WO2023065178A1 - 电极组件、电池、电池模块、电池包及用电装置 - Google Patents

电极组件、电池、电池模块、电池包及用电装置 Download PDF

Info

Publication number
WO2023065178A1
WO2023065178A1 PCT/CN2021/125093 CN2021125093W WO2023065178A1 WO 2023065178 A1 WO2023065178 A1 WO 2023065178A1 CN 2021125093 W CN2021125093 W CN 2021125093W WO 2023065178 A1 WO2023065178 A1 WO 2023065178A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
electrode assembly
coating
sio
3cao
Prior art date
Application number
PCT/CN2021/125093
Other languages
English (en)
French (fr)
Inventor
黄玉平
马云建
林明峰
李彦辉
张建平
陈冰
刘雨蒙
夏志钰
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2021/125093 priority Critical patent/WO2023065178A1/zh
Priority to JP2023502991A priority patent/JP7567101B2/ja
Priority to KR1020237001540A priority patent/KR20230058043A/ko
Priority to CN202180091940.4A priority patent/CN116830374A/zh
Priority to EP21944411.4A priority patent/EP4195395A4/en
Priority to US18/182,375 priority patent/US20230231271A1/en
Publication of WO2023065178A1 publication Critical patent/WO2023065178A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application belongs to the technical field of batteries, and specifically relates to an electrode assembly, a battery, a battery module, a battery pack and an electrical device.
  • Rechargeable batteries have the advantages of high energy density, long cycle life, reliable working performance, no pollution, no memory effect, etc., so they are widely used. In recent years, with the application and promotion of rechargeable batteries in various electronic products and new energy vehicles, their safety performance has received more and more attention.
  • Traditional batteries include prismatic batteries and cylindrical batteries. Compared with prismatic batteries, cylindrical batteries have the advantages of good structural stability, fewer components, and simple preparation processes.
  • Cylindrical batteries usually use a wound electrode assembly, wherein the wound electrode assembly is formed by winding a positive electrode sheet, a separator, and a negative electrode sheet, and the center of the wound electrode assembly forms a central hole.
  • the center hole collapse refers to the phenomenon that the center hole is partially blocked or completely blocked during the process of battery formation and cycle charge and discharge. The collapse of the central hole will make it difficult for the battery to vent and increase the safety risk, which will seriously affect the cycle performance of the battery.
  • the purpose of this application is to provide an electrode assembly, a battery, a battery module, a battery pack and an electrical device, aiming at solving the problem of the collapse of the electrode assembly and the central hole of the battery, and improving the safety performance and cycle performance of the battery.
  • the first aspect of the present application provides an electrode assembly, including a first pole piece, a second pole piece opposite in polarity to the first pole piece, and a separator provided between the first pole piece and the second pole piece film, the electrode assembly is obtained by winding a first pole piece, a second pole piece and a separator, the separator includes a base film and a coating disposed on at least a part of the surface of the base film, the coating includes a A hydraulically hardening inorganic material that can be hardened by water reaction.
  • a coating containing a hydraulic inorganic material is provided on the surface of the base film, and the principle that the hydraulic inorganic material can be hardened by reacting with water can significantly increase the strength of the separator, making it difficult for the battery to be formed during the formation process and the cycle charge and discharge process. Deformation, thereby effectively inhibiting the collapse of the central hole and dendrite growth, improving the safety performance of the battery and extending the cycle life of the battery.
  • the hydraulic inorganic material includes at least one compound represented by formula 1,
  • the first oxide represents CaO, or BaO
  • the second oxide represents component 1, component 2, or a combination thereof
  • component 1 Represents SiO 2 , Al 2 O 3 , Fe 2 O 3 , or a combination of two or more thereof
  • component 2 represents FeO, MgO, BaO, K 2 O, Na 2 O, TiO 2 , CuO, Cr 2 O 3.
  • sulfate means CaSO 4 , MgSO 4 , BaSO 4 , SrSO 4 , ZnSO 4 , Al 2 ( SO 4 ) 3 , FeSO 4 , Fe 2 (SO 4 ) 3 , or a combination of two or more thereof
  • the halide represents CaCl 2 , CaF 2 , or a combination thereof.
  • the compound represented by the above formula 1 can effectively inhibit the collapse of the central pore and the growth of dendrites without significantly affecting the electrochemical performance of the battery.
  • the weight ratio of component 1 and component 2 is (95-100):(0-5).
  • the weight ratio of component 1 and component 2 is in an appropriate range, it is beneficial to adjust the compressive strength and heat of hydration of the coating, so that the coating can have an appropriate compressive strength after reacting with water, and at the same time react with water No excess heat will be released afterwards.
  • the hydraulic inorganic material includes one or more of the compounds shown in formula 1-1 to formula 1-8,
  • sulfate means CaSO 4 , MgSO 4 , BaSO 4 , SrSO 4 , ZnSO 4 , Al 2 (SO 4 ) 3 , FeSO 4 , Fe 2 (SO 4 ) 3 , or two or more of them
  • the combination of species, the halide represents CaCl 2 , CaF 2 , or a combination thereof.
  • the hydraulic inorganic material includes 2CaO ⁇ SiO 2 , 3CaO ⁇ SiO 2 , CaO ⁇ Al 2 O 3 , CaO ⁇ 2Al 2 O 3 , 3CaO ⁇ Al 2 O 3 , 6CaO ⁇ 2Al 2 O 3.
  • the hydraulic inorganic material includes one or more of 2CaO ⁇ SiO 2 , 3CaO ⁇ SiO 2 , 3CaO ⁇ Al 2 O 3 , 4CaO ⁇ Al 2 O 3 ⁇ Fe 2 O 3 .
  • the hydraulic inorganic material is particles having a volume particle diameter Dv10 of 1 ⁇ m to 10 ⁇ m.
  • the hydraulic inorganic material is particles with a volume particle diameter Dv10 of 3 ⁇ m ⁇ 5 ⁇ m.
  • the volume particle diameter Dv10 of the hydraulic inorganic material particles is within an appropriate range, the consistency of the coating is higher.
  • the mass percentage of the hydraulic inorganic material is 95% to 100%.
  • the mass percentage of the hydraulically settable inorganic material is 97%-100%.
  • the coating further includes additives, and the additives include one or more of water reducing agent, gypsum, volcanic ash, fly ash, slag, quartz sand, limestone, and clay.
  • the additive can play the role of adjusting the compressive strength of the coating, adjusting the coagulation speed of the coating and water reaction, and reducing the heat of hydration.
  • the mass percentage of the additive is ⁇ 5%.
  • the mass percentage of the additive is ⁇ 3%.
  • the total thickness of the coating is 0.5 ⁇ m ⁇ 5 ⁇ m.
  • the total thickness of the coating is 0.5 ⁇ m ⁇ 2 ⁇ m.
  • the base film has a thickness of 5 ⁇ m ⁇ 12 ⁇ m.
  • the base film has a thickness of 6 ⁇ m ⁇ 7 ⁇ m.
  • the base film is selected from one or more of polyolefin porous films, non-woven fabrics, and glass fibers.
  • the heat of hydration of the coating within 2 days of reacting with water is 300J/g-500J/g. After the coating reacts with water, it has an appropriate heat release. On the one hand, it can increase the transmission speed of active ions between the positive and negative electrodes of the battery, improve the cycle performance and rate performance of the battery, and on the other hand, ensure that it will not affect other electrochemical components of the battery. performance.
  • the coating has a compressive strength of 2,500 Pa to 20,000 Pa after reacting with water and hardening.
  • the coating has a compressive strength of 2500Pa-10000Pa after reacting with water and hardening.
  • the coating has a high compressive strength after reacting with water. Therefore, the separator is not easy to deform during the battery formation process and cycle charge and discharge process, and can effectively inhibit the collapse of the central hole and dendrite growth, improve the safety performance of the battery and prolong the battery life. cycle life.
  • the coating is located in the area from 0 cm to L cm from the winding starting end of the separator, 10 ⁇ L ⁇ 20.
  • the coating containing the hydraulic inorganic material is only arranged in the local area of the winding start end of the separator, so that the mass energy density of the battery is not significantly reduced while effectively suppressing the collapse of the central hole and the growth of dendrites.
  • the second aspect of the present application provides a battery, which includes an electrode assembly and an electrolyte, wherein the electrode assembly is the electrode assembly of the battery according to the first aspect of the application, and the electrolyte includes an electrolyte salt and water.
  • the electrolyte of the present application uses water as a solvent, after the coating comprising the hydraulic inorganic material is infiltrated with the electrolyte, the hydraulic inorganic material in the coating can react with the solvent water and fully harden the coating, thereby significantly increasing The strength of the isolation membrane. Therefore, the separator is not easily deformed during the formation process of the battery and the cycle charge and discharge process, and can effectively inhibit the collapse of the central hole and the growth of dendrites, improve the safety performance of the battery and prolong the cycle life of the battery.
  • the battery is a lithium ion battery, a sodium ion battery, a potassium ion battery, a zinc ion battery, a calcium ion battery, a magnesium ion battery, an aluminum ion battery, or a mixed ion battery.
  • the third aspect of the present application provides a battery module, which includes the battery of the second aspect of the present application.
  • a fourth aspect of the present application provides a battery pack, which includes one of the battery of the second aspect of the present application and the battery module of the third aspect.
  • the fifth aspect of the present application provides an electric device, which includes at least one of the battery of the second aspect of the present application, the battery module of the third aspect, and the battery pack of the fourth aspect.
  • the battery module, battery pack and electric device of the present application include the battery provided by the present application, and thus have at least the same advantages as the battery.
  • Figure 1 is a schematic diagram of the center hole of a cylindrical battery before and after the collapse.
  • Fig. 2 is a schematic diagram of an embodiment of an electrical device including the battery of the present application as a power source.
  • ranges disclosed herein are defined in terms of lower and upper limits, and a given range is defined by selecting a lower limit and an upper limit that define the boundaries of the particular range. Ranges defined in this manner may be inclusive or exclusive and may be combined arbitrarily, ie any lower limit may be combined with any upper limit to form a range. For example, if ranges of 60-120 and 80-110 are listed for a particular parameter, it is understood that ranges of 60-110 and 80-120 are contemplated. Additionally, if the minimum range values 1 and 2 are listed, and if the maximum range values 3, 4, and 5 are listed, the following ranges are all expected: 1-3, 1-4, 1-5, 2- 3, 2-4 and 2-5.
  • the numerical range "a-b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range "0-5" indicates that all real numbers between "0-5" have been listed in this article, and "0-5" is only an abbreviated representation of the combination of these values.
  • a certain parameter is an integer ⁇ 2
  • the method includes steps (a) and (b), which means that the method may include steps (a) and (b) performed in sequence, and may also include steps (b) and (a) performed in sequence.
  • steps (c) means that step (c) may be added to the method in any order, for example, the method may include steps (a), (b) and (c) , may also include steps (a), (c) and (b), may also include steps (c), (a) and (b) and so on.
  • the “comprising” and “comprising” mentioned in this application mean open or closed.
  • the “comprising” and “comprising” may mean that other components not listed may be included or included, or only listed components may be included or included.
  • the term "or” is inclusive unless otherwise stated.
  • the phrase "A or B” means “A, B, or both A and B.” More specifically, the condition "A or B” is satisfied by either of the following: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; or both A and B are true (or exist).
  • Figure 1 is a schematic diagram of the center hole of a cylindrical battery before and after the collapse.
  • the central part of the cylindrical battery has a central hole, which is prone to collapse during battery formation and cycle charging and discharging.
  • the internal gap of the battery increases (for example, the gap between the positive electrode sheet and the negative electrode sheet increases), so that dendrites are easy to grow, which affects the safety performance of the battery and reduces the cycle life of the battery.
  • the collapse of the central hole is affected by factors such as the rate of battery formation gas production, the coating weight of the pole piece, the thickness of the current collector, and the rebound rate of the pole piece.
  • the hardness of the isolation membrane can be increased to a certain extent by arranging a ceramic coating on the surface of the base membrane of the isolation membrane, but the hardness of the isolation membrane is still low, which cannot effectively inhibit the collapse of the central hole.
  • the inventors improved the structure of the separator, and proposed an electrode assembly and a battery that can effectively suppress the collapse of the central hole.
  • the battery of the present application includes a casing, an electrode assembly, an end cap, and an electrolyte.
  • the electrode assembly is arranged in the casing, and the end cap is arranged on the casing.
  • the electrolyte infiltrates the electrode assembly and acts as a mechanism for conducting active ions between the positive electrode and the negative electrode. effect.
  • the electrolyte includes electrolyte salt and water, and the type of electrolyte salt is not limited, and can be selected according to actual needs.
  • the material of the casing is not specifically limited, for example, it may be a hard plastic casing, an aluminum casing, a steel casing, or the like.
  • the battery of the present application may be a lithium ion battery, a sodium ion battery, a potassium ion battery, a zinc ion battery, a calcium ion battery, a magnesium ion battery, an aluminum ion battery, or a mixed ion battery.
  • the term "mixed ion battery” refers to a battery in which there are two or more active ion deintercalation reactions between the positive and negative electrodes of the battery.
  • the electrolyte of a mixed ion battery contains two or more active ions, for example including Two or more of lithium ions, sodium ions, potassium ions, zinc ions, calcium ions, magnesium ions, and aluminum ions.
  • the mixed-ion battery may include a lithium-sodium mixed-ion battery, a sodium-zinc mixed-ion battery, a sodium-potassium mixed-ion battery, and the like.
  • the electrode assembly of the present application includes a first pole piece, a second pole piece opposite in polarity to the first pole piece, and a separator arranged between the first pole piece and the second pole piece, the electrode assembly Obtained by winding a first pole piece, a second pole piece, and a separator, the separator includes a base film and a coating provided on at least a part of the surface of the base film, the coating includes water that can be cured by reacting with water Hard inorganic materials.
  • the inventors unexpectedly found that by providing a coating containing hydraulic inorganic materials on the surface of the base film, and utilizing the principle that the hydraulic inorganic materials can be hardened by reacting with water, the strength of the separator can be significantly increased, so that it can be used in the formation process of the battery and cycle charge and discharge. It is not easy to deform during the process, thereby effectively inhibiting the collapse of the central hole and the growth of dendrites, improving the safety performance of the battery and extending the cycle life of the battery.
  • the electrolyte of the present application uses water as a solvent, after the coating comprising the hydraulic inorganic material is infiltrated with the electrolyte, the hydraulic inorganic material in the coating can react with the solvent water and fully harden the coating, thereby significantly increasing The strength of the isolation membrane. Therefore, the separator is not easily deformed during the formation process of the battery and the cycle charge and discharge process, and can effectively inhibit the collapse of the central hole and the growth of dendrites, improve the safety performance of the battery and prolong the cycle life of the battery.
  • the electrode assembly of the present application is a wound electrode assembly, and the shape of the end surface of the electrode assembly is not subject to specific restrictions, and can be selected according to actual needs.
  • the end face of the electrode assembly is in a regular shape such as a circle, an ellipse, or a rectangle, and the end face of the electrode assembly can also be in an irregular shape.
  • the hydraulic inorganic material includes at least one compound represented by Formula 1.
  • the first oxide represents CaO, or BaO
  • the second oxide represents component 1, component 2, or a combination thereof
  • Component 1 represents SiO 2 , Al 2 O 3 , Fe 2 O 3 , or a combination of two or more thereof
  • component 2 represents FeO, MgO, BaO, K 2 O, Na 2 O, TiO 2 , CuO, Cr 2 O 3 , P 2 O 5 , SO 3 , or a combination of two or more thereof
  • sulfate means CaSO 4 , MgSO 4 , BaSO 4 , SrSO 4 , ZnSO 4 , Al 2 (SO 4 ) 3 , FeSO 4.
  • Fe 2 (SO 4 ) 3 or a combination of two or more thereof
  • the halide represents CaCl 2 , CaF 2 , or a combination thereof.
  • the reaction product of the compound shown in formula 1 and water includes one or more of gel, hydrate, Ca(OH) 2 , etc., and the compound shown in formula 1 can have appropriate compressive strength after reacting with water.
  • the water reacts without releasing excess heat. Therefore, the compound represented by the above formula 1 can effectively inhibit the collapse of the central hole and the growth of dendrites without significantly affecting the electrochemical performance of the battery.
  • the weight ratio of component 1 and component 2 is (95-100):(0-5).
  • the weight ratio of component 1 and component 2 is in an appropriate range, it is beneficial to adjust the compressive strength and heat of hydration of the coating, so that the coating can have an appropriate compressive strength after reacting with water, and at the same time react with water No excess heat will be released afterwards.
  • the second oxide represents component 1 only.
  • b 0.
  • the content of sulfate is moderate, which is beneficial to adjust the compressive strength and heat of hydration of the coating, so that the coating can have an appropriate compressive strength after reacting with water, and at the same time, it will not release excessive heat after reacting with water.
  • c 0.
  • the content of halide is moderate, which is beneficial to adjust the compressive strength and heat of hydration of the coating, so that the coating can have an appropriate compressive strength after reacting with water, and at the same time, excessive heat will not be released after reacting with water.
  • the compound represented by formula 1 can be prepared according to conventional methods in the art, for example, by high-temperature solid-state reaction.
  • An exemplary preparation method is as follows: uniformly mix Ca source or Ba source, M1 element precursor, optional SO 3 , optional halogen precursor, etc. in a certain molar ratio, and calcinate at high temperature to obtain the compound shown in Formula 1.
  • M1 is selected from one or more of Si, Al, Fe, K, Na, Mg, Ba, Ti, Cu, Cr, Sr, Zn and the like.
  • the calcination temperature is 800°C-1600°C.
  • the Ca source includes but not limited to one or more of CaO, CaCO 3 , and Ca(OH) 2 .
  • the Ba source includes but not limited to one or more of BaO, BaCO 3 , Ba(OH) 2 .
  • the precursor of the M1 element includes, but is not limited to, one or more of oxides, hydroxide compounds, sulfuric acid compounds, hydrochloric acid compounds, nitric acid compounds, carbonic acid compounds, and acetic acid compounds of the M1 element.
  • the precursors of M1 elements are SiO 2 , Al(OH) 3 , Al 2 O 3 , Fe 2 O 3 , FeO, K 2 O, Na 2 O, MgO, BaO, TiO 2 , CuO, Cr 2 O 3 , One or more of SrO and ZnO.
  • the halogen precursor includes but not limited to one or more of ammonium fluoride, hydrogen fluoride, ammonium chloride, and hydrogen chloride.
  • the hydraulically settable inorganic material includes a compound represented by formula 1-1, and sulfate and halide are as defined herein.
  • the hydraulically settable inorganic material includes the compound shown in formula 1-2, and the sulfate and halide are as defined herein.
  • the hydraulic inorganic material includes compounds represented by formulas 1-3, and the sulfate and halide are as defined herein.
  • the hydraulically settable inorganic material includes compounds represented by formulas 1-4, and sulfates and halides are as defined herein.
  • 0 ⁇ a4 ⁇ 2, 0 ⁇ a5 ⁇ 2, and 0 ⁇ a4+a5 ⁇ 3, 0 ⁇ b ⁇ 4, c 0.
  • 0 ⁇ a4 ⁇ 2, 0 ⁇ a5 ⁇ 2, and 0 ⁇ a4+a5 ⁇ 3, b 0, 0 ⁇ c ⁇ 4.
  • the hydraulic inorganic material includes compounds represented by formulas 1-5, and the sulfate and halide are as defined herein.
  • 0 ⁇ a6 ⁇ 2, 0 ⁇ a7 ⁇ 2, and 0 ⁇ a6+a7 ⁇ 3, 0 ⁇ b ⁇ 4, c 0.
  • 0 ⁇ a6 ⁇ 2, 0 ⁇ a7 ⁇ 2, and 0 ⁇ a6+a7 ⁇ 3, b 0, 0 ⁇ c ⁇ 4.
  • the hydraulically settable inorganic material includes compounds represented by formulas 1-6, and the sulfate and halide are as defined herein.
  • the hydraulic inorganic material includes compounds represented by formulas 1-7, and the sulfate and halide are as defined herein.
  • the hydraulically settable inorganic material includes compounds represented by formulas 1-8, and the sulfate and halide are as defined herein.
  • 0 ⁇ a10 ⁇ 2, 0 ⁇ a11 ⁇ 2, and 0 ⁇ a10+a11 ⁇ 3, 0 ⁇ b ⁇ 4, c 0.
  • 0 ⁇ a10 ⁇ 2, 0 ⁇ a11 ⁇ 2, and 0 ⁇ a10+a11 ⁇ 3, b 0, 0 ⁇ c ⁇ 4.
  • the hydraulic inorganic material includes two or more of the compounds shown in formula 1-1 to formula 1-8. At this time, it is beneficial to adjust the compressive strength and heat of hydration of the coating, so that The coating can have appropriate compressive strength after reacting with water, and at the same time, it will not release excessive heat after reacting with water.
  • the hydraulic inorganic material includes 2CaO ⁇ SiO 2 , 3CaO ⁇ SiO 2 , CaO ⁇ Al 2 O 3 , CaO ⁇ 2Al 2 O 3 , 3CaO ⁇ Al 2 O 3 , 6CaO ⁇ 2Al 2 O 3 , 12CaO ⁇ 7Al 2 O 3 , CaO ⁇ Fe 2 O 3 , 2CaO ⁇ Fe 2 O 3 , 2CaO ⁇ Al 2 O 3 ⁇ SiO 2 , CaO ⁇ Al 2 O 3 ⁇ 2SiO 2 , 4CaO ⁇ Al 2 O 3 ⁇ Fe 2 O 3 , 6CaO ⁇ Al 2 O 3 ⁇ 2Fe 2 O 3 , 3CaO ⁇ 3Al 2 O 3 ⁇ CaSO 4 , 3CaO ⁇ 3Al 2 O 3 ⁇ MgSO 4 , 3CaO ⁇ 3Al 2 O 3 ⁇ BaSO 4 , 3CaO
  • the hydraulic inorganic material includes one or more of 2CaO ⁇ SiO 2 , 3CaO ⁇ SiO 2 , 3CaO ⁇ Al 2 O 3 , 4CaO ⁇ Al 2 O 3 ⁇ Fe 2 O 3 .
  • the hydraulic inorganic material is particles with a volume particle diameter Dv10 of 1 ⁇ m ⁇ 10 ⁇ m.
  • the volume particle diameter Dv10 of the hydraulic inorganic material particles is 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m or any value above.
  • the hydraulic inorganic material is particles with a volume particle diameter Dv10 of 3 ⁇ m ⁇ 5 ⁇ m. When the volume particle diameter Dv10 of the hydraulic inorganic material particles is within an appropriate range, the consistency of the coating is higher.
  • the hydraulic inorganic material based on the total mass of the coating, has a mass percentage of 95%-100%.
  • the mass percentage of the hydraulic inorganic material is 97%-100%.
  • the coating further includes additives, which can adjust the compressive strength of the coating, adjust the coagulation speed of the coating and water reaction, and reduce the heat of hydration.
  • the additive includes but is not limited to one or more of water-reducing admixture, gypsum, pozzolan, fly ash, slag, quartz sand, limestone, and clay.
  • the gypsum includes one or more of natural dihydrate gypsum, anhydrite, hemihydrate gypsum, phosphogypsum, and desulfurized gypsum.
  • the types of the additives are not specifically limited, and can be selected according to actual needs.
  • the water reducer can be a polycarboxylate water reducer.
  • These additives may be used alone or in combination of two or more. Based on the total mass of the coating, the mass percentage of the additive is ⁇ 5%. For example, the mass percentage of the additive is ⁇ 4.5%, ⁇ 4%, ⁇ 3.5%, ⁇ 3%, ⁇ 2.5%, ⁇ 2%, ⁇ 1.5%, ⁇ 1%, ⁇ 0.5%, or 0% .
  • the base film has a thickness of 5 ⁇ m ⁇ 12 ⁇ m.
  • the base film has a thickness of 6 ⁇ m ⁇ 7 ⁇ m.
  • the isolation film can have high ionic conductivity while having sufficient compressive strength.
  • the porosity of the base film is 30%-50%.
  • the porosity of the base film is 35%-50%.
  • the isolation membrane can have high ion conductivity while having sufficient compressive strength.
  • the type of the base membrane is not particularly limited, and any known porous structure membrane with good chemical stability and mechanical stability can be selected.
  • the base film is selected from one or more of polyolefin porous films, non-woven fabrics, and glass fibers.
  • the base film can be a single-layer film or a multi-layer composite film.
  • the materials of each layer are the same or different.
  • the material of the base film can be selected from polyethylene, polypropylene, polyimide, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polyamide, polyethylene terephthalate one or more of.
  • the base film has two opposing surfaces in its thickness direction, and the coating layer is provided on either one or both of the two surfaces of the base film.
  • the total thickness of the coating is 0.5 ⁇ m ⁇ 5 ⁇ m.
  • total thickness of the coating layer refers to the sum of the thicknesses of the coating layers provided on both surfaces of the base film.
  • the thickness of the coating is the total thickness of the coating; when the coating is arranged on both of the two surfaces of the base film , the sum of the coating thicknesses is the total thickness of the coating.
  • the total thickness of the coating is 0.5 ⁇ m, 1.0 ⁇ m, 1.5 ⁇ m, 2.0 ⁇ m, 2.5 ⁇ m, 3.0 ⁇ m, 3.5 ⁇ m, 4.0 ⁇ m, 4.5 ⁇ m, 5.0 ⁇ m or any of the above ranges.
  • the total thickness of the coating is 0.5 ⁇ m ⁇ 2 ⁇ m.
  • the heat of hydration of the coating within 2 days of reacting with water is 300J/g-500J/g.
  • the heat of hydration within 2 days of the coating reacting with water is 300J/g, 310J/g, 320J/g, 330J/g, 340J/g, 350J/g, 360J/g, 370J/g, 380J/g g, 390J/g, 400J/g, 410J/g, 420J/g, 430J/g, 440J/g, 450J/g, 460J/g, 470J/g, 480J/g, 490J/g, 500J/g or A range consisting of any of the above values.
  • the coating can have an appropriate heat release after reacting with water. On the one hand, it can increase the transmission speed of active ions between the positive and negative electrodes of the battery and improve the cycle performance of the battery. And rate performance, on the other hand to ensure that it will not affect other electrochemical performance of the battery.
  • the coating has a compressive strength of 2,500 Pa to 20,000 Pa after reacting with water and hardening.
  • the compressive strength after the coating reacts with water to harden is 2500Pa, 3000Pa, 4000Pa, 5000Pa, 6000Pa, 7000Pa, 8000Pa, 9000Pa, 10000Pa, 11000Pa, 12000Pa, 13000Pa, 14000Pa, 15000Pa, 16000Pa, 17000Pa, 18000Pa, The range formed by 19000Pa, 20000Pa or any value above.
  • the compressive strength of the coating after reacting with water to harden is 2500Pa ⁇ 18000Pa, 2500Pa ⁇ 16000Pa, 2500Pa ⁇ 14000Pa, 2500Pa ⁇ 12000Pa, 2500Pa ⁇ 10000Pa, 2500Pa ⁇ 9000Pa, 2500Pa ⁇ 8000Pa, 2500Pa ⁇ 7000Pa, 2500Pa ⁇ 6000Pa, or 2500Pa ⁇ 5000Pa.
  • the coating can have a higher compressive strength after reacting with water, so that the separator is not easy to deform during the battery formation process and cycle charge and discharge process, and can effectively inhibit the center Pore collapse and dendrite growth improve the safety performance of the battery and prolong the cycle life of the battery.
  • Heat of hydration is a well-known meaning in the art, and can be measured with instruments and methods known in the art.
  • the heat of hydration of the coating was measured using a TAM Air Thermal Activity Microcalorimeter (from TA Instruments, USA).
  • An exemplary test method is as follows: take a freshly prepared barrier film for testing, sample the coating in an optional area of the barrier film (for example, use a razor blade to sample), weigh the mass of all samples collected; Put all the samples of the sample into the ampoule, use the syringe on the electric stirrer to draw the metered water, then insert the electric stirrer into the ampoule, and then put the electric stirrer and the ampoule together in the measurement of the microcalorimeter Finally, inject the water in the syringe into the ampoule, start stirring and record, and get the total heat release during the test period. Wherein, the test period is 48 hours, and the test temperature is room temperature.
  • Compressive strength is a well-known meaning in the art, and can be measured with instruments and methods known in the art.
  • the separator sample can be taken directly from a freshly prepared separator, or obtained from a battery.
  • an exemplary test method is as follows: Take a freshly prepared sample of a single-sided coated separator for testing, and if it is a double-sided coated separator, wipe off the coating on one side first ; The isolation film is placed in deionized water to make the coating fully react with water and harden; the isolation film is taken out from the deionized water, fully dried and placed in a compressive strength tester (for example, YN-200-400 microcomputer compressive strength tester) Strength tester) for testing to obtain the failure load when the isolation film is destroyed.
  • a compressive strength tester for example, YN-200-400 microcomputer compressive strength tester
  • Strength tester for example, YN-200-400 microcomputer compressive strength tester
  • the loading speed is 0.4MPa/s-0.6MPa/s.
  • an exemplary test method is as follows: after the battery is fully charged, the separator is disassembled, and the fully hardened area at the beginning of the winding is taken for testing. If the separator is double-sided coated, it can be wiped first. Remove the coating on one side; place the isolation film in an oven to fully dry (for example, 45°C, 30min) to remove excess electrolyte, and then place it on a compressive strength tester (for example, YN-200-400 microcomputer compressive strength Tester) to test to obtain the failure load when the isolation film is damaged.
  • the loading speed is 0.4MPa/s-0.6MPa/s.
  • the coating is located in the area from 0 cm to L cm from the winding start end of the separator, 10 ⁇ L ⁇ 20.
  • the coating containing the hydraulic inorganic material is only arranged in the partial area of the winding start end of the separator, so that the mass energy density of the battery is not significantly reduced while effectively suppressing the collapse of the central hole and the growth of dendrites. Therefore, the electrode assembly of the present application can simultaneously have high safety performance and high energy density.
  • the isolation film can be prepared according to conventional methods in the art.
  • An exemplary preparation method is as follows: dissolve the hydraulic inorganic material and optional additives in an organic solvent and mix them thoroughly to form a uniform coating slurry; apply the coating slurry to the surface of the base film, and dry Then get the isolation film.
  • the type of the organic solvent is not specifically limited, and can be selected according to actual needs.
  • the organic solvent is selected from dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and the like.
  • the pH of the electrolyte is 5-9.
  • the pH of the electrolyte is 7.
  • the concentration of the electrolyte salt may be 0.5 mol/L ⁇ 2.0 mol/L.
  • the concentration of the electrolyte salt is 1.0 mol/L.
  • electrolyte salts include, but are not limited to, Li 2 SO 4 , LiNO 3 , LiCl, LiCF 3 SO 3 , Na 2 SO 4 , NaNO 3 , NaCl, NaCF 3 SO 3 , K 2 SO 4 , KNO 3 , KCl, KCF 3 SO 3 , ZnSO 4 , Zn(NO 3 ) 2 , ZnCl 2 , Zn(CF 3 SO 3 ) 2 , Ca(NO 3 ) 2 , CaCl 2 , Ca(CF 3 SO 3 ) 2.
  • MgSO 4 Mg(NO 3 ) 2 , MgCl 2 , Mg(CF 3 SO 3 ) 2 , Sr(NO 3 ) 2 , SrCl 2 , Sr(CF 3 SO 3 ) 2 , Ba(NO 3 ) 2 , One or more of BaCl 2 , Ba(CF 3 SO 3 ) 2 , Al 2 (SO 4 ) 3 , Al(NO 3 ) 3 , AlCl 3 , Al(CF 3 SO 3 ) 3 .
  • additives are optionally included in the electrolyte.
  • additives can include negative electrode film-forming additives, positive electrode film-forming additives, and additives that can improve certain performances of batteries, such as additives that improve battery overcharge performance, additives that improve battery high-temperature performance, and additives that improve battery low-temperature performance. Additives etc.
  • the first pole piece is a positive pole piece
  • the second pole piece is a negative pole piece.
  • the first pole piece is a negative pole piece
  • the second pole piece is a positive pole piece.
  • the positive pole piece may include a positive current collector and a positive film layer disposed on at least one surface of the positive current collector.
  • the positive electrode current collector has two opposite surfaces in its thickness direction, and the positive electrode film layer is disposed on any one or both of the two surfaces of the positive electrode current collector.
  • the positive electrode film layer usually includes a positive electrode active material, an optional conductive agent and an optional binder.
  • the positive electrode film layer is usually formed by coating the positive electrode slurry on the positive electrode current collector, drying and cold pressing.
  • the positive electrode slurry is usually formed by dispersing the positive electrode active material, an optional conductive agent, an optional binder and any other components in a solvent and stirring them uniformly.
  • the solvent may be deionized water, N-methylpyrrolidone (NMP), but is not limited thereto.
  • the binder used for the positive film layer includes polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, vinylidene fluoride-hexafluoropropylene -Tetrafluoroethylene terpolymer, tetrafluoroethylene-hexafluoropropylene copolymer, fluorinated acrylate resin, styrene-butadiene rubber (SBR), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyacrylamide (PAM ), polyvinyl alcohol (PVA), sodium alginate (SA), polymethacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PTFE vinylidene fluoride-tetrafluoroethylene-propylene
  • the conductive agent used for the positive electrode film layer includes one or more of superconducting carbon, conductive graphite, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the positive current collector can be a metal foil or a composite current collector.
  • the metal foil aluminum foil may be used for the positive electrode current collector.
  • the composite current collector may include a polymer material base and a metal material layer formed on at least one surface of the polymer material base.
  • the metal material may be selected from one or more of aluminum, aluminum alloy, nickel, nickel alloy, titanium, titanium alloy, silver, and silver alloy.
  • the polymer material base layer can be selected from polypropylene (PP), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polystyrene (PS), poly Ethylene (PE), etc.
  • the negative electrode sheet includes a negative electrode collector and a negative electrode film arranged on at least one surface of the negative electrode collector.
  • the negative electrode current collector has two opposite surfaces in its thickness direction, and the negative electrode membrane is disposed on any one or both of the two surfaces of the negative electrode current collector.
  • the negative electrode film layer usually includes negative electrode active materials, optional binders, optional conductive agents and other optional additives.
  • the negative electrode film layer is usually coated with the negative electrode slurry on the negative electrode current collector, dried, cold pressed made.
  • the negative electrode slurry is usually formed by dispersing the negative electrode active material, optional conductive agent, optional binder and any other components in a solvent and stirring them evenly.
  • the solvent may be deionized water, N-methylpyrrolidone (NMP), but is not limited thereto.
  • the binder used for the negative film layer includes polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, vinylidene fluoride-hexafluoropropylene -Tetrafluoroethylene terpolymer, tetrafluoroethylene-hexafluoropropylene copolymer, fluorinated acrylate resin, styrene-butadiene rubber (SBR), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyacrylamide (PAM ), polyvinyl alcohol (PVA), sodium alginate (SA), polymethacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PTFE vinylidene fluoride-tetrafluoroethylene-propylene
  • the conductive agent used in the negative electrode film layer includes one or more of superconducting carbon, conductive graphite, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • other additives for the negative electrode film layer include thickeners, such as carboxymethylcellulose sodium (CMC-Na).
  • the negative electrode current collector can be metal foil or composite current collector.
  • the metal foil copper foil can be used.
  • the composite current collector may include a polymer material base and a metal material layer formed on at least one surface of the polymer material base.
  • the metal material may be selected from one or more of copper, copper alloy, nickel, nickel alloy, titanium, titanium alloy, silver, and silver alloy.
  • the polymer material base layer can be selected from polypropylene (PP), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polystyrene (PS), poly Ethylene (PE), etc.
  • the positive electrode active material and the negative electrode active material can be materials known in the art for lithium-ion batteries, sodium-ion batteries, potassium-ion batteries, zinc-ion batteries, calcium-ion batteries, magnesium-ion batteries, aluminum-ion batteries, or mixed-ion batteries.
  • the positive electrode active material is selected from materials whose intercalation potential of active ions (for example, lithium ions, sodium ions, potassium ions, zinc ions, calcium ions, magnesium ions, aluminum ions, etc.) is lower than the oxygen evolution potential of water.
  • the negative electrode active material is selected from materials whose intercalation potential of active ions (for example, lithium ions, sodium ions, potassium ions, zinc ions, calcium ions, magnesium ions, aluminum ions, etc.) is higher than the oxygen evolution potential of water.
  • positive electrode active materials include transition metal oxide materials, polyanion materials (for example, olivine structure, NASICON structure, Maricite structure, pyrophosphate, fluorophosphate, sulfate, etc.), Prussian blue materials, organic polymer materials and one or more of their respective modified compounds.
  • transition metal oxide materials may include but not limited to Na x MO 2 (M is a transition metal, preferably one or more selected from Mn, Fe, Ni, Co, V, Cu, Cr, 0 ⁇ x ⁇ 1 ), one or more of manganese-based oxides, vanadium-based oxides and their respective modified compounds.
  • organic polymer materials may include, but are not limited to, poly 2,2,6,6-tetramethylpiperidinyloxy-4-vinyl ether (PTVE).
  • PTVE poly 2,2,6,6-tetramethylpiperidinyloxy-4-vinyl ether
  • the present application is not limited to these materials, and other conventionally known materials that can be used as the battery positive electrode active material may also be used. These positive electrode active materials may be used alone or in combination of two or more.
  • the modification compound of each of the above-mentioned positive electrode active materials may be modified by doping, surface coating, or surface coating while doping.
  • the negative electrode active material includes one or more of artificial graphite, natural graphite, soft carbon, hard carbon, activated carbon, transition metal oxides, and organic polymer materials.
  • organic polymer materials may include, but are not limited to, polyimide (PI), quinones, eg, poly(2-vinylanthraquinone) (PVAQ).
  • PI polyimide
  • VAQ poly(2-vinylanthraquinone)
  • the present application is not limited to these materials, and other conventionally known materials that can be used as negative electrode active materials of batteries can also be used.
  • These negative electrode active materials may be used alone or in combination of two or more.
  • the battery according to the present application can be assembled into a battery module, and the number of batteries contained in the battery module can be multiple, and the specific number can be adjusted according to the application and capacity of the battery module.
  • a plurality of batteries may be arranged in sequence along the length direction of the battery module. Of course, it can also be arranged in any other manner. Further, the plurality of batteries can be fixed by fasteners.
  • the battery module may further include a casing having a containing space, and a plurality of batteries are contained in the containing space.
  • the above-mentioned battery modules can also be assembled into a battery pack, and the number of battery modules contained in the battery pack can be adjusted according to the application and capacity of the battery pack.
  • the battery pack may also include a battery box and a plurality of battery modules disposed in the battery box.
  • the battery box includes an upper box and a lower box.
  • the upper box is used to cover the lower box and forms a closed space for accommodating the battery module.
  • Multiple battery modules can be arranged in the battery box in any manner.
  • Embodiments of the present application further provide an electric device, the electric device includes at least one of the battery, the battery module, and the battery pack of the present application.
  • the battery, battery module or battery pack can be used as a power source of the electric device, and can also be used as an energy storage unit of the electric device.
  • the electric device can be, but not limited to, mobile devices (such as mobile phones, notebook computers, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf carts, electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc.
  • the electric device can select a battery, a battery module or a battery pack according to its usage requirements.
  • FIG. 2 is a schematic diagram of an example electrical device.
  • the electric device is a pure electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle.
  • a battery pack or a battery module can be used.
  • the electric device may be a mobile phone, a tablet computer, a notebook computer, and the like.
  • the electrical device is generally required to be light and thin, and a battery can be used as a power source.
  • the slurry coating length is about 10 ⁇ m, and the coating thickness is 5 ⁇ m.
  • the preparation method of the battery is similar to that of Example 1, except that the preparation parameters of the separator are adjusted, see Table 1 for details.
  • the loading speed is 0.4MPa/s ⁇ 0.6MPa/s.
  • the internal temperature change of the battery is monitored by sticking a temperature-sensing wire on the outer surface of the wound electrode assembly, and the highest internal heating temperature of the battery is recorded.
  • the temperature detection instrument is KSD301 temperature sensor.
  • Battery cycle 500 cycle capacity retention rate (%) 500th cycle discharge capacity / 1st cycle discharge capacity ⁇ 100%.
  • Table 2 shows the performance test results of Examples 1-19 and Comparative Examples 1-2.
  • the coating containing the hydraulic inorganic material of the present application when the coating containing the hydraulic inorganic material of the present application is infiltrated with the electrolyte, the hydraulic inorganic material in the coating can react with the solvent water and fully harden the coating, thereby significantly increasing the separation film. Therefore, the separator is not easy to deform during the battery formation process and cycle charge and discharge process, and can effectively inhibit the collapse of the central hole and dendrite growth, and improve the safety performance and cycle performance of the battery.
  • the coating containing the hydraulic inorganic material in the present application when the coating containing the hydraulic inorganic material in the present application is infiltrated with the electrolyte, it can also release an appropriate amount of heat, thereby increasing the transmission speed of active ions between the positive and negative electrodes of the battery and improving the rate performance of the battery.
  • Comparative Example 2 an alumina ceramic coating is provided on the surface of the base film.
  • the compressive strength of the separator can be increased to a certain extent, the compressive strength of the separator is low, and the collapse of the central hole cannot be effectively suppressed, which affects the cycle performance of the battery. The improvement effect is small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请提供一种电极组件、电池、电池模块、电池包及用电装置,所述电极组件包括第一极片、与第一极片极性相反的第二极片以及设置在所述第一极片与所述第二极片之间的隔离膜,所述电极组件通过卷绕第一极片、第二极片和隔离膜得到,所述隔离膜包括基膜以及设置在所述基膜表面至少一部分的涂层,所述涂层包括与水反应能够硬化的水硬性无机材料。本申请能解决电极组件和电池中心孔坍塌的问题,提高电池的安全性能和循环性能。

Description

电极组件、电池、电池模块、电池包及用电装置 技术领域
本申请属于电池技术领域,具体涉及一种电极组件、电池、电池模块、电池包及用电装置。
背景技术
可充放电电池具有能量密度高、循环寿命长、工作性能可靠、无污染、无记忆效应等优点,因而被广泛应用。近年来,随着可充放电电池在各类电子产品和新能源汽车等产业的应用及推广,其安全性能受到越来越多的关注。传统电池包括方型电池和圆柱型电池,与方型电池相比,圆柱型电池具有结构稳定性好、组成部件少、制备工艺简单等优点。圆柱型电池通常采用卷绕型电极组件,其中卷绕型电极组件由正极极片、隔离膜和负极极片卷绕形成且卷绕型电极组件中心部形成中心孔。但是,圆柱型电池的中心孔容易坍塌,中心孔坍塌是指电池化成、循环充放电过程中,中心孔被部分堵塞或完全堵塞的现象。中心孔坍塌会使电池排气困难、安全风险增加,从而严重影响电池的循环性能。
发明内容
本申请的目的在于提供一种电极组件、电池、电池模块、电池包及用电装置,旨在解决电极组件和电池中心孔坍塌的问题,提高电池的安全性能和循环性能。
本申请第一方面提供一种电极组件,包括第一极片、与第一极片极性相反的第二极片以及设置在所述第一极片与所述第二极片之间的隔离膜,所述电极组件通过卷绕第一极片、第二极片和隔离膜得到,所述隔离膜包括基膜以及设置在所述基膜表面至少一部分的涂层,所述涂层包括与水反应能够硬化的水硬性无机材料。
本申请在基膜表面设置包含水硬性无机材料的涂层,利用水硬性无机材料与水反应能够硬化的原理,能够显著增加隔离膜的强度,使其在电池化成过程以及循环充放电过程中不易变形,从而有效抑制中心孔坍塌和枝晶生长,提高电池的安全性能并延长电池的循环寿命。
在本申请的任意实施方式中,水硬性无机材料包括至少一种式1所示化合物,
第一氧化物·a第二氧化物·b硫酸盐·c卤化物    式1
其中,0<a≤6,0≤b≤4,0≤c≤4,第一氧化物表示CaO、或BaO,第二氧化物表示组分1、组分2、或其组合,组分1表示SiO 2、Al 2O 3、Fe 2O 3、或其两种或多种的组合,组分2表示FeO、MgO、BaO、K 2O、Na 2O、TiO 2、CuO、Cr 2O 3、P 2O 5、SO 3、或其两种或多种的组合,硫酸盐表示CaSO 4、MgSO 4、BaSO 4、SrSO 4、ZnSO 4、Al 2(SO 4) 3、FeSO 4、Fe 2(SO 4) 3、或其两种或多种的组合,卤化物表示CaCl 2、CaF 2、或其组合。
上述式1所示化合物能在有效抑制中心孔坍塌和枝晶生长的同时,不会明显影响电池的电化学性能。
可选地,组分1和组分2的重量比为(95~100):(0~5)。组分1和组分2的重量比在合适的范围内时,有利于调节涂层的抗压强度和水化热,使涂层与水反应后能具有适当的抗压强度,同时与水反应后不会释放出过量热量。
在本申请的任意实施方式中,水硬性无机材料包括式1-1至式1-8所示化合物中的一种或几种,
CaO·a1 SiO 2·b硫酸盐·c卤化物    式1-1
CaO·a2 Al 2O 3·b硫酸盐·c卤化物     式1-2
CaO·a3 Fe 2O 3·b硫酸盐·c卤化物     式1-3
CaO·a4 Al 2O 3·a5 SiO 2·b硫酸盐·c卤化物     式1-4
CaO·a6 Al 2O 3·a7 Fe 2O 3·b硫酸盐·c卤化物      式1-5
BaO·a8 SiO 2·b硫酸盐·c卤化物     式1-6
BaO·a9 Al 2O 3·b硫酸盐·c卤化物     式1-7
BaO·a10 Al 2O 3·a11 SiO 2·b硫酸盐·c卤化物    式1-8
其中,0<a1≤6,0<a2≤6,0<a3≤6,0<a4<6,0<a5<6,且0<a4+a5≤6,0<a6<6,0<a7<6,且0<a6+a7≤6,0<a8≤6,0<a9≤6,0<a10<6,0<a11<6,且0<a10+a11≤6,0≤b≤4,0≤c≤4,硫酸盐表示CaSO 4、MgSO 4、BaSO 4、SrSO 4、ZnSO 4、Al 2(SO 4) 3、FeSO 4、Fe 2(SO 4) 3、或其两种或多种的组合,卤化物表示CaCl 2、CaF 2、或其组合。
在本申请的任意实施方式中,b=0。
在本申请的任意实施方式中,c=0。
在本申请的任意实施方式中,b=0,并且c=0。
在本申请的任意实施方式中,水硬性无机材料包括2CaO·SiO 2、3CaO·SiO 2、CaO·Al 2O 3、CaO·2Al 2O 3、3CaO·Al 2O 3、6CaO·2Al 2O 3、12CaO·7Al 2O 3、CaO·Fe 2O 3、2CaO·Fe 2O 3、2CaO·Al 2O 3·SiO 2、CaO·Al 2O 3·2SiO 2、4CaO·Al 2O 3·Fe 2O 3、6CaO·Al 2O 3·2Fe 2O 3、3CaO·3Al 2O 3·CaSO 4、3CaO·3Al 2O 3·MgSO 4、3CaO·3Al 2O 3·BaSO 4、3CaO·3Al 2O 3·SrSO 4、3CaO·3Al 2O 3·ZnSO 4、3CaO·3Al 2O 3·Al 2(SO 4) 3、3CaO·3Al 2O 3·FeSO 4、3CaO·3Al 2O 3·Fe 2(SO 4) 3、2CaO·SiO 2·CaSO 4、11CaO·7Al 2O 3·CaF 2、3CaO·3Al 2O 3·CaF 2、CaO·3Al 2O 3·3CaF 2、CaO·3Al 2O 3·4CaF 2、2BaO·SiO 2、3BaO·SiO 2、BaO·Al 2O 3、3BaO·Al 2O 3、BaO·6Al 2O 3、BaO·Al 2O 3·SiO 2、BaO·Al 2O 3·2SiO 2中的一种或几种。
可选地,水硬性无机材料包括2CaO·SiO 2、3CaO·SiO 2、3CaO·Al 2O 3、4CaO·Al 2O 3·Fe 2O 3中的一种或几种。
在本申请的任意实施方式中,水硬性无机材料为体积粒径Dv10为1μm~10μm的颗粒。可选地,水硬性无机材料为体积粒径Dv10为3μm~5μm的颗粒。水硬性无机材料颗粒的体积粒径Dv10在合适的范围内时,涂层的一致性更高。
在本申请的任意实施方式中,基于涂层的总质量,水硬性无机材料的质量百分含 量为95%~100%。可选地,水硬性无机材料的质量百分含量为97%~100%。
在本申请的任意实施方式中,涂层还包括添加剂,添加剂包括减水剂、石膏、火山灰、粉煤灰、矿渣、石英砂、石灰石、粘土中的一种或几种。添加剂能起到调节涂层抗压强度、调节涂层与水反应凝结速度和降低水化热的作用。
在本申请的任意实施方式中,基于涂层的总质量,添加剂的质量百分含量≤5%。可选地,添加剂的质量百分含量≤3%。
在本申请的任意实施方式中,涂层的总厚度为0.5μm~5μm。可选地,涂层的总厚度为0.5μm~2μm。涂层的总厚度在合适的范围内时,涂层与水反应后能具有适当的抗压强度,同时与水反应后不会释放出过量热量。
在本申请的任意实施方式中,基膜的厚度为5μm~12μm。可选地,基膜的厚度为6μm~7μm。
在本申请的任意实施方式中,基膜选自聚烯烃多孔膜、无纺布、玻璃纤维中的一种或几种。
在本申请的任意实施方式中,涂层与水反应2天内的水化热为300J/g~500J/g。涂层与水反应后具有适当的放热量,一方面能够增加活性离子在电池正负极之间的传输速度,提升电池的循环性能和倍率性能,另一方面确保不会影响电池的其他电化学性能。
在本申请的任意实施方式中,涂层与水反应硬化后的抗压强度为2500Pa~20000Pa。可选地,涂层与水反应硬化后的抗压强度为2500Pa~10000Pa。涂层与水反应后具有较高的抗压强度,因此,隔离膜在电池化成过程以及循环充放电过程中不易变形,能够有效抑制中心孔坍塌和枝晶生长,提高电池的安全性能并延长电池的循环寿命。
在本申请的任意实施方式中,涂层位于自隔离膜卷绕起始端0cm至L cm区域内,10≤L≤20。所述包含水硬性无机材料的涂层仅设置在隔离膜卷绕起始端局部区域内,从而能够在有效抑制中心孔坍塌和枝晶生长的同时,并不显著降低电池的质量能量密度。
本申请第二方面提供一种电池,其包括电极组件以及电解液,其中,电极组件为根据本申请第一方面的电池的电极组件,电解液包括电解质盐以及水。
由于本申请的电解液采用水作为溶剂,当所述包含水硬性无机材料的涂层浸润电解液后,涂层中的水硬性无机材料能与溶剂水反应并使涂层充分硬化,从而显著增加隔离膜的强度。因此,隔离膜在电池化成过程以及循环充放电过程中不易变形,能有效抑制中心孔坍塌和枝晶生长,提高电池的安全性能并延长电池的循环寿命。
在本申请的任意实施方式中,电池为锂离子电池、钠离子电池、钾离子电池、锌离子电池、钙离子电池、镁离子电池、铝离子电池、或混合离子电池。
本申请第三方面提供一种电池模块,其包括本申请第二方面的电池。
本申请第四方面提供一种电池包,其包括本申请第二方面的电池、第三方面的电池模块中的一种。
本申请第五方面提供一种用电装置,其包括本申请第二方面的电池、第三方面的电池模块、第四方面的电池包中的至少一种。
本申请的电池模块、电池包和用电装置包括本申请提供的电池,因而至少具有与所述电池相同的优势。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍。显而易见地,下面所描述的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是圆柱型电池中心孔坍塌前和坍塌后的示意图。
图2是包含本申请的电池作为电源的用电装置的一实施方式的示意图。
具体实施方式
以下,适当地参照附图详细说明具体公开了本申请的电极组件、电池、电池模块、电池包及用电装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案,并且这样的技术方案应被认为包含在本申请的公开内容中。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案,并且这样的技术方案应被认为包含在本申请的公开内容中。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
图1是圆柱型电池中心孔坍塌前和坍塌后的示意图。如图1所示,圆柱型电池中心部具有中心孔,在电池化成、循环充放电过程中,中心孔容易坍塌。中心孔坍塌后电池内部间隙增加(例如,正极极片和负极极片之间的间隙增加),从而容易生长枝晶,影响了电池的安全性能,同时降低了电池的循环寿命。中心孔坍塌受到电池化成产气速率、极片涂布重量、集流体厚度、极片反弹率等因素影响,通常,极片涂布重量越大,电池化成产气速率越高,中心孔越容易坍塌;集流体厚度越薄、极片反弹率越高,中心孔越容易坍塌。因此,增加中心孔局部区域极片、隔离膜的承受能力使中心孔不容易变形,能够达到抑制中心孔坍塌的效果。现有技术通过在隔离膜基膜表面设置陶瓷涂层可以在一定程度上增加隔离膜的硬度,但是隔离膜的硬度仍较低,无法起到有效抑制中心孔坍塌的效果。
基于上述问题,发明人对隔离膜的结构进行改进,提出了一种能有效抑制中心孔坍塌的电极组件及电池。
电极组件及电池
本申请的电池包括壳体、电极组件、端盖以及电解液,电极组件设置壳体内,端盖盖设于壳体,电解液浸润于电极组件并在正极和负极之间起到传导活性离子的作用。电解液包括电解质盐以及水,电解质盐的种类不受具体的限制,可根据实际需求进行选择。壳体的材质不受具体的限制,例如可以是硬塑料壳、铝壳、钢壳等。
需要说明的是,本申请的电池可以为锂离子电池、钠离子电池、钾离子电池、锌离子电池、钙离子电池、镁离子电池、铝离子电池、或混合离子电池。在本申请中,术语“混合离子电池”是指电池正负极之间存在两种及以上活性离子脱嵌反应的电池,通常混合离子电池的电解液中包含两种及以上活性离子,例如包括锂离子、钠离子、钾离子、锌离子、钙离子、镁离子、铝离子中的两种及以上。作为示例,混合离子电池可包括锂钠混合离子电池、钠锌混合离子电池、钠钾混合离子电池等。
本申请的电极组件包括第一极片、与第一极片极性相反的第二极片以及设置在所述第一极片与所述第二极片之间的隔离膜,所述电极组件通过卷绕第一极片、第二极片和隔离膜得到,所述隔离膜包括基膜以及设置在所述基膜表面至少一部分的涂层,所述涂层包括与水反应能够硬化的水硬性无机材料。
发明人意外发现通过在基膜表面设置包含水硬性无机材料的涂层,利用水硬性无机材料与水反应能够硬化的原理,能够显著增加隔离膜的强度,使其在电池化成过程以及循环充放电过程中不易变形,从而有效抑制中心孔坍塌和枝晶生长,提高电池的安全性能并延长电池的循环寿命。
由于本申请的电解液采用水作为溶剂,当所述包含水硬性无机材料的涂层浸润电解液后,涂层中的水硬性无机材料能与溶剂水反应并使涂层充分硬化,从而显著增加隔离膜的强度。因此,隔离膜在电池化成过程以及循环充放电过程中不易变形,能有效抑制中心孔坍塌和枝晶生长,提高电池的安全性能并延长电池的循环寿命。
本申请的电极组件为卷绕型电极组件,电极组件端面形状不受具体的限制,可根据实际需求进行选择。例如,电极组件端面为圆形、椭圆形、矩形等规则形状,电极组件端面也可为不规则形状。
在一些实施例中,所述水硬性无机材料包括至少一种式1所示化合物。
第一氧化物·a第二氧化物·b硫酸盐·c卤化物    式1
在式1中,0<a≤6,0≤b≤4,0≤c≤4,第一氧化物表示CaO、或BaO,第二氧化物表示组分1、组分2、或其组合,组分1表示SiO 2、Al 2O 3、Fe 2O 3、或其两种或多种的组合,组分2表示FeO、MgO、BaO、K 2O、Na 2O、TiO 2、CuO、Cr 2O 3、P 2O 5、SO 3、或其两种或多种的组合,硫酸盐表示CaSO 4、MgSO 4、BaSO 4、SrSO 4、ZnSO 4、Al 2(SO 4) 3、FeSO 4、Fe 2(SO 4) 3、或其两种或多种的组合,卤化物表示CaCl 2、CaF 2、或其组合。
式1所示化合物与水反应产物包括凝胶、水合物、Ca(OH) 2等中的一种或几种,且式1所示化合物与水反应后能具有适当的抗压强度,同时与水反应后不会释放出过量热量。因此,上述式1所示化合物能在有效抑制中心孔坍塌和枝晶生长的同时,不会明显影响电池的电化学性能。
在一些实施例中,组分1和组分2的重量比为(95~100):(0~5)。组分1和组分2的重量比在合适的范围内时,有利于调节涂层的抗压强度和水化热,使涂层与水反应后能具有适当的抗压强度,同时与水反应后不会释放出过量热量。
在一些实施例中,第二氧化物仅表示组分1。
在一些实施例中,b=0。
在一些实施例中,0<b≤4。硫酸盐的含量适中,有利于调节涂层的抗压强度和水化热,使涂层与水反应后能具有适当的抗压强度,同时与水反应后不会释放出过量热量。
在一些实施例中,c=0。
在一些实施例中,0<c≤4。卤化物的含量适中,有利于调节涂层的抗压强度和水化热,使涂层与水反应后能具有适当的抗压强度,同时与水反应后不会释放出过量热量。
在一些实施例中,b=0,且c=0。
式1所示化合物可以按照本领域常规方法制备,例如采用高温固相反应法制备。示例性制备方法如下:将Ca源或Ba源、M1元素前驱体、可选的SO 3、可选的卤素前驱体等按一定摩尔比混合均匀,经高温煅烧得到式1所示化合物。M1选自Si、Al、Fe、K、Na、Mg、Ba、Ti、Cu、Cr、Sr、Zn等中的一种或几种。可选地,煅烧温度为800℃~1600℃。
作为示例,Ca源包括但不限于CaO、CaCO 3、Ca(OH) 2中的一种或几种。作为示例,Ba源包括但不限于BaO、BaCO 3、Ba(OH) 2中的一种或几种。作为示例,M1元素前驱体包括但不限于M1元素的氧化物、氢氧化合物、硫酸化合物、盐酸化合物、硝酸化合物、碳酸化合物及醋酸化合物中的一种或几种。例如,M1元素前驱体为SiO 2、Al(OH) 3、Al 2O 3、Fe 2O 3、FeO、K 2O、Na 2O、MgO、BaO、TiO 2、CuO、Cr 2O 3、SrO、ZnO中的一种或几种。作为示例,卤素前驱体包括但不限于氟化铵、氟化氢、氯化铵、氯化氢中的一种或几种。
在一些实施例中,所述水硬性无机材料包括式1-1所示化合物,硫酸盐、卤化物如本文所定义。
CaO·a1 SiO 2·b硫酸盐·c卤化物    式1-1
在式1-1中,0<a1≤6,0≤b≤4,0≤c≤4。
可选地,0<a1≤3,b=0,c=0。
可选地,0<a1≤3,0<b≤4,c=0。
可选地,0<a1≤3,b=0,0<c≤4。
在一些实施例中,所述水硬性无机材料包括式1-2所示化合物,硫酸盐、卤化物如本文所定义。
CaO·a2 Al 2O 3·b硫酸盐·c卤化物      式1-2
在式1-2中,0<a2≤6,0≤b≤4,0≤c≤4。
可选地,0<a2≤3,b=0,c=0。
可选地,0<a2≤3,0<b≤4,c=0。
可选地,0<a2≤3,b=0,0<c≤4。
在一些实施例中,所述水硬性无机材料包括式1-3所示化合物,硫酸盐、卤化物如本文所定义。
CaO·a3 Fe 2O 3·b硫酸盐·c卤化物     式1-3
在式1-3中,0<a3≤6,0≤b≤4,0≤c≤4。
可选地,0<a3≤3,b=0,c=0。
可选地,0<a3≤3,0<b≤4,c=0。
可选地,0<a3≤3,b=0,0<c≤4。
在一些实施例中,所述水硬性无机材料包括式1-4所示化合物,硫酸盐、卤化物如本文所定义。
CaO·a4 Al 2O 3·a5 SiO 2·b硫酸盐·c卤化物    式1-4
在式1-4中,0<a4<6,0<a5<6,且0<a4+a5≤6,0≤b≤4,0≤c≤4。
可选地,0<a4≤2,0<a5≤2,且0<a4+a5≤3,b=0,c=0。
可选地,0<a4≤2,0<a5≤2,且0<a4+a5≤3,0<b≤4,c=0。
可选地,0<a4≤2,0<a5≤2,且0<a4+a5≤3,b=0,0<c≤4。
在一些实施例中,所述水硬性无机材料包括式1-5所示化合物,硫酸盐、卤化物如本文所定义。
CaO·a6 Al 2O 3·a7 Fe 2O 3·b硫酸盐·c卤化物    式1-5
在式1-5中,0<a6<6,0<a7<6,且0<a6+a7≤6,0≤b≤4,0≤c≤4。
可选地,0<a6≤2,0<a7≤2,且0<a6+a7≤3,b=0,c=0。
可选地,0<a6≤2,0<a7≤2,且0<a6+a7≤3,0<b≤4,c=0。
可选地,0<a6≤2,0<a7≤2,且0<a6+a7≤3,b=0,0<c≤4。
在一些实施例中,所述水硬性无机材料包括式1-6所示化合物,硫酸盐、卤化物如本文所定义。
BaO·a8 SiO 2·b硫酸盐·c卤化物    式1-6
在式1-6中,0<a8≤6,0≤b≤4,0≤c≤4。
可选地,0<a8≤3,b=0,c=0。
可选地,0<a8≤3,0<b≤4,c=0。
可选地,0<a8≤3,b=0,0<c≤4。
在一些实施例中,所述水硬性无机材料包括式1-7所示化合物,硫酸盐、卤化物如本文所定义。
BaO·a9 Al 2O 3·b硫酸盐·c卤化物     式1-7
在式1-7中,0<a9≤6,0≤b≤4,0≤c≤4。
可选地,0<a9≤6,b=0,c=0。
可选地,0<a9≤6,0<b≤4,c=0。
可选地,0<a9≤6,b=0,0<c≤4。
在一些实施例中,所述水硬性无机材料包括式1-8所示化合物,硫酸盐、卤化物如本文所定义。
BaO·a10 Al 2O 3·a11 SiO 2·b硫酸盐·c卤化物     式1-8
在式1-8中,0<a10<6,0<a11<6,且0<a10+a11≤6,0≤b≤4,0≤c≤4。
可选地,0<a10≤2,0<a11≤2,且0<a10+a11≤3,b=0,c=0。
可选地,0<a10≤2,0<a11≤2,且0<a10+a11≤3,0<b≤4,c=0。
可选地,0<a10≤2,0<a11≤2,且0<a10+a11≤3,b=0,0<c≤4。
在一些实施例中,所述水硬性无机材料包括式1-1至式1-8所示化合物中的两种及以上,此时,有利于调节涂层的抗压强度和水化热,使涂层与水反应后能具有适当的抗压强度,同时与水反应后不会释放出过量热量。
在一些实施例中,作为示例,所述水硬性无机材料包括2CaO·SiO 2、3CaO·SiO 2、CaO·Al 2O 3、CaO·2Al 2O 3、3CaO·Al 2O 3、6CaO·2Al 2O 3、12CaO·7Al 2O 3、CaO·Fe 2O 3、2CaO·Fe 2O 3、2CaO·Al 2O 3·SiO 2、CaO·Al 2O 3·2SiO 2、4CaO·Al 2O 3·Fe 2O 3、6CaO·Al 2O 3·2Fe 2O 3、3CaO·3Al 2O 3·CaSO 4、3CaO·3Al 2O 3·MgSO 4、3CaO·3Al 2O 3·BaSO 4、3CaO·3Al 2O 3·SrSO 4、3CaO·3Al 2O 3·ZnSO 4、3CaO·3Al 2O 3·Al 2(SO 4) 3、3CaO·3Al 2O 3·FeSO 4、3CaO·3Al 2O 3·Fe 2(SO 4) 3、2CaO·SiO 2·CaSO 4、11CaO·7Al 2O 3·CaF 2、3CaO·3Al 2O 3·CaF 2、CaO·3Al 2O 3·3CaF 2、CaO·3Al 2O 3·4CaF 2、2BaO·SiO 2、3BaO·SiO 2、BaO·Al 2O 3、3BaO·Al 2O 3、BaO·6Al 2O 3、BaO·Al 2O 3·SiO 2、BaO·Al 2O 3·2SiO 2中的一种或几种。
可选地,所述水硬性无机材料包括2CaO·SiO 2、3CaO·SiO 2、3CaO·Al 2O 3、4CaO·Al 2O 3·Fe 2O 3中的一种或几种。
在一些实施例中,所述水硬性无机材料为体积粒径Dv10为1μm~10μm的颗粒。例如,所述水硬性无机材料颗粒的体积粒径Dv10为1μm,2μm,3μm,4μm,5μm,6μm,7μm,8μm,9μm,10μm或以上任何数值所组成的范围。可选地,所述水硬性无机材料为体积粒径Dv10为3μm~5μm的颗粒。所述水硬性无机材料颗粒的体积粒径Dv10在合适的范围内时,所述涂层的一致性更高。
在一些实施例中,基于所述涂层的总质量,所述水硬性无机材料的质量百分含量为95%~100%。可选地,所述水硬性无机材料的质量百分含量为97%~100%。
在一些实施例中,所述涂层还包括添加剂,添加剂能起到调节涂层抗压强度、调节涂层与水反应凝结速度和降低水化热的作用。作为示例,所述添加剂包括但不限于减 水剂(Water-reducing admixture)、石膏、火山灰、粉煤灰、矿渣、石英砂、石灰石、粘土中的一种或几种。其中,石膏包括天然二水石膏、硬石膏、半水石膏、磷石膏、脱硫石膏中的一种或几种。所述添加剂的种类不受具体的限制,可根据实际需求进行选择,例如,作为示例,减水剂可为聚羧酸减水剂。这些添加剂可以仅单独使用一种,也可以将两种以上组合使用。基于所述涂层的总质量,所述添加剂的质量百分含量≤5%。例如,所述添加剂的质量百分含量≤4.5%,≤4%,≤3.5%,≤3%,≤2.5%,≤2%,≤1.5%,≤1%,≤0.5%、或为0%。
在一些实施例中,所述基膜的厚度为5μm~12μm。可选地,所述基膜的厚度为6μm~7μm。基膜的厚度在合适范围内时,隔离膜能在具有足够的抗压强度的同时,还具有较高的离子电导率。
在一些实施例中,所述基膜的孔隙率为30%~50%。可选地,所述基膜的孔隙率为35%~50%。基膜的孔隙率在合适范围内,隔离膜能在具有足够的抗压强度的同时,还具有较高的离子电导率。
在一些实施例中,所述基膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构膜。可选地,所述基膜选自聚烯烃多孔膜、无纺布、玻璃纤维中的一种或几种。所述基膜可以是单层膜,也可以是多层复合膜。所述基膜为多层复合膜时,各层的材料相同或不同。作为示例,所述基膜的材质可选自聚乙烯、聚丙烯、聚酰亚胺、聚偏氟乙烯、偏氟乙烯-六氟丙烯共聚物、聚酰胺、聚对苯二甲酸乙二醇酯中的一种或多种。
基膜具有在其厚度方向相对的两个表面,涂层设置在基膜所述两个表面中的任意一者或两者上。
在一些实施例中,所述涂层的总厚度为0.5μm~5μm。在本申请中,术语“涂层的总厚度”是指设置在基膜两个表面上的涂层的厚度之和。当涂层设置在基膜所述两个表面中的任意一者上时,涂层的厚度即为涂层的总厚度;当涂层设置在基膜所述两个表面中的两者上时,涂层的厚度之和即为涂层的总厚度。
例如,所述涂层的总厚度为0.5μm,1.0μm,1.5μm,2.0μm,2.5μm,3.0μm,3.5μm,4.0μm,4.5μm,5.0μm或以上任何数值所组成的范围。可选地,所述涂层的总厚度为0.5μm~2μm。涂层的总厚度在合适的范围内时,涂层与水反应后能具有适当的抗压强度,同时与水反应后不会释放出过量热量。
在一些实施例中,所述涂层与水反应2天内的水化热为300J/g~500J/g。例如,所述涂层与水反应2天内的水化热为300J/g,310J/g,320J/g,330J/g,340J/g,350J/g,360J/g,370J/g,380J/g,390J/g,400J/g,410J/g,420J/g,430J/g,440J/g,450J/g,460J/g,470J/g,480J/g,490J/g,500J/g或以上任何数值所组成的范围。通过调节所述涂层的组成、厚度等,可以使所述涂层与水反应后具有适当的放热量,一方面能够增加活性离子在电池正负极之间的传输速度,提升电池的循环性能和倍率性能,另一方面确保不会影响电池的其他电化学性能。
在一些实施例中,所述涂层与水反应硬化后的抗压强度为2500Pa~20000Pa。例如,所述涂层与水反应硬化后的抗压强度为2500Pa,3000Pa,4000Pa,5000Pa,6000Pa,7000Pa,8000Pa,9000Pa,10000Pa,11000Pa,12000Pa,13000Pa,14000Pa,15000Pa, 16000Pa,17000Pa,18000Pa,19000Pa,20000Pa或以上任何数值所组成的范围。可选地,所述涂层与水反应硬化后的抗压强度为2500Pa~18000Pa,2500Pa~16000Pa,2500Pa~14000Pa,2500Pa~12000Pa,2500Pa~10000Pa,2500Pa~9000Pa,2500Pa~8000Pa,2500Pa~7000Pa,2500Pa~6000Pa,或2500Pa~5000Pa。通过调节所述涂层的组成、厚度等,可以使所述涂层与水反应后具有较高的抗压强度,从而隔离膜在电池化成过程以及循环充放电过程中不易变形,能够有效抑制中心孔坍塌和枝晶生长,提高电池的安全性能并延长电池的循环寿命。
水化热为本领域公知的含义,可以用本领域已知的仪器及方法进行测定。例如,采用TAM Air热活性微量热仪(来自美国TA仪器)测定涂层的水化热。示例性测试方法如下:取新鲜制备的隔离膜进行测试,在隔离膜中任选一区域对涂层取样(例如,选用刀片刮粉取样),称量收集到的全部样品的质量;将收集到的全部样品装入安剖瓶中,用电动搅拌器上的注射器抽取计量的水,再将电动搅拌器插入安剖瓶中,然后将电动搅拌器和安剖瓶一起置于微量热仪的测量位置,最后将注射器中的水注入安剖瓶中,并开始搅拌和记录,得到测试周期内的总放热量。其中,测试周期为48小时,测试温度为室温。
抗压强度为本领域公知的含义,可以用本领域已知的仪器及方法进行测定。测试时隔离膜样品可直接取新鲜制备的隔离膜,或从电池中获取隔离膜。
当取新鲜制备的隔离膜进行测试时,示例性测试方法如下:取新鲜制备的单面涂布的隔离膜样品进行测试,若是双面涂布的隔离膜,可先擦拭掉其中一面的涂层;将隔离膜置于去离子水中,使涂层与水充分反应并硬化;将隔离膜从去离子水中取出,充分干燥后置于抗压强度测定仪(例如,YN-200-400微电脑抗压强度测定仪)进行测试,得到隔离膜被破坏时的破坏荷载。可选地,加荷速度为0.4MPa/s~0.6MPa/s。
当从电池中获取隔离膜时,示例性测试方法如下:将电池满放后拆解出隔离膜,取卷绕起始端已充分硬化区域进行测试,若是双面涂布的隔离膜,可先擦拭掉其中一面的涂层;将隔离膜置于烘箱充分干燥(例如,45℃,30min)去除多余的电解液后,再置于抗压强度测定仪(例如,YN-200-400微电脑抗压强度测定仪)进行测试,得到隔离膜被破坏时的破坏荷载。可选地,加荷速度为0.4MPa/s~0.6MPa/s。
涂层与水反应硬化后的抗压强度根据公式p=P/A计算得到,p表示样品抗压强度,P表示样品破坏荷载,A表示样品面积。
在一些实施例中,所述涂层位于自所述隔离膜卷绕起始端0cm至L cm区域内,10≤L≤20。所述包含水硬性无机材料的涂层仅设置在所述隔离膜卷绕起始端局部区域内,从而能够在有效抑制中心孔坍塌和枝晶生长的同时,并不显著降低电池的质量能量密度。因此,本申请的电极组件能够同时具有高安全性能和高能量密度。
隔离膜可以按照本领域常规方法制备。示例性制备方法如下:将水硬性无机材料、可选的添加剂溶于有机溶剂中充分搅拌混合,使其形成均匀的涂层浆料;将涂层浆料涂覆于基膜的表面,经干燥后得到隔离膜。其中,所述有机溶剂的种类不受具体的限制,可根据实际需求进行选择。例如,所述有机溶剂选自碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯等。
在一些实施例中,电解液的pH为5~9。可选地,电解液的pH为7。
在一些实施例中,电解质盐的浓度可为0.5mol/L~2.0mol/L。可选地,电解质盐的浓度为1.0mol/L。
在一些实施例中,作为示例,电解质盐包括但不限制于Li 2SO 4、LiNO 3、LiCl、LiCF 3SO 3、Na 2SO 4、NaNO 3、NaCl、NaCF 3SO 3、K 2SO 4、KNO 3、KCl、KCF 3SO 3、ZnSO 4、Zn(NO 3) 2、ZnCl 2、Zn(CF 3SO 3) 2、Ca(NO 3) 2、CaCl 2、Ca(CF 3SO 3) 2、MgSO 4、Mg(NO 3) 2、MgCl 2、Mg(CF 3SO 3) 2、Sr(NO 3) 2、SrCl 2、Sr(CF 3SO 3) 2、Ba(NO 3) 2、BaCl 2、Ba(CF 3SO 3) 2、Al 2(SO 4) 3、Al(NO 3) 3、AlCl 3、Al(CF 3SO 3) 3中的一种或几种。
在一些实施例中,电解液中还可选地包括添加剂。例如添加剂可以包括负极成膜添加剂,也可以包括正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温性能的添加剂、改善电池低温性能的添加剂等。
在一些实施例中,第一极片为正极极片,第二极片为负极极片。在一些实施例中,第一极片为负极极片,第二极片为正极极片。
正极极片可包括正极集流体以及设置在正极集流体至少一个表面上的正极膜层。作为示例,正极集流体具有在其厚度方向相对的两个表面,正极膜层设置在正极集流体所述两个表面中的任意一者或两者上。
正极膜层通常包括正极活性材料、可选的导电剂和可选的粘结剂,正极膜层通常是将正极浆料涂布在正极集流体上,经干燥、冷压而成的。正极浆料通常是将正极活性材料、可选的导电剂、可选的粘结剂以及任意的其他组分分散于溶剂中并搅拌均匀而形成的。溶剂可以是去离子水、N-甲基吡咯烷酮(NMP),但不限于此。作为示例,用于正极膜层的粘结剂包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物、含氟丙烯酸酯树脂、丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的一种或几种。作为示例,用于正极膜层的导电剂包括超导碳、导电石墨、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯、碳纳米纤维中的一种或几种。
正极集流体可采用金属箔片或复合集流体。作为金属箔片的示例,正极集流体可采用铝箔。复合集流体可包括高分子材料基层以及形成于高分子材料基层至少一个表面上的金属材料层。作为示例,金属材料可选自铝、铝合金、镍、镍合金、钛、钛合金、银、银合金中的一种或几种。作为示例,高分子材料基层可选自聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等。
负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜片。作为示例,负极集流体具有在其厚度方向相对的两个表面,负极膜片设置在负极集流体所述两个表面中的任意一者或两者上。
负极膜层通常包括负极活性材料、可选的粘结剂、可选的导电剂和其它可选助剂,负极膜层通常是将负极浆料涂布在负极集流体上,经干燥、冷压而成的。负极浆料通常是将负极活性材料、可选的导电剂、可选的粘结剂以及任意的其他组分分散于溶剂 中并搅拌均匀而形成的。溶剂可以是去离子水、N-甲基吡咯烷酮(NMP),但不限于此。作为示例,用于负极膜层的粘结剂包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物、含氟丙烯酸酯树脂、丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的一种或几种。作为示例,用于负极膜层的导电剂包括超导碳、导电石墨、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的一种或几种。作为示例,用于负极膜层的其他助剂包括增稠剂,例如,羧甲基纤维素钠(CMC-Na)。
负极集流体可采用金属箔片或复合集流体。作为金属箔片的示例,可采用铜箔。复合集流体可包括高分子材料基层以及形成于高分子材料基层至少一个表面上的金属材料层。作为示例,金属材料可选自铜、铜合金、镍、镍合金、钛、钛合金、银、银合金中的一种或几种。作为示例,高分子材料基层可选自聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等。
正极活性材料和负极活性材料可采用本领域公知的用于锂离子电池、钠离子电池、钾离子电池、锌离子电池、钙离子电池、镁离子电池、铝离子电池、或混合离子电池的材料。
正极活性材料选择活性离子(例如,锂离子、钠离子、钾离子、锌离子、钙离子、镁离子、铝离子等)嵌入电位低于水的析氧电势的材料。负极活性材料选择活性离子(例如,锂离子、钠离子、钾离子、锌离子、钙离子、镁离子、铝离子等)嵌入电位高于水的析氧电势的材料。
作为示例,正极活性材料包括过渡金属氧化物材料、聚阴离子材料(例如,橄榄石结构、NASICON结构、Maricite结构、焦磷酸盐、氟磷酸盐、硫酸盐等)、普鲁士蓝材料、有机聚合物材料及其各自的改性化合物中的一种或几种。过渡金属氧化物材料的示例可包括但不限于Na xMO 2(M为过渡金属,优选自Mn、Fe、Ni、Co、V、Cu、Cr中的一种或几种,0<x≤1)、锰基氧化物、钒基氧化物及其各自的改性化合物中的一种或几种。有机聚合物材料的示例可包括但不限于聚2,2,6,6-四甲基哌啶氧-4-乙烯基醚(PTVE)。本申请并不限定于这些材料,还可以使用其他可被用作电池正极活性材料的传统公知的材料。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
可选地,上述各正极活性材料的改性化合物可以是对正极活性材料进行掺杂改性、表面包覆改性、或掺杂同时表面包覆改性。
作为示例,负极活性材料包括人造石墨、天然石墨、软炭、硬炭、活性炭、过渡金属氧化物、有机聚合物材料中的一种或几种。有机聚合物材料的示例可包括但不限于聚酰亚胺(PI)、醌,例如,聚(2-乙烯基蒽醌)(PVAQ)。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统公知的材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
电池模块及电池包
在本申请的一些实施例中,根据本申请的电池可以组装成电池模块,电池模块所 含电池的数量可以为多个,具体数量可根据电池模块的应用和容量来调节。
在电池模块中,多个电池可以是沿电池模块的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个电池进行固定。
可选地,电池模块还可以包括具有容纳空间的外壳,多个电池容纳于该容纳空间。
在本申请的一些实施例中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以根据电池包的应用和容量进行调节。
可选地,电池包还可以包括电池箱和设置于电池箱中的多个电池模块。电池箱包括上箱体和下箱体,上箱体用于盖设下箱体,并形成用于容纳电池模块的封闭空间。多个电池模块可以按照任意的方式排布于电池箱中。
用电装置
本申请的实施方式还提供一种用电装置,所述用电装置包括本申请的电池、电池模块、电池包中的至少一种。所述电池、电池模块或电池包可以用作所述用电装置的电源,也可以用作所述用电装置的能量存储单元。所述用电装置可以但不限于是移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等。
所述用电装置可以根据其使用需求来选择电池、电池模块或电池包。
图2是作为一个示例的用电装置的示意图。该用电装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置对高功率和高能量密度的需求,可以采用电池包或电池模块。
作为另一个示例的用电装置可以是手机、平板电脑、笔记本电脑等。该用电装置通常要求轻薄化,可以采用电池作为电源。
实施例
下述实施例更具体地描述了本申请公开的内容,这些实施例仅仅用于阐述性说明,因为在本申请公开内容的范围内进行各种修改和变化对本领域技术人员来说是明显的。除非另有声明,以下实施例中所报道的所有份、百分比、和比值都是基于重量计,而且实施例中使用的所有试剂都可商购获得或是按照常规方法进行合成获得,并且可直接使用而无需进一步处理,以及实施例中使用的仪器均可商购获得。
实施例1
正极极片的制备
将正极活性材料Na 0.44MnO 2、导电剂炭黑、粘结剂PVA按照质量比96:2:2在适量的去离子水中充分搅拌混合,使其形成均匀的正极浆料;将正极浆料涂覆于正极集流体铝箔的两个表面,经干燥、冷压后,得到正极极片。
负极极片的制备
将负极活性材料硬炭、导电剂炭黑、粘结剂PVA按照质量比95:2.5:2.5在适量的去离子水中充分搅拌混合,使其形成均匀的负极浆料;将负极浆料涂覆于负极集流体铜箔的两个表面,经干燥、冷压后,得到负极极片。
隔离膜的制备
将3CaO·SiO 2(Dv10为4.7μm)溶于碳酸二甲酯中得到涂层浆料;将凹版辊浸 入浆料中,随着凹版辊转动,浆料充满凹版辊表面的凹坑;用刮刀将凹版辊表面的浆料刮掉,只留下凹坑中的浆料;当凹版辊转到与基膜(厚度为7μm的多孔聚乙烯膜)接触位置,在压辊作用下,将凹坑中的浆料转移到基膜其中一个表面。其中,浆料涂布长度约10μm,涂布厚度为5μm。
电解液的制备
将Na 2SO 4均匀溶解在去离子水中得到pH=7电解液,Na 2SO 4的浓度为1mol/L。
电池的制备
将上述制备的正极极片、隔离膜、负极极片按顺序堆叠并卷绕,得到卷绕型电极组件;将卷绕型电极组件放入铝壳中,经端盖焊接、注液、封装、静置、化成等工序后,得到圆柱型电池。
实施例2-19和对比例1-2
电池的制备方法与实施例1类似,不同之处在于:调整了隔离膜的制备参数,具体详见表1。
表1
Figure PCTCN2021125093-appb-000001
Figure PCTCN2021125093-appb-000002
性能测试部分
(1)涂层水化热测试
取新鲜制备的隔离膜进行测试,在隔离膜中任选一区域对涂层刮粉取样,称量收集到的全部样品的质量。将收集到的全部样品装入安剖瓶中,用电动搅拌器上的注射器抽取计量的水,再将电动搅拌器插入安剖瓶中,然后将电动搅拌器和安剖瓶一起置于微量热仪的测量位置,最后将注射器中的水注入安剖瓶中,并开始搅拌和记录,得到测试周期内的总放热量。涂层水化热(J/g)=总放热量(J)/样品的质量(g)。其中,测试周期为48小时,测试温度为室温,微量热仪为TAM Air八通道微量热仪。
(2)涂层抗压强度测试
将电池满放后拆解出隔离膜,取卷绕起始端已充分硬化区域进行测试;将隔离膜置于45℃烘箱干燥30min去除多余的电解液;之后将隔离膜置于YN-200-400微电脑抗压强度测定仪下压板中心位置;启动仪器并匀速连续地加荷,直至隔离膜被破坏,记录此时的破坏荷载。其中,加荷速度为0.4MPa/s~0.6MPa/s。
涂层的抗压强度根据公式p=P/A计算得到,p表示样品抗压强度,P表示样品破坏荷载,A表示样品面积。
(3)电池内部温度测试
通过在卷绕型电极组件外表面粘贴感温线监控电池内部温度变化,并记录电池内部发热最高温度。温度检测仪器为KSD301温度传感器。
(4)倍率性能测试
在25℃下,将电池以1/3C恒流充电至2.0V,继续恒压充电至电流为0.05C;将电池静置5min后,以4C恒流放电至0.5V,记录4C倍率的放电容量。
(5)循环性能测试
在25℃下,将电池以1/3C恒流充电至2.0V,继续恒压充电至电流为0.05C,此时电池为满充状态,记录此时的充电容量,即为第1圈充电容量;将电池静置5min后,以4C恒流放电至0.5V,此为一个循环充放电过程,记录此时的放电容量,即为第1圈放电容量。将电池按照上述方法进行循环充放电测试,记录每圈循环后的放电容量。
电池循环500圈容量保持率(%)=第500圈放电容量/第1圈放电容量×100%。
表2给出实施例1-19和对比例1-2的性能测试结果。
表2
Figure PCTCN2021125093-appb-000003
Figure PCTCN2021125093-appb-000004
从表2测试结果可以看出,当本申请包含水硬性无机材料的涂层浸润电解液后,涂层中的水硬性无机材料能与溶剂水反应并使涂层充分硬化,从而显著增加隔离膜的抗拉强度,因此,隔离膜在电池化成过程以及循环充放电过程中不易变形,能有效抑制中心孔坍塌和枝晶生长,提高电池的安全性能和循环性能。当本申请包含水硬性无机材料的涂层浸润电解液后,还能释放出适量热量,从而增加活性离子在电池正负极之间的传输速度,提高电池的倍率性能。
对比例2在基膜表面设置氧化铝陶瓷涂层,虽然可以在一定程度上增加隔离膜的抗压强度,但是隔离膜的抗压强度较低,无法有效抑制中心孔坍塌,对电池循环性能的改善效果较小。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种电极组件,包括:
    第一极片;
    与第一极片极性相反的第二极片;以及
    设置在所述第一极片与所述第二极片之间的隔离膜,
    其中,
    所述电极组件通过卷绕第一极片、第二极片和隔离膜得到,
    所述隔离膜包括基膜以及设置在所述基膜表面至少一部分的涂层,所述涂层包括与水反应能够硬化的水硬性无机材料。
  2. 根据权利要求1所述的电极组件,其中,所述水硬性无机材料包括至少一种式1所示化合物,
    第一氧化物·a第二氧化物·b硫酸盐·c卤化物     式1
    其中,
    0<a≤6,0≤b≤4,0≤c≤4,
    第一氧化物表示CaO、或BaO,
    第二氧化物表示组分1、组分2、或其组合,组分1表示SiO 2、Al 2O 3、Fe 2O 3、或其两种或多种的组合,组分2表示FeO、MgO、BaO、K 2O、Na 2O、TiO 2、CuO、Cr 2O 3、P 2O 5、SO 3、或其两种或多种的组合,可选地,组分1和组分2的质量比为(95~100):(0~5),
    硫酸盐表示CaSO 4、MgSO 4、BaSO 4、SrSO 4、ZnSO 4、Al 2(SO 4) 3、FeSO 4、Fe 2(SO 4) 3、或其两种或多种的组合,
    卤化物表示CaCl 2、CaF 2、或其组合。
  3. 根据权利要求1或2所述的电极组件,其中,所述水硬性无机材料包括式1-1至式1-8所示化合物中的一种或几种,
    CaO·a1 SiO 2·b硫酸盐·c卤化物                    式1-1
    CaO·a2 Al 2O 3·b硫酸盐·c卤化物                   式1-2
    CaO·a3 Fe 2O 3·b硫酸盐·c卤化物                   式1-3
    CaO·a4 Al 2O 3·a5 SiO 2·b硫酸盐·c卤化物          式1-4
    CaO·a6 Al 2O 3·a7 Fe 2O 3·b硫酸盐·c卤化物         式1-5
    BaO·a8 SiO 2·b硫酸盐·c卤化物                    式1-6
    BaO·a9 Al 2O 3·b硫酸盐·c卤化物                   式1-7
    BaO·a10 Al 2O 3·a11 SiO 2·b硫酸盐·c卤化物        式1-8
    其中,
    0<a1≤6,
    0<a2≤6,
    0<a3≤6,
    0<a4<6,0<a5<6,且0<a4+a5≤6,
    0<a6<6,0<a7<6,且0<a6+a7≤6,
    0<a8≤6,
    0<a9≤6,
    0<a10<6,0<a11<6,且0<a10+a11≤6,
    0≤b≤4,
    0≤c≤4,
    硫酸盐表示CaSO 4、MgSO 4、BaSO 4、SrSO 4、ZnSO 4、Al 2(SO 4) 3、FeSO 4、Fe 2(SO 4) 3、或其两种或多种的组合,
    卤化物表示CaCl 2、CaF 2、或其组合。
  4. 根据权利要求2或3所述的电极组件,其中,
    b=0,和/或,
    c=0。
  5. 根据权利要求1-4中任一项所述的电极组件,其中,所述水硬性无机材料包括2CaO·SiO 2、3CaO·SiO 2、CaO·Al 2O 3、CaO·2Al 2O 3、3CaO·Al 2O 3、6CaO·2Al 2O 3、12CaO·7Al 2O 3、CaO·Fe 2O 3、2CaO·Fe 2O 3、2CaO·Al 2O 3·SiO 2、CaO·Al 2O 3·2SiO 2、4CaO·Al 2O 3·Fe 2O 3、6CaO·Al 2O 3·2Fe 2O 3、3CaO·3Al 2O 3·CaSO 4、3CaO·3Al 2O 3·MgSO 4、3CaO·3Al 2O 3·BaSO 4、3CaO·3Al 2O 3·SrSO 4、3CaO·3Al 2O 3·ZnSO 4、3CaO·3Al 2O 3·Al 2(SO 4) 3、3CaO·3Al 2O 3·FeSO 4、3CaO·3Al 2O 3·Fe 2(SO 4) 3、2CaO·SiO 2·CaSO 4、11CaO·7Al 2O 3·CaF 2、3CaO·3Al 2O 3·CaF 2、CaO·3Al 2O 3·3CaF 2、CaO·3Al 2O 3·4CaF 2、2BaO·SiO 2、3BaO·SiO 2、BaO·Al 2O 3、3BaO·Al 2O 3、BaO·6Al 2O 3、BaO·Al 2O 3·SiO 2、BaO·Al 2O 3·2SiO 2中的一种或几种,
    可选地,所述水硬性无机材料包括2CaO·SiO 2、3CaO·SiO 2、3CaO·Al 2O 3、4CaO·Al 2O 3·Fe 2O 3中的一种或几种。
  6. 根据权利要求1-5中任一项所述的电极组件,其中,所述水硬性无机材料为体积粒径Dv10为1μm~10μm的颗粒,可选地为3μm~5μm的颗粒。
  7. 根据权利要求1-6中任一项所述的电极组件,其中,基于所述涂层的总质量,所述水硬性无机材料的质量百分含量为95%~100%,可选地为97%~100%。
  8. 根据权利要求1-7中任一项所述的电极组件,其中,所述涂层还包括添加剂,所述添加剂包括减水剂、石膏、火山灰、粉煤灰、矿渣、石英砂、石灰石、粘土中的一种或几种。
  9. 根据权利要求8所述的电极组件,其中,基于所述涂层的总质量,所述添加剂的质量百分含量≤5%,可选地≤3%。
  10. 根据权利要求1-9中任一项所述的电极组件,其中,
    所述涂层的总厚度为0.5μm~5μm,可选地为0.5μm~2μm,和/或,
    所述基膜的厚度为5μm~12μm,可选地为6μm~7μm。
  11. 根据权利要求1-10中任一项所述的电极组件,其中,所述基膜选自聚烯烃多孔膜、无纺布、玻璃纤维中的一种或几种。
  12. 根据权利要求1-11中任一项所述的电极组件,其中,
    所述涂层与水反应2天内的水化热为300J/g~500J/g,和/或,
    所述涂层与水反应硬化后的抗压强度为2500Pa~20000Pa,可选地为2500Pa~10000Pa。
  13. 根据权利要求1-12中所述的电极组件,其中,所述涂层位于自所述隔离膜卷绕起始端0 cm至L cm区域内,10≤L≤20。
  14. 一种电池,包括电极组件以及电解液,其中,所述电极组件为根据据权利要求1-13中任一项所述的电极组件,所述电解液包括电解质盐以及水。
  15. 根据权利要求14所述的电池,其中,所述电池为锂离子电池、钠离子电池、钾离子电池、锌离子电池、钙离子电池、镁离子电池、铝离子电池、或混合离子电池。
  16. 一种电池模块,包括根据权利要求14或15所述的电池。
  17. 一种电池包,包括根据权利要求14或15所述的电池、根据权利要求16所述的电池模块中的一种。
  18. 一种用电装置,包括根据权利要求14或15所述的电池、根据权利要求16所述的电池模块、根据权利要求17所述的电池包中的至少一种。
PCT/CN2021/125093 2021-10-20 2021-10-20 电极组件、电池、电池模块、电池包及用电装置 WO2023065178A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2021/125093 WO2023065178A1 (zh) 2021-10-20 2021-10-20 电极组件、电池、电池模块、电池包及用电装置
JP2023502991A JP7567101B2 (ja) 2021-10-20 2021-10-20 電極アセンブリ、電池、電池モジュール、電池パック及び電力消費装置
KR1020237001540A KR20230058043A (ko) 2021-10-20 2021-10-20 전극 조립체, 전지, 전지 모듈, 전지 팩 및 전기 장치
CN202180091940.4A CN116830374A (zh) 2021-10-20 2021-10-20 电极组件、电池、电池模块、电池包及用电装置
EP21944411.4A EP4195395A4 (en) 2021-10-20 2021-10-20 ELECTRODE ASSEMBLY, BATTERY, BATTERY MODULE, BATTERY PACK AND ELECTRONIC DEVICE
US18/182,375 US20230231271A1 (en) 2021-10-20 2023-03-13 Electrode assembly, battery, battery module, battery pack and powered device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/125093 WO2023065178A1 (zh) 2021-10-20 2021-10-20 电极组件、电池、电池模块、电池包及用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/182,375 Continuation US20230231271A1 (en) 2021-10-20 2023-03-13 Electrode assembly, battery, battery module, battery pack and powered device

Publications (1)

Publication Number Publication Date
WO2023065178A1 true WO2023065178A1 (zh) 2023-04-27

Family

ID=86057895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125093 WO2023065178A1 (zh) 2021-10-20 2021-10-20 电极组件、电池、电池模块、电池包及用电装置

Country Status (6)

Country Link
US (1) US20230231271A1 (zh)
EP (1) EP4195395A4 (zh)
JP (1) JP7567101B2 (zh)
KR (1) KR20230058043A (zh)
CN (1) CN116830374A (zh)
WO (1) WO2023065178A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101276895A (zh) * 2007-03-27 2008-10-01 比亚迪股份有限公司 锂离子二次电池多孔隔膜层用组合物及锂离子二次电池
CN102206420A (zh) * 2010-03-30 2011-10-05 比亚迪股份有限公司 一种电池隔膜用组合物、一种电池隔膜和一种锂离子二次电池
CN106328865A (zh) * 2015-06-19 2017-01-11 宁德时代新能源科技股份有限公司 隔离膜及锂离子二次电池
KR20170062170A (ko) * 2015-11-27 2017-06-07 주식회사 엘지화학 내열성 이차전지용 분리막 및 이를 포함하는 리튬 이차전지
CN109994690A (zh) * 2017-12-29 2019-07-09 宁德时代新能源科技股份有限公司 复合隔离膜及其制备方法、使用其的电化学装置
CN112310558A (zh) * 2020-10-30 2021-02-02 合肥国轩高科动力能源有限公司 一种涂覆于隔膜上的无机涂层浆料、制造方法及无机涂层隔膜

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006049746A1 (de) * 2006-10-21 2008-04-24 Dilo Trading Ag Separator für Lithium-Polymer Batterien und Verfahren zur Herstellung derselben
JP2016157513A (ja) 2015-02-23 2016-09-01 日立化成株式会社 リチウムイオン電池
WO2018101474A1 (ja) * 2016-12-02 2018-06-07 旭化成株式会社 非水電解質電池用無機粒子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101276895A (zh) * 2007-03-27 2008-10-01 比亚迪股份有限公司 锂离子二次电池多孔隔膜层用组合物及锂离子二次电池
CN102206420A (zh) * 2010-03-30 2011-10-05 比亚迪股份有限公司 一种电池隔膜用组合物、一种电池隔膜和一种锂离子二次电池
CN106328865A (zh) * 2015-06-19 2017-01-11 宁德时代新能源科技股份有限公司 隔离膜及锂离子二次电池
KR20170062170A (ko) * 2015-11-27 2017-06-07 주식회사 엘지화학 내열성 이차전지용 분리막 및 이를 포함하는 리튬 이차전지
CN109994690A (zh) * 2017-12-29 2019-07-09 宁德时代新能源科技股份有限公司 复合隔离膜及其制备方法、使用其的电化学装置
CN112310558A (zh) * 2020-10-30 2021-02-02 合肥国轩高科动力能源有限公司 一种涂覆于隔膜上的无机涂层浆料、制造方法及无机涂层隔膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4195395A4 *

Also Published As

Publication number Publication date
US20230231271A1 (en) 2023-07-20
JP7567101B2 (ja) 2024-10-16
EP4195395A1 (en) 2023-06-14
JP2023549996A (ja) 2023-11-30
KR20230058043A (ko) 2023-05-02
CN116830374A (zh) 2023-09-29
EP4195395A4 (en) 2024-09-18

Similar Documents

Publication Publication Date Title
CN108321355B (zh) 锂金属负极预制件及其制备方法、锂金属负极和锂金属二次电池
CN110556511B (zh) 循环性能优异的锂电池负极极片及其制备方法、锂离子电池
WO2022218212A1 (zh) 补锂添加剂及其制备方法与应用
JP5039423B2 (ja) 充電式バッテリ製造用の正極材料
CN107230767B (zh) 一种具有立体复合结构的隔膜及其制备方法和应用
CN108511786B (zh) 一种全固态锂电池及其制备方法
JP2007294461A5 (zh)
JP2005011808A (ja) リチウム電池用負極組成物とそれを採用した負極及びリチウム電池
JP2013143380A (ja) リチウム電池用の正極素材、それから得られる正極、及び該正極を採用したリチウム電池
TW200820475A (en) Separator for non-aqueous secondary battery, making method, and non-aqueous electrolyte secondary battery
WO2014071717A1 (zh) 一种锂离子电池硅负极极片及其制备方法和锂离子电池
WO2022206151A1 (zh) 负极极片及包含该负极极片的电化学装置、电子装置
JP2009245917A (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極及び非水電解質二次電池
TW202224237A (zh) 全固體二次電池用合劑、全固體二次電池用合劑片及其製造方法、以及全固體二次電池
CN111446501A (zh) 一种含-f和-b两基团化合物的电解液及其电化学装置
JP2016528706A (ja) リチウム二次電池
CN114597478A (zh) 电化学装置、电子装置
CN113437252A (zh) 负极、包括该负极的电化学装置和电子装置
CN113690545A (zh) 一种陶瓷隔膜及其制备方法以及二次电池
CN112467309A (zh) 一种隔膜及电化学装置
WO2022116049A1 (zh) 负极极片、电化学装置、电子装置及负极极片的制备方法
JP6265521B2 (ja) リチウム二次電池用電極、その製造方法及びそれを利用したリチウム二次電池
WO2023065178A1 (zh) 电极组件、电池、电池模块、电池包及用电装置
AU2020237293A1 (en) Method for producing all-solid-state battery
KR102076689B1 (ko) 리튬 이차전지의 집전체용 금속 메쉬 박판, 이를 포함하는 리튬 이차전지용 전극 및 리튬 이차전지

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021944411

Country of ref document: EP

Effective date: 20221212

WWE Wipo information: entry into national phase

Ref document number: 2023502991

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180091940.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE