WO2023065563A1 - 具有新风装置的空调室内机及其控制方法 - Google Patents

具有新风装置的空调室内机及其控制方法 Download PDF

Info

Publication number
WO2023065563A1
WO2023065563A1 PCT/CN2022/073498 CN2022073498W WO2023065563A1 WO 2023065563 A1 WO2023065563 A1 WO 2023065563A1 CN 2022073498 W CN2022073498 W CN 2022073498W WO 2023065563 A1 WO2023065563 A1 WO 2023065563A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fresh air
heat exchange
angle
indoor unit
Prior art date
Application number
PCT/CN2022/073498
Other languages
English (en)
French (fr)
Inventor
刘宏宝
王永涛
张鹏
黄满良
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023065563A1 publication Critical patent/WO2023065563A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • F24F1/0014Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0022Centrifugal or radial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0025Cross-flow or tangential fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the field of home appliances, in particular to an air conditioner indoor unit with a fresh air device and a control method thereof.
  • the air guide structure at the heat exchange air outlet of the air conditioner indoor unit has a single control mode, and the blowing direction of the heat exchange air is usually a fixed direction.
  • the blowing direction of the heat-exchanging air cannot be adapted to the heat-exchanging mode of the indoor unit of the air conditioner and the operating gear of the fresh air device, resulting in that the heat-exchanging air cannot be fully mixed with the fresh air, and the supply distance of the fresh air is short and the coverage area is small, seriously affecting user experience.
  • An object of the present invention is to provide an air-conditioning indoor unit with a fresh air device and a control method thereof, which at least solve any one of the above-mentioned technical problems.
  • a further object of the present invention is to adapt the blowing direction of the heat exchange airflow of the air conditioner indoor unit with the fresh air device to its heat exchange mode, thereby improving the mixing degree of the heat exchange airflow and the fresh air while ensuring the heat exchange effect.
  • Another further object of the present invention is to make the blowing direction of the heat-exchanging air flow of the air-conditioning indoor unit with the fresh air device adapt to the operating gear of the fresh air device, and use the heat-exchanging air to drive the fresh air to diffuse, thereby increasing the air supply distance of the fresh air and coverage.
  • the present invention provides a method for controlling an air-conditioning indoor unit with a fresh air device, wherein the air-conditioning indoor unit is provided with a heat-exchanging air outlet facing the front side and a fresh air outlet, and the heat-exchanging air outlet is located at the fresh air outlet. A certain distance above, and a rotatable air guide structure is set at the outlet of the heat exchange air flow.
  • the control method includes: obtaining the heat exchange mode of the indoor unit of the air conditioner and the operating gear of the fresh air device; according to the heat exchange mode and the operating gear Determine the target angle of the air guiding structure; control the downward rotation of the air guiding structure until its horizontal angle is the target angle.
  • the step of determining the target angle of the air guide structure according to the heat exchange mode and the operating gear position includes: obtaining an angle correspondence relationship corresponding to the heat exchange mode, and the angle correspondence relationship is used to specify the setting angle corresponding to each operating gear position; according to The angle correspondence determines the set angle corresponding to the acquired operating gear as the target angle.
  • the set angle corresponding to each operating gear increases as the operating gear decreases.
  • the heat exchange mode includes a cooling mode and a heating mode; wherein the setting angle corresponding to each operating gear in the cooling mode is smaller than the corresponding setting angle in the heating mode.
  • the operating gears are divided into three gears; and as the operating gears decrease, the ratio of the setting angle corresponding to the operating gears increases.
  • the increasing ratio of the setting angle corresponding to the operating gear in the cooling mode is greater than the increasing ratio of the setting angle corresponding to the operating gear in the heating mode.
  • the step of obtaining the heat exchange mode of the air-conditioning indoor unit and the operating gear of the fresh air device it also includes: judging whether the fresh air device is turned on; If not, obtain the heat exchange mode of the indoor unit of the air conditioner, and control the rotation of the air guide structure according to the heat exchange mode.
  • the step of controlling the rotation of the air guide structure according to the heat exchange mode includes: judging whether the heat exchange mode is a cooling mode; if so, obtaining a preset first angle value, and controlling the rotation of the air guide structure until its horizontal angle is the first Angle value; if not, determine that the heat exchange mode is heating mode, obtain the preset second angle value, and control the wind guide structure to rotate until its horizontal angle is the second angle value; wherein the first angle value is smaller than the second angle value value.
  • the present invention also provides an air-conditioning indoor unit with a fresh air device, comprising: a casing with a heat-exchanging air outlet and a fresh air outlet arranged toward the front side of the casing, and the heat-exchanging air outlet is located at the fresh air outlet at a certain interval. Above the distance; the wind guide structure is rotatably arranged at the outlet of the heat exchange air; the control module includes a processor and a memory, and a computer program is stored in the memory, and the computer program is used to realize any of the above when executed by the processor.
  • a control method for an air conditioner indoor unit with a fresh air device comprising: a casing with a heat-exchanging air outlet and a fresh air outlet arranged toward the front side of the casing, and the heat-exchanging air outlet is located at the fresh air outlet at a certain interval. Above the distance; the wind guide structure is rotatably arranged at the outlet of the heat exchange air; the control module includes a processor and a memory, and a computer program is stored in the
  • the fresh air device is arranged at one lateral end of the casing, and has a first air outlet set toward the bottom of the casing; the bottom of the casing is also provided with an air supply duct, which is connected with the first air outlet and extends along the machine.
  • the casing is formed by extending in the transverse direction; the fresh air outlet is arranged on the front side of the air supply duct, and is used to deliver fresh air to the outside of the casing.
  • the air-conditioning indoor unit with fresh air device and its control method of the present invention control the wind guide structure to rotate according to the heat exchange mode of the air-conditioning indoor unit and the operating gear of the fresh air device, and adjust the blowing direction of the heat exchange airflow.
  • the blowing direction of the heat exchange airflow is adapted to the heat exchange mode and operating gear.
  • the air-conditioning indoor unit with fresh air device and its control method of the present invention first obtain the angle correspondence relationship corresponding to the heat exchange mode, determine the target angle range of the air guide structure, and control the horizontal angle of the air guide structure and the heat exchange The modes are matched to ensure the heat exchange effect of the heat exchange airflow. Then according to the angle corresponding relationship, determine the set angle corresponding to the obtained operating gear as the target angle, and control the horizontal angle of the air guide structure as the target angle, so that it can further match the operating gear of the fresh air device, so that in While ensuring the heat exchange effect, the diffusion distance and uniformity of the fresh air are improved, thereby improving the user experience.
  • the set angle corresponding to each operating gear of the fresh air device is set to increase as the operating gear weakens, so that The horizontal included angle of the air guiding structure increases as the operating gear decreases, so as to guide the flow direction of the heat exchange airflow to be closer to the fresh air flow as the operating gear decreases.
  • the setting angle corresponding to each operating gear of the fresh air device in the cooling mode is set to be smaller than the corresponding setting angle in the heating mode , so that at each operating gear, the horizontal angle of the air guiding structure in the cooling mode is smaller than the horizontal angle in the heating mode.
  • the blowing direction of the heat exchange airflow in the cooling mode is higher than that in the heating mode, thereby avoiding the discomfort of the user caused by the direct blowing of the cooling airflow to the user, thereby improving the user experience.
  • the air-conditioning indoor unit with fresh air device and its control method of the present invention by setting the increasing ratio of the set angle corresponding to the operating gear as the operating gear decreases, it can better improve the speed change.
  • the mixing degree of the hot air flow with the fresh air when the operating gear is low, thereby ensuring the air supply distance and diffusion speed of the fresh air.
  • the proportion of the setting angle corresponding to the operating gear in the cooling mode is greater than that in the heating mode.
  • the proportion of the corresponding setting angle is increased, so as to improve the degree of mixing between the heat exchange airflow and the fresh air when the operating gear is low in the cooling mode as much as possible, thereby ensuring the air supply distance and diffusion speed of the fresh air.
  • the horizontal angle of the air guide structure in cooling mode is controlled to be the first angle value
  • the air guide structure is controlled at The horizontal included angle in the heating mode is the second angle value.
  • the first angle value is smaller than the second angle value, so that the blowing direction of the heat exchange airflow in the cooling mode is higher than that in the heating mode.
  • Blowing out the heating airflow downward is beneficial to increase the air temperature at the space level where the user is located, thereby improving the user experience.
  • Fig. 1 is a schematic structural view of an air conditioner indoor unit with a fresh air device according to an embodiment of the present invention
  • Fig. 2 is a schematic block diagram of a control module of an air conditioner indoor unit with a fresh air device according to an embodiment of the present invention
  • Fig. 3 is a structural schematic diagram of another angle of an air conditioner indoor unit with a fresh air device according to an embodiment of the present invention
  • Fig. 4 is a schematic structural view of an air conditioner indoor unit with a fresh air device according to another embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of a fresh air device according to an embodiment of the present invention.
  • Fig. 6 is a schematic flowchart of a control method of an air conditioner indoor unit with a fresh air device according to an embodiment of the present invention
  • Fig. 7 is a schematic flowchart of a control method of an air conditioner indoor unit with a fresh air device according to another embodiment of the present invention.
  • Fig. 8 is a schematic flowchart of a control method for an air conditioner indoor unit with a fresh air device according to another embodiment of the present invention.
  • Fig. 9 is a schematic flowchart of a control method of an air conditioner indoor unit with a fresh air device according to another embodiment of the present invention.
  • the orientation of the air-conditioning indoor unit 10 of the fresh air device 300 in normal use is used as a reference, and can be determined by referring to the orientation or positional relationship shown in the drawings.
  • “front” indicating the orientation refers to the air-conditioning indoor unit with the fresh air device 300 10 is the side facing the user during normal use.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • Fig. 1 is a schematic structural diagram of an air conditioner indoor unit 10 with a fresh air device 300 according to an embodiment of the present invention.
  • Fig. 2 is a schematic block diagram of a control module 400 of an air conditioner indoor unit 10 with a fresh air device 300 according to an embodiment of the present invention.
  • this embodiment firstly provides an air conditioner indoor unit 10 with a fresh air device 300 , which may generally include: a casing 100 , an air guiding structure 200 and a control module 400 .
  • the casing 100 has a heat exchange air outlet 110 and a fresh air outlet 120 disposed toward the front of the casing 100 , and the heat exchange air outlet 110 is located above the fresh air outlet 120 at a certain distance.
  • the air guide structure 200 is rotatably disposed at the heat exchange air outlet 110 .
  • the control module 400 includes a processor 410 and a memory 420.
  • a computer program 421 is stored in the memory 420. When the computer program 421 is executed by the processor 410, it is used to realize the control of the air conditioner indoor unit 10 with the fresh air device 300 in any of the following embodiments. method.
  • the heat exchange air outlet 110 is arranged above the fresh air outlet 120 at a certain distance, and the heat exchange air outlet 110 is provided with a rotatable air guiding structure 200 .
  • the rotation angle of the air guide structure 200 By controlling the rotation angle of the air guide structure 200, the direction of the heat exchange airflow is guided, so that the heat exchange airflow is mixed with the fresh air, so that the heat exchange airflow drives the fresh air to spread indoors, thereby increasing the air supply distance and diffusion speed of the fresh air .
  • the air guide structure 200 may include one or more air guide plates to guide the air outlet direction of the heat exchange airflow.
  • the specific number of the wind deflectors can be set according to actual needs.
  • the air conditioner indoor unit 10 with the fresh air device 300 is generally a wall-mounted air conditioner indoor unit.
  • FIG. 3 is a structural schematic view from another angle of the air conditioner indoor unit 10 with the fresh air device 300 according to an embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of an air conditioner indoor unit 10 with a fresh air device 300 according to another embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of a fresh air device 300 according to an embodiment of the present invention.
  • FIG. 3 hides part of the casing 100 in order to better illustrate the position structure of the fresh air device 300 in the casing 100 .
  • FIG. 4 in order to better illustrate the structure of the air guide structure 200 and the air supply duct 130 , part of the casing 100 is hidden.
  • the fresh air device 300 is disposed at one lateral end of the casing 100 and has a first air outlet 310 disposed toward the bottom of the casing 100 .
  • the bottom of the casing 100 is also provided with an air supply duct 130 connected to the first air outlet 310 and extending along the lateral direction of the casing 100 .
  • the fresh air outlet 120 is disposed on the front side of the air supply duct 130 for sending fresh air to the outside of the casing 100 .
  • the whole fresh air outlet 120 is a strip-shaped opening extending along the transverse direction.
  • One end of the air supply duct 130 extending in the lateral direction is connected to the first air outlet 310 of the fresh air device 300, and the strip-shaped fresh air outlet 120 is arranged on the air supply duct 130, thereby improving the ventilation of the fresh air. Air supply range.
  • the fresh air outlet 120 may also be provided with partitions distributed at intervals to divide the fresh air outlet 120 into a plurality of slit holes, so as to improve the uniformity of the fresh air outlet.
  • the air conditioner indoor unit 10 may also include: an air inlet 140 and a heat exchanger.
  • the air inlet 140 is disposed on the top of the casing 100 .
  • the heat exchanger is disposed inside the casing 100 to exchange heat for the air flowing into the casing 100 through the air inlet 140 .
  • the fresh air device 300 can also include a second air outlet 320 , the second air outlet 320 is arranged toward the top of the casing 100 , and part of the airflow blown out by the second air outlet 320 enters the casing from the air inlet 140 100, and exchange heat with the heat exchanger.
  • the fresh air device 300 is provided with the second air outlet 320, and the first air outlet 310 and the second air outlet 320 are used to deliver fresh air at the same time, thereby improving the air outlet range and air volume of the fresh air.
  • the first air outlet 310 and the second air outlet 320 are set at the same time. Compared with the setting of a single air outlet, it not only reduces the wind resistance, reduces the energy consumption of the fan, but also makes The rotational speed of the fan is relatively reduced, thereby reducing the noise of the fan and improving user experience.
  • the second air outlet 320 is set toward the top of the casing 100, so that part of the fresh air can flow to the top of the casing 100, and then enter the casing 100 through the air inlet 140, and exchange heat with the casing 100. Heat exchange with the heat exchanger, so that the fresh air can be better mixed with the heat exchange air flow, thereby further improving the uniformity of the fresh air diffusion.
  • an openable damper 330 is also provided at the second air outlet 320, so that the user can control the air volume and direction of the fresh air by controlling the opening and closing of the damper 330, Thus, the user experience is further improved.
  • the fresh air device 300 may also generally include a fresh air pipe 340 for communicating with the outdoor environment, so as to deliver the fresh air from the outside to the room.
  • the fresh air duct 340 may generally be a soft structure.
  • Fig. 6 is a schematic flowchart of a control method of an air conditioner indoor unit 10 with a fresh air device 300 according to an embodiment of the present invention, and the control method may generally include:
  • step S602 the heat exchange mode of the air conditioner indoor unit 10 and the operating gear of the fresh air device 300 are obtained.
  • Step S604 determining the target angle of the air guide structure 200 according to the heat exchange mode and the operating gear.
  • step S604 may be executed according to step S814 to step S816 in FIG. 8 .
  • Step S606 controlling the wind guide structure 200 to rotate downwards until the horizontal angle is the target angle.
  • the air guide structure 200 is controlled to rotate according to the heat exchange mode of the air conditioner indoor unit 10 and the operating gear of the fresh air device 300, and the blowing direction of the heat exchange airflow is adjusted.
  • the blowing direction of the heat exchange airflow is adapted to the heat exchange mode and the operating gear, and the heat exchange airflow is combined with the fresh air for mixed air supply, thereby increasing the air supply distance and coverage of the fresh air.
  • Fig. 7 is a schematic flowchart of a control method of an air conditioner indoor unit 10 with a fresh air device 300 according to another embodiment of the present invention, the control method includes:
  • Step S702 determine whether the fresh air device 300 is turned on; if yes, execute step S704; if not, execute step S706.
  • step S704 the heat exchange mode of the air conditioner indoor unit 10 and the operating gear of the fresh air device 300 are acquired.
  • Step S706 acquiring the heat exchange mode of the air conditioner indoor unit 10, and controlling the rotation of the air guide structure 200 according to the heat exchange mode.
  • step S706 may be executed according to step S806 to step S812 in FIG. 8 .
  • Step S708 determining the target angle of the air guide structure 200 according to the heat exchange mode and the operating gear.
  • Step S710 controlling the wind guiding structure 200 to rotate downwards until the horizontal angle is the target angle.
  • the air guide structure 200 by judging whether the fresh air device 300 is turned on, and when the fresh air device 300 is not turned on, the air guide structure 200 is set to rotate according to the heat exchange mode of the air conditioner indoor unit 10, and when the fresh air device 300 is turned on , the air guide structure 200 is set to rotate according to the heat exchange mode of the air conditioner indoor unit 10 and the operating gear of the fresh air device 300 .
  • the rotation of the air guide structure 200 is adapted to the opening and closing of the fresh air device 300, the heat exchange mode of the air conditioner indoor unit 10, and the operating gear of the fresh air device 300, thereby ensuring that the flow direction of the heat exchange air flow is consistent with various situations.
  • the heat exchange effect and the fresh air effect of the air conditioner indoor unit 10 are further improved.
  • Fig. 8 is a schematic flowchart of a control method of an air conditioner indoor unit 10 with a fresh air device 300 according to another embodiment of the present invention.
  • the control method includes:
  • Step S802 determine whether the fresh air device 300 is turned on; if yes, execute step S804; if not, execute step S806.
  • step S804 the heat exchange mode of the air conditioner indoor unit 10 and the operating gear of the fresh air device 300 are acquired.
  • step S806 the heat exchange mode of the air conditioner indoor unit 10 is obtained.
  • Step S808 determine whether the heat exchange mode is cooling mode; if yes, execute step S810; if not, execute step S812.
  • Step S810 acquiring a preset first angle value, and controlling the wind guide structure 200 to rotate until its horizontal angle is the first angle value.
  • Step S812 determining that the heat exchange mode is the heating mode, obtaining a preset second angle value, and controlling the rotation of the air guide structure 200 until its horizontal angle is the second angle value.
  • the first angle value is smaller than the second angle value.
  • the heat exchange modes of the air conditioner indoor unit 10 generally include two modes: cooling mode and heating mode.
  • the preset first angle value corresponding to the cooling mode is smaller than the preset second angle value corresponding to the heating mode, so that the horizontal clip of the air guiding structure 200 in the cooling mode
  • the angle is smaller than its horizontal angle in the heating mode, so as to guide the blowing direction of the heat exchange airflow in the cooling mode to be higher than that in the heating mode.
  • it avoids the user's discomfort caused by the direct blowing of the cooling air flow to the user.
  • the heated air is guided to blow downwards, which is conducive to quickly increasing the air temperature at the space level where the user is located, thereby improving the user experience.
  • Step S814 obtaining the angle correspondence relationship corresponding to the heat exchange mode, and the angle correspondence relationship is used to specify the setting angle corresponding to each operating gear.
  • the set angle corresponding to each operating gear increases as the operating gear decreases.
  • the horizontal included angle of the air guiding structure 200 increases as the operating gear decreases, so that the flow direction of the heat exchange airflow is guided closer to the fresh air flow as the operating gear decreases.
  • the scheme of this embodiment improves the mixing degree of the heat exchange air flow and the fresh air by changing the air outlet direction of the heat exchange air flow, and uses the heat exchange air flow to drive the fresh air to diffuse, thereby improving the supply of fresh air when the operating gear of the fresh air device 300 is weakened.
  • the problem of shorter wind distance increases the range and diffusion speed of fresh air.
  • the heat exchange mode includes a cooling mode and a heating mode; the setting angle corresponding to each operating gear in the cooling mode is smaller than the corresponding setting angle in the heating mode.
  • the blowing direction of the cooling airflow is higher than that of the heating airflow, which not only improves the temperature uniformity of the indoor space It also prevents the user from being uncomfortable caused by the cooling airflow blowing directly to the user, and at the same time helps the heating airflow to quickly increase the air temperature at the space level where the user is located, which greatly improves the user experience.
  • step S816 the set angle corresponding to the acquired operating gear is determined as the target angle according to the angle correspondence.
  • the operating gears are divided into three gears; and as the operating gears decrease, the ratio of the setting angle corresponding to the operating gears increases.
  • the increasing ratio of the setting angle corresponding to the operating gear in the cooling mode is greater than the increasing ratio of the setting angle corresponding to the operating gear in the heating mode.
  • Step S818 controlling the wind guide structure 200 to rotate downward until the horizontal angle thereof is the target angle.
  • step S814 to step S818 may be executed according to step S914 to step S938 in FIG. 9 .
  • the ratio between the heat exchange air flow and the fresh air is better improved when the operating gear is low.
  • the degree of mixing ensures the supply distance and diffusion speed of fresh air.
  • the corresponding set angles of each operating gear in the cooling mode are set to be smaller than the corresponding set angles in the heating mode. Therefore, in the solution of this embodiment, it is set that as the operating gear decreases, the proportion of the setting angle corresponding to the operating gear in the cooling mode is larger than the corresponding setting angle in the heating mode.
  • the horizontal angle of the cooling air flow is increased as much as possible when the operating gear of the fresh air device 300 is lowered, so as to improve the mixing degree between the heat exchange air flow and the fresh air, thereby ensuring the supply distance and diffusion speed of the fresh air.
  • Fig. 9 is a schematic flowchart of a control method of an air conditioner indoor unit 10 with a fresh air device 300 according to another embodiment of the present invention, the control method includes:
  • Step S902 determine whether the fresh air device 300 is turned on; if yes, execute step S904; if not, execute step S906.
  • step S904 the heat exchange mode of the air conditioner indoor unit 10 and the operating gear of the fresh air device 300 are obtained.
  • step S906 the heat exchange mode of the air conditioner indoor unit 10 is obtained.
  • Step S908 judging whether the heat exchange mode is cooling mode; if yes, execute step S910; if not, execute step S912.
  • Step S910 acquiring a preset first angle value, and controlling the rotation of the wind guiding structure 200 until its horizontal angle is the first angle value.
  • Step S912 determining that the heat exchange mode is the heating mode, obtaining a preset second angle value, and controlling the rotation of the air guide structure 200 until its horizontal angle is the second angle value.
  • Step S914 determine whether the heat exchange mode is cooling mode; if yes, execute step S916; if not, execute step S918.
  • Step S916 judging whether the operating gear is the high wind gear; if yes, execute step S920; if not, execute step S922.
  • Step S918 determining that the heat exchange mode is the heating mode.
  • Step S920 acquiring the first set angle as the target angle.
  • Step S922 determine whether the operating gear is a stroke gear; if yes, execute step S924; if not, execute step S926.
  • Step S924 acquiring the second set angle as the target angle.
  • step S926 it is determined that the operating gear is the low wind gear, and the third set angle is acquired as the target angle.
  • Step S928, determine whether the operating gear is high wind gear; if yes, execute step S930; if not, execute step S932.
  • Step S930 acquiring the fourth set angle as the target angle.
  • Step S932 judge whether the running gear is a stroke gear; if yes, execute step S934; if not, execute step S936.
  • Step S934 acquiring the fifth set angle as the target angle.
  • step S936 it is determined that the operating gear is the low wind gear, and the sixth set angle is acquired as the target angle.
  • Step S938 controlling the wind guide structure 200 to rotate downward until its horizontal angle is the target angle
  • the heat exchange mode includes two modes: cooling mode and heating mode.
  • the operating gears of the fresh air device 300 include three gears: a high wind gear, a middle wind gear and a low wind gear, wherein the high wind gear, the middle wind gear and the low wind gear The wind force decreases in turn.
  • the setting angles corresponding to the high wind gear, the middle wind gear and the low wind gear are sequentially the first setting angle, the second setting angle and the third setting angle.
  • the setting angles corresponding to the high wind gear, the middle wind gear and the low wind gear are the fourth setting angle, the fourth setting angle and the fourth setting angle in sequence.
  • the air guide structure 200 rotates its horizontal angle to the preset first angle value; in the heating mode, the air guide structure 200 rotates its horizontal angle to the preset first angle value. Set the second angle value.
  • the first angle value is less than the first set angle
  • the first set angle is less than the second set angle
  • the second set angle is less than the third set angle.
  • the third set angle is less than the fourth set angle
  • the fourth set angle is less than the fifth set angle
  • the fifth set angle is less than the sixth set angle.
  • the first angle value is smaller than the second angle value.
  • the first angle value is preset to 35°
  • the first set angle is set to 40°
  • the second set angle is set to 46°
  • the third set angle is set to 55° °
  • the second angle value is preset to 60°
  • the fourth set angle is set to 63°
  • the fifth set angle is set to 68°
  • the sixth set angle is set to 75°.
  • the above angle values may be set to other values according to actual conditions.
  • the air guide structure 200 is controlled to rotate according to the heat exchange mode of the air conditioner indoor unit 10, the opening and closing of the fresh air device 300, and the operating gear of the fresh air device 300, and the blowing direction of the heat exchange airflow is comprehensively adjusted.
  • Adapting the blowing direction of the heat exchange air flow to each heat exchange mode, the opening and closing of the fresh air device 300 and the operating gears of the fresh air device 300 not only improves the heat exchange effect of the heat exchange air flow, but also improves the heat exchange effect by changing the heat exchange air flow and The degree of mixing of the fresh air, using the heat exchange airflow to drive the fresh air, further improves the air supply distance and diffusion speed of the fresh air.

Abstract

一种具有新风装置(300)的空调室内机(10)及其控制方法,其中,空调室内机(10)上设置有朝向前侧的换热气流出风口(110)和新风出风口(120),换热气流出风口(110)位于新风出风口(120)间隔一定距离的上方,并且换热气流出风口(110)处设置有可转动的导风结构(200),控制方法包括:获取空调室内机(10)的换热模式和新风装置(300)的运行档位;根据换热模式和运行档位确定导风结构(200)的目标角度;控制导风结构(200)朝下转动至其水平夹角为目标角度。通过根据空调室内机(10)的换热模式和新风装置(300)的运行档位对导风结构(200)的转动角度进行控制,使换热气流的吹风方向与换热模式及运行档位相适应,使换热气流配合新风进行混合送风,从而提高新风的送风距离及覆盖范围。

Description

具有新风装置的空调室内机及其控制方法 技术领域
本发明涉及家电领域,特别是涉及一种具有新风装置的空调室内机及其控制方法。
背景技术
现有技术中的空调室内机的换热气流出风口处的导风结构控制方式单一,换热气流的吹风方向通常为固定方向。换热气流的吹风方向无法与空调室内机的换热模式及新风装置的运行档位相适应,导致换热气流无法与新风充分混合,且新风的送风距离较短,覆盖面积小,严重影响了用户的使用体验。
发明内容
本发明的一个目的是要提供一种至少解决上述技术问题任一方面的具有新风装置的空调室内机及其控制方法。
本发明一个进一步的目的是要使得具有新风装置的空调室内机的换热气流的吹风方向与其换热模式相适应,从而在保证换热效果的同时,提高换热气流与新风的混合程度。
本发明另一个进一步的目的是要使得具有新风装置的空调室内机的换热气流的吹风方向与新风装置的运行档位相适应,利用换热气流带动新风扩散,从而提高新风的送风距离及覆盖范围。
特别地,本发明提供了一种具有新风装置的空调室内机的控制方法,其中,空调室内机上设置有朝向前侧的换热气流出风口和新风出风口,换热气流出风口位于新风出风口间隔一定距离的上方,并且换热气流出风口处设置有可转动的导风结构,控制方法包括:获取空调室内机的换热模式和新风装置的运行档位;根据换热模式和运行档位确定导风结构的目标角度;控制导风结构朝下转动至其水平夹角为目标角度。
进一步地,根据换热模式和运行档位确定导风结构的目标角度的步骤包括:获取与换热模式对应的角度对应关系,角度对应关系用于规定各运行档位对应的设定角度;根据角度对应关系确定与获取到的运行档位对应的设定角度,作为目标角度。
进一步地,角度对应关系中,各运行档位对应的设定角度随着运行档位的减弱而增大。
进一步地,换热模式包括制冷模式和制热模式;其中各运行档位在制冷模式下对应的设定角度小于其在制热模式下所对应的设定角度。
进一步地,各换热模式下,运行档位分为三档;并且随着运行档位的递减,运行档位所对应的设定角度递增的比例增大。
进一步地,随着运行档位的递减,运行档位在制冷模式下所对应的设定角度递增的比例大于其在制热模式下所对应的设定角度递增的比例。
进一步地,在获取空调室内机的换热模式和新风装置的运行档位的步骤之前,还包括:判断新风装置是否开启;若是,开始执行获取空调室内机的换热模式和新风装置的运行档位的步骤;若否,获取空调室内机的换热模式,并根据换热模式控制导风结构转动。
进一步地,根据换热模式控制导风结构转动的步骤包括:判断换热模式是否为制冷模式;若是,获取预设的第一角度值,并控制导风结构转动至其水平夹角为第一角度值;若否,判定换热模式为制热模式,获取预设的第二角度值,并控制导风结构转动至其水平夹角为第二角度值;其中第一角度值小于第二角度值。
本发明还提供了一种具有新风装置的空调室内机,包括:机壳,具有朝向机壳前侧设置的换热气流出风口和新风出风口,并且换热气流出风口位于新风出风口间隔一定距离的上方;导风结构,可转动地设置于换热气流出风口处;控制模块,包括处理器和存储器,存储器内存储有计算机程序,计算机程序被处理器执行时用于实现上述任一种的具有新风装置的空调室内机的控制方法。
进一步地,新风装置设置于机壳内的横向一端,并具有朝向机壳底部设置的第一排风口;机壳底部还设置有送风风道,与第一排风口相连,并沿机壳的横向方向延伸形成;新风出风口设置于送风风道的前侧,用于向机壳外部输送新风。
本发明的具有新风装置的空调室内机及其控制方法,根据空调室内机的换热模式和新风装置的运行档位控制导风结构进行转动,对换热气流的吹风方向进行调整。使换热气流的吹风方向与换热模式及运行档位相适应,通过提高换热气流与新风的混合程度,利用换热气流带动新风扩散,从而提高新 风的送风距离及覆盖范围。
进一步地,本发明的具有新风装置的空调室内机及其控制方法,先获取与换热模式对应的角度对应关系,确定导风结构的目标角度范围,控制导风结构的水平夹角与换热模式相匹配,从而保证换热气流的换热效果。再根据角度对应关系确定与获取到的运行档位相对应的设定角度作为目标角度,控制导风结构的水平夹角为目标角度,使其进一步与新风装置的运行档位相匹配,从而在保证换热效果的同时,提高新风的扩散距离和扩散均匀性,进而提高了用户的使用体验。
进一步地,本发明的具有新风装置的空调室内机及其控制方法,将角度对应关系中,新风装置的各运行档位对应的设定角度设置为随着运行档位的减弱而增大,使得导风结构的水平夹角随着运行档位的减弱而增大,从而引导换热气流的流动方向随着运行档位的减弱而越发靠近新风气流。通过提高换热气流与新风的混合程度,利用换热气流带动新风扩散,从而改善了新风装置的运行档位减弱时,新风的送风距离变短的问题,提高了新风的送风范围和扩散速度。
进一步地,本发明的具有新风装置的空调室内机及其控制方法,将新风装置的各运行档位在制冷模式下对应的设定角度设置为小于其在制热模式下所对应的设定角度,使得各运行档位下,导风结构在制冷模式下的水平夹角均小于其在制热模式下的水平夹角。换热气流在制冷模式下的吹出方向高于其在制热模式下的吹出方向,从而避免了制冷气流直吹用户造成用户不适,进而提高了用户的使用体验。
进一步地,本发明的具有新风装置的空调室内机及其控制方法,通过设置随着运行档位的递减,运行档位所对应的设定角度递增的比例增大,从而更好地提高了换热气流在运行档位较低时与新风的混合程度,进而保证了新风的送风距离和扩散速度。
进一步地,本发明的具有新风装置的空调室内机及其控制方法,通过设置随着运行档位的递减,运行档位在制冷模式下所对应的设定角度递增的比例大于其在制热模式下所对应的设定角度递增的比例,从而尽可能地提高了制冷模式下,运行档位较低时换热气流与新风之间的混合程度,进而保证了新风的送风距离和扩散速度。
进一步地,本发明的具有新风装置的空调室内机及其控制方法,在新风 装置为关闭的状态下,控制导风结构在制冷模式下的水平夹角为第一角度值,控制导风结构在制热模式下的水平夹角为第二角度值。第一角度值小于第二角度值,使得换热气流在制冷模式下的吹出方向高于其在制热模式下的吹出方向,一方面避免了制冷气流直吹用户造成用户不适,另一方面,将制热气流向下吹出,有利于提高用户所处的空间层面的空气温度,进而提升用户的使用体验。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的具有新风装置的空调室内机的结构示意图;
图2是根据本发明一个实施例的具有新风装置的空调室内机的控制模块的示意框图;
图3是根据本发明一个实施例的具有新风装置的空调室内机的另一角度的结构示意图;
图4是根据本发明另一实施例的具有新风装置的空调室内机的结构示意图;
图5是根据本发明一个实施例的新风装置的结构示意图;
图6是根据本发明一个实施例的具有新风装置的空调室内机的控制方法的流程示意图;
图7是根据本发明另一实施例的具有新风装置的空调室内机的控制方法的流程示意图;
图8是根据本发明另一实施例的具有新风装置的空调室内机的控制方法的流程示意图;
图9是根据本发明另一实施例的具有新风装置的空调室内机的控制方法的流程示意图。
具体实施方式
以下将结合附图1-9所示的具体实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
在本发明的描述中,需要理解的是,术语“横向”、“上”、“下”、“前”、“后”、“顶”、“底”等指示的方位或位置关系为基于具有新风装置300的空调室内机10在正常使用状态下的方位作为参考,并参考附图所示的方位或位置关系可以确定,例如指示方位的“前”指的是具有新风装置300的空调室内机10在正常的使用过程中朝向用户的一侧。这仅仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
图1是根据本发明一个实施例的具有新风装置300的空调室内机10的结构示意图。图2是根据本发明一个实施例的具有新风装置300的空调室内机10的控制模块400的示意框图。
如图1-2所示,本实施例首先提供了一种具有新风装置300的空调室内机10,其一般性地可以包括:机壳100,导风结构200和控制模块400。
其中,机壳100具有朝向机壳100前侧设置的换热气流出风口110和新风出风口120,并且换热气流出风口110位于新风出风口120间隔一定距离的上方。导风结构200可转动地设置于换热气流出风口110处。控制模块400,包括处理器410和存储器420,存储器420内存储有计算机程序421,计算机程序421被处理器410执行时用于实现以下任一实施例的具有新风装置300的空调室内机10的控制方法。
本实施例的方案中,换热气流出风口110设置于新风出风口120间隔一定距离的上方,并且换热气流出风口110处设置有可转动的导风结构200。通过控制导风结构200的转动角度对换热气流的出风方向进行引导,使换热气流与新风相混合,从而利用换热气流带动新风向室内扩散,进而提高新风的送风距离和扩散速度。
本实施例的方案中,导风结构200可以包括一个或多个导风板,以引导换热气流的出风方向。其中,导风板的具体数量可以根据实际需求进行设置。
此外,本实施例的方案中,具有新风装置300的空调室内机10一般为壁挂式空调室内机。
图3是根据本发明一个实施例的具有新风装置300的空调室内机10的另一角度的结构示意图。图4是根据本发明另一实施例的具有新风装置300的空调室内机10的结构示意图。图5是根据本发明一个实施例的新风装置300的结构示意图。其中,图3为了更好地示出新风装置300在机壳100内的位置结构,隐去了部分机壳100。图4为了更好地示出导风结构200和送风风道130的结构,隐去了部分机壳100。
如图3、4所示,新风装置300设置于机壳100内的横向一端,并具有朝向机壳100底部设置的第一排风口310。机壳100底部还设置有送风风道130,与第一排风口310相连,并沿机壳100的横向方向延伸形成。新风出风口120设置于送风风道130的前侧,用于向机壳100外部输送新风。
本实施例的方案中,新风出风口120整体为沿横向方向延伸设置的长条状开口。将沿横向方向延伸形成的送风风道130的一端连接至新风装置300的第一排风口310,并设置送风风道130上具有长条状的新风出风口120,从而提高了新风的送风范围。
此外,在另一些实施例中,新风出风口120处还可以设置有间隔分布的分隔件,以将新风出风口120分隔为多个狭缝孔,从而提高新风的出风均匀性。
空调室内机10一般性地还可以包括:进风口140和换热器。进风口140设置于机壳100的顶部。换热器设置于机壳100的内部,以对流经进风口140进入机壳100内部的空气进行换热。
如图3所示,新风装置300还可以包括第二排风口320,第二排风口320朝向机壳100的顶部设置,部分第二排风口320吹出的气流从进风口140进入机壳100内,并与换热器换热。
本实施例的方案,设置新风装置300具有第二排风口320,利用第一排风口310和第二排风口320同时输送新风,从而提高了新风的出风范围和出风量。
进一步地,本实施例的方案,同时设置第一排风口310和第二排风口 320,相比于单一排风口的设置,不仅减小了风阻,降低了风机的能耗,而且使得风机的转速相对降低,从而减小了风机的噪声,提高了用户的使用体验。
进一步地,本实施例的方案,将第二排风口320设置为朝向机壳100顶部,使得部分新风能够流向机壳100的顶部,然后再通过进风口140进入机壳100内,与换热器进行换热,使得新风能够更好地与换热气流混合,从而进一步提高了新风的扩散均匀性。
如图5所示,本实施例的方案,在第二排风口320处还设置可开闭的风门330,使得用户能够通过控制风门330的开闭对新风的风量和新风的方向进行控制,从而进一步提高了用户的使用体验。
本实施例的方案中,新风装置300一般性地还可以包括新风管340,用于连通室外环境,以将外界新风输送至室内。其中,新风管340一般性地可以为软质结构。
图6是根据本发明一个实施例的具有新风装置300的空调室内机10的控制方法的流程示意图,该控制方法一般可以包括:
步骤S602,获取空调室内机10的换热模式和新风装置300的运行档位。
步骤S604,根据换热模式和运行档位确定导风结构200的目标角度。
其中,执行步骤S604的详细流程可以按照图8中的步骤S814至步骤S816执行。
步骤S606,控制导风结构200朝下转动至其水平夹角为目标角度。
本实施例的方案,根据空调室内机10的换热模式和新风装置300的运行档位控制导风结构200进行转动,对换热气流的吹风方向进行调整。使换热气流的吹风方向与换热模式及运行档位相适应,使换热气流配合新风进行混合送风,从而提高新风的送风距离及覆盖范围。
图7是根据本发明另一实施例的具有新风装置300的空调室内机10的控制方法的流程示意图,该控制方法包括:
步骤S702,判断新风装置300是否开启;若是,执行步骤S704;若否,执行步骤S706。
步骤S704,获取空调室内机10的换热模式和新风装置300的运行档位。
步骤S706,获取空调室内机10的换热模式,并根据换热模式控制导风结构200转动。
其中,执行步骤S706的详细流程可以按照图8中的步骤S806至步骤S812执行。
步骤S708,根据换热模式和运行档位确定导风结构200的目标角度。
步骤S710,控制导风结构200朝下转动至其水平夹角为目标角度。
本实施例的方案,通过判断新风装置300是否开启,并在新风装置300没有开启的情况下,设置导风结构200根据空调室内机10的换热模式进行转动,在新风装置300开启的情况下,设置导风结构200根据空调室内机10的换热模式和新风装置300的运行档位进行转动。使得导风结构200的转动与新风装置300的开闭、空调室内机10的换热模式以及新风装置300的运行档位等相适应,从而保证了换热气流的流动方向与各种不同的情况相适应,进而提高了空调室内机10的换热效果以及新风效果。
图8是根据本发明另一实施例的具有新风装置300的空调室内机10的控制方法的流程示意图,该控制方法包括:
步骤S802,判断新风装置300是否开启;若是,执行步骤S804;若否,执行步骤S806。
步骤S804,获取空调室内机10的换热模式和新风装置300的运行档位。
步骤S806,获取空调室内机10的换热模式。
步骤S808,判断换热模式是否为制冷模式;若是,执行步骤S810;若否,执行步骤S812。
步骤S810,获取预设的第一角度值,并控制导风结构200转动至其水平夹角为第一角度值。
步骤S812,判定换热模式为制热模式,获取预设的第二角度值,并控制导风结构200转动至其水平夹角为第二角度值。
其中,第一角度值小于第二角度值。
该实施例的方案中,空调室内机10的换热模式一般性地包括制冷模式和制热模式两种模式。在新风装置300关闭的情况下,与制冷模式相对应的预设的第一角度值小于与制热模式相对应的预设的第二角度值,使得导风结构200在制冷模式下的水平夹角小于其在制热模式下的水平夹角,从而引导换热气流在制冷模式下的吹出方向高于其在制热模式下的吹出方向。一方面,避免了制冷气流直吹用户造成用户不适。另一方面,由于冷气下沉热气上升的原理,引导制热气流向下吹出,有利于快速提高用户所处的空间层面 的空气温度,进而提升用户的使用体验。
步骤S814,获取与换热模式对应的角度对应关系,角度对应关系用于规定各运行档位对应的设定角度。
其中,角度对应关系中,各运行档位对应的设定角度随着运行档位的减弱而增大。使得导风结构200的水平夹角随着运行档位的减弱而增大,从而引导换热气流的流动方向随着运行档位的减弱而越发靠近新风气流。该实施例的方案,通过改变换热气流的出风方向,提高换热气流与新风的混合程度,利用换热气流带动新风扩散,从而改善了新风装置300的运行档位减弱时,新风的送风距离变短的问题,提高了新风的送风范围和扩散速度。
此外,换热模式包括制冷模式和制热模式;各运行档位在制冷模式下对应的设定角度小于其在制热模式下所对应的设定角度。
由于冷气下沉、热气上升的原理,该实施例的方案,设置新风装置300的各个运行档位中,制冷气流的吹风方向均高于制热气流的吹风方向,不仅提高了室内空间的温度均匀性,而且避免了制冷气流直吹用户造成用户不适,同时有利于制热气流快速提高用户所处的空间层面的空气温度,极大地提升了用户的使用体验。
步骤S816,根据角度对应关系确定与获取到的运行档位对应的设定角度,作为目标角度。
其中,各换热模式下,运行档位分为三档;并且随着运行档位的递减,运行档位所对应的设定角度递增的比例增大。
此外,随着运行档位的递减,运行档位在制冷模式下所对应的设定角度递增的比例大于其在制热模式下所对应的设定角度递增的比例。
步骤S818,控制导风结构200朝下转动至其水平夹角为目标角度。
其中,该实施例的方案中,执行步骤S814至步骤S818的详细流程可以按照图9中的步骤S914至步骤S938执行。
该实施例的方案,通过设置随着运行档位的递减,运行档位所对应的设定角度递增的比例增大,从而更好地提高了换热气流在运行档位较低时与新风的混合程度,进而保证了新风的送风距离和扩散速度。
进一步地,为了避免制冷气流直接吹向用户导致用户不适,各运行档位在制冷模式下所对应的设定角度均被设置为小于其在制热模式下所对应的设定角度。因此,该实施例的方案,设置随着运行档位的递减,运行档位在 制冷模式下所对应的设定角度递增的比例大于其在制热模式下所对应的设定角度递增的比例,使得制冷气流的水平夹角,在新风装置300的运行档位降低时,尽可能地增大,从而提高换热气流与新风之间的混合程度,进而保证了新风的送风距离和扩散速度。
图9是根据本发明另一实施例的具有新风装置300的空调室内机10的控制方法的流程示意图,该控制方法包括:
步骤S902,判断新风装置300是否开启;若是,执行步骤S904;若否,执行步骤S906。
步骤S904,获取空调室内机10的换热模式和新风装置300的运行档位。
步骤S906,获取空调室内机10的换热模式。
步骤S908,判断换热模式是否为制冷模式;若是,执行步骤S910;若否,执行步骤S912。
步骤S910,获取预设的第一角度值,并控制导风结构200转动至其水平夹角为第一角度值。
步骤S912,判定换热模式为制热模式,获取预设的第二角度值,并控制导风结构200转动至其水平夹角为第二角度值。
步骤S914,判断换热模式是否为制冷模式;若是,执行步骤S916;若否,执行步骤S918。
步骤S916,判断运行档位是否为高风档位;若是,执行步骤S920;若否,执行步骤S922。
步骤S918,判定换热模式为制热模式。
步骤S920,获取第一设定角度作为目标角度。
步骤S922,判断运行档位是否为中风档位;若是,执行步骤S924;若否,执行步骤S926。
步骤S924,获取第二设定角度作为目标角度。
步骤S926,判定运行档位为低风档位,获取第三设定角度作为目标角度。
步骤S928,判断运行档位是否为高风档位;若是,执行步骤S930;若否,执行步骤S932。
步骤S930,获取第四设定角度作为目标角度。
步骤S932,判断运行档位是否为中风档位;若是,执行步骤S934;若 否,执行步骤S936。
步骤S934,获取第五设定角度作为目标角度。
步骤S936,判定运行档位为低风档位,获取第六设定角度作为目标角度。
步骤S938,控制导风结构200朝下转动至其水平夹角为目标角度
该实施例的方案中,换热模式包括制冷模式和制热模式两种模式。在新风装置300开启的状态下,新风装置300的运行档位包括高风档位、中风档位和低风档位三个档位,其中,高风档位、中风档位和低风档位的风力依次递减。
在制冷模式下,高风档位、中风档位和低风档位所对应的设定角度依次为第一设定角度、第二设定角度和第三设定角度。在制热模式下,高风档位、中风档位和低风档位所对应的设定角度依次为第四设定角度、第四设定角度和第四设定角度。
在新风装置300未开启的状态下,在制冷模式下,导风结构200转动其水平夹角为预设的第一角度值,在制热模式下,导风结构200转动其水平夹角为预设的第二角度值。
其中,第一角度值小于第一设定角度,第一设定角度小于第二设定角度,第二设定角度小于第三设定角度。第三设定角度小于第四设定角度,第四设定角度小于第五设定角度,第五设定角度小于第六设定角度。且第一角度值小于第二角度值。
在一些优选地实施例中,第一角度值被预设为35°,第一设定角度被设置为40°,第二设定角度被设置为46°,第三设定角度被设置为55°,第二角度值被预设为60°,第四设定角度被设置为63°,第五设定角度被设置为68°,第六设定角度被设置为75°。在另一些实施例中,上述角度值均可以根据实际情况被设置为其它数值。
该实施例的方案,根据空调室内机10的换热模式、新风装置300的开闭以及新风装置300的运行档位控制导风结构200进行转动,对换热气流的吹风方向进行综合调整。使换热气流的吹风方向与各换热模式、新风装置300的开闭情况以及新风装置300的各运行档位相适应,不仅提高了换热气流的换热效果,而且通过改变换热气流与新风的混合程度,利用换热气流带动新风,进一步提高了新风的送风距离及扩散速度。
本领域技术人员应该了解上述流程仅为本发明的几个应用实例,可以在上述的实施例对具有新风装置300的空调室内机10的控制方法的介绍的基础上调整步骤的执行顺序以及增删部分步骤。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种具有新风装置的空调室内机的控制方法,其中,所述空调室内机上设置有朝向前侧的换热气流出风口和新风出风口,所述换热气流出风口位于所述新风出风口间隔一定距离的上方,并且所述换热气流出风口处设置有可转动的导风结构,所述控制方法包括:
    获取所述空调室内机的换热模式和所述新风装置的运行档位;
    根据所述换热模式和所述运行档位确定所述导风结构的目标角度;
    控制所述导风结构朝下转动至其水平夹角为所述目标角度。
  2. 根据权利要求1所述的具有新风装置的空调室内机的控制方法,其中,所述根据所述换热模式和所述运行档位确定所述导风结构的目标角度的步骤包括:
    获取与所述换热模式对应的角度对应关系,所述角度对应关系用于规定各所述运行档位对应的设定角度;
    根据所述角度对应关系确定与获取到的所述运行档位对应的设定角度,作为所述目标角度。
  3. 根据权利要求2所述的具有新风装置的空调室内机的控制方法,其中,
    所述角度对应关系中,各所述运行档位对应的设定角度随着所述运行档位的减弱而增大。
  4. 根据权利要求3所述的具有新风装置的空调室内机的控制方法,其中,
    所述换热模式包括制冷模式和制热模式;其中
    各所述运行档位在所述制冷模式下对应的设定角度小于其在所述制热模式下所对应的设定角度。
  5. 根据权利要求4所述的具有新风装置的空调室内机的控制方法,其中,
    各所述换热模式下,所述运行档位分为三档;并且
    随着所述运行档位的递减,所述运行档位所对应的设定角度递增的比例增大。
  6. 根据权利要求4所述的具有新风装置的空调室内机的控制方法,其中,
    随着所述运行档位的递减,所述运行档位在所述制冷模式下所对应的设定角度递增的比例大于其在所述制热模式下所对应的设定角度递增的比例。
  7. 根据权利要求1所述的具有新风装置的空调室内机的控制方法,其中,在所述获取所述空调室内机的换热模式和所述新风装置的运行档位的步骤之前,还包括:
    判断所述新风装置是否开启;
    若是,开始执行所述获取所述空调室内机的换热模式和所述新风装置的运行档位的步骤;
    若否,获取所述空调室内机的换热模式,并根据所述换热模式控制所述导风结构转动。
  8. 根据权利要求7所述的具有新风装置的空调室内机的控制方法,其中,所述根据所述换热模式控制所述导风结构转动的步骤包括:
    判断所述换热模式是否为制冷模式;
    若是,获取预设的第一角度值,并控制所述导风结构转动至其水平夹角为所述第一角度值;
    若否,判定所述换热模式为制热模式,获取预设的第二角度值,并控制所述导风结构转动至其水平夹角为所述第二角度值;其中
    所述第一角度值小于所述第二角度值。
  9. 一种具有新风装置的空调室内机,包括:
    机壳,具有朝向所述机壳前侧设置的换热气流出风口和新风出风口,并且所述换热气流出风口位于所述新风出风口间隔一定距离的上方;
    导风结构,可转动地设置于所述换热气流出风口处;
    控制模块,包括处理器和存储器,所述存储器内存储有计算机程序,所述计算机程序被所述处理器执行时用于实现根据权利要求1至8中任一项所 述的具有新风装置的空调室内机的控制方法。
  10. 根据权利要求9所述的具有新风装置的空调室内机,其中,
    所述新风装置设置于所述机壳内的横向一端,并具有朝向所述机壳底部设置的第一排风口;
    所述机壳底部还设置有送风风道,与所述第一排风口相连,并沿所述机壳的横向方向延伸形成;
    所述新风出风口设置于所述送风风道的前侧,用于向所述机壳外部输送新风。
PCT/CN2022/073498 2021-05-20 2022-01-24 具有新风装置的空调室内机及其控制方法 WO2023065563A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202110553065 2021-05-20
CN202111221634.6A CN113932301B (zh) 2021-05-20 2021-10-20 具有新风装置的空调室内机及其控制方法
CN202111221634.6 2021-10-20

Publications (1)

Publication Number Publication Date
WO2023065563A1 true WO2023065563A1 (zh) 2023-04-27

Family

ID=78996724

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/CN2022/073498 WO2023065563A1 (zh) 2021-05-20 2022-01-24 具有新风装置的空调室内机及其控制方法
PCT/CN2022/073500 WO2023065565A1 (zh) 2021-05-20 2022-01-24 壁挂式新风空调室内机及空调器
PCT/CN2022/073499 WO2023065564A1 (zh) 2021-05-20 2022-01-24 壁挂式新风空调室内机及空调器
PCT/CN2022/073501 WO2023065566A1 (zh) 2021-05-20 2022-01-24 壁挂式新风空调室内机及空调器

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/CN2022/073500 WO2023065565A1 (zh) 2021-05-20 2022-01-24 壁挂式新风空调室内机及空调器
PCT/CN2022/073499 WO2023065564A1 (zh) 2021-05-20 2022-01-24 壁挂式新风空调室内机及空调器
PCT/CN2022/073501 WO2023065566A1 (zh) 2021-05-20 2022-01-24 壁挂式新风空调室内机及空调器

Country Status (2)

Country Link
CN (20) CN216693755U (zh)
WO (4) WO2023065563A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216693755U (zh) * 2021-05-20 2022-06-07 青岛海尔空调器有限总公司 壁挂式空调室内机
CN114413389A (zh) * 2022-01-10 2022-04-29 珠海格力电器股份有限公司 新风装置及其控制方法
CN114811926A (zh) * 2022-06-02 2022-07-29 珠海格力电器股份有限公司 导流结构及具有其的空调室内机
CN115479311A (zh) * 2022-09-20 2022-12-16 青岛海尔空调器有限总公司 新风装置、空调器室内机及空调器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4752142B2 (ja) * 2001-07-09 2011-08-17 三菱電機株式会社 空気調和機用室内機
CN105627442A (zh) * 2016-03-16 2016-06-01 沈增友 一种矢量送风技术及风道结构
CN106322647A (zh) * 2016-08-17 2017-01-11 青岛海尔空调器有限总公司 空调出风控制方法
CN109751736A (zh) * 2018-12-29 2019-05-14 广东美的暖通设备有限公司 用于风管式空调器的控制方法、装置及风管式空调器
CN111412600A (zh) * 2020-03-31 2020-07-14 宁波奥克斯电气股份有限公司 一种新风空调控制方法
CN212869974U (zh) * 2020-07-31 2021-04-02 海信(山东)空调有限公司 空调器室内机
CN112902385A (zh) * 2021-02-03 2021-06-04 珠海格力电器股份有限公司 控制方法、新风系统及空调器
CN113932301A (zh) * 2021-05-20 2022-01-14 青岛海尔空调器有限总公司 具有新风装置的空调室内机及其控制方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3315444A1 (de) * 1983-04-28 1984-10-31 Philips Patentverwaltung Gmbh, 2000 Hamburg Vorrichtung zum belueften und heizen von innenraeumen, insbesondere wohnraeumen
CN2676085Y (zh) * 2003-12-26 2005-02-02 东风汽车有限公司 一种送风管道
WO2017049540A1 (zh) * 2015-09-24 2017-03-30 孙海潮 一种分体空调加湿换新风室内机
CN106595013B (zh) * 2017-01-24 2022-05-24 珠海格力电器股份有限公司 一种空调出风面板及空调设备
CN106839378A (zh) * 2017-01-24 2017-06-13 珠海格力电器股份有限公司 出风面板和空调装置
CN106595010A (zh) * 2017-01-24 2017-04-26 珠海格力电器股份有限公司 一种空调导风面板及空调装置
CN106949615B (zh) * 2017-03-17 2019-06-07 珠海格力电器股份有限公司 出风结构、空调器的出风方法和空调器
CN107084482B (zh) * 2017-04-13 2020-04-24 青岛海尔空调器有限总公司 空调室内壁挂机及其控制方法
CN107314522A (zh) * 2017-07-31 2017-11-03 广东美的制冷设备有限公司 空调器室内机和空调器
CN107388382B (zh) * 2017-08-21 2024-01-23 广东美的制冷设备有限公司 空调器
CN207584912U (zh) * 2017-11-10 2018-07-06 青岛海尔空调器有限总公司 壁挂式空调的室内机
WO2019159241A1 (ja) * 2018-02-13 2019-08-22 三菱電機株式会社 空調システム、空調制御装置、空調制御方法及びプログラム
CN108626837A (zh) * 2018-03-05 2018-10-09 中国矿业大学 一种柱式均匀送风装置与方法
CN108469063A (zh) * 2018-03-12 2018-08-31 青岛海尔空调器有限总公司 壁挂式空调器室内机
CN108386917B (zh) * 2018-04-20 2021-04-20 青岛海尔空调器有限总公司 一种新风空调室内机
CN108562023B (zh) * 2018-04-27 2020-12-22 广东美的制冷设备有限公司 空调器的控制方法、空调器及计算机可读存储介质
CN208920300U (zh) * 2018-07-16 2019-05-31 青岛海尔空调器有限总公司 新风导风组件及新风空调室内挂机
CN110887121A (zh) * 2018-08-15 2020-03-17 青岛海尔空调器有限总公司 一种新风空调室内机
CN209857189U (zh) * 2018-12-26 2019-12-27 美的集团武汉制冷设备有限公司 空调室内机和空调器
CN109990389A (zh) * 2019-04-29 2019-07-09 广东美的制冷设备有限公司 空调器
CN110926002A (zh) * 2019-11-27 2020-03-27 同济大学 一种可调式汇流分配器
CN110986167A (zh) * 2019-12-04 2020-04-10 珠海格力电器股份有限公司 空调室内机
CN111043662A (zh) * 2019-12-30 2020-04-21 Tcl空调器(中山)有限公司 新风空调室内机和新风空调器
CN211601045U (zh) * 2019-12-31 2020-09-29 浙江美尔凯特智能厨卫股份有限公司 均匀出风的空调系统
CN212319880U (zh) * 2020-05-19 2021-01-08 广东美的制冷设备有限公司 空调器
CN212132679U (zh) * 2020-05-19 2020-12-11 广东美的制冷设备有限公司 空调器
CN212408873U (zh) * 2020-06-30 2021-01-26 广东美的制冷设备有限公司 新风模块及空调室内机
CN212869983U (zh) * 2020-07-31 2021-04-02 海信(山东)空调有限公司 空调室内机和空调器
CN212431090U (zh) * 2020-08-19 2021-01-29 青岛海尔空调器有限总公司 壁挂式空调室内机
CN212431089U (zh) * 2020-08-19 2021-01-29 青岛海尔空调器有限总公司 用于壁挂式空调室内机的射流装置及壁挂式空调室内机
CN213272872U (zh) * 2020-09-14 2021-05-25 青岛海尔空调器有限总公司 新风空调器及柜式新风空调器
CN112113276B (zh) * 2020-10-15 2022-07-19 青岛海尔空调器有限总公司 壁挂式空调室内机
CN112432337B (zh) * 2020-11-27 2021-11-16 珠海格力电器股份有限公司 风口位置调控方法、装置、空调及存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4752142B2 (ja) * 2001-07-09 2011-08-17 三菱電機株式会社 空気調和機用室内機
CN105627442A (zh) * 2016-03-16 2016-06-01 沈增友 一种矢量送风技术及风道结构
CN106322647A (zh) * 2016-08-17 2017-01-11 青岛海尔空调器有限总公司 空调出风控制方法
CN109751736A (zh) * 2018-12-29 2019-05-14 广东美的暖通设备有限公司 用于风管式空调器的控制方法、装置及风管式空调器
CN111412600A (zh) * 2020-03-31 2020-07-14 宁波奥克斯电气股份有限公司 一种新风空调控制方法
CN212869974U (zh) * 2020-07-31 2021-04-02 海信(山东)空调有限公司 空调器室内机
CN112902385A (zh) * 2021-02-03 2021-06-04 珠海格力电器股份有限公司 控制方法、新风系统及空调器
CN113932301A (zh) * 2021-05-20 2022-01-14 青岛海尔空调器有限总公司 具有新风装置的空调室内机及其控制方法

Also Published As

Publication number Publication date
CN216814380U (zh) 2022-06-24
CN216814381U (zh) 2022-06-24
CN216693755U (zh) 2022-06-07
CN115371137A (zh) 2022-11-22
CN216693754U (zh) 2022-06-07
WO2023065564A1 (zh) 2023-04-27
CN115371138A (zh) 2022-11-22
CN216693752U (zh) 2022-06-07
CN216744602U (zh) 2022-06-14
CN216693753U (zh) 2022-06-07
CN113959008A (zh) 2022-01-21
CN113932301B (zh) 2023-08-18
WO2023065566A1 (zh) 2023-04-27
CN113932301A (zh) 2022-01-14
CN216716378U (zh) 2022-06-10
CN115388464A (zh) 2022-11-25
CN216693751U (zh) 2022-06-07
CN216744603U (zh) 2022-06-14
CN216693750U (zh) 2022-06-07
CN113864882A (zh) 2021-12-31
CN115388466A (zh) 2022-11-25
WO2023065565A1 (zh) 2023-04-27
CN115388465A (zh) 2022-11-25
CN113864880A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
WO2023065563A1 (zh) 具有新风装置的空调室内机及其控制方法
WO2019047858A1 (zh) 壁挂式空调室内机及其控制方法
US11391475B2 (en) Radiant air conditioning system for controlling comfortable and healthy indoor environment based on infrared sensing technology
WO2019024825A1 (zh) 壁挂式空调室内机及其控制方法
WO2020000551A1 (zh) 空气调节设备的导风条控制方法、装置和空气调节设备
US11752832B2 (en) Peak demand response operation of HVAC systems
WO2020133845A1 (zh) 空调器及其控制方法
WO2020000837A1 (zh) 空气调节设备的导风条控制方法、装置和空气调节设备
WO2019024819A1 (zh) 空调装置的控制方法
WO2021036402A1 (zh) 空调器及其送风控制方法
CN110410970B (zh) 用于空调室内机的控制方法及空调室内机
CN108006924B (zh) 空调及其控制方法
WO2023029596A1 (zh) 空调及其控制方法
CN102840655A (zh) 空调系统
WO2024066656A1 (zh) 空调器的控制方法
CN111503737B (zh) 空调设备和运行控制方法、计算机可读存储介质
WO2023246706A1 (zh) 立式空调室内机
CN211177121U (zh) 壁挂式空调室内机及具有其的空调器
WO2023236581A1 (zh) 引流混风空调系统及引流混风方法
CN111473492A (zh) 空调器的控制方法、空调器及计算机可读存储介质
WO2023029657A1 (zh) 壁挂空调器的送风控制方法与壁挂空调器
CN111503738B (zh) 空调设备和运行控制方法、计算机可读存储介质
CN205191772U (zh) 移动空调
CN211233472U (zh) 空调器用笛子管装置及空调器
CN209310130U (zh) 空调器室内机和空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882189

Country of ref document: EP

Kind code of ref document: A1