WO2023071394A1 - 金属硫化物钠离子电池负极材料及其制备方法 - Google Patents

金属硫化物钠离子电池负极材料及其制备方法 Download PDF

Info

Publication number
WO2023071394A1
WO2023071394A1 PCT/CN2022/111807 CN2022111807W WO2023071394A1 WO 2023071394 A1 WO2023071394 A1 WO 2023071394A1 CN 2022111807 W CN2022111807 W CN 2022111807W WO 2023071394 A1 WO2023071394 A1 WO 2023071394A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
preparation
negative electrode
electrode material
ion battery
Prior art date
Application number
PCT/CN2022/111807
Other languages
English (en)
French (fr)
Inventor
李爱霞
余海军
谢英豪
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to DE112022000157.7T priority Critical patent/DE112022000157B4/de
Priority to HU2400171A priority patent/HUP2400171A1/hu
Priority to US18/265,872 priority patent/US11939230B1/en
Priority to GB2309463.4A priority patent/GB2616232A/en
Publication of WO2023071394A1 publication Critical patent/WO2023071394A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/12Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/08Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of sodium ion batteries, and in particular relates to a metal sulfide sodium ion battery negative electrode material and a preparation method thereof.
  • Anode materials are one of the key factors affecting the electrochemical performance of Na-ion batteries.
  • graphite which is widely used in commercial Li-ion batteries, is used as an anode material for Na-ion batteries, it has a low Na storage capacity (35 mAh/g) and poor cycle stability. This is mainly because the radius (0.102nm) of sodium ions is larger than that of lithium ions (0.076nm), and the intercalation/extraction process of sodium ions between graphite layers is easy to destroy the structure of graphite. This urgently requires us to find other suitable anode materials for sodium-ion batteries. Metal oxides and metal sulfides are currently widely used anode materials for sodium-ion batteries.
  • the reversible deintercalation process and cycle stability of sulfides are higher than those of metal oxides, because the metal-sulfur bonds in metal sulfides are stronger. It is conducive to the conversion reaction, so the metal sulfide is beneficial to the storage of sodium.
  • metal sulfides have attracted extensive attention as anode materials for sodium-ion batteries due to their high theoretical capacities.
  • metal sulfides also have some unique advantages when used as sodium storage materials: 1.
  • Metal sulfides are layered structure materials, which are easy to form two-dimensional sheet structures; 2.
  • the metal sulfide has a large interlayer spacing, which helps Na + diffuse between its layers.
  • transition metal sulfides Due to the high conductivity, high theoretical specific capacity and suitable redox potential of layered transition metal sulfides, as well as their advantages in mechanical stability, thermodynamic stability and structural stability, they have attracted the attention of many researchers. and favored. Many transition metal sulfides have been reported as anode materials one after another. Layered disulfides usually undergo Na + deintercalation reaction at high potential first, and then undergo conversion reaction at low potential to generate metal elemental M and Na 2 S. Some materials such as SnS 2 also undergoes alloying reactions at lower potentials.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. Therefore, the present invention proposes a metal sulfide sodium ion battery negative electrode material and a preparation method thereof.
  • a metal sulfide sodium ion battery negative electrode material which is porous nanoparticles, the particle size of the particles is 5nm-500nm, and the metal sulfide sodium ion battery negative electrode material is zinc sulfide or at least one of copper sulfide.
  • the present invention also provides the preparation method of described metal sulfide sodium ion battery negative electrode material, comprises the following steps:
  • S1 preparing a mixed solution of stannous chloride and a metal salt, the metal salt being at least one of zinc salt or copper salt;
  • reaction gas is a mixture of hydrogen sulfide and nitrogen, aging after the reaction, and separating solid and liquid to obtain a precipitate;
  • the persulfide solution is persulfide A solution of one or both of sodium or ammonium persulfide.
  • step S1 the pH of the mixed solution is ⁇ 1.
  • step S1 the concentration of stannous chloride in the mixed solution is 0.01-1 mol/L, and the metal ion concentration of the metal salt is 0.1-2 mol/L.
  • the metal salt is at least one of copper chloride, zinc chloride, copper sulfate or zinc sulfate.
  • step S2 the concentration of polyvinylpyrrolidone in the solution A is 5-20 g/L.
  • step S2 the type of polyvinylpyrrolidone is at least one of K30 or K60.
  • step S3 the volume ratio of hydrogen sulfide to nitrogen is (0.001-1):1; the flow rate of the mixed gas is 1-5 times the volume of solution A per hour.
  • step S3 the aging time is 1-48h.
  • step S4 the concentration of the persulfide solution is 0.1-1mol/L; the soaking time is 1-24h.
  • step S4 when the solid does not contain copper, after washing and drying, it is also subjected to carbonization treatment: the solid is added to the carbon source solution for hydrothermal reaction, and the reaction After the end, heat treatment under an inert atmosphere, that is. Through carbonization treatment, a supporting carbon skeleton structure is formed inside and outside the particles, thereby further improving the strength and conductivity of the particles.
  • step S4 the washing is firstly washed with deionized water, and then washed with ethanol or acetone.
  • step S4 the drying is vacuum drying, the drying temperature is 50-80° C., and the drying time is 2-12 hours.
  • the concentration of the carbon source solution is 0.05-2 g/mL; the carbon source in the carbon source solution is glucose, starch, sucrose, fructose, lactose or galactose at least one of .
  • step S4 the temperature of the heat treatment is 200-550° C.; the time of the heat treatment is 1-12 hours.
  • step S4 the solid-to-liquid ratio of the solid to the carbon source solution is 1 g: (1-10) mL.
  • step S4 the temperature of the hydrothermal reaction is 150-200°C, and the reaction time is 2-5h.
  • the present invention realizes co-precipitation under the effect of hydrogen sulfide after mixing the salt solution of zinc and copper with tin protochloride to obtain eutectic nanoparticles of stannous sulfide and zinc sulfide/copper, and the particles are added Soak in sodium persulfide/ammonium to remove stannous sulfide, leaving only zinc sulfide/copper in the particles to obtain porous nanoparticles; using sodium persulfide/ammonium to dissolve stannous sulfide, its reaction equation is: SnS+(NH 4 ) 2 S 2 ⁇ (NH 4 ) 2 SnS 3 .
  • polyvinylpyrrolidone is added to co-complex metal ions, so that Sn 2+ , Zn 2+ /Cu 2+ can achieve the purpose of co-precipitation, slow down the yield of precipitation reaction, and make the crystallization of materials better.
  • a mixed solution at a lower pH.
  • the reaction gas uses a mixture of hydrogen sulfide and nitrogen to further control the concentration of hydrogen sulfide, thereby controlling the precipitation reaction rate and making the crystallinity of the material better.
  • the negative electrode material is nanoscale and has a porous structure.
  • its internal porous structure can not only buffer the volume change brought about by the charging and discharging process, but also increase the contact area between the electrode and the electrolyte, with high capacity, excellent cycle and rate performance.
  • FIG. 1 is a SEM image of a porous CuS nanoparticle negative electrode material prepared in Example 1 of the present invention.
  • This embodiment prepared a CuS sodium ion battery negative electrode material, as shown in Figure 1, its appearance is porous nanoparticles, particle size is 30nm-50nm, the specific preparation process is:
  • reaction gas is a mixture of hydrogen sulfide and nitrogen, the volume ratio of hydrogen sulfide to nitrogen is 0.01:1, and the flow rate of reaction gas is the volume of solution A per hour 3 times;
  • a ZnS sodium-ion battery negative electrode material is prepared. Its appearance is porous nanoparticles, and the particle size is 50nm-80nm.
  • the specific preparation process is as follows:
  • reaction gas is the mixed gas of hydrogen sulfide and nitrogen, the volume ratio of hydrogen sulfide and nitrogen is 0.05:1, and the flow rate of reaction gas is per hour solution A 2 times the volume;
  • a CuS-ZnS sodium-ion battery negative electrode material is prepared. Its appearance is porous nanoparticles with a particle size of 40nm-60nm.
  • the specific preparation process is as follows:
  • reaction gas is a mixture of hydrogen sulfide and nitrogen, the volume ratio of hydrogen sulfide to nitrogen is 0.02:1, and the flow rate of reaction gas is the volume of solution A per hour 1 times;
  • Example 1-3 Take the negative electrode material of the sodium ion battery and the corresponding sulfide prepared in Example 1-3 to prepare the negative electrode sheet of the sodium ion battery respectively, and assemble it into a button battery for testing at a current density of 100mA/g and a voltage range of 0.4-2.6V , and the results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种金属硫化物钠离子电池负极材料及其制备方法,材料为具有多孔的纳米颗粒,颗粒的粒径为5nm-500nm,金属硫化物钠离子电池负极材料为硫化锌或硫化铜中的至少一种;制备方法包括配制氯化亚锡和金属盐的混合溶液,向混合溶液中加入聚乙烯吡咯烷酮得到溶液A,向溶液A中通入反应气体,反应结束后进行陈化,得到沉淀物,将沉淀物加入到过硫化物溶液中浸泡,即得金属硫化物钠离子电池负极材料。金属硫化物钠离子电池负极材料为纳米级,且具有多孔结构,在充放电过程中,其内部多孔结构既可以缓冲充放电过程中带来的体积变化又可以增大电极与电解液的接触面积,具有高的容量、优良的循环和倍率性能。

Description

金属硫化物钠离子电池负极材料及其制备方法 技术领域
本发明属于钠离子电池技术领域,具体涉及一种金属硫化物钠离子电池负极材料及其制备方法。
背景技术
负极材料是影响钠离子电池电化学性能的关键因素之一。但是,将商业锂离子电池中广泛使用的石墨用作钠离子电池的负极材料时,其储钠容量较低(35mAh/g),且循环稳定性较差。这主要是因为钠离子的半径(0.102nm)大于锂离子的半径(0.076nm),钠离子在石墨层间的嵌入/脱出过程容易破坏石墨的结构。这就迫切需要我们去寻找其他合适的钠离子电池负极材料。金属氧化物和金属硫化物是目前应用较多的钠离子电池负极材料,两者比较,硫化物可逆脱嵌过程和循环稳定性都比金属氧化物高,因为金属硫化物中的金属硫键更利于发生转换反应,所以金属硫化物有利于钠的储存。
近年来,金属硫化物由于理论容量高,在作为钠离子电池负极材料时受到广泛关注。另外,金属硫化物在作为储钠材料时还具有一些独特的优势:1.金属硫化物属于层状结构材料,易形成二维片状结构;2.金属硫化物层与层之间的范德华力较弱,抑制了其在c轴方向上的堆叠,这样可以降低材料的厚度,从而缩短Na +的扩散距离;3.金属硫化物具有大层间距,有助于Na +在其层间扩散。
由于层状过渡金属硫化物具有高导电性、较高的理论比容量和合适的氧化还原电位,同时在机械稳定性、热力学稳定性以及结构稳定性等方面具有优势,得到了众多研究者的关注和青睐。诸多过渡金属硫化物作为负极材料陆续被报道,层状二硫化物通常先在高电位发生Na +脱嵌反应,然后在低电位发生转化反应,生成金属单质M和Na 2S,其中有些材料如SnS 2在更低电位时还发生合金化反应。
然而,层状金属硫化物的低电导率和在充放电过程中大的体积变化(约340%)往往会导致循环性能较差。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种金属硫化物钠离子电池负极材料及其制备方法。
根据本发明的一个方面,提出了一种金属硫化物钠离子电池负极材料,其为具有多孔的纳米颗粒,颗粒的粒径为5nm-500nm,所述金属硫化物钠离子电池负极材料为硫化锌或硫化铜中的至少一种。
本发明还提供所述的金属硫化物钠离子电池负极材料的制备方法,包括以下步骤:
S1:配制氯化亚锡和金属盐的混合溶液,所述金属盐为锌盐或铜盐中的至少一种;
S2:向所述混合溶液中加入聚乙烯吡咯烷酮得到溶液A;
S3:向所述溶液A中通入反应气体,所述反应气体为硫化氢和氮气的混合气,反应结束后进行陈化,固液分离得到沉淀物;
S4:将所述沉淀物加入到过硫化物溶液中浸泡,再固液分离,所得固体经洗涤和干燥,即得所述金属硫化物钠离子电池负极材料;所述过硫化物溶液为过硫化钠或过硫化铵中的一种或两种的溶液。
在本发明的一些实施方式中,步骤S1中,所述混合溶液的pH≤1。
在本发明的一些实施方式中,步骤S1中,所述混合溶液中氯化亚锡的浓度为0.01-1mol/L,金属盐的金属离子浓度为0.1-2mol/L。
在本发明的一些实施方式中,步骤S1中,所述金属盐为氯化铜、氯化锌、硫酸铜或硫酸锌中的至少一种。
在本发明的一些实施方式中,步骤S2中,所述溶液A中聚乙烯吡咯烷酮的浓度为5-20g/L。
在本发明的一些实施方式中,步骤S2中,所述聚乙烯吡咯烷酮的种类为K30或K60中的至少一种。
在本发明的一些实施方式中,步骤S3中,所述硫化氢和氮气的体积比为(0.001-1):1;所述混合气的流量为每小时溶液A体积的1-5倍。
在本发明的一些实施方式中,步骤S3中,所述陈化的时间为1-48h。
在本发明的一些实施方式中,步骤S4中,所述过硫化物溶液的浓度为0.1-1mol/L;所述浸泡的时间为1-24h。
在本发明的一些实施方式中,步骤S4中,当所述固体不含铜时,在进行洗涤和干燥后,还进行碳化处理:将所述固体加入到碳源溶液中进行水热反应,反应结束后在惰性气氛下热处理,即得。通过碳化处理,使颗粒内部及外部形成支撑性的碳骨架结构,从而进一步提升颗粒强度和导电性。
在本发明的一些实施方式中,步骤S4中,所述洗涤是先采用去离子水洗涤,再采用乙醇或丙酮洗涤。
在本发明的一些实施方式中,步骤S4中,所述干燥采用真空干燥,干燥的温度为50-80℃,干燥的时间为2-12h。
在本发明的一些实施方式中,步骤S4中,所述碳源溶液的浓度为0.05-2g/mL;所述碳源溶液中的碳源为葡萄糖、淀粉、蔗糖、果糖、乳糖或半乳糖中的至少一种。
在本发明的一些实施方式中,步骤S4中,所述热处理的温度为200-550℃;所述热处理的时间为1-12h。
在本发明的一些实施方式中,步骤S4中,所述固体与碳源溶液的固液比为1g:(1-10)mL。
在本发明的一些实施方式中,步骤S4中,所述水热反应的温度为150-200℃,反应的时间为2-5h。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明通过将锌、铜的盐溶液与氯化亚锡混合后,在硫化氢的作用下实现共沉淀,制得硫化亚锡、硫化锌/铜的共晶体纳米颗粒,并将颗粒加入到过硫化钠/铵中浸泡,以除去硫化亚锡,使颗粒中仅剩硫化锌/铜,得到多孔的纳米颗粒;采用过硫化钠/铵溶解硫化亚锡,其反应方程式为:SnS+(NH 4) 2S 2→(NH 4) 2SnS 3
2、本发明通过加入聚乙烯吡咯烷酮起到对金属离子共络合的作用,使Sn 2+、Zn 2+/Cu 2+ 达到共同沉淀的目的,并减缓沉淀反应的收率,使材料的结晶度更好。为避免氯化亚锡水解,增大氯化亚锡的溶解度,优选在较低pH下配制混合溶液。
3、反应气体采用硫化氢和氮气的混合气,进一步控制硫化氢的浓度,从而控制沉淀反应速率,使材料的结晶度更好。
4、该负极材料为纳米级,且具有多孔结构,在充放电过程中,其内部多孔结构既可以缓冲充放电过程中带来的体积变化又可以增大电极与电解液的接触面积,具有高的容量、优良的循环和倍率性能。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1制备的具有多孔的CuS纳米颗粒负极材料的SEM图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种CuS钠离子电池负极材料,如图1所示,其外观为具有多孔的纳米颗粒,颗粒粒径为30nm-50nm,具体制备过程为:
(1)配制氯化亚锡和氯化铜的混合溶液,混合溶液的pH≤1,氯化亚锡的浓度为0.05mol/L,氯化铜的浓度为0.5mol/L;
(2)向混合溶液中加入聚乙烯吡咯烷酮-K30得到溶液A,溶液A中聚乙烯吡咯烷酮的浓度为10g/L;
(3)在不断搅拌下,向溶液A中通入反应气体,反应气体为硫化氢和氮气的混合气,硫化氢与氮气的体积比为0.01:1,反应气体的流量为每小时溶液A体积的3倍;
(4)反应完成后,停止通入反应气体,并陈化24h,固液分离收集沉淀物;
(5)将沉淀物加入到0.5mol/L的过硫化钠溶液中浸泡24h,固液分离后,将固体先用去离子水洗涤,再采用丙酮洗涤;
(6)洗涤完成后在60℃下真空干燥8h,制得具有多孔的CuS纳米颗粒作为钠离子电池负极材料。
实施例2
本实施例制备了一种ZnS钠离子电池负极材料,其外观为具有多孔的纳米颗粒,颗粒粒径为50nm-80nm,具体制备过程为:
(1)配制氯化亚锡和氯化锌的混合溶液,混合溶液的pH≤1,氯化亚锡的浓度为0.01mol/L,氯化锌的浓度为1mol/L;
(2)向混合溶液中加入聚乙烯吡咯烷酮-K60得到溶液A,溶液A中聚乙烯吡咯烷酮的浓度为15g/L;
(3),在不断搅拌下,向溶液A中通入反应气体,反应气体为硫化氢和氮气的混合气,硫化氢与氮气的体积比为0.05:1,反应气体的流量为每小时溶液A体积的2倍;
(4)反应完成后,停止通入反应气体,并陈化48h,固液分离收集沉淀物;
(5)将沉淀物加入到1mol/L的过硫化铵溶液中浸泡12h,固液分离后,将固体先用去离子水洗涤,再采用丙酮洗涤;
(6)洗涤完成后在60℃下真空干燥8h;
(7)干燥完成后将其加入到2g/mL的葡萄糖溶液中,进行水热反应,水热反应固液比为1g:1mL,反应温度为200℃,反应时间为2h,反应完成后,在惰性气氛500℃下反应5h,即得化学式为ZnS/C的钠离子电池负极材料。
实施例3
本实施例制备了一种CuS-ZnS钠离子电池负极材料,其外观为具有多孔的纳米颗粒,颗粒粒径为40nm-60nm,具体制备过程为:
(1)配制氯化亚锡、氯化铜、氯化锌的混合溶液,混合溶液的pH≤1,氯化亚锡的浓度为0.05mol/L,氯化铜和氯化锌的浓度均为0.5mol/L;
(2)向混合溶液中加入聚乙烯吡咯烷酮-K30得到溶液A,溶液A中聚乙烯吡咯烷酮的浓度为20g/L;
(3)在不断搅拌下,向溶液A中通入反应气体,反应气体为硫化氢和氮气的混合气,硫化氢与氮气的体积比为0.02:1,反应气体的流量为每小时溶液A体积的1倍;
(4)反应完成后,停止通入反应气体,并陈化24h,固液分离收集沉淀物;
(5)将沉淀物加入到0.5mol/L的过硫化钠溶液中浸泡24h,固液分离后,将固体先用去离子水洗涤,再采用丙酮洗涤;
(6)洗涤完成后在80℃下真空干燥2h,制得具有多孔的CuS-ZnS纳米颗粒作为钠离子电池负极材料。
试验例
取实施例1-3制得的钠离子电池负极材料和对应硫化物分别制备钠离子电池负极极片,并组装成扣式电池在电流密度为100mA/g、电压范围0.4-2.6V下进行测试,结果如表1所示。
表1
实施案例 首次充放电后的克容量mAh/g 100次充放电后的克容量mAh/g
实施例1 435.1 421.6
实施例2 546.7 533.7
实施例3 450.5 438.3
对比案例 首次充放电后的克容量mAh/g 50次充放电后的克容量mAh/g
硫化铜 415.6 392.9
硫化锌 510.8 481.7
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种金属硫化物钠离子电池负极材料,其特征在于:其为具有多孔的纳米颗粒,颗粒的粒径为5nm-500nm,所述金属硫化物钠离子电池负极材料为硫化锌或硫化铜中的至少一种。
  2. 如权利要求1所述的金属硫化物钠离子电池负极材料的制备方法,其特征在于,包括以下步骤:
    S1:配制氯化亚锡和金属盐的混合溶液,所述金属盐为锌盐或铜盐中的至少一种;
    S2:向所述混合溶液中加入聚乙烯吡咯烷酮得到溶液A;
    S3:向所述溶液A中通入反应气体,所述反应气体为硫化氢和氮气的混合气,反应结束后进行陈化,固液分离得到沉淀物;
    S4:将所述沉淀物加入到过硫化物溶液中浸泡,再固液分离,所得固体经洗涤和干燥,即得所述金属硫化物钠离子电池负极材料;所述过硫化物溶液为过硫化钠或过硫化铵中的一种或两种的溶液。
  3. 根据权利要求2所述的制备方法,其特征在于,步骤S1中,所述混合溶液中氯化亚锡的浓度为0.01-1mol/L,金属盐的金属离子浓度为0.1-2mol/L。
  4. 根据权利要求2所述的制备方法,其特征在于,步骤S1中,所述金属盐为氯化铜、氯化锌、硫酸铜或硫酸锌中的至少一种。
  5. 根据权利要求2所述的制备方法,其特征在于,步骤S2中,所述溶液A中聚乙烯吡咯烷酮的浓度为5-20g/L。
  6. 根据权利要求2所述的制备方法,其特征在于,步骤S3中,所述硫化氢和氮气的体积比为(0.001-1):1;所述混合气的流量为每小时溶液A体积的1-5倍。
  7. 根据权利要求2所述的制备方法,其特征在于,步骤S4中,所述过硫化物溶液的浓度为0.1-1mol/L;所述浸泡的时间为1-24h。
  8. 根据权利要求2所述的制备方法,其特征在于,步骤S4中,当所述固体不含铜时,在进行洗涤和干燥后,还进行碳化处理:将所述固体加入到碳源溶液中进行水热反 应,反应结束后在惰性气氛下热处理,即得。
  9. 根据权利要求8所述的制备方法,其特征在于,步骤S4中,所述碳源溶液的浓度为0.05-2g/mL;所述碳源溶液中的碳源为葡萄糖、淀粉、蔗糖、果糖、乳糖或半乳糖中的至少一种。
  10. 根据权利要求8所述的制备方法,其特征在于,步骤S4中,所述热处理的温度为200-550℃;所述热处理的时间为1-12h。
PCT/CN2022/111807 2021-10-28 2022-08-11 金属硫化物钠离子电池负极材料及其制备方法 WO2023071394A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112022000157.7T DE112022000157B4 (de) 2021-10-28 2022-08-11 Verfahren zur herstellung von metallsulfid-negativem material einer natriumionen-batterie
HU2400171A HUP2400171A1 (hu) 2021-10-28 2022-08-11 Fém-szulfid negatív elektród anyag nátriumion-akkumulátorhoz és elõállítási eljárása
US18/265,872 US11939230B1 (en) 2021-10-28 2022-08-11 Metal sulfide negative material of sodium ion battery and preparation method thereof
GB2309463.4A GB2616232A (en) 2021-10-28 2022-08-11 Metal sulfide negative electrode material for sodium ion battery, and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111259839.3 2021-10-28
CN202111259839.3A CN114229884B (zh) 2021-10-28 2021-10-28 金属硫化物钠离子电池负极材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2023071394A1 true WO2023071394A1 (zh) 2023-05-04

Family

ID=80743319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111807 WO2023071394A1 (zh) 2021-10-28 2022-08-11 金属硫化物钠离子电池负极材料及其制备方法

Country Status (6)

Country Link
US (1) US11939230B1 (zh)
CN (1) CN114229884B (zh)
DE (1) DE112022000157B4 (zh)
GB (1) GB2616232A (zh)
HU (1) HUP2400171A1 (zh)
WO (1) WO2023071394A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114229884B (zh) 2021-10-28 2023-05-09 广东邦普循环科技有限公司 金属硫化物钠离子电池负极材料及其制备方法
CN114824211B (zh) * 2022-04-24 2024-10-15 广东邦普循环科技有限公司 一种锡基包覆正极材料前驱体的方法及正极材料前驱体
CN114853075A (zh) * 2022-04-25 2022-08-05 多助科技(武汉)有限公司 大晶格间距的Mn-doped FeS/CN双金属硫化物材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016134765A1 (en) * 2015-02-26 2016-09-01 Westfälische Wilhelms-Universität Münster Electrode material for lithium-ion batteries and preparation method thereof
CN107069001A (zh) * 2017-04-01 2017-08-18 中南大学 一种蜂窝状硫化锌/碳复合负极材料及其制备方法
CN108288693A (zh) * 2017-12-22 2018-07-17 天津师范大学 一种钠离子电池负极材料锌锡双金属硫化物及其制备方法与应用
US20200153032A1 (en) * 2017-07-27 2020-05-14 Korea Advanced Institute Of Science And Technology Sodium ion storage material
CN113428890A (zh) * 2021-08-09 2021-09-24 陕西科技大学 一种多级结构CuS中空球、制备方法及其应用
CN114229884A (zh) * 2021-10-28 2022-03-25 广东邦普循环科技有限公司 金属硫化物钠离子电池负极材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317070B (zh) * 2017-05-16 2020-03-17 上海交通大学 锂空气电池阴极用尖晶石结构硫化物催化剂材料及其制备方法
CN109279647B (zh) * 2018-09-29 2020-12-01 中南大学 一种钠离子电池负极材料立方状纳米硫化锌锡的制备方法
CN110289416B (zh) * 2019-06-26 2022-02-01 中南大学 一种钠离子电池负极材料铋钼双金属硫化物的制备方法
CN110323428A (zh) * 2019-07-03 2019-10-11 上海电力学院 一种钠离子电池负极材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016134765A1 (en) * 2015-02-26 2016-09-01 Westfälische Wilhelms-Universität Münster Electrode material for lithium-ion batteries and preparation method thereof
CN107069001A (zh) * 2017-04-01 2017-08-18 中南大学 一种蜂窝状硫化锌/碳复合负极材料及其制备方法
US20200153032A1 (en) * 2017-07-27 2020-05-14 Korea Advanced Institute Of Science And Technology Sodium ion storage material
CN108288693A (zh) * 2017-12-22 2018-07-17 天津师范大学 一种钠离子电池负极材料锌锡双金属硫化物及其制备方法与应用
CN113428890A (zh) * 2021-08-09 2021-09-24 陕西科技大学 一种多级结构CuS中空球、制备方法及其应用
CN114229884A (zh) * 2021-10-28 2022-03-25 广东邦普循环科技有限公司 金属硫化物钠离子电池负极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SU DAWEI, ET AL.: "Improved electrochemical performance of Na‐ion batteries in ether‐based electrolytes: a case study of ZnS nanospheres", ADVANCED ENERGY MATERIALS, vol. 6, no. 2, 24 November 2015 (2015-11-24), XP055950210, DOI: 10.1002/aenm.201501785 *

Also Published As

Publication number Publication date
CN114229884A (zh) 2022-03-25
DE112022000157T5 (de) 2023-08-10
DE112022000157B4 (de) 2024-08-29
US11939230B1 (en) 2024-03-26
GB2616232A (en) 2023-08-30
GB202309463D0 (en) 2023-08-09
US20240101441A1 (en) 2024-03-28
HUP2400171A1 (hu) 2024-08-28
CN114229884B (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2023071394A1 (zh) 金属硫化物钠离子电池负极材料及其制备方法
CN111362254B (zh) 一种氮掺杂碳纳米管负载磷掺杂四氧化三钴复合材料的制备方法及应用
CN112018335B (zh) 复合型锂离子电池正极材料及锂离子电池正极以及锂电池、电池模组、电池包和车
CN108695495B (zh) 还原氧化石墨烯修饰三硫化二锑电池负极材料
CN111180700B (zh) 一种用于高性能钾硫电池正极N掺杂Co纳米团簇/N掺杂多孔碳/S复合材料的制备方法
CN107069001B (zh) 一种蜂窝状硫化锌/碳复合负极材料及其制备方法
Jiang et al. Rational design of MoSe2 nanosheet-coated MOF-derived N-doped porous carbon polyhedron for potassium storage
CN111646459A (zh) 一种硼掺杂石墨烯材料的制备方法及其应用
CN109713255B (zh) 一种高性能二维金属元素掺杂SnS2-石墨烯-S复合材料及其制备方法和应用
CN110767889A (zh) 一种锂硫电池正极材料的制备方法
CN110482604B (zh) 一种Cu2V2O7纳米棒钾离子电池正极材料、钾离子电池及其制备方法
CN112357956A (zh) 碳/二氧化钛包覆氧化锡纳米颗粒/碳组装介孔球材料及其制备和应用
CN113991084B (zh) 一种SnS-SnO2-GO@C异质结构复合材料及其制备方法和应用
CN108539170B (zh) 锂离子电池纳米片负极材料的形成方法
CN114242973A (zh) 富锰的钠离子正极材料及其制备方法和应用
CN113772718A (zh) 一种SnS-SnS2@GO异质结构复合材料及其制备方法和应用
CN117393715A (zh) 一种钠电池含异质结硫化物复合负极制备
CN112290018A (zh) 一种SnO2修饰的MoS2中空微球负载硫正极复合材料及其在锂硫电池中的应用
CN109346646B (zh) 一种新型锂硫电池隔膜材料、制备方法及应用
CN115188929A (zh) 氧化铅纳米颗粒锚定还原氧化石墨烯的制备方法及应用
CN111446439B (zh) S@MxSnSy@C复合正极活性材料及其制备和在锂硫电池中的应用
WO2018195837A1 (zh) 一种金属 - 硫电池及其制备方法
CN109309223B (zh) 一种Co3O4/Pd纳米复合电极材料及其制备方法
CN113193226B (zh) 一种调控二氧化钛/碳复合材料固体电解质界面膜的方法
WO2024152461A1 (zh) 一种水系镁离子正极材料羟基氧化镍/碳纳米管复合物及其制备方法和应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18265872

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202309463

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220811

WWE Wipo information: entry into national phase

Ref document number: P2400171

Country of ref document: HU