲内の物標を検出し、
     前記車両の前方における大気の状態が、前記物標の検出精度を低下させる悪化状態であるか否かを判定し、
     前記悪化状態であると判定された場合には、前記悪化状態でないと判定された場合と比較して、前記検出範囲を狭く設定する、
     各ステップを備える。
  14.  請求項13に記載の制御方法において、
     前記判定ステップは、前記物標の検出精度を低下させる悪化状態であるか否かを、定められた判定条件に従い判定する。
PCT/JP2013/073613 2012-09-10 2013-09-03 車両用のレーダ装置及び同装置における検出範囲の制御方法 WO2014038527A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-198604 2012-09-10
JP2012198604A JP2014052347A (ja) 2012-09-10 2012-09-10 レーダ装置

Publications (1)

Publication Number Publication Date
WO2014038527A1 true WO2014038527A1 (ja) 2014-03-13

Family

ID=50237136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073613 WO2014038527A1 (ja) 2012-09-10 2013-09-03 車両用のレーダ装置及び同装置における検出範囲の制御方法

Country Status (2)

Country Link
JP (1) JP2014052347A (ja)
WO (1) WO2014038527A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105022039A (zh) * 2014-04-23 2015-11-04 福特全球技术公司 基于驾驶历史检测雷达阻塞
CN112470037A (zh) * 2018-07-25 2021-03-09 株式会社小糸制作所 传感器系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6265149B2 (ja) * 2014-08-27 2018-01-24 株式会社デンソー 検出装置
JP6862840B2 (ja) * 2017-01-17 2021-04-21 トヨタ自動車株式会社 障害物検出装置
KR102483646B1 (ko) * 2017-12-22 2023-01-02 삼성전자주식회사 객체 검출 장치 및 방법
US20210191399A1 (en) 2019-12-23 2021-06-24 Waymo Llc Real-Time Adjustment Of Vehicle Sensor Field Of View Volume

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07191148A (ja) * 1993-12-27 1995-07-28 Mitsubishi Electric Corp 広角レーザレーダ装置
JPH07198851A (ja) * 1993-12-28 1995-08-01 Mitsubishi Electric Corp 車両の障害物検知装置及び水滴量検知装置
JPH08304550A (ja) * 1995-05-09 1996-11-22 Nikon Corp レーダ装置
EP0773453A1 (en) * 1995-11-07 1997-05-14 MAGNETI MARELLI S.p.A. An optical remote detection, anticollision system for vehicles
JP2008170323A (ja) * 2007-01-12 2008-07-24 Mitsubishi Electric Corp レーダ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07191148A (ja) * 1993-12-27 1995-07-28 Mitsubishi Electric Corp 広角レーザレーダ装置
JPH07198851A (ja) * 1993-12-28 1995-08-01 Mitsubishi Electric Corp 車両の障害物検知装置及び水滴量検知装置
JPH08304550A (ja) * 1995-05-09 1996-11-22 Nikon Corp レーダ装置
EP0773453A1 (en) * 1995-11-07 1997-05-14 MAGNETI MARELLI S.p.A. An optical remote detection, anticollision system for vehicles
JP2008170323A (ja) * 2007-01-12 2008-07-24 Mitsubishi Electric Corp レーダ装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105022039A (zh) * 2014-04-23 2015-11-04 福特全球技术公司 基于驾驶历史检测雷达阻塞
CN112470037A (zh) * 2018-07-25 2021-03-09 株式会社小糸制作所 传感器系统
US12105204B2 (en) 2018-07-25 2024-10-01 Koito Manufacturing Co., Ltd. Sensor system

Also Published As

Publication number Publication date
JP2014052347A (ja) 2014-03-20

Similar Documents

Publication Publication Date Title
WO2014038527A1 (ja) 車両用のレーダ装置及び同装置における検出範囲の制御方法
JP3838432B2 (ja) 測距装置
US7283212B2 (en) Vehicular radar device
JP3941795B2 (ja) 先行車両認識装置
TWI432768B (zh) 藉由光電影像感測器判定距離之方法與裝置
US7633433B2 (en) Method for detecting and documenting traffic violations at a traffic light
CN109254300B (zh) 用于光学测距系统的发射信号设计
JP4697072B2 (ja) レーダ装置
KR100462418B1 (ko) 시계검출및비에젖은영역검출용센서
JP3838418B2 (ja) 車両用測距装置
JP2005518544A (ja) 車両用レーダセンサ
JP5246430B2 (ja) 障害物検知方法及び装置
JP5632352B2 (ja) 物体検知装置
JP4210662B2 (ja) 車両用物体検知装置
JP3757937B2 (ja) 距離測定装置
JP2001195700A (ja) 車両情報検出装置
WO2024120491A1 (en) Method and apparatus for detecting obstruction for lidar, and storage medium
US9330552B2 (en) Detection of ice on a vehicle window by means of an internal temperature sensor
CN116184358B (zh) 激光测距方法、装置和激光雷达
JPH08129067A (ja) 気象状況を推定することができる距離計測装置および距離計測方法
US7107144B2 (en) Non-intrusive traffic monitoring system
JPH10153661A (ja) 測距装置
JP3214250B2 (ja) 車両用レーダ装置
JPH1062532A (ja) 車両用レーダ装置
JPH06232819A (ja) 自動車用光レーダ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13835600

Country of ref document: EP

Kind code of ref document: A1