WO2022127248A1 - 一种聚酰胺模塑组合物及其制备方法和应用 - Google Patents

一种聚酰胺模塑组合物及其制备方法和应用 Download PDF

Info

Publication number
WO2022127248A1
WO2022127248A1 PCT/CN2021/119403 CN2021119403W WO2022127248A1 WO 2022127248 A1 WO2022127248 A1 WO 2022127248A1 CN 2021119403 W CN2021119403 W CN 2021119403W WO 2022127248 A1 WO2022127248 A1 WO 2022127248A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
fibers
molding composition
parts
composition according
Prior art date
Application number
PCT/CN2021/119403
Other languages
English (en)
French (fr)
Inventor
阎昆
黄险波
叶南飚
姜苏俊
曹民
杨汇鑫
蒋智强
Original Assignee
金发科技股份有限公司
珠海万通特种工程塑料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司, 珠海万通特种工程塑料有限公司 filed Critical 金发科技股份有限公司
Publication of WO2022127248A1 publication Critical patent/WO2022127248A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers

Definitions

  • the invention relates to the technical field of engineering plastics, in particular to a polyamide molding composition and a preparation method and application thereof.
  • polyamides are widely suitable for filling and reinforcing with glass fibers and other fillers.
  • common polyamides such as PA6 and PA66 usually have a melting point below 260°C and lack high temperature resistance, so they cannot be used in areas with higher operating temperatures.
  • semi-aromatic polyamides have been mainly developed due to their low water absorption and high temperature resistance.
  • LED reflective brackets need to undergo high-temperature processing such as reflow soldering process, requiring materials with high thermal deformation temperature and melting point.
  • a series of semi-aromatic polyamides such as PA10T, PA9T and PA6T copolymers, have become mainstream materials for LED reflective brackets .
  • the size of LED lamp beads is gradually reduced, and the LED reflector bracket is gradually developing towards small size and thin wall. Increase from below 1000 to above 2000, and replace high mold temperature molding by cold molding.
  • the existing semi-aromatic polyamide materials have low crystallization temperature, slow crystallization rate, long cooling time during cold molding, and cannot be rapidly molded.
  • the object of the present invention is to provide a polyamide molding composition whose crystallization temperature, crystallization rate and fluidity are significantly improved.
  • Another object of the present invention is to provide a process for the preparation of the above-mentioned polyamide molding composition.
  • a polyamide molding composition in parts by weight, comprising the following components:
  • Hyperbranched polyamide 0.1 to 2 parts
  • the polyamide resin of the present invention is formed by polycondensation of diamine and diacid; the polyamide resin is selected from any one of PA10T, PA10T/10I, PA10T/6T or PA6T/66.
  • the polyamide resin of the present invention can be commercially available, or can be prepared by the following conventional polymerization methods, specifically: In a pressure kettle equipped with a magnetic coupling stirring, a condenser tube, a gas phase port, a feeding port, and a pressure explosion-proof vent Add diamine and diacid according to the proportion; then add benzoic acid, catalyst sodium hypophosphite and deionized water; the amount of benzoic acid is 1.0% ⁇ 3.0% of the total amount of decanediamine and diacid, the weight of sodium hypophosphite In order to remove 0.1% to 0.3% of the weight of other materials except ionized water, the weight of deionized water is 20% to 40% of the total weight of the materials; vacuumize and fill with high-purity nitrogen as protective gas, and heat up to 220 in 2 hours under stirring.
  • the reaction mixture is stirred for 1 hour, and then the temperature of the reactant is raised to 240 °C ⁇ 250 °C under stirring;
  • the reaction is continued for 1 to 3 hours under constant temperature and constant pressure, by removing the water formed While keeping the pressure constant, after the reaction is completed, the material is discharged, and the prepolymer is vacuum-dried at 80° C. for 24 hours to obtain a prepolymerized product. 6 to 12 hours to obtain a polyamide resin.
  • the purpose of the present invention is to modify the polyamide resin, so the present invention does not require the specification parameters of the polyamide resin.
  • the relative viscosity of the polyamide resin used for the LED reflective bracket is 2.0-2.4; the relative viscosity is measured by the polyamide with a concentration of 0.25g/dL in 98% concentrated sulfuric acid at 25 ⁇ 0.01°C. Test The method refers to the standard GB12006.1-89.
  • the hyperbranched polyamide containing terminal amino groups can obviously improve the crystallization temperature, crystallization rate and fluidity of the polyamide composition.
  • the terminal amino group of the hyperbranched polyamide can react with the carboxyl group at the end of the polyamide molecular chain to connect into the polyamide molecular chain. Due to the large volume of hyperbranched polyamide, the distance between the molecular chains is enlarged after being connected to the molecular chains of the polyamide, and the mobility of the molecular chains is improved.
  • Crystallization occurs at a higher temperature and can be completed more quickly, resulting in a material with a higher crystallization temperature and a faster crystallization rate; on the other hand, due to the increased mobility of the molecular chain, it is easier to melt Molecular chain slip occurs, improving the fluidity of the material.
  • the hyperbranched polyamide is 0.5 to 1.5 parts.
  • the terminal amino group of the hyperbranched polyamide of the present invention is 3-16 mol/mol, and the number average molecular weight is 350-2200 g/mol.
  • the content of terminal amino groups is too low to react with a sufficient number of polyamide molecular chain ends, resulting in limited effect of improving the mobility of the molecular chain; Molecular chain mobility will be greatly reduced, resulting in lower crystallization temperature, lower crystallization rate, and poorer fluidity.
  • the terminal amino group of the hyperbranched polyamide is 7-9 mol/mol, and the number average molecular weight is 800-1000 g/mol.
  • the reinforcing filler is selected from at least one of fibrous reinforcing fillers or non-fibrous reinforcing fillers.
  • the fibrous reinforcing filler is selected from glass fibers, potassium titanate fibers, metal-clad glass fibers, ceramic fibers, wollastonite fibers, metal carbide fibers, metal solidified fibers, asbestos fibers, alumina fibers , at least one of silicon carbide fibers, gypsum fibers or boron fibers, aramid fibers or carbon fibers;
  • the non-fibrous reinforcing filler is selected from potassium titanate whiskers, zinc oxide whiskers, aluminum borate whiskers, Wollastonite, zeolite, sericite, kaolin, mica, talc, clay, pyrophyllite, bentonite, montmorillonite, hectorite, synthetic mica, asbestos, aluminosilicate, alumina, silica, magnesia, oxide Zirconium, titanium oxide,
  • the polyamide molding composition of the present invention may further include 0-1 part by weight of an auxiliary agent;
  • the auxiliary agent includes an antioxidant; specifically, the antioxidant
  • the agent is N,N'-hexamethylenebis(3,5-di-tert-butyl-4-hydroxyphenylpropionamide);
  • the polyamide molding composition of the present invention may further comprise 0 to 40 parts by weight of pigments. It is often necessary to add a certain amount of pigment to the LED reflection bracket to enhance the reflection effect. However, in the examples and comparative examples of the present application, the pigment is used as a means of characterization, and whether or not the pigment is added cannot be used as a limitation on the technical solution of the present invention.
  • the pigment is titanium dioxide surface-treated with polysiloxane; other types of pigments can also be selected according to requirements.
  • the present invention also provides a method for preparing the above-mentioned polyamide molding composition, which includes the following steps: mixing the components uniformly according to the proportion, melt-blending, extruding and pelletizing through a twin-screw extruder to obtain a polyamide mold plastic composition; wherein, the temperature of the twin-screw extruder is set at 280-340°C.
  • the present invention also provides the application of the above-mentioned polyamide molding composition in the field of LED reflective brackets.
  • the present invention has the following beneficial effects:
  • the crystallization temperature, crystallization rate and fluidity of the material can be significantly improved, that is, the material can have the highest possible crystallization temperature and melt index,
  • the FWHM of the crystallization peak should be as small as possible.
  • the polyamide composition material of the present invention can be crystallized at a higher temperature, that is, the crystallization cooling can be carried out earlier, and the crystallization can be completed at a faster rate, and the cooling will be completed when the part is demolded.
  • Diamine 1,10-decanediamine, 1,6-hexanediamine, commercially available;
  • Diacids terephthalic acid, isophthalic acid, 1,6-adipic acid, commercially available;
  • Hyperbranched polyamide 1 HyPer N101, Wuhan Hyperbranched Resin Technology Co., Ltd., terminal amino group 3 ⁇ 4mol/mol, molecular weight 350 ⁇ 370g/mol;
  • Hyperbranched polyamide 2 HyPer N102, Wuhan Hyperbranched Resin Technology Co., Ltd., terminal amino group 7 ⁇ 9mol/mol, molecular weight 800 ⁇ 1000g/mol;
  • Hyperbranched polyamide 3 HyPer N103, Wuhan Hyperbranched Resin Technology Co., Ltd., terminal amino group 12 ⁇ 16mol/mol, molecular weight 1900 ⁇ 2200g/mol;
  • Hyperbranched polyamide 4 HyPer HPN202, Wuhan Hyperbranched Resin Technology Co., Ltd., terminal hydroxyl group 12mol/mol, molecular weight 2700g/mol;
  • Reinforcing material glass fiber, commercially available
  • Pigment titanium dioxide, commercially available
  • Antioxidant N,N'-hexamethylenebis(3,5-di-tert-butyl-4-hydroxyphenylpropionamide), commercially available;
  • the preparation method of polyamide resin add diamine and diacid according to the ratio of Table 1 in a pressure kettle equipped with magnetic coupling stirring, condenser tube, gas phase port, feeding port and pressure explosion-proof port; then add benzoic acid, catalyst sodium hypophosphite and deionized water; the amount of benzoic acid material is 2.5% of the amount of diamine and diacid total material, and the weight of sodium hypophosphite is 0.1% of the weight of other feeds except ionized water, and the weight of deionized water is 30% of the total feed weight.
  • Relative viscosity of polyamide resin the test method refers to GB12006.1-89, the relative viscosity measured by polyamide with a concentration of 0.25g/dL in 98% concentrated sulfuric acid at 25 ⁇ 0.01°C.
  • Melting point, crystallization temperature and crystallization peak width at half maximum of the polyamide composition refer to ASTM D3418-2003, Standard Test Method for Transition Temperatures of Polymers By Differential Scanning Calorimetry; measure the melting point T m and crystallization temperature T c of the polyamide composition , the FWHM of the crystallization peak ⁇ T 1/2 ; the smaller the FWHM of the crystallization peak, the faster the crystallization rate; the larger the FWHM of the crystallization peak, the slower the crystallization rate.
  • Melt mass flow rate (MFR) of polyamide composition test according to standard GB/T 3682.1-2018, test temperature is 330°C, load is 2.16kg.
  • the present invention can significantly improve the crystallization temperature, crystallization rate and fluidity of the PA10T composition by adding a specific amount of hyperbranched polyamide.
  • the present invention can significantly improve the crystallization temperature, crystallization rate and fluidity of the PA10T/10I composition by adding a specific amount of hyperbranched polyamide.
  • Table 4 The specific proportions (parts by weight) of each component in Examples C1-C6 and Comparative Examples C1-C4 and the test results of each performance (polyamide resin is PA10T/6T)
  • the present invention can significantly improve the crystallization temperature, crystallization rate and fluidity of the PA6T/10T composition by adding a specific amount of hyperbranched polyamide.
  • Example C1 Compared with Example C1, the amount of hyperbranched polyamide added in Comparative Example C1 is too large, which reduces the crystallization temperature, increases the half width of the crystallization peak obviously, slows the crystallization rate, and deteriorates the fluidity.
  • Table 5 The specific proportions (parts by weight) of each component in Examples D1-D6 and Comparative Examples D1-D4 and the test results of each performance (polyamide resin is PA6T/66)
  • the present invention can significantly improve the crystallization temperature, crystallization rate and fluidity of the PA6T/66 composition by adding a specific amount of hyperbranched polyamide.
  • Example D1 Compared with Example D1, the amount of hyperbranched polyamide added in Comparative Example D1 is too large, which reduces the crystallization temperature, increases the half maximum width of the crystallization peak, slows the crystallization rate, and deteriorates the fluidity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种聚酰胺模塑组合物及其制备方法和应用,包括组分:聚酰胺树脂100份;超支化聚酰胺0.1~2份;增强填料0~100份。本发明的聚酰胺模塑组合物中通过加入特定量的端氨基超支化聚酰胺,能够显著提高材料的结晶温度和结晶速率。在冷模成型条件下,本发明的聚酰胺组合物材料可以在较高的温度下发生结晶,即可以更早进行结晶冷却,并且以更快速度完成结晶,彻底冷却,在制件脱模时,不易发生粘模具,料带拉高等问题;能够缩短成型冷却周期,提高生产效率,适应LED反射支架薄壁化、多模穴的发展趋势。

Description

一种聚酰胺模塑组合物及其制备方法和应用 技术领域
本发明涉及工程塑料技术领域,具体涉及一种聚酰胺模塑组合物及其制备方法和应用。
背景技术
聚酰胺因具有良好的力学性能、耐磨损性、耐化学药品性和自润滑性,且摩擦系数低,其被广泛适于用玻璃纤维和其它填料填充增强改性。然而,例如PA6和PA66等普通聚酰胺,熔点通常在260℃以下,耐高温性能不足,不能应用于使用温度较高的领域。近几年来半芳香族聚酰胺由于其低吸水率和耐高温性能被重点开发。
LED反射支架需要经历回流焊工艺等高温加工工艺,要求材料具有较高的热变形温度与熔点,以PA10T、PA9T和PA6T共聚物为例的一系列半芳香族聚酰胺成为LED反射支架的主流材料。随着消费者需求提高,LED灯珠尺寸逐渐减小,LED反射支架逐渐向小尺寸和薄壁化方向发展;注塑厂为了提高生产效率、降低生产能耗,逐渐将LED反射支架的模穴数从1000以下提高至2000以上,并且由冷模成型代替高模温成型。然而,现有的半芳香族聚酰胺材料结晶温度低,结晶速率慢,在冷模成型时冷却时间长,无法快速成型,冷却不完全容易导致产品粘模具、料带拉高等问题。因此,如何提高材料的结晶温度、结晶速率和流动性,缩短成型冷却周期,从而提高生产效率,以适应LED反射支架薄壁化、多模穴的发展趋势,是本发明的主要研究方向。
发明内容
为了克服上述现有技术存在的不足,本发明的目的在于提供一种聚酰胺模塑组合物,其结晶温度、结晶速率和流动性得到显著提升。
本发明的另一目的在于提供上述聚酰胺模塑组合物的制备方法。
本发明是通过以下技术方案实现的:
一种聚酰胺模塑组合物,按重量份数计,包括以下组分:
聚酰胺树脂      100份;
超支化聚酰胺    0.1~2份;
增强填料        0~100份。
本发明所述的聚酰胺树脂由二胺和二酸缩聚而成;所述的聚酰胺树脂选自PA10T、PA10T/10I、PA10T/6T或PA6T/66中的任意一种。
本发明的聚酰胺树脂可以是市售的,也可以是通过以下常规的聚合方法制得,具体为: 在配有磁力偶合搅拌、冷凝管、气相口、加料口、压力防爆口的压力釜中按照比例加入二胺和二酸;再加入苯甲酸、催化剂次磷酸钠和去离子水;苯甲酸物质的量为癸二胺和二酸总物质的量的1.0%~3.0%,次磷酸钠重量为除去离子水外其他投料重量的0.1%~0.3%,去离子水重量为总投料重量的20%~40%;抽真空充入高纯氮气作为保护气,在搅拌下2小时内升温到220℃~230℃,将反应混合物搅拌1小时,然后在搅拌下使反应物的温度升高到240℃~250℃;反应恒温和恒压下继续进行1~3小时,通过移去所形成的水而保持压力恒定,反应完成后出料,预聚物于80℃下真空干燥24小时,得到预聚产物,所述预聚产物在250℃~270℃、10~100Pa真空条件下固相增粘6~12小时,得到聚酰胺树脂。
本发明的目的在于对于聚酰胺树脂进行改性,因此本发明对于聚酰胺树脂的规格参数不做要求。一般的,用于LED反射支架的聚酰胺树脂的相对粘度为2.0~2.4;所述相对粘度由浓度为0.25g/dL的聚酰胺在25±0.01℃的98%的浓硫酸中测得,测试方法参照标准GB12006.1-89。
本发明经研究发现,加入含有端氨基的超支化聚酰胺,能够明显提高聚酰胺组合物的结晶温度、结晶速率和流动性。超支化聚酰胺的端氨基可与聚酰胺分子链末端的羧基反应,接入聚酰胺分子链中。由于超支化聚酰胺的体积较大,接入聚酰胺的分子链后,扩大了分子链之间的距离,分子链的活动性提高,在降温过程中,分子链更容易排入晶格,可以在较高的温度下发生结晶,并且可以更快速地完成结晶,使材料具有更高的结晶温度和更快的结晶速率;另一方面,由于分子链活动性提高,在熔融加工时,更容易发生分子链滑移,提高材料的流动性。
优选的,按重量份数计,所述的超支化聚酰胺0.5~1.5份。
本发明所述的超支化聚酰胺的端氨基为3~16mol/mol,数均分子量为350~2200g/mol。端氨基含量过低,无法与足够数量的聚酰胺分子链末端反应,导致提升分子链活动性的效果有限;端氨基数量过高,与过多的聚酰胺分子链末端反应,形成交联结构,分子链的活动性会大幅度降低,导致结晶温度下降,结晶速率降低,并且流动性变差。优选的,所述的超支化聚酰胺的端氨基为7~9mol/mol,数均分子量为800~1000g/mol。
所述的增强填料选自纤维状增强填料或非纤维状增强填料中的至少一种。具体的,所述的纤维状增强填料选自玻璃纤维、钛酸钾纤维、金属包层的玻璃纤维、陶瓷纤维、硅灰石纤维、金属碳化物纤维、金属固化纤维、石棉纤维、氧化铝纤维、碳化硅纤维、石膏纤维或硼纤维、芳族聚酰胺纤维或碳纤维中的至少一种;所述的非纤维状增强填料选自钛酸钾晶须、氧化锌晶须、硼酸铝晶须、硅灰石、沸石、绢云母、高岭土、云母、滑石、粘土、叶腊石、 膨润土、蒙脱土、锂蒙脱土、合成云母、石棉、硅铝酸盐、氧化铝、氧化硅、氧化镁、氧化锆、氧化钛、氧化铁、碳酸钙、碳酸镁、白云石、硫酸钙、硫酸钡、氢氧化镁、氢氧化钙、氢氧化铝、玻璃珠、陶瓷珠、氮化硼、碳化硅或二氧化硅中的一种或几种。
根据材料性能要求,本发明的聚酰胺模塑组合物,按重量份数计,还可以包括0~1份的助剂;所述的助剂包括抗氧剂;具体的,所述的抗氧剂为N,N’-六亚甲基双(3,5-二叔丁基-4-羟基苯基丙酰胺);
本发明的聚酰胺模塑组合物,按重量份计,还可以包括0~40份的颜料。LED反射支架中往往需要加入一定量的颜料来增强反射效果。但是本申请的实施例和对比例中用颜料作为表征的手段,颜料是否添加并不能作为对本发明技术方案的限制。
所述的颜料为利用聚硅氧化合物表面处理的二氧化钛;也可根据需求选择其他类型的颜料。
本发明还提供了上述聚酰胺模塑组合物的制备方法,包括以下步骤:按照配比,将各组分混合均匀,通过双螺杆挤出机熔融共混、挤出造粒,得到聚酰胺模塑组合物;其中,双螺杆挤出机的温度设置为280~340℃。
本发明还提供了上述聚酰胺模塑组合物在LED反射支架领域的应用。
本发明与现有技术相比,具有如下有益效果:
本发明的聚酰胺模塑组合物中通过加入特定量的端氨基超支化聚酰胺,能够显著提高材料的结晶温度、结晶速率和流动性,即可以使材料具有尽量高的结晶温度和熔融指数、尽量小的结晶峰半高宽。在冷模成型条件下,本发明的聚酰胺组合物材料可以在较高的温度下发生结晶,即可以更早进行结晶冷却,并且以更快速度完成结晶,彻底冷却,在制件脱模时,不易发生粘模具,料带拉高等问题;能够明显缩短成型冷却周期,提高生产效率,适应LED反射支架薄壁化、多模穴的发展趋势。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
现对实施例及对比例所用的原材料做如下说明,但不限于这些材料:
二胺:1,10-癸二胺,1,6-己二胺,市售;
二酸:对苯二甲酸,间苯二甲酸,1,6-己二酸,市售;
超支化聚酰胺1:HyPer N101,武汉超支化树脂科技有限公司,端氨基3~4mol/mol,分子量350~370g/mol;
超支化聚酰胺2:HyPer N102,武汉超支化树脂科技有限公司,端氨基7~9mol/mol,分子量800~1000g/mol;
超支化聚酰胺3:HyPer N103,武汉超支化树脂科技有限公司,端氨基12~16mol/mol,分子量1900~2200g/mol;
超支化聚酰胺4:HyPer HPN202,武汉超支化树脂科技有限公司,端羟基12mol/mol,分子量2700g/mol;
增强材料:玻璃纤维,市售;
颜料:二氧化钛,市售;
抗氧剂:N,N’-六亚甲基双(3,5-二叔丁基-4-羟基苯基丙酰胺),市售;
聚酰胺树脂的制备方法:在配有磁力偶合搅拌、冷凝管、气相口、加料口、压力防爆口的压力釜中按照表1比例加入二胺和二酸;再加入苯甲酸、催化剂次磷酸钠和去离子水;苯甲酸物质的量为二胺和二酸总物质的量的2.5%,次磷酸钠重量为除去离子水外其他投料重量的0.1%,去离子水重量为总投料重量的30%;抽真空充入高纯氮气作为保护气,在搅拌下2小时内升温到220℃,将反应混合物搅拌1小时,然后在搅拌下使反应物的温度升高到240℃;反应在恒温和恒压下继续进行2小时,通过移去所形成的水而保持压力恒定,反应完成后出料,预聚物于80℃下真空干燥24小时,得到预聚产物,所述预聚产物在250℃、50Pa真空条件下固相增粘10小时,得到聚酰胺树脂。
实施例及对比例聚酰胺模塑组合物的制备方法:按照表2~5配比,将各组分混合均匀,通过双螺杆挤出机熔融共混、挤出造粒,得到聚酰胺模塑组合物;其中,双螺杆挤出机的温度设置为280~340℃。
各性能的测试方法或标准:
聚酰胺树脂的相对粘度:测试方法参照GB12006.1-89,由浓度为0.25g/dL的聚酰胺在25±0.01℃的98%的浓硫酸中测得的相对粘度。
聚酰胺组合物的熔点、结晶温度和结晶峰半高宽:参照ASTM D3418-2003,Standard Test Method for Transition Temperatures of Polymers By Differential Scanning Calorimetry;测得聚酰胺组合物的熔点T m、结晶温度T c、结晶峰半高宽ΔT 1/2;结晶峰半高宽越小,结晶速率越快;结晶峰半高宽越大,结晶速率越慢。
聚酰胺组合物的熔体质量流动速率(MFR):根据标准GB/T 3682.1-2018进行测试,测 试温度330℃,负荷2.16kg。
表1:聚酰胺树脂的各单体配比
Figure PCTCN2021119403-appb-000001
表2:实施例A1~A6与对比例A1~A3中各组分的具体配比(重量份)及各性能测试结果(聚酰胺树脂为PA10T)
Figure PCTCN2021119403-appb-000002
由表2中的实施例和对比例可看出,本发明通过加入特定量的超支化聚酰胺,可以显著提高PA10T组合物的结晶温度、结晶速率和流动性。
对比例A1与实施例A1~A3比较,超支化聚酰胺加入量过多,反而使结晶温度降低,结晶峰半高宽明显增大,结晶速率慢,流动性变差。
对比例A3,加入端羟基超支化聚酰胺,对材料的结晶温度、结晶速率和流动性没有改善作用。
表3:实施例B1~B6与对比例B1~B4中各组分的具体配比(重量份)及各性能测试结果(聚酰胺树脂为PA10T/10I)
Figure PCTCN2021119403-appb-000003
Figure PCTCN2021119403-appb-000004
由表3中的实施例和对比例可看出,本发明通过加入特定量的超支化聚酰胺,可以显著提高PA10T/10I组合物的结晶温度、结晶速率和流动性。
对比例B1与实施例B1~B3比较,超支化聚酰胺加入量过多,反而使结晶温度降低,结晶峰半高宽明显增大,结晶速率慢,流动性变差。
对比例B4,加入端羟基超支化聚酰胺,对材料的结晶温度、结晶速率和流动性没有改善作用。
表4:实施例C1~C6与对比例C1~C4中各组分的具体配比(重量份)及各性能测试结果(聚酰胺树脂为PA10T/6T)
Figure PCTCN2021119403-appb-000005
由表4中的实施例和对比例可看出,本发明通过加入特定量的超支化聚酰胺,可以显著提高PA6T/10T组合物的结晶温度、结晶速率和流动性。
对比例C1与实施例C1比较,超支化聚酰胺加入量过多,反而使结晶温度降低,结晶峰半高宽明显增大,结晶速率慢,流动性变差。
对比例C4,加入端羟基超支化聚酰胺,对材料的结晶温度、结晶速率和流动性没有改善作用。
表5:实施例D1~D6与对比例D1~D4中各组分的具体配比(重量份)及各性能测试结果(聚酰胺树脂为PA6T/66)
Figure PCTCN2021119403-appb-000006
由表5中的实施例和对比例可看出,本发明通过加入特定量的超支化聚酰胺,可以显著提高PA6T/66组合物的结晶温度、结晶速率和流动性。
对比例D1与实施例D1比较,超支化聚酰胺加入量过多,反而使结晶温度降低,结晶峰半高宽明显增大,结晶速率慢,流动性变差。
对比例D4,加入端羟基超支化聚酰胺,对材料的结晶温度、结晶速率和流动性没有改善作用。

Claims (10)

  1. 一种聚酰胺模塑组合物,其特征在于,按重量份数计,包括以下组分:
    聚酰胺树脂     100份;
    超支化聚酰胺   0.1~2份;
    增强填料       0~100份。
  2. 根据权利要求1所述的聚酰胺模塑组合物,其特征在于,所述的聚酰胺树脂选自PA10T、PA10T/10I、PA10T/6T或PA6T/66中的任意一种。
  3. 根据权利要求1所述的聚酰胺模塑组合物,其特征在于,所述的聚酰胺树脂的相对粘度为2.0~2.4。
  4. 根据权利要求1所述的聚酰胺模塑组合物,其特征在于,按重量份数计,所述的超支化聚酰胺0.5~1.5份。
  5. 根据权利要求1所述的聚酰胺模塑组合物,其特征在于,所述的超支化聚酰胺的端氨基为3~16mol/mol,数均分子量为350~2200g/mol。
  6. 根据权利要求5所述的聚酰胺模塑组合物,其特征在于,所述的超支化聚酰胺的端氨基为7~9mol/mol,数均分子量为800~1000g/mol。
  7. 根据权利要求1所述的聚酰胺模塑组合物,其特征在于,所述的增强填料选自纤维状增强填料或非纤维状增强填料中的至少一种;所述的纤维状增强填料选自玻璃纤维、钛酸钾纤维、金属包层的玻璃纤维、陶瓷纤维、硅灰石纤维、金属碳化物纤维、金属固化纤维、石棉纤维、氧化铝纤维、碳化硅纤维、石膏纤维或硼纤维、芳族聚酰胺纤维或碳纤维中的至少一种;所述的非纤维状增强填料选自钛酸钾晶须、氧化锌晶须、硼酸铝晶须、硅灰石、沸石、绢云母、高岭土、云母、滑石、粘土、叶腊石、膨润土、蒙脱土、锂蒙脱土、合成云母、石棉、硅铝酸盐、氧化铝、氧化硅、氧化镁、氧化锆、氧化钛、氧化铁、碳酸钙、碳酸镁、白云石、硫酸钙、硫酸钡、氢氧化镁、氢氧化钙、氢氧化铝、玻璃珠、陶瓷珠、氮化硼、碳化硅或二氧化硅中的一种或几种。
  8. 根据权利要求1所述的聚酰胺模塑组合物,其特征在于,按重量份数计,还包括0~1份的助剂;0~40份的颜料;所述助剂包括抗氧剂。
  9. 根据权利要求1~8任一项所述的聚酰胺模塑组合物的制备方法,其特征在于,包括以下步骤:按照配比,将各组分混合均匀,通过双螺杆挤出机熔融共混、挤出造粒,得到聚酰胺模塑组合物;其中,双螺杆挤出机的温度设置为280~340℃。
  10. 根据权利要求1~8任一项所述的聚酰胺模塑组合物在LED反射支架领域的应用。
PCT/CN2021/119403 2020-12-16 2021-09-18 一种聚酰胺模塑组合物及其制备方法和应用 WO2022127248A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011482613.5A CN112724667B (zh) 2020-12-16 2020-12-16 一种聚酰胺模塑组合物及其制备方法和应用
CN202011482613.5 2020-12-16

Publications (1)

Publication Number Publication Date
WO2022127248A1 true WO2022127248A1 (zh) 2022-06-23

Family

ID=75602773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119403 WO2022127248A1 (zh) 2020-12-16 2021-09-18 一种聚酰胺模塑组合物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN112724667B (zh)
WO (1) WO2022127248A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112724667B (zh) * 2020-12-16 2022-06-14 金发科技股份有限公司 一种聚酰胺模塑组合物及其制备方法和应用
CN115838532B (zh) * 2021-09-18 2024-03-01 珠海万通特种工程塑料有限公司 一种pa10t模塑复合材料及其制备方法和应用
CN115232467B (zh) * 2022-07-27 2023-04-21 金旸(厦门)新材料科技有限公司 一种高温耐热老化聚酰胺复合材料及其制备方法
CN115572480B (zh) * 2022-08-23 2024-07-12 金发科技股份有限公司 一种聚酰胺组合物及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022046A1 (en) * 1998-10-12 2000-04-20 Dsm N.V. Molecular reinforced polymeric composition
CN102203188A (zh) * 2008-10-30 2011-09-28 纳幕尔杜邦公司 包含导热填料和超支化聚酯酰胺的热塑性组合物
CN102203187A (zh) * 2008-10-30 2011-09-28 纳幕尔杜邦公司 包含超支化芳族聚酰胺的热塑性组合物
CN103724993A (zh) * 2013-12-17 2014-04-16 浙江普利特新材料有限公司 一种快速吸水玻璃纤维增强尼龙6复合材料及其制备方法
KR101815577B1 (ko) * 2016-11-18 2018-01-05 한국화학연구원 하이퍼브랜치 폴리아미드를 함유하는 유동성이 향상된 폴리아미드계 고분자 조성물 및 이의 제조방법
CN108164997A (zh) * 2017-12-28 2018-06-15 诺思贝瑞新材料科技(苏州)有限公司 一种3d打印用长链尼龙复合材料
CN111117237A (zh) * 2020-01-14 2020-05-08 深圳海源恒业高新材料科技研发有限公司 聚酰胺复合材料及其制备方法
CN111363143A (zh) * 2020-04-08 2020-07-03 武汉超支化树脂科技有限公司 一种高温尼龙加工用超支化聚酰胺及其制备方法和应用
CN112724667A (zh) * 2020-12-16 2021-04-30 金发科技股份有限公司 一种聚酰胺模塑组合物及其制备方法和应用
CN112745672A (zh) * 2020-12-16 2021-05-04 金发科技股份有限公司 一种聚酰胺模塑组合物及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4191045B2 (ja) * 2001-12-17 2008-12-03 ロディアニル 非相溶性官能基を有する超分岐状重合体添加剤を含有する熱可塑性組成物及びこの材料から作った物品
FR2856693B1 (fr) * 2003-06-26 2005-08-26 Rhodia Eng Plastics Srl Composition a base de matrice polyamide et/ou polyester et articles realises a partir de cette composition
US7294661B2 (en) * 2003-10-03 2007-11-13 E.I. Du Pont De Nemours And Company Flame resistant aromatic polyamide resin composition and articles therefrom
CN102977363B (zh) * 2012-11-27 2015-01-21 南方医科大学 一种改性的端氨基超枝化聚酰胺树脂的制备方法及含有该树脂的涂料

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022046A1 (en) * 1998-10-12 2000-04-20 Dsm N.V. Molecular reinforced polymeric composition
CN102203188A (zh) * 2008-10-30 2011-09-28 纳幕尔杜邦公司 包含导热填料和超支化聚酯酰胺的热塑性组合物
CN102203187A (zh) * 2008-10-30 2011-09-28 纳幕尔杜邦公司 包含超支化芳族聚酰胺的热塑性组合物
CN103724993A (zh) * 2013-12-17 2014-04-16 浙江普利特新材料有限公司 一种快速吸水玻璃纤维增强尼龙6复合材料及其制备方法
KR101815577B1 (ko) * 2016-11-18 2018-01-05 한국화학연구원 하이퍼브랜치 폴리아미드를 함유하는 유동성이 향상된 폴리아미드계 고분자 조성물 및 이의 제조방법
CN108164997A (zh) * 2017-12-28 2018-06-15 诺思贝瑞新材料科技(苏州)有限公司 一种3d打印用长链尼龙复合材料
CN111117237A (zh) * 2020-01-14 2020-05-08 深圳海源恒业高新材料科技研发有限公司 聚酰胺复合材料及其制备方法
CN111363143A (zh) * 2020-04-08 2020-07-03 武汉超支化树脂科技有限公司 一种高温尼龙加工用超支化聚酰胺及其制备方法和应用
CN112724667A (zh) * 2020-12-16 2021-04-30 金发科技股份有限公司 一种聚酰胺模塑组合物及其制备方法和应用
CN112745672A (zh) * 2020-12-16 2021-05-04 金发科技股份有限公司 一种聚酰胺模塑组合物及其制备方法和应用

Also Published As

Publication number Publication date
CN112724667B (zh) 2022-06-14
CN112724667A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2022127248A1 (zh) 一种聚酰胺模塑组合物及其制备方法和应用
WO2022127249A1 (zh) 一种聚酰胺模塑组合物及其制备方法和应用
TWI518109B (zh) 聚醯胺樹脂
JP5695063B2 (ja) 耐熱性が向上した電子部品用全芳香族液晶ポリエステル樹脂コンパウンド
WO2023071997A1 (zh) 一种聚酰胺树脂、其组合物及制备方法
US8440756B2 (en) Flame-retardant polyamide resin composition
EP2436717A1 (en) Polyamide resin
CN102203166B (zh) 增强聚酰胺组合物
US10611882B2 (en) Stabilized polyamide
WO2011097832A1 (zh) 一种长碳链半芳香耐高温聚酰胺的均聚物和共聚物及其合成方法
CN113121817B (zh) 低吸水率的聚酰胺共聚物56ti及其制备方法和应用
CN107325548A (zh) 耐高温聚酰胺模制组合物及其特别在汽车行业中的用途
WO2014141978A1 (ja) ポリアミド樹脂の製造方法
CN112358610A (zh) 一种聚酰胺和由其组成的聚酰胺模塑组合物
CN106147221B (zh) 玻纤增强阻燃导热半芳香共聚尼龙复合材料及其制备方法
JP5728969B2 (ja) エンジン冷却水系部品用ポリアミド樹脂組成物およびそれを用いたエンジン冷却水系部品
TWI806997B (zh) 芳香族液晶聚酯、芳香族液晶聚酯組成物及成型品
JP2012206296A (ja) 液晶ポリエステル組成物の製造方法
JP2011057932A (ja) 輸送機器部品
CN105602207A (zh) 改性pct树脂复合物及其制备方法
CN114835894A (zh) 一种透明聚酰胺、包含其组合物及其制备方法
CN115572480B (zh) 一种聚酰胺组合物及其制备方法和应用
JP2014181242A (ja) 半芳香族ポリアミドおよびその成形体
JP3106658B2 (ja) ポリアミド樹脂の製造方法
JP2011057931A (ja) 熱可塑性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905179

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/10/2023)