WO2023071997A1 - 一种聚酰胺树脂、其组合物及制备方法 - Google Patents

一种聚酰胺树脂、其组合物及制备方法 Download PDF

Info

Publication number
WO2023071997A1
WO2023071997A1 PCT/CN2022/127092 CN2022127092W WO2023071997A1 WO 2023071997 A1 WO2023071997 A1 WO 2023071997A1 CN 2022127092 W CN2022127092 W CN 2022127092W WO 2023071997 A1 WO2023071997 A1 WO 2023071997A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
polyamide
composition
diamine
crystallization
Prior art date
Application number
PCT/CN2022/127092
Other languages
English (en)
French (fr)
Inventor
阎昆
徐显骏
姜苏俊
曹民
麦杰鸿
李建伟
Original Assignee
珠海万通特种工程塑料有限公司
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海万通特种工程塑料有限公司, 金发科技股份有限公司 filed Critical 珠海万通特种工程塑料有限公司
Publication of WO2023071997A1 publication Critical patent/WO2023071997A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the invention relates to the technical field of engineering plastics, in particular to the field of high-temperature-resistant polyamides, in particular to a polyamide resin, its composition and a preparation method.
  • the high-temperature-resistant polyamide polymerized from 1,4-cyclohexanedicarboxylic acid monomer has no Contains benzene ring, weak electron-withdrawing effect. Therefore, the high-temperature-resistant polyamide polymerized from 1,4-cyclohexanedicarboxylic acid monomer is less likely to obtain electrons when subjected to long-term ultraviolet aging, the molecular structure is more stable, and the ultraviolet aging resistance is better.
  • the injection molding factory gradually converts the mold The number of cavities is increased from below 800 to above 1500, and high mold temperature molding is replaced by cold molding.
  • the existing high-temperature-resistant polyamide materials polymerized from 1,4-cyclohexanedicarboxylic acid monomers have a slow crystallization rate, a long cooling time during cold molding, and cannot be rapidly molded. The cooling is not complete, and it is easy to It leads to problems such as product sticking to the mold and material belt pulling up.
  • the technical problem to be solved by the present invention is to provide a polyamide resin based on cyclohexanedicarboxylic acid monomer, its composition and preparation method, in order to solve the problem that the polyamide material in the prior art cannot be rapidly molded, and the cooling is not complete, resulting in product The technical problems of sticking to the mold and raising the strip.
  • the present invention provides a polyamide resin comprising repeating units of the following monomers:
  • the mole fraction of (b) accounting for the total diamines of (b) and (c) is 80-90mol%;
  • the number of carbon atoms in (b) differs from the number of carbon atoms in (c) by 0-4.
  • the polyamide resin of the present invention uses a straight-chain diamine with a carbon number of 8 or more as the main diamine, and a diamine with a carbon number of 8 or more different from the main diamine as a copolymerized diamine, such as: 1,10- Polyamide resins made of decanediamine, 1,9-nonanediamine, 1,12-dodecyldiamine, and 2-methyl-1,8-octanediamine have low amide bond density and molecular chain flexibility High; and the difference in the number of carbon atoms between the main diamine and the copolymerized diamine is 0-4, the structure and flexibility of the molecular chains of the two are close, the crystallization performance is good, and the crystallization rate is fast.
  • 1,10- Polyamide resins made of decanediamine, 1,9-nonanediamine, 1,12-dodecyldiamine, and 2-methyl-1,8-octanediamine have low amide bond density and molecular chain flexibility High
  • the number of carbon atoms of the diamine is 8-12, the production cost is low, the production efficiency is higher, and the practicability is stronger.
  • the T melting point of the resin is controlled to be: 315°C ⁇ T melting point ⁇ 340°C.
  • the T crystallization temperature of the resin is controlled as: (T melting point-T crystallization temperature) ⁇ T crystallization peak half width ⁇ 350.
  • the T melting point is the peak value of the melting peak on the second heating curve of the DSC test
  • the T crystallization temperature is the peak value of the crystallization peak on the second cooling curve of the DSC test.
  • ASTM D3418-2003 Standard Test Method for Transition Temperatures of Polymers By Differential Scanning Calorimetry
  • the specific test method is: use Perkin Elmer DimondDSC analyzer to test the melting point of the sample; nitrogen atmosphere, the flow rate is 50mL/min; Raise the temperature to 350°C/min, keep at 350°C for 2min, remove the thermal history of the resin, then cool to 50°C at 20°C/min, set the exothermic peak temperature at this time as the T crystallization temperature; set the exothermic peak start temperature Set as the melting point T1, the end temperature of the exothermic peak is set as the melting point T2, and the half-peak width of the T crystallization peak is (T1-T2)/2; after keeping at 50°C for 2min, the temperature is raised to 350°
  • T melting point-T crystallization temperature ⁇ T crystallization peak half width actually reflects the crystallization behavior of high temperature resistant polyamide polymerized from 1,4-cyclohexanedicarboxylic acid monomer. Crystallization behavior is closely related to crystal melting behavior and structural characteristics of molecular chains.
  • T crystallization peak T melting point and T crystallization temperature
  • factors that affect the half peak width of T crystallization peak, T melting point and T crystallization temperature such as the difference in monomer ratio, the degree of monomer self-polymerization, the change of molecular weight and molecular chain sequence structure, whether the molecular chain segment is uniform and Whether the molecular chain is regular, the degree of entanglement or branching of the molecular chain, the degree of internal rotation of the molecular chain, the movement ability of the molecular chain, the influence of many factors such as the preparation process, resulting in the final preparation of high temperature resistant polyamide
  • There is a big difference in molecular chain structure which affects its crystallization behavior.
  • T melting point-T crystallization temperature reflects how high the temperature below the melting point of the material begins to occur when the material cools down Crystallization; the width at half peak of the T crystallization peak reflects how short the material can crystallize in the temperature range.
  • the LED reflective bracket material made has the best molding characteristics:
  • the melting point of T When the melting point of T is less than 315°C, the temperature resistance of the material is insufficient and cannot be used in the field of LED reflector brackets; when the melting point of T>340°C, the melting point of the material is close to the decomposition temperature, and it will decompose during injection molding, so it cannot be applied to the LED reflector bracket. Field; only when 315°C ⁇ Tmelting point ⁇ 340°C, the material has excellent heat resistance and does not decompose during injection molding.
  • the present invention also provides a kind of preparation method of polyamide resin, comprises the following steps:
  • the prepolymerized product is subjected to solid-phase viscosity increasing for 8-10 hours under the conditions of 250-255° C. and 50-55 Pa vacuum to obtain a polyamide resin.
  • the amount of the benzoic acid substance is 2 to 2.5% of the amount of the monomer substance, and the hypophosphorous acid
  • the sodium accounts for 0.1wt%-0.15wt% of the weight of the feed except the water, and the weight percentage of the water for the total feed is 25wt%-35wt%.
  • the present invention also provides a polyamide composition, which includes the high temperature resistant polyamide resin.
  • the composition further includes pigments and/or reinforcing fillers.
  • the present invention also provides a method for preparing a polyamide composition, comprising the following steps:
  • the present invention applies the polyamide resin, the preparation method of the polyamide resin, the polyamide composition, and the preparation method of the polyamide composition to LED lighting reflection brackets, so as to be suitable for LED lighting The development trend of small size and thin wall of lighting reflection bracket.
  • the polyamide resin of the present invention is the main diamine with the straight-chain diamine having more than 8 carbon atoms, and the diamine with more than 8 carbon atoms different from the main diamine is the copolymerized diamine. Due to the low density of amide bonds and high flexibility of molecular chains, the melting point of amide resin can be controlled at 315 ° C ⁇ T melting point ⁇ 340 ° C, which is suitable for the field of LED lighting reflective brackets; and the number of carbon atoms of the main diamine and the copolymerized diamine are close, so The structure and flexibility of the molecular chain are close, the crystallization performance is good, and the crystallization rate is fast.
  • the present invention screens the molar ratio of the main diamine and the copolymerized diamine, and finds that when the mole fraction of the main diamine accounts for 80-90 mol% of the diamine, the thermal performance of the polyamide resin simultaneously satisfies: 315°C ⁇ T melting point ⁇ 340°C and (T melting point-T crystallization temperature) ⁇ T crystallization peak half-peak width ⁇ 350, the polyamide composition prepared from this, when injection molding the LED lighting reflective bracket, the molding cycle is within 15s (including 15s) , High molding efficiency.
  • the polyamide resin and polyamide composition of the present invention have a specific molecular chain structure and crystallization state, thereby exhibiting a fast crystallization rate, suitable for the development trend of small size and thin wall of LED lighting reflective brackets, and suitable for LED Field of illuminated reflective brackets.
  • test methods for relevant indicators in the implementation are as follows:
  • Polyamide resin thermal performance parameter test method refer to ASTM D3418-2003, Standard Test Method for Transition Temperatures of Polymers By Differential Scanning Calorimetry; specific test method is: use Perkin Elmer Dimond DSC analyzer to test the melting point of the sample; nitrogen atmosphere, The flow rate is 50mL/min; during the test, the temperature is first raised to 350°C at 20°C/min, and kept at 350°C for 2 minutes to remove the thermal history of the resin, then cooled to 50°C at 20°C/min, kept at 50°C for 2 minutes, and °C/min Raise the temperature to 350°C, set the endothermic peak temperature at this time as T melting point, then keep at 350°C for 2 minutes, then cool down to 50°C at 20°C/min, set the exothermic peak temperature at this time as T As for the crystallization temperature, the peak width at half of the exothermic peak height was defined as T crystallization peak half width.
  • Molding cycle of LED reflective bracket Put the obtained polyamide composition in an oven at 120°C for 4 hours, and then use Toyo CS-100 injection molding machine for injection molding; LED bracket model is 2835, and the number of mold cavities is 1584; The cooling water is used for cooling; record the time required for injection molding a defect-free part as the molding cycle t.
  • Diacid 1,4-cyclohexanedicarboxylic acid, commercially available;
  • Diamines 1,10-decanediamine, 1,9-nonanediamine, 1,12-dodecyldiamine, 2-methyl-1,8-octanediamine, 1,14-tetradecyl Diamine, 1,6-hexanediamine, commercially available;
  • Benzoic acid analytically pure, purchased from Sigma-Aldrich Company;
  • Reinforcing filler glass fiber, T435N, purchased from Taishan Glass Fiber Co., Ltd.;
  • Pigment Titanium dioxide, R105, purchased from DuPont Co.
  • the polymerization method of polyamide is:
  • reaction monomer Diamine, diacid
  • benzoic acid sodium hypophosphite (catalyst)
  • deionized water 0.1% of the weight of other feeds, and the weight of deionized water is 30% of the total weight of feeds
  • vacuumize and fill high-purity nitrogen as a protective gas heat up to 220°C within 2 hours under stirring, and stir the reaction mixture at 220°C for 1 hour, and then the temperature of the reactant was raised to 230°C under stirring; the reaction was continued at a constant temperature of 230°C and a constant pressure of 2.2MPa for 2 hours, and the pressure was kept constant by removing the formed water.
  • the prepolymer was vacuum-dried at 80° C. for 24 hours to obtain a prepolymerized product, which was solid-phase tackified at 250° C. and 50 Pa vacuum for 10 hours to obtain a polyamide resin.
  • the preparation method of polyamide composition is:
  • polyamide resin and white pigment are mixed evenly in the high mixer, and then added to the twin-screw extruder through the main feeding port, and the extrusion temperature is 350 °C, the screw speed is 600rpm, the reinforcing filler is side-fed through a side-feeding scale, extruded, cooled with water, granulated and dried to obtain a polyamide composition.
  • Table 2 The distribution ratio (parts by weight) of each component of the polyamide molding composition of the example and the comparative example and the test results of various properties
  • the copolymerized diamine monomer is a diamine with more than 8 carbon atoms different from the main body, the difference between the main body diamine and the copolymerized diamine monomer is 0 to 4 carbon atoms, and the melting point of the polyamide resin satisfies : 315°C ⁇ Tmelting point ⁇ 340°C, and at the same time satisfy: (Tmelting point-T crystallization temperature) ⁇ T crystallization peak half width ⁇ 350.
  • the polyamide composition thus prepared has a molding cycle within 15 s (including 15 s) when the LED lighting reflection bracket is injected.
  • the diamine monomer of main body accounts for the molar fraction of diamine less than 80%, (T melting point-T crystallization temperature) * T crystallization peak half peak width > 350.
  • the molding cycles of the compositions of Comparative Example 10 and Comparative Example 12 were both above 17s, which seriously affected the molding efficiency and were generally considered unacceptable.
  • the production efficiency will decrease by about 6.7% for every 1s increase in the molding cycle.
  • the molding cycle is within 15s, the molding efficiency of the material is acceptable; if the molding cycle is greater than 15s, the production efficiency is too low, which is unacceptable in actual production.
  • the main diamine monomer accounts for more than 90% of the mole fraction of diamine, and the T melting point of the polyamide resin is >340°C.
  • Comparative Example 11 The composition of Comparative Example 13 cannot be molded because the injection molding temperature is close to the decomposition temperature of the polyamide resin.
  • the diamine monomers to be copolymerized are diamines with less than 8 carbon atoms. Due to the large gap between the length of the carbon chain and the length of the main diamine, the structure and flexibility of the molecular chain Inhomogeneity, crystallization performance deterioration, so polyamide resin (T melting point - T crystallization temperature) * T crystallization peak width at half maximum > 350, when LED lighting reflector bracket injection molding, the molding cycle of the composition of Comparative Examples 14 to 16 is average Above 25s, the molding efficiency is too low.
  • the main diamine monomer is a diamine with less than 8 carbon atoms. Due to the high amide bond density of the polyamide resin, the molecular chain flexibility is low, and the T melting point of the resin is >360°C. During the injection molding of the LED lighting reflection bracket, the composition of Comparative Example 17 could not be molded because the injection temperature exceeded the decomposition temperature of the polyamide resin.
  • the number of carbon atoms between the main diamine and the copolymerized diamine monomer differs by 5, and the structure and flexibility of the molecular chains of the two differ greatly, resulting in poor crystallization performance and slow crystallization rate.
  • the molding cycle of the composition of Comparative Example 18 was 24s, and the molding efficiency was low.
  • a linear diamine having 8 or more carbon atoms is used as the main diamine, and a diamine having a carbon number of 8 or more different from the main diamine is used as a copolymerized diamine. Due to the low amide bond density and high molecular chain flexibility, the resulting polyamide resin can control the melting point at 315°C ⁇ Tmelting point ⁇ 340°C, which is suitable for the field of LED lighting reflective brackets; and the number of carbon atoms of the main diamine and copolymerized diamine Close, so the structure and flexibility of the molecular chain are close, the crystallization performance is better, and the crystallization rate is fast.
  • the molar ratio of the main diamine and the copolymerized diamine is screened, and it is found that when the mole fraction of the main diamine accounts for 80-90 mol% of the diamine, the thermal performance of the polyamide resin satisfies at the same time: 315 ° C ⁇ T melting point ⁇ 340°C and (T melting point-T crystallization temperature) ⁇ T crystallization peak half-peak width ⁇ 350, the polyamide composition prepared from this, when injection molding the LED lighting reflective bracket, the molding cycle is within 15s (including 15s) , High molding efficiency.
  • the polyamide resin and polyamide composition of the embodiment of the present invention are suitable for the development trend of small size and thin wall of LED lighting reflection bracket.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)

Abstract

本发明涉及耐高温聚酰胺领域,公开了一种聚酰胺树脂、其组合物及制备方法。本发明的聚酰胺树脂由二酸和二胺制成,本发明还提供该聚酰胺树脂的制备方法,本发明将所述聚酰胺树脂、所述耐高温聚酰胺树脂的制备方法、包含所述聚酰胺树脂的聚酰胺组合物、所述聚酰胺组合物的制备方法应用于LED照明反射支架中。本发明的聚酰胺树脂和聚酰胺组合物具有特定的分子链的结构及结晶状态,从而展现出了快结晶速率,适合于LED照明反射支架小尺寸和薄壁化发展趋势。

Description

一种聚酰胺树脂、其组合物及制备方法 技术领域
本发明涉及工程塑料技术领域,特别是耐高温聚酰胺领域,具体是涉及一种聚酰胺树脂、其组合物及制备方法。
背景技术
由1,4-环己烷二甲酸单体聚合而成的耐高温聚酰胺,与由对苯二甲酸或间苯二甲酸聚合而成的半芳香型耐高温聚酰胺相比,分子结构中不含有苯环,吸电子效应较弱。因此,由1,4-环己烷二甲酸单体聚合而成的耐高温聚酰胺在受到长期紫外老化时,更不容易获得电子,分子结构更为稳定,耐紫外老化性能更好。
如:专利CN102482492B中,日本可乐丽公司开发的一种含有1,4-环己烷二甲酸结构的聚酰胺,作为LED照明反射支架材料,在受到LED灯长时间照射后仍可以保持较高的反射率和白度。
随着消费者需求提高,LED灯珠尺寸逐渐减小,LED照明反射支架逐渐向小尺寸和薄壁化方向发展;注塑厂为了提高生产效率、降低生产能耗,逐渐将LED照明反射支架的模穴数从800以下提高至1500以上,并且由冷模成型代替高模温成型。然而,现有的由1,4-环己烷二甲酸单体聚合而成的耐高温聚酰胺材料,结晶速率较慢,在冷模成型时冷却时间长,无法快速成型,冷却不完全,容易导致产品粘模具、料带拉高等问题。
因此,如何提高由1,4-环己烷二甲酸单体聚合而成的耐高温聚酰胺材料的结晶速率,缩短成型冷却周期,以适应LED反射支架薄壁化、多模穴的发展趋势,是本领域亟待解决的重点研究方向之一。
发明内容
本发明要解决的技术问题是提供一种基于环己烷二甲酸单体的聚酰胺树脂、其组合物及制备方法,以期解决现有技术中聚酰胺材料无 法快速成型,冷却不完全,导致产品粘模具、料带拉高的技术问题。
为了解决上述技术问题,第一方面,本发明提供了一种聚酰胺树脂,包含如下单体的重复单元:
(a)1,4-环己烷二甲酸;
(b)碳原子数为8以上的直链二胺;
(c)与所述(b)不同的碳原子数为8以上的二胺;
按摩尔百分比计,所述(b)占所述(b)和(c)总二胺的摩尔分数为80~90mol%;
所述(b)的碳原子数与所述(c)的碳原子数相差0~4。
本发明的聚酰胺树脂以碳原子数为8以上的直链二胺为主体二胺,以与主体二胺不同的碳原子数为8以上的二胺为共聚二胺,如:1,10-癸二胺、1,9-壬二胺、1,12-十二烷基二胺、2-甲基-1,8辛二胺制成的聚酰胺树脂由于酰胺键密度低,分子链柔顺性高;并且主体二胺与共聚二胺的碳原子数相差0~4,二者分子链的结构和柔顺性接近,结晶性能较好,结晶速率快。
作为本发明所述聚酰胺树脂的优选实施方式,所述二胺的碳原子数为8~12,生产成本低,使生产效益更高、实用性更强。
作为本发明所述聚酰胺树脂的优选实施方式,所述树脂的T熔点控制为:315℃<T熔点<340℃。所述树脂的T结晶温度控制为:(T熔点-T结晶温度)×T结晶峰半峰宽<350。
其中,所述T熔点为DSC测试第二次升温曲线上熔融峰的峰值,所述T结晶温度为DSC测试第二次降温曲线上结晶峰的峰值。参照ASTM D3418-2003,Standard Test Method for Transition Temperatures of Polymers By Differential Scanning Calorimetry;具体测试方法是:采用Perkin Elmer DimondDSC分析仪测试样品的熔点;氮气气氛,流速为50mL/min;测试时先以20℃/min升温至350℃,在350℃保持2min,除去树脂热历史,然后以20℃/min冷却到50℃,将此时的放热峰温度设为T结晶温度;将放热峰起始温度设为熔点T1,放热峰终点温度设为熔点T2,T结晶峰半峰宽为(T1-T2)/2;在50℃保持2min后, 再以20℃/min升温至350℃,将此时的吸热峰温度设为T熔点。
本发明研究发现,(T熔点-T结晶温度)×T结晶峰半峰宽实际反应的是由1,4-环己烷二甲酸单体聚合而成的耐高温聚酰胺的结晶行为。结晶行为与晶体熔融行为和分子链的结构特征具有密切联系。影响T结晶峰半峰宽、T熔点和T结晶温度的因素有很多,比如由于单体比例的不同,单体自聚程度的大小,分子量和分子链序列结构的变化,分子链段是否均匀及分子链是否规整,分子链的缠结或支化程度的高低,分子链内旋转能力的高低,分子链的运动能力,制备工艺过程等诸多因素的影响,从而导致最终制备得到的耐高温聚酰胺分子链结构存在较大区别,从而影响了其结晶行为。
而(T熔点-T结晶温度)×T结晶峰半峰宽实际上反应了材料综合结晶速率快慢:T熔点-T结晶温度,反应了材料降温时,在熔点以下多高的温度下就开始发生结晶;T结晶峰半峰宽,反应了材料能够在多短的温度区间内完成结晶。
本发明研究发现,当由1,4-环己烷二甲酸单体聚合而成的耐高温聚酰胺的热性能参数同时满足:315℃<T熔点<340℃和(T熔点-T结晶温度)×T结晶峰半峰宽<350时,制成的LED反射支架材料具有最优的成型特性:
当T熔点<315℃时,材料的耐温性能不足,无法应用于LED反射支架领域;当T熔点>340℃时,材料熔点接近分解温度,注塑时会发生分解,同样无法应用于LED反射支架领域;只有当315℃<T熔点<340℃,材料具备优良耐热性,且在注塑时不发生分解。
当(T熔点-T结晶温度)×T结晶峰半峰宽<350时,材料既能在熔点以下较高的温度下开始结晶,又能在较短的温度区间内完成结晶,综合结晶速率较快。当(T熔点-T结晶温度)×T结晶峰半峰宽>350时,材料开始结晶的温度较低,需要更长时间降温才能开始结晶,并且开始结晶后,无法在较短的时间内完成结晶,因此整体的结晶速率较慢,在冷模成型时需要的冷却时间较长,无法快速成型,如果冷却不完全容易导致产品粘模具、料带拉高等问题,不适合于LED照明反 射支架小尺寸和薄壁化发展趋势。
第二方面,本发明还提供了一种聚酰胺树脂的制备方法,包括以下步骤:
(1)按配比称量所述单体;再加入苯甲酸、次磷酸钠和水,得反应混合物;
(2)抽真空充入保护气,将所述反应混合物在220~225℃下搅拌;再在230~235℃的恒温和2.0~2.2MPa的恒压下搅拌,出料,得预聚物;
(3)所述预聚物真空干燥,得预聚产物;
(4)所述预聚产物在250~255℃、50~55Pa真空条件下固相增粘8~10小时,得聚酰胺树脂。
作为本发明所述聚酰胺树脂的制备方法的优选实施方式,在所述步骤(1)中,所述苯甲酸物质的量为所述单体物质的量的2~2.5%,所述次磷酸钠占除去所述水以外其他投料重量百分比为0.1wt%~0.15wt%,所述水占总投料的重量百分比为25wt%~35wt%。
第三方面,本发明还提供了一种聚酰胺组合物,所述组合物包括所述的耐高温聚酰胺树脂。
作为本发明所述聚酰胺组合物的优选实施方式,所述组合物还包括颜料和/或增强填料。
作为本发明所述聚酰胺组合物的优选实施方式,按重量份数计,所述耐高温聚酰胺树脂、颜料、增强填料的重量比为耐高温聚酰胺树脂:颜料:增强填料=(50~55):(30~35):(10~15)。
第四方面,本发明还提供了一种聚酰胺组合物的制备方法,包括以下步骤:
将所述的聚酰胺树脂和其他组分加入挤出机中,挤出,冷却,造粒,干燥,即成。
第五方面,本发明将所述聚酰胺树脂、所述聚酰胺树脂的制备方法、所述聚酰胺组合物、所述聚酰胺组合物的制备方法应用于LED照明反射支架中,以适合于LED照明反射支架小尺寸和薄壁化发展趋势。
与现有技术相比,本发明的有益效果在于:
1.本发明的聚酰胺树脂以碳原子数为8以上的直链二胺为主体二胺,以与主体二胺不同的碳原子数为8以上的二胺为共聚二胺,制成的聚酰胺树脂由于酰胺键密度低,分子链柔顺性高,熔点可以控制在315℃<T熔点<340℃,适合于LED照明反射支架领域;并且主体二胺与共聚二胺的碳原子数接近,因此分子链的结构和柔顺性接近,结晶性能较好,结晶速率快。
2.本发明对主体二胺与共聚二胺的摩尔比例进行了筛选,发现主体二胺占二胺的摩尔分数为80~90mol%时,聚酰胺树脂的热性能同时满足:315℃<T熔点<340℃和(T熔点-T结晶温度)×T结晶峰半峰宽<350,由此制成的聚酰胺组合物,在LED照明反射支架注塑时,成型周期均在15s以内(含15s),成型效率高。
3.本发明的聚酰胺树脂和聚酰胺组合物具有特定的分子链的结构及结晶状态,从而展现出了快结晶速率,适合于LED照明反射支架小尺寸和薄壁化发展趋势,适用于LED照明反射支架领域。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
在本发明的描述中,应当理解的是,所涉及的仪器设备或装置如无特别说明,均为常规仪器设备或装置;所涉及的单体或化合物如无特别说明,均为市售常规试单体或化合物;所涉及的方法,如无特别说明,均为常规方法。
实施方式中相关指标的测试方法如下:
1.聚酰胺树脂热性能参数测试方法:参照ASTM D3418-2003,Standard Test Method for Transition Temperatures of Polymers By Differential Scanning Calorimetry;具体测试方法是:采用Perkin Elmer Dimond DSC分析仪测试样品的熔点;氮气气氛,流速为50mL/min;测试时先以20℃/min升温至350℃,在350℃保持2min,除去树脂热历史,然后以20℃/min冷却到50℃,在50℃保持2min,再以20℃/min 升温至350℃,将此时的吸热峰温度设为T熔点,然后在350℃保持2min,然后以20℃/min冷却到50℃,将此时的放热峰温度设为T结晶温度,将放热峰高度一半位置的峰宽度设为T结晶峰半峰宽。
2.LED反射支架成型周期:将所得的聚酰胺组合物至于120℃烘箱中4h,然后使用东洋CS-100注塑机进行注塑成型;LED支架型号2835,模穴数1584;注塑过程模具中通入冷却水进行冷却;记注塑一模无缺陷制件所需的时间为成型周期t。
下述实施例及对比例所用的原材料说明如下,但不限于这些材料:
二酸:1,4-环己烷二甲酸,市售;
二胺:1,10-癸二胺、1,9-壬二胺、1,12-十二烷基二胺、2-甲基-1,8辛二胺,1,14-十四烷基二胺,1,6-己二胺,市售;
苯甲酸:分析纯,购于Sigma-Aldrich公司;
次磷酸钠:分析纯,购于Sigma-Aldrich公司;
增强填料:玻璃纤维,T435N,购于泰山玻璃纤维有限公司;
颜料:二氧化钛,R105,购于杜邦有限公司。
实施例和对比例:
1.制备聚酰胺树脂
聚酰胺的聚合方法为:
按照表1中的配比,按比例称量各单体后,在配有磁力偶合搅拌、冷凝管、气相口、加料口、压力防爆口的压力釜中按表格中的比例加入反应单体(二胺、二酸);再加入苯甲酸、次磷酸钠(催化剂)和去离子水;苯甲酸物质的量为二胺、二酸总物质的量的2.5%,次磷酸钠重量为除去离子水外其他投料重量的0.1%,去离子水重量为总投料重量的30%;抽真空充入高纯氮气作为保护气,在搅拌下2小时内升温到220℃,将反应混合物在220℃搅拌1小时,然后在搅拌下使反应物的温度升高到230℃;反应在230℃的恒温和2.2MPa的恒压下继续进行2小时,通过移去所形成的水而保持压力恒定,反应完成后出料,预聚物于80℃下真空干燥24小时,得到预聚产物,所述预聚产物在250℃、50Pa真空条件下固相增粘10小时,得到聚酰胺树脂。
实施例和对比例所得聚酰胺树脂的性能测试结果如表1所示。
表1:实施例和对比例聚酰胺树脂各单体配比及测试结果
Figure PCTCN2022127092-appb-000001
续表1
Figure PCTCN2022127092-appb-000002
续表1
Figure PCTCN2022127092-appb-000003
Figure PCTCN2022127092-appb-000004
2.制备聚酰胺组合物
聚酰胺组合物的制备方法为:
按照表2的配比,按比例称量各组分后,将聚酰胺树脂、白色颜料在高混机中混合均匀后,通过主喂料口加入双螺杆挤出机中,挤出温度为350℃,螺杆转速600rpm,增强填料通过侧喂料秤侧喂,挤出,过水冷却,造粒并干燥后得到聚酰胺组合物。
实施例和对比例所得聚酰胺组合物的性能测试结果如表2所示。
表2:实施例和对比例聚酰胺模塑组合物各组分配比(重量份)及各项性能测试结果
Figure PCTCN2022127092-appb-000005
续表2:
Figure PCTCN2022127092-appb-000006
续表2:
Figure PCTCN2022127092-appb-000007
Figure PCTCN2022127092-appb-000008
从实施例的聚酰胺树脂与组合物的测试情况可以看出,当聚酰胺树脂的主体二胺单体为碳原子数为8以上的直链二胺、且占二胺的摩尔分数为80~90mol%,共聚的二胺单体为与主体不同的碳原子数为8以上的二胺,主体二胺与共聚的二胺单体的碳原子数相差0~4,其聚酰胺树脂的熔点满足:315℃<T熔点<340℃,并且同时满足:(T熔点-T结晶温度)×T结晶峰半峰宽<350。由此制备的聚酰胺组合物,在LED照明反射支架注塑时,成型周期均在15s以内(含15s)。
而对比例1、对比例3的聚酰胺树脂中,主体的二胺单体占二胺的摩尔分数小于80%,聚酰胺树脂的(T熔点-T结晶温度)×T结晶峰半峰宽>350,在LED照明反射支架注塑时,对比例10、对比例12的组合物成型周期均在17s以上,对成型效率造成了严重影响,通常认为不可接受。
LED照明反射支架注塑注塑时,成型周期每增加1s,生产效率约降低6.7%。通常成型周期在15s以内,材料的成型效率可接受;成型周期大于15s,生产效率过低,在实际生产中不可接受。
对比例2、对比例4的聚酰胺树脂中,主体的二胺单体占二胺的摩尔分数大于90%,聚酰胺树脂的T熔点>340℃,在LED照明反射支架注塑时,对比例11和对比例13的组合物由于注塑温度接近聚酰胺树脂的分解温度,因此无法成型。
对比例5~7的聚酰胺树脂中,共聚的二胺单体为碳原子数小于8的二胺,由于碳链长度与主体二胺的碳链长度差距较大,分子链的结构和柔顺性不均,结晶性能劣化,因此聚酰胺树脂的(T熔点-T结晶温度)×T结晶峰半峰宽>350,在LED照明反射支架注塑时,对比例14~16的组合物的成型周期均在25s以上,成型效率太低。
对比例8的聚酰胺树脂中,主体的二胺单体为碳原子数小于8的二胺,由于聚酰胺树脂的酰胺键密度高,分子链柔顺度低,树脂的T熔点>360℃,在LED照明反射支架注塑时,对比例17的组合物由于注塑温度超过了聚酰胺树脂的分解温度,因此无法成型。
对比例9的聚酰胺树脂中,主体二胺与共聚的二胺单体的碳原子数相差5,二者分子链的结构和柔顺性相差比较大,结晶性能差,结晶速率慢。在LED照明反射支架注塑时,对比例18的组合物的成型周期为24s,成型效率低。
综上,本发明实施例的聚酰胺树脂以碳原子数为8以上的直链二胺为主体二胺,以与主体二胺不同的碳原子数为8以上的二胺为共聚二胺,制成的聚酰胺树脂由于酰胺键密度低,分子链柔顺性高,熔点可以控制在315℃<T熔点<340℃,适合于LED照明反射支架领域;并且主体二胺与共聚二胺的碳原子数接近,因此分子链的结构和柔顺性接近,结晶性能较好,结晶速率快。
本发明实施例对主体二胺与共聚二胺的摩尔比例进行了筛选,发现主体二胺占二胺的摩尔分数为80~90mol%时,聚酰胺树脂的热性能同时满足:315℃<T熔点<340℃和(T熔点-T结晶温度)×T结晶峰半峰宽<350,由此制成的聚酰胺组合物,在LED照明反射支架注塑时,成型周期均在15s以内(含15s),成型效率高。
本发明实施例的聚酰胺树脂和聚酰胺组合物适合于LED照明反射支架小尺寸和薄壁化发展趋势。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (11)

  1. 一种聚酰胺树脂,其特征在于,包含如下单体的重复单元:
    (a)1,4-环己烷二甲酸;
    (b)碳原子数为8以上的直链二胺;
    (c)与所述(b)不同的碳原子数为8以上的二胺;
    按摩尔百分比计,所述(b)占所述(b)和(c)总二胺的摩尔分数为80mol%~90mol%;
    所述(b)的碳原子数与所述(c)的碳原子数相差0~4。
  2. 依据权利要求1所述的聚酰胺树脂,其特征在于,所述二胺的碳原子数为8~12。
  3. 依据权利要求1所述的聚酰胺树脂,其特征在于,所述树脂的T熔点为:315℃<T熔点<340℃。
  4. 依据权利要求3所述的聚酰胺树脂,其特征在于,所述树脂的T结晶温度为:(T熔点-T结晶温度)×T结晶峰半峰宽<350。
  5. 权利要求1~4任一项所述聚酰胺树脂的制备方法,其特征在于,包括以下步骤:
    (1)按所述配比称量所述单体;再加入苯甲酸、次磷酸钠和水,得反应混合物;
    (2)抽真空充入保护气,将所述反应混合物在220~225℃下搅拌;再在230~235℃的恒温和2.0~2.2MPa的恒压下搅拌,出料,得预聚物;
    (3)所述预聚物真空干燥,得预聚产物;
    (4)所述预聚产物在250~255℃、50~55Pa真空条件下固相增粘8~10小时,得聚酰胺树脂。
  6. 依据权利要求5所述的聚酰胺树脂,其特征在于,在所述步骤(1)中,所述苯甲酸物质的量为所述单体物质的量的2%~2.5%,所述次磷酸钠占除去所述水以外其他投料的重量百分比为0.1wt%~0.15wt%,所述水占总投料的重量百分比为25wt%~35wt%。
  7. 一种聚酰胺组合物,其特征在于,包括权利要求1~6任一项权利要求所述的耐高温聚酰胺树脂。
  8. 依据权利要求7所述的聚酰胺组合物,其特征在于,所述组合物还包括颜料和/或增强填料。
  9. 依据权利要求8所述的聚酰胺组合物,其特征在于,按重量份数计,所述耐高温聚酰胺树脂、颜料、增强填料的重量比为耐高温聚酰胺树脂:颜料:增强填料=(50~55):(30~35):(10~15)。
  10. 权利要求7~9任一项所述聚酰胺组合物的制备方法,其特征在于,包括以下步骤:
    将所述的聚酰胺树脂和其他组分按配比加入挤出机中,挤出,冷却,造粒,干燥,即成。
  11. 权利要求1~10任一项权利要求所述的树脂、组合物或方法在LED照明反射支架中的应用。
PCT/CN2022/127092 2021-10-25 2022-10-24 一种聚酰胺树脂、其组合物及制备方法 WO2023071997A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111244466.2 2021-10-25
CN202111244466.2A CN113929901B (zh) 2021-10-25 2021-10-25 一种聚酰胺树脂、其组合物及制备方法

Publications (1)

Publication Number Publication Date
WO2023071997A1 true WO2023071997A1 (zh) 2023-05-04

Family

ID=79284283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127092 WO2023071997A1 (zh) 2021-10-25 2022-10-24 一种聚酰胺树脂、其组合物及制备方法

Country Status (2)

Country Link
CN (1) CN113929901B (zh)
WO (1) WO2023071997A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929901B (zh) * 2021-10-25 2024-03-29 珠海万通特种工程塑料有限公司 一种聚酰胺树脂、其组合物及制备方法
CN114507343B (zh) * 2022-03-09 2024-03-22 金发科技股份有限公司 一种聚酰胺及其制备方法与应用
CN115678268B (zh) * 2022-09-29 2024-03-26 珠海万通特种工程塑料有限公司 一种聚酰胺模塑组合物及其制备方法和应用
CN116589675A (zh) * 2023-04-28 2023-08-15 珠海万通特种工程塑料有限公司 一种聚酰胺树脂及其聚合方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912868A (ja) * 1995-06-26 1997-01-14 Kuraray Co Ltd ポリアミド組成物
CN102482492A (zh) * 2009-09-07 2012-05-30 可乐丽股份有限公司 Led用反射板以及具备其的发光装置
CN103328573A (zh) * 2011-01-28 2013-09-25 可乐丽股份有限公司 反射板用聚酰胺组合物、反射板、具备该反射板的发光装置、以及具备该发光装置的照明装置和图像显示装置
CN104619777A (zh) * 2012-09-14 2015-05-13 株式会社可乐丽 聚酰胺树脂
CN104662095A (zh) * 2012-09-28 2015-05-27 株式会社可乐丽 聚酰胺树脂组合物
CN105814115A (zh) * 2013-11-26 2016-07-27 三星Sdi株式会社 聚酰胺树脂及使用其的聚酰胺模塑体
CN107735454A (zh) * 2015-06-29 2018-02-23 株式会社可乐丽 Led反射板用聚酰胺组合物、led反射板、具备该反射板的发光装置
CN113929901A (zh) * 2021-10-25 2022-01-14 珠海万通特种工程塑料有限公司 一种聚酰胺树脂、其组合物及制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912868A (ja) * 1995-06-26 1997-01-14 Kuraray Co Ltd ポリアミド組成物
CN102482492A (zh) * 2009-09-07 2012-05-30 可乐丽股份有限公司 Led用反射板以及具备其的发光装置
CN103328573A (zh) * 2011-01-28 2013-09-25 可乐丽股份有限公司 反射板用聚酰胺组合物、反射板、具备该反射板的发光装置、以及具备该发光装置的照明装置和图像显示装置
CN104619777A (zh) * 2012-09-14 2015-05-13 株式会社可乐丽 聚酰胺树脂
CN104662095A (zh) * 2012-09-28 2015-05-27 株式会社可乐丽 聚酰胺树脂组合物
CN105814115A (zh) * 2013-11-26 2016-07-27 三星Sdi株式会社 聚酰胺树脂及使用其的聚酰胺模塑体
CN107735454A (zh) * 2015-06-29 2018-02-23 株式会社可乐丽 Led反射板用聚酰胺组合物、led反射板、具备该反射板的发光装置
CN113929901A (zh) * 2021-10-25 2022-01-14 珠海万通特种工程塑料有限公司 一种聚酰胺树脂、其组合物及制备方法

Also Published As

Publication number Publication date
CN113929901B (zh) 2024-03-29
CN113929901A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
WO2023071997A1 (zh) 一种聚酰胺树脂、其组合物及制备方法
JP6500140B2 (ja) 液晶ポリエステル組成物
WO2022127249A1 (zh) 一种聚酰胺模塑组合物及其制备方法和应用
EP2436717B1 (en) Polyamide resin
EP2703449B1 (en) Heat resistant polyamide composition and application thereof
WO2022127248A1 (zh) 一种聚酰胺模塑组合物及其制备方法和应用
JP5935288B2 (ja) 液晶ポリエステル組成物
JP2013507480A (ja) 耐熱性が向上した全芳香族液晶ポリエステル樹脂コンパウンド及びその製造方法
TW201249626A (en) Method of producing liquid crystal polyester composition
TWI599469B (zh) 液晶聚合物模製品及其製造方法
JP2012206296A (ja) 液晶ポリエステル組成物の製造方法
TW201336890A (zh) 纖維製造用材料及纖維
CN114854193B (zh) 一种聚酰胺复合材料及其制备方法和应用
CN105602207A (zh) 改性pct树脂复合物及其制备方法
US20210024687A1 (en) Aromatic liquid crystal polyester, aromatic liquid crystal polyester composition, and molded article
JP2011057932A (ja) 輸送機器部品
JPH08197601A (ja) 共重合ポリアミド溶融成形物およびその製造法
JP2012136625A (ja) 液晶ポリエステル成形材料及びその成形体
TW201339386A (zh) 纖維製造用材料及纖維
WO2023199854A1 (ja) 液晶ポリエステル樹脂、液晶ポリエステル樹脂組成物およびそれからなる成形品
JP7249738B2 (ja) ポリアミド樹脂ペレット及びその製造方法、並びに、ポリアミド組成物の製造方法
CN117363001A (zh) 一种聚酰胺模塑组合物及其制备方法和应用
WO2023040943A1 (zh) 一种聚酰胺模塑复合材料及其制备方法和应用
CN117447816A (zh) 一种液晶聚合物组合物及其制备方法
JPH101585A (ja) テトラフルオロエチレン/ペルフルオロ(アルキルビニルエーテル)共重合体組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885874

Country of ref document: EP

Kind code of ref document: A1