WO2023070894A1 - 一种干式精选机 - Google Patents

一种干式精选机 Download PDF

Info

Publication number
WO2023070894A1
WO2023070894A1 PCT/CN2021/138787 CN2021138787W WO2023070894A1 WO 2023070894 A1 WO2023070894 A1 WO 2023070894A1 CN 2021138787 W CN2021138787 W CN 2021138787W WO 2023070894 A1 WO2023070894 A1 WO 2023070894A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
eccentric
area
materials
roller mechanism
Prior art date
Application number
PCT/CN2021/138787
Other languages
English (en)
French (fr)
Inventor
张承臣
任晓伟
李恒盛
李朝朋
代丽丽
赵静
Original Assignee
沈阳隆基电磁科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111243149.9A external-priority patent/CN113798060A/zh
Priority claimed from CN202122569466.1U external-priority patent/CN216173206U/zh
Application filed by 沈阳隆基电磁科技股份有限公司 filed Critical 沈阳隆基电磁科技股份有限公司
Priority to AU2021470809A priority Critical patent/AU2021470809A1/en
Publication of WO2023070894A1 publication Critical patent/WO2023070894A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/10Magnetic separation acting directly on the substance being separated with cylindrical material carriers
    • B03C1/12Magnetic separation acting directly on the substance being separated with cylindrical material carriers with magnets moving during operation; with movable pole pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for

Definitions

  • the present application relates to the technical field of magnetic separation, in particular to a dry concentrator.
  • Iron ore is one of the main raw materials in the steel industry.
  • the progress of iron ore beneficiation technology and equipment is generally based on wet beneficiation.
  • the beneficiation stage of iron ore generally adopts wet magnetic separation process.
  • Some mine resources are located in water-scarce areas, such as Xinjiang, Inner Mongolia, Iran, Chile and other water-scarce areas.
  • the ore concentrator generally adopts dry roughing of iron ore, and then transports the dry concentrate to far away water areas for wet processing. Grinding and selection increases transportation costs. If the transportation distance is very long or there is no water available on the site, the mine resources here may not be able to be utilized.
  • this application proposes a dry concentrator, which aims to solve the problem that the existing iron ore concentrating stage adopts the wet magnetic separation process and needs to be transported to areas with water to increase transportation costs or cannot be used for concentrating.
  • This application proposes a dry type concentrating machine, which includes: a normal blowing path and an eccentric magnetic roller mechanism; wherein, the eccentric magnetic roller mechanism is partly arranged in the positive blowing path, and the positive The air blowing path is used to spray positive air blowing in the same direction as the material conveying direction to the surface of the eccentric magnetic roller mechanism, and the eccentric magnetic roller mechanism is used to convey materials and also to provide an eccentric rotating magnetic field; A feeding area is provided; a tailings treatment mechanism and a concentrate area are provided below the eccentric magnetic roller mechanism; under the conveying action of the eccentric magnetic roller mechanism, the materials in the feeding area are transported to the The rolling motion is carried out in the road, so that the materials are layered on the surface of the eccentric magnetic roller mechanism, so that the strong magnetic materials are arranged in the innermost layer, the weak magnetic materials are arranged in the middle layer, and the non-magnetic materials are arranged in the outermost layer.
  • the outermost non-magnetic material leaves the surface of the eccentric magnetic roller mechanism and blows into the tailings processing mechanism with the wind under the action of the positive blowing of the positive blowing path, and the non-magnetic material is processed by the tailings processing mechanism Settling treatment realizes the collection of non-magnetic materials, and the magnetic materials enter the concentrate area sequentially under the magnetic field and conveying action of the eccentric magnetic roller mechanism.
  • the eccentric magnetic roller mechanism includes: a magnetic roller and an eccentric magnetic system; wherein, the magnetic roller is connected with a cylinder driving member, which is used to drive the magnetic roller to rotate, so as to transport The material on the surface of the magnetic drum, so that the material is transported into the positive blowing path; the eccentric magnetic system is eccentrically arranged inside the magnetic drum, and the surface of the magnetic drum forms a magnetic separation area and an ore unloading area , the magnetic sorting area is set at the sorting area of the positive blowing path, so that the material is rolled over and the non-magnetic material is sorted under the action of the magnetic field and wind force; the eccentric magnetic system is rotatably set at the In the magnetic drum, the material on the surface of the magnetic drum will roll under the action of the rotating magnetic field.
  • the eccentric magnetic system is connected with a magnetic system driving member for driving the eccentric magnetic system to rotate.
  • the rotation direction between the eccentric magnetic system and the magnetic drum is opposite.
  • a material distribution plate is provided on one side of the normal blowing path under the eccentric magnetic roller mechanism, and several blanking plates are isolated on the side of the air outlet of the positive blowing path. area for the isolation of different magnetic materials.
  • one side of the material distribution plate is provided with a concentrate guide plate directly above the concentrate area, which is used to guide the falling magnetic materials;
  • an outlet adjustment plate is provided directly above the tailings treatment mechanism, which is rotatably connected to the material distribution plate for adjusting the air flow formed between the material distribution plate and the positive blowing path. The size of the discharge port in the air discharge area can then adjust the grade of the sorted material.
  • the tailings treatment mechanism includes: a gravity settling chamber and an air lock valve; wherein, the gravity settling chamber can be arranged below the normal blowing path, and the air lock valve and the air lock valve The gravity settling chambers are connected, the air lock valve is used to lock the air and discharge the gravity settling chamber, the gravity settling chamber is used to receive the wind carrying non-magnetic materials, and the non-magnetic materials Settling treatment is carried out so that the non-magnetic material is discharged into the air lock valve, and the non-magnetic material is discharged through the air lock valve.
  • the gravity settling chamber is provided with a settling area, and a feed air intake area, a material discharge area, and an air outlet area communicated with the settling area.
  • the air lock valve includes: an air lock cylinder and an impeller shaft; wherein, the air lock cylinder is provided with an inlet and an outlet; The axial direction of the cylinder is rotatably arranged inside the air lock cylinder, and the impeller shaft is provided with an impeller for rotating with the impeller shaft to drive the material from the inlet to the outlet place.
  • the above-mentioned dry classifying machine is provided with a cleaning brush and/or a cleaning scraper located on the outer periphery of the eccentric magnetic roller mechanism on the outside of the positive blowing path, and is used to adhere to the surface of the eccentric magnetic roller mechanism. materials for cleaning.
  • the materials in the feeding area are conveyed into the normal air blowing path and perform tumbling motion, so that the materials are layered on the surface of the eccentric magnetic roller mechanism, so that The magnetic materials are arranged in the innermost layer, and the non-magnetic materials are arranged in the outermost layer; the non-magnetic fine powder materials in the outermost layer are difficult to separate from the material layer in time due to their small particles and small centrifugal force.
  • the non-magnetic fine powder material part of the outer layer Under the action of the positive high-speed wind in the positive blowing path, that is, the positive blowing, the non-magnetic fine powder material part of the outer layer will be carried down by the high-speed wind, and most of the fine powder non-magnetic materials will be blown in the wind.
  • the eccentric magnetic roller mechanism Under the action of the eccentric magnetic roller mechanism, it leaves the surface of the eccentric magnetic roller mechanism and fills the space of the air passage. The fine powder non-magnetic materials in the air passage are taken away with the high-speed wind and fall into the tailings treatment mechanism.
  • the tailings treatment mechanism The tailings are settled to realize the collection and output of the tailings; the magnetic material concentrate falls to the concentrate area with the rotation of the eccentric magnetic roller mechanism and the reduction of the magnetic field, so that the ultrafine crushed materials are classified, efficiently and finely select.
  • the dry concentrator provides a complex separation environment coupled with multiple physical fields for dry magnetic separation of ultra-fine materials, in which the materials are mainly affected by gravity, centrifugal force, magnetic reversal force, positive wind force, magnetic field suction, etc.
  • the combined effect of force so as to achieve the purpose of classification, high efficiency and fine separation, solve the problem that the dry ultrafine powder materials after dry grinding and classification cannot be effectively dry separated, and then make full use of water shortage areas Iron ore resources provide technical feasibility.
  • Fig. 1 is the structural representation of the dry type pre-selector that the embodiment of the present application provides;
  • Fig. 2 is the schematic structural diagram of the principle structure of the dry preselector provided by the embodiment of the present application;
  • Fig. 3 is a front view of the reverse blowing path provided by the embodiment of the present application.
  • Fig. 4 is the sectional view of A-A place in Fig. 3;
  • Fig. 5 is a side view of the eccentric magnetic roller mechanism provided by the embodiment of the present application.
  • Fig. 6 is a top view of the eccentric magnetic roller mechanism provided by the embodiment of the present application.
  • Fig. 7 is the sectional view of B-B place in Fig. 6;
  • Fig. 8 is the left side view of the gravity settling chamber provided by the embodiment of the present application.
  • Fig. 9 is a sectional view at the E-E place in Fig. 8;
  • Fig. 10 is a front sectional view of the air lock valve provided by the embodiment of the present application.
  • Fig. 11 is a cross-sectional view at F-F in Fig. 10 .
  • the dry concentrator includes: a positive blowing path 1, an eccentric magnetic roller mechanism 2 and a frame body 3; wherein,
  • the frame body 3 plays a supporting role to support the eccentric magnetic roller mechanism 2 and the positive air blowing path 1 .
  • the eccentric magnetic roller mechanism 2 is partly arranged in the positive air blowing path 1, and the positive air blowing path 1 is used to blow the positive air blowing to the surface of the eccentric magnetic roller mechanism 2 in the same direction as the material conveying; the eccentric magnetic roller mechanism 2 is used to convey materials, and also to provide eccentric rotating magnetic field.
  • the normal blowing path 1 can be vertically arranged to provide vertically downward blowing normal blowing.
  • the eccentric magnetic roller mechanism 2 can be partially arranged in the positive blowing path 1, and the eccentric magnetic roller mechanism 2 and the positive blowing path 1 form a sorting area for sorting materials to realize the separation of materials; the eccentric magnetic roller mechanism 2 can make the materials Conveying along the surface of the eccentric magnetic roller mechanism 2, so that the material is conveyed into the positive blowing path 1, and the eccentric magnetic roller mechanism 2 can also provide an eccentric rotating magnetic field, so that the material rolls and the magnetic material can be adsorbed on the surface of the eccentric magnetic roller mechanism 2 It is conveyed with the rotating rolling surface of the eccentric magnetic roller mechanism 2, so as to prevent the magnetic materials from falling vertically under the action of gravity.
  • the eccentric magnetic roller mechanism 2 can realize the conveying of materials, and can provide a rotating magnetic field with different surface strengths to form a weak magnetic zone and a strong magnetic zone, so that the material is located in the normal blowing path 1 of the eccentric magnetic roller mechanism 2.
  • the inner strong magnetic area is flipped at a high speed to achieve stratification, and under the action of positive blowing, the non-magnetic material can leave the surface of the eccentric magnetic roller mechanism 2, and the magnetic material can be adsorbed under the action of the magnetic field, and the magnetic field strength can be changed.
  • the whereabouts of magnetic materials can be realized, that is, the separation of materials can be realized.
  • the blowing direction provided by the positive blowing path 1 is the same as the conveying direction of the material, that is, the blowing direction is from top to bottom, and the material is conveyed downward under the conveying action of the gravity and the eccentric magnetic roller mechanism 2.
  • the blowing direction of the positive blowing can also be an oblique direction, and it only needs to provide a component that is vertically downward, that is, the same as the conveying direction of the material; It is a non-metallic air path, that is, the outer plate forming the positive blowing path 1 can be made of non-metallic materials such as glass fiber reinforced plastics, polyvinyl chloride, polychloride, etc., so as to avoid eddy currents generated by the material, thereby avoiding the heating of the positive blowing path 1; To improve the service life of the positive blowing path 1, preferably, the inner wall of the positive blowing path 1 can be provided with a wear-resistant sheet, especially at the position in contact with the material.
  • the wear-resistant sheet can be a wear-resistant ceramic sheet or other wear-resistant sheets , which is not limited in this embodiment.
  • a feeding area 4 above the eccentric magnetic roller mechanism 2 which can be supported by the frame body 3 for receiving materials so that the materials can be fed automatically under the action of gravity
  • the zone 4 is conveyed onto the surface of the eccentric magnetic roller mechanism 2 .
  • the feeding area 4 can be set on one side of the air inlet of the positive blowing path 1 (the right side as shown in Figure 1), so that the material falls to the side of the eccentric magnetic roller mechanism 2 through the feeding area 4 under the action of gravity.
  • the surface is transported into the positive blowing path 1 under the rolling action of the eccentric magnetic roller mechanism 2, and the feeding area 4 and the positive blowing path 1 can share the middle partition plate.
  • the feed inlet (upper end as shown in Figure 1) of the feed area 4 can be connected with the external feeder so as to realize the input of the material; for the input of the buffer material, preferably, the feed area 4 places are provided with feeding slides 41, which are used to buffer the materials input into the feeding area 4; the feeding slides 41 can be arranged obliquely on the inner wall of the feeding area 4, so as to guide and buffer the materials, so that After buffering, the material falls onto the surface of the eccentric magnetic roller mechanism 2; preferably, the feeding slide 41 is rotatably connected to the inner wall of the feeding area 4 to adjust its buffering angle.
  • the feeding area 4 can be a non-metallic feeding area, that is, the outer plates that form the feeding area 4 can be made of glass fiber reinforced plastics, polyvinyl chloride, polychloride Propylene and other non-metallic materials are used to avoid the eddy current of the material, thereby avoiding the heating of the feeding area 4; in order to improve the service life of the feeding area 4, preferably, the inner wall of the feeding area 4 can be provided with a wear-resistant sheet, especially At the position in contact with the material, the wear-resistant sheet can be a wear-resistant ceramic sheet or other wear-resistant sheets, which are not limited in this embodiment.
  • the particle size of the material may be an ultrafine powder material of about 0-100 mesh to 500 mesh, or other materials, which are not limited in this embodiment.
  • tailings treatment mechanism 5 and concentrate area 6 are provided below the eccentric magnetic roller mechanism 2, both of which can be supported by frame body 3 so that non-magnetic materials in the material fall into the
  • the tailings processing mechanism 5 is used to settle the tailings to realize the collection and output of the tailings; wherein, the magnetic materials fall into the concentrate area 6 as concentrates.
  • the tailings treatment mechanism 5 and the concentrate area 6 can be arranged sequentially from left to right.
  • the magnetic field strength of the surface of the eccentric magnetic roller mechanism 2 directly above the concentrate area 6 is smaller than the magnetic field strength of the surface of the eccentric magnetic roller mechanism 2 directly above the tailings treatment mechanism 5, so that The magnetic material can be transported to the concentrate area 6 under the action of the magnetic field suction on the surface of the eccentric magnetic roller mechanism 2 , and the magnetic material can fall into the concentrate area 6 due to the reduction of the magnetic field suction.
  • the material in the feeding area 4 is transported to the positive blowing path 1 and undergoes tumbling motion; Stratification, so that the magnetic materials are arranged in the innermost layer, and the non-magnetic materials are arranged in the outermost layer; the non-magnetic fine powder materials in the outermost layer are small in size and subjected to small centrifugal force, so it is difficult to remove them from the material layer in time.
  • the non-magnetic fine powder material part of the outer layer will be moved downward with the high-speed wind, and most of the fine powder non-magnetic The magnetic material will leave the surface of the eccentric magnetic roller mechanism 2 under the action of the wind, and fill the space of the air path.
  • the fine powder non-magnetic material in the air path will be taken away by the high-speed wind and fall into the tailings treatment mechanism 5 Inside, the tailings treatment mechanism 5 settles the tailings to realize the collection and output of the tailings; the magnetic material concentrate falls to the concentrate area 6 as the eccentric magnetic roller mechanism 2 rotates and the magnetic field decreases, so that the ultra-fine crushed materials A hierarchical, efficient and fine sorting is obtained.
  • the square marks in the material represent non-magnetic materials, and the triangle marks represent magnetic materials.
  • Fig. 1 and Fig. 2 be provided with the cleaning hair brush 7 and/or cleaning scraper 8 that are positioned at the eccentric magnetic roller mechanism 2 outer periphery of positive air blowing path 1, be used for cleaning the material attached to the surface of eccentric magnetic roller mechanism 2. clean up.
  • the cleaning brush 7 and/or the cleaning scraper 8 can be supported on the frame body 3 by a support frame, and the cleaning brush 7 and the cleaning scraper 8 can be arranged in the weak magnetic field area of the eccentric magnetic roller mechanism 2, so that After the materials are sorted, the materials attached to the surface of the eccentric magnetic roller mechanism 2 are cleaned; In the magnetic field weakening area, and the cleaning scraper 8 is arranged under the cleaning brush 7, so as to scrape the material first and then clean it, thereby ensuring the effect of material cleaning.
  • the gap between the cleaning brush 7 and the cleaning scraper 8 and the eccentric magnetic roller mechanism 2 is adjustable, for example, the cleaning brush 7 and the cleaning scraper 8 can be connected to the support frame through a telescopic plate , to clean a small amount of material attached to the surface of the eccentric magnetic roller mechanism 2.
  • the material of the cleaning brush 7 can be nylon, and the material of the cleaning blade 8 can be rubber or polyurethane.
  • the side (right side as shown in Fig. 1) of the normal air blowing path 1 is provided with a distribution plate 10 below the eccentric magnetic roller mechanism 2,
  • One side of the air inlet of Road 1 (the lower end as shown in Figure 1) is isolated to form several feeding areas for isolating different magnetic materials.
  • the material distribution plate 10 can be arranged on the frame body 3, so that the right side of the air blowing path 1 is partitioned below the eccentric magnetic roller mechanism 2; in this embodiment, there is one material distribution plate 10, so as to isolate There are two blanking areas, the two blanking areas can be respectively the air outlet discharge area 103 on the left and the concentrate discharge area 104 on the right, which correspond to the tailings treatment mechanism 5 and the concentrate area 6 respectively,
  • the separated magnetic materials that is, non-magnetic materials and magnetic materials, are respectively transported to the tailings processing mechanism 5 and the concentrate area 6, and the material distribution plate 10 is used to isolate different magnetic materials; of course, the material distribution
  • the number of boards 10 can also be other numbers such as multiple.
  • the distributing plate 10 is adjustable along the horizontal direction (relative to the position shown in Figure 1) on the frame body 3 below the eccentric magnetic roller mechanism 2 to adjust The position is isolated in the horizontal direction; of course, the material distribution plate 10 can also be a telescopic plate structure, which is used to adjust the height up and down, and adjust the size of the gap between the material distribution plate 10 and the eccentric magnetic roller mechanism 2 .
  • the side wall of the material distribution plate 10 can be provided with a wear-resistant sheet, especially at the position in contact with the material.
  • the wear-resistant sheet can be a wear-resistant ceramic sheet or other The wear-resistant sheet is not limited in this embodiment.
  • one side (right side as shown in Fig. 1) of material distribution plate 10 is provided with concentrate guide plate 101 directly above described concentrate zone 6, is used for the magnetic material that falls Orientation is carried out so that it falls into the concentrate area 6 to prevent magnetic materials from falling into the gap between the concentrate area 6 and the distribution plate 10 .
  • the concentrate guide plate 101 is rotatably connected to the material distribution plate 10, so as to adjust the falling angle and falling position of the magnetic material.
  • the height position of the concentrate guide plate 101 can be adjusted along with the distribution plate 10 to adjust its height position, and further adjust the height position for guiding materials.
  • the other side of the material distribution plate 10 (the left side as shown in Fig. 1 ) is provided with an outlet regulating plate 102 directly above the tailings treatment mechanism 5, which is rotatably connected to the distribution material On the plate 10, it is used to adjust the size of the outlet of the air outlet area formed between the material distribution plate 10 and the positive blowing path 1; the larger the opening, the greater the air volume of the air outlet area, and the wind speed at the air outlet area. The larger it is, the more non-magnetic powdery materials can fall to the air discharge area, so that the grade of magnetic materials separated by 6 points in the concentrate area is higher.
  • a material passing gap 9 can be provided between the material distribution plates 10, so that the material can be transported to the positive blowing path 1 or outside the positive blowing path 1 along the surface of the eccentric magnetic roller mechanism 2, and can also be transported to the positive blowing path 5 of the concentrate area 5.
  • the materials in the feeding area 4 are transported to the positive blowing path 1, and perform tumbling movement, and some non-magnetic materials, weak magnetic materials and strong magnetic materials leave the positive blowing path under the magnetic field and conveying action of the eccentric magnetic roller mechanism 2 1. Under the magnetic field and conveying action of the eccentric magnetic roller mechanism 2 and the action of gravity, non-magnetic materials and magnetic materials enter the tailings processing mechanism 5 and the concentrate area 6 in sequence.
  • the positive blowing path 1 includes: an air inlet area 11, an air outlet blanking area 12 and a sorting area 13; wherein, the air inlet area 11 is provided with the upper side of the eccentric magnetic roller mechanism 2; The area 12 is set on the lower side of the eccentric magnetic roller mechanism 2; the sorting area 13 is set between the air inlet area 11 and the air outlet blanking area 12.
  • the eccentric magnetic roller mechanism 2 includes: a magnetic roller 21 and an eccentric magnetic system 22; wherein, the magnetic roller 21 is connected with a cylinder driver 23 for driving the magnetic roller 21 to rotate, so as to Convey the material on the surface of the magnetic drum 21, so that the material is transported into the positive blowing path 1; the eccentric magnetic system 22 is eccentrically arranged inside the magnetic drum 21, so that the surface of the magnetic drum 21 forms a strong magnetic area and a weak magnetic area, wherein the strong magnetic area can be As the magnetic separation area C, the weak magnetic area is used as the ore unloading area D; the eccentric magnetic system 22 is rotatably arranged in the magnetic drum 21, so that the materials on the surface of the magnetic drum 21 perform tumbling motion under the action of the rotating magnetic field; The sorting area C is set at the sorting area 13 of the forward blowing path 1, so that the materials can be tumbled and sorted under the combined action of gravity, centrifugal force, magnetic turning force, wind force,
  • the magnetic drum 21 can be a cylindrical structure.
  • the magnetic drum 21 can be a non-metallic cylinder, and its material can be non-metallic materials such as glass fiber reinforced plastics, polyvinyl chloride, and polyvinyl chloride.
  • the outer wall of the magnetic drum 21 can be provided with a wear-resistant sheet, especially the position in contact with the material, which is wear-resistant
  • the sheet may be a wear-resistant ceramic sheet or other wear-resistant sheets, which are not limited in this embodiment.
  • the magnetic drum 21 can be connected with a cylinder driving member 23, which is used to drive the magnetic drum 21 to rotate, so as to transport the material on the surface of the magnetic drum 21, and then the material is transported to the positive blowing path 1; in this embodiment, as shown in Figure 2
  • the magnetic cylinder 21 rotates counterclockwise so that it is transported counterclockwise along the upper outer wall to the positive blowing path 1 on the left side of the magnetic cylinder 21; of course, if the positive blowing path 1 is located on the right side of the magnetic cylinder 21, the magnetic cylinder 21 can be Turn clockwise so that the material falls clockwise to be transported to the right air blowing path for sorting;
  • the cylinder driving part 23 can be a cylinder geared motor, and the cylinder driving part 23 can pass through the sprocket
  • the transmission mechanism 25 is connected with the magnetic cylinder 21; the rotational speed range of the cylinder driving member 23 is adjustable from 0 to 500 r/min.
  • the eccentric arrangement between the eccentric magnetic system 22 and the magnetic cylinder 21, that is to say, the two are not coaxially arranged, so that the outer surface of the magnetic cylinder 21 can form a strong magnetic area and a weak magnetic field.
  • the axis of the eccentric magnetic system 22 and the magnetic drum 21 can be on the same horizontal line, so that the upper part can be transported with the magnetic drum 21, and a small part of non-magnetic materials left over can be left behind with the weakening of the magnetic field in the lower part
  • the magnetic materials and magnetic materials fall in sequence during the counterclockwise rotation of the materials, and fall from the left and right sides of the material distribution plate 10 to the tailings treatment mechanism 5 and the concentrate area 6 respectively; wherein, the magnetic separation area C is set at the front blowing path 1
  • There are 13 sorting areas so that the materials can be tumbled and sorted under the compound action of gravity, centrifugal force, magnetic turning force, wind force, magnetic field suction, etc., so that the materials can be layered and the separation between non-magnetic materials and magnetic materials can be realized.
  • the eccentricity of the two can be determined according to the actual situation, which is not limited in this embodiment.
  • the eccentric magnetic system 22 is rotatably arranged in the magnetic drum 21 to provide a rotating magnetic field so that the material can be turned over, especially, the material can be turned over at a high speed in the strong magnetic area to realize the stratification of different materials.
  • the eccentric magnetic system 22 can be connected with a magnetic system driver 24 for driving the eccentric magnetic system 22 to rotate; in this embodiment, between the eccentric magnetic system 22 and the magnetic drum 21 The direction of rotation is opposite, and the eccentric magnetic system 22 can rotate clockwise, which can increase the relative rotation speed between the two and improve the material layering effect.
  • the eccentric magnetic system 22 can be a 360-degree all-magnetic structure with N-S alternate arrangement;
  • the magnetic system driving part 24 can be a 4-pole motor, which drives the eccentric magnetic system 22 to rotate at high speed, and the speed range is adjustable from 0-3000r/min.
  • the magnetic drum 21 there is a gap between the magnetic drum 21 and the bottom of the feeding area 4, which can be 2mm, so that the magnetic drum 21 can rotate freely, and then realize the conveying of the material, so that the material is synchronized with the magnetic drum 21 Turn counterclockwise.
  • the tailings treatment mechanism 5 includes: a gravity settling chamber 51 and an air lock valve 52; wherein, the gravity settling chamber 51 can be arranged in the air outlet blanking area 12 and the air outlet area 1 of the positive blowing path 1 Below the air outlet and discharge area 103 on one side of the blanking area 12, the air lock valve 52 is connected to the gravity settling chamber 51, and the gravity settling chamber 51 is used to receive the wind carrying non-magnetic materials and settle them process, so that the non-magnetic material is discharged into the air lock valve 52, and the air lock is performed through the air lock valve 52 to discharge the non-magnetic material.
  • the gravity settling chamber 51 can be welded by steel plates, and the inner wall of the gravity settling chamber 51 can be provided with a wear-resistant sheet, especially at the contact with the material, the wear-resistant sheet can be a wear-resistant ceramic sheet, or can be other wear-resistant Grinding discs are not limited in this embodiment.
  • a settling area 513 can be provided in the gravity settling chamber 51, and a feed air inlet area 511, a discharge area 512, and an air discharge area 514 communicated with the settling area 513.
  • the wind area 511 receives the non-magnetic material and wind, and enters into the settling area 513, and the non-magnetic material is settled through the settling area 513, and part of the non-magnetic material falls into the discharge area 512 set at the bottom of the settling area 513 and is discharged.
  • the feed air intake area 511 can be connected with the air outlet blanking area 12 and the air outlet discharge area 103, and the non-magnetic materials and wind enter the settlement area 513 from the feed intake area 511, and the cross-sectional area of the settlement area 513 Larger than the cross-sectional area of the feed air inlet area 511, the wind speed is reduced to reduce the material-carrying capacity of the wind to achieve material settlement, that is, due to the sudden increase in the cross-sectional area of the settling area 513, the wind speed decreases, and the material-carrying capacity of the wind decreases.
  • the air discharge area 514 can be connected with an external dust collector, and the wind with materials is filtered by the dust collector and discharged into the In the atmosphere, the material is collected by a dust collector.
  • the air lock valve 52 includes: an air lock cylinder 521 and an impeller shaft 522; wherein, the top of the air lock cylinder 521 is provided with a feed port 5211, and the bottom is provided with a discharge port 5212; the impeller shaft 522 is arranged along the lock
  • the axial direction of the air cylinder 521 is rotatably arranged inside the air lock cylinder 521, and the impeller shaft 522 is provided with an impeller 523 for rotating with the impeller shaft 522 to drive the material from the feed port 5211 to the Outlet 5212.
  • the air lock cylinder 521 can be a horizontal cylinder structure with openings at both ends, and both ends (the left and right ends as shown in FIG. 10 ) can be provided with end caps 524 to realize the closure of the air lock cylinder 521.
  • the top of the air lock 521 is provided with a feed port 5211, and the bottom is provided with a discharge port 5212 to realize the receiving and discharging of materials;
  • the connection of the feed port 5211 and the discharge port 5212 can be provided with flanges to be detachably connected to other parts such as the discharge area 512 of the gravity settling chamber 51 through the upper flange of the feed port 5211 Above; the connection between the flange and the material inlet 5211 and the material outlet 5212 can be through welding or other methods, which are not limited in this embodiment.
  • the impeller shaft 522 can be coaxially arranged in the air lock cylinder 521, and both ends of the impeller shaft 522 can be rotatably passed through the end cover 524 to support the impeller shaft 522 through the end cover 524; the impeller shaft 522 is set There are several sets of impellers 523 spaced along the axial direction, and each set of impellers is multiple and scattered along the circumference of the impeller shaft 522, so as to transport materials, avoid accumulation and blockage of materials, and also play a role in locking Wind effect.
  • the impeller shaft 522 is connected with a driving structure to drive the impeller shaft 522 to rotate.
  • the driving mechanism can be a hand wheel 525 for manual driving; of course, the driving mechanism can also be a motor for electric driving.
  • this dry type concentrator the material is received by the feeding area 4, the material is buffered by the feeding slide 41 from the feeding area 4, and then falls onto the surface of the magnetic drum 21, and the magnetic drum 21 rotates counterclockwise to carry the material through the process.
  • the material gap 9 enters the sorting area 13.
  • the material performs a high-speed tumbling motion under the high-speed rotation of the eccentric magnetic system 22 of the N-S alternating magnetic field.
  • the magnetic material is arranged in the innermost layer, and the non-magnetic material is arranged in the outermost layer; the non-magnetic fine powder material in the outermost layer is difficult to separate from the material layer in time due to its small particle size and small centrifugal force. Therefore, under the action of the positive high-speed wind in the positive blowing path 1, that is, the positive blowing, the non-magnetic fine powder material part of the outer layer will be moved downward with the high-speed wind, and most of the fine powder non-magnetic materials will be blown. Under the action of the wind, it leaves the surface of the eccentric magnetic roller mechanism 2 and fills the space of the air passage.
  • the fine powder non-magnetic materials in the air passage are taken away with the high-speed wind and fall into the tailings treatment mechanism 5, and the tailings
  • the ore processing mechanism 5 settles the tailings to realize the collection and output of the tailings; the magnetic material concentrate falls to the concentrate area 6 with the rotation of the eccentric magnetic roller mechanism 2 and the reduction of the magnetic field, so that the ultrafine crushed materials are classified efficient, precise sorting.
  • the material in the feeding area 4 is transported to the positive air blowing path 1 and undergoes tumbling motion, so that the material is transported on the eccentric magnetic roller mechanism 2.
  • the surface of mechanism 2 is layered, so that the magnetic materials are arranged in the innermost layer, and the non-magnetic materials are arranged in the outermost layer; the non-magnetic fine powder materials in the outermost layer are small in size and subjected to small centrifugal force, so it is difficult to get them from
  • the material layer is separated in time, so under the action of the positive high-speed wind in the positive blowing path 1, that is, the positive blowing, the non-magnetic fine powder material part of the outer layer will be moved downward with the high-speed wind, and most The fine powdery non-magnetic material will leave the surface of the eccentric magnetic roller mechanism 2 under the action of the wind, and fill the space of the air path.
  • the fine powder non-magnetic material in the air path will be taken away by the high-speed wind and fall into the tail In the ore processing mechanism 5, the tailings processing mechanism 5 settles the tailings to realize the collection and output of the tailings; the magnetic material concentrate falls to the concentrate area 6 as the eccentric magnetic roller mechanism 2 rotates and the magnetic field decreases, thereby Super finely crushed materials are classified, efficiently and finely sorted.
  • the dry concentrator provides a complex separation environment coupled with multiple physical fields for dry magnetic separation of ultra-fine materials, in which the materials are mainly affected by gravity, centrifugal force, magnetic reversal force, positive wind force, magnetic field suction, etc.
  • the combined effect of force so as to achieve the purpose of classification, high efficiency and fine separation, solve the problem that the dry ultrafine powder materials after dry grinding and classification cannot be effectively dry separated, and then make full use of water shortage areas Iron ore resources provide technical feasibility.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a It is a detachable connection or an integral connection; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components.
  • installation should be understood in a broad sense, for example, it can be a fixed connection or a It is a detachable connection or an integral connection; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components.

Abstract

一种干式精选机,包括:正吹风路(1)和偏心磁滚机构(2);其中,偏心磁滚机构(2)部分设置在正吹风路(1)内,正吹风路(1)用于向偏心磁滚机构(2)表面喷吹与物料输送方向相同的正吹风,偏心磁滚机构(2)用于输送物料,还用于提供偏心旋转磁场;偏心磁滚机构(2)的上方设有入料区(4);偏心磁滚机构(2)的下方设置有尾矿处理机构(5)和精矿区(6)。提供了一个多物理场耦合的复杂分选环境进行超细碎物料的干式磁力分选,物料在其中主要受重力、离心力、磁翻转力、正向风力、磁场吸力等多力复合作用,从而达到分级式、高效、精细分选的目的,解决了干磨分级后的干式超细粉状物料的无法有效进行干式分选的问题。

Description

一种干式精选机
相关申请的交叉引用
本申请要求于2021年10月25日提交中国国家知识产权局的申请号为202111243149.9、名称为“一种干式精选机”以及于2021年10月25日提交中国国家知识产权局的申请号为202122569466.1、名称为“一种干式精选机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及磁选技术领域,具体而言,涉及一种干式精选机。
背景技术
随着我国经济的持续快速发展,原材料的需求量持续居高不下,铁矿石作为钢铁行业主要原材料之一,其选矿工艺经过多年来的工艺和设备的不断创新换代,而得到了长远的进步。但铁矿的选矿工艺和设备的进步一般都是基于湿法选矿,比如铁矿的精选阶段一般都是采用湿式磁选工艺。有些矿山资源所处缺水地区,比如新疆、内蒙、伊朗、智利等缺水地区,选矿厂一般都采用铁矿石干式粗选后,将干精矿运输至很远的有水地区进行湿式磨矿精选,增加了运输成本。如果运距很远或者现场面临无水可用的情况下,此处的矿山资源可能就无法得到利用。
发明内容
鉴于此,本申请提出了一种干式精选机,旨在解决现有铁矿精选阶段采用湿式磁选工艺需运输至有水地区增大运输成本或无法进行精选利用的问题。
本申请提出了一种干式精选机,该干式精选机包括:正吹风路和偏心磁滚机构;其中,所述偏心磁滚机构部分设置在所述正吹风路内,所述正吹风路用于向所述偏心磁滚机构表面喷吹与物料输送方向相同的正吹风,所述偏心磁滚机构用于输送物料,还用于提供偏心旋转磁场;所述偏心磁滚机构的上方设有入料区;所述偏心磁滚机构的下方设置有尾矿处理机构和精矿区;在所述偏心磁滚机构的输送作用下,所述入料区的物料输送至所述正吹风路内并进行翻滚运动,以使物料在所述偏心磁滚机构的表面分层,使得强磁性物料排布在最里层,弱磁性物料排布在中层,非磁性物料排布在最外层,最外层的非磁性物料在正吹风路的正吹风的作用下离开所述偏心磁滚机构的表面随风吹入至尾矿处理机构内,通过所述尾矿处理机构对非磁性物料进行沉降处理,实现非磁性物料的收集,磁性物料在所述偏心磁滚机构的磁场和输送作用下依次进入精矿区。
进一步地,上述干式精选机,所述偏心磁滚机构包括:磁滚筒和偏心磁系;其中,所述磁滚筒连接有筒体驱动件,用于驱动所述磁滚筒进行转动,以输送所述磁滚筒表面的物料,以使物料输送至所述正吹风路内;所述偏心磁系偏心设置在所述磁滚筒的内部,所述 磁滚筒的表面形成磁分选区域和卸矿区域,所述磁分选区域设置在所述正吹风路的分选区处,以使物料在磁场和风力作用下进行物料翻滚和非磁性物料的分选;所述偏心磁系可转动地设置在所述磁滚筒内,以使所述磁滚筒表面的物料在旋转的磁场作用下进行翻滚运动。
进一步地,上述干式精选机,所述偏心磁系连接有磁系驱动件,用于驱动所述偏心磁系转动。
进一步地,上述干式精选机,所述偏心磁系与所述磁滚筒之间的转动方向相反。
进一步地,上述干式精选机,所述偏心磁滚机构的下方在所述正吹风路的一侧设有分料板,在所述正吹风路的出风口一侧隔离形成若干个下料区,用于进行不同磁性物料的隔离。
进一步地,上述干式精选机,所述分料板的一侧在所述精矿区的正上方设有精矿导向板,用于对下落的磁性物料进行导向;所述分料板的另一侧在所述尾矿处理机构的正上方设有出口调节板,其可转动地连接在所述分料板上,用于调节所述分料板和所述正吹风路之间形成的出风出料区的排出口的大小,进而调节分选物料品位。
进一步地,上述干式精选机,所述尾矿处理机构包括:重力沉降室和锁风阀;其中,所述重力沉降室可设置在所述正吹风路的下方,所述锁风阀与所述重力沉降室相连接,所述锁风阀用于对所述重力沉降室进行锁风并进行排料,所述重力沉降室用于接收携带有非磁性物料的风,并对非磁性物料进行沉降处理,以使非磁性物料排入至所述锁风阀内,通过锁风阀排出非磁性物料。
进一步地,上述干式精选机,所述重力沉降室设有沉降区,以及与所述沉降区相连通的进料进风区、排料区和出风出料区。
进一步地,上述干式精选机,所述锁风阀包括:锁风筒和叶轮轴;其中,所述锁风筒设有进料口和出料口;所述叶轮轴沿所述锁风筒的轴向可转动地设置在所述锁风筒的内部,并且,所述叶轮轴上设有叶轮,用于随所述叶轮轴转动,以将物料自进料口处带动至出料口处。
进一步地,上述干式精选机,在所述正吹风路的外部设有位于所述偏心磁滚机构外周的清扫毛刷和/或清扫刮板,用于对所述偏心磁滚机构表面附着的物料进行清扫。
本申请提供的干式精选机,在偏心磁滚机构的输送作用下,入料区的物料输送至正吹风路内并进行翻滚运动,以使物料在偏心磁滚机构的表面分层,使得磁性物料排布在最里层,非磁性物料排布在最外层;最外层的非磁性细粉状物料由于颗粒小,所受的离心力小,很难从料层中及时分离开,故在正吹风路中的正向高速风即正吹风的作用下,外层的非磁性细粉状物料部分会随着高速风被带起向下运动,大部分细粉状非磁性物料会在风的作用下离开偏心磁滚机构表面,在风路的空间内布满,风路里的细粉状非磁性物料随着高速风 被带走并落入尾矿处理机构内,尾矿处理机构对尾矿进行沉降处理,实现尾矿的收集和输出;磁性物料精矿随着偏心磁滚机构旋转和磁场降低而落到精矿区,从而超细碎的物料得到了分级式、高效、精细的分选。
该干式精选机提供了一个多物理场耦合的复杂分选环境进行超细碎物料的干式磁力分选,物料在其中主要受重力、离心力、磁翻转力、正向风力、磁场吸力等多力复合作用,从而达到分级式、高效、精细分选的目的,解决了干磨分级后的干式超细粉状物料的无法有效进行干式分选的问题,进而为充分利用缺水地区的铁矿资源提供技术可行性。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本申请实施例提供的干式预选机的结构示意图;
图2为本申请实施例提供的干式预选机的原理结构示意图;
图3为本申请实施例提供的反吹风路的主视图;
图4为图3中A-A处的剖面图;
图5为本申请实施例提供的偏心磁滚机构的侧视图;
图6为本申请实施例提供的偏心磁滚机构的俯视图;
图7为图6中B-B处的剖面图;
图8为本申请实施例提供的重力沉降室的左视图;
图9为图8中E-E处的剖面图;
图10为本申请实施例提供的锁风阀的主视剖面图;
图11为图10中F-F处的剖面图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
参见图1至图2,其示出了本申请实施例提供的干式精选机的结构示意图。如图所示,该干式精选机包括:正吹风路1和偏心磁滚机构2和架体3;其中,
继续参见图1,架体3起到支撑作用,以对偏心磁滚机构2、正吹风路1等进行支撑。
继续参见图1和图2,偏心磁滚机构2部分设置在正吹风路1内,正吹风路1用于向偏 心磁滚机构2表面喷吹与物料输送方向相同的正吹风;偏心磁滚机构2用于输送物料,还用于提供偏心旋转磁场。具体地,正吹风路1可以竖直设置,以提供竖直向下喷吹的正吹风。偏心磁滚机构2可部分设置在正吹风路1内,偏心磁滚机构2和正吹风路1组成一个用于分选物料的分选区域,以实现物料的分离;偏心磁滚机构2可使得物料沿偏心磁滚机构2的表面进行输送,使得物料输送至正吹风路1内,偏心磁滚机构2还可提供偏心旋转磁场,使得物料翻滚并可将磁性物料吸附在偏心磁滚机构2的表面以随偏心磁滚机构2的旋转滚动表面进行输送,避免磁性物料在重力的作用下垂直下落。在本实施例中,偏心磁滚机构2可实现物料的输送,并可提供表面强度不一的旋转磁场即可形成弱磁区和强磁区,以使物料在偏心磁滚机构2位于正吹风路1内的强磁区处进行高速翻转以实现分层,并在正吹风的作用下可使得非磁性物料离开偏心磁滚机构2表面,在磁场的作用下可实现磁性物料的吸附,并磁场强度变化作用下实现磁性物料的下落,即实现物料的分选。其中,正吹风路1提供的风吹方向与物料的输送方向相同,即风吹方向为自上至下,而物料在重力和偏心磁滚机构2的输送作用下向下输送,当然,正吹风路1提供的风吹方向亦可为倾斜方向,只需提供有竖直向下即与物料的输送方向相同的分量即可;为避免正吹风路1使用过程中的发热,正吹风路1可以为非金属风路,即围设形成正吹风路1的外部板材可以为玻璃钢、聚氯乙烯、聚氯丙烯等非金属材料,以避免物料产生涡流,进而可避免正吹风路1的发热;为提高正吹风路1的使用寿命,优选地,正吹风路1的内壁可设有耐磨片,尤其是与物料接触的位置,耐磨片可以为耐磨陶瓷片,亦可为其他耐磨片,本实施例中对其不做任何限定。
继续参见图1和图2,偏心磁滚机构2的上方设有入料区4,入料区4可以通过架体3进行支撑,用于接收物料,以使物料在重力的作用下自入料区4输送至偏心磁滚机构2的表面上。具体地,入料区4可设置在正吹风路1进风口的一侧(如图1所示的右侧),以便物料经过入料区4在重力的作用下下落至偏心磁滚机构2的表面,在偏心磁滚机构2的滚动作用下输送至正吹风路1内,并且,入料区4和正吹风路1可共用中间间隔板。在本实施例中,入料区4的入料口(如图1所示的上端)可与外部给料机相连接,以便实现物料的输入;为缓冲物料的输入,优选地,入料区4处设有入料溜板41,用于对入料区4输入的物料进行缓冲;该入料溜板41可以倾斜设置在入料区4的内壁上,以便对物料进行导向和缓冲,使得物料缓冲后落入偏心磁滚机构2的表面;优选地,入料溜板41可转动地连接在入料区4的内壁上,以调节其缓冲角度。其中,为避免入料区4使用过程中的发热,优选地,入料区4可以为非金属入料区,即围设形成入料区4的外部板材可以为玻璃钢、聚氯乙烯、聚氯丙烯等非金属材料,以避免物料产生涡流,进而可避免入料区4的发热;为提高入料区4的使用寿命,优选地,入料区4的内壁可设有耐磨片,尤其是与物料接触的 位置,耐磨片可以为耐磨陶瓷片,亦可为其他耐磨片,本实施例中对其不做任何限定。其中,物料粒度可以为0-100目至500目左右的超细粉状物料,亦可为其他物料,本实施例中对其不做任何限定。
继续参见图1和图2,偏心磁滚机构2的下方设有尾矿处理机构5、精矿区6,两者均可通过架体3进行支撑,以便物料中的非磁性物料随风落入尾矿处理机构5内以对尾矿进行沉降处理,实现尾矿的收集和输出;其中,磁性物料作为精矿落入至精矿区6内。具体地,尾矿处理机构5、精矿区6可自左至右依次排布,尾矿处理机构5的排布位置与正吹风路1的位置相适配,可设置在正吹风路1的正下方,以便接收正吹风路1的正吹风吹出的非磁性物料;精矿区6排布位置与偏心磁滚机构2的磁场强度分布相适配,如图1所示,精矿区6设置在尾矿处理机构5的右侧,即偏心磁滚机构2表面在精矿区6正上方处的磁场强度小于偏心磁滚机构2表面在尾矿处理机构5正上方处的磁场强度,以使磁性物料可在偏心磁滚机构2表面的磁场吸力作用下随之输送至精矿区6处,由于磁场吸力的减小,使得磁性物料可落入至精矿区6内。
继续参见图2,在偏心磁滚机构2的输送作用下,入料区4的物料输送至正吹风路1内并进行翻滚运动;当物料翻滚时,物料会自行在偏心磁滚机构2的表面分层,使得磁性物料排布在最里层,非磁性物料排布在最外层;最外层的非磁性细粉状物料由于颗粒小,所受的离心力小,很难从料层中及时分离开,故在正吹风路1中的正向高速风即正吹风的作用下,外层的非磁性细粉状物料部分会随着高速风被带起向下运动,大部分细粉状非磁性物料会在风的作用下离开偏心磁滚机构2表面,在风路的空间内布满,风路里的细粉状非磁性物料随着高速风被带走并落入尾矿处理机构5内,尾矿处理机构5对尾矿进行沉降处理,实现尾矿的收集和输出;磁性物料精矿随着偏心磁滚机构2旋转和磁场降低而落到精矿区6,从而超细碎的物料得到了分级式、高效、精细的分选。如图2所示,其中物料中方形标识表示非磁性物料,三角形标识表示磁性物料。
继续参见图1和图2,在正吹风路1的外部设有位于偏心磁滚机构2外周的清扫毛刷7和/或清扫刮板8,用于对偏心磁滚机构2表面附着的物料进行清扫。具体地,清扫毛刷7和/或清扫刮板8可以通过支撑架支撑在架体3上,该清扫毛刷7和清扫刮板8可设置于偏心磁滚机构2的弱磁场区域,以便在物料分选后对偏心磁滚机构2表面附着的物料进行清扫;在本实施例中,偏心磁滚机构2以逆时针进行物料输送时,清扫毛刷7和清扫刮板8设置在右侧的弱磁区,并且,清扫刮板8设置在清扫毛刷7的下方,以便先进行刮料再进行清刷,进而确保物料清扫的效果。为便于调节清扫的间隙,优选地,清扫毛刷7和清扫刮板8与偏心磁滚机构2的间隙可调,例如,清扫毛刷7和清扫刮板8可通过伸缩板连接在支撑架上,以清扫偏心磁滚机构2表面附着的少量物料。在本实施例中,清扫毛刷7材 质可以为尼龙,清扫刮板8材质可以为橡胶或聚氨酯。
在本实施例中,如图1和图2所示,偏心磁滚机构2的下方在正吹风路1的一侧(如图1所示的右侧)设有分料板10,在正吹风路1的进风口(如图1所示的下端)一侧隔离形成若干个下料区,用于进行不同磁性物料的隔离。具体地,分料板10可设置在架体3上,以便在正吹风路1的右侧于偏心磁滚机构2的下方进行分区;在本实施例中,分料板10为一个,以便隔离出两个下料区,两个下料区可分别为左侧的出风出料区103和右侧的排精矿区104,其分别与尾矿处理机构5、精矿区6相对应,以分别将隔离出的不同磁性的物料即非磁性物料和磁性物料分别输送至尾矿处理机构5、精矿区6内,通过分料板10起到隔离不同磁性的物料作用;当然,分料板10亦可为其他数量例如多个。为便于调节分料位置,优选地,分料板10沿水平方向(相对于图1所示的位置而言)位置可调地设置在偏心磁滚机构2的下方的架体3上,以调节水平方向上隔离位置;当然,分料板10还可以为伸缩板结构,用于调节上下高度,调节分料板10与偏心磁滚机构2之间的缝隙大小。为提高分料板10的使用寿命,优选地,分料板10的侧壁上可设有耐磨片,尤其是与物料接触的位置,耐磨片可以为耐磨陶瓷片,亦可为其他耐磨片,本实施例中对其不做任何限定。
继续参见图1和图2,分料板10的一侧(如图1所示的右侧)在所述精矿区6的正上方设有精矿导向板101,用于对下落的磁性物料进行导向,以使其下落至精矿区6内,避免磁性物料落入至精矿区6和分料板10之间的缝隙内。为便于调节精矿导向板101的导向角度,优选地,精矿导向板101可转动地连接在分料板10上,以调节磁性物料的下落角度和下落位置。其中,精矿导向板101可随分料板10进行高度位置的调节,以调节其高度位置,进而调节对物料进行导向的高度位置。
继续参见图1至图2,分料板10的另一侧(如图1所示的左侧)在尾矿处理机构5的正上方设有出口调节板102,其可转动地连接在分料板10上,用于调节分料板10和正吹风路1之间形成的出风出料区的排出口的大小;口越大,出风出料区风量越大,出风出料区处风速越大,使得更多的非磁性粉状物料可掉落至出风出料区,使得精矿区6分选出来的磁性物料品位更高。
在本实施例中,如图1和图2所示,为实现物料自正吹风路1中输出和输入,优选地,偏心磁滚机构2与正吹风路1之间、偏心磁滚机构2与分料板10之间均可设有过料间隙9,以使物料沿偏心磁滚机构2的表面输送至正吹风路1内或正吹风路1外,还可输送至精矿区5的正上方,以便入料区4的物料输送至正吹风路1内,并进行翻滚运动,部分非磁性物料、弱磁性物料和强磁性物料在偏心磁滚机构2的磁场和输送作用下离开正吹风路1,并在偏心磁滚机构2的磁场和输送作用下以及重力作用,非磁性物料、磁性物料依次进入尾矿处理机构5、精矿区6。
继续参见图2至图4,正吹风路1包括:进风区11、出风落料区12和分选区13;其中,进风区11设置偏心磁滚机构2的上侧;出风落料区12设置在偏心磁滚机构2的下侧;分选区13设置在进风区11和出风落料区12之间。具体地,如图4所示,自上之下依次为进风区11、分选区13和出风落料区12;进风区11可连接有吹风机,以向进风区11吹入自上向下流动的正吹风,该正吹风可以为高速风,以确保吹动非磁性物料的效果;其中,偏心磁滚机构2部分设置在分选区13内,以便在分选区13处进行物料的分选,使得磁性物料和非磁性物料进行分离。
继续参见图2、图5至图7,偏心磁滚机构2包括:磁滚筒21和偏心磁系22;其中,磁滚筒21连接有筒体驱动件23,用于驱动磁滚筒21进行转动,以输送磁滚筒21表面的物料,使得物料输送至正吹风路1内;偏心磁系22偏心设置在磁滚筒21的内部,以使磁滚筒21的表面形成强磁区和弱磁区,其中,强磁区可以作为磁分选区域C,弱磁区作为卸矿区域D;偏心磁系22可转动地设置在磁滚筒21内,以使磁滚筒21表面的物料在旋转的磁场作用下进行翻滚运动;其中,磁分选区域C设置在正吹风路1的分选区13处,以使物料在重力、离心力、磁翻转力、风力、磁场吸力等多力复合作用下进行物料翻滚和分选。
具体地,磁滚筒21可以为圆筒结构,为避免磁滚筒21使用过程中的发热,磁滚筒21可以为非金属筒体,其材质可以为玻璃钢、聚氯乙烯、聚氯丙烯等非金属材料,以避免物料产生涡流,进而可避免磁滚筒21的发热;为提高磁滚筒21的使用寿命,优选地,磁滚筒21的外壁可设有耐磨片,尤其是与物料接触的位置,耐磨片可以为耐磨陶瓷片,亦可为其他耐磨片,本实施例中对其不做任何限定。磁滚筒21可连接有筒体驱动件23,用于驱动磁滚筒21进行转动,以输送磁滚筒21表面的物料,进而使得物料输送至正吹风路1内;本实施例中,如图2所示,磁滚筒21逆时针转动,以使沿上方外壁逆时针输送至磁滚筒21左侧的正吹风路1内;当然,如果正吹风路1位于磁滚筒21的右侧,磁滚筒21可顺时针转动,以使物料顺时针向下下落以输送至右侧的正吹风路内进行分选;其中,筒体驱动件23可以为筒体减速电机,并且,筒体驱动件23可通过链轮传动机构25与磁滚筒21相连接;筒体驱动件23转速范围为0-500r/min可调。
继续参见图2、图5至图7,偏心磁系22与磁滚筒21之间偏心设置,也就是说,两者并不同轴设置,以使磁滚筒21的外表面可形成强磁区和弱磁区;为使得磁场上下对称设置,偏心磁系22与磁滚筒21的轴线可在同一水平线上,以便在上部随磁滚筒21进行输送,在下部随着磁场的减弱,遗留的少部分非磁性物料和磁性物料在物料逆时针转动过程中依次下落,分别自分料板10的左右两侧下落至尾矿处理机构5、精矿区6内;其中,磁分选区域C设置在正吹风路1的分选区13处,以使物料在重力、离心力、磁翻转力、风力、磁场吸力等多力复合作用下进行物料翻滚和分选,使得物料分层并可实现非磁性物料和磁性物 料之间的分离;在本实施例中,两者的偏心量可以根据实际情况确定,本实施例中对其不做任何限定。偏心磁系22可转动地设置在磁滚筒21内,以便提供一个旋转磁场,以使物料可进行翻转运动,尤其是,物料可在强磁区进行高速翻转,实现不同物料的分层。为实现偏心磁系22的旋转,优选地,偏心磁系22可连接有磁系驱动件24,用于驱动偏心磁系22转动;在本实施例中,偏心磁系22与磁滚筒21之间的转动方向相反,偏心磁系22可顺时针转动,可使得两者之间相对转动速度增大,提高物料分层效果。其中,偏心磁系22可以为N-S交替排布的360度全磁结构;磁系驱动件24可以为4极电机,驱动偏心磁系22高速旋转,转速范围为0-3000r/min可调。
在本实施例中,磁滚筒21和入料区4的底端之间设有缝隙,其可以为2mm,以便于磁滚筒21可以自由转动,进而实现物料的输送,使得物料随磁滚筒21同步逆时针转动。
继续参见图1至图2,尾矿处理机构5包括:重力沉降室51和锁风阀52;其中,重力沉降室51可设置在所述正吹风路1的出风落料区12和出风落料区12一侧的出风出料区103的下方,锁风阀52与所述重力沉降室51相连接,重力沉降室51用于接收携带有非磁性物料的风,并对其进行沉降处理,以使非磁性物料排入至锁风阀52内,通过锁风阀52进行锁风并排出非磁性物料。其中,重力沉降室51可采用钢板焊接而成,并且,重力沉降室51的内壁可设有耐磨片,尤其是与物料接触处,耐磨片可以为耐磨陶瓷片,亦可为其他耐磨片,本实施例中对其不做任何限定。
参见图8至图9,其示出了本申请实施例提供的重力沉降室的优选结构。如图所示,该重力沉降室51内可设有沉降区513,以及与所述沉降区513相连通的进料进风区511、排料区512和出风出料区514,进料进风区511接收非磁性物料和风,并进入至沉降区513内,通过沉降区513对非磁性物料进行沉降处理,部分非磁性物料落入设置在沉降区513底部的排料区512内并排出,部分非磁性物料被风带到沉降区513左侧的出风出料区514并排出。具体地,进料进风区511可以与出风落料区12和出风出料区103相连,非磁性物料和风自进料进风区511进入沉降区513内,沉降区513的横截面积大于进料进风区511的横截面积,使得风速降低以降低风的带料能力实现物料的沉降,即由于沉降区513的横截面积突然增大,风速降低,风的带料能力降低,大部分物料沉降落入排料区512,部分物料被风带到出风出料区514;出风出料区514可以与外接收尘器相连,带料的风经过收尘器过滤后排入大气中,物料通过收尘器收集起来。
参见图10和图11,其示出了本申请实施例提供的锁风阀的优选结构。如图所示,锁风阀52包括:锁风筒521、叶轮轴522;其中,锁风筒521的顶部设有进料口5211,底部设有出料口5212;叶轮轴522沿所述锁风筒521的轴向可转动地设置在锁风筒521的内部,并且,叶轮轴522上设有叶轮523,用于随所述叶轮轴522转动,以将物料自进料口5211 处带动至出料口5212处。具体地,锁风筒521可以为两端开口的水平设置的筒体结构,其两端(如图10所示的左右两端)均可设有端盖524,以实现锁风筒521的封闭,避免物料自两端排出;锁风筒521的顶部设有进料口5211,底部设有出料口5212,以实现物料的接收和排放;为便于该锁风筒521与其他零部件之间的连接,进料口5211和出料口5212处可设有法兰,以可拆卸地连接在其他零部件上例如通过进料口5211的上法兰连接在重力沉降室51的排料区512上;法兰与进料口5211、出料口5212之间可通过焊接连接,亦可通过其他方式连接,本实施例中对其不做任何限定。叶轮轴522可同轴设置在锁风筒521内,并且,叶轮轴522的两端均可转动地穿设于端盖524,以通过端盖524对叶轮轴522进行支撑;该叶轮轴522设有若干组沿其轴向间隔分布的叶轮523,各组叶轮为多个且沿叶轮轴522的周向呈散射状分布,以对物料进行输送,避免物料的堆积和堵塞,还可起到锁风作用。如图11所示,叶轮523和锁风筒521的内壁之间具有转动间隙,其可以为5mm;当物料落入叶轮523间的空隙中,随着叶轮523的转动而被带到出料口5212排出,锁风阀52起到锁风和排料的作用。为便于实现叶轮轴522的转动,优选地,叶轮轴522连接有驱动结构,以驱动叶轮轴522转动。如图10所示,该驱动机构可以为手轮525,以进行手动驱动;当然,驱动机构亦可为电动机,以实现电动驱动。
该干式精选机的工作过程:入料区4接收物料,物料由入料区4经过入料溜板41缓冲后落入磁滚筒21的表面,磁滚筒21逆时针旋转带着物料通过过料间隙9进入分选区13,同时物料在接触磁场时,物料在N-S交替磁场的偏心磁系22的高速旋转作用下做高速翻滚运动,当物料翻滚时,物料会自行在磁滚筒21表面分层,磁性物料排布在最里层,非磁性物料排布在最外层;最外层的非磁性细粉状物料由于颗粒小,所受的离心力小,很难从料层中及时分离开,故在正吹风路1中的正向高速风即正吹风的作用下,外层的非磁性细粉状物料部分会随着高速风被带起向下运动,大部分细粉状非磁性物料会在风的作用下离开偏心磁滚机构2表面,在风路的空间内布满,风路里的细粉状非磁性物料随着高速风被带走并落入尾矿处理机构5内,尾矿处理机构5对尾矿进行沉降处理,实现尾矿的收集和输出;磁性物料精矿随着偏心磁滚机构2旋转和磁场降低而落到精矿区6,从而超细碎的物料得到了分级式、高效、精细的分选。
综上,本实施例提供的干式精选机,在偏心磁滚机构2的输送作用下,入料区4的物料输送至正吹风路1内并进行翻滚运动,以使物料在偏心磁滚机构2的表面分层,使得磁性物料排布在最里层,非磁性物料排布在最外层;最外层的非磁性细粉状物料由于颗粒小,所受的离心力小,很难从料层中及时分离开,故在正吹风路1中的正向高速风即正吹风的作用下,外层的非磁性细粉状物料部分会随着高速风被带起向下运动,大部分细粉状非磁性物料会在风的作用下离开偏心磁滚机构2表面,在风路的空间内布满,风路里的细粉状 非磁性物料随着高速风被带走并落入尾矿处理机构5内,尾矿处理机构5对尾矿进行沉降处理,实现尾矿的收集和输出;磁性物料精矿随着偏心磁滚机构2旋转和磁场降低而落到精矿区6,从而超细碎的物料得到了分级式、高效、精细的分选。
该干式精选机提供了一个多物理场耦合的复杂分选环境进行超细碎物料的干式磁力分选,物料在其中主要受重力、离心力、磁翻转力、正向风力、磁场吸力等多力复合作用,从而达到分级式、高效、精细分选的目的,解决了干磨分级后的干式超细粉状物料的无法有效进行干式分选的问题,进而为充分利用缺水地区的铁矿资源提供技术可行性。
需要说明的是,在本申请的描述中,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,还需要说明的是,在本申请的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本申请中的具体含义。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (10)

  1. 一种干式精选机,其特征在于,包括:正吹风路(1)和偏心磁滚机构(2);其中,
    所述偏心磁滚机构(2)部分设置在所述正吹风路(1)内,所述正吹风路(1)用于向所述偏心磁滚机构(2)表面喷吹与物料输送方向相同的正吹风,所述偏心磁滚机构(2)用于输送物料,还用于提供偏心旋转磁场;
    所述偏心磁滚机构(2)的上方设有入料区(4);
    所述偏心磁滚机构(2)的下方设置有尾矿处理机构(5)和精矿区(6);
    在所述偏心磁滚机构(2)的输送作用下,所述入料区(4)的物料输送至所述正吹风路(1)内并进行翻滚运动,以使物料在所述偏心磁滚机构(2)的表面分层,使得强磁性物料排布在最里层,弱磁性物料排布在中层,非磁性物料排布在最外层,最外层的非磁性物料在正吹风路(1)的正吹风的作用下离开所述偏心磁滚机构(2)的表面随风吹入至尾矿处理机构(5)内,通过所述尾矿处理机构(5)对非磁性物料进行沉降处理,实现非磁性物料的收集,磁性物料在所述偏心磁滚机构(2)的磁场和输送作用下依次进入精矿区(6)。
  2. 根据权利要求1所述的干式精选机,其特征在于,所述偏心磁滚机构(2)包括:磁滚筒(21)和偏心磁系(22);其中,
    所述磁滚筒(21)连接有筒体驱动件(23),用于驱动所述磁滚筒(21)进行转动,以输送所述磁滚筒(21)表面的物料,以使物料输送至所述正吹风路(1)内;
    所述偏心磁系(22)偏心设置在所述磁滚筒(21)的内部,所述磁滚筒(21)的表面形成磁分选区域和卸矿区域,所述磁分选区域设置在所述正吹风路(1)的分选区处,以使物料在磁场和风力作用下进行物料翻滚和非磁性物料的分选;
    所述偏心磁系(22)可转动地设置在所述磁滚筒(21)内,以使所述磁滚筒(21)表面的物料在旋转的磁场作用下进行翻滚运动。
  3. 根据权利要求2所述的干式精选机,其特征在于,
    所述偏心磁系(22)连接有磁系驱动件(24),用于驱动所述偏心磁系(22)转动。
  4. 根据权利要求2所述的干式精选机,其特征在于,所述偏心磁系(22)与所述磁滚筒(21)之间的转动方向相反。
  5. 根据权利要求1至4任一项所述的干式精选机,其特征在于,
    所述偏心磁滚机构(2)的下方在所述正吹风路(1)的一侧设有分料板(10),在所述正吹风路(1)的出风口一侧隔离形成若干个下料区,用于进行不同磁性物料的隔离。
  6. 根据权利要求5所述的干式精选机,其特征在于,
    所述分料板(10)的一侧在所述精矿区(6)的正上方设有精矿导向板,用于对下落的磁性物料进行导向;
    所述分料板(10)的另一侧在所述尾矿处理机构(5)的正上方设有出口调节板,其可转动地连接在所述分料板(10)上,用于调节所述分料板(10)和所述正吹风路(1)之间形成的出风出料区的排出口的大小,进而调节分选物料品位。
  7. 根据权利要求1至4任一项所述的干式精选机,其特征在于,所述尾矿处理机构(5)包括:重力沉降室(51)和锁风阀(52);其中,
    所述重力沉降室(51)可设置在所述正吹风路(1)的下方,所述锁风阀(52)与所述重力沉降室(51)相连接,所述锁风阀(52)用于对所述重力沉降室(51)进行锁风并进行排料,所述重力沉降室(51)用于接收携带有非磁性物料的风,并对非磁性物料进行沉降处理,以使非磁性物料排入至所述锁风阀(52)内,通过锁风阀(52)排出非磁性物料。
  8. 根据权利要求7所述的干式精选机,其特征在于,
    所述重力沉降室(51)设有沉降区(513),以及与所述沉降区(513)相连通的进料进风区(511)、排料区(512)和出风出料区(514)。
  9. 根据权利要求7所述的干式精选机,其特征在于,所述锁风阀(52)包括:锁风筒(521)和叶轮轴(522);其中,
    所述锁风筒(521)设有进料口(5211)和出料口(5212);
    所述叶轮轴(522)沿所述锁风筒(521)的轴向可转动地设置在所述锁风筒(521)的内部,并且,所述叶轮轴(522)上设有叶轮(523),用于随所述叶轮轴(522)转动,以将物料自进料口(5211)处带动至出料口(5212)处。
  10. 根据权利要求1至4任一项所述的干式精选机,其特征在于,
    在所述正吹风路(1)的外部设有位于所述偏心磁滚机构(2)外周的清扫毛刷(7)和/或清扫刮板(8),用于对所述偏心磁滚机构(2)表面附着的物料进行清扫。
PCT/CN2021/138787 2021-10-25 2021-12-16 一种干式精选机 WO2023070894A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021470809A AU2021470809A1 (en) 2021-10-25 2021-12-16 Dry separator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111243149.9 2021-10-25
CN202111243149.9A CN113798060A (zh) 2021-10-25 2021-10-25 一种干式精选机
CN202122569466.1 2021-10-25
CN202122569466.1U CN216173206U (zh) 2021-10-25 2021-10-25 一种干式精选机

Publications (1)

Publication Number Publication Date
WO2023070894A1 true WO2023070894A1 (zh) 2023-05-04

Family

ID=86160080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138787 WO2023070894A1 (zh) 2021-10-25 2021-12-16 一种干式精选机

Country Status (3)

Country Link
AU (1) AU2021470809A1 (zh)
CL (1) CL2023001442A1 (zh)
WO (1) WO2023070894A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116618174A (zh) * 2023-07-18 2023-08-22 赣州金环磁选科技装备股份有限公司 一种尾矿干式磁选机
CN117548227A (zh) * 2024-01-11 2024-02-13 山东华特磁电科技股份有限公司 一种用于干粉物料除杂的除铁器及多级排杂控制系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103203283A (zh) * 2013-04-23 2013-07-17 成都利君实业股份有限公司 多力场干式磁选机
CN103357501A (zh) * 2013-08-01 2013-10-23 隋鑫 风力永磁选矿机
CN104084297A (zh) * 2014-06-10 2014-10-08 灌阳县陈工选矿机械制造有限公司 一种风力永磁选矿机
CN105772219A (zh) * 2016-05-10 2016-07-20 中南大学 风力干式磁分选机
CN105964397A (zh) * 2016-05-31 2016-09-28 张荣斌 一种高效磁选机构
JP2019177361A (ja) * 2018-03-30 2019-10-17 Jx金属株式会社 部品屑の処理方法
CN110947496A (zh) * 2019-12-10 2020-04-03 成都利君实业股份有限公司 磁性矿干法粉磨分选系统
CN210994756U (zh) * 2019-11-01 2020-07-14 成都利君实业股份有限公司 一种偏心卸料式滚筒磁选机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103203283A (zh) * 2013-04-23 2013-07-17 成都利君实业股份有限公司 多力场干式磁选机
CN103357501A (zh) * 2013-08-01 2013-10-23 隋鑫 风力永磁选矿机
CN104084297A (zh) * 2014-06-10 2014-10-08 灌阳县陈工选矿机械制造有限公司 一种风力永磁选矿机
CN105772219A (zh) * 2016-05-10 2016-07-20 中南大学 风力干式磁分选机
CN105964397A (zh) * 2016-05-31 2016-09-28 张荣斌 一种高效磁选机构
JP2019177361A (ja) * 2018-03-30 2019-10-17 Jx金属株式会社 部品屑の処理方法
CN210994756U (zh) * 2019-11-01 2020-07-14 成都利君实业股份有限公司 一种偏心卸料式滚筒磁选机
CN110947496A (zh) * 2019-12-10 2020-04-03 成都利君实业股份有限公司 磁性矿干法粉磨分选系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116618174A (zh) * 2023-07-18 2023-08-22 赣州金环磁选科技装备股份有限公司 一种尾矿干式磁选机
CN116618174B (zh) * 2023-07-18 2023-10-03 赣州金环磁选科技装备股份有限公司 一种尾矿干式磁选机
CN117548227A (zh) * 2024-01-11 2024-02-13 山东华特磁电科技股份有限公司 一种用于干粉物料除杂的除铁器及多级排杂控制系统

Also Published As

Publication number Publication date
AU2021470809A1 (en) 2023-06-29
CL2023001442A1 (es) 2023-11-17

Similar Documents

Publication Publication Date Title
WO2023070894A1 (zh) 一种干式精选机
WO2021114516A1 (zh) 磁性矿干法粉磨分选系统
CN105772218B (zh) 一种铁矿循环分级选矿方法及应用于该方法的干选机
US20140166787A1 (en) Processing of steel making slag
KR102024574B1 (ko) 경사형 자력 선별기
WO2021114515A1 (zh) 一种微粉干式磁选机
CN109967494B (zh) 一种处理建筑垃圾的工艺方法及系统装置
CN108356060A (zh) 全金属分选线
CN112936116B (zh) 一种应用于抛丸机上的抛丸用回收处理装置
CN208261517U (zh) 全金属分选线
CN213000566U (zh) 干式精选机
CN212284874U (zh) 空气选粉机
CN211678135U (zh) 磁性矿干法粉磨分选系统
CN113798060A (zh) 一种干式精选机
WO2021114517A1 (zh) 一种双分级式组合磁选机及磁性矿干法粉磨分选系统
CN113798059A (zh) 一种干式预选机
CN207680780U (zh) 金属分选一体机
CN111822346A (zh) 空气选粉机及其选粉方法
WO2023070893A1 (zh) 一种干式预选机
CN216173206U (zh) 一种干式精选机
CN115301402A (zh) 一种干式流化选矿装置
CN216173205U (zh) 一种干式预选机
CN210875780U (zh) 多梯度磁力可调的干选机
CN107617501A (zh) 多级粉磨超细粉生产工艺及其系统
CN205042600U (zh) 多辊磁选机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962237

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021470809

Country of ref document: AU

Date of ref document: 20211216

Kind code of ref document: A