WO2021114517A1 - 一种双分级式组合磁选机及磁性矿干法粉磨分选系统 - Google Patents

一种双分级式组合磁选机及磁性矿干法粉磨分选系统 Download PDF

Info

Publication number
WO2021114517A1
WO2021114517A1 PCT/CN2020/082719 CN2020082719W WO2021114517A1 WO 2021114517 A1 WO2021114517 A1 WO 2021114517A1 CN 2020082719 W CN2020082719 W CN 2020082719W WO 2021114517 A1 WO2021114517 A1 WO 2021114517A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
separation mechanism
belt
hopper
magnetic separation
Prior art date
Application number
PCT/CN2020/082719
Other languages
English (en)
French (fr)
Inventor
何亚民
丁亚卓
徐智平
Original Assignee
成都利君实业股份有限公司
成都利君科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911258838.XA external-priority patent/CN110882840A/zh
Priority claimed from CN201911260202.9A external-priority patent/CN110882841A/zh
Application filed by 成都利君实业股份有限公司, 成都利君科技有限责任公司 filed Critical 成都利君实业股份有限公司
Publication of WO2021114517A1 publication Critical patent/WO2021114517A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/10Magnetic separation acting directly on the substance being separated with cylindrical material carriers
    • B03C1/12Magnetic separation acting directly on the substance being separated with cylindrical material carriers with magnets moving during operation; with movable pole pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/10Magnetic separation acting directly on the substance being separated with cylindrical material carriers
    • B03C1/14Magnetic separation acting directly on the substance being separated with cylindrical material carriers with non-movable magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/16Magnetic separation acting directly on the substance being separated with material carriers in the form of belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/16Magnetic separation acting directly on the substance being separated with material carriers in the form of belts
    • B03C1/22Magnetic separation acting directly on the substance being separated with material carriers in the form of belts with non-movable magnets

Definitions

  • the invention relates to the technical field of mineral magnetic separation, in particular to a dual-stage combined magnetic separator and a magnetic ore dry grinding and separation system.
  • the magnetic separator is mainly used for beneficiation production. It is the key beneficiation equipment for separating magnetic minerals from non-magnetic minerals and minerals with magnetic differences in the magnetic beneficiation process. Magnetic separation is based on the magnetic difference of different components in the separated materials. In the working magnetic field generated by the magnetic separation equipment, through the difference of the magnetic field force and other forces received by the different particles, the magnetic mineral particles will be magnetically aggregated to form "magnetism". "Group” or “magnetic chain”, “magnetic group” or “magnetic chain” will move to the magnetic pole under the action of magnetic force, which is the basis of magnetic beneficiation. In the beneficiation industry, under the condition of qualified grinding particle size, a magnetic separator is usually used for the separation process of magnetic minerals. Limited by the grade of the raw ore, domestic ore beneficiation operations usually use dry magnetic separation equipment. Among them, the most widely used magnetic separation equipment are mainly drum magnetic separators, roller magnetic separators, and belt magnetic separators.
  • the mineral raw materials cannot separate the magnetic substances in the minerals through one-time sorting, so that the finished product meets the high-quality requirements of qualified concentrates and qualified tailings. Therefore, the production unit It is necessary to configure multiple magnetic separation equipment in series and parallel to carry out the multi-stage separation of minerals, which requires relatively high configuration of plant and equipment.
  • the purpose of the present invention is to: in view of the problem of multiple magnetic separation equipment for multi-stage separation of minerals in the beneficiation process, the present invention provides a dual-stage combined magnetic separator and a magnetic ore dry grinding and separation system ,
  • the magnetic separator integrates a belt magnetic separation mechanism and a drum magnetic separation mechanism in the frame, which can perform multi-stage separation of ore, reduce intermediate processing procedures, and reduce plant and equipment configuration requirements.
  • a dual-stage combined magnetic separator includes a frame and a belt magnetic separation mechanism for rough selection of mineral raw materials.
  • the feeding end of the belt magnetic separation mechanism is located at the feeding end of the frame. Below the opening, the discharge end of the belt magnetic separation mechanism is provided with a magnetic roller magnetic system, and a drum magnetic separation mechanism is arranged in the frame.
  • the drum magnetic separation mechanism has an eccentric magnetic system arranged eccentrically, and the belt magnetic separation mechanism
  • the coarse concentrate is selected by a drum magnetic separation mechanism. Because of the above settings, the mineral raw materials can be continuously roughed and beneficiated at one time after entering the magnetic separator.
  • the belt magnetic separation mechanism is used for the rough separation of the mineral raw materials, and the coarse concentrate and tailings are separated.
  • the separator is used for beneficiating the coarse concentrate and separating the coarse concentrate into concentrate and medium ore.
  • the optimized layout of the above-mentioned magnetic separator makes the structure compact and convenient to operate.
  • an enriched magnetic system is provided in the belt magnetic separation mechanism, and the magnetic field range of the enriched magnetic system covers at least part of the conveying surface of the upper part of the belt magnetic separation mechanism, so that minerals passing through the magnetic field of the enriched magnetic system
  • the raw materials are layered according to grade; the enriched magnetic system is arranged along the conveying direction of the belt magnetic separation mechanism.
  • the mineral raw materials are spread on the upper conveying surface of the belt magnetic separation mechanism, and the magnetic minerals move in the direction close to the conveying surface, thereby making the magnetic minerals Enriched to the lower part of the material layer, and non-magnetic minerals are enriched to the upper part of the material layer, which is convenient for magnetic minerals to form a magnetic chain under the action of the magnetic roller magnetic system, which improves the separation efficiency and reduces the tailing grade.
  • the enriched magnetic system is a flat magnetic system or a magnetic roller group.
  • the enriched magnetic system guides the magnetic minerals to the lower part of the material layer, and the magnetic roller magnetic system adsorbs and separates the magnetic minerals in the lower part of the material layer, throws non-magnetic minerals, and effectively reduces the grade of tailings.
  • the eccentric magnetic system forms an alternating magnetic field on the working surface of the drum magnetic separation mechanism.
  • the eccentric magnetic system is a rotating magnetic system, that is, the eccentric magnetic system rotates under the drive of a power source.
  • the magnetic roller magnetic system at the discharge end of the belt magnetic separation mechanism is a fixed magnetic system.
  • the magnetic wrap angle of the magnetic roller magnetic system is 150-200°.
  • the frame is provided with a first hopper for receiving tailings, and the first hopper is located at the unloading of the belt magnetic separation mechanism.
  • the belt magnetic separation mechanism transports tailings to the first hopper through the first chute;
  • the belt magnetic separation mechanism transports coarse concentrate to the drum magnetic separation mechanism through the second chute;
  • the frame is arranged There are a second hopper and a third hopper, and the second hopper and the third hopper respectively receive the medium ore and the concentrate separated by the drum magnetic separation mechanism.
  • a swingable first material dividing plate is arranged under the discharge end of the belt magnetic separation mechanism, and the belt magnetic separation mechanism adjusts the material dividing position through the first material dividing plate. According to the different requirements of the beneficiation process, the distribution position of the coarse concentrate and tailings can be adjusted by swinging the first distribution plate.
  • a swingable second material dividing plate is provided under the drum magnetic separation mechanism, and the drum magnetic separation mechanism adjusts the material dividing position through the second material dividing plate. According to the different requirements of the beneficiation process, the distribution position of the concentrate and the middle ore can be adjusted by swinging the second dividing plate.
  • a flow regulating valve is provided at the lower end of the feed port.
  • the flow regulating valve can adjust the uniform speed feeding of the magnetic separator to prevent the non-uniform feeding speed from increasing the tailings grade of the belt magnetic separator.
  • the present invention includes a frame, and a roller magnetic separation mechanism is arranged under the feed opening of the frame, and the roller magnetic separation mechanism has an eccentric magnetic system arranged eccentrically, so
  • the drum magnetic separation mechanism coarsely selects mineral raw materials
  • the frame is provided with a belt magnetic separation mechanism
  • the belt magnetic separation mechanism sweeps and selects the coarse tailings coarsely selected by the drum magnetic separation mechanism.
  • the feed end of the magnetic separation mechanism receives the coarse tailings coarsely selected by the drum magnetic separation mechanism, and the discharge end of the belt magnetic separation mechanism is provided with a magnetic roller magnetic system. Due to the above settings, the mineral raw materials can be roughed and scanned at one time after entering the magnetic separator.
  • the drum magnetic separation mechanism is used for the rough separation of the mineral raw materials, and the concentrate and coarse tailings are separated.
  • the belt magnetic separation mechanism It is used for sweeping the coarse tailings and separating the coarse tailings into medium ore and tailings.
  • the belt magnetic separation mechanism is provided with an enriched magnetic system, and the magnetic field range of the enriched magnetic system covers at least part of the conveying surface of the upper part of the belt magnetic separation mechanism, so that the ore passing through the enriched magnetic system magnetic field Layered by grade; the enriched magnetic system is arranged along the conveying direction of the belt magnetic separation mechanism.
  • the enriched magnetic system is preferably a flat magnetic system or a magnetic roller group.
  • the coarse tailings are laid on the upper conveying surface of the belt magnetic separation mechanism, and the low-grade magnetic minerals move closer to the conveying surface, thereby making the low-grade magnetic Minerals are concentrated in the lower part of the material layer, and non-magnetic minerals are concentrated in the upper part of the material layer.
  • the eccentric magnetic system forms an alternating magnetic field on the working surface of the drum magnetic separation mechanism.
  • the magnetic roller magnetic system at the discharge end of the belt magnetic separation mechanism is a fixed magnetic system.
  • the magnetic wrap angle of the magnetic roller magnetic system is 150-200°.
  • a third hopper for receiving concentrate is provided on the frame, and the third hopper is located below the drum magnetic separation mechanism;
  • the drum magnetic separation mechanism transports the concentrate to the third hopper through the first chute;
  • the drum magnetic separation mechanism transports the coarse tailings to the feed end of the belt magnetic separation mechanism through the second chute;
  • the frame There are a second hopper and a first hopper, the second hopper and the first hopper are located below the discharge end of the belt magnetic separation mechanism, and the second hopper and the first hopper receive the belt magnetic separation mechanism respectively Separated middle ore and tailings.
  • a swingable first material dividing plate is arranged under the drum magnetic separation mechanism, and the drum magnetic separation mechanism adjusts the material dividing position through the first material dividing plate. According to the different requirements of the beneficiation process, the distribution position of the concentrate and coarse tailings can be adjusted by swinging the first distribution plate.
  • a swingable second material dividing plate is provided under the discharge end of the belt magnetic separation mechanism, and the belt magnetic separation mechanism adjusts the material dividing position through the second material dividing plate. According to the different requirements of the beneficiation process, the distribution position of the medium and coarse ore can be adjusted by swinging the second distribution plate.
  • a flow regulating valve is provided at the lower end of the feeding port.
  • a magnetic ore dry grinding and sorting system disclosed according to the present invention includes a high-pressure roller mill and the aforementioned magnetic separator, and the discharge port of the high-pressure roller mill is connected to the feed port of the magnetic separator
  • the concentrate outlet and tailings outlet of the magnetic separator are respectively connected to the concentrate hopper and the tailings hopper, and the middle mine outlet of the magnetic separator is connected to the feed inlet of the high pressure roller mill.
  • a sieving device is arranged between the high-pressure roller mill and the magnetic separator, the feed port of the sieving device is connected to the discharge port of the high-pressure roller mill, and the coarse mineral material sieved by the sieving device It is conveyed to the feed port of the high-pressure roller mill, and the fine mineral material sieved by the screening device enters the feed port of the magnetic separator.
  • the particle size of the raw ore entering the high-pressure roller mill is 0-60 mm; the processing particle size of the magnetic separator is 0-20 mm.
  • the beneficial effect of the present invention is: the dual-classification combined magnetic separator of the present invention performs dual-classification through the cooperation of the magnetic roller magnetic system and the eccentric magnetic system, and enters the minerals of the magnetic separator. Qualified concentrates and tailings can be obtained by one-time continuous separation of raw materials, and the overall structure of the magnetic separator is compact, the layout is reasonable, and the operation is simple, which can effectively reduce production costs.
  • the magnetic ore dry grinding and separation system using the dual-stage combined magnetic separator has low energy loss and high efficiency.
  • Fig. 1 is a schematic diagram of the structure of a dual-stage combined magnetic separator according to embodiment 1 of the present invention
  • Figure 2 is a schematic diagram of the structure of a dual-stage combined magnetic separator according to Embodiment 2 of the present invention.
  • FIG. 3 is a process flow diagram of the first embodiment of the magnetic ore dry grinding and separation system of the present invention.
  • FIG. 4 is a process flow diagram of the second embodiment of the magnetic ore dry grinding and sorting system of the present invention.
  • FIG. 5 is a schematic structural diagram of another embodiment of the magnetic separator of the magnetic ore dry grinding and separation system of the present invention.
  • a dual-stage combined magnetic separator includes a frame 10a, a belt magnetic separation mechanism 20a, and a drum magnetic separation mechanism 30a.
  • the belt magnetic separation mechanism 20a and the drum magnetic separation mechanism 30a are installed on the frame 10a. Inside.
  • the belt magnetic separation mechanism 20a can perform rough separation of mineral raw materials.
  • the input of the belt magnetic separation mechanism 20a receives the mineral raw materials entered through the feed port 101a.
  • the discharge end of the belt magnetic separation mechanism 20a is provided with a magnetic roller for rough separation.
  • System 201a; the drum magnetic separation mechanism 30a receives the coarse concentrate discharged from the discharge end of the belt magnetic separation mechanism 20a and selects the coarse concentrate.
  • the drum magnetic separation mechanism 30a has an eccentrically arranged eccentric magnetic system 301a with an eccentric magnetic system
  • the drum magnetic separation mechanism 30a of 301a can perform continuous beneficiation and automatic ore unloading.
  • the magnetic separator is set to feed at the top, and the feed inlet 101a is provided on the top of the frame 10a; the belt magnetic separation mechanism 20a is arranged under the feed inlet 101a of the frame 10a, and the drum magnetic separation mechanism 30a is arranged on the belt magnetic separator. Below the discharge end of the mechanism 20a.
  • the belt magnetic separation mechanism 20a includes a driving roller 203a, a driven roller 204a, and a belt 205a.
  • the belt 205a is sleeved around the driving roller 203a and the driven roller 204a.
  • the driving roller 203a is driven to rotate by a power source to drive the belt 205a.
  • the driven roller 204a rotates.
  • the magnetic roller magnetic system 201a can be arranged in the driving roller 203a or the driven roller 204a. In this embodiment, as shown in FIG.
  • the magnetic roller magnetic system 201a is preferably arranged in the driven roller 204a, and the driven roller 204a is located in At the discharge end of the belt magnetic separation mechanism 20a, the active roller 203a is located at the feed end of the belt magnetic separation mechanism 20a.
  • the magnetic roller magnetic system 201a is on the discharge end of the conveying mechanism of the belt 205a.
  • the magnetic roller magnetic system 201a forms a strong magnetic zone and a weak magnetic zone on the working surface of the discharge end along the conveying direction of the belt 205a.
  • the strong magnetic zone is located in the arc section of the working surface and enters After the strong magnetic zone, the magnetic minerals in the mineral raw materials are adsorbed on the working surface, while the non-magnetic minerals are separated from the working surface under the action of gravity.
  • the magnetic minerals enter the weak magnetic zone along the conveying direction of the belt 205a and then leave the working surface, thus achieving the disposal of mineral raw materials.
  • the purpose of roughing in addition to tailings.
  • the drum magnetic separation mechanism 30a includes an outer drum 302a and an eccentric magnetic system 301a eccentrically arranged in the outer drum 302a.
  • the eccentric magnetic system 301a and the outer roller 302a can be rotated under the drive of their respective power sources, and the eccentric magnetic system 301a and the outer roller 302a can rotate relative to each other, and the two can rotate in the same direction or in opposite directions. Rotation;
  • the eccentric magnetic system 301a is fixed relative to the frame 10a, and the outer roller 302a rotates relative to the eccentric magnetic system 301a under the drive of the power source, so that the eccentric magnetic system 301a and the outer roller 302a rotate relatively.
  • the eccentrically arranged eccentric magnetic system 301a forms a weak magnetic zone and a strong magnetic zone on the working surface of the outer drum 302a.
  • the coarse concentrate falls from the discharge end of the belt magnetic separation mechanism 20a to the strong magnetic zone on the working surface of the outer drum 302a.
  • High-grade magnetic minerals are adsorbed on the working surface of the strong magnetic zone, and the low-grade magnetic minerals in the coarse concentrate fall directly. After the high-grade magnetic minerals enter the weak magnetic zone of the working surface with the rotation of the outer drum 302a, the magnetic force of the high-grade magnetic minerals It cannot fall against its own gravity, so as to achieve the purpose of sorting qualified concentrates.
  • the magnetic roller magnetic system 201a of the belt magnetic separation mechanism 20a can adopt a concentric circle lack magnetic system, a concentric cylindrical magnetic system or an eccentric cylindrical magnetic system.
  • the concentric lack magnetic system is a fixed magnetic system, and the magnetic wrap angle is less than 360°. It is arranged concentrically in the roller, and the roller and the magnetic system rotate relative to each other; the concentric cylindrical magnetic system is a rotating magnetic system, and the magnetic package The angle is 360°, it is arranged concentrically in the roller and rotates with the roller; the eccentric cylindrical magnetic system can be a fixed magnetic system or a rotating magnetic system, the magnetic wrap angle is 360°, and it is arranged eccentrically in the roller.
  • the eccentric roller and the magnetic system rotate relatively under the drive of their respective power sources.
  • the magnetic roller magnetic system 201a in this embodiment preferably adopts a concentric lack magnetic system, and the magnetic wrap angle of the magnetic roller magnetic system 201a is 150-200°, which is in cost control.
  • the beneficiation area is as large as possible.
  • the eccentric magnetic system 301a of the drum magnetic separation mechanism 30a includes a plurality of magnetic poles arranged in a cylindrical shape.
  • the eccentric magnetic system 301a forms an alternating magnetic field on the working surface of the drum magnetic separation mechanism 30a.
  • the adjacent magnetic poles of the eccentric magnetic system 301a in the circumferential direction are different, and the adjacent magnetic poles in the axial direction are the same.
  • the high-grade magnetic minerals are adsorbed on the outer roller 302a by the magnetic field of the eccentric magnetic system 301a.
  • the inner side of the belt 205a of the belt magnetic separation mechanism 20a is provided with an enriched magnetic system 202a, and the enriched magnetic system 202a is close to the upper conveying surface of the belt 205a, so that the magnetic field range of the enriched magnetic system 202a covers at least part of the upper conveying surface
  • the function of the enriched magnetic system 202a is to use magnetic force to pre-enrich the magnetic minerals in the mineral raw materials to the lower part of the material layer, and to enrich the non-magnetic minerals to the upper part of the material layer, thereby facilitating the magnetic minerals to enter the magnetic roller magnetic system 201a
  • the magnetic field is formed after the magnetic field range, which reduces the grade of tailings.
  • the enriched magnetic system 202a can use a flat magnetic system or a magnetic roller set arranged along the conveying direction of the belt 205a, and both the flat magnetic system and the magnetic roller set can play the role of forming an enriched magnetic field on the upper conveying surface.
  • the magnetic roller set can also reduce the friction between the enriched magnetic system 202a and the belt 205a and prolong the service life.
  • a first hopper 102a that cooperates with the discharge end of the belt magnetic separation mechanism 20a to discharge ore is provided on the frame 10a, and the first hopper 102a is preferably arranged in the belt magnetic separation mechanism Below the discharge end of 20a, the belt magnetic separation mechanism 20a roughly selects the mineral raw materials into coarse concentrate and tailings. The tailings are discharged to the first hopper 102a, and the first hopper 102a discharges the collected tailings from the magnetic separator .
  • the tailings sorted by the belt magnetic separation mechanism 20a can be directly dropped to the first hopper 102a for discharging, or a first chute 105a connected to the first hopper 102a may be preferably provided for discharging; correspondingly, the belt magnetic separation mechanism 20a
  • the sorted coarse concentrate can be directly dropped into the feeding range of the drum magnetic separation mechanism 30a, or a second chute 106a whose lower end is placed in the feeding range of the drum magnetic separation mechanism 30a may be arranged for discharge.
  • the installation of the second slide pipe 106a and the first slide pipe 105a can optimize the layout and prevent the ore from being mixed after sorting.
  • the frame 10a is provided with a second hopper 103a and a third hopper 104a that are matched with the drum magnetic separation mechanism 30a for discharging ore.
  • the second hopper 103a and the third hopper 104a are sequentially arranged below them along the rotation direction of the outer drum 302a.
  • the drum magnetic separation The medium ore and concentrate separated by the mechanism 30a are collected and discharged in the second hopper 103a and the third hopper 104a, respectively.
  • the drum magnetic separation mechanism 30a can directly discharge materials to the third hopper 104a and the second hopper 103a, or discharging ore by setting a chute to cooperate with the third hopper 104a and the second hopper 103a.
  • a swingable first material dividing plate 107a is provided below the discharge end of the belt magnetic separation mechanism 20a, and the first material dividing plate 107a is located within the unloading range of the belt magnetic separation mechanism 20a.
  • the upper end of the second chute 106a and the upper end of the first chute 105a are respectively connected to the lower end of the first distribution plate 107a, and the first distribution plate 107a adjusts the distribution position of the coarse concentrate and tailings by deflection. Affected by various factors such as the magnetic strength of the mineral raw materials, the particle size of useful minerals and gangue minerals, and the way in which useful minerals are embedded, it is necessary to select the appropriate beneficiation process according to the mineral properties, adjust the separation position of the separated minerals, and swing the first point.
  • the material plate 107a can conveniently adjust the position of the coarse concentrate and tailings to meet the needs of different beneficiation processes.
  • a swingable second dividing plate 108a is provided under the drum magnetic separation mechanism 30a.
  • the second dividing plate 108a is located in the unloading range of the drum magnetic separation mechanism 30a, and can be adjusted by swinging the second dividing plate 108a.
  • the upper end of the second hopper 103a and the upper end of the third hopper 104a are respectively connected to the lower end of the second distribution plate 108a.
  • a flow regulating valve 109a is provided at the lower end of the feed port 101a of the frame 10a.
  • the flow regulating valve 109a is used to prevent the material accumulated in the feed port 101a from being fed at a non-uniform speed.
  • the non-uniform feeding makes the magnetic minerals in the ore raw materials unable to be effectively separated in the beneficiation area, and then discharges along with the non-magnetic minerals. The efficiency is reduced.
  • FIG. 2 illustrates a dual-stage combined magnetic separator according to this embodiment, which includes a frame 10b, a drum magnetic separation mechanism 30b, and a belt magnetic separation mechanism 20b.
  • the drum magnetic separation mechanism 30b and the belt magnetic separation mechanism 20b are installed In the rack 10b.
  • the drum magnetic separation mechanism 30b can perform rough separation of mineral raw materials.
  • the drum magnetic separation mechanism 30b has an eccentric magnetic system 301b arranged eccentrically, and the drum magnetic separation mechanism 30b with an eccentric magnetic system 301b can perform continuous mineral separation and automatic mineral extraction; belt magnetic separation
  • the mechanism 20b can sweep the coarse tailings roughed by the drum magnetic separation mechanism 30b.
  • the feed end of the belt magnetic separation mechanism 20b receives the coarse tailings, and the discharge end of the belt magnetic separation mechanism 20b is provided with a magnetic roller for sweeping.
  • the magnetic system 201b Preferably, the magnetic separator is set to feed at the top, and the feed inlet 101b is provided on the top of the frame 10b; the drum magnetic separation mechanism 30b and the belt magnetic separation mechanism 20b are sequentially arranged below the feed inlet 101b of the frame 10b.
  • the roller magnetic separation mechanism 30b includes an outer roller 302b and an eccentric magnetic system 301b eccentrically arranged in the outer roller 302b.
  • the eccentric magnetic system 301b and the outer roller 302b can be rotated under the driving of their respective power sources, and the eccentric magnetic system 301b and the outer roller 302b can rotate relative to each other, and the two can rotate in the same direction or in opposite directions. Rotation;
  • the eccentric magnetic system 301b is fixed relative to the frame 10b, and the outer roller 302b is driven by the power source to rotate relative to the eccentric magnetic system 301b, so that the eccentric magnetic system 301b and the outer roller 302b rotate relatively.
  • the eccentrically arranged eccentric magnetic system 301b forms a weak magnetic zone and a strong magnetic zone on the working surface of the outer drum 302b.
  • the mineral raw materials fall from the inlet 101b to the strong magnetic zone of the working face.
  • High-grade magnetic minerals are adsorbed on the working face of the strong magnetic zone.
  • the high-grade magnetic minerals and non-magnetic minerals fall directly. After the high-grade magnetic minerals enter the weak magnetic area of the working surface with the rotation of the outer drum 302b, the high-grade magnetic minerals cannot fall against their own gravity due to the magnetic force of the high-grade magnetic minerals, thus achieving the purpose of preliminary sorting.
  • the belt magnetic separation mechanism 20b includes a driving roller 203b, a driven roller 204b, and a belt 205b.
  • the belt 205b is sleeved around the driving roller 203b and the driven roller 204b.
  • the driving roller 203b is driven to rotate by a power source to drive the belt 205b and the driven roller. 204b rotates.
  • the magnetic roller magnetic system 201b may be provided in the driving roller 203b or the driven roller 204b.
  • the magnetic roller magnetic system 201b is preferably arranged in the driven roller 204b, the driven roller 204b is located at the discharge end of the belt magnetic separation mechanism 20b, and the driving roller 203b is located at the feed end of the belt magnetic separation mechanism 20b.
  • the magnetic roller magnetic system 201b is on the discharge end of the conveying mechanism of the belt 205b, and the magnetic roller magnetic system 201b forms a strong magnetic zone and a weak magnetic zone on the working surface of the discharge end along the conveying direction of the belt 205b.
  • the strong magnetic zone is located in the arc section of the working surface and enters After the strong magnetic zone, the low-grade magnetic minerals in the coarse tailings are adsorbed on the working surface, while the non-magnetic minerals leave the working surface under the action of gravity.
  • the low-grade magnetic minerals enter the weak magnetic zone along the conveying direction of the belt 205b and leave the working surface. So as to achieve the purpose of sorting out the useful components of the coarse tailings recovery.
  • the eccentric magnetic system 301b of the drum magnetic separation mechanism 30b includes a plurality of magnetic poles arranged in a cylindrical shape.
  • the eccentric magnetic system 301b forms an alternating magnetic field on the working surface of the drum magnetic separation mechanism 30b.
  • the adjacent magnetic poles of the eccentric magnetic system 301b in the circumferential direction are different, and the adjacent magnetic poles in the axial direction are the same.
  • the magnetic mineral is adsorbed on the outer drum 302b by the magnetic field of the eccentric magnetic system 301b, and the magnetic mineral is along the circumferential direction. In the process of movement, it passes through the alternating magnetic field that changes the direction of the magnetic field periodically, thereby turning the magnetic minerals and dispersing the magnetic clusters, preventing magnetic inclusions and improving the grade of the concentrate.
  • the magnetic roller magnetic system 201b of the belt magnetic separation mechanism 20b can adopt a concentric circle lack magnetic system, a concentric cylindrical magnetic system or an eccentric cylindrical magnetic system.
  • the concentric lack magnetic system is a fixed magnetic system, and the magnetic wrap angle is less than 360°. It is arranged concentrically in the roller, and the roller and the magnetic system rotate relative to each other; the concentric cylindrical magnetic system is a rotating magnetic system, and the magnetic package The angle is 360°, it is arranged concentrically in the roller and rotates with the roller; the eccentric cylindrical magnetic system can be a fixed magnetic system or a rotating magnetic system, the magnetic wrap angle is 360°, and it is arranged eccentrically in the roller. The roller rotates relative to the magnetic system.
  • the magnetic roller magnetic system 201b in this embodiment preferably adopts a concentric lack of magnetic field.
  • the magnetic wrap angle of the magnetic roller magnetic system 201b is 150-200°.
  • the magnetic separation mechanism 20b obtains a beneficiation area as large as possible.
  • the belt magnetic separation mechanism 20b is provided with an enriched magnetic system 202b, and the magnetic field range of the enriched magnetic system 202b covers at least part of the conveying surface of the upper part of the belt magnetic separation mechanism 20b, so that the ore passing through the magnetic field of the enriched magnetic system 202b Layered by grade; the enriched magnetic system 202b is arranged along the conveying direction of the belt magnetic separation mechanism 20b.
  • the enriched magnetic system 202b can be a flat magnetic system or a magnetic roller set.
  • the inner side of the belt 205b of the belt magnetic separation mechanism 20b is provided with an enriched magnetic system 202b, and the enriched magnetic system 202b is close to the upper conveying surface of the belt 205b, so that the magnetic field of the enriched magnetic system 202b covers at least part of the upper conveying surface
  • the function of the enriched magnetic system 202b is to use magnetic force to pre-enrich the low-grade magnetic minerals in the coarse tailings to the lower part of the material layer, and to enrich the non-magnetic minerals to the upper part of the material layer, thereby facilitating the entry of low-grade magnetic minerals
  • the magnetic field range of the magnetic roller magnetic system 201b forms a magnetic chain, which improves the efficiency of sorting and the quality of the product.
  • the enriched magnetic system 202b can use a flat magnetic system or a magnetic roller set arranged along the conveying direction of the belt 205b, and both the flat magnetic system and the magnetic roller set can play the role of forming an enriched magnetic field on the upper conveying surface.
  • the magnetic roller set not only supports the upper conveying surface of the belt 205b, but also reduces the friction between the enriched magnetic system 202b and the belt 205b, thereby prolonging the service life.
  • a third hopper 104b that cooperates with the drum magnetic separation mechanism 30b to discharge ore is provided on the frame 10b.
  • the third hopper 104b is preferably arranged under the drum magnetic separation mechanism 30b.
  • the sorting mechanism 30b roughly sorts the mineral raw materials into concentrates and coarse tailings, wherein the concentrates are discharged to the third hopper 104b, and the third hopper 104b discharges the concentrated concentrates from the magnetic separator.
  • the concentrate sorted by the drum magnetic separation mechanism 30b can be directly dropped to the third hopper 104b for discharging, or a first chute 105b connected to the third hopper 104b may be preferably provided for discharging; correspondingly, the drum magnetic separation mechanism 30b
  • the coarse tailings of the sorting can be dropped directly to the feeding end of the belt magnetic separation mechanism 20b, or a second chute 106b whose lower end leads to the feeding end of the belt magnetic separation mechanism 20b may be arranged for discharging.
  • the installation of the first slide pipe 105b and the second slide pipe 106b can optimize the layout to prevent the ore from being mixed after sorting.
  • the frame 10b is provided with a first hopper 102b and a second hopper 103b that cooperate with the belt magnetic separation mechanism 20b to discharge ore.
  • the first hopper 102b and the second hopper 103b are arranged in sequence along the conveying direction of the discharge end belt 205b.
  • the drum magnetic separation mechanism The medium ore and tailings separated by 30b are collected and discharged in the second hopper 103b and the first hopper 102b, respectively.
  • the discharge end of the belt magnetic separation mechanism 20b can directly discharge materials to the first hopper 102b and the second hopper 103b, or discharging and discharging the ore by setting a chute to cooperate with the first hopper 102b and the second hopper 103b.
  • a swingable first material dividing plate 107b is provided under the drum magnetic separation mechanism 30b, and the first material dividing plate 107b is located within the unloading range of the drum magnetic separation mechanism 30b.
  • the upper end of the first chute 105b and the upper end of the second chute 106b are respectively connected to the lower end of the first distribution plate 107b.
  • the first distribution plate 107b adjusts the distribution position of the concentrate and the coarse tailings by deflection, thereby adapting to The needs of different beneficiation processes.
  • a swingable second material dividing plate 108b is provided below the discharge end of the belt magnetic separation mechanism 20b.
  • the second material dividing plate 108b is located within the unloading range of the belt magnetic separation mechanism 20b.
  • 108b can adjust the distribution position of middle ore and tailings.
  • the upper end of the second hopper 103b and the upper end of the first hopper 102b are respectively connected to the lower end of the second distribution plate 108b.
  • a flow regulating valve 109b is provided at the lower end of the feed port 101b of the frame 10b.
  • FIG. 3 illustrates a magnetic ore dry grinding and sorting system according to this embodiment, which includes a high-pressure roller mill 3 and a magnetic separator 1.
  • the discharge port of the high-pressure roller mill 3 feeds the magnetic separator 1 ⁇ , the magnetic separator 1 separates the ground ore from the high-pressure roller mill 3 into concentrate, medium ore and tailings.
  • the third hopper of the magnetic separator 1 is connected to the concentrate hopper 5, and the second hopper of the magnetic separator 1
  • the feed port of the high-pressure roller mill 3 is connected, and the first hopper of the magnetic separator 1 is connected to the tailings hopper 6.
  • the raw ore in the silo 4 enters from the feed port of the high-pressure roller mill 3, and the ground raw ore from the high-pressure roller mill 3 enters the magnetic separator 1 through its discharge port, and the magnetic separator 1 separates the fine materials.
  • the concentrate and tailings separated by the magnetic separator 1 are discharged to the concentrate hopper 5 and the tailings hopper 6 respectively.
  • the medium ore sorted by the magnetic separator 1 is returned to the feed port of the high-pressure roller mill 3 through the silo 4 for cyclic grinding and sorting.
  • the structure of the magnetic separator 1 of the magnetic ore dry grinding and sorting system is the same as that of Example 1.
  • the magnetic ore dry grinding and sorting system has the same structure.
  • the structure of the separator 1 is the same as that of the embodiment 2;
  • the magnetic separator 1 of the magnetic ore dry grinding and separation system is a magnetic classification pre-selector, which includes a frame 10c, an outer drum 302c, and a The cylindrically arranged eccentric magnetic system 301c, as shown in Figure 5, the eccentric magnetic system 301c is eccentrically arranged in the outer drum 302c, and the eccentric magnetic system 301c and the outer drum 302c rotate relative to each other.
  • the magnetic field intensity of the working surface of the outer drum 302c is greater than On the non-eccentric side working surface of the outer drum 302c, the lower working surface of the outer drum 302c gradually reduces the magnetic field strength along the rotation direction of the outer drum 302c.
  • the frame 10c under the outer drum 302c is provided with the first hopper 102c, from the strong magnetic zone to the weak magnetic zone.
  • the second hopper 103c and the third hopper 104c, the first hopper 102c receives the coarse ore sorted by the eccentric magnetic system 301, the second hopper 103c receives the medium ore sorted by the eccentric magnetic system 301, and the third hopper 104c receives the eccentric magnetic system 301c.
  • the above three types of magnetic separators can all achieve the effect of one-time continuous sorting, and the first specific implementation and the second specific implementation are better implementations.
  • the particle size of the raw ore processed by the high-pressure roller mill is 0-60mm, preferably 0-30mm; the particle size of the magnetic separator of the magnetic ore dry grinding and separation system is 0-20mm, preferably 0-6mm.
  • FIG. 4 illustrates a magnetic ore dry grinding and sorting system according to this embodiment, which includes a high-pressure roller mill 3, a screening device 2 and a magnetic separator 1.
  • the discharge port of the high-pressure roller mill 3 is connected
  • the feed port of the screening device 2 is connected to the feed port of the high-pressure roller mill 3, and the fine material port of the screening device 2 is connected to the feed port of the magnetic separator 1; the magnetic separator 1 will screen
  • the fine material screened by the separation device 2 is separated into concentrate, medium ore and tailings.
  • the concentrate port of the magnetic separator 1 is connected to the concentrate hopper 5, and the middle mine port of the magnetic separator 1 is connected to the inlet of the high pressure roller mill 3.
  • the tailings port of the magnetic separator 1 is connected to the tailings hopper 6.
  • the raw ore in the silo 4 enters from the feed port of the high-pressure roller mill 3, and the ground raw ore of the high-pressure roller mill 3 enters the screening device 2 through its discharge port; the coarse material sieved by the screening device 2
  • the processing requirements of magnetic separator 1 are not met.
  • the coarse material sieved by the sieving device 2 is returned from the feed port of the high-pressure roller mill 3 for cyclic grinding.
  • the fine material sieved by the sieving device 2 meets the processing requirements of the magnetic separator 1.
  • the fine material sieved by the screening device 2 enters the magnetic separator 1 from the inlet of the magnetic separator 1.
  • the magnetic separator 1 separates the fine material into concentrate, medium ore, and tailings.
  • the fine material separated by the magnetic separator 1 The ore and tailings are discharged to the concentrate hopper 5 and the tailings hopper 6 respectively.
  • the medium ore sorted by the magnetic separator 1 passes through the feed port of the high-pressure roller mill 3 and returns to the circulating grinding and sorting.
  • the structure of the magnetic separator 1 of the magnetic ore dry grinding and sorting system is the same as that of Example 1.
  • the magnetic ore dry grinding and sorting system has the same structure.
  • the structure of the separator 1 is the same as that of the embodiment 2;
  • the magnetic separator 1 of the magnetic ore dry grinding and separation system is a magnetic classification pre-selector, which includes a frame 10c, an outer drum 302c, and a The cylindrically arranged eccentric magnetic system 301c, as shown in Figure 5, the eccentric magnetic system 301c is eccentrically arranged in the outer drum 302c, and the eccentric magnetic system 301c and the outer drum 301c rotate relative to each other.
  • the frame 10c under the outer drum 302c is provided with the first hopper 102c, from the strong magnetic zone to the weak magnetic zone.
  • the second hopper 103c and the third hopper 104c, the first hopper 102c receives the coarse ore sorted by the eccentric magnetic system 301c, the second hopper 103c receives the medium ore sorted by the eccentric magnetic system 301c, and the third hopper 104c receives the eccentric magnetic system 301c.
  • the above three types of magnetic separators can all achieve the effect of one-time continuous sorting, and the first specific implementation and the second specific implementation are better implementations.
  • the particle size of the raw ore processed by the high-pressure roller mill is 0-60mm, preferably 0-30mm; the particle size of the magnetic separator of the magnetic ore dry grinding and separation system is 0-20mm, preferably 0-6mm.

Abstract

一种双分级式组合磁选机,包括机架(10a)、用于对矿物原料进行粗选的皮带磁选机构(20a)和对粗精矿进行精选的滚筒磁选机构(30a),通过皮带磁选机构(20a)和滚筒磁选机构(30a)的组合式排布实现适应不同工艺需求的双分级磁选,双分级式组合磁选机可连续进行粗选-精选或粗选-扫选,矿物原料经一次性连续分选即可得到合格的精矿和尾矿,磁选机整体结构紧凑,布局合理,操作简单,可有效降低生产成本。还公开了磁性矿干法粉磨分选系统。

Description

一种双分级式组合磁选机及磁性矿干法粉磨分选系统 技术领域
本发明涉及矿物磁选技术领域,特别是一种双分级式组合磁选机及磁性矿干法粉磨分选系统。
背景技术
磁选机主要用于选矿生产,是磁选选矿工艺中将磁性矿物与非磁性矿物、具有磁性差异矿物进行分离的关键选矿设备。磁选是基于被分离物料中不同成分的磁性差异,在磁选设备产生的工作磁场内,通过不同颗粒所受到的磁场力和其它作用力的不同,磁性矿物颗粒会发生磁聚而形成“磁团”或“磁链”,“磁团”或“磁链”受磁力作用会向磁极运动,这是磁力选矿的基础。在选矿行业中,在合格磨矿粒度条件下,通常采用磁选机进行磁性矿物的分选工艺。受原矿品位的限制,国内选矿作业通常使用干法磁选设备,其中使用最为广泛的磁选设备主要为滚筒磁选机、辊式磁选机、带式磁选机等。
由于矿物存在流动不均匀性和品位不均匀性等特点,矿物原料无法通过一次性分选来分离矿物中的磁性物质,使成品符合达到合格精矿和合格尾矿的高质量要求,因此生产单位需要配置多台磁选设备串联和并联,以进行矿物的多级分选,对厂房及设备的配置要求较高。
发明内容
本发明的发明目的在于:针对选矿工艺中需要配置多台磁选设备进行矿物的多级分选的问题,本发明提供一种双分级式组合磁选机及磁性矿干法粉磨分选系统,该磁选机在机架内集成皮带磁选机构和滚筒磁选机构,可对矿石进行多级分选,减少中间处理流程,降低厂房及设备的配置要求。
本发明采用的技术方案如下:
根据本发明公开的一种双分级式组合磁选机,其包括机架及用于对矿物原料进行粗选的皮带磁选机构,所述皮带磁选机构的入料端位于机架的进料口下方,所述皮带磁选机构的卸料端设置有磁辊磁系,所述机架内设置有滚筒磁选机构,所述滚筒磁选机构具有偏心布置的偏心磁系,皮带磁选机构粗选的粗精矿通过滚筒磁选机构进行精选。由于上述设置,矿物原料进入磁选机后可一次性连续进行粗选及精选,其中,皮带磁选机构用于对矿物原料进行粗选,分选出粗精矿和尾矿,滚筒式磁选机用于对粗精矿进行精选,将粗精矿分选为精矿和中矿。上述磁选机优化布局,使结构紧凑,操作便捷。
进一步的,所述皮带磁选机构内设置有富集磁系,所述富集磁系的磁场范围覆盖皮带磁选机构上部的至少部分输送面,使穿过所述富集磁系磁场的矿物原料按品位分层;所述富集磁系沿皮带磁选机构的输送方向布置。由于上述设置,在穿过富集磁系的磁场时,由于受磁力的作用,矿物原料铺陈在皮带磁选机构上部输送面上,其中的磁性矿物向靠近输送面的方向运动,从而使磁性矿物富集到料层下部,非磁性矿物富集到料层上部,便于磁性矿物在磁辊磁系的作用下形成磁链,提高选别效率,降低尾矿品位。
进一步的,所述富集磁系为平板磁系或磁托辊组。富集磁系将磁性矿物引导至料层下部,磁辊磁系吸附并分选料层下部的磁性矿物,抛送非磁性矿物,有效降低尾矿品位。
进一步的,为提高精矿的品位,防止矿物原料在滚筒磁选机构的工作面上形成磁团或磁链,所述偏心磁系在滚筒磁选机构的工作面上形成交变磁场。使磁团或磁链穿过交变磁场时产生磁搅拌,使夹杂在其中低品位磁性矿物及脉石等非磁性矿物在搅拌翻转中脱落,从而提高精矿的品位。偏心磁系为旋转磁系, 即偏心磁系在动力源的带动下旋转。
进一步的,皮带磁选机构卸料端的磁辊磁系为固定磁系,为获得较大的选矿区域,提高选别效率,所述磁辊磁系的磁包角为150-200°。
进一步的,为便于皮带磁选机构、滚筒磁选机构的排矿及矿石输送,所述机架上设置有接收尾矿的第一料斗,所述第一料斗位于所述皮带磁选机构的卸料端下方;所述皮带磁选机构通过第一溜管向第一料斗输送尾矿;所述皮带磁选机构通过第二溜管向滚筒磁选机构输送粗精矿;所述机架上设置有第二料斗和第三料斗,所述第二料斗和第三料斗分别接收所述滚筒磁选机构分选的中矿、精矿。
进一步的,所述皮带磁选机构的卸料端下方设置有可摆动的第一分料板,所述皮带磁选机构通过第一分料板调节分料位置。根据选矿工艺要求的不同,可以通过偏摆第一分料板调节粗精矿及尾矿的分料位置。
进一步的,所述滚筒磁选机构下方设置有可摆动的第二分料板,所述滚筒磁选机构通过第二分料板调节分料位置。根据选矿工艺要求的不同,可以通过偏摆第二分料板调节精矿及中矿的分料位置。
进一步的,所述进料口下端设置有流量调节阀。流量调节阀可调节磁选机匀速进料,防止非匀速进料造成皮带磁选机构的尾矿品位提高。
根据本发明公开的另一种双分级式组合磁选机,其包括机架,机架的进料口下方设置有滚筒磁选机构,所述滚筒磁选机构具有偏心布置的偏心磁系,所述滚筒磁选机构对矿物原料进行粗选,所述机架内设置有皮带磁选机构,所述皮带磁选机构对所述滚筒磁选机构粗选的粗尾矿进行扫选,所述皮带磁选机构的入料端接收滚筒磁选机构粗选的粗尾矿,所述皮带磁选机构的卸料端设置有磁辊磁系。由于上述设置,矿物原料进入磁选机后可一次性进行粗选及扫选, 其中,滚筒磁选机构用于对矿物原料进行粗选,分选出精矿和粗尾矿,皮带磁选机构用于对粗尾矿进行扫选,将粗尾矿分选为中矿和尾矿。
进一步的,所述皮带磁选机构内设置有富集磁系,所述富集磁系的磁场范围覆盖皮带磁选机构上部的至少部分输送面,使穿过所述富集磁系磁场的矿石按品位分层;所述富集磁系沿皮带磁选机构的输送方向布置。其中,富集磁系优选为平板磁系或磁托辊组。在穿过富集磁系的磁场时,由于受磁力的作用,粗尾矿铺陈在皮带磁选机构上部输送面上,其中的低品位磁性矿物向靠近输送面的方向运动,从而使低品位磁性矿物富集到料层下部,非磁性矿物富集到料层上部。
进一步的,为提高精矿的品位,防止矿物原料在滚筒磁选机构的工作面上形成磁团或磁链,所述偏心磁系在滚筒磁选机构的工作面上形成交变磁场。
进一步的,皮带磁选机构卸料端的磁辊磁系为固定磁系,为获得较大的选矿区域,提高选别效率,所述磁辊磁系的磁包角为150-200°。
进一步的,为便于滚筒磁选机构、皮带磁选机构的排矿及矿石输送,所述机架上设置有接收精矿的第三料斗,所述第三料斗位于所述滚筒磁选机构下方;所述滚筒磁选机构通过第一溜管向第三料斗输送精矿;所述滚筒磁选机构通过第二溜管向所述皮带磁选机构的入料端输送粗尾矿;所述机架上设置有第二料斗和第一料斗,所述第二料斗和第一料斗位于所述皮带磁选机构的卸料端下方,所述第二料斗和第一料斗分别接收所述皮带磁选机构分选的中矿、尾矿。
进一步的,所述滚筒磁选机构下方设置有可摆动的第一分料板,所述滚筒磁选机构通过第一分料板调节分料位置。根据选矿工艺要求的不同,可以通过偏摆第一分料板调节精矿及粗尾矿的分料位置。
进一步的,所述皮带磁选机构的卸料端下方设置有可摆动的第二分料板, 所述皮带磁选机构通过第二分料板调节分料位置。根据选矿工艺要求的不同,可以通过偏摆第二分料板调节中矿及粗矿的分料位置。
进一步的,为使进料口均匀进料,防止进料口堵塞,所述进料口下端设置有流量调节阀。
根据本发明公开的一种磁性矿干法粉磨分选系统,包括高压辊磨机和如前所述的磁选机,所述高压辊磨机的下料口连接磁选机的进料口,所述磁选机的精矿口、尾矿口分别连接精矿料斗、尾矿料斗,所述磁选机的中矿口连接高压辊磨机进料口。
进一步的,所述高压辊磨机与磁选机之间设置有筛分装置,所述筛分装置的进料口连接高压辊磨机下料口,所述筛分装置筛分的粗矿料输送至高压辊磨机进料口,所述筛分装置筛分的细矿料进入磁选机进料口。
进一步的,进入所述高压辊磨机的原矿粒度为0-60mm;所述磁选机的处理粒度为0-20mm。
综上所述,由于采用了上述技术方案,本发明的有益效果是:本发明的双分级式组合磁选机通过磁辊磁系和偏心磁系协同工作进行双分级,进入磁选机的矿物原料经一次性连续分选即可得到合格的精矿和尾矿,且磁选机整体结构紧凑,布局合理,操作简单,可有效降低生产成本。应用该双分级式组合磁选机的磁性矿干法粉磨分选系统能量损耗小,效率高。
附图说明
图1是本发明实施例1的双分级式组合磁选机的结构示意图;
图2是本发明实施例2的双分级式组合磁选机的结构示意图;
图3是本发明的磁性矿干法粉磨分选系统的第一种实施方式的工艺流程图;
图4是本发明的磁性矿干法粉磨分选系统的第二种实施方式的工艺流程图;
图5是本发明的磁性矿干法粉磨分选系统的磁选机的另一种实施方式的结构示意图;
图中标记:1-磁选机;2-筛分装置;3-高压辊磨机;4-料仓;5-精矿料斗;6-尾矿料斗;10a,10b,10-机架;20a,20b-皮带磁选机构;30a,30b-滚筒磁选机构;101a,101b,101-进料口;102a,102b,102-第一料斗;103a,103b,103-第二料斗;104a,104b,104-第三料斗;105a,105b-第一溜管;106a,106b-第二溜管;107a,107b-第一分料板;108a,108b-第二分料板;109a,109b-流量调节阀;201a,201b-磁辊磁系;202a,202b-富集磁系;203a,203b-主动辊;204a,204b-从动辊;205a,205b-皮带;301a,301b,301-偏心磁系;302a,302b,302-外滚筒。
具体实施方式
下面结合附图,对本发明作详细的说明。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
根据本实施例公开的一种双分级式组合磁选机,其包括机架10a、皮带磁选机构20a和滚筒磁选机构30a,皮带磁选机构20a和滚筒磁选机构30a安装在机架10a内。皮带磁选机构20a能够对矿物原料进行粗选,皮带磁选机构20a的入料接收由进料口101a进入的矿物原料,皮带磁选机构20a的卸料端设置用于粗选的磁辊磁系201a;滚筒磁选机构30a接收皮带磁选机构20a卸料端排出的粗精矿,并对粗精矿进行精选,滚筒磁选机构30a具有偏心布置的偏心磁 系301a,具有偏心磁系301a的滚筒磁选机构30a可以进行连续选矿及自动卸矿。优选的,磁选机设置为顶部进料,进料口101a设置在机架10a顶部;皮带磁选机构20a布置在机架10a的进料口101a下方,滚筒磁选机构30a布置在皮带磁选机构20a的卸料端下方。
具体地说,皮带磁选机构20a包括主动辊203a、从动辊204a以及皮带205a,皮带205a套设在主动辊203a和从动辊204a外围,主动辊203a由动力源驱动转动,从而带动皮带205a及从动辊204a转动。磁辊磁系201a可以设置在主动辊203a或从动辊204a内,本实施例中,如图1所示,磁辊磁系201a优选的设置在从动辊204a内,则从动辊204a位于皮带磁选机构20a的卸料端,主动辊203a位于皮带磁选机构20a的入料端。磁辊磁系201a在皮带205a输送机构卸料端上,磁辊磁系201a沿皮带205a输送方向在卸料端的工作面上形成强磁区和弱磁区,强磁区位于工作面的弧形段,进入强磁区后,矿物原料中的磁性矿物吸附在工作面上,而非磁性矿物则在重力作用下脱离工作面,磁性矿物则随皮带205a输送方向进入弱磁区后脱离工作面,从而达到矿物原料抛除尾矿进行粗选的目的。
具体的说,滚筒磁选机构30a包括外滚筒302a及偏心布置在外滚筒302a内的偏心磁系301a。在一种具体实施方式中,偏心磁系301a及外滚筒302a在各自的动力源驱动下均可转动,且偏心磁系301a及外滚筒302a相对转动,两者可同向转动,也可反向转动;在另一种具体实施方式中,偏心磁系301a相对机架10a固定,外滚筒302a在动力源的驱动下相对偏心磁系301a转动,使偏心磁系301a及外滚筒302a相对转动。偏心布置的偏心磁系301a在外滚筒302a的工作面上形成弱磁区和强磁区,粗精矿由皮带磁选机构20a的卸料端下落至外滚筒302a工作面的强磁区,粗精矿中的高品位磁性矿物吸附在强 磁区的工作面上,粗精矿中的低品位磁性矿物直接下落,高品位磁性矿物随外滚筒302a转动而进入工作面的弱磁区后,高品位磁性矿物所受磁力无法对抗自身重力而下落,从而达到分选合格精矿的目的。
皮带磁选机构20a的磁辊磁系201a可以采用同心圆缺磁系,也可以采用同心筒状磁系或偏心筒状磁系。需要说明的是,同心圆缺磁系为固定磁系,磁包角小于360°,同心的布置在辊筒内,辊筒与磁系相对转动;同心筒状磁系为旋转磁系,磁包角为360°,同心的布置在辊筒内并随辊筒转动;偏心筒状磁系可以为固定磁系,也可以为旋转磁系,磁包角为360°,偏心布置在辊筒内,偏心辊筒与磁系在各自动力源的驱动下相对转动。为控制生产及维修成本,如图1所示,本实施例中的磁辊磁系201a优选的采用同心圆缺磁系,磁辊磁系201a的磁包角为150-200°,在控制成本的情况下,使皮带磁选机构20a获得尽量大的选矿区域。
滚筒磁选机构30a的偏心磁系301a包括排布成筒状的若干磁极。本实施例中,偏心磁系301a在滚筒磁选机构30a的工作面上形成交变磁场。具体地说,偏心磁系301a在圆周方向上的相邻磁极相异,在轴向上的相邻磁极相同,高品位磁性矿物受偏心磁系301a的磁场作用吸附在外滚筒302a上,磁性矿物沿圆周方向运动的过程中穿过磁场方向周期性变化的交变磁场,从而使高品位磁性矿物翻转并打散磁团,防止低品位磁性矿物夹杂在高品位磁性矿物中,提高精矿的品位。
可选的,皮带磁选机构20a内设置有富集磁系202a,富集磁系202a的磁场范围覆盖皮带磁选机构20a上部的至少部分输送面,使穿过富集磁系202a磁场的矿石按品位分层;富集磁系202a沿皮带磁选机构20a的输送方向布置。其中,富集磁系202a可采用平板磁系或磁托辊组。
具体地说,皮带磁选机构20a的皮带205a内侧设置有富集磁系202a,富集磁系202a贴近皮带205a的上输送面,从而使富集磁系202a的磁场范围覆盖至少部分上输送面,该富集磁系202a的作用是利用磁力作用使矿物原料中的磁性矿物预先富集到料层的下部,非磁性矿物富集到料层的上部,从而便于磁性矿物进入磁辊磁系201a的磁场范围后形成磁链,降低尾矿品位。富集磁系202a可以使用沿皮带205a输送方向布置的平板磁系或磁托辊组,平板磁系和磁托辊组均可起到在上输送面形成富集磁场的作用。其中,磁托辊组除对皮带205a的上输送面起到支撑作用外,还可减小富集磁系202a与皮带205a之间的摩擦力,延长使用寿命。
为优化磁选机的结构设置,可选的,机架10a上设置有配合皮带磁选机构20a的卸料端进行排矿的第一料斗102a,第一料斗102a优选的设置在皮带磁选机构20a的卸料端下方,皮带磁选机构20a将矿物原料粗选为粗精矿及尾矿,其中,尾矿卸料至第一料斗102a,第一料斗102a将聚集的尾矿排出磁选机。皮带磁选机构20a分选的尾矿可直接下落至第一料斗102a进行排矿,也可优选的设置连通第一料斗102a的第一溜管105a进行排矿;相应的,皮带磁选机构20a分选的粗精矿可直接下落至滚筒磁选机构30a的进料范围内,也可优选的设置下端置于滚筒磁选机构30a进料范围内的第二溜管106a进行排矿。安装第二溜管106a及第一溜管105a可优化布局,防止矿石分选后再混合。机架10a上设置有配合滚筒磁选机构30a排矿的第二料斗103a及第三料斗104a,第二料斗103a及第三料斗104a沿外滚筒302a的转动方向依次布置在其下方,滚筒磁选机构30a分选的中矿及精矿分别在第二料斗103a、第三料斗104a内聚集、排出。其中,滚筒磁选机构30a可直接向第三料斗104a及第二料斗103a卸料,也可通过设置溜管配合第三料斗104a、第二料斗103a进行卸料排矿。
可选的,皮带磁选机构20a的卸料端下方设置可摆动的第一分料板107a,第一分料板107a位于皮带磁选机构20a的卸料范围内。
具体地说,第二溜管106a上端及第一溜管105a上端分别连接第一分料板107a下端,第一分料板107a通过偏摆调节粗精矿及尾矿的分料位置。受到矿物原料磁性强弱、有用矿物和脉石矿物粒度、有用矿物嵌布方式等多方面因素的影响,需要根据矿物性质选择合适的选矿工艺,调节分选矿物的分料位置,摆动第一分料板107a可便捷的调整粗精矿及尾矿的分料位置,适应不同选矿工艺的需求。相似的,滚筒磁选机构30a下方设置有可摆动的第二分料板108a,第二分料板108a位于滚筒磁选机构30a的卸料范围内,通过摆动第二分料板108a可调节中矿及精矿的分料位置。具体的说,第二料斗103a上端及第三料斗104a上端分别连接第二分料板108a下端。
可选的,机架10a的进料口101a下端设置有流量调节阀109a。流量调节阀109a用于防止堆积在进料口101a的物料非匀速进料,非匀速进料使矿石原料中的磁性矿物在选矿区域无法得到有效分选即随同非磁性矿物进行卸料,选别效率降低。
实施例2
参照图2说明根据本实施例公开的一种双分级式组合磁选机,其包括机架10b、滚筒磁选机构30b和皮带磁选机构20b,滚筒磁选机构30b和皮带磁选机构20b安装在机架10b内。滚筒磁选机构30b能够对矿物原料进行粗选,滚筒磁选机构30b具有偏心布置的偏心磁系301b,具有偏心磁系301b的滚筒磁选机构30b可以进行连续选矿及自动排矿;皮带磁选机构20b能够对滚筒磁选机构30b粗选的粗尾矿进行扫选,皮带磁选机构20b的入料端接收粗尾矿,皮带磁选机构20b的卸料端设置用于扫选的磁辊磁系201b。优选的,磁选机设置为 顶部进料,进料口101b设置在机架10b顶部;滚筒磁选机构30b和皮带磁选机构20b依次布置在机架10b的进料口101b下方。
具体地说,滚筒磁选机构30b包括外滚筒302b及偏心布置在外滚筒302b内的偏心磁系301b。在一种具体实施方式中,偏心磁系301b及外滚筒302b在各自的动力源驱动下均可转动,且偏心磁系301b及外滚筒302b相对转动,两者可同向转动,也可反向转动;在另一种具体实施方式中,偏心磁系301b相对机架10b固定,外滚筒302b在动力源的驱动下相对偏心磁系301b转动,使偏心磁系301b及外滚筒302b相对转动。偏心布置的偏心磁系301b在外滚筒302b的工作面上形成弱磁区和强磁区,矿物原料由进料口101b下落至工作面的强磁区,高品位磁性矿物吸附在强磁区的工作面上,低品位磁性矿物及非磁性矿物直接下落,高品位磁性矿物随外滚筒302b转动而进入工作面的弱磁区后,高品位磁性矿物所受磁力无法对抗自身重力而下落,从而达到初步分选的目的。皮带磁选机构20b包括主动辊203b、从动辊204b以及皮带205b,皮带205b套设在主动辊203b和从动辊204b外围,主动辊203b由动力源驱动转动,从而带动皮带205b及从动辊204b转动。磁辊磁系201b可以设置在主动辊203b或从动辊204b内。本实施例中,磁辊磁系201b优选的设置在从动辊204b内,则从动辊204b位于皮带磁选机构20b的卸料端,主动辊203b位于皮带磁选机构20b的入料端。磁辊磁系201b在皮带205b输送机构卸料端上,磁辊磁系201b沿皮带205b输送方向在卸料端的工作面上形成强磁区和弱磁区,强磁区位于工作面的弧形段,进入强磁区后,粗尾矿中的低品位磁性矿物吸附在工作面上,而非磁性矿物则在重力作用下脱离工作面,低品位磁性矿物则随皮带205b输送方向进入弱磁区后脱离工作面,从而达到粗尾矿回收有用成分的选别目的。
滚筒磁选机构30b的偏心磁系301b包括排布成筒状的若干磁极。本实施例中,偏心磁系301b在滚筒磁选机构30b的工作面上形成交变磁场。具体地说,偏心磁系301b在圆周方向上的相邻磁极相异,在轴向上的相邻磁极相同,磁性矿物受偏心磁系301b的磁场作用吸附在外滚筒302b上,磁性矿物沿圆周方向运动的过程中穿过磁场方向周期性变化的交变磁场,从而使磁性矿物翻转并打散磁团,防止磁夹杂并提高精矿的品位。
皮带磁选机构20b的磁辊磁系201b可以采用同心圆缺磁系,也可以采用同心筒状磁系或偏心筒状磁系。需要说明的是,同心圆缺磁系为固定磁系,磁包角小于360°,同心的布置在辊筒内,辊筒与磁系相对转动;同心筒状磁系为旋转磁系,磁包角为360°,同心的布置在辊筒内并随辊筒转动;偏心筒状磁系可以是固定磁系,也可以是旋转磁系,磁包角为360°,偏心布置在辊筒内,辊筒与磁系相对转动。为控制生产及维修成本,本实施例中的磁辊磁系201b优选的采用同心圆缺磁系,磁辊磁系201b的磁包角为150-200°,在控制成本的情况下,使皮带磁选机构20b获得尽量大的选矿区域。
可选的,皮带磁选机构20b内设置有富集磁系202b,富集磁系202b的磁场范围覆盖皮带磁选机构20b上部的至少部分输送面,使穿过富集磁系202b磁场的矿石按品位分层;富集磁系202b沿皮带磁选机构20b的输送方向布置。其中,富集磁系202b可采用平板磁系或磁托辊组。
具体地说,皮带磁选机构20b的皮带205b内侧设置有富集磁系202b,富集磁系202b贴近皮带205b的上输送面,从而使富集磁系202b的磁场范围覆盖至少部分上输送面,该富集磁系202b的作用是利用磁力作用使粗尾矿中的低品位磁性矿物预先富集到料层的下部,非磁性矿物富集到料层的上部,从而便于低品位磁性矿物进入磁辊磁系201b的磁场范围后形成磁链,提高选别的 效率和产品的品位。富集磁系202b可以使用沿皮带205b输送方向布置的平板磁系或磁托辊组,平板磁系和磁托辊组均可起到在上输送面形成富集磁场的作用。其中,磁托辊组除对皮带205b的上输送面起到支撑作用外,还可减小富集磁系202b与皮带205b之间的摩擦力,延长使用寿命。
为优化磁选机的结构设置,可选的,机架10b上设置有配合滚筒磁选机构30b排矿的第三料斗104b,第三料斗104b优选的设置在滚筒磁选机构30b下方,滚筒磁选机构30b将矿物原料粗选为精矿及粗尾矿,其中,精矿卸料至第三料斗104b,第三料斗104b将聚集的精矿排出磁选机。滚筒磁选机构30b分选的精矿可直接下落至第三料斗104b进行排矿,也可优选的设置连通第三料斗104b的第一溜管105b进行排矿;相应的,滚筒磁选机构30b分选粗尾矿可直接下落至皮带磁选机构20b的入料端,也可优选的设置下端通向皮带磁选机构20b入料端的第二溜管106b进行排矿。安装第一溜管105b及第二溜管106b可优化布局,防止矿石分选后再混合。机架10b上设置有配合皮带磁选机构20b排矿的第一料斗102b及第二料斗103b,第一料斗102b及第二料斗103b沿卸料端皮带205b的输送方向依次布置,滚筒磁选机构30b分选的中矿及尾矿分别在第二料斗103b、第一料斗102b内聚集、排出。其中,皮带磁选机构20b的卸料端可直接向第一料斗102b及第二料斗103b卸料,也可通过设置溜管配合第一料斗102b、第二料斗103b进行卸料排矿。
可选的,滚筒磁选机构30b下方设置可摆动的第一分料板107b,第一分料板107b位于滚筒磁选机构30b的卸料范围内。具体地说,第一溜管105b上端及第二溜管106b上端分别连接第一分料板107b下端,第一分料板107b通过偏摆调节精矿及粗尾矿的分料位置,从而适应不同选矿工艺的需求。相似的,皮带磁选机构20b的卸料端下方设置有可摆动的第二分料板108b,第二分料板 108b位于皮带磁选机构20b的卸料范围内,通过摆动第二分料板108b可调节中矿及尾矿的分料位置。具体的说,第二料斗103b上端及第一料斗102b上端分别连接第二分料板108b下端。
可选的,机架10b的进料口101b下端设置有流量调节阀109b。
实施例3
参照图3说明根据本实施例公开的一种磁性矿干法粉磨分选系统,其包括高压辊磨机3和磁选机1,高压辊磨机3的下料口磁选机1进料口,磁选机1将高压辊磨机3的粉磨原矿分选为精矿、中矿及尾矿,磁选机1的第三料斗连接精矿料斗5,磁选机1的第二料斗连接高压辊磨机3的进料口,磁选机1的第一料斗连接尾矿料斗6。
具体地说,料仓4中的原矿由高压辊磨机3进料口进入,高压辊磨机3的粉磨原矿通过其下料口进入磁选机1,磁选机1将细料分选为精矿、中矿、尾矿,磁选机1分选的精矿及尾矿分别向精矿料斗5、尾矿料斗6进行卸料。磁选机1分选的中矿通过料仓4返回高压辊磨机3的进料口进行循环粉磨及分选。
在第一种具体实施方式中,磁性矿干法粉磨分选系统的磁选机1结构与实施例1相同;在第二种具体实施方式中,磁性矿干法粉磨分选系统的磁选机1结构与实施例2相同;在第三种具体实施方式中,磁性矿干法粉磨分选系统的磁选机1为磁力分级预选机,其包括机架10c、外滚筒302c和呈筒状排列的偏心磁系301c,如图5所示,偏心磁系301c偏心布置在外滚筒302c内,偏心磁系301c与外滚筒302c之间相对转动,外滚筒302c的偏心侧工作面磁场强度大于外滚筒302c的非偏心侧工作面,外滚筒302c下部工作面沿外滚筒302c转动方向磁场强度逐渐减小,外滚筒302c下方的机架10c上从强磁区至弱磁区依次设置第一料斗102c、第二料斗103c和第三料斗104c,第一料斗102c 接收偏心磁系301分选的粗矿,第二料斗103c接收偏心磁系301分选的中矿,第三料斗104c接收偏心磁系301c分选的精矿。上述三种磁选机均可达到一次性连续分选的效果,其中第一种具体实施方式和第二种具体实施方式为较优实施方式。
可选的,高压辊磨机处理的原矿粒度为0-60mm,优选为0-30mm;磁性矿干法粉磨分选系统的磁选机处理粒度为0-20mm,优选为0-6mm。
实施例4
参照图4说明根据本实施例公开的一种磁性矿干法粉磨分选系统,其包括高压辊磨机3、筛分装置2及磁选机1,高压辊磨机3的下料口连接筛分装置2进料口,筛分装置2的粗料口连接高压辊磨机3的进料口,筛分装置2的细料口连接磁选机1进料口;磁选机1将筛分装置2筛分的细料分选为精矿、中矿及尾矿,磁选机1的精矿口连接精矿料斗5,磁选机1的中矿口连接高压辊磨机3的进料口,磁选机1的尾矿口连接尾矿料斗6。
具体地说,料仓4中的原矿由高压辊磨机3进料口进入,高压辊磨机3的粉磨原矿通过其下料口进入筛分装置2;筛分装置2筛分的粗料未达到磁选机1处理要求,筛分装置2筛分的粗料由高压辊磨机3进料口返回进行循环粉磨,筛分装置2筛分的细料符合磁选机1处理要求,筛分装置2筛分的细料由磁选机1进料口进入磁选机1,磁选机1将细料分选为精矿、中矿、尾矿,磁选机1分选的精矿及尾矿并分别向精矿料斗5、尾矿料斗6进行卸料。磁选机1分选的中矿通过高压辊磨机3的进料口返回循环粉磨及分选。
在第一种具体实施方式中,磁性矿干法粉磨分选系统的磁选机1结构与实施例1相同;在第二种具体实施方式中,磁性矿干法粉磨分选系统的磁选机1结构与实施例2相同;在第三种具体实施方式中,磁性矿干法粉磨分选系统的 磁选机1为磁力分级预选机,其包括机架10c、外滚筒302c和呈筒状排列的偏心磁系301c,如图5所示,偏心磁系301c偏心布置在外滚筒302c内,偏心磁系301c与外滚筒301c之间相对转动,外滚筒302c的偏心侧工作面磁场强度大于外滚筒302c的非偏心侧工作面,外滚筒302c下部工作面沿外滚筒302c转动方向磁场强度逐渐减小,外滚筒302c下方的机架10c上从强磁区至弱磁区依次设置第一料斗102c、第二料斗103c和第三料斗104c,第一料斗102c接收偏心磁系301c分选的粗矿,第二料斗103c接收偏心磁系301c分选的中矿,第三料斗104c接收偏心磁系301c分选的精矿。上述三种磁选机均可达到一次性连续分选的效果,其中第一种具体实施方式和第二种具体实施方式为较优实施方式。
可选的,高压辊磨机处理的原矿粒度为0-60mm,优选为0-30mm;磁性矿干法粉磨分选系统的磁选机处理粒度为0-20mm,优选为0-6mm。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (21)

  1. 一种双分级式组合磁选机,其特征在于,包括机架(10a)及用于对矿物原料进行粗选的皮带磁选机构(20a),所述皮带磁选机构(20a)的入料端位于机架(10a)的进料口(101a)下方,所述皮带磁选机构(20a)的卸料端设置有磁辊磁系(201a),所述机架(10)内设置有滚筒磁选机构(30a),所述滚筒磁选机构(30a)具有偏心布置的偏心磁系(301a),皮带磁选机构(20a)粗选的粗精矿通过滚筒磁选机构(30a)进行精选。
  2. 如权利要求1所述的双分级式组合磁选机,其特征在于,所述皮带磁选机构(20a)内设置有富集磁系(202a),所述富集磁系(202a)的磁场范围覆盖皮带磁选机构(20a)上部的至少部分输送面,使穿过所述富集磁系(202a)磁场的矿物原料按品位分层;所述富集磁系(202a)沿皮带磁选机构(20a)的输送方向布置。
  3. 如权利要求2所述的双分级式组合磁选机,其特征在于,所述富集磁系(202a)为平板磁系或磁托辊组。
  4. 如权利要求1至3中任一权利要求所述的双分级式组合磁选机,其特征在于,所述偏心磁系(301a)在滚筒磁选机构(30a)的工作面上形成交变磁场;所述偏心磁系(301a)为旋转磁系。
  5. 如权利要求1至3中任一权利要求所述的双分级式组合磁选机,其特征在于,所述磁辊磁系(201a)的磁包角为150-200°;所述磁辊磁系(201a)为固定磁系。
  6. 如权利要求1至3中任一权利要求所述的双分级式组合磁选机,其特征在于,所述机架(10a)上设置有接收尾矿的第一料斗(102a),所述第一料斗(102a)位于所述皮带磁选机构(20a)的卸料端下方;所述皮带磁选机构(20a)通过第一溜管(105a)向第一料斗(102a)输送尾矿;所述皮带磁选机构(20a) 通过第二溜管(106a)向滚筒磁选机构(30a)输送粗精矿;所述机架(10a)上设置有第二料斗(103a)和第三料斗(104a),所述第二料斗(103a)和第三料斗(104a)分别接收所述滚筒磁选机构(30a)分选的中矿、精矿。
  7. 如权利要求1至3中任一权利要求所述的,其特征在于,所述皮带磁选机构(20a)的卸料端下方设置有可摆动的第一分料板(107a),所述皮带磁选机构(20a)通过第一分料板(107a)调节分料位置。
  8. 如权利要求1至3中任一权利要求所述的,其特征在于,所述滚筒磁选机构(30a)下方设置有可摆动的第二分料板(108a),所述滚筒磁选机构(30a)通过第二分料板(108a)调节分料位置。
  9. 如权利要求1至3中任一权利要求所述的,其特征在于,所述进料口(101a)下端设置有流量调节阀(109a)。
  10. 一种双分级式组合磁选机,其特征在于,包括机架(10b),机架(10b)的进料口(101b)下方设置有滚筒磁选机构(30b),所述滚筒磁选机构(30b)具有偏心布置的偏心磁系(301b),所述滚筒磁选机构(30b)对矿物原料进行粗选,所述机架(10b)内设置有皮带磁选机构(20b),所述皮带磁选机构(20b)对所述滚筒磁选机构(30b)粗选的粗尾矿进行扫选,所述皮带磁选机构(20b)的入料端接收滚筒磁选机构(30b)粗选的粗尾矿,所述皮带磁选机构(20b)的卸料端设置有磁辊磁系(201b)。
  11. 如权利要求10所述的双分级式组合磁选机,其特征在于,所述皮带磁选机构(20b)内设置有富集磁系(202b),所述富集磁系(202b)的磁场范围覆盖皮带磁选机构(20b)上部的至少部分输送面,使穿过所述富集磁系(202b)磁场的矿石按品位分层;所述富集磁系(202b)沿皮带磁选机构(20b)的输送方向布置。
  12. 如权利要求11所述的双分级式组合磁选机,其特征在于,所述富集磁系(202b)为平板磁系或磁托辊组。
  13. 如权利要求10所述的双分级式组合磁选机,其特征在于,所述偏心磁系(301b)在滚筒磁选机构(30b)的工作面上形成交变磁场;所述偏心磁系(301b)为旋转磁系。
  14. 如权利要求10所述的双分级式组合磁选机,其特征在于,所述磁辊磁系(201b)为固定磁系;所述磁辊磁系(201b)的磁包角为150-200°。
  15. 如权利要求10至14中任一权利要求所述的双分级式组合磁选机,其特征在于,所述机架(10b)上设置有接收精矿的第三料斗(104b),所述第三料斗(104b)位于所述滚筒磁选机构(30b)下方;所述滚筒磁选机构(30b)通过第一溜管(105b)向第三料斗(104b)输送精矿;所述滚筒磁选机构(30b)通过第二溜管(106b)向所述皮带磁选机构(20b)的入料端输送粗尾矿;所述机架(10b)上设置有第二料斗(103b)和第一料斗(102b),所述第二料斗(103b)和第一料斗(102b)位于所述皮带磁选机构(20b)的卸料端下方,所述第二料斗(103b)和第一料斗(102b)分别接收所述皮带磁选机构(20b)分选的中矿、尾矿。
  16. 如权利要求10至14中任一权利要求所述的双分级式组合磁选机,其特征在于,所述滚筒磁选机构(30b)下方设置有可摆动的第一分料板(107b),所述滚筒磁选机构(30b)通过第一分料板(107b)调节分料位置。
  17. 如权利要求10至14中任一权利要求所述的双分级式组合磁选机,其特征在于,所述皮带磁选机构(20b)的卸料端下方设置有可摆动的第二分料板(108b),所述皮带磁选机构(20b)通过第二分料板(108b)调节分料位置。
  18. 如权利要求10至14中任一权利要求所述的双分级式组合磁选机,其特征 在于,所述进料口(101b)下端设置有流量调节阀(109b)。
  19. 一种磁性矿干法粉磨分选系统,其特征在于,包括高压辊磨机(3)和如权利要求1至18任一权利要求所述的磁选机(1),所述高压辊磨机(3)的下料口连接磁选机(1)的进料口,所述磁选机(1)的第三料斗、第一料斗分别连接精矿料斗(5)、尾矿料斗(6),所述磁选机(1)的第二料斗连接高压辊磨机(3)进料口。
  20. 如权利要求19所述的磁性矿干法粉磨分选系统,其特征在于,所述高压辊磨机(3)与磁选机(1)之间设置有筛分装置(2),所述筛分装置(2)的进料口连接高压辊磨机(3)下料口,所述筛分装置(2)筛分的粗矿料输送至高压辊磨机(3)进料口,所述筛分装置(2)筛分的细矿料进入磁选机(1)进料口。
  21. 如权利要求19所述的磁性矿干法粉磨分选系统,其特征在于,进入所述高压辊磨机(3)的原矿粒度为0-60mm;所述磁选机(1)的处理粒度为0-20mm。
PCT/CN2020/082719 2019-12-10 2020-04-01 一种双分级式组合磁选机及磁性矿干法粉磨分选系统 WO2021114517A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911258838.XA CN110882840A (zh) 2019-12-10 2019-12-10 一种叠排式双分级磁选机及磁性矿干法粉磨分选系统
CN201911258838.X 2019-12-10
CN201911260202.9 2019-12-10
CN201911260202.9A CN110882841A (zh) 2019-12-10 2019-12-10 一种串联式双分级磁选机及磁性矿干法粉磨分选系统

Publications (1)

Publication Number Publication Date
WO2021114517A1 true WO2021114517A1 (zh) 2021-06-17

Family

ID=76329299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082719 WO2021114517A1 (zh) 2019-12-10 2020-04-01 一种双分级式组合磁选机及磁性矿干法粉磨分选系统

Country Status (1)

Country Link
WO (1) WO2021114517A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114653462A (zh) * 2022-04-19 2022-06-24 安徽马钢矿业资源集团有限公司 一种高压辊磨粗粒磁选工艺用皮带机取样机构及使用方法
CN116618174A (zh) * 2023-07-18 2023-08-22 赣州金环磁选科技装备股份有限公司 一种尾矿干式磁选机
CN116654661A (zh) * 2023-07-28 2023-08-29 山西科为磁感技术有限公司 一种矿用物料输送机用铁磁材料检测系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1520425A (en) * 1975-10-31 1978-08-09 Donaldson R Refuse sorting
CN2381392Y (zh) * 1999-07-27 2000-06-07 山东中舜集团有限公司 磁选器
JP2005013828A (ja) * 2003-06-25 2005-01-20 Asahi Glass Co Ltd 磁力選別機
CN201002050Y (zh) * 2006-06-02 2008-01-09 乔盘池 履带转动磁系干选机
CN201124118Y (zh) * 2007-11-27 2008-10-01 山东华特磁电科技股份有限公司 永磁干式磁分离机
CN201135924Y (zh) * 2007-12-24 2008-10-22 山东华特磁电科技股份有限公司 摆动磁场永磁磁选机
CN102580847A (zh) * 2012-02-24 2012-07-18 成都利君实业股份有限公司 干式磁选机
CN103203283A (zh) * 2013-04-23 2013-07-17 成都利君实业股份有限公司 多力场干式磁选机
CN110882840A (zh) * 2019-12-10 2020-03-17 成都利君实业股份有限公司 一种叠排式双分级磁选机及磁性矿干法粉磨分选系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1520425A (en) * 1975-10-31 1978-08-09 Donaldson R Refuse sorting
CN2381392Y (zh) * 1999-07-27 2000-06-07 山东中舜集团有限公司 磁选器
JP2005013828A (ja) * 2003-06-25 2005-01-20 Asahi Glass Co Ltd 磁力選別機
CN201002050Y (zh) * 2006-06-02 2008-01-09 乔盘池 履带转动磁系干选机
CN201124118Y (zh) * 2007-11-27 2008-10-01 山东华特磁电科技股份有限公司 永磁干式磁分离机
CN201135924Y (zh) * 2007-12-24 2008-10-22 山东华特磁电科技股份有限公司 摆动磁场永磁磁选机
CN102580847A (zh) * 2012-02-24 2012-07-18 成都利君实业股份有限公司 干式磁选机
CN103203283A (zh) * 2013-04-23 2013-07-17 成都利君实业股份有限公司 多力场干式磁选机
CN110882840A (zh) * 2019-12-10 2020-03-17 成都利君实业股份有限公司 一种叠排式双分级磁选机及磁性矿干法粉磨分选系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114653462A (zh) * 2022-04-19 2022-06-24 安徽马钢矿业资源集团有限公司 一种高压辊磨粗粒磁选工艺用皮带机取样机构及使用方法
CN116618174A (zh) * 2023-07-18 2023-08-22 赣州金环磁选科技装备股份有限公司 一种尾矿干式磁选机
CN116618174B (zh) * 2023-07-18 2023-10-03 赣州金环磁选科技装备股份有限公司 一种尾矿干式磁选机
CN116654661A (zh) * 2023-07-28 2023-08-29 山西科为磁感技术有限公司 一种矿用物料输送机用铁磁材料检测系统
CN116654661B (zh) * 2023-07-28 2023-10-27 山西科为磁感技术有限公司 一种矿用物料输送机用铁磁材料检测系统

Similar Documents

Publication Publication Date Title
WO2021114517A1 (zh) 一种双分级式组合磁选机及磁性矿干法粉磨分选系统
CN105880003B (zh) 一种磁铁矿石无筛分高压辊磨干式磁选方法
KR101457346B1 (ko) 금속을 회수하기 위한 스테인레스강 슬래그 및 제철소 슬래그의 가공방법
WO2021114516A1 (zh) 磁性矿干法粉磨分选系统
CN105772218B (zh) 一种铁矿循环分级选矿方法及应用于该方法的干选机
KR102024574B1 (ko) 경사형 자력 선별기
CN108356060A (zh) 全金属分选线
KR101260026B1 (ko) 파분쇄 및 선별을 이용한 고철 폐기물 재생 장치
CN106669888A (zh) 高效辊压粉磨站及其工艺
CN105562200B (zh) 一种多进料带式磁选机
WO2023070894A1 (zh) 一种干式精选机
CN110882840A (zh) 一种叠排式双分级磁选机及磁性矿干法粉磨分选系统
CN212284874U (zh) 空气选粉机
CN205868519U (zh) 选矿集中破碎系统
CN210474299U (zh) 一种磁选机
CN111822346A (zh) 空气选粉机及其选粉方法
CN218742467U (zh) 高压辊磨闭路筛分预选装置
CN107617501B (zh) 多级粉磨超细粉生产工艺及其系统
CN207533405U (zh) 包括提升机的磁铁矿选矿系统
CN110882841A (zh) 一种串联式双分级磁选机及磁性矿干法粉磨分选系统
CN211755948U (zh) 一种贫磁铁矿干、湿联合预选系统
CN202200430U (zh) 废旧轮胎制粉系统
CN211488118U (zh) 一种串联式双分级磁选机及磁性矿干法粉磨分选系统
CN205570540U (zh) 一种多进料带式磁选机
CN113798059A (zh) 一种干式预选机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898939

Country of ref document: EP

Kind code of ref document: A1