WO2023066119A1 - 工艺腔室、半导体工艺设备和半导体工艺方法 - Google Patents

工艺腔室、半导体工艺设备和半导体工艺方法 Download PDF

Info

Publication number
WO2023066119A1
WO2023066119A1 PCT/CN2022/125007 CN2022125007W WO2023066119A1 WO 2023066119 A1 WO2023066119 A1 WO 2023066119A1 CN 2022125007 W CN2022125007 W CN 2022125007W WO 2023066119 A1 WO2023066119 A1 WO 2023066119A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer
base
process chamber
chamber
wafers
Prior art date
Application number
PCT/CN2022/125007
Other languages
English (en)
French (fr)
Inventor
迟文凯
王勇飞
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Priority to KR1020247012279A priority Critical patent/KR20240055128A/ko
Publication of WO2023066119A1 publication Critical patent/WO2023066119A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • H01L21/67213Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one ion or electron beam chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to the field of semiconductor process equipment, in particular to a process chamber, a semiconductor process equipment including the process chamber, and a semiconductor process method realized by the process chamber.
  • Atomic Layer Deposition ALD
  • PEALD plasma enhanced atomic layer deposition
  • the atomic layer deposition technology requires a variety of reactive gases to enter the chamber sequentially and continuously, and must be kept in a gaseous state independent of each other before entering the chamber, so as to deposit and form a film with a predetermined thickness in the reaction chamber, and then obtain a film with the required performance .
  • Existing atomic layer deposition process equipment mainly includes a front-end module, a transfer platform and a process chamber, wherein the transfer platform is equipped with a manipulator for transferring wafers between the front-end module and the process chamber.
  • a multi-chamber structure can be used in the process chamber, that is, multiple reaction chambers are set in the same process chamber, so that multiple reaction chambers can be synchronously Wafer loading, air intake, and air pressure in multiple reaction chambers are controlled synchronously, which improves the processing efficiency of wafers while ensuring the independence of each reaction chamber.
  • the manipulator configured in the transfer platform was originally used in conjunction with the process chamber with a single-chamber structure.
  • the transfer efficiency of the existing manipulator is far from meeting the process requirements of the multi-chamber structure.
  • the invention aims to provide a process chamber, a semiconductor process equipment and a semiconductor process method.
  • the process chamber can save wafer transfer time and improve machine productivity.
  • the present invention provides a process chamber applied to semiconductor process equipment, comprising a transfer chamber and a plurality of reaction chambers located above the transfer chamber, and the plurality of reaction chambers are connected to the transfer chamber through bottom openings.
  • the process chamber also includes a plurality of pedestals for carrying wafers, the positions of the plurality of pedestals correspond to the positions of the plurality of reaction chambers, and the reaction chamber and the Lifting and closing or opening the bottom opening between the transfer chambers, characterized in that the process chamber also includes a transfer mechanism and a carrying mechanism arranged in the transfer chamber, and the transfer mechanism is used to move the wafer from the Transfer the outside of the process chamber to the carrying mechanism or the base, and transfer the wafers on the base out of the process chamber; the carrying mechanism is used to carry a plurality of wafers, and can transferring the plurality of wafers carried by it to the plurality of bases.
  • a plurality of the bases are arranged around the carrying mechanism, the carrying mechanism has a plurality of wafer carrying positions, the number of the wafer carrying positions is consistent with the number of the bases, and the carrying The mechanism is configured so that a plurality of the wafer bearing positions can be approached to the corresponding plurality of bases at the same time, and a plurality of the wafers can be transferred to the corresponding plurality of the bases; Corresponding multiple bases.
  • the carrying mechanism includes a driver, a connector, and a plurality of fingers, the upper surface of the fingers forms the wafer bearing position, and the plurality of fingers are fixed around the connector,
  • the driver is used to drive the connecting piece to drive a plurality of the finger pieces up and down and rotate around the rotation axis of the connecting piece.
  • the pedestal has a plurality of pedestal holes distributed around the axis of the pedestal, and a plurality of support columns are arranged in the plurality of pedestal holes correspondingly, and the support columns are used for When the seat rises, it descends relative to the base along the base hole, and rises with the base after the top surface of the support column is not higher than the bearing surface of the base, and, in the The base is lowered until the bottom end of the support column contacts the bottom wall of the transfer chamber to support and lift the wafer on the base;
  • the finger is formed with an avoidance opening on the side facing the corresponding base, and when the driver drives the connecting piece to drive a plurality of the fingers to rotate until the plurality of fingers are located one by one.
  • the plurality of support columns on each of the bases are located in the avoidance openings of the corresponding fingers.
  • the support column has a stopper, and the stopper is matched with the base hole for rising on the base, and the top surface of the support column is not higher than the base.
  • the relative position of the support column and the base is fixed so that the support column rises together with the base.
  • two transfer ports are formed on the side wall of the process chamber corresponding to the transfer chamber, and the transfer mechanism is used to obtain wafers from the outside of the process chamber through the two transfer ports, And transfer the wafer out of the process chamber through the two transfer ports.
  • the process chamber further includes a plurality of sealing rings, the plurality of sealing rings correspond to the plurality of bases one by one, and the sealing rings are sleeved on the side walls of the bases in the circumferential direction and the sealing ring can seal the bottom opening of the corresponding reaction chamber when the base is raised to the corresponding reaction chamber.
  • multiple groups of annular sealing grooves corresponding to the bottom openings of the plurality of reaction chambers are formed on the top wall of the transfer chamber, and the plurality of annular sealing grooves in each group are concentric and surround the corresponding
  • the sealing ring has an annular positioning surface facing the top wall of the transmission chamber, and a plurality of concentrically arranged annular protrusions are formed on the annular positioning surface, and the plurality of annular protrusions One-to-one correspondence with a plurality of the annular sealing grooves; when the base rises to the reaction chamber, the annular protrusion at least partially enters the corresponding annular sealing grooves.
  • the transmission mechanism includes a driving part, a finger part and a plurality of swing rod parts, and the plurality of swing rod parts are sequentially connected between the drive part and the finger part, and the plurality of swing rod parts between the pendulum part and the driving part and the finger parts are all hinged by hinge shafts, and a plurality of the hinge shafts all extend in the vertical direction, and the drive parts are used to respectively drive the The fingers and the plurality of swing rods rotate around the corresponding hinge shafts, and drive the plurality of swing rods and the fingers to move up and down.
  • a semiconductor process equipment is provided, the semiconductor process equipment includes the aforementioned process chamber.
  • a semiconductor processing method is provided, which is applied to the aforementioned process chamber, and the method includes:
  • Step S1 controlling the transfer mechanism to transfer the wafers outside the process chamber to a plurality of the susceptors
  • Step S2 controlling a plurality of the susceptors to rise into the corresponding reaction chambers to carry out the semiconductor process, and at the same time controlling the transfer mechanism to transfer the wafers outside the process chambers to the carrying mechanism;
  • Step S3 after the semiconductor process is finished, controlling the plurality of bases to descend into the transfer chamber, and controlling the transfer mechanism to transfer the wafers on the plurality of bases out of the process chamber ;
  • Step S4 controlling the carrying mechanism to transfer the plurality of wafers carried by it to the plurality of bases;
  • the step S2 to the step S4 are repeatedly executed.
  • the transport chamber of the process chamber is provided with a transport mechanism and a carrying mechanism, and the carrying mechanism can temporarily store wafers, so as to carry current wafers on multiple bases respectively.
  • the transmission mechanism can first transfer the next batch of wafers from the outside of the process chamber to the carrier mechanism.
  • the transfer mechanism transfers the wafers out of the process chamber, and then the carrier mechanism transfers the next batch of wafers carried by it to multiple bases, which is different from the steps in the semiconductor process of two adjacent batches of wafers in the prior art Compared with the need to sequentially transfer the next batch of wafers to each base, it saves the time for transferring wafers and improves the productivity of the machine.
  • the transfer and positioning of the wafer can be realized by the transfer mechanism and the carrying mechanism in the transfer chamber. There is no need to set up a transfer platform with a robot outside the process chamber, and the side of the transfer port of the process chamber can be directly docked with the pre-loading platform. , which in turn makes the structure of the semiconductor process equipment more compact, reduces the equipment footprint, and improves the economic efficiency of the semiconductor production line.
  • FIG. 1 is a schematic structural view of a process chamber provided by an embodiment of the present invention
  • FIG. 2 is a partially enlarged schematic diagram of a process chamber provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a susceptor in a process chamber provided by an embodiment of the present invention.
  • 4A is a schematic diagram of the relative positions of the carrying mechanism, the transmission mechanism and the base in the transmission chamber in the process chamber provided by the embodiment of the present invention
  • Fig. 4B is a schematic structural view of the base and the support column in the process chamber provided by the embodiment of the present invention when the relative positions are fixed;
  • Fig. 5 is a partial structural schematic diagram of the transmission mechanism in the process chamber provided by the embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the principle of the transfer mechanism in the process chamber provided by the embodiment of the present invention to obtain the wafer from the outside of the process chamber;
  • FIG. 7 is a schematic diagram of the principle of placing a wafer on a carrier mechanism by a transport mechanism in a process chamber provided by an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of semiconductor process equipment provided by an embodiment of the present invention.
  • the process chamber includes a transfer chamber 4 and a chamber located above the transfer chamber 4 A plurality of reaction chambers 2, the plurality of reaction chambers 2 are all communicated with the transfer chamber 4 through the bottom opening, and the process chamber also includes a plurality of bases 8 for carrying wafers, the bases 8 are arranged in the transfer chamber 4;
  • Each base 8 corresponds to a plurality of reaction chambers 2 one by one, and can be raised and lowered between the reaction chamber 2 and the transfer chamber 4 and closes or opens the bottom opening of the corresponding reaction chamber 2 .
  • the process chamber also includes a manipulator assembly 7, and the manipulator assembly 7 includes a transport mechanism 22 and a carrying mechanism 21 arranged in the transport chamber 4, and the execution parts for carrying and transporting wafers of the two are located in the transport chamber 4, and the two
  • the driving part used to drive the movement of the above-mentioned execution part can be arranged under the transfer chamber 4, and be fixedly connected with the bottom wall of the transfer chamber 4 (the execution part of the manipulator assembly 7 located in the transfer chamber is not shown in Fig. 1 ) , which can reduce the occupied space of the transmission chamber 4, but the embodiment of the present invention is not limited thereto.
  • the above-mentioned transmission mechanism 22 and the carrying mechanism 21 can also be integrally arranged in the transmission chamber 4 according to specific needs. .
  • the transfer mechanism 22 is used to transfer the wafer from the outside of the process chamber to the carrier mechanism 21 or the base 8, and transfer the wafer on the base 8 out of the process chamber; the carrier mechanism 21 is used to carry a plurality of wafers, And it can transfer multiple wafers carried by it to multiple bases 8 . It is easy to understand that before the carrying mechanism 21 transfers the multiple wafers carried by it to the multiple bases 8 , it needs to ensure that there are no wafers on the bases 8 .
  • the transfer function of the wafers is independently realized by the manipulator in the transfer platform. Wafers) After the semiconductor process is completed, the wafers on multiple bases in the process chamber are taken out of the process chamber in turn by the manipulator in the transfer platform, and then the next batch of wafers are sequentially transferred into the process chamber and placed in the process chamber. on each base.
  • the transport chamber 4 is provided with a transport mechanism 22 and a carrier mechanism 21, and the carrier mechanism 21 can temporarily store the wafers 3 to be processed, so that the current batch of wafers 3 can be carried on multiple bases 8 and raised to In the corresponding reaction chamber 2, when the semiconductor process is carried out synchronously, the transfer mechanism 22 can first transfer the next batch of wafers from the outside of the process chamber to the carrier mechanism 21, and after the semiconductor process of the current batch of wafers 3 is completed, transfer The mechanism 22 transfers the processed wafer 3 out of the process chamber, and then the carrier mechanism 21 transfers the next batch of wafers carried by it to a plurality of bases 8, which is equivalent to the present technology compared with the prior art.
  • the operation time for sequentially transferring the next batch of wafers to the process chamber and positioning them is adjusted so that the transfer time of the next batch of wafers is the same as the current one.
  • the time for a batch of wafers to carry out the semiconductor process overlaps), thereby saving the time of transferring wafers and improving the production capacity of the machine.
  • the transfer and positioning of the wafer can be realized by the transfer mechanism 22 and the carrier mechanism 21 in the transfer chamber 4, so that there is no need to set a transfer platform with a manipulator outside the process chamber, and the wafer transfer port 10 side of the process chamber can be directly connected to
  • the pre-loading station Loadlock, used to evacuate its own chamber to (close to) vacuum after receiving the wafer, so that it is not necessary to evacuate the process chamber again after communicating with the process chamber and performing the transfer operation, At the same time, it can also have functions such as wafer integrity detection) docking, thereby making the overall structure of the semiconductor process equipment more compact, reducing the equipment footprint, and thus improving the economic benefits of the semiconductor production line.
  • the process chamber includes an upper cover 1, an upper chamber 210 and a lower chamber 410 stacked in the height direction, and a plurality of reaction chambers 2 form
  • the transfer chamber 4 is formed in the lower chamber 410
  • the upper cover 1 closes the top openings of the plurality of reaction chambers 2 formed on the top of the upper chamber 210 .
  • a plurality of exhaust passages surrounding each reaction chamber 2 are also formed in the upper cavity 210, and exhaust assemblies are arranged in the exhaust passages, and the exhaust assemblies communicate with the corresponding exhaust holes through a plurality of circumferentially distributed exhaust holes.
  • the reaction chamber 2 is communicated for extracting the tail gas in the reaction chamber 2 and discharging it from the process chamber.
  • the process chamber includes four reaction chambers 2 .
  • the number of wafers 3 that can be carried on the carrier mechanism 21 is the same as the number of bases 8, and
  • the carrying mechanism 21 can transfer the wafer 3 onto multiple bases 8 synchronously.
  • a plurality of bases 8 for example, including a first base 25, a second base 23, a third base 24, and a fourth base 26 are arranged around the carrying mechanism 21.
  • the carrying mechanism 21 has a plurality of wafer carrying positions, the number of the wafer carrying positions is consistent with the number of the bases 8, and the carrying mechanism 21 is set so that the multiple wafer carrying positions are close to the corresponding multiple bases 8 at the same time, and Transfer a plurality of wafers to corresponding plurality of bases 8, or make a plurality of wafer carrying positions away from corresponding plurality of bases 8 at the same time, so that after the wafers are transferred onto the bases 8, the bases can be avoided.
  • the carrying mechanism 21 is configured to make multiple wafer carrying positions approach or move away from each base 8 synchronously by means of rotation.
  • the carrying The mechanism 21 includes a driver (not shown in FIG. 4A and FIG.
  • a connector which is located below the connector
  • a connector and a plurality of fingers for example, including 4 fingers, respectively finger 211, finger 212, Finger 213, finger 214
  • the upper surface of the finger forms a wafer bearing position
  • multiple fingers are fixed around the connecting piece
  • the driver can drive the connecting piece to drive multiple finger pieces up and down and around the rotation axis of the connecting piece Rotate, so that a plurality of fingers approach the corresponding plurality of bases 8 at the same time, and transfer a plurality of wafers to the corresponding plurality of bases 8 synchronously, or transfer a plurality of wafers to the corresponding plurality of bases After the seat 8 is on, the multiple fingers are kept away from the corresponding base 8 at the same time.
  • the driver can be arranged outside the process chamber and connected to the connecting piece through a transmission shaft passing through a through hole on the bottom wall of the transfer chamber 4 .
  • FIG. 1 A plurality of base holes, a plurality of support columns 11 are arranged in a one-to-one correspondence in the plurality of base holes, and the support columns 11 are used to descend relative to the base 8 along the base hole when the base 8 rises, and the support columns
  • the top surface of 11 is flat with the load-bearing surface of base 8 and rises together with base 8, and supports and lifts base 8 after base 8 descends to the bottom of support column 11 and the bottom wall of transmission cavity 4 contacts on the wafer.
  • the base 8 is at a low position, and the top ends of the support columns 11 protrude above the carrying surface of the base 8, so that the fingers or the transfer mechanism 22 first carries the wafer and moves it above the support columns 11, then lowers the height so that the wafer 3 falls on multiple support columns 11 corresponding to the same base 8, and then removes the fingers or the transport mechanism 22 horizontally.
  • the support column 11 retracts to a position where the top is lower than or flush with the carrying surface of the pedestal 8 , so that the wafer 3 falls on the carrying surface of the pedestal 8 smoothly.
  • the support column 11 It can be raised and lowered relative to the base 8, and the support column 11 has a stopper 11a, the stopper 11a cooperates with the base hole 81, and is used to rise on the base 8, and the top surface of the support column 11 is not higher than the base 8, the relative position of the support column 11 and the base 8 is fixed so that the support column 11 rises together with the base 8. Specifically, when the base 8 rises, the support column 11 descends relative to the base 8 under its own gravity until the stopper 11a matches the base hole 8.
  • the limiting part 11a is a limiting head arranged on the top of the support column 11, such as a truncated cone, the side of which is a conical limiting surface narrowed by the top-down assembly, and the base hole
  • the top of the hole wall of 8 is provided with a tapered hole section 8a, and the aperture of the base hole 8 in the tapered hole section 8a is gradually narrowed downward by the bearing surface of the base 8. When descending, it enters the tapered hole section 8a and cooperates with the tapered hole section 8a so that the relative position of the support column 11 and the base 8 is fixed.
  • the top surface of the above-mentioned limiting head is lower than or flush with the carrying surface of the base 8 , so that the upper surface of the base 8 can carry the wafer.
  • the finger 211 is formed with a Avoid the opening 211a, and when the driver drives the connecting piece to drive the multiple finger pieces to rotate until the multiple finger pieces are located above the multiple bases 8 one by one, the multiple support columns 11 on each base 8 are located on the corresponding finger pieces in the avoidance port 211a.
  • the fingers can be formed into a hook shape to reduce the contact area between the fingers and the wafer 3 , and the opening of the hook-shaped fingers is the avoidance opening 211a.
  • the finger 211 is formed with an escape opening 211a on the side facing the corresponding base 8, so that when the wafer 3 is transferred to the base 8, the finger 211 will The radial direction is staggered with the plurality of support columns 11 on the base 8, avoiding scratches and collisions between the fingers 211 and the support columns 11, and improving the safety and position stability of the wafer.
  • the driver drives the connector to drive the multiple fingers and the wafers 3 carried on them to lift to a position higher than the support columns 11 on the base 8, and then drives the connection
  • the parts drive the multiple finger parts to rotate clockwise until the wafers 3 on the multiple finger parts are aligned with the corresponding bases 8 in the vertical direction.
  • the finger 211 is located above the first base 25
  • the finger 212 is located above the second base 23
  • the finger 213 is located above the third base 24, and the finger 214 is located above the fourth base 26;
  • the driver drives the connector to drive the fingers down to a position lower than the tops of the support columns 11 and higher than the carrying surface of the base 8 , so that the wafer falls on the support columns 11 . That is, the wafer 3 carried by the fingers 211 falls on the support columns 11 of the first base 25, the wafer 3 carried by the fingers 212 falls on the support columns 11 of the second base 23, and the wafer 3 carried by the fingers 213 falls on the support columns 11 of the second base 23.
  • the circle 3 falls on the support column 11 of the third base 24, and the wafer 3 carried by the fingers 214 falls on the support column 11 of the fourth base 26;
  • the driver drives the connector to drive the multiple fingers to rotate counterclockwise, so that the multiple fingers leave the corresponding base 8 synchronously to complete the wafer transfer operation.
  • the transmission mechanism 22 includes a driving part (not shown), a finger part 221 and a plurality of swing rod parts, and a plurality of swing rod parts are sequentially connected between the drive part and the Between the finger parts 221, between a plurality of swing rod parts and between the swing rod part and the driving part and the finger parts 221 are all hinged by hinge shafts, and a plurality of hinge shafts all extend along the vertical direction, and the drive parts are used to respectively drive The fingers 221 and the plurality of swing rods rotate around the corresponding hinge shafts, and drive the plurality of swing rods and the fingers 221 to move up and down.
  • the driving part can be arranged outside the process chamber and connected to the swing rod part through the transmission shaft passing through the through hole on the bottom wall of the transfer chamber.
  • the structure in which the driver of the carrying mechanism 21 drives the link to drive multiple fingers up and down can be integrated with the driving part of the transmission mechanism 22 into the same structure.
  • the driving part is used to control the height of the finger part 221, and at the same time, it can control The horizontal position and orientation of the fingers 221, so as to control the fingers 221 to carry the wafer sequentially to move above the fingers or the support column 11 of the base 8, and control the fingers 221 to descend so that the wafer 3 falls on the corresponding fingers
  • the fingers 221 are controlled to withdraw horizontally, so as to realize the wafer transfer operation.
  • the transmission mechanism 22 includes two swing link parts, a first swing link part 222 and a second swing link part 223, and the first end of the first swing link part 222
  • the tail end of the finger part 221 is hinged
  • the second end of the first swing rod part 222 is hinged with the first end of the second swing rod part 223, and the second end of the second swing rod part 223 is hinged with the output shaft of the driving part.
  • Each hinge position can automatically adjust the rotation angle through the corresponding driving structure, so as to change the posture of the transmission mechanism 22 .
  • FIG. 6 and Figure 7 it is a schematic diagram of the process in which the transmission mechanism 22 drives the finger part 221 to upload the film to the finger part, preferably, as shown in Figure 7, the head of the finger part 221 avoids the corresponding finger part mouth, so as to avoid scratches and collisions between the fingers 221 and the fingers during the lifting process, thereby improving the safety and positional stability of the wafer.
  • the process chamber corresponds to the side wall of the transfer chamber 4 (that is, the lower cavity 410
  • Two film transfer ports 10 are formed on the side wall of the process chamber, and the transport mechanism 22 is used to obtain the wafer from the outside of the process chamber through the two film transfer ports 10, and transfer the wafer out of the process chamber through the two film transfer ports 10.
  • the process chamber also includes a plurality of sealing rings 9, a plurality of sealing rings 9 and a plurality of bases 8 correspond one to one, the sealing ring 9 is sleeved on the side wall of the corresponding base 8 along the circumferential direction, and the sealing ring 9 can seal the bottom opening of the corresponding reaction chamber 2 when the base 8 rises to the corresponding reaction chamber 2 .
  • a sealing ring 9 is sheathed on the side wall of each base 8, so that when each base 8 rises to the corresponding reaction chamber 2, the corresponding reaction chamber is sealed by the base 8 and the sealing ring 9.
  • the bottom opening of the reaction chamber 2 constitutes an independent process environment of the reaction chamber 2, so that according to the process requirements, not only can more than two processes be realized in a single process chamber (that is, wafers in multiple reaction chambers 2 perform different processes). ), it is also possible to simultaneously perform the same process on multiple wafers in a single process chamber (that is, perform the same process on wafers in multiple reaction chambers 2), further increasing machine productivity.
  • the top wall of the transfer chamber 4 is formed with openings at the bottom of a plurality of reaction chambers 2 one by one.
  • the sealing ring 9 has an annular positioning surface facing the top wall of the transmission chamber 4, and the annular positioning surface is formed with A plurality of concentrically arranged annular protrusions 901 correspond one-to-one to a plurality of annular sealing grooves 201; when the base 8 rises to the reaction chamber 2, the annular protrusions 901 at least partly enter the corresponding In the ring seal groove 201.
  • the plurality of annular protrusions 901 on the sealing ring 9 also respectively enter into the corresponding annular sealing grooves 201, so that the sealing ring 9 A labyrinth sealing structure is formed between the annular positioning surface and the top wall of the transmission chamber 4, which further improves the sealing performance of each reaction chamber 2.
  • the height of the annular protrusion 901 on the sealing ring 9 is different from the depth of the annular sealing groove 201 (for example, the height of the annular protrusion 901 is smaller than the depth of the annular sealing groove 201, so as to ensure that the sealing ring 9 is in contact with the top wall of the transmission chamber 4) to ensure the effect of the mechanical seal.
  • the sealing ring The top of the inner wall of 9 is formed with an inner convex edge, the upper surface of the inner convex edge is flush with the top end surface of the sealing ring 9, the top of the base 8 is formed with an annular positioning groove surrounding the bearing surface of the base 8, and the inner convex edge is arranged on the ring In the positioning groove, and the upper surface of the inner convex edge is flush with the bearing surface of the base 8 .
  • a convex edge is formed on the bottom of the outer wall of the sealing ring 9, and an annular positioning surface is formed on the convex edge.
  • the top end of the sealing ring 9 overlaps the top of the base 8 through the inner convex edge, and the bottom end contacts the top wall of the transmission chamber 4 through the outer convex edge, so that the lifting device (for example, as shown in Figure 1, when the motor 5) can drive the base 8 up to the reaction chamber 2 through the support shaft, the sealing ring 9 can be kept with the base 8 through the cooperation between the inner convex edge and the annular positioning groove. The axial relative position between them, and then the height of the base 8 is precisely positioned through the inner convex edge and the outer convex edge structure.
  • the process chamber also includes a gas pipeline 6, a plurality of reaction chambers 2 are provided with first process gauges, and the transfer chamber 4 is provided with The second process regulation, the control device of the semiconductor process equipment can detect and compare the gas pressure in the reaction chamber 2 and the transmission chamber 4 through the first process regulation and the second process regulation, and according to the difference between the gas pressure in the reaction chamber 2 and the transmission chamber 4 The comparison results control the on-off of gas in the gas pipeline 6, so that the gas pressure in the transmission chamber 4 is higher than the gas pressure in each reaction chamber 2, thereby preventing the process gas in the reaction chamber 2 from passing through the annular positioning surface of the sealing ring 9 and the transmission chamber.
  • a labyrinth seal structure is formed between the top walls of 4 or the gap between the support column 11 and the base hole flows into the transmission chamber 4, eliminating the source of particles in the transmission chamber 4, improving the cleanliness of the transmission chamber 4, and ensuring that each reaction
  • the chamber 2 is always in a separate process environment in the semiconductor process.
  • a semiconductor process equipment is provided, and the semiconductor process equipment includes the process chamber provided by the embodiment of the present invention.
  • the transport chamber 4 is provided with a transport mechanism 22 and a carrying mechanism 21, and the carrying mechanism 21 can temporarily store the wafers 3 to be processed, so as to carry the current batch of wafers on a plurality of bases 8 respectively.
  • the transfer mechanism 22 can first transfer the next batch of wafers from outside the process chamber to the carrier mechanism 21.
  • the transport mechanism 22 transfers the processed wafer 3 out of the process chamber, and then the carrier mechanism 21 transfers the next batch of wafers carried by it to a plurality of bases 8.
  • the transfer and positioning of the wafer can be realized by the transfer mechanism 22 and the carrier mechanism 21, so that there is no need to set a transfer platform with a manipulator outside the process chamber.
  • the process The side of the film transfer port 10 of the chamber can be directly connected to the pre-loading platform 42 (Loadlock), thereby making the overall structure of the semiconductor process equipment more compact, reducing the equipment footprint, and improving the economic efficiency of the semiconductor production line.
  • the semiconductor process equipment also includes a front-end module 43 and a plurality of loading platforms 44, and a manipulator is arranged in the front-end module 43, and the manipulator is used to place the loading
  • the wafers in the wafer storage device (such as a storage box) on the stage 44 are taken out to the pre-loading station 42, or the wafers in the pre-loading station 42 are returned to the wafer storage device on the loading station 44 middle.
  • the pre-loading table 42 is used to evacuate its own chamber to a (close to) vacuum after receiving the wafer, so that the transport mechanism 22 in the transport chamber 4 can take the sheet under a (close to) vacuum environment; it is also used to receive the transport mechanism 22, the outgoing wafer returns to atmospheric pressure, so that the manipulator of the front-end module 43 can take away the wafer.
  • two film transfer ports 10 are formed on the side wall of the transfer chamber 4, and the process chamber
  • Two pre-loading stations 42 are arranged on the outside corresponding to the positions of the two film transfer ports 10, and the transport mechanism 22 is used to obtain wafers from the two pre-loading stations 42 through the two film transfer ports 10, and pass through the two film transfer ports 10
  • the wafers are transferred into two preload stations 42 .
  • a semiconductor processing method is provided, which is applied to the process chamber provided in the embodiment of the present invention, and the method includes:
  • Step S1 controlling the transfer mechanism 22 to transfer the wafers outside the process chamber to multiple bases 8;
  • Step S2 controlling a plurality of susceptors 8 to rise into the corresponding reaction chamber 2, and performing the semiconductor process, and at the same time controlling the transfer mechanism 22 to transfer the wafers outside the process chamber to the carrying mechanism 21;
  • Step S3 after the semiconductor process is completed, control the plurality of bases 8 to descend into the transfer chamber 4, and control the transfer mechanism 22 to transfer the wafers on the plurality of bases 8 out of the process chamber;
  • Step S4 controlling the carrier mechanism 21 to transfer the plurality of wafers carried by it to the plurality of bases 8;
  • step S1 the base 8 is at a low position, and the support column 11 protrudes to a top higher than the bearing surface of the base 8 .
  • step S2 and step S3 need to be performed, and in step S2, there is no need to control the transfer mechanism 22 to transfer the wafers outside the process chamber to the carrier mechanism 21 (there is no next step outside the process chamber). batches of wafers to be introduced into the process chamber).
  • the transport chamber 4 is provided with a transport mechanism 22 and a carrying mechanism 21, and the carrying mechanism 21 can temporarily store the wafers 3 to be processed, so as to carry the current batch of wafers on a plurality of bases 8 respectively.
  • the transfer mechanism 22 can first transfer the next batch of wafers from outside the process chamber to the carrier mechanism 21.
  • the transport mechanism 22 transfers the processed wafer 3 out of the process chamber, and then the carrier mechanism 21 transfers the next batch of wafers carried by it to a plurality of bases 8.
  • the transfer and positioning of the wafer are all realized by the transfer mechanism 22 and the carrier mechanism 21 in the transfer chamber 4, so that there is no need to arrange a transfer platform with a manipulator outside the process chamber, and the side of the transfer port 10 of the process chamber can be directly connected to
  • the docking of the pre-loading table 42 (Loadlock) further makes the overall structure of the semiconductor process equipment more compact, reduces the area occupied by the equipment, and further improves the economic efficiency of the semiconductor production line.
  • step S1 may specifically include:
  • Step S11 control the transfer mechanism 22 to correct the height so that the finger portion 221 is higher than the top of the support column 11, and obtain the wafer 3 to be processed from outside the process chamber (the preloading platform 42), and control the multiple positions of the transfer mechanism 22
  • the swing rod part swings, so that the finger part 221 and the wafer carried on it move to the top of the support column 11 of the first base 25;
  • the control transmission mechanism 22 drives the finger portion 221 to descend, so that the wafer 3 to be processed falls on the support column 11, and drives the finger portion 221 to return to the initial position (for example, between the second base 23 and the fourth base 26 , and does not interfere with the base 8 and the carrying mechanism 21).
  • Step S12 control the transport mechanism 22 to correct the height so that the finger portion 221 is higher than the top of the support column 11, and obtain the wafer 3 to be processed from outside the process chamber (the preloading platform 42), and control the multiple positions of the transport mechanism 22.
  • the swing rod part swings, so that the finger part 221 and the wafer carried on it move to the top of the support column 11 of the second base 23;
  • the transmission mechanism 22 is controlled to drive the finger part 221 to descend, so that the wafer 3 to be processed falls on the support column 11, and the finger part 221 is driven back to the initial position.
  • Step S13 control the transport mechanism 22 to correct the height so that the finger portion 221 is higher than the top of the support column 11, and obtain the wafer 3 to be processed from outside the process chamber (the pre-loading platform 42), and control the multiple positions of the transport mechanism 22
  • the swing rod part swings, so that the finger part 221 and the wafer carried on it move to the top of the support column 11 of the third base 24;
  • the transmission mechanism 22 is controlled to drive the finger part 221 to descend, so that the wafer 3 to be processed falls on the support column 11, and the finger part 221 is driven back to the initial position.
  • Step S14 control the transfer mechanism 22 to correct the height so that the finger portion 221 is higher than the top of the support column 11, and obtain the wafer 3 to be processed from outside the process chamber (the preloading platform 42), and control the plurality of transfer mechanisms 22
  • the swing rod part swings, so that the finger part 221 and the wafer carried on it move to the top of the support column 11 of the fourth base 26;
  • the transmission mechanism 22 is controlled to drive the finger part 221 to descend, so that the wafer 3 to be processed falls on the support column 11, and the finger part 221 is driven back to the initial position.
  • step S1 may also include step S10 performed before step S11, controlling the carrying mechanism 21 to correct the height, so that the carrying mechanism 21 is located at the carrying position, higher than the transmission The highest limit position of mechanism 22.
  • controlling the transfer mechanism 22 to transfer the wafer outside the process chamber to the carrier mechanism 21 may specifically include:
  • Step S21 controlling the carrying mechanism 21 to correct the height so that the carrying mechanism 21 is located at the transmission position, which is lower than the highest limit position of the transmission mechanism 22 .
  • Step S22 control the transport mechanism 22 to correct the height, obtain the wafer 3 to be processed (as shown in FIG. 6 ) from outside the process chamber (the preloading platform 42), and control the transport mechanism 22 to raise the finger portion 221 higher than the finger Components, and control the swing of a plurality of swing rods of the transport mechanism 22, so that the finger 221 and the wafer carried on it move to the top of the finger 211 (as shown in FIG. 7 );
  • the transmission mechanism 22 is controlled to drive the finger part 221 down, so that the wafer 3 to be processed falls on the finger part 211, and the finger part 221 is driven back to the initial position.
  • Step S23 control the transport mechanism 22 to correct the height, obtain the wafer 3 to be processed from outside the process chamber, control the transport mechanism 22 to raise the finger part 221 higher than the finger part, and control the swing of multiple swing bars of the transport mechanism 22, moving the finger 221 and the wafer carried thereon to above the finger 212;
  • the transmission mechanism 22 is controlled to drive the finger part 221 down, so that the wafer 3 to be processed falls on the finger part 212, and the finger part 221 is driven back to the initial position.
  • Step S24 control the transport mechanism 22 to correct the height, obtain the wafer 3 to be processed from outside the process chamber, control the transport mechanism 22 to raise the finger part 221 higher than the finger part, and control the swing of multiple swing bars of the transport mechanism 22, Moving the finger portion 221 and the wafer carried thereon to above the finger portion 213;
  • the transmission mechanism 22 is controlled to drive the finger part 221 down, so that the wafer 3 to be processed falls on the finger part 213, and the finger part 221 is driven back to the initial position.
  • Step S25 control the transport mechanism 22 to correct the height, obtain the wafer 3 to be processed from outside the process chamber, control the transport mechanism 22 to raise the finger part 221 higher than the finger part, and control the swing of multiple swing bars of the transport mechanism 22, moving the finger 221 and the wafer carried thereon to above the finger 214;
  • the transmission mechanism 22 is controlled to drive the finger part 221 down, so that the wafer 3 to be processed falls on the finger part 214, and the finger part 221 is driven back to the initial position.
  • Step S26 controlling the bearing mechanism 21 to return to the bearing position.
  • the initial circumferential position of the carrying mechanism 21 is such that each finger is located between two adjacent bases 8 . That is, when the process chamber includes four reaction chambers 2, the circumferential angle between two adjacent bases 8 is 90°, and the circumferential angle between the fingers and adjacent bases 8 is 45° To avoid collisions between the base 8 and the fingers during the lifting process.
  • step S21 also includes controlling the bearing mechanism 21 to drive the connecting parts to drive a plurality of fingers to rotate a preset angle (for example, 15°) in the counterclockwise direction, so that the finger parts 211 and Between the first bases 25 there is sufficient space for the fingers 221 to move (the base 8 has risen into the reaction chamber 2 at this time, and the fingers will not contact the thinner shaft structure below the base 8).
  • Step S26 also includes controlling the carrying mechanism 21 to drive the connecting member to drive the plurality of finger members to rotate clockwise by the same preset angle (that is, to restore the circumferential positions of the plurality of finger members).
  • step S4 specifically includes:
  • Step S41 control the transmission mechanism 22 to drive the connector to drive the plurality of fingers and the wafer 3 carried on them to rotate clockwise (45°), so that the fingers 211 are located above the first base 25, and the fingers 212 are located on the second base.
  • the fingers 213 are located above the third base 24, and the fingers 214 are located above the fourth base 26;
  • Step S42 control the transmission mechanism 22 to drive the connector to drive multiple fingers, and drop to a height lower than the tops of the multiple support columns 11 and higher than the carrying surface of the base 8, so that the wafer 3 on the fingers 211 falls on the first On the support column 11 of a base 25, the wafer 3 on the finger 212 falls on the support column 11 of the second base 23, and the wafer 3 on the finger 213 falls on the support column 11 of the third base 24 On, the wafer 3 on the fingers 214 falls on the support column 11 of the fourth base 26;
  • Step S43 control the transmission mechanism 22 to drive the connector to drive the multiple fingers to rotate counterclockwise (45°), to restore the multiple fingers to their original circumferential positions, and drive the connector to drive the multiple fingers to rise to the bearing position.

Abstract

本发明提供一种应用于半导体工艺设备的工艺腔室,包括传输腔和位于传输腔上方的多个反应腔,多个反应腔均通过底部开口与传输腔连通,多个基座可在反应腔与传输腔之间升降,还包括设置在传输腔中的传输机构和承载机构,传输机构用于将晶圆由工艺腔室外部转移至承载机构或多个基座上,以及将多个基座上的晶圆传出工艺腔室,承载机构用于承载多个晶圆,并能够将其所承载的多个晶圆转移至多个基座上。在本发明中,传输机构能够先将下一批晶圆传输至承载机构上,承载机构在半导体工艺结束后将其承载的晶圆转移至基座上,节约了晶圆传输时间。本发明还提供一种半导体工艺设备和半导体工艺方法。

Description

工艺腔室、半导体工艺设备和半导体工艺方法 技术领域
本发明涉及半导体工艺设备领域,具体地,涉及一种工艺腔室、一种包括该工艺腔室的半导体工艺设备和一种通过该工艺腔室实现的半导体工艺方法。
背景技术
近年来,随着半导体行业的迅猛发展,电子元器件小型化趋势越来越明显,在原子尺度上对材料进行加工的需求也越来越多,原子层沉积(Atomic Layer Deposition,ALD)技术,尤其是等离子体增强型原子层沉积(Plasma Enhanced Atomic Layer Deposition,PEALD)技术成为人们日益关注的课题。原子层沉积技术要求多种反应气体依次连续进入腔室,且进入腔室之前必须保持为彼此互相独立的气态,以在反应腔室中沉积生成预定厚度的膜层,进而获得性能达到要求的薄膜。
现有的原子层沉积工艺设备主要包括前端模块、传输平台和工艺腔室,其中,传输平台中配置有机械手,用于在前端模块与工艺腔室之间传输晶圆。随着PEALD工艺产能需求越来越高,为提高机台产能,工艺腔室中可采用多腔室结构,即,同一工艺腔室中设置有多个反应腔,从而可以同步向多个反应腔中加载晶圆、进气,并同步控制多个反应腔中的气压,在保证各个反应腔的独立性的同时,提高了晶圆的加工效率。
然而,传输平台中配置的机械手原先是与采用单腔室结构的工艺腔室配合使用,现有的机械手的传片效率已经远远无法满足多腔室结构的工艺需求,成为现有原子层沉积工艺设备提高产能的新的技术瓶颈。
发明内容
本发明旨在提供一种工艺腔室、半导体工艺设备和半导体工艺方法,该工艺腔室能够节约晶圆传输时间,提高机台产能。
为实现上述目的,本发明提供一种应用于半导体工艺设备的工艺腔室,包括传输腔和位于所述传输腔上方的多个反应腔,多个所述反应腔均通过底部开口与所述传输腔连通,所述工艺腔室还包括多个用于承载晶圆的基座,多个所述基座与多个所述反应腔的位置一一对应,且可在所述反应腔与所述传输腔之间升降并封闭或打开所述底部开口,其特征在于,所述工艺腔室还包括设置在所述传输腔中的传输机构和承载机构,所述传输机构用于将晶圆由所述工艺腔室外部转移至所述承载机构或所述基座上,以及将所述基座上的晶圆传出所述工艺腔室;所述承载机构用于承载多个晶圆,并能够将其所承载的多个所述晶圆转移至多个所述基座上。
可选地,多个所述基座环绕所述承载机构设置,所述承载机构具有多个晶圆承载位,所述晶圆承载位的数量与所述基座的数量一致,且所述承载机构被设置为使多个所述晶圆承载位能够同时靠近对应的多个所述基座,并将多个所述晶圆转移至对应的多个所述基座上;或者,能够同时远离对应的多个所述基座。
可选地,所述承载机构包括驱动器、连接件和多个手指件,所述手指件的上表面形成所述晶圆承载位,多个所述手指件环绕固定在所述连接件的四周,所述驱动器用于驱动所述连接件带动多个所述手指件升降以及绕所述连接件的旋转轴转动。
可选地,所述基座具有环绕所述基座轴线分布的多个基座孔,多个所述基座孔中一一对应地设置有多个支撑柱,所述支撑柱用于在基座上升时沿所述基座孔相对于所述基座下降,并在所述支撑柱的顶面不高于所述基座的承载面后随所述基座一同上升,以及,在所述基座下降至所述支撑柱的底端与 所述传输腔的底壁接触后支撑并抬起所述基座上的晶圆;
所述手指件在朝向对应的所述基座的一侧形成有避让口,且当所述驱动器驱动所述连接件带动多个所述手指件转动至多个所述手指件一一对应地位于多个所述基座上方时,每一所述基座上的多个支撑柱位于对应的所述手指件的所述避让口中。
可选的,所述支撑柱具有限位部,所述限位部与所述基座孔配合,用于在所述基座上升,且在所述支撑柱的顶面不高于所述基座的承载面时,使所述支撑柱与所述基座相对位置固定,以使所述支撑柱随所述基座一同上升。
可选地,所述工艺腔室对应于所述传输腔的侧壁上形成有两个传片口,所述传输机构用于通过两个所述传片口由所述工艺腔室外部获取晶圆,并通过两个所述传片口将晶圆传出所述工艺腔室。
可选地,所述工艺腔室还包括多个密封环,多个所述密封环与多个所述基座一一对应,所述密封环沿周向套设在所述基座的侧壁上,且所述密封环能够在所述基座上升至对应的所述反应腔时密封该反应腔的底部开口。
可选地,所述传输腔的顶壁上形成有与多个所述反应腔的底部开口一一对应的多组环形密封槽,每组中的多个所述环形密封槽同心且环绕对应的所述底部开口设置,所述密封环具有朝向所述传输腔的顶壁的环形定位面,所述环形定位面上形成有多个同心设置的环形凸起部,多个所述环形凸起部与多个所述环形密封槽一一对应;在所述基座上升至所述反应腔时,所述环形凸起部至少部分进入对应的所述环形密封槽中。
可选地,所述传输机构包括驱动部、手指部和多个摆杆部,多个所述摆杆部依次连接在所述驱动部与所述手指部之间,多个所述摆杆部之间以及所述摆杆部与所述驱动部、所述手指部之间均通过铰接轴铰接,且多个所述铰接轴均沿竖直方向延伸,所述驱动部用于分别驱动所述手指部和多个所述摆杆部绕对应的所述铰接轴转动,以及驱动多个所述摆杆部及所述手指部作升 降运动。
作为本发明的第二个方面,提供一种半导体工艺设备,所述半导体工艺设备包括前面所述的工艺腔室。
作为本发明的第三个方面,提供一种半导体工艺方法,应用于前面所述的工艺腔室,所述方法包括:
步骤S1、控制所述传输机构将所述工艺腔室外部的晶圆传输至多个所述基座上;
步骤S2、控制多个所述基座上升至对应的所述反应腔中,并进行半导体工艺,同时控制所述传输机构将所述工艺腔室外部的晶圆传输至所述承载机构上;
步骤S3、在所述半导体工艺结束后,控制多个所述基座下降至所述传输腔中,并控制所述传输机构将多个所述基座上的晶圆传出所述工艺腔室;
步骤S4、控制所述承载机构将其所承载的多个所述晶圆转移至多个所述基座上;
重复执行所述步骤S2至所述步骤S4。
在本发明提供的工艺腔室、半导体工艺设备和半导体工艺方法中,工艺腔室的传输腔中设置有传输机构和承载机构,承载机构能够暂存晶圆,从而在多个基座分别承载当前一批晶圆上升至对应的反应腔中,并同步进行半导体工艺时,传输机构可以先将下一批晶圆由工艺腔室外传输至承载机构上,在当前一批晶圆的半导体工艺结束后,传输机构将晶圆传出工艺腔室,再由承载机构将其所承载的下一批晶圆转移至多个基座上,这与现有技术中相邻两批晶圆进行半导体工艺的步骤之间需要将下一批晶圆依次传输至各个基座上相比,节约了传输晶圆的时间,提高了机台产能。
并且,晶圆的传输及定位均可由传输腔中的传输机构和承载机构实现,工艺腔室外侧无需设置带有机械手的传输平台,工艺腔室的传片口一侧可直 接与预装载台对接,进而使半导体工艺设备的整机结构更加紧凑,降低了设备占地面积,进而提高了半导体产线的经济效益。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是本发明实施例提供的工艺腔室的结构示意图;
图2是本发明实施例提供的工艺腔室的局部放大示意图;
图3是本发明实施例提供的工艺腔室中基座的结构示意图;
图4A是本发明实施例提供的工艺腔室中承载机构、传输机构与基座在传输腔中的相对位置示意图;
图4B是本发明实施例提供的工艺腔室中基座和支撑柱在相对位置固定时的结构示意图;
图5是本发明实施例提供的工艺腔室中传输机构的部分结构示意图;
图6是本发明实施例提供的工艺腔室中传输机构由工艺腔室外部获取晶圆的原理示意图;
图7是本发明实施例提供的工艺腔室中传输机构将晶圆放置在承载机构上的原理示意图;
图8是本发明实施例提供的半导体工艺设备的结构示意图。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
为解决上述技术问题,作为本发明的一个方面,提供一种应用于半导体工艺设备的工艺腔室,如图1、图4A所示,该工艺腔室包括传输腔4和位于 传输腔4上方的多个反应腔2,多个反应腔2均通过底部开口与传输腔4连通,工艺腔室还包括多个用于承载晶圆的基座8,该基座8设置于传输腔4中;多个基座8与多个反应腔2的位置一一对应,且可在反应腔2与传输腔4之间升降并封闭或打开对应的反应腔2的底部开口。该工艺腔室还包括机械手组件7,机械手组件7包括设置在传输腔4中的传输机构22和承载机构21,二者的用于承载、传输晶圆的执行部分位于传输腔4中,而二者的用于驱动上述执行部分运动的驱动部分例如可以设置于传输腔4的下方,并与传输腔4的底壁固定连接(图1中未示出机械手组件7位于传输腔中的执行部分),这样可以减少传输腔4的占用空间,但是,本发明实施例并不局限于此,在实际应用中,根据具体需要,也可以将上述传输机构22和承载机构21整体设置于传输腔4中。
传输机构22用于将晶圆由工艺腔室外部转移至承载机构21或基座8上,以及将基座8上的晶圆传出工艺腔室;承载机构21用于承载多个晶圆,并能够将其所承载的多个晶圆转移至多个基座8上。容易理解,在承载机构21将其所承载的多个晶圆转移至多个基座8上之前,需要保证基座8上无晶圆。
发明人经研究发现:在现有技术中,晶圆的传输功能均通过传输平台中的机械手独立实现,在当前一批晶圆(每批晶圆指多个基座同步进行半导体工艺加工的多个晶圆)完成半导体工艺后,由传输平台中的机械手将工艺腔室中多个基座上的晶圆依次取出工艺腔室,再将下一批晶圆依次传入工艺腔室并放置在各个基座上。
而在本发明中,传输腔4中设置有传输机构22和承载机构21,承载机构21能够暂存待加工的晶圆3,从而在多个基座8分别承载当前一批晶圆3上升至对应的反应腔2中,并同步进行半导体工艺时,传输机构22可以先将下一批晶圆由工艺腔室外传输至承载机构21上,在当前一批晶圆3的半导体工艺结束后,传输机构22将加工后的晶圆3传出工艺腔室,再由承载机构 21将其所承载的下一批晶圆转移至多个基座8上,这与现有技术相比,相当于将现有技术中相邻两批晶圆进行半导体工艺的步骤之间,需要将下一批晶圆依次传输至工艺腔室中并进行定位的操作时间,调整为下一批晶圆的传输时间与当前一批晶圆进行半导体工艺的时间重叠),从而节约了传输晶圆的时间,提高了机台产能。
并且,晶圆的传输及定位均可由传输腔4中的传输机构22和承载机构21实现,从而工艺腔室外侧无需设置带有机械手的传输平台,工艺腔室的传片口10一侧可直接与预装载台(Loadlock,用于在接收晶圆后将自身腔室抽气至(接近)真空,从而在与工艺腔室连通并进行传片操作后无需再次对工艺腔室进行抽真空操作,同时还可具有晶圆完整性检测等功能)对接,进而使半导体工艺设备的整机结构更加紧凑,降低了设备占地面积,进而提高了半导体产线的经济效益。
作为本发明的一种可选实施方式,如图1、图2所示,工艺腔室包括沿高度方向层叠设置的上盖1、上腔体210和下腔体410,多个反应腔2形成于上腔体210中,传输腔4形成于下腔体410中,上盖1封闭多个反应腔2在上腔体210顶部形成的顶部开口。可选地,上腔体210中还形成有多个环绕各反应腔2的排气通路,排气通路中设置有排气组件,排气组件通过周向分布的多个排气孔与对应的反应腔2连通,用于抽取反应腔2中的尾气并排出工艺腔室。
作为本发明的一种可选实施方式,工艺腔室包括4个反应腔2。
为提高承载机构21向多个基座8上转移晶圆3的传片效率,作为本发明的一种优选实施方式,承载机构21上能够承载的晶圆3数量与基座8数量相同,且承载机构21能够同步向多个基座8上转移晶圆3。具体地,如图4A、图6所示,多个基座8(例如,包括第一基座25、第二基座23、第三基座24、第四基座26)环绕承载机构21设置,承载机构21具有多个晶圆承载位,晶 圆承载位的数量与基座8数量一致,且承载机构21被设置为使多个晶圆承载位同时靠近对应的多个基座8,并将多个晶圆转移至对应的多个基座8上,或者使多个晶圆承载位同时远离对应的多个基座8,以在将晶圆转移至基座8上后,能够避让基座8,以使基座8能够正常升降。
作为本发明的一种可选实施方式,承载机构21被设置为使多个晶圆承载位通过旋转的方式同步靠近或远离各个基座8,具体地,如图4A、图6所示,承载机构21包括驱动器(图4A、图6中视角下位于连接件的下方,未示出)、连接件和多个手指件(例如,包括4个手指件,分别为手指件211、手指件212、手指件213、手指件214),手指件的上表面形成晶圆承载位,多个手指件环绕固定在连接件的四周,驱动器能够驱动连接件带动多个手指件升降以及绕连接件的旋转轴转动,以使多个手指件同时靠近对应的多个基座8,并同步将多个晶圆转移至对应的多个基座8上,或者在将多个晶圆转移至对应的多个基座8上后,使多个手指件同时远离对应的基座8。
为节约工艺腔室空间,作为本发明的一种优选实施方式,驱动器可设置在工艺腔室外部,并通过穿过传输腔4的底壁上通孔的传动轴与连接件连接。
为提高晶圆3在基座8、手指件以及传输机构22之间交接的平稳性,作为本发明的一种优选实施方式,如图4所示,基座8具有环绕基座8轴线分布的多个基座孔,多个基座孔中一一对应地设置有多个支撑柱11,支撑柱11用于在基座8上升时沿基座孔相对于基座8下降,并在支撑柱11的顶面与基座8的承载面相平后随基座8一同上升,以及,在基座8下降至支撑柱11的底端与传输腔4的底壁接触后支撑并抬起基座8上的晶圆。
具体来说,手指件或传输机构22在与基座8进行晶圆交接时,基座8为低位,支撑柱11的顶端伸出至基座8的承载面上方,从而在手指件或传输机构22先携带晶圆并移至支撑柱11上方,再下降高度,使晶圆3落在与同一基座8对应的多根支撑柱11上,随后水平撤去手指件或传输机构22。随 着基座8升高,支撑柱11缩回至顶端低于或平齐于基座8的承载面的位置处,进而使晶圆3平稳落在基座8的承载面上。
作为本发明的一种优选实施方式,如图4A和图4B所示,为了更清楚的显示基座孔81的结构,图4B中仅示意性的示出了一个支撑柱11,该支撑柱11能够相对于基座8升降,并且支撑柱11具有限位部11a,限位部11a与基座孔81配合,用于在基座8上升,且在支撑柱11的顶面不高于基座8的承载面时,使支撑柱11与基座8相对位置固定,以使支撑柱11随基座8一同上升。具体来说,在基座8上升时,支撑柱11在自身重力作用下相对于基座8下降,直至限位部11a与基座孔8配合,此时支撑柱11不再继续下降,与基座8的相对位置固定,从而可以随基座8一同上升。可选的,限位部11a为设置于支撑柱11的顶端的限位头,例如为锥台,该锥台的侧面为由顶部向下组件缩窄的锥形限位面,而基座孔8的孔壁顶部设置有锥形孔段8a,基座孔8在锥形孔段8a的孔径由基座8的承载面向下逐渐缩窄,该限位头在支撑柱11相对于基座8下降时进入锥形孔段8a,并与该锥形孔段8a相配合,以使支撑柱11与基座8相对位置固定。并且,上述限位头的顶面低于或平齐于基座8的承载面,以使基座8的上表面能够承载晶圆。在基座8下降,且在支撑柱11的底端与传输腔4的底壁(即,下腔体410的底壁)接触后,支撑柱11的顶端相对于传输腔4是静止的,而相对于正在下降的基座8是上升的,从而支撑柱11的顶端在高于基座8的承载面时,可以托起基座8上的晶圆。
为提高晶圆位置的稳定性,作为本发明的一种优选实施方式,如图4A、图6所示,以手指件211为例,手指件211在朝向对应的基座8的一侧形成有避让口211a,且当驱动器驱动连接件带动多个手指件转动至多个手指件一一对应地位于多个基座8上方时,每一基座8上的多个支撑柱11位于对应的手指件的避让口211a中。优选地,如图4A、图6所示,手指件可形成为弯钩状,以减小手指件与晶圆3之间的接触面积,该弯钩状手指件的开口即为 避让口211a。
在本发明实施例中,以手指件211为例,手指件211在朝向对应的基座8的一侧形成有避让口211a,从而在向基座8传输晶圆3时,手指件211将在径向与基座8上的多个支撑柱11错开,避免了手指件211与支撑柱11发生刮擦、碰撞,提高了晶圆的安全性及位置稳定性。
具体地,如图4A、图6所示,以多个手指件的避让口均朝向顺时针方向为例:
在传输机构22取出多个基座8上的晶圆后,驱动器驱动连接件带动多个手指件及其上承载的晶圆3升降至高于基座8上的支撑柱11的位置,再驱动连接件带动多个手指件沿顺时针转动,直至多个手指件上的晶圆3均与对应的基座8沿竖直方向对齐。此时,手指件211位于第一基座25上方,手指件212位于第二基座23上方,手指件213位于第三基座24上方,手指件214位于第四基座26上方;
随后驱动器驱动连接件带动多个手指件下降至高度低于多个支撑柱11的顶端且高于基座8的承载面的位置,使晶圆落在支撑柱11上。即,手指件211承载的晶圆3落在第一基座25的支撑柱11上,手指件212承载的晶圆3落在第二基座23的支撑柱11上,手指件213承载的晶圆3落在第三基座24的支撑柱11上,手指件214承载的晶圆3落在第四基座26的支撑柱11上;
最后驱动器再驱动连接件带动多个手指件逆时针转动,使多个手指件同步离开对应的基座8,完成晶圆交接操作。
作为本发明的一种可选实施方式,如图5所示,传输机构22包括驱动部(图未示)、手指部221和多个摆杆部,多个摆杆部依次连接在驱动部与手指部221之间,多个摆杆部之间以及摆杆部与驱动部、手指部221之间均通过铰接轴铰接,且多个铰接轴均沿竖直方向延伸,驱动部用于分别驱动手指部221和多个摆杆部绕对应的铰接轴转动,以及驱动多个摆杆部及手指部221 做升降运动。
为节约工艺腔室内部空间,作为本发明的一种优选实施方式,驱动部可设置在工艺腔室外部,并通过穿过传输腔底壁上通孔的传动轴与摆杆部连接。在本发明的一些实施例中,承载机构21的驱动器中驱动连接件带动多个手指件升降的结构可以与传输机构22的驱动部集成为同一结构。
在本发明实施例中,驱动部用于控制手指部221的高度,同时可通过调节多个摆杆部之间以及摆杆部与驱动部、手指部221之间的铰接轴转角的方式,控制手指部221的水平位置及朝向,从而控制手指部221依次携带晶圆移动至手指件或者基座8的支撑柱11的上方,并控制手指部221下降,使晶圆3落在对应的手指件或者基座8的支撑柱11上,再控制手指部221水平撤出,从而实现晶圆交接操作。
作为本发明的一种可选实施方式,如图5所示,传输机构22包括第一摆杆部222和第二摆杆部223两个摆杆部,第一摆杆部222的第一端与手指部221的尾端铰接,第一摆杆部222的第二端与第二摆杆部223的第一端铰接,第二摆杆部223的第二端与驱动部的输出轴铰接,各铰接位置均可通过相应的驱动结构自动调节转角,以改变传输机构22的姿态。
如图6、图7所示为传输机构22驱动手指部221向手指件上传片的过程示意图,优选地,如图7所示,传片时手指部221的头部朝向对应的手指件的避让口,以避免手指部221在升降过程中与手指件发生刮擦、碰撞,从而提高晶圆的安全性及位置稳定性。
为提高传输机构22的传片效率,作为本发明的一种优选实施方式,如图4A、图6、图7所示,工艺腔室对应于传输腔4的侧壁(即,下腔体410的侧壁)上形成有两个传片口10,传输机构22用于通过两个传片口10由工艺腔室外部获取晶圆,并通过两个传片口10将晶圆传出工艺腔室。
为提高各反应腔2的密封性,作为本发明的一种优选实施方式,如图1 至图3所示,工艺腔室还包括多个密封环9,多个密封环9与多个基座8一一对应,密封环9沿周向套设在对应的基座8的侧壁上,且密封环9能够在基座8上升至对应的反应腔2时密封该反应腔2的底部开口。
在本发明实施例中,每个基座8的侧壁上均套设有密封环9,从而在各基座8上升至对应的反应腔2时,通过基座8及密封环9封闭对应的反应腔2的底部开口,构成该反应腔2独立的工艺环境,从而根据工艺需要,不仅可以实现在单个工艺腔室中实现两道以上工序(即多个反应腔2中的晶圆进行不同工序),也可以在单个工艺腔室中同时对多个晶圆进行同一工艺(即多个反应腔2中的晶圆进行相同工序),进一步提高机台产能。
为进一步提高各反应腔2的密封性,作为本发明的一种优选实施方式,如图1至图3所示,传输腔4的顶壁上形成有与多个反应腔2的底部开口一一对应的多组环形密封槽201,每组中的多个环形密封槽201同心且环绕对应的底部开口设置,密封环9具有朝向传输腔4的顶壁的环形定位面,环形定位面上形成有多个同心设置的环形凸起部901,多个环形凸起部901与多个环形密封槽201一一对应;在基座8上升至反应腔2时,环形凸起部901至少部分进入对应的环形密封槽201中。
在本发明实施例中,随着基座8上升至对应的反应腔2中,密封环9上的多个环形凸起部901也分别进入对应的环形密封槽201中,从而在密封环9的环形定位面与传输腔4的顶壁之间形成迷宫密封结构,进一步提高了各反应腔2的密封性。在本发明的一些实施例中,密封环9上的环形凸起部901高度与环形密封槽201的深度不同(例如,环形凸起部901的高度小于环形密封槽201的深度,以确保密封环9的环形定位面与传输腔4的顶壁接触),以保证机械密封的效果。
为提高密封环9与基座8之间轴向相对位置的稳定性,进一步提高各反应腔2的密封性,作为本发明的一种优选实施方式,如图1至图3所示,密 封环9的内壁顶部形成有内凸沿,内凸沿的上表面与密封环9的顶端端面平齐,基座8的顶部形成有环绕基座8承载面的环形定位槽,内凸沿设置在环形定位槽中,且内凸沿的上表面与基座8的承载面平齐。密封环9的外壁底部形成有外凸沿,环形定位面形成在外凸沿上。
在本发明实施例中,密封环9的顶端通过内凸沿搭接在基座8的顶部,底端通过外凸沿与传输腔4的顶壁接触,从而在基座8下方的升降装置(例如,如图1所示,可以是电机5)通过支撑轴驱动基座8上升至反应腔2中时,密封环9能够通过内凸沿与环形定位槽之间的配合关系保持与基座8之间的轴向相对位置,进而通过内凸沿及外凸沿结构精确定位基座8的高度。
为提高传输腔4的洁净度,作为本发明的一种优选实施方式,该工艺腔室还包括气体管路6,多个反应腔2中均设置有第一工艺规,传输腔4中设置有第二工艺规,半导体工艺设备的控制装置能够通过第一工艺规和第二工艺规检测并比较反应腔2与传输腔4中的气体压强,并根据反应腔2与传输腔4中气体压强的比较结果控制气体管路6气体的通断,使传输腔4中的气体压强大于各反应腔2中的气体压强,从而避免反应腔2中的工艺气体通过密封环9的环形定位面与传输腔4的顶壁之间形成迷宫密封结构或者支撑柱11与基座孔之间的缝隙流入传输腔4,消除传输腔4中的颗粒源,提高传输腔4的洁净度,并且还能够保证各反应腔2在半导体工艺中总是处于独立的工艺环境中。
作为本发明的第二个方面,提供一种半导体工艺设备,该半导体工艺设备包括本发明实施例提供的工艺腔室。
在本发明提供的半导体工艺设备中,传输腔4中设置有传输机构22和承载机构21,承载机构21能够暂存待加工的晶圆3,从而在多个基座8分别承载当前一批晶圆3上升至对应的反应腔2中,并同步进行半导体工艺时,传输机构22可以先将下一批晶圆由工艺腔室外传输至承载机构21上,在当 前一批晶圆3的半导体工艺结束后,传输机构22将加工后的晶圆3传出工艺腔室,再由承载机构21将其所承载的下一批晶圆转移至多个基座8上,这与现有技术相比,相当于将现有技术中相邻两批晶圆进行半导体工艺的步骤之间,需要将下一批晶圆依次传输至工艺腔室中并进行定位的操作时间,调整为下一批晶圆的传输时间与当前一批晶圆进行半导体工艺的时间重叠),从而节约了传输晶圆的时间,提高了机台产能。
并且,晶圆的传输及定位均可由传输机构22和承载机构21实现,从而工艺腔室外侧无需设置带有机械手的传输平台,作为本发明的一种优选实施方式,如图8所示,工艺腔室的传片口10一侧可直接与预装载台42(Loadlock)对接,进而使半导体工艺设备的整机结构更加紧凑,降低了设备占地面积,进而提高了半导体产线的经济效益。
作为本发明的一种可选实施方式,如图8所示,该半导体工艺设备还包括前端模块43和多个装载台44,前端模块43中设置有机械手,机械手用于在大气环境下将装载台44上的晶圆存储装置(如,储片盒)中的晶圆取出至预装载台42中,或者将预装载台42中的晶圆传回装载台44上的晶圆存储装置中。预装载台42用于在接收晶圆后将自身腔室抽气至(接近)真空,以便传输腔4中的传输机构22在(接近)真空环境下取片;还用于在接收传输机构22传出的晶圆后恢复至大气压强,以便前端模块43的机械手取走晶圆。
为提高传片效率,作为本发明的一种优选实施方式,如图4A、图6、图7、图8所示,传输腔4的侧壁上形成有两个传片口10,工艺腔室的外侧对应于两个传片口10的位置设置有两个预装载台42,传输机构22用于通过两个传片口10由两个预装载台42获取晶圆,并通过两个传片口10将晶圆传输至两个预装载台42中。
作为本发明的第三个方面,提供一种半导体工艺方法,应用于本发明实施例提供的工艺腔室,该方法包括:
步骤S1、控制传输机构22将工艺腔室外的晶圆传输至多个基座8上;
步骤S2、控制多个基座8上升至对应的反应腔2中,并进行半导体工艺,同时控制传输机构22将工艺腔室外的晶圆传输至承载机构21上;
步骤S3、在半导体工艺结束后,控制多个基座8下降至传输腔4中,并控制传输机构22将多个基座8上的晶圆传出工艺腔室;
步骤S4、控制承载机构21将其所承载的多个晶圆转移至多个基座8上;
重复执行上述步骤S2至步骤S4。
需要说明的是,步骤S1中基座8位于低位,支撑柱11伸出至顶部高于基座8的承载面。在执行最后一批晶圆的半导体工艺时,仅需执行步骤S2和步骤S3,且步骤S2中无需控制传输机构22将工艺腔室外的晶圆传输至承载机构21上(工艺腔室外无下一批待传入工艺腔室的晶圆)。
在本发明提供的半导体工艺方法中,传输腔4中设置有传输机构22和承载机构21,承载机构21能够暂存待加工的晶圆3,从而在多个基座8分别承载当前一批晶圆3上升至对应的反应腔2中,并同步进行半导体工艺时,传输机构22可以先将下一批晶圆由工艺腔室外传输至承载机构21上,在当前一批晶圆3的半导体工艺结束后,传输机构22将加工后的晶圆3传出工艺腔室,再由承载机构21将其所承载的下一批晶圆转移至多个基座8上,这与现有技术相比,相当于将现有技术中相邻两批晶圆进行半导体工艺的步骤之间,需要将下一批晶圆依次传输至工艺腔室中并进行定位的操作时间,调整为下一批晶圆的传输时间与当前一批晶圆进行半导体工艺的时间重叠),从而节约了传输晶圆的时间,提高了机台产能。
并且,晶圆的传输及定位均由传输腔4中的传输机构22和承载机构21实现,从而工艺腔室外侧无需设置带有机械手的传输平台,工艺腔室的传片口10一侧可直接与预装载台42(Loadlock)对接,进而使半导体工艺设备的整机结构更加紧凑,降低了设备占地面积,进而提高了半导体产线的经济 效益。
在工艺腔室包括4个反应腔2的情况下,步骤S1具体可以包括:
步骤S11、控制传输机构22校正高度,使手指部221高于支撑柱11的顶端,并由工艺腔室外(的预装载台42)获取待处理的晶圆3,控制传输机构22的多个摆杆部摆动,使手指部221及其上承载的晶圆运动至第一基座25的支撑柱11上方;
控制传输机构22驱动手指部221下降,使待处理的晶圆3落在支撑柱11上,并驱动手指部221回到初始位置(例如,位于第二基座23与第四基座26之间,且不与基座8及承载机构21干涉的位置)。
步骤S12、控制传输机构22校正高度,使手指部221高于支撑柱11的顶端,并由工艺腔室外(的预装载台42)获取待处理的晶圆3,控制传输机构22的多个摆杆部摆动,使手指部221及其上承载的晶圆运动至第二基座23的支撑柱11上方;
控制传输机构22驱动手指部221下降,使待处理的晶圆3落在支撑柱11上,并驱动手指部221回到初始位置。
步骤S13、控制传输机构22校正高度,使手指部221高于支撑柱11的顶端,并由工艺腔室外(的预装载台42)获取待处理的晶圆3,控制传输机构22的多个摆杆部摆动,使手指部221及其上承载的晶圆运动至第三基座24的支撑柱11上方;
控制传输机构22驱动手指部221下降,使待处理的晶圆3落在支撑柱11上,并驱动手指部221回到初始位置。
步骤S14、控制传输机构22校正高度,使手指部221高于支撑柱11的顶端,并由工艺腔室外(的预装载台42)获取待处理的晶圆3,控制传输机构22的多个摆杆部摆动,使手指部221及其上承载的晶圆运动至第四基座26的支撑柱11上方;
控制传输机构22驱动手指部221下降,使待处理的晶圆3落在支撑柱11上,并驱动手指部221回到初始位置。
为避免承载机构21与传输机构22相互刮擦、碰撞,优选地,步骤S1还可以包括在步骤S11之前进行的步骤S10、控制承载机构21校正高度,使承载机构21位于承载位,高于传输机构22的最高极限位置。
在步骤S2中,控制传输机构22将工艺腔室外的晶圆传输至承载机构21上具体可以包括:
步骤S21、控制承载机构21校正高度,使承载机构21位于传输位,低于传输机构22的最高极限位置。
步骤S22、控制传输机构22校正高度,由工艺腔室外(的预装载台42)获取待处理的晶圆3(如图6所示),控制传输机构22升高至手指部221高于手指件,并控制传输机构22的多个摆杆部摆动,使手指部221及其上承载的晶圆运动至手指件211上方(如图7所示);
控制传输机构22驱动手指部221下降,使待处理的晶圆3落在手指件211上,并驱动手指部221回到初始位置。
步骤S23、控制传输机构22校正高度,由工艺腔室外获取待处理的晶圆3,控制传输机构22升高至手指部221高于手指件,并控制传输机构22的多个摆杆部摆动,使手指部221及其上承载的晶圆运动至手指件212上方;
控制传输机构22驱动手指部221下降,使待处理的晶圆3落在手指件212上,并驱动手指部221回到初始位置。
步骤S24、控制传输机构22校正高度,由工艺腔室外获取待处理的晶圆3,控制传输机构22升高至手指部221高于手指件,并控制传输机构22的多个摆杆部摆动,使手指部221及其上承载的晶圆运动至手指件213上方;
控制传输机构22驱动手指部221下降,使待处理的晶圆3落在手指件213上,并驱动手指部221回到初始位置。
步骤S25、控制传输机构22校正高度,由工艺腔室外获取待处理的晶圆3,控制传输机构22升高至手指部221高于手指件,并控制传输机构22的多个摆杆部摆动,使手指部221及其上承载的晶圆运动至手指件214上方;
控制传输机构22驱动手指部221下降,使待处理的晶圆3落在手指件214上,并驱动手指部221回到初始位置。
步骤S26、控制承载机构21回到承载位。
为提高半导体工艺腔室的安全性,优选地,承载机构21的初始周向位置为,每个手指件位于两相邻基座8之间。即,在工艺腔室包括4个反应腔2的情况下,两相邻基座8之间的周向夹角为90°,手指件与邻近基座8之间的周向夹角为45°,以避免基座8在升降过程中与手指件之间发生碰撞。
为增大手指部221的运动空间,优选地,步骤S21还包括控制承载机构21驱动连接件带动多个手指件沿逆时针方向转动预设角度(如,15°),从而在手指件211与第一基座25之间为手指部221流出足够的活动空间(此时基座8已升至反应腔2中,手指件不会与基座8下方较细的轴结构接触)。步骤S26还包括控制承载机构21驱动连接件带动多个手指件沿顺时针方向转动相同的预设角度(即恢复多个手指件的周向位置)。
在工艺腔室包括4个反应腔2的情况下,作为本发明的一种可选实施方式,步骤S4具体包括:
步骤S41、控制传输机构22驱动连接件带动多个手指件及其上承载的晶圆3沿顺时针转动(45°),使手指件211位于第一基座25上方,手指件212位于第二基座23上方,手指件213位于第三基座24上方,手指件214位于第四基座26上方;
步骤S42、控制传输机构22驱动连接件带动多个手指件,下降至高度低于多个支撑柱11的顶端且高于基座8的承载面,使手指件211上的晶圆3落在第一基座25的支撑柱11上,手指件212上的晶圆3落在第二基座23 的支撑柱11上,手指件213上的晶圆3落在第三基座24的支撑柱11上,手指件214上的晶圆3落在第四基座26的支撑柱11上;
步骤S43、控制传输机构22驱动连接件带动多个手指件逆时针转动(45°),使多个手指件恢复初始周向位置,并驱动连接件带动多个手指件升高至承载位。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (11)

  1. 一种应用于半导体工艺设备的工艺腔室,包括传输腔和位于所述传输腔上方的多个反应腔,多个所述反应腔均通过底部开口与所述传输腔连通,所述工艺腔室还包括多个用于承载晶圆的基座,多个所述基座与多个所述反应腔的位置一一对应,且可在所述反应腔与所述传输腔之间升降并封闭或打开所述底部开口,其特征在于,所述工艺腔室还包括设置在所述传输腔中的传输机构和承载机构,所述传输机构用于将晶圆由所述工艺腔室外部转移至所述承载机构或所述基座上,以及将所述基座上的晶圆传出所述工艺腔室;所述承载机构用于承载多个晶圆,并能够将其所承载的多个所述晶圆转移至多个所述基座上。
  2. 根据权利要求1所述的工艺腔室,其特征在于,多个所述基座环绕所述承载机构设置,所述承载机构具有多个晶圆承载位,所述晶圆承载位的数量与所述基座的数量一致,且所述承载机构被设置为使多个所述晶圆承载位能够同时靠近对应的多个所述基座,并将多个所述晶圆转移至对应的多个所述基座上;或者,使多个所述晶圆承载位能够同时远离对应的多个所述基座。
  3. 根据权利要求2所述的工艺腔室,其特征在于,所述承载机构包括驱动器、连接件和多个手指件,所述手指件的上表面形成所述晶圆承载位,多个所述手指件环绕固定在所述连接件的四周,所述驱动器用于驱动所述连接件带动多个所述手指件升降以及绕所述连接件的旋转轴转动。
  4. 根据权利要求3所述的工艺腔室,其特征在于,所述基座具有环绕所述基座轴线分布的多个基座孔,多个所述基座孔中一一对应地设置有多个支撑柱,所述支撑柱用于在基座上升时沿所述基座孔相对于所述基座下降, 并在所述支撑柱的顶面不高于所述基座的承载面后随所述基座一同上升,以及,在所述基座下降至所述支撑柱的底端与所述传输腔的底壁接触后支撑并抬起所述基座上的晶圆;
    所述手指件在朝向对应的所述基座的一侧形成有避让口,且当所述驱动器驱动所述连接件带动多个所述手指件转动至多个所述手指件一一对应地位于多个所述基座上方时,每一所述基座上的多个支撑柱位于对应的所述手指件的所述避让口中。
  5. 根据权利要求4所述的工艺腔室,其特征在于,所述支撑柱具有限位部,所述限位部与所述基座孔配合,用于在所述基座上升,且在所述支撑柱的顶面不高于所述基座的承载面时,使所述支撑柱与所述基座相对位置固定,以使所述支撑柱随所述基座一同上升。
  6. 根据权利要求1至5中任意一项所述的工艺腔室,其特征在于,所述工艺腔室对应于所述传输腔的侧壁上形成有两个传片口,所述传输机构用于通过两个所述传片口由所述工艺腔室外部获取晶圆,并通过两个所述传片口将晶圆传出所述工艺腔室。
  7. 根据权利要求1至5中任意一项所述的工艺腔室,其特征在于,所述工艺腔室还包括多个密封环,多个所述密封环与多个所述基座一一对应,所述密封环沿周向套设在所述基座的侧壁上,且所述密封环能够在所述基座上升至对应的所述反应腔时密封该反应腔的底部开口。
  8. 根据权利要求7所述的工艺腔室,其特征在于,所述传输腔的顶壁上形成有与多个所述反应腔的底部开口一一对应的多组环形密封槽,每组中的多个所述环形密封槽同心且环绕对应的所述底部开口设置,所述密封环具有朝向所述传输腔的顶壁的环形定位面,所述环形定位面上形成有多个同心 设置的环形凸起部,多个所述环形凸起部与多个所述环形密封槽一一对应;在所述基座上升至所述反应腔时,所述环形凸起部至少部分进入对应的所述环形密封槽中。
  9. 根据权利要求1至5中任意一项所述的工艺腔室,其特征在于,所述传输机构包括驱动部、手指部和多个摆杆部,多个所述摆杆部依次连接在所述驱动部与所述手指部之间,多个所述摆杆部之间以及所述摆杆部与所述驱动部、所述手指部之间均通过铰接轴铰接,且多个所述铰接轴均沿竖直方向延伸,所述驱动部用于分别驱动所述手指部和多个所述摆杆部绕对应的所述铰接轴转动,以及驱动多个所述摆杆部及所述手指部做升降运动。
  10. 一种半导体工艺设备,其特征在于,所述半导体工艺设备包括权利要求1至9中任意一项所述的工艺腔室。
  11. 一种半导体工艺方法,其特征在于,应用于权利要求1至9中任意一项所述的工艺腔室,所述方法包括:
    步骤S1、控制所述传输机构将所述工艺腔室外部的晶圆传输至多个所述基座上;
    步骤S2、控制多个所述基座上升至对应的所述反应腔中,并进行半导体工艺,同时控制所述传输机构将所述工艺腔室外部的晶圆传输至所述承载机构上;
    步骤S3、在所述半导体工艺结束后,控制多个所述基座下降至所述传输腔中,并控制所述传输机构将多个所述基座上的晶圆传出所述工艺腔室;
    步骤S4、控制所述承载机构将其所承载的多个所述晶圆转移至多个所述基座上;
    重复执行所述步骤S2至所述步骤S4。
PCT/CN2022/125007 2021-10-20 2022-10-13 工艺腔室、半导体工艺设备和半导体工艺方法 WO2023066119A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247012279A KR20240055128A (ko) 2021-10-20 2022-10-13 공정 챔버, 반도체 공정 디바이스 및 반도체 공정 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111219963.7A CN113972154A (zh) 2021-10-20 2021-10-20 工艺腔室、半导体工艺设备和半导体工艺方法
CN202111219963.7 2021-10-20

Publications (1)

Publication Number Publication Date
WO2023066119A1 true WO2023066119A1 (zh) 2023-04-27

Family

ID=79587922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125007 WO2023066119A1 (zh) 2021-10-20 2022-10-13 工艺腔室、半导体工艺设备和半导体工艺方法

Country Status (4)

Country Link
KR (1) KR20240055128A (zh)
CN (1) CN113972154A (zh)
TW (1) TWI830432B (zh)
WO (1) WO2023066119A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117080134A (zh) * 2023-10-13 2023-11-17 泓浒(苏州)半导体科技有限公司 一种具有充气密封抗氧化作用晶圆片传送载具
CN117476523A (zh) * 2023-12-25 2024-01-30 浙江果纳半导体技术有限公司 一种晶圆传输方法及晶圆前端传输装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113972154A (zh) * 2021-10-20 2022-01-25 北京北方华创微电子装备有限公司 工艺腔室、半导体工艺设备和半导体工艺方法
CN114512574B (zh) * 2022-04-20 2022-06-17 季华实验室 一种异质结太阳能电池的连续化制造设备
CN115775735B (zh) * 2022-12-02 2023-11-07 江苏东海半导体股份有限公司 一种带有沟槽的碳化硅积累态mosfet制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107076A (ja) * 1994-10-06 1996-04-23 Sony Corp バッチ式減圧cvd装置
CN104752275A (zh) * 2013-12-29 2015-07-01 北京北方微电子基地设备工艺研究中心有限责任公司 工艺腔室以及半导体加工设备
CN105448788A (zh) * 2014-07-01 2016-03-30 北京北方微电子基地设备工艺研究中心有限责任公司 一种反应腔室、晶片传输方法及等离子体加工设备
CN113270360A (zh) * 2021-05-10 2021-08-17 北京北方华创微电子装备有限公司 工艺腔室、晶圆和压环传输方法及半导体工艺设备
CN113972154A (zh) * 2021-10-20 2022-01-25 北京北方华创微电子装备有限公司 工艺腔室、半导体工艺设备和半导体工艺方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9157730B2 (en) * 2012-10-26 2015-10-13 Applied Materials, Inc. PECVD process
CN104752274B (zh) * 2013-12-29 2017-12-19 北京北方华创微电子装备有限公司 工艺腔室以及半导体加工设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107076A (ja) * 1994-10-06 1996-04-23 Sony Corp バッチ式減圧cvd装置
CN104752275A (zh) * 2013-12-29 2015-07-01 北京北方微电子基地设备工艺研究中心有限责任公司 工艺腔室以及半导体加工设备
CN105448788A (zh) * 2014-07-01 2016-03-30 北京北方微电子基地设备工艺研究中心有限责任公司 一种反应腔室、晶片传输方法及等离子体加工设备
CN113270360A (zh) * 2021-05-10 2021-08-17 北京北方华创微电子装备有限公司 工艺腔室、晶圆和压环传输方法及半导体工艺设备
CN113972154A (zh) * 2021-10-20 2022-01-25 北京北方华创微电子装备有限公司 工艺腔室、半导体工艺设备和半导体工艺方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117080134A (zh) * 2023-10-13 2023-11-17 泓浒(苏州)半导体科技有限公司 一种具有充气密封抗氧化作用晶圆片传送载具
CN117080134B (zh) * 2023-10-13 2024-01-30 泓浒(苏州)半导体科技有限公司 一种具有充气密封抗氧化作用晶圆片传送载具
CN117476523A (zh) * 2023-12-25 2024-01-30 浙江果纳半导体技术有限公司 一种晶圆传输方法及晶圆前端传输装置

Also Published As

Publication number Publication date
TW202318547A (zh) 2023-05-01
KR20240055128A (ko) 2024-04-26
TWI830432B (zh) 2024-01-21
CN113972154A (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
WO2023066119A1 (zh) 工艺腔室、半导体工艺设备和半导体工艺方法
WO2023030214A1 (zh) 半导体工艺腔室、半导体工艺设备和半导体工艺方法
KR101287656B1 (ko) 종형 열처리 장치 및 기판 지지구
JP2003017543A (ja) 基板処理装置、基板処理方法、半導体装置の製造方法および搬送装置
US10679878B2 (en) Substrate processing apparatus
KR20080071504A (ko) 종형 열처리 장치 및 그 종형 열처리 장치를 이용한 열처리방법
US20220213594A1 (en) Process module, substrate processing system, and processing method
US20150228520A1 (en) Substrate Transfer Robot and Substrate Processing Apparatus Using The Same
WO2005076343A1 (ja) 半導体処理用の基板保持具及び処理装置
JP6016584B2 (ja) ロードロック装置
JP5728770B2 (ja) 基板処理装置、基板処理方法、ならびに、プログラム
JP4653875B2 (ja) 基板処理装置および半導体装置の製造方法
JP5760617B2 (ja) ローディングユニット及び処理システム
US6860711B2 (en) Semiconductor-manufacturing device having buffer mechanism and method for buffering semiconductor wafers
JP7442349B2 (ja) 基板搬送システムおよびロードロックモジュール
JP7458212B2 (ja) 基板搬送システムおよび基板搬送方法
JP2011018908A (ja) 基板処理装置および半導体装置の製造方法
JP3121022B2 (ja) 減圧処理装置
KR20210100719A (ko) 기상 성장 장치
JP2000021946A (ja) 半導体製造装置
US20230170247A1 (en) Substrate processing apparatus
JP2006062570A (ja) ホイールリムのリークテスト装置
JPH0661329A (ja) ウエハ処理装置のロードロック機構
KR20210053195A (ko) 기판 수용 유닛 및 기판 반송 장치에 있어서의 진공 반송 유닛의 메인테넌스 방법
KR20240028933A (ko) 기판 처리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247012279

Country of ref document: KR

Kind code of ref document: A