WO2021114516A1 - 磁性矿干法粉磨分选系统 - Google Patents

磁性矿干法粉磨分选系统 Download PDF

Info

Publication number
WO2021114516A1
WO2021114516A1 PCT/CN2020/082718 CN2020082718W WO2021114516A1 WO 2021114516 A1 WO2021114516 A1 WO 2021114516A1 CN 2020082718 W CN2020082718 W CN 2020082718W WO 2021114516 A1 WO2021114516 A1 WO 2021114516A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
separator
discharge port
grading
separation mechanism
Prior art date
Application number
PCT/CN2020/082718
Other languages
English (en)
French (fr)
Inventor
何亚民
丁亚卓
徐智平
Original Assignee
成都利君实业股份有限公司
成都利君科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都利君实业股份有限公司, 成都利君科技有限责任公司 filed Critical 成都利君实业股份有限公司
Publication of WO2021114516A1 publication Critical patent/WO2021114516A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C21/00Disintegrating plant with or without drying of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/10Magnetic separation acting directly on the substance being separated with cylindrical material carriers
    • B03C1/12Magnetic separation acting directly on the substance being separated with cylindrical material carriers with magnets moving during operation; with movable pole pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/16Magnetic separation acting directly on the substance being separated with material carriers in the form of belts
    • B03C1/22Magnetic separation acting directly on the substance being separated with material carriers in the form of belts with non-movable magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for

Definitions

  • the invention relates to the technical field of ore dressing, in particular to a magnetic ore dry grinding and separation system.
  • the existing dry grinding and sorting system includes a high-pressure roller mill, a coarse-grain magnetic separator, a wind grading device, and a fine-grain magnetic
  • the separator and the fine ore magnetic separator, the discharge port of the high-pressure roller mill is connected to the feed port of the coarse-grain magnetic separator, the coarse concentrate separated by the coarse-grain magnetic separator enters the wind classification device for classification, and the fine material of the wind classification device
  • the outlet is connected to the feed inlet of the fine particle magnetic separator, and the powder outlet of the wind classifier is connected to the powder ore magnetic separator.
  • the concentrate separated by the fine particle magnetic separator is returned to the high-pressure roller mill for re-circulating grinding and sorting.
  • the coarse-grain magnetic separator connected to the high-pressure roller mill is a conventional magnetic separator, which has a low tail throwing rate, and the separated coarse concentrate is far from the standard of the concentrate. After the ore is re-selected by wind classification and fine-grain magnetic separator, fine-grained ore is obtained.
  • the fine-grained ore needs to be mixed with the original ore and then returned to the high-pressure roller mill for recycling. This undoubtedly reduces the separation efficiency and increases the grinding and separation. Selected energy consumption.
  • the above-mentioned dry grinding and sorting system can not achieve the early polishing of the tail and the early selection, so that a large amount of non-magnetic minerals that do not need to be ground are returned to the high-pressure roller mill for cyclic grinding and sorting. Increase energy consumption.
  • the purpose of the present invention is to solve the problems of low separation efficiency and high energy consumption of the existing dry grinding and sorting system.
  • the present invention proposes a magnetic ore dry grinding and sorting system, which uses a high-pressure roller mill. Grinding, grading magnetic separator for the primary separation of magnetic minerals, throwing away tailings in time, and micro-powder magnetic separator for secondary separation to further improve the grade of the concentrate. Use the selective magnetic separator for three times of separation, and the extraction is qualified. Concentrate, can effectively save the energy required for magnetic ore grinding and separation, and improve the efficiency of separation.
  • a magnetic separation system for dry grinding of magnetic ore disclosed according to the present invention includes:
  • a high-pressure roller mill that receives raw ore and grinds it
  • the feed port of the primary magnetic separator is connected to the discharge port of a high-pressure roller mill, and the medium ore discharge port of the grading magnetic separator is connected to the feed port of the high-pressure roller mill;
  • a grading device the feed port of the grading device is connected to the concentrate discharge port of the grading magnetic separator, and the coarse powder discharge port of the grading device is connected to the feed port of the high-pressure roller mill;
  • Micro-powder magnetic separator the feed port of the micro-powder magnetic separator is connected to the fine powder discharge port of the grading device;
  • a selection magnetic separator the feed inlet of the selection magnetic separator is connected to the concentrate discharge port of the fine powder magnetic separator
  • the concentrate discharge port of the magnetic separator is connected to the concentrate hopper, and the tailings discharge port of the grading magnetic separator, the micro-powder magnetic separator and the magnetic separator are respectively connected to the tailings hopper.
  • the classification device is a sieving machine or a wind classifier.
  • the wind classifier includes a V-shaped powder separator, a dynamic powder separator, and a dust collector.
  • the feed port of the V-shaped powder separator is connected to the concentrate discharge port of the grading magnetic separator, and the V-shaped separator
  • the fine material discharge port of the powder machine is connected to the feed port of the dynamic powder separator
  • the fine powder discharge port of the dynamic powder separator is connected to the feed port of the dust collector
  • the fine powder discharge port of the dust collector is connected to the micro powder magnetic separator
  • the feed port of the machine, the coarse material discharge port of the V-type powder separator and the coarse powder discharge port of the dynamic powder separator are respectively connected to the feed port of the high-pressure roller mill.
  • the grading magnetic separator is a tandem double grading magnetic separator, including a frame, a belt magnetic separation mechanism, and a drum magnetic separation mechanism, and the feed end of the belt magnetic separation mechanism is located below the feed inlet of the frame ,
  • the discharge end of the belt magnetic separation mechanism is provided with a magnetic roller magnetic system
  • the frame is provided with a tailings discharge port that matches the belt magnetic separation mechanism
  • the drum magnetic separation mechanism receives the separation of the belt magnetic separation mechanism
  • the drum magnetic separation mechanism has an eccentric magnetic system arranged eccentrically
  • the frame is provided with a medium ore discharge port and a tailings discharge port that cooperate with the drum magnetic separation mechanism.
  • the grading magnetic separator is a stacked double grading magnetic separator, which includes a frame, a roller magnetic separation mechanism, and a belt magnetic separation mechanism.
  • the roller magnetic separation mechanism is arranged below the feed inlet of the frame.
  • the drum magnetic separation mechanism has an eccentric magnetic system arranged eccentrically, the frame is provided with a concentrate discharge port that matches the drum magnetic separation mechanism, and the feed end of the belt magnetic separation mechanism receives the drum magnetic separation mechanism for separation.
  • the discharge end of the belt magnetic separation mechanism is provided with a magnetic roller magnetic system, and the frame is provided with a medium ore discharge port and a tailings discharge port that cooperate with the belt magnetic separation mechanism.
  • the grading magnetic separator is a magnetic grading pre-selector, including a frame, an outer drum, and an eccentric magnetic system arranged in a cylindrical shape.
  • the eccentric magnetic system is eccentrically arranged in the outer drum, and the eccentric magnetic system and the outer drum rotate relative to each other.
  • the magnetic field intensity of the eccentric side working surface of the outer drum is greater than that of the non-eccentric side working surface of the outer drum, and the lower working surface of the outer drum gradually reduces the magnetic field intensity along the rotation direction of the outer drum.
  • the frame under the outer drum starts from the strong magnetic area to the weak magnetic area. Set up tailings discharge port, medium ore discharge port and concentrate discharge port.
  • the micro-powder magnetic separator includes a casing, and a rotatable outer drum and a rotating magnetic system are supported in the casing, and the rotating magnetic system is concentrically arranged in the outer drum, and the casing is provided with There is a tailings discharge port and a feed port for feeding the outer drum.
  • the tailings discharge port is provided with an air lock valve, and the shell is also provided with an air inlet and an air outlet, and the air outlet faces the shell. It extends inside the body and forms a negative pressure discharge zone for concentrate on a local working surface of the outer drum.
  • the selection magnetic separator is a dry magnetic separator with the introduction of wind power, and includes a casing, a permeable roller arranged in the outer casing, a feeding device matched with the permeable roller for feeding, and a permeable roller for unloading.
  • Discharge roller the surface of the air-permeable roller is provided with a low-frequency alternating magnetic field.
  • the surface of the air-permeable roller is evenly opened with a number of through holes, inlaid with air-permeable materials, and the air-permeable roller has a closed cavity and is connected to the cavity
  • a concentrate discharge port is arranged on the frame under the discharge roller, and a tailings bucket is arranged on the frame under the permeable roller.
  • the particle size of the raw ore processed by the high-pressure roller mill is 0-60 mm.
  • processing particle size of the grading magnetic separator is 0-20 mm.
  • processing particle size of the fine powder magnetic separator is 0-3 mm.
  • the beneficial effect of the present invention is: the magnetic ore dry grinding and separation system of the present invention performs multi-stage magnetic separation, and the tailings are thrown in time, and the content of the ore does not meet the standard of concentrate.
  • the middle ore of magnetic minerals is returned to the high-pressure roller mill for recycling in time.
  • the entire system has a compact layout, small footprint, modular design, simple structure, can obtain a better concentrate grade, and has high sorting efficiency and obvious energy-saving and consumption-reducing effects.
  • Figure 1 is a process flow diagram of the existing dry grinding and sorting system
  • Figure 2 is a process flow diagram of the magnetic ore dry grinding and separation system of the present invention
  • FIG. 3 is a device connection diagram of an embodiment of the magnetic ore dry grinding and sorting system of the present invention.
  • FIG. 4 is a device connection diagram of another embodiment of the magnetic ore dry grinding and sorting system of the present invention.
  • Figure 5 is a schematic structural diagram of a grading magnetic separator that can be applied to a magnetic ore dry grinding and separation system in Embodiment 3 of the present invention
  • FIG. 6 is a schematic structural diagram of a classification magnetic separator that can be applied to a magnetic ore dry grinding and separation system in Embodiment 4 of the present invention
  • FIG. 7 is a schematic structural diagram of a grading magnetic separator that can be applied to a magnetic ore dry grinding and separation system in Embodiment 5 of the present invention.
  • Figure 8 is a front view of a fine powder magnetic separator that can be applied to a magnetic ore dry grinding and separation system in Embodiment 6 of the present invention
  • Figure 9 is a left side view of the fine powder magnetic separator that can be applied to the magnetic ore dry grinding and separation system in the sixth embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a magnetic separator that can be applied to a magnetic ore dry grinding and separation system in Embodiment 7 of the present invention.
  • the high-pressure roller mill 2 receives and grinds the raw ore from the silo 1 through its feed port.
  • the discharge port of the high-pressure roller mill 2 is connected to the feed port of the grading magnetic separator 3;
  • the concentrate discharge port is connected to the feed port of the grading device 4, wherein the ore discharge port is connected to the feed port of the high-pressure roller mill 2, and its tailings discharge port is connected to the primary tailings hopper 13 for unloading and stacking; the grading device 4 Separate the primary concentrate into coarse powder ore and fine powder ore.
  • the coarse powder discharge port of the grading device 4 is connected to the feed port of the high-pressure roller mill 2, and the fine powder discharge port is connected to the inlet of the fine powder magnetic separator 9.
  • the beneficiation magnetic separator 9 Feeding port; the concentrate discharge port of the micro-powder magnetic separator 9 is connected to the feed port of the beneficiation magnetic separator 10, and its tailings discharge port is connected to the tailings hopper 12 for unloading and stacking; the beneficiation magnetic separator 10 pairs two
  • the beneficiation concentrate is carried out for three separations, which are classified into the third beneficiation concentrate and the third beneficiation tailings.
  • the third beneficiation concentrate as a qualified concentrate is discharged to the concentrate hopper 11 through the concentrate discharge port of the magnetic separator 10 For accumulation, the three-dressing tailings are discharged through the tailings discharge port of the concentrate magnetic separator to the tailings hopper 12 for accumulation. It should be noted that the connection relationship of the above devices should be understood as including direct connection and indirect connection.
  • the magnetic ore dry grinding and separation system in this embodiment performs three-stage separation, and the first-stage separation is a grading magnetic separator 3.
  • the ground ore after grinding is separated into primary concentrates and primary concentrates.
  • the secondary ore and primary beneficiation tailings, the secondary separation is the fine powder magnetic separator 9.
  • the fine ore separated by the classification device 4 is separated into the secondary concentrate and the secondary beneficiation tailings, and the third level is the beneficiation magnetic separator. 10 Separate the second beneficiation concentrate into third beneficiation concentrate and third beneficiation tailings.
  • the tailings of the primary sorting are thrown out in time, and the ore of the primary sorting is returned to the high-pressure roller mill 2 to dissociate the non-magnetic ore in the primary sorting again.
  • This part of the primary selected ore enters the secondary separation together with the primary concentrate in the existing dry grinding and separation system.
  • the magnetic ore dry grinding and separation system of this embodiment can effectively improve Sort efficiency and reduce energy consumption.
  • a grading device 4 is set between the primary separation and the secondary separation to return the coarse fines in the primary concentrate whose particle size does not meet the requirements of the secondary separation process to the high-pressure roller mill 2 for grinding again to further improve the separation efficiency ,Reduce energy consumption.
  • the fine ore that meets the particle size requirements is subjected to continuous secondary and tertiary separation, which can prevent magnetic inclusion and magnetic agglomeration, and effectively guarantee the grade of the concentrate.
  • the particle size of the raw ore processed by the high-pressure roller mill 2 is 0-60 mm, preferably 0-30 mm; the processing particle size of the grading magnetic separator 3 is 0-20 mm, preferably 0-6 mm; the processing of the fine powder magnetic separator 9
  • the particle size is 0-3mm, preferably 0-1mm.
  • the magnetic ore dry grinding and separation system can adopt the classification device 4, the classification magnetic separator 3, the fine powder magnetic separator 9 and the beneficiation magnetic separator 10 in the following various embodiments.
  • the classification device can classify the products according to the particle size or gravity, so as to separate the granular or powdery products that meet the requirements.
  • the grading device can adopt the technical solutions of the following two embodiments, and those skilled in the art can make corresponding changes based on common knowledge and common technical means to derive other embodiments.
  • the grading device 4 of the magnetic ore dry grinding and sorting system is a sieving machine 5, such as a vibrating sieving machine, etc., the oversieve is coarse ore, and the under sieve is fine ore.
  • the coarse powder discharge port of the sieving machine 5 is connected to the feed port of the high pressure roller mill 2, and the fine material discharge port of the sieving machine 5 is connected to the feed port of the fine powder magnetic separator 9.
  • the grading device 4 of the magnetic ore dry grinding and sorting system is a wind power separator, including a V-type powder separator 6, a dynamic powder separator 7 and a dust collector 8.
  • the V-type powder separator 6 The feed port of the V-type powder separator is connected to the concentrate discharge port of the grading magnetic separator 3, the fine material discharge port of the V-type powder separator 6 is connected to the feed port of the dynamic powder separator 7 and the fine powder discharge port of the dynamic powder separator 7
  • the port is connected to the feed port of the dust collector 8, the fine powder discharge port of the dust collector 8 is connected to the feed port of the fine powder magnetic separator 9, the coarse material discharge port of the V-type powder separator 6 and the dynamic powder separator 7
  • the coarse powder unloading ports are respectively connected to the feed ports of the high-pressure roller mill 2.
  • the grading magnetic separator of the magnetic ore dry grinding and separation system can perform multi-stage separation of the ground ore after grinding.
  • the grading magnetic separator can adopt the technical solutions of the following three embodiments. Those skilled in the art can make corresponding changes based on common knowledge and common technical means to derive other embodiments.
  • the graded magnetic separator is a tandem double graded magnetic separator, as shown in FIG. 5, which includes a frame 310, a belt magnetic separation mechanism 320, and a drum magnetic separation mechanism 330.
  • the feed end of the belt magnetic separation mechanism 320 is located on the frame 310 Below the feed inlet 311 of the belt magnetic separation mechanism 320, the discharge end of the belt magnetic separation mechanism 320 is provided with a magnetic roller magnetic system 321, and the frame 310 is provided with a tailings discharge opening 312 matching the belt magnetic separation mechanism 320.
  • the drum magnetic separation mechanism 330 receives The coarse concentrate separated by the belt magnetic separation mechanism 320, the drum magnetic separation mechanism 330 has an eccentric magnetic system 331 arranged eccentrically, and the frame 310 is provided with a medium ore discharge port 313 and tailings discharge that are matched with the drum magnetic separation mechanism 330 ⁇ 312.
  • the belt magnetic separation mechanism 320 further includes a driving roller 323, a driven roller 324, and a belt 325.
  • the belt 325 is sleeved around the driving roller 323 and the driven roller 324.
  • the driving roller 323 is driven to rotate by a power source to drive the belt 325 and the driven roller.
  • the roller 324 rotates.
  • the magnetic roller magnetic system 321 may be provided in the driving roller 323 or the driven roller 324.
  • the magnetic roller magnetic system 321 is preferably arranged in the driven roller 324, the driven roller 324 is located at the discharge end of the belt magnetic separation mechanism 320, and the driving roller 323 is located at the feed end of the belt magnetic separation mechanism 320.
  • the magnetic roller magnetic system 321 adopts a fixed concentric circle lack magnetic system, and the magnetic wrap angle of the magnetic roller magnetic system 321 is 150-200°.
  • the roller magnetic separation mechanism 330 further includes an outer roller 332 and an eccentric magnetic system 331 eccentrically arranged in the outer roller 332.
  • the outer roller 332 and the eccentric magnetic system 331 can rotate relative to each other.
  • the eccentric magnetic system 331 includes a plurality of magnetic poles arranged in a cylindrical shape.
  • the eccentric magnetic system 331 forms an alternating magnetic field on the working surface of the drum magnetic separation mechanism 330.
  • the adjacent magnetic poles of the eccentric magnetic system 331 in the circumferential direction are different, and the adjacent magnetic poles in the axial direction are the same.
  • the high-grade magnetic minerals are adsorbed on the outer drum 332 by the magnetic field of the eccentric magnetic system 331.
  • the belt magnetic separation mechanism 320 is provided with an enrichment magnetic system 322, and the magnetic field range of the enrichment magnetic system 322 covers at least part of the conveying surface of the upper part of the belt magnetic separation mechanism 320, so that the ore passing through the magnetic field of the enrichment magnetic system 322 Layered by grade; the enriched magnetic system 322 is arranged along the conveying direction of the belt magnetic separation mechanism 320.
  • the enriched magnetic system 322 can be a flat magnetic system or a magnetic roller set.
  • the inner side of the belt 325 of the belt magnetic separation mechanism 320 is provided with an enriched magnetic system 322.
  • the enriched magnetic system 322 is close to the upper conveying surface of the belt 325, so that the magnetic field range of the enriched magnetic system 322 covers at least part of the upper conveying surface. .
  • the tailings discharge port 312 is preferably arranged below the discharge end of the belt magnetic separation mechanism 320.
  • the belt magnetic separation mechanism 320 roughly selects the mineral raw materials into coarse concentrates and tailings. The tailings are discharged to the tailings discharge port 312.
  • the tailings sorted by the belt magnetic separation mechanism 320 can be directly dropped to the tailings discharge port 312 for discharge, or a tailing chute 315 connected to the tailings discharge port 312 may be preferably provided for discharge; correspondingly, the belt
  • the coarse concentrate sorted by the magnetic separation mechanism 320 can be directly dropped into the feeding range of the drum magnetic separation mechanism 330, or a concentrate chute 316 with the lower end placed in the feeding range of the drum magnetic separation mechanism 330 may be preferably provided for transportation.
  • the frame 310 is provided with a middle ore discharge port 313 and a concentrate discharge port 314 that are matched with the drum magnetic separation mechanism 330 to discharge ore.
  • the middle ore discharge port 313 and the concentrate discharge port 314 are sequentially along the rotation direction of the outer drum 332. Arranged below it, the medium ore and concentrate separated by the drum magnetic separation mechanism 330 are collected and discharged in the medium ore discharge port 313 and the concentrate discharge port 314 respectively.
  • the drum magnetic separation mechanism 330 can directly discharge materials to the concentrate discharge port 314 and the China Mine discharge port 313, or can be discharged by setting a chute to cooperate with the concentrate discharge port 314 and the China Mine discharge port 313. mine.
  • a swingable primary separation plate 317 is provided below the discharge end of the belt magnetic separation mechanism 320, the primary separation plate 317 is located within the unloading range of the belt magnetic separation mechanism 320, and the primary separation plate 317 is available To adjust the position of the tailings and coarse concentrate.
  • a swingable re-selection dividing plate 318 is arranged under the drum magnetic separation mechanism 330, and the re-selecting dividing plate 318 can adjust the position of the middle ore and the concentrate;
  • a flow regulating valve 319 is provided at the lower end of the feed port 311 of the rack 310 for adjusting the feed port 311 of the rack 310 to feed at a constant speed.
  • the grading magnetic separator is a stacked double grading magnetic separator, as shown in FIG. 6, which includes a frame 310, a drum magnetic separation mechanism 330, and a belt magnetic separation mechanism 320.
  • the drum magnetic separation mechanism 330 is set in the inlet of the frame 310.
  • the drum magnetic separation mechanism 330 has an eccentric magnetic system 331 arranged eccentrically, the frame 310 is provided with a concentrate discharge port 314 that matches the drum magnetic separation mechanism, and the feed end of the belt magnetic separation mechanism 320 receives the drum
  • the coarse tailings separated by the magnetic separation mechanism 330, the discharge end of the belt magnetic separation mechanism 320 is provided with a magnetic roller magnetic system 321, and the frame 310 is provided with a medium ore discharge port 313 and tailings that are matched with the belt magnetic separation mechanism 320 Discharge port 312.
  • the drum magnetic separation mechanism 330 and the belt magnetic separation mechanism 320 perform multi-stage separation of the ore
  • the drum magnetic separation mechanism 330 performs coarse separation of the ore
  • the belt 325 magnetic separator performs reselection of the coarse tailings.
  • the drum magnetic separation mechanism 330 includes an outer drum 332 and an eccentric magnetic system 331 eccentrically arranged in the outer drum 332.
  • the eccentric magnetic system 331 includes a plurality of magnetic poles arranged in a cylindrical shape. The adjacent magnetic poles of the eccentric magnetic system 331 in the circumferential direction are different, and the adjacent magnetic poles in the axial direction are the same.
  • the magnetic mineral is adsorbed on the outer drum 332 by the magnetic field of the eccentric magnetic system 331.
  • the magnetic mineral is moving in the circumferential direction. An alternating magnetic field that passes through the direction of the magnetic field periodically.
  • the belt magnetic separation mechanism 320 includes a driving roller 323, a driven roller 324, and a belt 325.
  • the belt 325 is sleeved around the driving roller 323 and the driven roller 324.
  • the driving roller 323 is driven to rotate by a power source to drive the belt 325 and the driven roller. 324 turns.
  • the magnetic roller magnetic system 321 may be provided in the driving roller 323 or the driven roller 324.
  • the magnetic roller magnetic system 321 is preferably arranged in the driven roller 324, the driven roller 324 is located at the discharge end of the belt magnetic separation mechanism 320, and the driving roller 323 is located at the feed end of the belt magnetic separation mechanism 320.
  • the magnetic roller magnetic system 321 of the belt magnetic separation mechanism 320 may adopt a concentric lack magnetic system, a concentric cylindrical magnetic system or an eccentric cylindrical magnetic system.
  • the magnetic roller magnetic system 321 preferably adopts a fixed concentric circle lack magnetic system, and the magnetic wrap angle of the magnetic roller magnetic system 321 is 150-200°.
  • the belt magnetic separation mechanism 320 is provided with an enrichment magnetic system 322, and the magnetic field range of the enrichment magnetic system 322 covers at least part of the conveying surface of the upper part of the belt magnetic separation mechanism 320, so that the ore passing through the magnetic field of the enrichment magnetic system 322 Layered by grade; the enriched magnetic system 322 is arranged along the conveying direction of the belt magnetic separation mechanism 320.
  • the enriched magnetic system 322 can be a flat magnetic system or a magnetic roller set.
  • the inner side of the belt 325 of the belt magnetic separation mechanism 320 is provided with an enriched magnetic system 322.
  • the enriched magnetic system 322 is close to the upper conveying surface of the belt 325, so that the magnetic field range of the enriched magnetic system 322 covers at least part of the upper conveying surface. .
  • the concentrate discharge port 314 is preferably set under the drum magnetic separation mechanism 330.
  • the drum magnetic separation mechanism 330 coarsely selects the mineral raw materials into concentrate and coarse tailings, and the concentrate is discharged to the fine Mine discharge port 314.
  • the concentrate sorted by the drum magnetic separation mechanism 330 can be directly dropped to the concentrate discharge port 314 for discharging, or a concentrate chute 316 connected to the concentrate discharge port 314 for discharging; correspondingly, the drum
  • the coarse tailings sorted by the magnetic separation mechanism 330 can be directly dropped to the feeding end of the belt magnetic separation mechanism 320, or a tailing chute 315 whose lower end leads to the feeding end of the belt magnetic separation mechanism 320 may be preferably provided for discharging.
  • the tailings discharge port 312 and the China mine discharge port 313 are arranged in sequence along the conveying direction of the belt 325 at the discharge end of the belt magnetic separation mechanism 320.
  • the mid mine and tailings separated by the drum magnetic separation mechanism 330 are respectively located at the China mine discharge port 313.
  • the tailings are gathered and discharged in the discharge port 312.
  • the discharge end of the belt magnetic separation mechanism 320 can directly discharge to the tailings discharge port 312 and the China Mines discharge port 313, or it can be equipped with a chute to cooperate with the tailings discharge port 312 and the China Mines discharge port 313. Carry out unloading and discharging.
  • a swingable primary separation plate 317 is provided under the drum magnetic separation mechanism 330, the primary separation plate 317 is located within the unloading range of the drum magnetic separation mechanism 330, and the primary separation plate 317 is used to adjust the concentrate.
  • the location of the material distribution with the coarse tailings below the unloading end of the belt magnetic separation mechanism 320, a swingable re-selection dividing plate 318 is arranged.
  • the re-selection dividing plate 318 is located in the unloading range of the belt magnetic separation mechanism 320.
  • the re-selecting dividing plate 318 can be used to adjust the middle mine.
  • the lower end of the feed port 311 of the frame 310 is provided with a flow regulating valve 319.
  • the flow regulating valve 319 is used to make the feed port 311 feed at a constant speed.
  • the grading magnetic separator is a magnetic grading pre-selector, as shown in FIG. 7, including a frame 310, an outer drum 332, and an eccentric magnetic system 331 arranged in a cylindrical shape.
  • the eccentric magnetic system 331 is eccentrically arranged in the outer drum 332.
  • the eccentric magnetic system 331 and the outer drum 332 rotate relatively, the eccentric side working surface of the outer drum 332 has a greater magnetic field strength than the non-eccentric side working surface of the outer drum 332, and the lower working surface of the outer drum 332 has a gradual magnetic field intensity along the direction of rotation of the outer drum 332.
  • the frame 310 under the outer drum 332 is sequentially provided with a tailings discharge port 312, a medium ore discharge port 313, and a concentrate discharge port 314 from the strong magnetic area to the weak magnetic area.
  • the micro-powder magnetic separator is used for the secondary separation of the primary concentrate separated by the grading magnetic separator.
  • the micro-powder magnetic separator can adopt the technical solutions of the following embodiments, and those skilled in the art can make corresponding transformations according to common knowledge and common technical means to obtain other embodiments.
  • the micro-powder magnetic separator includes a casing 930, as shown in Figures 8 and 9, the casing 930 supports a rotatable outer drum 940 and a rotating magnetic system 950, and the rotating magnetic system 950 is concentrically arranged on the outer drum.
  • the shell 930 is provided with a tailings discharge port and a feed port 931 for feeding the outer drum 940.
  • a lock valve 920 is provided at the tailings discharge port.
  • the shell 930 is also provided with an air inlet 932 and The air outlet 933 and the air outlet 933 extend into the housing 930, and form a negative pressure discharge zone for concentrate on a local working surface of the outer drum 940.
  • the outer drum 940 has a concentrate separation zone and a concentrate negative pressure discharge zone in the circumferential direction.
  • the concentrate separation zone includes at least a part of the working surface under the outer drum 940; in the direction of rotation of the outer drum 940, the concentrate negative pressure discharge zone
  • the material area is located at the end of the concentrate separation area.
  • the outer drum 940 has a concentrate separation zone and a concentrate negative pressure discharge zone in the circumferential direction.
  • the concentrate negative pressure discharge zone uses the negative pressure formed by the airflow on the local working surface of the outer drum 940 to discharge the concentrate. material.
  • the raw ore entering the concentrate separation area continuously separates the concentrate and tailings, and discharges the tailings.
  • the concentrate and tailings are separated and adsorbed on the surface of the outer drum 940; the concentrate is separated by the concentrate.
  • the pressure difference in the negative pressure discharge area of the concentrate enables the concentrate to overcome the magnetic force and gravity, leave the surface of the outer drum 940 and exit the shell 930 through the air outlet 933 through the air outlet 933 to complete the concentrate. Unloading.
  • a rack 910 can be installed under the housing 930; a feed port 931 is provided on the housing 930.
  • the feed port 931 is used to feed the outer drum 940.
  • the feed port 931 can be set on the top of the housing 930 or The side of the housing 930 is preferably the top of the housing 930.
  • the feed port 931 extends into the housing 930, and the feed direction of the feed port 931 is inclined downward with respect to the horizontal plane.
  • the air outlet 933 of the shell 930 extends into the shell 930 in a direction pointing to the negative pressure discharge area of the concentrate.
  • a gap is provided between the air outlet 933 and the surface of the outer drum 940.
  • the width of the gap is set to 0-20 mm, preferably 6-12 mm.
  • the direction of the air outlet 933 may be inclined downward, inclined upward, or horizontal relative to the horizontal plane. Since the airflow may affect the deposition of tailings, the grade of the concentrate and the efficiency of beneficiation, the air outlet direction of the air outlet 933 is preferably inclined downward with respect to the horizontal plane.
  • the negative pressure wind speed in the negative pressure discharge zone of the concentrate is 3-25 m/s, preferably 10-18 m/s.
  • the rotating magnetic system 950 includes an inner cylinder body 952, an inner cylinder shaft 951 and an inner cylinder power source 953.
  • the inner cylinder body 952 is arranged on the inner cylinder shaft 951 and rotates with the outer cylinder shaft 941, and the outer cylinder power source 943 drives The outer cylinder shaft 941 is driven to rotate through the transmission mechanism; a number of permanent magnets 954 are provided on the outer surface of the inner cylinder body 952.
  • the inner cylinder power source 953 is a frequency conversion motor.
  • the rotating magnetic system 950 forms an alternating magnetic field on the working surface of the relatively rotating outer drum 940. Specifically, among the permanent magnets 954 on the outer surface of the inner cylinder 952, the adjacent permanent magnets 954 in the axial direction have the same polarity, and the adjacent permanent magnets 954 in the circumferential direction have different polarities.
  • the outer drum 940 includes an outer drum 942, an outer drum rotating shaft 941, and an outer drum power source 943.
  • the outer drum 942 is arranged on the outer drum rotating shaft 941 and rotates with the outer drum rotating shaft 941, and the outer drum power source 943 is driven by the transmission
  • the mechanism drives the outer cylinder shaft 941 to rotate.
  • the transmission mechanism can be a belt mechanism, a chain mechanism and a gear mechanism;
  • the outer cylinder power source 943 is a frequency conversion motor;
  • the outer cylinder shaft 941 is a hollow shaft, so that both ends of the inner cylinder shaft 951 of the rotating magnetic system 950 can extend out of the outer cylinder shaft. 941 and supported on the housing 930.
  • the selection magnetic separator is used to perform three selections on the second-dressing concentrate separated by the micro-powder magnetic separator.
  • the selected magnetic separator can adopt the technical solutions of the following embodiments, and those skilled in the art can make corresponding transformations according to common knowledge and common technical means to obtain other embodiments.
  • the beneficiation magnetic separator in this embodiment adopts a dry magnetic separator that introduces wind power.
  • wind power and magnetic force are introduced to counteract, and the non-inclusion in the second beneficiation concentrate is dispersed during the magnetic separation process.
  • Magnetic minerals further improve the grade of concentrate.
  • the dry magnetic separator with the introduction of wind power includes a housing 1010, a feeding device 1020, a permeable roller 1030, a discharge roller 1050, a concentrate discharge port and a tailing hopper 1070, which are permeable
  • the roller 1030 rotates horizontally and is installed in the housing 1010.
  • the surface of the air-permeable roller 1030 is provided with a low-frequency alternating magnetic field.
  • the surface of the air-permeable roller 1030 is evenly opened with a number of through holes, inlaid with air-permeable materials, and the air-permeable roller 1030 has The inner cavity is closed, and pressurized gas is connected to the inner cavity.
  • the feeding device 1020 is installed on the top of the housing 1010 corresponding to the permeable roller 1030, the discharge roller 1050 is installed on the right side of the permeable roller 1030, and the concentrate discharge port is correspondingly set Below the unloading roller 1050, the tailings hopper 1070 is correspondingly arranged below the air-permeable roller 1030.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种磁性矿干法粉磨分选系统,包括高压辊磨机(2)、分级磁选机(3)、分级装置(4)、微粉磁选机(9)和精选磁选机(10),其中,分级磁选机(9)可分选出精矿、中矿、尾矿,分级磁选机(3)、微粉磁选机(9)和精选磁选机(10)抛尾的尾矿进入尾矿料斗卸料排矿,分级磁选机(3)分选的中矿以及分级装置(4)的粗粉矿及时返回高压辊磨机(2)再循环,精选磁选机(10)三选分离的精矿进入精矿料斗;该系统布局紧凑,结构简单,可获得较佳的精矿品位,节能降耗。

Description

磁性矿干法粉磨分选系统 技术领域
本发明涉及选矿技术领域,特别是磁性矿干法粉磨分选系统。
背景技术
我国磁性矿资源丰富,但资源禀赋较差,贫、细、杂化严重。随着我国工业的快速发展,难磨难选磁性矿资源的开发利用已势在必行。传统选矿工艺的设备性能局限和生产成本的逐年增长,已成为制约生产能力和企业经济效益提高的瓶颈。
对于嵌布粒度粗细不均匀,品位较低的磁性矿,如图1所示,现有的干式粉磨分选系统包括高压辊磨机、粗粒磁选机、风力分级装置、细粒磁选机和粉矿磁选机,高压辊磨机出料口连接粗粒磁选机进料口,粗粒磁选机分选的粗精矿进入风力分级装置进行分级,风力分级装置的细料出口连接细粒磁选机进料口,风力分级装置的粉料出口连接粉矿磁选机,其中,细粒磁选机分选的精矿返回高压辊磨机再次循环粉磨分选,粉矿磁选机分选的精矿卸矿堆积,粗粒磁选机、细粒磁选机及粉矿磁选机分选的尾矿卸矿堆积。上述干式粉磨分选系统中,连接高压辊磨机的粗粒磁选机选用常规的磁选机,其抛尾率低,分选的粗精矿远未达到精矿的标准,粗精矿通过风力分级和细粒磁选机再选后得到细粒矿,该细粒矿需要与原矿混合后返回高压辊磨机进行再循环,这无疑降低了选别效率,增加了粉磨及分选的能耗。此外,上述干式粉磨分选系统无法做到能抛尾早抛尾,能精选早精选,使得大量不需要磨细的非磁性矿物返回高压辊磨机循环粉磨及分选,进一步增加能耗。
发明内容
本发明的发明目的在于:针对现有干式粉磨分选系统选别效率低,能耗高的问题,本发明提出一种磁性矿干法粉磨分选系统,该系统采用高压辊磨机进行粉磨,分级磁选机进行磁性矿物初分选,及时抛走尾矿,微粉磁选机进行二次分选,进一步提高精矿品位,利用精选磁选机进行三次分选,提取合格精矿,能有效节约磁性矿粉磨及分选所需能耗,提高选别效率。
本发明采用的技术方案如下:
根据本发明公开的一种磁性矿干法粉磨磁选系统,包括:
接收原矿并进行粉磨的高压辊磨机;
分级磁选机,所述初选磁选机的进料口连接高压辊磨机的出料口,所述分级磁选机的中矿卸料口连接高压辊磨机进料口;
分级装置,所述分级装置的进料口连接分级磁选机的精矿卸料口,所述分级装置的粗粉卸料口连接高压辊磨机进料口;
微粉磁选机,所述微粉磁选机的进料口连接分级装置的细粉卸料口;
精选磁选机,所述精选磁选机的进料口连接微粉磁选机的精矿卸料口;
其中,精选磁选机的精矿卸料口连接精矿料斗,分级磁选机、微粉磁选机和精选磁选机的尾矿卸料口分别连接尾矿料斗。
进一步的,所述分级装置为筛分机或风力分级器。
进一步的,所述风力分级器包括V型选粉机、动态选粉机和收尘器,所述V型选粉机的进料口连接分级磁选机的精矿卸料口,V型选粉机的细料卸料口连接动态选粉机的进料口,动态选粉机的细粉卸料口连接收尘器的进料口,收尘器的细粉卸料口连接微粉磁选机的进料口,V型选粉机的粗料卸料口及动态选粉机的粗粉卸料口分别连接高压辊磨机的进料口。
进一步的,所述分级磁选机为串联式双分级磁选机,包括机架、皮带磁选 机构及滚筒磁选机构,所述皮带磁选机构的入料端位于机架的进料口下方,所述皮带磁选机构的卸料端设置有磁辊磁系,所述机架上设置有配合皮带磁选机构的尾矿卸料口,所述滚筒磁选机构接收皮带磁选机构分选的粗精矿,所述滚筒磁选机构具有偏心布置的偏心磁系,所述机架上设置有配合滚筒磁选机构的中矿卸料口及尾矿卸料口。
进一步的,所述分级磁选机为叠排式双分级磁选机,包括机架、滚筒磁选机构及皮带磁选机构,所述滚筒磁选机构设置在机架的进料口下方,所述滚筒磁选机构具有偏心布置的偏心磁系,所述机架上设置有配合辊筒磁选机构的精矿卸料口,所述皮带磁选机构的进料端接收滚筒磁选机构分选的粗尾矿,所述皮带磁选机构的卸料端设置有磁辊磁系,所述机架上设置有配合皮带磁选机构的中矿卸料口及尾矿卸料口。
进一步的,所述分级磁选机为磁力分级预选机,包括机架、外滚筒和呈筒状排列的偏心磁系,偏心磁系偏心布置在外滚筒内,偏心磁系与外滚筒之间相对转动,外滚筒的偏心侧工作面磁场强度大于外滚筒的非偏心侧工作面,外滚筒下部工作面沿外滚筒转动方向磁场强度逐渐减小,外滚筒下方的机架上从强磁区至弱磁区依次设置尾矿卸料口、中矿卸料口和精矿卸料口。
进一步的,所述微粉磁选机包括壳体,所述壳体内支承有可转动的外滚筒及旋转磁系,所述旋转磁系同心地布置在所述外滚筒内,所述壳体上设置有尾矿卸料口以及向外滚筒送料的进料口,所述尾矿卸料口处设置有锁风阀,所述壳体上还设置有进风口和出风口,所述出风口向壳体内延伸,并在所述外滚筒的局部工作面上形成精矿负压卸料区。
进一步的,所述精选磁选机为引进风力的干式磁选机,包括外壳、设置在外壳内的透气辊筒、配合透气辊筒进料的给料装置以及配合透气辊筒卸料的卸 料辊,透气辊筒表面设有低频交变磁场,透气辊筒表面均匀开设若干通孔,在通孔内镶嵌透气材料,并且透气辊筒具有封闭的内腔,并向内腔中接入压力气体,位于卸料辊下方的机架上设置有精矿卸料口,透气辊筒下方的机架上设置有尾矿斗。
进一步的,所述高压辊磨机处理的原矿粒度为0-60mm。
进一步的,所述分级磁选机的处理粒度为0-20mm。
进一步的,所述微粉磁选机的处理粒度为0-3mm。
综上所述,由于采用了上述技术方案,本发明的有益效果是:本发明的磁性矿干式粉磨分选系统进行多级磁选,尾矿及时抛尾,未达精矿标准的含磁性矿物的中矿及时返回高压辊磨机进行再循环。整套系统布局紧凑,占地面积小,模块化设计,结构简单,可获得较佳的精矿品位,且选别效率高,节能降耗效果明显。
附图说明
图1是现有干式粉磨分选系统的工艺流程图;
图2是本发明的磁性矿干式粉磨分选系统的工艺流程图;
图3是本发明的磁性矿干式粉磨分选系统的一种实施方式的设备连接图;
图4是本发明的磁性矿干式粉磨分选系统的另一种实施方式的设备连接图;
图5是本发明实施例3中可应用于磁性矿干式粉磨分选系统的分级磁选机的结构示意图;
图6是本发明实施例4中可应用于磁性矿干式粉磨分选系统的分级磁选机的结构示意图;
图7是本发明实施例5中可应用于磁性矿干式粉磨分选系统的分级磁选机的结构示意图;
图8是本发明实施例6中可应用于磁性矿干式粉磨分选系统的微粉磁选机的正视图;
图9是本发明实施例6中可应用于磁性矿干式粉磨分选系统的微粉磁选机的左视图;
图10是本发明实施例7中可应用于磁性矿干式粉磨分选系统的精选磁选机的结构示意图;
图中标记:1-料仓;2-高压辊磨机;3-分级磁选机;4-分级装置;5-筛分机;6-V型选粉机;7-动态选粉机;8-收尘器;9-微粉磁选机;10-精选磁选机;11-精矿料斗;12-尾矿料斗;13-初选尾矿料斗;310-机架;320-皮带磁选机构;330-滚筒磁选机构;311-进料口;312-尾矿卸料口;313-中矿卸料口;314-精矿卸料口;315-尾矿溜管;316-精矿溜管;317-初选分料板;318-再选分料板;319-流量调节阀;321-磁辊磁系;322-富集磁系;323-主动辊;324-从动辊;325-皮带;331-偏心磁系;332-外滚筒;910-机架;920-锁风阀;930-壳体;940-外滚筒;950-旋转磁系;931-进料口;932-进风口;933-出风口;934-尾矿接料斗;941-外筒转轴;942-外筒体;943-外筒动力源;951-内筒转轴;952-内筒体;953-内筒动力源;954-永磁体;1010-外壳;1020-给料装置;1030-透气辊筒;1040-磁辊筒;1050-卸料辊;1060-精矿斗;1070-尾矿斗;H-精矿负压卸料区。
具体实施方式
下面结合附图,对本发明作详细的说明。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
参考图2说明根据本实施例公开的一种磁性矿干法粉磨分选系统,包括高压辊磨机2、分级装置4、分级磁选机3、微粉磁选机9及精选磁选机10;高压辊磨机2通过其进料口接收来自料仓1的原矿并进行粉磨,高压辊磨机2的出料口连接分级磁选机3的进料口;分级磁选机3的精矿卸料口连接分级装置4的进料口,其中矿卸料口连接高压辊磨机2的进料口,其尾矿卸料口连接初选尾矿料斗13进行卸矿堆积;分级装置4将初选精矿分离为粗粉矿及细粉矿,分级装置4的粗粉卸料口连接高压辊磨机2的进料口,其细粉卸料口连接微粉磁选机9的进料口;微粉磁选机9的精矿卸料口连接精选磁选机10的进料口,其尾矿卸料口连接尾矿料斗12进行卸矿堆积;精选磁选机10对二选精矿进行三选,分选为三选精矿和三选尾矿,三选精矿作为合格的精矿通过精选磁选机10的精矿卸料口卸矿至精矿料斗11进行堆积,三选尾矿通过精矿磁选机的尾矿卸料口卸矿至尾矿料斗12进行堆积。需要说明的是,上述设备的连接关系应当理解为包括直接连接和间接连接。
具体的说,本实施例中的磁性矿干法粉磨分选系统进行三级分选,一级分选为分级磁选机3将粉磨后的原矿分选为初选精矿、初选中矿和初选尾矿,二级分选为微粉磁选机9将分级装置4分离的细粉矿分选为二选精矿和二选尾矿,三级分选为精选磁选机10将二选精矿分选为三选精矿和三选尾矿。一级分选中,初选尾矿及时抛尾,初选中矿返回高压辊磨机2,将其中的非磁性矿解离出来再次进行一级分选。这部分初选中矿在现有干法粉磨分选系统中随初选精矿一起进入二级分选,相比之下,本实施例的磁性矿干法粉磨分选系统可以有 效提高选别效率,降低能耗。一级分选与二级分选之间设置分级装置4,将初选精矿中粒度不符合二级分选工艺要求的粗粉矿返回高压辊磨机2再次粉磨,进一步提高选别效率,降低能耗。符合粒度要求的细粉矿进行连续的二级分选和三级分选,可防止磁夹杂及磁团聚,有效保障精矿品位。
可选的,高压辊磨机2处理的原矿粒度为0-60mm,优选为0-30mm;分级磁选机3的处理粒度为0-20mm,优选为0-6mm;微粉磁选机9的处理粒度为0-3mm,优选为0-1mm。
此外,磁性矿干法粉磨分选系统可采用以下多种实施例中的分级装置4、分级磁选机3、微粉磁选机9和精选磁选机10。
(Ⅰ)分级装置
分级装置可按粒径或重力对产品进行分级,从而分离出符合要求的粒状或粉状产品。分级装置可采用以下两个实施例的技术方案,本领域技术人员可根据公知常识和常用技术手段做相应的变换,以得出其他实施例。
实施例1
磁性矿干法粉磨分选系统的分级装置4为筛分机5,如振动筛分机等,筛上物即为粗粉矿,筛下物即为细粉矿。如图3所示,筛分机5的粗粉卸料口连接高压辊磨机2进料口,筛分机5的细料卸料口连接微粉磁选机9的进料口。
实施例2
磁性矿干法粉磨分选系统的分级装置4为风力选粉器,包括V型选粉机6、动态选粉机7和收尘器8,如图4所示,V型选粉机6的进料口连接分级磁选机3的精矿卸料口,V型选粉机6的细料卸料口连接动态选粉机7的进料口,动态选粉机7的细粉卸料口连接收尘器8的进料口,收尘器8的细粉卸料口连接微粉磁选机9的进料口,V型选粉机6的粗料卸料口及动态选粉机7的粗粉 卸料口分别连接高压辊磨机2的进料口。
(Ⅱ)分级磁选机
磁性矿干法粉磨分选系统的分级磁选机可对粉磨后的原矿进行多级分选,为满足选别要求,该分级磁选机可采用以下三个实施例的技术方案,本领域技术人员可根据公知常识和常用技术手段做相应的变换,以得出其他实施例。
实施例3
分级磁选机为串联式双分级磁选机,如图5所示,其包括机架310、皮带磁选机构320及滚筒磁选机构330,皮带磁选机构320的入料端位于机架310的进料口311下方,皮带磁选机构320的卸料端设置有磁辊磁系321,机架310上设置有配合皮带磁选机构320的尾矿卸料口312,滚筒磁选机构330接收皮带磁选机构320分选的粗精矿,滚筒磁选机构330具有偏心布置的偏心磁系331,机架310上设置有配合滚筒磁选机构330的中矿卸料口313及尾矿卸料口312。
皮带磁选机构320进一步包括主动辊323、从动辊324以及皮带325,皮带325套设在主动辊323和从动辊324外围,主动辊323由动力源驱动转动,从而带动皮带325及从动辊324转动。磁辊磁系321可以设置在主动辊323或从动辊324内。本实施例中,磁辊磁系321优选的设置在从动辊324内,则从动辊324位于皮带磁选机构320的卸料端,主动辊323位于皮带磁选机构320的入料端。本实施例中,磁辊磁系321采用固定式的同心圆缺磁系,磁辊磁系321的磁包角为150-200°。
滚筒磁选机构330进一步包括外滚筒332及偏心布置在外滚筒332内的偏心磁系331,外滚筒332与偏心磁系331可相对转动,偏心磁系331包括排布成筒状的若干磁极。本实施例中,偏心磁系331在滚筒磁选机构330的工作面上形成交变磁场。具体地说,偏心磁系331在圆周方向上的相邻磁极相异,在轴 向上的相邻磁极相同,高品位磁性矿物受偏心磁系331的磁场作用吸附在外滚筒332上,磁性矿物沿圆周方向运动的过程中穿过磁场方向周期性变化的交变磁场,从而使高品位磁性矿物翻转并打散磁团,防止低品位磁性矿物夹杂在高品位磁性矿物中,提高精矿的品位。
可选的,皮带磁选机构320内设置有富集磁系322,富集磁系322的磁场范围覆盖皮带磁选机构320上部的至少部分输送面,使穿过富集磁系322磁场的矿石按品位分层;富集磁系322沿皮带磁选机构320的输送方向布置。其中,富集磁系322可采用平板磁系或磁托辊组。具体地说,皮带磁选机构320的皮带325内侧设置有富集磁系322,富集磁系322贴近皮带325的上输送面,从而使富集磁系322的磁场范围覆盖至少部分上输送面。
为优化磁选机的结构设置,尾矿卸料口312优选的设置在皮带磁选机构320的卸料端下方,皮带磁选机构320将矿物原料粗选为粗精矿及尾矿,其中,尾矿卸料至尾矿卸料口312。皮带磁选机构320分选的尾矿可直接下落至尾矿卸料口312进行排矿,也可优选的设置连通尾矿卸料口312的尾矿溜管315进行排矿;相应的,皮带磁选机构320分选的粗精矿可直接下落至滚筒磁选机构330的进料范围内,也可优选的设置下端置于滚筒磁选机构330进料范围内的精矿溜管316进行输送。机架310上设置有配合滚筒磁选机构330排矿的中矿卸料口313及精矿卸料口314,中矿卸料口313及精矿卸料口314沿外滚筒332的转动方向依次布置在其下方,滚筒磁选机构330分选的中矿及精矿分别在中矿卸料口313、精矿卸料口314内聚集、排出。其中,滚筒磁选机构330可直接向精矿卸料口314及中矿卸料口313卸料,也可通过设置溜管配合精矿卸料口314、中矿卸料口313进行卸料排矿。
可选的,皮带磁选机构320的卸料端下方设置可摆动的初选分料板317, 初选分料板317位于皮带磁选机构320的卸料范围内,初选分料板317可用于调节尾矿与粗精矿的分料位置。滚筒磁选机构330下方设置有可摆动的再选分料板318,再选分料板318可调节中矿与精矿的分料位置;
可选的,机架310的进料口311下端设置有流量调节阀319,用于调节机架310进料口311匀速进料。
实施例4
分级磁选机为叠排式双分级磁选机,如图6所示,其包括机架310、滚筒磁选机构330及皮带磁选机构320,滚筒磁选机构330设置在机架310的进料口311下方,滚筒磁选机构330具有偏心布置的偏心磁系331,机架310上设置有配合辊筒磁选机构的精矿卸料口314,皮带磁选机构320的进料端接收滚筒磁选机构330分选的粗尾矿,皮带磁选机构320的卸料端设置有磁辊磁系321,机架310上设置有配合皮带磁选机构320的中矿卸料口313及尾矿卸料口312。具体地说,滚筒磁选机构330和皮带磁选机构320对矿石进行多级分选,滚筒磁选机构330对矿石进行粗选,皮带325磁选机对粗选的粗尾矿进行再选。
滚筒磁选机构330包括外滚筒332及偏心布置在外滚筒332内的偏心磁系331,偏心磁系331包括排布成筒状的若干磁极。偏心磁系331在圆周方向上的相邻磁极相异,在轴向上的相邻磁极相同,磁性矿物受偏心磁系331的磁场作用吸附在外滚筒332上,磁性矿物沿圆周方向运动的过程中穿过磁场方向周期性变化的交变磁场。
皮带磁选机构320包括主动辊323、从动辊324以及皮带325,皮带325套设在主动辊323和从动辊324外围,主动辊323由动力源驱动转动,从而带动皮带325及从动辊324转动。磁辊磁系321可以设置在主动辊323或从动辊324内。本实施例中,磁辊磁系321优选的设置在从动辊324内,则从动辊324 位于皮带磁选机构320的卸料端,主动辊323位于皮带磁选机构320的入料端。皮带磁选机构320的磁辊磁系321可以采用同心圆缺磁系,也可以采用同心筒状磁系或偏心筒状磁系。本实施例中,磁辊磁系321优选的采用固定式的同心圆缺磁系,磁辊磁系321的磁包角为150-200°。
可选的,皮带磁选机构320内设置有富集磁系322,富集磁系322的磁场范围覆盖皮带磁选机构320上部的至少部分输送面,使穿过富集磁系322磁场的矿石按品位分层;富集磁系322沿皮带磁选机构320的输送方向布置。其中,富集磁系322可采用平板磁系或磁托辊组。具体地说,皮带磁选机构320的皮带325内侧设置有富集磁系322,富集磁系322贴近皮带325的上输送面,从而使富集磁系322的磁场范围覆盖至少部分上输送面。
为优化磁选机的结构设置,精矿卸料口314优选的设置在滚筒磁选机构330下方,滚筒磁选机构330将矿物原料粗选为精矿及粗尾矿,精矿卸料至精矿卸料口314。滚筒磁选机构330分选的精矿可直接下落至精矿卸料口314进行排矿,也可优选的设置连通精矿卸料口314的精矿溜管316进行排矿;相应的,滚筒磁选机构330分选的粗尾矿可直接下落至皮带磁选机构320的入料端,也可优选的设置下端通向皮带磁选机构320入料端的尾矿溜管315进行排矿。尾矿卸料口312及中矿卸料口313沿皮带磁选机构320卸料端皮带325的输送方向依次布置,滚筒磁选机构330分选的中矿及尾矿分别在中矿卸料口313、尾矿卸料口312内聚集、排出。其中,皮带磁选机构320的卸料端可直接向尾矿卸料口312及中矿卸料口313卸料,也可通过设置溜管配合尾矿卸料口312、中矿卸料口313进行卸料排矿。
可选的,滚筒磁选机构330下方设置可摆动的初选分料板317,初选分料板317位于滚筒磁选机构330的卸料范围内,初选分料板317用于调节精矿与 粗尾矿的分料位置。皮带磁选机构320的卸料端下方设置可摆动的再选分料板318,再选分料板318位于皮带磁选机构320的卸料范围内,再选分料板318可用于调节中矿与尾矿的分料位置。机架310的进料口311下端设置有流量调节阀319。流量调节阀319用于使进料口311匀速进料。
实施例5
本实施例中,分级磁选机为磁力分级预选机,如图7所示,包括机架310、外滚筒332和呈筒状排列的偏心磁系331,偏心磁系331偏心布置在外滚筒332内,偏心磁系331与外滚筒332之间相对转动,外滚筒332的偏心侧工作面磁场强度大于外滚筒332的非偏心侧工作面,外滚筒332下部工作面沿外滚筒332转动方向磁场强度逐渐减小,外滚筒332下方的机架310上从强磁区至弱磁区依次设置尾矿卸料口312、中矿卸料口313和精矿卸料口314。
(四)微粉磁选机
微粉磁选机用于对分级磁选机分选的初选精矿进行二选。微粉磁选机可采用以下实施例的技术方案,本领域技术人员可根据公知常识和常用技术手段做相应的变换,以得出其他实施例。
实施例6
本实施例中,微粉磁选机包括壳体930,如图8和图9所示,壳体930内支承有可转动的外滚筒940及旋转磁系950,旋转磁系950同心地布置在外滚筒940内,壳体930上设置有尾矿卸料口以及向外滚筒940送料的进料口931,尾矿卸料口处设置有锁风阀920,壳体930上还设置有进风口932和出风口933,出风口933向壳体930内延伸,并在外滚筒940的局部工作面上形成精矿负压卸料区。其中,外滚筒940在圆周方向上具有精矿分选区和精矿负压卸料区,精矿分选区至少包括外滚筒940下部的部分工作面;在外滚筒940旋转方向上, 精矿负压卸料区位于精矿分选区末端。
具体地说,外滚筒940在圆周方向上具有精矿分选区和精矿负压卸料区,精矿负压卸料区利用气流在外滚筒940局部工作面上形成的负压进行精矿的卸料。随着外滚筒940的转动,进入精矿分选区的原矿连续进行精矿和尾矿的分离,以及尾矿卸料,精矿与尾矿分离后吸附在外滚筒940表面;精矿由精矿分选区进入精矿负压卸料区后,精矿负压卸料区的压力差使精矿能够克服磁力及重力,脱离外滚筒940表面沿气流流动方向通过出风口933排出壳体930,完成精矿卸料。
可选的,壳体930下方可安装机架910;壳体930上设置有进料口931,进料口931用于为外滚筒940送料,进料口931可以设置在壳体930的顶部或壳体930侧部,优选为壳体930顶部。进料口931向壳体930内延伸,且进料口931的进料方向相对于水平面倾斜向下。
可选的,为提高能效,壳体930的出风口933沿指向精矿负压卸料区的方向向壳体930内延伸。出风口933与外滚筒940表面之间设置有间隙,为保障流畅进料卸料,并兼顾能效问题,上述间隙宽度设置为0-20mm,优选为6-12mm。出风口933的出风方向可相对于水平面倾斜向下、倾斜向上或水平。由于气流可能影响尾矿沉积,影响精矿品位和选矿效率,因此出风口933的出风方向优选为相对于水平面倾斜向下。另外,本实施例中,精矿负压卸料区的负压风速为3-25m/s,优选为10-18m/s。
可选的,旋转磁系950包括内筒体952、内筒转轴951和内筒动力源953,内筒体952设置在内筒转轴951上并随外筒转轴941转动,外筒动力源943驱动通过传动机构带动外筒转轴941转动;内筒体952外表面设置有若干永磁体954。其中,内筒动力源953为变频电机。旋转磁系950在相对转动的外滚筒 940的工作面上形成交变磁场。具体的说,内筒体952外表面的若干永磁体954中,轴向方向上相邻的永磁体954极性相同,圆周方向上相邻的永磁体954极性相异。
可选的,外滚筒940包括外筒体942,外筒转轴941和外筒动力源943,外筒体942设置在外筒转轴941上并随外筒转轴941转动,外筒动力源943驱动通过传动机构带动外筒转轴941转动。其中,传动机构可以是皮带机构、链条机构和齿轮机构传动;外筒动力源943为变频电机;外筒转轴941为空心轴,使得旋转磁系950的内筒转轴951两端可以延伸出外筒转轴941并支承在壳体930上。
(五)精选磁选机
精选磁选机用于对微粉磁选机分选的二选精矿进行三选。精选磁选机可采用以下实施例的技术方案,本领域技术人员可根据公知常识和常用技术手段做相应的变换,以得出其他实施例。
实施例7
本实施例中的精选磁选机采用引进风力的干式磁选机,除利用磁力和重力以外,引入风力与磁力进行对抗,在磁选的过程中打散二选精矿中夹杂的非磁性矿物,进一步提高精矿品位。
本实施例中,如图10所示,引进风力的干式磁选机包括外壳1010、给料装置1020、透气辊筒1030、卸料辊1050、精矿卸料口和尾矿斗1070,透气辊筒1030水平转动安装在外壳1010内,在透气辊筒1030表面设有低频交变磁场,该透气辊筒1030表面均匀开设若干通孔,在通孔内镶嵌透气材料,并且透气辊筒1030具有封闭的内腔,并向内腔中接入压力气体,给料装置1020对应透气辊筒1030安装在外壳1010顶部,卸料辊1050安装在透气辊筒1030右 侧,精矿卸料口对应设置在卸料辊1050下方,尾矿斗1070对应设置于透气辊筒1030下方。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种磁性矿干法粉磨磁选系统,其特征在于包括:
    接收原矿并进行粉磨的高压辊磨机;
    分级磁选机,所述初选磁选机的进料口连接高压辊磨机的出料口,所述分级磁选机的中矿卸料口连接高压辊磨机进料口;
    分级装置,所述分级装置的进料口连接分级磁选机的精矿卸料口,所述分级装置的粗粉卸料口连接高压辊磨机进料口;
    微粉磁选机,所述微粉磁选机的进料口连接分级装置的细粉卸料口;
    精选磁选机,所述精选磁选机的进料口连接微粉磁选机的精矿卸料口;
    其中,精选磁选机的精矿卸料口连接精矿料斗,分级磁选机、微粉磁选机和精选磁选机的尾矿卸料口分别连接尾矿料斗。
  2. 如权利要求1所述的磁性矿干法粉磨磁选系统,其特征在于,所述分级装置为筛分机或风力分级器。
  3. 如权利要求2所述的磁性矿干法粉磨磁选系统,其特征在于,所述风力分级器包括V型选粉机、动态选粉机和收尘器,所述V型选粉机的进料口连接分级磁选机的精矿卸料口,V型选粉机的细料卸料口连接动态选粉机的进料口,动态选粉机的细粉卸料口连接收尘器的进料口,收尘器的细粉卸料口连接微粉磁选机的进料口,V型选粉机的粗料卸料口及动态选粉机的粗粉卸料口分别连接高压辊磨机的进料口。
  4. 如权利要求1至3任一权利要求所述的磁性矿干法粉磨磁选系统,其特征在于,所述分级磁选机为串联式双分级磁选机,包括机架、皮带磁选机构及滚筒磁选机构,所述皮带磁选机构的入料端位于机架的进料口下方,所述皮带磁选机构的卸料端设置有磁辊磁系,所述机架上设置有配合皮带磁选机构的尾矿卸料口,所述滚筒磁选机构接收皮带磁选机构分选的粗精矿, 所述滚筒磁选机构具有偏心布置的偏心磁系,所述机架上设置有配合滚筒磁选机构的中矿卸料口及尾矿卸料口。
  5. 权利要求1至3任一权利要求所述的磁性矿干法粉磨磁选系统,其特征在于,所述分级磁选机为叠排式双分级磁选机,包括机架、滚筒磁选机构及皮带磁选机构,所述滚筒磁选机构设置在机架的进料口下方,所述滚筒磁选机构具有偏心布置的偏心磁系,所述机架上设置有配合辊筒磁选机构的精矿卸料口,所述皮带磁选机构的进料端接收滚筒磁选机构分选的粗尾矿,所述皮带磁选机构的卸料端设置有磁辊磁系,所述机架上设置有配合皮带磁选机构的中矿卸料口及尾矿卸料口。
  6. 权利要求1至3任一权利要求所述的磁性矿干法粉磨磁选系统,其特征在于,所述分级磁选机为磁力分级预选机,包括机架、外滚筒和呈筒状排列的偏心磁系,偏心磁系偏心布置在外滚筒内,偏心磁系与外滚筒之间相对转动,外滚筒的偏心侧工作面磁场强度大于外滚筒的非偏心侧工作面,外滚筒下部工作面沿外滚筒转动方向磁场强度逐渐减小,外滚筒下方的机架上从强磁区至弱磁区依次设置尾矿卸料口、中矿卸料口和精矿卸料口。
  7. 权利要求1至3任一权利要求所述的磁性矿干法粉磨磁选系统,其特征在于,所述微粉磁选机包括壳体,所述壳体内支承有可转动的外滚筒及旋转磁系,所述旋转磁系同心地布置在所述外滚筒内,所述壳体上设置有尾矿卸料口以及向外滚筒送料的进料口,所述尾矿卸料口处设置有锁风阀,所述壳体上还设置有进风口和出风口,所述出风口向壳体内延伸,并在所述外滚筒的局部工作面上形成精矿负压卸料区。
  8. 权利要求1至3任一权利要求所述的磁性矿干法粉磨磁选系统,其特征在于,所述精选磁选机为引进风力的干式磁选机,包括外壳、设置在外壳内 的透气辊筒、配合透气辊筒进料的给料装置以及配合透气辊筒卸料的卸料辊,透气辊筒表面设有低频交变磁场,透气辊筒表面均匀开设若干通孔,在通孔内镶嵌透气材料,并且透气辊筒具有封闭的内腔,并向内腔中接入压力气体,位于卸料辊下方的机架上设置有精矿卸料口,透气辊筒下方的机架上设置有尾矿斗。
  9. 权利要求1至3任一权利要求所述的磁性矿干法粉磨磁选系统,其特征在于,所述高压辊磨机处理的原矿粒度为0-60mm。
  10. 权利要求1至3任一权利要求所述的磁性矿干法粉磨磁选系统,其特征在于,所述分级磁选机的处理粒度为0-20mm;所述微粉磁选机的处理粒度为0-3mm。
PCT/CN2020/082718 2019-12-10 2020-04-01 磁性矿干法粉磨分选系统 WO2021114516A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911260292.1A CN110947496A (zh) 2019-12-10 2019-12-10 磁性矿干法粉磨分选系统
CN201911260292.1 2019-12-10

Publications (1)

Publication Number Publication Date
WO2021114516A1 true WO2021114516A1 (zh) 2021-06-17

Family

ID=69980858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082718 WO2021114516A1 (zh) 2019-12-10 2020-04-01 磁性矿干法粉磨分选系统

Country Status (2)

Country Link
CN (1) CN110947496A (zh)
WO (1) WO2021114516A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111822129A (zh) * 2020-07-22 2020-10-27 中材(天津)粉体技术装备有限公司 一种铁矿石干法磨矿选矿装置及工艺
WO2023070893A1 (zh) * 2021-10-25 2023-05-04 沈阳隆基电磁科技股份有限公司 一种干式预选机
AU2021470809A1 (en) * 2021-10-25 2023-06-29 Longi Magnet Co., Ltd. Dry separator
CN114618627A (zh) * 2022-03-28 2022-06-14 胡沿东 一种矿石解理系统及其工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105772218A (zh) * 2016-03-22 2016-07-20 薛鹏飞 一种铁矿循环分级选矿方法及应用于该方法的干选机
CN105880003A (zh) * 2016-05-27 2016-08-24 马鞍山市天工科技股份有限公司 一种磁铁矿石无筛分高压辊磨干式磁选方法
CN108014913A (zh) * 2018-02-05 2018-05-11 中冶沈勘秦皇岛设计研究院有限公司 伴生磷矿物的超贫磁铁矿选矿方法及系统
CN108380380A (zh) * 2018-03-29 2018-08-10 安徽马钢张庄矿业有限责任公司 细碎产品干式选别铁精粉工艺
CN109954577A (zh) * 2019-03-29 2019-07-02 中冶北方(大连)工程技术有限公司 钛磁铁矿钛铁矿选矿工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105772218A (zh) * 2016-03-22 2016-07-20 薛鹏飞 一种铁矿循环分级选矿方法及应用于该方法的干选机
CN105880003A (zh) * 2016-05-27 2016-08-24 马鞍山市天工科技股份有限公司 一种磁铁矿石无筛分高压辊磨干式磁选方法
CN108014913A (zh) * 2018-02-05 2018-05-11 中冶沈勘秦皇岛设计研究院有限公司 伴生磷矿物的超贫磁铁矿选矿方法及系统
CN108380380A (zh) * 2018-03-29 2018-08-10 安徽马钢张庄矿业有限责任公司 细碎产品干式选别铁精粉工艺
CN109954577A (zh) * 2019-03-29 2019-07-02 中冶北方(大连)工程技术有限公司 钛磁铁矿钛铁矿选矿工艺

Also Published As

Publication number Publication date
CN110947496A (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
WO2021114516A1 (zh) 磁性矿干法粉磨分选系统
WO2021114515A1 (zh) 一种微粉干式磁选机
CN202028417U (zh) 一种一体化选矿机
CN105772218B (zh) 一种铁矿循环分级选矿方法及应用于该方法的干选机
CN110882840B (zh) 一种叠排式双分级磁选机及磁性矿干法粉磨分选系统
WO2021114517A1 (zh) 一种双分级式组合磁选机及磁性矿干法粉磨分选系统
CN206567087U (zh) 一种上吸式组合干选机
CN106378354A (zh) 一种报废汽车整体资源化的处理系统及处理方法
WO2023070894A1 (zh) 一种干式精选机
CN104588206A (zh) 一种吸出—吸住联合干式预选机
CN211678135U (zh) 磁性矿干法粉磨分选系统
CN104437844B (zh) 提高磁场分选区磁场强度的方法及磁选设备
CN109046765A (zh) 一种干式磁选工艺实验装置
CN110882841B (zh) 一种串联式双分级磁选机及磁性矿干法粉磨分选系统
CN211488117U (zh) 一种叠排式双分级磁选机及磁性矿干法粉磨分选系统
CN211488118U (zh) 一种串联式双分级磁选机及磁性矿干法粉磨分选系统
CN211755948U (zh) 一种贫磁铁矿干、湿联合预选系统
CN113798059A (zh) 一种干式预选机
CN212418276U (zh) 一种团聚物冲击解离分选系统
CN113798060A (zh) 一种干式精选机
CN110773315B (zh) 一种磁铁矿全粒级预选抛废方法
CN105689117A (zh) 一种浓缩磁选机及基于该浓缩磁选机的浓缩方法
CN104941796A (zh) 一种料层反复翻转式干选机
CN205392728U (zh) 一种浓缩磁选机
CN113751178A (zh) 一种团聚物冲击解离分选方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899364

Country of ref document: EP

Kind code of ref document: A1