WO2023068772A1 - 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지 - Google Patents

리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2023068772A1
WO2023068772A1 PCT/KR2022/015888 KR2022015888W WO2023068772A1 WO 2023068772 A1 WO2023068772 A1 WO 2023068772A1 KR 2022015888 W KR2022015888 W KR 2022015888W WO 2023068772 A1 WO2023068772 A1 WO 2023068772A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium secondary
aqueous electrolyte
formula
lithium
Prior art date
Application number
PCT/KR2022/015888
Other languages
English (en)
French (fr)
Inventor
강유선
이철행
이정훈
박솔지
이재원
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202280064703.3A priority Critical patent/CN118020189A/zh
Priority to CA3233090A priority patent/CA3233090A1/en
Publication of WO2023068772A1 publication Critical patent/WO2023068772A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte solution for a lithium secondary battery containing an additive capable of forming stable films on surfaces of a cathode and an anode, and a lithium secondary battery having improved high-temperature storage stability by including the same.
  • Lithium-ion batteries can be miniaturized enough to be applied to personal IT devices, etc., and have high energy density and operating voltage, so they are used not only as power sources for laptop computers and mobile phones, but also as power sources for power storage and electric vehicles. .
  • the lithium ion secondary battery includes a positive electrode containing lithium-containing transition metal oxide as a main component, a negative electrode using a carbonaceous material represented by lithium alloy or graphite, a separator interposed between the positive electrode and the negative electrode, and Li ions moving It consists of a non-aqueous electrolyte as a medium.
  • a non-aqueous electrolyte an electrolyte such as lithium hexafluorophosphate (LiPF 6 ) dissolved in an organic solvent having a high dielectric constant such as ethylene carbonate or dimethyl carbonate is widely used.
  • an electrolyte such as lithium hexafluorophosphate (LiPF 6 ) is vulnerable to heat and moisture, it reacts with moisture present in the cell or generates a Lewis acid such as PF 5 while being thermally decomposed.
  • Lewis acids can erode the passivation film formed at the electrode-electrolyte interface, causing elution of transition metal ions from the anode.
  • These eluted transition metal ions accelerate the decomposition of the electrolyte solvent to accelerate gas generation, or re-deposit on the anode to increase the resistance of the anode, and also move to the cathode through the electrolyte and then electrodeposit on the cathode.
  • This causes the self-discharge of the negative electrode, or the destruction and regeneration of the solid electrolyte interphase (SEI) film, which causes additional consumption of lithium ions and increases in resistance.
  • SEI solid electrolyte interphase
  • a non-aqueous electrolyte composition capable of improving not only safety but also battery performance such as high rate charge/discharge characteristics is desired.
  • the present invention is to provide a non-aqueous electrolyte for a lithium secondary battery including an additive capable of effectively removing decomposition products of lithium salt while forming a stable ion conductive film on the surface of an electrode.
  • the present invention is to provide a lithium secondary battery with improved high-temperature storage safety by including the non-aqueous electrolyte for the lithium secondary battery.
  • the present invention provides a plurality of the present invention.
  • non-aqueous electrolyte solution for a lithium secondary battery comprising: a compound represented by Formula 1 below:
  • R is an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 1 to 6 carbon atoms or an alkynyl group having 1 to 6 carbon atoms,
  • R1 is an alkylene group having 1 to 3 carbon atoms
  • X is O or S.
  • one embodiment of the present invention provides a lithium secondary battery including a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and the nonaqueous electrolyte for a lithium secondary battery of the present invention.
  • the non-aqueous electrolyte of the present invention contains a compound containing an iocyanate (-NCO) or isothiocyanate (-NCS) terminal group as an additive, thereby effectively scavenging Lewis acid generated as a decomposition product of electrolyte salt.
  • a compound containing an iocyanate (-NCO) or isothiocyanate (-NCS) terminal group as an additive, thereby effectively scavenging Lewis acid generated as a decomposition product of electrolyte salt.
  • the non-aqueous electrolyte of the present invention when used, it is possible to implement a lithium secondary battery with improved high-temperature storage safety by suppressing the elution of transition metals from the cathode.
  • an alkyl group having 1 to 5 carbon atoms refers to an alkyl group having 1 to 5 carbon atoms, that is, -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH 2 (CH 3 )CH 3 , -CH(CH 3 )CH 3 and -CH(CH 3 )CH 2 CH 3 and the like.
  • substitution means that at least one hydrogen bonded to carbon is substituted with an element other than hydrogen, for example, an alkyl group having 1 to 4 carbon atoms or a fluorine element. means that it has been replaced by
  • transition metal ions are easily eluted from the positive electrode into the electrolyte solution due to structural changes of the positive electrode due to repeated charging and discharging, and the amount of available lithium ions in the battery decreases, resulting in battery capacity deterioration.
  • passivation films such as solid electrolyte interphase (SEI) are deteriorated by Lewis acids generated by thermal decomposition of electrolyte salts, elution of transition metal ions intensifies. Transition metal ions thus eluted may be re-deposited on the positive electrode to increase the resistance of the positive electrode or electrodeposited on the surface of the negative electrode to destroy the SEI film, thereby causing an internal short circuit.
  • SEI solid electrolyte interphase
  • a non-aqueous electrolyte for a lithium secondary battery capable of suppressing additional elution or electrodeposition of transition metal ions by forming a solid film on the surface of the positive electrode and the negative electrode at the same time as removing the Lewis acid that causes such deterioration and poor behavior, and a non-aqueous electrolyte solution containing the same It is intended to provide a lithium secondary battery.
  • One embodiment of the present invention provides a non-aqueous electrolyte solution for a lithium secondary battery.
  • the non-aqueous electrolyte for the lithium secondary battery is the non-aqueous electrolyte for the lithium secondary battery
  • R is an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 1 to 6 carbon atoms or an alkynyl group having 1 to 6 carbon atoms,
  • R 1 is an alkylene group having 1 to 3 carbon atoms
  • X is O or S.
  • lithium salt those commonly used in electrolytes for lithium secondary batteries may be used without limitation, for example, including Li + as a cation and F - , Cl - , Br - , I - , NO 3 - as an anion, N(CN) 2 - , BF 4 - , ClO 4 - , B 10 Cl 10 - , AlCl 4 - , AlO 4 - , PF 6 - , CF 3 SO 3 - , CH 3 CO 2 - , CF 3 CO 2 - , AsF 6 - , SbF 6 - , CH 3 SO 3 - , (CF 3 CF 2 SO 2 ) 2 N - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , BF 2 C 2 O 4 - , BC 4 O 8 - , PF 4 C 2 O 4 - , PF 2 C 4 O 8 - , (CF 3 ) 2
  • the lithium salt is LiCl, LiBr, LiI, LiBF 4 , LiClO 4 , LiB 10 Cl 10 , LiAlCl 4 , LiAlO 4 , LiPF 6 , LiCF 3 SO 3 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiCH 3 SO 3 , LiN(SO 2 F) 2 (Lithium bis(fluorosulfonyl)imide, LiFSI), LiN(SO 2 CF 2 CF 3 ) 2 (lithium bis(perfluoroethanesulfonyl) imide, LiBETI) and LiN( SO 2 CF 3 ) 2 (lithium bis (trifluoromethanesulfonyl) imide, LiTFSI) may include at least one selected from the group consisting of LiBF 4 , LiClO 4 , LiPF 6 , LiN(SO 2 F) 2 , LiN(SO 2 CF 2
  • the lithium salt may be appropriately changed within a generally usable range, but in order to obtain an optimum effect of forming a film for preventing corrosion on the electrode surface, it is included in the electrolyte at a concentration of 0.8 M to 3.0 M, specifically 1.0 M to 3.0 M. can When the concentration of the lithium salt satisfies the above range, it is possible to control the viscosity of the non-aqueous electrolyte so as to realize optimal impregnability, and improve the mobility of lithium ions to obtain an effect of improving capacity characteristics and cycle characteristics of a lithium secondary battery. there is.
  • the non-aqueous organic solvent of the present invention may include a cyclic carbonate-based organic solvent, a linear carbonate-based organic solvent, or a mixed organic solvent thereof.
  • the cyclic carbonate-based organic solvent is a high-viscosity organic solvent that can well dissociate lithium salts in the electrolyte due to its high dielectric constant, and specific examples thereof include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2 It may contain at least one organic solvent selected from the group consisting of 3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate and vinylene carbonate, among which ethylene carbonate may be included.
  • the linear carbonate-based organic solvent is an organic solvent having a low viscosity and a low dielectric constant, and representative examples thereof include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, and ethylmethyl carbonate ( EMC), at least one organic solvent selected from the group consisting of methylpropyl carbonate and ethylpropyl carbonate may be used, and may specifically include dimethyl carbonate (DMC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl carbonate
  • the cyclic carbonate-based organic solvent and the linear carbonate-based organic solvent may be mixed and used in a volume ratio of 10:90 to 50:50, specifically 15:85 to 30:70 there is.
  • the non-aqueous organic solvent is a linear ester-based organic solvent having a low melting point and high storage stability at high temperatures compared to the cyclic carbonate-based organic solvent and / or the linear carbonate-based organic solvent in order to prepare an electrolyte solution having high ion conductivity. and at least one organic solvent selected from among cyclic ester-based organic solvents.
  • linear ester-based organic solvent examples include at least one organic solvent selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, and butyl propionate.
  • cyclic ester organic solvent at least one organic solvent selected from the group consisting of ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone and ⁇ -caprolactone is mentioned.
  • the non-aqueous organic solvent may be used by adding an organic solvent commonly used in an electrolyte solution for a lithium secondary battery without limitation, if necessary.
  • an organic solvent commonly used in an electrolyte solution for a lithium secondary battery without limitation, if necessary.
  • at least one organic solvent selected from among ether-based organic solvents, amide-based organic solvents, and nitrile-based organic solvents may be further included.
  • the non-aqueous electrolyte solution for a lithium secondary battery of the present invention may include a compound represented by Formula 1 as a first additive.
  • R is an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 1 to 6 carbon atoms or an alkynyl group having 1 to 6 carbon atoms,
  • R1 is an alkylene group having 1 to 3 carbon atoms
  • X is O or S.
  • the compound represented by Formula 1 includes an iocyanate (-NCO) or isothiocyanate (-NCS) terminal group containing a nitrogen element in its structure, the unshared electron pair of the nitrogen element is a decomposition product of the electrolyte salt. It reacts with and combines with a Lewis acid, such as HF, to form a complex, thereby effectively scavenging the Lewis acid.
  • the compound represented by Formula 1 can form a stable passivation film while being reduced before the non-aqueous organic solvent on the surfaces of the anode and cathode.
  • R may be a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms or a substituted or unsubstituted alkynyl group having 1 to 6 carbon atoms.
  • R may be a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms or a substituted or unsubstituted alkynyl group having 1 to 4 carbon atoms.
  • substitution may be substituted with at least one substituent selected from an alkyl group having 1 to 4 carbon atoms and at least one fluorine.
  • the compound represented by Formula 1 may be at least one of the compounds represented by Formulas 1-1 to 1-4 below.
  • the compound represented by Formula 1 may be included in an amount of 0.3% to 5% by weight based on the total weight of the non-aqueous electrolyte for a lithium secondary battery.
  • the compound represented by Formula 1 When the compound represented by Formula 1 is included within the above range, a secondary battery with further improved overall performance can be manufactured.
  • the content of the compound represented by Chemical Formula 1 is 0.3% by weight or more, the SEI formation effect is insignificant, and thus the effect of reducing gas during high-temperature storage and improving the high-temperature cycle characteristics may be insignificant.
  • a stabilizing effect or dissolution inhibiting effect can be obtained when forming an SEI film, and when the content of the compound represented by Formula 1 is 5% by weight or less, resistance
  • the increase in viscosity of the electrolyte solution due to excess compounds is prevented at the line of suppressing the increase as much as possible, and at the same time, the increase in battery resistance can be effectively prevented by suppressing excessive film formation, so the maximum dissolution suppression effect within the acceptable resistance increase can be obtained.
  • the compound represented by Formula 1 may be included in an amount of 0.5% to 3% by weight based on the total weight of the non-aqueous electrolyte for a lithium secondary battery.
  • the non-aqueous electrolyte of the present invention prevents the breakdown of the negative electrode due to the decomposition of the non-aqueous electrolyte in a high-power environment, or to further improve low-temperature high-rate discharge characteristics, high-temperature stability, overcharge prevention, and the effect of suppressing battery expansion at high temperatures. , and may further include other second additives.
  • additives examples include cyclic carbonate-based compounds, halogen-substituted carbonate-based compounds, sultone-based compounds, sulfate-based compounds, phosphate-based or phosphite-based compounds, borate-based compounds, benzene-based compounds, amine-based compounds, silane-based compounds, and and at least one selected from the group consisting of lithium salt-based compounds.
  • cyclic carbonate-based compound examples include vinylene carbonate (VC) and vinyl ethylene carbonate (VEC).
  • halogen-substituted carbonate-based compound examples include fluoroethylene carbonate (FEC) and the like.
  • the sultone-based compound for example, 1,3-propane sultone (PS), 1,4-butane sultone, ethensultone, 1,3-propene sultone (PRS), 1,4-butene sultone and 1- It may be at least one compound selected from the group consisting of methyl-1,3-propene sultone.
  • the sulfate-based compound may be, for example, ethylene sulfate (Esa), trimethylene sulfate (TMS), methyl trimethylene sulfate (MTMS), and the like.
  • Esa ethylene sulfate
  • TMS trimethylene sulfate
  • MTMS methyl trimethylene sulfate
  • the phosphate-based or phosphite-based compound for example, lithium difluoro (bisoxalato) phosphate, lithium difluorophosphate, tris (trimethylsilyl) phosphate, tris (trimethylsilyl) phosphite, tris (2 ,2,2-trifluoroethyl) phosphate and tris (trifluoroethyl) phosphite.
  • borate-based compound examples include tetraphenylborate, lithium oxalyldifluoroborate (LiODFB) and lithium bisoxalate borate (LiB(C 2 O 4 ) 2 , LiBOB) capable of forming a film on the surface of an anode.
  • LiODFB lithium oxalyldifluoroborate
  • LiB(C 2 O 4 ) 2 , LiBOB lithium bisoxalate borate
  • the benzene-based compound may be fluorobenzene
  • the amine-based compound may be triethanolamine, ethylenediamine, and the like
  • the silane-based compound may be tetravinylsilane and the like.
  • the lithium salt-based compound is a compound different from the lithium salt contained in the non-aqueous electrolyte, and examples thereof include LiPO 2 F 2 and LiBF 4 .
  • the other additives may be used in combination of two or more compounds, and may be included in an amount of 0.01 to 20% by weight, specifically 0.01 to 10% by weight based on the total weight of the non-aqueous electrolyte.
  • a secondary battery with further improved performance may be manufactured.
  • the other additives when the other additives are included in an amount of 0.01% by weight or more, the durability of the SEI film is improved, and when they are included in an amount of 20% by weight or less, the increase in resistance of the SEI film is acceptable within the line of suppressing the increase in resistance as much as possible. It has the effect of long-term maintenance and repair.
  • the anode; cathode; a separator interposed between the positive electrode and the negative electrode; And the aforementioned non-aqueous electrolyte of the present invention provides a lithium secondary battery comprising a.
  • the lithium secondary battery of the present invention can be manufactured by forming an electrode assembly in which a positive electrode, a negative electrode, and a separator are sequentially stacked between the positive electrode and the negative electrode are stored in a battery case, and then the non-aqueous electrolyte of the present invention is introduced.
  • the method for manufacturing the lithium secondary battery of the present invention may be manufactured and applied according to a conventional method known in the art, and is described in detail below.
  • the cathode according to the present invention may include a cathode active material layer including a cathode active material, and if necessary, the cathode active material layer may further include a conductive material and/or a binder.
  • the cathode active material is a compound capable of reversible intercalation and deintercalation of lithium, and specifically, may include a lithium composite metal oxide containing lithium and at least one metal such as cobalt, manganese, nickel, or aluminum. there is.
  • the cathode active material is a lithium-cobalt-based oxide (eg, LiCoO 2 , etc.), a lithium-manganese-based oxide (eg, LiMnO 2 , LiMn 2 O 4 etc.), lithium-nickel-based oxide (eg, LiNiO 2 , etc.), lithium-nickel-manganese-based oxide (eg, LiNi 1 - Y Mn Y O 2 (where 0 ⁇ Y ⁇ 1), LiMn 2 - z Ni z O 4 (where 0 ⁇ Z ⁇ 2), etc.), lithium-nickel-cobalt-based oxide (eg, LiNi 1 - Y1 Co Y1 O 2 (where 0 ⁇ Y1 ⁇ 1) etc.), lithium-manganese-cobalt-based oxides (eg, LiCo 1-Y2 Mn Y2 O 2 (where 0 ⁇ Y2 ⁇ 1), LiMn 2 - z1 Co z1 O 4
  • the cathode active material is lithium-cobalt oxide, lithium-manganese-based oxide, lithium-nickel-manganese-cobalt-based oxide, and lithium-nickel-cobalt-transition metal (M ) may include at least one selected from the group consisting of oxides.
  • the cathode active material may include at least one selected from lithium-nickel-manganese-cobalt-based oxide having a nickel content of 55 atm% or more and lithium-nickel-cobalt-transition metal (M) oxide having a nickel content of 55 atm% or more.
  • the cathode active material may include a lithium-nickel-manganese-cobalt-based oxide represented by Chemical Formula 2 below.
  • M is W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B or Mo; ,
  • a, b, c and d are atomic fractions of independent elements
  • a, b, c, and d may be 0.60 ⁇ a ⁇ 0.95, 0.01 ⁇ b ⁇ 0.20, 0.01 ⁇ c ⁇ 0.20, and 0 ⁇ d ⁇ 0.05, respectively.
  • representative examples of the positive active material include Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 , Li(Ni 0.7 Mn 0.15 Co 0.15 )O 2 , Li(Ni 0.8 Mn 0.1 Co 0.1 )O 2 , and Li(Ni 0 9 Co 0.06 Mn 0.03 Al 0.01 ) O 2 and at least one selected from the group consisting of .
  • the cathode active material may be included in an amount of 80 wt% to 99 wt%, specifically 90 wt% to 99 wt%, based on the total weight of the solid content in the cathode slurry. In this case, when the content of the cathode active material is 80% by weight or less, the energy density may be lowered and the capacity may be lowered.
  • the conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, or thermal black carbon powder graphite powder such as natural graphite, artificial graphite, or graphite having a highly developed crystal structure
  • conductive fibers such as carbon fibers and metal fibers
  • conductive powders such as fluorocarbon powder, aluminum powder, or nickel powder
  • conductive whiskers such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the conductive material is typically added in an amount of 1 to 30% by weight based on the total weight of solids in the positive electrode active material layer.
  • the binder is a component that serves to improve adhesion between the positive electrode active material particles and adhesion between the positive electrode active material and the current collector, and is typically added in an amount of 1 to 30% by weight based on the total weight of solids in the positive electrode active material layer.
  • binder examples include a fluororesin-based binder including polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE); rubber-based binders including styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber, and styrene-isoprene rubber; cellulosic binders including carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, and regenerated cellulose; A polyalcohol-based binder containing polyvinyl alcohol; polyolefin binders including polyethylene and polypropylene; polyimide-based binders; polyester binders; and silane-based binders.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene-butadiene rubber
  • CMC carboxymethylcellulose
  • a polyalcohol-based binder containing polyvinyl alcohol
  • the positive electrode of the present invention as described above may be manufactured according to a positive electrode manufacturing method known in the art.
  • a positive electrode active material layer is formed by applying a positive electrode slurry prepared by dissolving or dispersing a positive electrode active material, a binder, and/or a conductive material in a solvent on a positive electrode current collector, followed by drying and rolling;
  • it may be prepared by casting the positive electrode active material layer on a separate support and then laminating a film obtained by peeling the support on a positive electrode current collector.
  • the cathode current collector is not particularly limited as long as it does not cause chemical change in the battery and has conductivity.
  • the solvent may include an organic solvent such as NMP (N-methyl-2-pyrrolidone), and may be used in an amount that provides a desired viscosity when the cathode active material and optionally a binder and a conductive material are included.
  • NMP N-methyl-2-pyrrolidone
  • the active material slurry containing the cathode active material and, optionally, the binder and the conductive material may have a solid concentration of 10 wt% to 90 wt%, preferably 30 wt% to 80 wt%.
  • the negative electrode according to the present invention includes a negative electrode active material layer including a negative electrode active material, and the negative electrode active material layer may further include a conductive material and/or a binder, if necessary.
  • anode active material various anode active materials used in the art, for example, a carbon-based anode active material, a silicon-based anode active material, or a mixture thereof may be used.
  • the negative active material may include a carbon-based negative active material
  • the carbon-based negative active material includes various carbon-based negative active materials used in the art, such as natural graphite, artificial graphite, and kish.
  • graphite-based materials such as graphite (Kish graphite); Pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch derived cokes High-temperature calcined carbon, soft carbon, hard carbon, and the like may be used.
  • the shape of the carbon-based negative electrode active material is not particularly limited, and materials having various shapes such as amorphous, plate-like, scale-like, spherical or fibrous shapes may be used.
  • the negative electrode active material may use at least one carbon-based negative active material selected from natural graphite and artificial graphite, and both natural graphite and artificial graphite may be used together to increase adhesion to the current collector and suppress active material separation.
  • the negative active material may include a silicon-based negative active material together with the carbon-based negative active material.
  • the silicon-based negative electrode active material is, for example, metal silicon (Si), silicon oxide (SiO x , where 0 ⁇ x ⁇ 2), silicon carbide (SiC), and a Si—Y alloy (wherein Y is an alkali metal, an alkaline earth metal, group 13 It is an element selected from the group consisting of elements, group 14 elements, transition metals, rare earth elements, and combinations thereof, and may include one or more selected from the group consisting of Si).
  • the element Y is Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db (dubnium), Cr, Mo, W, Sg, Tc, Re, Bh , Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi , S, Se, Te, Po, and combinations thereof.
  • the silicon-based negative active material exhibits higher capacity characteristics than the carbon-based negative active material, better capacity characteristics can be obtained when the silicon-based negative active material is additionally included.
  • anode containing a silicon-based anode active material more oxygen (O)-rich components are contained in the SEI film than a graphite anode, and the SEI film containing O-rich components is an electrolyte solution.
  • a Lewis acid such as HF or PF 5
  • the nonaqueous electrolyte according to the present invention forms stable films on the positive electrode and the negative electrode and includes an electrolyte solution additive having excellent Lewis acid removal effect, decomposition of the SEI film can be effectively suppressed when using a negative electrode containing a silicon-based active material.
  • the mixing ratio of the carbon-based negative active material and the silicon-based negative active material may be 50:50 to 99:1, preferably 85:15 to 95:5 in weight ratio.
  • excellent cycle performance can be secured by suppressing volume expansion of the silicon-based negative electrode active material while improving capacity characteristics.
  • the anode active material may use at least one selected from the group consisting of lithium metal, an alloy of metal and lithium, a metal composite oxide, and a transition metal oxide instead of a carbon-based anode active material or a silicon-based anode active material, if necessary.
  • Alloys of the metal and lithium include Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al and Sn.
  • a metal selected from the group consisting of or an alloy of these metals and lithium may be used.
  • metal composite oxide examples include PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Bi 2 O 5 , Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1) and Sn x Me 1 - x Me' y O z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, Groups 1, 2, and 3 elements of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8) A selection from can be used.
  • transition metal oxide examples include lithium-containing titanium composite oxide (LTO), vanadium oxide, and lithium vanadium oxide.
  • the negative electrode active material may be included in an amount of 80% to 99% by weight based on the total weight of solids in the negative electrode slurry.
  • the conductive material is a component for further improving the conductivity of the negative active material, and may be added in an amount of 1 to 20% by weight based on the total weight of solids in the negative active material layer.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite or artificial graphite; carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; conductive fibers such as carbon fibers and metal fibers; conductive powders such as fluorocarbon powder, aluminum powder, or nickel powder; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • the binder is a component that assists in bonding between the conductive material, the active material, and the current collector, and is typically added in an amount of 1 to 30% by weight based on the total weight of the solid content in the negative electrode active material layer.
  • binders include fluororesin-based binders including polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE); rubber-based binders including styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber, and styrene-isoprene rubber; cellulosic binders including carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, and regenerated cellulose; A polyalcohol-based binder containing polyvinyl alcohol; polyolefin binders including polyethylene and polypropylene; polyimide binders; polyester binders; and silane-based binders.
  • PVDF polyvinylidene fluoride
  • the negative electrode may be manufactured according to a negative electrode manufacturing method known in the art.
  • the negative electrode is a method of forming a negative electrode active material layer by applying a negative electrode active material slurry prepared by dissolving or dispersing a negative electrode active material, optionally a binder and a conductive material in a solvent on a negative electrode current collector, and then rolling and drying the negative electrode active material layer. It may be manufactured by casting the negative electrode active material layer on a separate support and then laminating a film obtained by peeling the support on the negative electrode current collector.
  • the negative current collector generally has a thickness of 3 to 500 ⁇ m.
  • the negative electrode current collector is not particularly limited as long as it does not cause chemical change in the battery and has high conductivity.
  • it is made of copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel.
  • a surface treated with carbon, nickel, titanium, silver, or the like, an aluminum-cadmium alloy, or the like may be used.
  • fine irregularities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
  • the solvent may include water or an organic solvent such as NMP or alcohol, and may be used in an amount that has a desired viscosity when the negative electrode active material and optionally a binder and a conductive material are included.
  • the solid content of the active material slurry including the negative electrode active material and, optionally, the binder and the conductive material may be 50 wt% to 75 wt%, preferably 40 wt% to 70 wt%.
  • the separator included in the lithium secondary battery of the present invention is a commonly used porous polymer film, for example, ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate
  • Porous polymer films made of polyolefin-based polymers such as copolymers may be used alone or by laminating them, or conventional porous nonwoven fabrics such as high melting point glass fibers and polyethylene terephthalate fibers may be used. However, it is not limited thereto.
  • the appearance of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape using a can, a prismatic shape, a pouch shape, or a coin shape.
  • DMC dimethyl carbonate
  • PS 1,3-propane sultone
  • Cathode active material Li(Ni 0.8 Mn 0.1 Co 0.1 )O 2
  • conductive material carbon black
  • binder polyvinylidene fluoride
  • NMP solvent N-methyl-2-pyrrolidone
  • the negative electrode slurry was applied to a 6 ⁇ m thick copper (Cu) thin film as a negative electrode current collector, dried, and then roll pressed to prepare a negative electrode.
  • An electrode assembly is prepared by sequentially stacking the positive electrode, the polyolefin-based porous separator coated with inorganic particles (Al 2 O 3 ), and the negative electrode, and then winding it into a jelly-roll shape, and then winding it into a cylindrical shape.
  • a cylindrical lithium secondary battery having a driving voltage of 4.2 V or more was manufactured by storing the battery in a battery case and injecting the non-aqueous electrolyte for a lithium secondary battery.
  • LiPF 6 was dissolved in a non-aqueous organic solvent in which ethylene carbonate (EC):dimethyl carbonate (DMC) was mixed at a volume ratio of 30:70 to 1.0 M, and then 2.0 wt% of vinylene carbonate (VC) and 1,3-propane sultone were dissolved.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • VC vinylene carbonate
  • VC vinylene carbonate
  • 1,3-propane sultone 1,3-propane sultone
  • the lithium secondary batteries prepared in Examples 1 to 8 and the lithium secondary batteries prepared in Comparative Examples 1 to 4 were charged under 0.5C/4.2V constant current/constant voltage (CC/CV) conditions at 25° C., and 0.5C/2.5V After discharging under constant current conditions, the measured discharge capacity was defined as the initial discharge capacity.
  • CC/CV constant current/constant voltage
  • each lithium secondary battery was charged up to SOC 100% under the same charging conditions, and then stored at a high temperature of 60° C. for 30 days.
  • the measured discharge capacity was defined as the discharge capacity after high temperature storage.
  • Equation 1 The measured initial discharge capacity and the discharge capacity after high temperature storage were substituted into Equation 1 to measure the capacity retention rate (capacity retention), and the results are shown in Table 2 below.
  • Capacity retention rate (%) (discharge capacity after high temperature storage / initial discharge capacity) ⁇ 100
  • Example 1 90.3
  • Example 2 92.4
  • Example 3 88.6
  • Example 4 89.7
  • Example 5 86.1
  • Example 6 87.9
  • Example 7 86.4
  • Example 8 88.1 Comparative Example 1 85.2 Comparative Example 2 83.4 Comparative Example 3 84.7 Comparative Example 4 82.4
  • the lithium secondary batteries of Examples 1 to 4 had an excellent capacity retention rate after storage at a high temperature compared to the lithium secondary batteries of Comparative Examples 2 and 3, and the secondary batteries of Examples 5 to 8 were comparative examples. Compared to the lithium secondary battery of 4, it can be seen that the capacity retention rate after high temperature storage is excellent.
  • the lithium secondary batteries prepared in Examples 1 to 8 and the lithium secondary batteries prepared in Comparative Examples 1 to 4 were charged under 0.5C/4.2V constant current/constant voltage (CC/CV) conditions at 25° C., and 0.5C/2.5V After discharging under a constant current condition and adjusting the state of charge of the battery by SOC 50%, the initial resistance value was obtained by measuring the voltage drop in a state in which a discharge pulse was applied at a constant current of 0.5C for 10 seconds.
  • CC/CV constant current/constant voltage
  • each lithium secondary battery was charged up to SOC 100% under the same charging conditions, and then stored at a high temperature of 60° C. for 30 days.
  • Resistance increase rate (%) ⁇ (resistance after high temperature storage - initial resistance)/initial discharge capacity ⁇ 100
  • the lithium secondary batteries of Examples 1 to 4 showed an improved resistance increase rate after storage at a high temperature compared to the lithium secondary batteries of Comparative Examples 2 and 3, and the secondary batteries of Examples 5 to 8 were comparative examples. It can be seen that the resistance increase rate after high temperature storage is improved compared to the lithium secondary battery of 4.
  • the lithium secondary batteries prepared in Examples 1 to 8 and the lithium secondary batteries prepared in Comparative Examples 1 to 4 were charged to SOC 100%, and then stored at a high temperature of 60° C. for 30 days.
  • Example 1 Gas generation after high temperature storage (%)
  • Example 1 58.8
  • Example 2 49.0
  • Example 3 60.3
  • Example 4 50.5
  • Example 5 81.4
  • Example 6 75.9
  • Example 7 79.4
  • Example 8 79.6 Comparative Example 1 - Comparative Example 2 88.9 Comparative Example 3 78.6 Comparative Example 4 85.7
  • the lithium secondary batteries prepared in Examples 1 to 8 and the lithium secondary batteries prepared in Comparative Examples 1 to 4 were subjected to 1.0C/4.2V constant current/constant voltage (CC/CV) charging and 1.0C/2.85V constant current discharging at high temperature (40 °C) was carried out 50 times each.
  • CC/CV constant current/constant voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 전극 표면에 안정한 피막을 형성할 수 있는 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지에 관한 것이다. 구체적으로 본 발명의 리튬 이차전지용 비수 전해액은 리튬염; 비수성 유기용매; 및 화학식 1로 표시되는 화합물;을 포함할 수 있다.

Description

리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
관련 출원(들)과의 상호 인용
본 출원은 2021년 10월 22일자 한국 특허출원 제10-2021-0142019호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 양극 및 음극 표면에 안정한 피막을 형성할 수 있는 첨가제를 포함하는 리튬 이차전지용 비수 전해액과 이를 포함함으로써 고온 저장 안전성이 향상된 리튬 이차전지에 관한 것이다.
최근 정보사회의 발달로 인한 개인 IT 디바이스와 전산망이 발달되고 이에 수반하여 전반적인 사회의 전기에너지에 대한 의존도가 높아지면서, 전기 에너지를 효율적으로 저장하고 활용하기 위한 기술 개발이 요구되고 있다.
특히, 환경 문제의 해결, 지속 가능한 순환형 사회의 실현에 대한 관심이 대두되면서, 이산화탄소 배출량이 적은 클린 에너지로 각광 받는 리튬 이온 전지에 대한 연구가 광범위하게 행해지고 있다.
리튬 이온 전지는 개인 IT 디바이스 등에 적용될 수 있을 정도로 소형화가 가능하고, 에너지 밀도 및 사용 전압이 높기 때문에, 노트북 컴퓨터, 휴대전화 등의 전원뿐만 아니라, 전력 저장용 전원, 전기 자동차용 전원으로 채용되고 있다.
상기 리튬 이온 이차전지는 리튬 함유 전이금속 산화물을 주요 구성 성분으로 하는 양극과 리튬 합금 또는 그라파이트로 대표되는 탄소질 재료를 사용하는 음극, 상기 양극 및 음극 사이에 개재되는 세퍼레이터, 및 Li 이온이 이동하는 매체인 비수 전해액으로 이루어져 있다. 이때, 상기 비수 전해액으로는 6불화 인산리튬(LiPF6) 등의 전해질이 에틸렌 카보네이트나 디메틸 카보네이트 등의 고(高)유전율의 유기 용매에 용해된 것이 널리 사용되고 있다.
한편, 6불화 인산리튬(LiPF6) 등의 전해질은 열 및 수분에 취약하기 때문에, 셀 내부에 존재하는 수분과 반응하거나, 열분해되면서 PF5 등의 루이스 산을 발생시킨다. 이러한 루이스 산은 전극-전해질 계면에 만들어진 부동태 피막을 침식시켜, 양극으로부터 전이금속 이온의 용출을 유발할 수 있다. 이러한 용출된 전이금속 이온은 전해질 용매의 분해를 촉진시켜 가스 발생을 가속화하거나, 양극에 재전착 (Re-deposition) 되면서 양극의 저항을 증가시키고, 또한 전해액을 통하여 음극으로 이동된 후 음극 상에 전착되어 음극의 자가방전이나, solid electrolyte interphase (SEI) 막의 파괴 및 재생성 등으로 인한 추가적인 리튬 이온의 소모 및 저항 증가 등을 야기하는 원인이 되고 있다.
이에, 리튬염의 열 분해로 인하여 생성되는 부산물 (HF와 PF5 등)을 제거하는 동시에 전극 표면에 안정한 피막을 형성하여 전이금속 용출을 억제하거나, 또는 용출된 전이금속 이온이 음극 상에 전착되는 것을 억제하여, 안전성뿐만 아니라 고율 충방전 특성 등의 전지 성능을 개선할 수 있는 비수 전해액 조성이 요망되고 있다.
상기와 같은 문제점을 해결하기 위하여, 본 발명은 전극 표면 상에 안정한 이온전도성 피막을 형성하는 동시에 리튬염의 분해산물을 효과적으로 제거 수 있는 첨가제를 포함하는 리튬 이차전지용 비수 전해액을 제공하고자 한다.
또한, 본 발명은 상기 리튬 이차전지용 비수 전해액을 포함함으로써, 고온 저장 안전성이 향상된 리튬 이차전지를 제공하고자 한다.
일 구현예에 따르면, 본 발명은
리튬염;
비수성 유기용매; 및
하기 화학식 1로 표시되는 화합물;을 포함하는 리튬 이차전지용 비수 전해액을 제공한다:
(화학식 1)
Figure PCTKR2022015888-appb-img-000001
상기 화학식 1에서,
R은 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 알케닐기 또는 탄소수 1 내지 6의 알키닐기이고,
R1은 탄소수 1 내지 3의 알킬렌기이며,
X는 O 또는 S 이다.
또한, 본 발명의 일 실시예에서는 음극, 양극, 상기 음극 및 양극 사이에 개재된 세퍼레이터, 및 본 발명의 리튬 이차전지용 비수 전해액을 포함하는 리튬 이차전지를 제공한다.
본 발명의 비수 전해액은, 이오시아네이트 (-NCO) 또는 이소티오시아네이트 (-NCS) 말단기를 포함하는 화합물을 첨가제로 포함함으로써, 전해질염의 분해산물로 발생하는 루이스 산을 효과적으로 제거(scavenging)하는 동시에, 양극 및 음극 표면에 안정한 피막을 형성하여 SEI 피막 열화를 저감시킬 수 있다.
따라서, 본 발명의 비수 전해액을 사용하면, 양극으로부터 전이금속이 용출되는 것을 억제하여 고온 저장 안전성이 향상된 리튬 이차전지를 구현할 수 있다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
한편, 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 본 발명을 설명하기에 앞서, 명세서 내에서 "탄소수 a 내지 b"의 기재에 있어서, "a" 및 "b"는 구체적인 작용기에 포함되는 탄소 원자의 개수를 의미한다. 즉, 상기 작용기는 "a" 내지 "b" 개의 탄소원자를 포함할 수 있다. 예를 들어, "탄소수 1 내지 5의 알킬기"는 탄소수 1 내지 5의 탄소 원자를 포함하는 알킬기, 즉 -CH3, -CH2CH3, -CH2CH2CH3, -CH2(CH3)CH3, -CH(CH3)CH3 및 -CH(CH3)CH2CH3 등을 의미한다.
또한, 본 명세서에서, "치환"이란 별도의 정의가 없는 한, 탄소에 결합된 적어도 하나의 수소가 수소 이외의 원소로 치환된 것을 의미하며, 예를 들면, 탄소수 1 내지 4의 알킬기 또는 불소 원소로 치환된 것을 의미한다.
또한, 본 명세서에서, "%"는 명시적인 다른 표시가 없는 한 중량%를 의미한다.
이차전지 구동 시, 거듭된 충방전에 따른 양극의 구조 변이 등으로 인하여 양극으로부터 전이금속 이온이 전해액으로 쉽게 용출되면서 전지 내의 가용 리튬 이온의 양이 감소하여, 전지의 용량 열화가 야기된다. 특히, 전해질염의 열분해로 인해 생성되는 루이스산 등에 의해 solid electrolyte interphase (SEI) 등의 부동태 피막이 열화되면서, 전이금속 이온의 용출이 심화된다. 이렇게 용출된 전이금속 이온은 양극에 재전착 (re-deposition) 되어 양극의 저항을 증가시키거나, 음극 표면에 전착되어 SEI 막을 파괴함에 따라 내부 단락을 야기할 수 있다. 이러한 일련의 반응들에 의한 전해액 분해 반응이 촉진되면서, 가스 발생이 증가하고, 음극의 계면 저항 증가 및 자가 방전이 증가하여 저전압 불량의 원인이 되고 있다.
본 발명에서는 이러한 열화 및 불량 거동의 원인이 되는 루이스 산을 제거하는 동시에 양극 및 음극 표면에 견고한 피막을 형성하여 전이금속 이온의 추가적인 용출이나 전착을 억제할 수 있는 리튬 이차전지용 비수 전해액과 이를 포함하는 리튬 이차전지를 제공하고자 한다.
리튬 이차전지용 비수 전해액
본 발명의 일 실시예에서는 리튬 이차전지용 비수 전해액을 제공한다.
상기 리튬 이차전지용 비수 전해액은
리튬염;
비수성 유기용매; 및
하기 화학식 1로 표시되는 화합물;을 포함한다.
(화학식 1)
Figure PCTKR2022015888-appb-img-000002
상기 화학식 1에서,
R은 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 알케닐기 또는 탄소수 1 내지 6의 알키닐기이고,
R1은 탄소수 1 내지 3의 알킬렌기이며,
X는 O 또는 S 이다.
(1) 리튬염
상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, B10Cl10 -, AlCl4 -, AlO4 -, PF6 -, CF3SO3 -, CH3CO2 -, CF3CO2 -, AsF6 -, SbF6 -, CH3SO3 -, (CF3CF2SO2)2N-, (CF3SO2)2N-, (FSO2)2N-, BF2C2O4 -, BC4O8 -, PF4C2O4 -, PF2C4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, C4F9SO3 -, CF3CF2SO3 -, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CF3(CF2)7SO3 - 및 SCN-로 이루어진 군으로부터 선택된 적어도 어느 하나를 들 수 있으며, 이들 외에도 리튬 이차전지의 전해액에 통상적으로 사용되는 리튬염이 제한 없이 사용할 수 있다.
구체적으로, 상기 리튬염은 LiCl, LiBr, LiI, LiBF4, LiClO4, LiB10Cl10, LiAlCl4, LiAlO4, LiPF6, LiCF3SO3, LiCH3CO2, LiCF3CO2, LiAsF6, LiSbF6, LiCH3SO3, LiN(SO2F)2 (Lithium bis(fluorosulfonyl)imide, LiFSI), LiN(SO2CF2CF3)2 (lithium bis(perfluoroethanesulfonyl) imide, LiBETI) 및 LiN(SO2CF3)2 (lithium bis(trifluoromethanesulfonyl) imide, LiTFSI)로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있으며, 보다 구체적으로 LiBF4, LiClO4, LiPF6, LiN(SO2F)2, LiN(SO2CF2CF3)2 및 LiN(SO2CF3)2 로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다.
상기 리튬염은 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으나, 최적의 전극 표면의 부식 방지용 피막 형성 효과를 얻기 위하여, 전해액 내에 0.8 M 내지 3.0 M의 농도, 구체적으로 1.0M 내지 3.0M 농도로 포함될 수 있다. 상기 리튬염의 농도가 상기 범위를 만족할 경우, 최적의 함침성을 구현할 수 있도록 비수 전해액의 점도를 제어할 수 있고, 리튬 이온의 이동성을 향상시켜 리튬 이차전지의 용량 특성 및 사이클 특성 개선 효과를 얻을 수 있다.
(2) 비수성 유기용매
본 발명의 비수성 유기용매는 환형 카보네이트계 유기용매, 선형 카보네이트계 유기용매 또는 이들의 혼합 유기용매를 포함할 수 있다.
상기 환형 카보네이트계 유기용매는 유전율이 높아 전해질 내의 리튬염을 잘 해리시킬 수 있는 고점도의 유기용매로서, 그 구체적인 예로 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트 및 비닐렌 카보네이트로 이루어진 군으로부터 선택되는 적어도 하나의 유기용매를 포함할 수 있으며, 이 중에서도 에틸렌 카보네이트를 포함할 수 있다.
또한, 상기 선형 카보네이트계 유기용매는 저점도 및 저유전율을 가지는 유기용매로서, 그 대표적인 예로 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 적어도 하나의 유기용매를 사용할 수 있으며, 구체적으로 디메틸 카보네이트(DMC)를 포함할 수 있다.
본 발명에서는 비수 전해액의 높은 이온 전도율을 확보하기 위하여, 상기 환형 카보네이트계 유기용매 및 선형 카보네이트계 유기용매를 10:90 내지 50:50, 구체적으로 15:85 내지 30:70 부피비로 혼합하여 사용할 수 있다.
또한, 상기 비수성 유기용매는 높은 이온 전도율을 갖는 전해액을 제조하기 위하여, 상기 환형 카보네이트계 유기용매 및/또는 선형 카보네이트계 유기용매에 비해 융점이 낮고, 고온에서 저장 안전성이 높은 선형 에스테르계 유기용매 및 환형 에스테르계 유기용매 중 적어도 하나의 유기용매를 추가로 포함할 수 있다.
이러한 선형 에스테르계 유기용매는 그 구체적인 예로 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트 및 부틸 프로피오네이트로 이루어진 군으로부터 선택되는 적어도 하나의 유기용매를 들 수 있다.
또한, 상기 환형 에스테르계 유기용매로는 γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군으로부터 선택되는 적어도 하나의 유기용매를 들 수 있다.
상기 비수성 유기용매는 필요에 따라 리튬 이차전지용 전해액에 통상적으로 사용되는 유기용매를 제한 없이 추가하여 사용할 수 있다. 예를 들면, 에테르계 유기용매, 아미드계 유기용매 및 니트릴계 유기용매 중 적어도 하나의 유기용매를 추가로 포함할 수도 있다.
(3) 화학식 1로 표시되는 화합물
본 발명의 리튬 이차전지용 비수 전해액은 제1 첨가제로 하기 화학식 1로 표시되는 화합물을 포함할 수 있다.
[화학식 1]
Figure PCTKR2022015888-appb-img-000003
상기 화학식 1에서,
R은 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 알케닐기 또는 탄소수 1 내지 6의 알키닐기이고,
R1은 탄소수 1 내지 3의 알킬렌기이며,
X는 O 또는 S 이다.
상기 화학식 1로 표시되는 화합물은 구조 내에 질소 원소를 함유한 이오시아네이트 (-NCO) 또는 이소티오시아네이트 (-NCS) 말단기로 포함하고 있기 때문에, 상기 질소 원소의 비공유 전자쌍이 전해질염의 분해산물로 발생하는 루이스 산, 예컨대 HF와 반응 및 결합하여 복합체(complex)을 형성하여, 루이스 산을 효과적으로 제거(scavenging)할 수 있다. 뿐만 아니라, 상기 화학식 1로 표시되는 화합물은 음극 및 양극 표면에서 비수성 유기용매보다 먼저 환원되면서 안정한 부동태 피막을 형성할 수 있다. 따라서, 양극으로부터 전이금속 용출을 억제하는 동시에, 추가적인 전해액 분해 반응을 억제하여, 고온 저장 시 가스 저감 효과 및 고온 사이클 개선 효과를 가져올 수 있다.
구체적으로, 상기 화학식 1에서, R은 치환 또는 비치환된 탄소수 1 내지 6의 알킬기 또는 치환 또는 비치환된 탄소수 1 내지 6의 알키닐기일 수 있다.
또한, 상기 화학식 1에서, R은 치환 또는 비치환된 탄소수 1 내지 4의 알킬기 또는 치환 또는 비치환된 탄소수 1 내지 4의 알키닐기일 수 있다.
이때, 상기 치환은 탄소수 1 내지 4의 알킬기 및 적어도 하나의 불소로부터 선택된 적어도 하나의 치환기로 치환된 것일 수 있다.
바람직하게, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1 내지 화학식 1-4로 표시되는 화합물 중 적어도 하나일 수 있다.
[화학식 1-1]
Figure PCTKR2022015888-appb-img-000004
[화학식 1-2]
Figure PCTKR2022015888-appb-img-000005
[화학식 1-3]
Figure PCTKR2022015888-appb-img-000006
[화학식 1-4]
Figure PCTKR2022015888-appb-img-000007
.
상기 화학식 1로 표시되는 화합물은 리튬 이차전지용 비수 전해액 전체 중량을 기준으로 0.3 중량% 내지 5 중량%로 포함될 수 있다.
상기 화학식 1로 표시되는 화합물이 상기 범위로 포함되면, 제반 성능이 더욱 향상된 이차전지를 제조할 수 있다. 예컨대, 상기 화학식 1로 표시되는 화합물의 함량이 0.3 중량% 이상이면, SEI 형성 효과가 미미하여 고온 저장 시 가스 저감 효과 및 고온 사이클 특성 개선 효과가 미미할 수 있다. 구체적으로, 상기 화학식 1로 표시되는 화합물의 함량이 0.3 중량% 이상이면 SEI 막 형성 시에 안정화 효과나 용출 억제 효과를 얻을 수 있고, 화학식 1로 표시되는 화합물의 함량이 5 중량% 이하이면, 저항 증가를 최대한 억제하는 선에서 잉여의 화합물에 의한 전해액의 점도 증가를 방지하는 동시에, 과도한 피막 형성을 억제하여 전지 저항 증가를 효과적으로 방지할 수 있으므로, 수용할 수 있는 저항 증가 내에서 최대의 용출 억제 효과를 얻을 수 있다.
구체적으로, 상기 화학식 1로 표시되는 화합물은 리튬 이차전지용 비수 전해액 전체 중량을 기준으로 0.5 중량% 내지 3 중량%로 포함될 수 있다.
(4) 기타 첨가제
또한, 본 발명의 비수 전해액은 고출력의 환경에서 비수 전해액이 분해되어 음극 붕괴가 유발되는 것을 방지하거나, 저온 고율방전 특성, 고온 안정성, 과충전 방지, 고온에서의 전지 팽창 억제 효과 등을 더욱 향상시키기 위하여, 다른 제2 기타 첨가제들을 추가로 포함할 수 있다.
이러한 기타 첨가제의 예로는 환형 카보네이트계 화합물, 할로겐 치환된 카보네이트계 화합물, 설톤계 화합물, 설페이트계 화합물, 포스페이트계 또는 포스파이트계 화합물, 보레이트계 화합물, 벤젠계 화합물, 아민계 화합물, 실란계 화합물 및 리튬염계 화합물로 이루어진 군으로부터 선택된 적어도 하나를 들 수 있다.
상기 환형 카보네이트계 화합물로는 비닐렌카보네이트(VC), 비닐에틸렌 카보네이트(VEC) 등을 들 수 있다.
상기 할로겐 치환된 카보네이트계 화합물로는 플루오로에틸렌 카보네이트(FEC) 등을 들 수 있다.
상기 설톤계 화합물은, 예를 들면, 1,3-프로판 설톤(PS), 1,4-부탄 설톤, 에텐설톤, 1,3-프로펜 설톤(PRS), 1,4-부텐 설톤 및 1-메틸-1,3-프로펜 설톤으로 이루어진 군으로부터 선택된 적어도 하나의 화합물일 수 있다.
상기 설페이트계 화합물은, 예를 들면, 에틸렌 설페이트(Ethylene Sulfate; Esa), 트리메틸렌설페이트 (Trimethylene sulfate; TMS), 메틸트리메틸렌설페이트 (Methyl trimethylene sulfate; MTMS) 등일 수 있다.
상기 포스페이트계 또는 포스파이트계 화합물은, 예를 들면, 리튬 디플루오로(비스옥살라토)포스페이트, 리튬 디플루오로포스페이트, 트리스(트리메틸실릴) 포스페이트, 트리스(트리메틸실릴) 포스파이트, 트리스(2,2,2-트리플루오로에틸) 포스페이트 및 트리스(트리플루오로에틸) 포스파이트로 이루어진 군으로부터 선택된 1종 이상의 화합물일 수 있다.
상기 보레이트계 화합물로는 테트라페닐보레이트, 음극 표면에 피막을 형성할 수 있는 리튬 옥살릴디플루오로보레이트 (LiODFB) 리튬 비스옥살레이토보레이트 (LiB(C2O4)2, LiBOB) 등을 들 수 있다.
상기 벤젠계 화합물은 플루오로벤젠일 수 있고, 상기 아민계 화합물은 트리에탄올아민 에틸렌디아민 등일 수 있으며, 상기 실란계 화합물은 테트라비닐실란 등일 수 있다.
상기 리튬염계 화합물은 상기 비수 전해액에 포함되는 리튬염과 상이한 화합물로서, LiPO2F2 또는 LiBF4 등을 들 수 있다.
이러한 기타 첨가제 중에서도 초기 활성화 공정 시 음극 표면에 보다 견고한 SEI 피막을 형성하기 위하여, 음극 표면에 피막 형성 효과가 우수한 비닐렌 카보네이트, 비닐에틸렌 카보네이트, 플루오로에틸렌 카보네이트(FEC), 프로펜설톤, 에틸렌 설페이트, LiBF4 및 리튬 옥살릴디플루오로보레이트 (LiODFB)으로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있다.
상기 기타 첨가제는 2 종 이상의 화합물을 혼용하여 사용할 수 있으며, 비수 전해액 전체 중량을 기준으로 0.01 내지 20 중량%, 구체적으로 0.01 내지 10 중량%로 포함될 수 있다.
상기 기타 첨가제가 상기 범위로 포함되면, 제반 성능이 더욱 향상된 이차전지를 제조할 수 있다. 예컨대, 상기 기타 첨가제가 0.01 중량% 이상으로 포함되는 경우 SEI 막의 내구성을 향상시키는 효과가 있고, 20 중량% 이하로 포함되는 경우 저항 증가를 최대한 억제하는 선에서 수용할 수 있는 저항 증가 내에서 SEI 막의 장기 유지 및 보수의 효과가 있다.
리튬 이차전지
또한, 본 발명의 또 다른 일 실시예에서는 양극; 음극; 상기 양극 및 음극 사이에 개재되는 세퍼레이터; 및 전술한 본 발명의 비수 전해액;을 포함하는 리튬 이차전지를 제공한다.
본 발명의 리튬 이차전지는 양극, 음극 및 양극과 음극 사이에 세퍼레이터가 순차적으로 적층되어 있는 전극 조립체를 형성하여 전지 케이스에 수납한 다음, 본 발명의 비수 전해액을 투입하여 제조할 수 있다.
이러한 본 발명의 리튬 이차전지를 제조하는 방법은 당 기술 분야에 알려진 통상적인 방법에 따라 제조되어 적용될 수 있으며, 구체적으로 후술하는 바와 같다.
(1) 양극
본 발명에 따른 양극은 양극 활물질을 포함하는 양극 활물질층을 포함할 수 있으며, 필요에 따라, 상기 양극 활물질층은 도전재 및/또는 바인더를 더 포함할 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다.
구체적으로 상기 양극 활물질은 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1 - YMnYO2(여기에서, 0<Y<1), LiMn2 - zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1 - Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(여기에서, 0<Y2<1), LiMn2 - z1Coz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2) 등), 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg, Ti 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 자립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다)) 등을 포함할 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다.
이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서, 상기 양극 활물질은 리튬-코발트 산화물, 리튬-망간계 산화물, 리튬-니켈-망간-코발트계 산화물 및 리튬-니켈-코발트-전이금속(M) 산화물로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있다.
구체적으로 상기 양극 활물질은 니켈 함유량이 55 atm% 이상인 리튬-니켈-망간-코발트계 산화물 및 니켈 함유량이 55 atm% 이상인 리튬-니켈-코발트-전이금속(M) 산화물 중에서 선택된 적어도 1종을 포함할 수 있다. 구체적으로, 상기 양극 활물질은 하기 화학식 2로 표시되는 리튬-니켈-망간-코발트계 산화물을 포함할 수 있다.
[화학식 2]
Li(NiaCobMncMd)O2
상기 화학식 2에서,
M은 W, Cu, Fe, V, Cr, Ti, Zr, Zn, Al, In, Ta, Y, La, Sr, Ga, Sc, Gd, Sm, Ca, Ce, Nb, Mg, B 또는 Mo이고,
a, b, c 및 d는 각각 독립적인 원소들의 원자분율로서,
0.55≤a<1, 0<b≤0.3, 0<c≤0.3, 0≤d≤0.1, a+b+c+d=1이다.
구체적으로, 상기 a, b, c 및 d는 각각 0.60≤a≤0.95, 0.01≤b≤0.20, 0.01≤c≤0.20, 0≤d≤0.05일 수 있다.
구체적으로, 상기 양극 활물질은 그 대표적인 예로 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2, Li(Ni0.8Mn0.1Co0.1)O2 및 Li(Ni0 . 9Co0 . 06Mn0 . 03Al0 . 01)O2 이루어진 군에서 선택된 적어도 1종을 들 수 있다.
상기 양극 활물질은 양극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99 중량%, 구체적으로 90 중량% 내지 99 중량%로 포함될 수 있다. 이때, 상기 양극 활물질의 함량이 80 중량% 이하인 경우 에너지 밀도가 낮아져 용량이 저하될 수 있다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본 분말, 알루미늄 분말, 또는 니켈 분말 등의 도전성 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 도전재는 통상적으로 양극 활물질층 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 집전체와의 접착력을 향상시키는 역할을 하는 성분으로서, 통상적으로 양극 활물질층 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴 플루오라이드(polyvinylidene fluoride, PVDF) 또는 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE)을 포함하는 불소 수지계 바인더; 스티렌-부타디엔 고무(styrene butadiene rubber, SBR), 아크릴로니트릴-부타디엔 고무, 스티렌-이소프렌 고무를 포함하는 고무계 바인더; 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로오스를 포함하는 셀룰로오스계 바인더; 폴리비닐알코올을 포함하는 폴리알코올계 바인더; 폴리에틸렌, 폴리프로필렌을 포함하는 폴리올레핀계 바인더; 폴리이미드계 바인더; 폴리에스테르계 바인더; 및 실란계 바인더 등을 들 수 있다.
상기와 같은 본 발명의 양극은 당해 기술 분야에 알려져 있는 양극 제조 방법에 따라 제조될 수 있다. 예를 들면, 상기 양극은, 양극 활물질, 바인더 및/또는 도전재를 용매 중에 용해 또는 분산시켜 제조한 양극 슬러리를 양극 집전체 상에 도포한 후, 건조 및 압연하여 양극 활물질층을 형성하는 방법, 또는 상기 양극 활물질층을 별도의 지지체 상에 캐스팅한 다음, 지지체를 박리하여 얻은 필름을 양극 집전체 상에 라미네이션하는 방법 등을 통해 제조될 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 활물질 슬러리 중의 고형분 농도가 10 중량% 내지 90 중량%, 바람직하게 30 중량% 내지 80 중량%가 되도록 포함될 수 있다.
(2) 음극
다음으로, 음극에 대해 설명한다.
본 발명에 따른 음극은 음극 활물질을 포함하는 음극 활물질층을 포함하며, 상기 음극 활물질층은 필요에 따라, 도전재 및/또는 바인더를 더 포함할 수 있다.
상기 음극 활물질로는 당 업계에서 사용되는 다양한 음극 활물질, 예를 들면, 탄소계 음극 활물질, 실리콘계 음극 활물질 또는 이들의 혼합물 등이 사용될 수 있다.
일 구현예에 따르면, 상기 음극 활물질은 탄소계 음극 활물질을 포함할 수 있으며, 상기 탄소계 음극 활물질로는, 당 업계에서 사용되는 다양한 탄소계 음극 활물질, 예를 들면, 천연 흑연, 인조 흑연, 키시흑연 (Kish graphite)과 같은 그라파이트계 물질; 열분해 탄소 (pyrolytic carbon), 액정 피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소, 연화탄소 (soft carbon), 경화탄소 (hard carbon) 등이 사용될 수 있다. 상기 탄소계 음극 활물질의 형상은 특별히 제한되지 않으며, 무정형, 판상, 인편상, 구형 또는 섬유형 등과 같은 다양한 형상의 물질들이 사용될 수 있다.
바람직하게는 상기 음극 활물질은 천연 흑연 및 인조 흑연 중 적어도 하나의 탄소계 음극 활물질을 사용할 수 있으며, 집전체와의 접착력을 높여 활물질 탈리를 억제할 수 있도록 천연 흑연과 인조 흑연을 함께 사용할 수 있다.
다른 구현예에 따르면, 상기 음극 활물질은 상기 탄소계 음극 활물질과 함께 실리콘계 음극 활물질을 포함하여 사용할 수 있다.
상기 실리콘계 음극 활물질은, 예를 들면 금속 실리콘(Si), 실리콘 산화물(SiOx, 여기서 0<x<2) 실리콘 탄화물(SiC) 및 Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db (dubnium), Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 실리콘계 음극 활물질은 탄소계 음극 활물질에 비해 높은 용량 특성을 나타내므로, 실리콘계 음극 활물질을 추가로 포함할 경우, 더 우수한 용량 특성을 얻을 수 있다. 다만, 실리콘계 음극 활물질을 함유한 음극의 경우, 흑연 음극에 비해 SEI 막 내에 산소(O)-리치(O-rich)한 성분을 더 많이 함유하고 있으며, O-리치한 성분들을 포함하는 SEI막은 전해액 내에 HF 또는 PF5와 같은 루이스 산이 존재할 경우, 더 쉽게 분해되는 경향을 보인다. 따라서, 실리콘계 음극 활물질을 함유한 음극의 경우, 안정적인 SEI 막 유지를 위해 전해액 내 HF 및 PF5와 같은 루이스 산의 생성을 억제하거나, 생성된 루이스 산을 제거(혹은 scavenging)할 필요가 있다. 본 발명에 따른 비수전해액은 양극 및 음극에 안정한 피막을 형성하는 동시에 루이스산 제거 효과가 우수한 전해액 첨가제를 포함하기 때문에, 실리콘계 활물질을 함유한 음극 사용 시에 SEI 피막 분해를 효과적으로 억제할 수 있다.
한편, 상기 탄소계 음극 활물질 및 실리콘계 음극 활물질의 혼합 비율은 중량비율로 50:50 내지 99:1, 바람직하게는 85:15 내지 95:5 일 수 있다. 상기 탄소계 음극 활물질과 실리콘계 음극 활물질의 혼합 비율이 상기 범위를 만족하는 경우, 용량 특성을 향상시키면서도 실리콘계 음극 활물질의 부피 팽창이 억제되어 우수한 사이클 성능을 확보할 수 있다.
한편, 상기 음극활물질은 필요에 따라 탄소계 음극 활물질 또는 실리콘계 음극 활물질 대신 리튬 금속, 금속과 리튬의 합금, 금속 복합 산화물 및 전이금속 산화물로 이루어진 군으로부터 선택된 적어도 하나를 사용할 수도 있다.
상기 금속과 리튬의 합금으로는 Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속 또는 이들 금속과 리튬의 합금이 사용될 수 있다.
상기 금속 복합 산화물로는 PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1) 및 SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 로 이루어진 군에서 선택되는 것이 사용될 수 있다.
상기 전이금속 산화물로는 리튬 함유 티타늄 복합 산화물(LTO), 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.
상기 음극 활물질은 음극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 활물질층 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본 분말, 알루미늄 분말, 또는 니켈 분말 등의 도전성 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 활물질층 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴 플루오라이드(PVDF) 또는 폴리테트라플루오로에틸렌(PTFE)을 포함하는 불소 수지계 바인더; 스티렌-부타디엔 고무(SBR), 아크릴로니트릴-부타디엔 고무, 스티렌-이소프렌 고무를 포함하는 고무계 바인더; 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로오스를 포함하는 셀룰로오스계 바인더; 폴리비닐알코올을 포함하는 폴리알코올계 바인더; 폴리에틸렌, 폴리프로필렌을 포함하는 폴리올레핀계 바인더; 폴리이미드계 바인더; 폴리에스테르계 바인더; 및 실란계 바인더 등을 들 수 있다.
상기 음극은 당해 기술 분야에 알려져 있는 음극 제조 방법에 따라 제조될 수 있다. 예를 들면, 상기 음극은 음극 집전체 상에 음극 활물질과, 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 활물질 슬러리를 도포하고 압연, 건조하여 음극 활물질층을 형성하는 방법 또는 상기 음극 활물질층을 별도의 지지체 상에 캐스팅한 다음, 지지체를 박리시켜 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수 있다.
상기 음극 집전체는 일반적으로 3 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 용매는 물 또는 NMP, 알코올 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 활물질 슬러리 중의 고형분 농도가 50 중량% 내지 75 중량%, 바람직하게 40 중량% 내지 70 중량%가 되도록 포함될 수 있다.
(3) 세퍼레이터
본 발명의 리튬 이차전지에 포함되는 상기 세퍼레이터는 일반적으로 사용되는 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
실시예 1.
(리튬 이차전지용 비수 전해액 제조)
에틸렌 카보네이트(EC):디메틸 카보네이트(DMC)를 30:70 부피비로 혼합한 비수성 유기용매에 LiPF6가 1.0M가 되도록 용해한 다음, 화학식 1-1로 표시되는 화합물 0.3 중량%, 비닐렌 카보네이트 (VC) 2.0 중량% 및 1,3-프로판 설톤(PS) 1.0 중량%를 투입하여 비수 전해액을 제조하였다 (하기 표 1 참조).
(이차전지 제조)
양극 활물질 (Li(Ni0.8Mn0.1Co0.1)O2), 도전재(카본 블랙) 및 바인더(폴리비닐리덴플루오라이드)를 97.5:1:1.5 중량비로 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 슬러리(고형분 함량: 50 중량%)를 제조하였다. 상기 양극 슬러리를 12㎛ 두께의 양극 집전체인 알루미늄(Al) 박막에 도포 및 건조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 활물질 (그라파이트 및 SiO = 90:10 중량비), 바인더(SBR-CMC) 및 도전재(카본 블랙)를 97.5:1.5:1.0 중량비로 용매인 물에 첨가하여 음극 슬러리(고형분 함량: 60 중량%)를 제조하였다. 상기 음극 슬러리를 6㎛ 두께의 음극 집전체인 구리(Cu) 박막에 도포 및 건조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
상기 양극, 무기물 입자(Al2O3)가 도포된 폴리올레핀계 다공성 세퍼레이터 및 음극을 순차적으로 적층하여 전극조립체를 제조한 다음, 젤리-롤 (jelly-roll) 형으로 와인딩 (winding)하고, 이를 원통형 전지 케이스 내에 수납하고, 상기 리튬 이차전지용 비수 전해액을 주액하여 구동 전압이 4.2V 이상인 원통형 리튬 이차전지를 제조하였다.
실시예 2.
화학식 1-1로 표시되는 화합물 대신 화학식 1-2로 표시되는 화합물을 포함하여 리튬 이차전지용 비수 전해액을 제조하는 점을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 리튬 이차전지용 비수 전해액 및 이를 포함하는 원통형 리튬 이차전지를 제조하였다.
실시예 3.
화학식 1-1로 표시되는 화합물 대신 화학식 1-3으로 표시되는 화합물을 포함하여 리튬 이차전지용 비수 전해액을 제조하는 점을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 리튬 이차전지용 비수 전해액 및 이를 포함하는 원통형 리튬 이차전지를 제조하였다.
실시예 4.
화학식 1-1로 표시되는 화합물 대신 화학식 1-4로 표시되는 화합물을 포함하여 리튬 이차전지용 비수 전해액을 제조하는 점을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 리튬 이차전지용 비수 전해액 및 이를 포함하는 원통형 리튬 이차전지를 제조하였다.
실시예 5.
에틸렌 카보네이트(EC):디메틸 카보네이트(DMC)를 30:70 부피비로 혼합한 비수성 유기용매에 LiPF6가 1.0M가 되도록 용해한 다음, 화학식 1-1로 표시되는 화합물 5.0 중량%, 비닐렌 카보네이트 (VC) 2.0 중량% 및 1,3-프로판 설톤(PS) 1.0 중량%를 투입하여 리튬 이차전지용 비수 전해액을 제조하는 점을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 리튬 이차전지용 비수 전해액 및 이를 포함하는 원통형 리튬 이차전지를 제조하였다.
실시예 6.
화학식 1-1로 표시되는 화합물 대신 화학식 1-2로 표시되는 화합물을 포함하여 리튬 이차전지용 비수 전해액을 제조하는 점을 제외하고는 상기 실시예 5와 마찬가지의 방법으로 리튬 이차전지용 비수 전해액 및 이를 포함하는 원통형 리튬 이차전지를 제조하였다.
실시예 7.
화학식 1-1로 표시되는 화합물 대신 화학식 1-3으로 표시되는 화합물을 포함하여 리튬 이차전지용 비수 전해액을 제조하는 점을 제외하고는 상기 실시예 5와 마찬가지의 방법으로 리튬 이차전지용 비수 전해액 및 이를 포함하는 원통형 리튬 이차전지를 제조하였다.
실시예 8.
화학식 1-1로 표시되는 화합물 대신 화학식 1-4로 표시되는 화합물을 포함하여 리튬 이차전지용 비수 전해액을 제조하는 점을 제외하고는 상기 실시예 5와 마찬가지의 방법으로 리튬 이차전지용 비수 전해액 및 이를 포함하는 원통형 리튬 이차전지를 제조하였다.
비교예 1.
에틸렌 카보네이트(EC):디메틸 카보네이트(DMC)를 30:70 부피비로 혼합한 비수성 유기용매에 LiPF6가 1.0M가 되도록 용해한 다음, 비닐렌 카보네이트 (VC) 2.0 중량% 및 1,3-프로판 설톤(PS) 1.0 중량%를 투입하여 리튬 이차전지용 비수 전해액을 제조하는 점을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 리튬 이차전지용 비수 전해액 및 이를 포함하는 원통형 리튬 이차전지를 제조하였다.
비교예 2.
화학식 1-1로 표시되는 화합물 대신 하기 화학식 3으로 표시되는 화합물을 포함하여 리튬 이차전지용 비수 전해액을 제조하는 점을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 리튬 이차전지용 비수 전해액 및 이를 포함하는 원통형 리튬 이차전지를 제조하였다.
[화학식 3]
Figure PCTKR2022015888-appb-img-000008
비교예 3.
화학식 1-1로 표시되는 화합물 대신 하기 화학식 4로 표시되는 화합물을 포함하여 리튬 이차전지용 비수 전해액을 제조하는 점을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 리튬 이차전지용 비수 전해액 및 이를 포함하는 원통형 리튬 이차전지를 제조하였다.
[화학식 4]
Figure PCTKR2022015888-appb-img-000009
비교예 4.
화학식 1-1로 표시되는 화합물 대신 상기 화학식 4로 표시되는 화합물을 포함하여 리튬 이차전지용 비수 전해액을 제조하는 점을 제외하고는 상기 실시예 5와 마찬가지의 방법으로 리튬 이차전지용 비수 전해액 및 이를 포함하는 원통형 리튬 이차전지를 제조하였다.
리튬염 비수성 유기용매 첨가제 기타 첨가제
화학식 함량
(중량%)
종류 전체 함량
(중량%)
실시예 1 1.0 M
LiPF6
EC:DMC =
30:70 부피비
1-1 0.3 VC/PS 2.0/1.0
실시예 2 1-2 0.3
실시예 3 1-3 0.3
실시예 4 1-4 0.3
실시예 5 1-1 5.0
실시예 6 1-2 5.0
실시예 7 1-3 5.0
실시예 8 1-4 5.0
비교예 1 - -
비교예 2 3 0.3
비교예 3 4 0.3
비교예 4 4 5.0
상기 표 1에서, 화합물의 약칭은 각각 이하를 의미한다.
EC: 에틸렌 카보네이트
DMC: 디메틸 카보네이트
VC: 비닐렌 카보네이트
PS: 1,3-프로판 설톤
실험예
실험예 1. 고온 (60℃) 저장 후 용량 유지율 평가
실시예 1 내지 8 에서 제조된 리튬 이차전지와 비교예 1 내지 4에서 제조된 리튬 이차전지를 25℃에서 0.5C/4.2V 정전류/정전압(CC/CV) 조건으로 충전하고, 0.5C/2.5V 정전류 조건으로 방전한 후, 측정된 방전 용량을 초기 방전 용량으로 정의하였다.
이어서, 각각의 리튬 이차전지를 상기 충전 조건과 동일한 조건으로 SOC 100%까지 충전한 다음, 60℃ 고온에서 30일 동안 저장하였다.
그런 다음, 25℃에서 0.5C/4.2V 정전류/정전압(CC/CV) 조건으로 충전하고, 0.5C/2.5V 정전류 조건으로 방전한 후, 측정된 방전 용량을 고온 저장 후 방전 용량으로 정의하였다.
측정된 초기 방전 용량 및 고온 저장 후 방전 용량을 하기 식 1에 대입하여 용량 유지율(capacity retention)을 측정하고, 그 결과를 하기 표 2에 기재하였다.
[식 1]
용량 유지율 (%) = (고온 저장 후 방전 용량 / 초기 방전 용량)×100
고온 저장 후 용량 유지율(%)
실시예 1 90.3
실시예 2 92.4
실시예 3 88.6
실시예 4 89.7
실시예 5 86.1
실시예 6 87.9
실시예 7 86.4
실시예 8 88.1
비교예 1 85.2
비교예 2 83.4
비교예 3 84.7
비교예 4 82.4
상기 표 2를 살펴보면, 본 발명의 실시예 1 내지 8의 리튬 이차전지는 모두 비교예 1 내지 4의 리튬 이차전지에 비해 고온 저장 후 용량 유지율이 우수한 것을 알 수 있다.
특히, 첨가제 함량이 동일한 조건하에서, 실시예 1 내지 4의 리튬 이차전지는 비교예 2 및 3의 리튬 이차전지에 비해 고온 저장 후 용량 유지율이 우수하고, 실시예 5 내지 8의 이차전지는 비교예 4의 리튬 이차전지에 비해 고온 저장 후 용량 유지율이 우수한 것을 알 수 있다.
실험예 2. 고온 (60℃) 저장 후 저항 증가율 평가
실시예 1 내지 8에서 제조된 리튬 이차전지와 비교예 1 내지 4에서 제조된 리튬 이차전지를 25℃에서 0.5C/4.2V 정전류/정전압(CC/CV) 조건으로 충전하고, 0.5C/2.5V 정전류 조건으로 방전하여, SOC 50%만큼 전지의 충전 상태를 맞춘 후, 0.5C 정전류로 10초간 방전 펄스(pulse)를 준 상태에서 나타나는 전압 강하를 측정하여 초기 저항값을 얻었다.
이어서, 각각의 리튬 이차전지를 상기 충전 조건과 동일한 조건으로 SOC 100%까지 충전한 다음, 60℃ 고온에서 30일 동안 저장하였다.
그런 다음, 25℃에서 0.5C/4.2V 정전류/정전압(CC/CV) 조건으로 충전하고, 0.5C/2.5V 정전류 조건으로 방전하여 SOC 50%만큼 전지의 충전 상태를 맞춘 후, 0.5C 정전류로 10초간 방전 펄스(pulse)를 준 상태에서 나타나는 전압 강하를 측정하여 고온 저장 후 저항값을 얻었다.
측정된 초기 저항값 및 고온 저장 후 저항값을 하기 식 2에 대입하여 저항 증가율(capacity retention)을 산출하고, 그 결과를 하기 표 3에 기재하였다.
[식 2]
저항 증가율 (%) = {(고온 저장 후 저항 - 초기 저항)/초기 방전 용량}×100
고온 저장 후 저항 증가율(%)
실시예 1 27.7
실시예 2 28.5
실시예 3 28.3
실시예 4 29.0
실시예 5 31.4
실시예 6 32.8
실시예 7 30.5
실시예 8 33.7
비교예 1 35.4
비교예 2 30.6
비교예 3 34.7
비교예 4 36.6
상기 표 3을 살펴보면, 본 발명의 실시예 1 내지 8의 리튬 이차전지는 고온 저장 후 저항 증가율이 비교예 1의 리튬 이차전지에 비해 개선된 것을 알 수 있다.
특히, 첨가제 함량이 동일한 조건하에서, 실시예 1 내지 4의 리튬 이차전지는 비교예 2 및 3의 리튬 이차전지에 비해 고온 저장 후 저항 증가율이 개선되었고, 실시예 5 내지 8의 이차전지는 비교예 4의 리튬 이차전지에 비해 고온 저장 후 저항 증가율이 개선된 것을 알 수 있다.
실험예 3. 고온 (60℃) 저장 후 가스 발생량 평가
실시예 1 내지 8 에서 제조된 리튬 이차전지와 비교예 1 내지 4에서 제조된 리튬 이차전지를 SOC 100%만큼 충전한 다음, 60℃ 고온에서 30일 동안 저장하였다.
그 후, 전지 내 CO 및 CO2 등의 가스 발생량을 측정하였다.
비교예 1에서 측정된 가스 발생량을 기준으로 각각의 전지의 상대적인 가스 발생량을 측정하고, 그 결과를 하기 표 4에 나타내었다.
고온 저장 후 가스 발생량(%)
실시예 1 58.8
실시예 2 49.0
실시예 3 60.3
실시예 4 50.5
실시예 5 81.4
실시예 6 75.9
실시예 7 79.4
실시예 8 79.6
비교예 1 -
비교예 2 88.9
비교예 3 78.6
비교예 4 85.7
상기 표 4를 살펴보면, 첨가제 함량이 동일한 조건하에서, 실시예 1 내지 4의 리튬 이차전지는 비교예 2 및 3의 리튬 이차전지에 비해 고온 저장 후 가스 발생량이 감소한 것을 알 수 있고, 실시예 5 내지 8의 이차전지는 비교예 4의 리튬 이차전지에 비해 고온 저장 후 가스 발생량이 감소한 것을 알 수 있다.
실험예 4. 고온 (40℃)에서 급속 충방전 후 용량 유지율 평가
실시예 1 내지 8 에서 제조된 리튬 이차전지와 비교예 1 내지 4에서 제조된 리튬 이차전지를 1.0C/4.2V 정전류/정전압(CC/CV) 충전과 1.0C/2.85V 정전류 방전을 고온 (40℃)에서 각각 50회 진행하였다.
이때, 1회 진행하였을 때 측정된 방전 용량을 초기 용량으로 설정하였다.
그런 다음, 초기 방전 용량(100%)와 50 번째 방전 용량을 상기 식 1에 대입하여 용량 유지율을 측정하고, 그 결과를 하기 표 5에 기재하였다.
고온 급속 충방전 후 용량 유지율 (%)
실시예 1 85.2
실시예 2 88.9
실시예 3 84.3
실시예 4 88.7
실시예 5 83.2
실시예 6 86.1
실시예 7 83.3
실시예 8 87.2
비교예 1 61.3
비교예 2 63.2
비교예 3 72.4
비교예 4 70.8
상기 표 5를 살펴보면, 본 발명의 실시예 1 내지 8의 리튬 이차전지는 고온 급속 충방전 후 용량 유지율이 비교예 1 내지 4의 리튬 이차전지에 비해 우수한 것을 알 수 있다.

Claims (10)

  1. 리튬염;
    비수성 유기용매; 및
    하기 화학식 1로 표시되는 화합물;을 포함하는 리튬 이차전지용 비수 전해액:
    [화학식 1]
    Figure PCTKR2022015888-appb-img-000010
    상기 화학식 1에서,
    R은 치환 또는 비치환된 탄소수 1 내지 6의 알킬기, 치환 또는 비치환된 탄소수 1 내지 6의 알케닐기 또는 치환 또는 비치환된 탄소수 1 내지 6의 알키닐기이고,
    R1은 탄소수 1 내지 3의 알킬렌기이며,
    X는 O 또는 S 이다.
  2. 청구항 1에 있어서,
    상기 화학식 1에서, R은 치환 또는 비치환된 탄소수 1 내지 6의 알킬기 또는 치환 또는 비치환된 탄소수 1 내지 6의 알키닐기인 것인 리튬 이차전지용 비수 전해액.
  3. 청구항 1에 있어서,
    상기 화학식 1에서, R은 치환 또는 비치환된 탄소수 1 내지 4의 알킬기 또는 치환 또는 비치환된 탄소수 1 내지 4의 알키닐기인 것인 리튬 이차전지용 비수 전해액.
  4. 청구항 1에 있어서,
    상기 화학식 1에서, 상기 치환은 탄소수 1 내지 4의 알킬기 및 적어도 하나의 불소로 이루어진 군으로부터 선택된 적어도 하나의 치환기로 치환된 것인 리튬 이차전지용 비수 전해액.
  5. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1 내지 화학식 1-4로 표시되는 화합물 중 적어도 하나인 것인 리튬 이차전지용 비수 전해액:
    [화학식 1-1]
    Figure PCTKR2022015888-appb-img-000011
    [화학식 1-2]
    Figure PCTKR2022015888-appb-img-000012
    [화학식 1-3]
    Figure PCTKR2022015888-appb-img-000013
    [화학식 1-4]
    Figure PCTKR2022015888-appb-img-000014
    .
  6. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 화합물은 리튬 이차전지용 비수 전해액 전체 중량을 기준으로 0.3 중량% 내지 5 중량%로 포함되는 것인 리튬 이차전지용 비수 전해액.
  7. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 화합물은 리튬 이차전지용 비수 전해액 전체 중량을 기준으로 0.5 중량% 내지 3 중량%로 포함되는 것인 리튬 이차전지용 비수 전해액.
  8. 청구항 1에 있어서,
    상기 리튬 이차전지용 비수 전해액은 환형 카보네이트계 화합물, 할로겐 치환된 카보네이트계 화합물, 설톤계 화합물, 설페이트계 화합물, 포스페이트계 또는 포스파이트계 화합물, 보레이트계 화합물, 벤젠계 화합물, 아민계 화합물, 실란계 화합물 및 리튬염계 화합물로 이루어진 군으로부터 선택된 적어도 하나의 기타 첨가제를 추가로 포함하는 것인 리튬 이차전지용 비수 전해액.
  9. 음극, 양극, 상기 음극 및 양극 사이에 개재된 세퍼레이터, 및 비수 전해액을 포함하며,
    상기 비수 전해액은 청구항 1의 리튬 이차전지용 비수 전해액을 포함하는 것인 리튬 이차전지.
  10. 청구항 9에 있어서,
    상기 양극은 리튬-코발트 산화물, 리튬-망간계 산화물, 리튬-니켈-망간-코발트계 산화물 및 리튬-니켈-코발트-전이금속(M) 산화물로 이루어진 군에서 선택된 적어도 하나의 양극 활물질을 포함하는 것인 리튬 이차전지.
PCT/KR2022/015888 2021-10-22 2022-10-18 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지 WO2023068772A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280064703.3A CN118020189A (zh) 2021-10-22 2022-10-18 锂二次电池用非水电解液及包含其的锂二次电池
CA3233090A CA3233090A1 (en) 2021-10-22 2022-10-18 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0142019 2021-10-22
KR1020210142019A KR20230057808A (ko) 2021-10-22 2021-10-22 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지

Publications (1)

Publication Number Publication Date
WO2023068772A1 true WO2023068772A1 (ko) 2023-04-27

Family

ID=86059445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015888 WO2023068772A1 (ko) 2021-10-22 2022-10-18 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지

Country Status (4)

Country Link
KR (1) KR20230057808A (ko)
CN (1) CN118020189A (ko)
CA (1) CA3233090A1 (ko)
WO (1) WO2023068772A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150046050A (ko) * 2012-08-24 2015-04-29 우베 고산 가부시키가이샤 비수 전해액 및 그것을 이용한 축전 디바이스
KR20160040112A (ko) * 2014-10-02 2016-04-12 주식회사 엘지화학 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
KR20160076192A (ko) * 2014-12-22 2016-06-30 솔브레인 주식회사 전해질 및 이를 포함하는 리튬 이차전지
KR20200045843A (ko) * 2018-10-23 2020-05-06 삼성에스디아이 주식회사 이소시아네이트계 화합물을 포함하는 리튬이차전지
US20210249689A1 (en) * 2020-02-03 2021-08-12 Enevate Corporation Silicon-based energy storage devices with electrolyte containing cyanate based compounds

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262800A (ja) 2009-05-01 2010-11-18 Sony Corp 二次電池、電解質およびジカルボニル化合物
JP6945435B2 (ja) 2017-12-18 2021-10-06 三菱ケミカル株式会社 非水系電解液、及びそれを用いた非水系電解液二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150046050A (ko) * 2012-08-24 2015-04-29 우베 고산 가부시키가이샤 비수 전해액 및 그것을 이용한 축전 디바이스
KR20160040112A (ko) * 2014-10-02 2016-04-12 주식회사 엘지화학 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
KR20160076192A (ko) * 2014-12-22 2016-06-30 솔브레인 주식회사 전해질 및 이를 포함하는 리튬 이차전지
KR20200045843A (ko) * 2018-10-23 2020-05-06 삼성에스디아이 주식회사 이소시아네이트계 화합물을 포함하는 리튬이차전지
US20210249689A1 (en) * 2020-02-03 2021-08-12 Enevate Corporation Silicon-based energy storage devices with electrolyte containing cyanate based compounds

Also Published As

Publication number Publication date
CN118020189A (zh) 2024-05-10
CA3233090A1 (en) 2023-04-27
KR20230057808A (ko) 2023-05-02

Similar Documents

Publication Publication Date Title
WO2020149678A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2018093152A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021167428A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2021033987A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2023085843A1 (ko) 비수 전해질용 첨가제를 포함하는 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2019151725A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2018131952A1 (ko) 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020153791A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2023063648A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2021256825A1 (ko) 리튬 이차전지용 비수 전해액 첨가제 및 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2022211320A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수성 전해액 및 리튬 이차전지
WO2021241976A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2021194220A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2020190076A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020096411A1 (ko) 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2023200238A1 (ko) 리튬 이차전지
WO2023068772A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2019009595A1 (ko) 전해질 첨가제 및 이를 포함하는 리튬 이차전지용 비수전해액
WO2023191572A1 (ko) 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2023027533A1 (ko) 비수전해액 및 이를 포함하는 리튬 이차전지
WO2024080763A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2023177162A1 (ko) 리튬 이차전지
WO2023113373A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883994

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3233090

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022883994

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022883994

Country of ref document: EP

Effective date: 20240326