WO2023061484A1 - 年轻化非多能性细胞及其制备方法和应用 - Google Patents

年轻化非多能性细胞及其制备方法和应用 Download PDF

Info

Publication number
WO2023061484A1
WO2023061484A1 PCT/CN2022/125387 CN2022125387W WO2023061484A1 WO 2023061484 A1 WO2023061484 A1 WO 2023061484A1 CN 2022125387 W CN2022125387 W CN 2022125387W WO 2023061484 A1 WO2023061484 A1 WO 2023061484A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
days
expression
lin28a
pluripotent
Prior art date
Application number
PCT/CN2022/125387
Other languages
English (en)
French (fr)
Inventor
黄仕强
王瑞琦
王鹏
刘旭鹏
赵赫
马诗琳
陈煜�
广璐
姚子月
程业倩
Original Assignee
北京干细胞与再生医学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京干细胞与再生医学研究院 filed Critical 北京干细胞与再生医学研究院
Publication of WO2023061484A1 publication Critical patent/WO2023061484A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/15Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cells; Myeloid precursor cells; Antigen-presenting cells, e.g. dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/26Lymph; Lymph nodes; Thymus; Spleen; Splenocytes; Thymocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/34Muscles; Smooth muscle cells; Heart; Cardiac stem cells; Myoblasts; Myocytes; Cardiomyocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/36Skin; Hair; Nails; Sebaceous glands; Cerumen; Epidermis; Epithelial cells; Keratinocytes; Langerhans cells; Ectodermal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/37Digestive system
    • A61K35/39Pancreas; Islets of Langerhans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/37Digestive system
    • A61K35/407Liver; Hepatocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/52Sperm; Prostate; Seminal fluid; Leydig cells of testes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/54Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/867Retroviral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to the field of non-pluripotent cells. Specifically, the present invention relates to a method for rejuvenating non-pluripotent cells, and the use of said cells in cell transplantation, tissue repair and/or tissue regeneration cell therapy and gene therapy.
  • Aging is associated with progressive degeneration of tissues, which negatively affects the structure and function of vital organs and is one of the most important known risk factors for most chronic diseases. Given that the proportion of the world's population over the age of 60 is expected to double in the next 40 years, the increased incidence of age-related chronic diseases will place a huge burden on healthcare resources. Aging is characterized by the gradual accumulation of damage, leading to loss of physiological integrity, impaired function, and increased vulnerability to death. The aging process affects the entire organism, including the human germline. After two decades or more of active metabolism, all human cells, including the human germline, accumulate molecular damage such as modified long-lived proteins, genetic and epigenetic mutations, metabolic byproducts, and other age-related Detrimental changes can then produce offspring that are younger again. Recently, by using the concept of an epigenetic clock, scientists have observed that during early embryogenesis, the biological age of cells is significantly reduced, i.e., a rejuvenation event occurs (Kerepesi et al., 2021).
  • the inventors of the present application have obtained a young non-pluripotent cell, its preparation method and reagents, and the application of the cells and reagents in cell therapy through a large number of experiments and repeated explorations.
  • the inventors found that some pathways and genes involved in the regulation of the above processes in non-pluripotent cells can not only partially reverse cell aging, exhaustion, anergy, and expression in non-pluripotent cells. Watching the clock and biological age can also prolong the self-renewal ability and cell lifespan of non-pluripotent cells.
  • the application provides an isolated, engineered non-pluripotent cell, which has the following characteristics:
  • Bcl11a Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Increased expression of any or more genes of Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4
  • (ii) can be stably passaged for at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times or more.
  • the isolated engineered non-pluripotent cells provided by the present application can be stably passaged at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times times or more; its rejuvenation transcription factor network: Grhl2, Zic5, Zic2, Utf1, Otx2, Snai3, Lmo2, Hopx, the expression of any gene or multiple genes is different relative to unmodified non-pluripotent cells Increase.
  • expression of LIN28 (including LIN28A or LIN28B) is concurrently increased relative to unmodified non-pluripotent cells in addition to the genes of the rejuvenation transcription factor network described above.
  • the isolated engineered non-pluripotent cells provided by the present application can be stably passaged at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times times or more; its rejuvenation epigenetic modification network: the expression of any gene or multiple genes of Bcl11a, Bcl11b, Dnmt3b, Mettl20, Arid3c is increased relative to unmodified non-pluripotent cells.
  • the expression of LIN28 is simultaneously increased relative to unmodified non-pluripotent cells.
  • the isolated engineered non-pluripotent cells provided by the present application can be stably passaged at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times times or more; its rejuvenation signaling ligands, receptors and related kinase networks: any gene or multiple genes of Fgf5, Wnt3, Calcr, Epha1, Epor, Galr2, Piezo2, Ripk4, Pak6, Map3k15, Pdzd4, Shc4 Expression of was increased relative to unmodified non-pluripotent cells.
  • LIN28 in addition to the genes of the rejuvenation signaling ligands, receptors, and associated kinase networks described above, the expression of LIN28 (including LIN28A or LIN28B) is simultaneously decreased relative to unmodified non-pluripotent cells. Increase.
  • the isolated engineered non-pluripotent cells provided by the present application can be stably passaged at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times times or more; its young nucleic acid binding factor network: the expression of any gene or multiple genes of Foxr2, Hif3a, Pbx1, Zfp946, Batf3, Pabpc4l, Celf4, Lin28 relative to unmodified non-pluripotent cells increased.
  • the expression of LIN28 is simultaneously increased relative to unmodified non-pluripotent cells.
  • the isolated engineered non-pluripotent cells provided by the present application can be stably passaged at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times times or more; gene expression of LIN28 (including LIN28A or LIN28B) is increased relative to unmodified non-pluripotent cells.
  • LIN28 including LIN28A or LIN28B
  • the isolated engineered non-pluripotent cells provided by the present application can be stably passaged at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times times or more; its rejuvenation factors: the expression of any gene or multiple genes of Bcl11a, Bcl11b, Otx2, Lmo2, Pbx1, Pabpc4l, Lin28 is increased relative to unmodified non-pluripotent cells.
  • the non-pluripotent cells of the present invention are selected from one or more of the following (for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 , 26, 27, 28 29, 30, 31, 32, 33, 34, 35 or 36) gene expression levels compared to unmodified non-pluripotent cells Expression levels of these genes show at least about a 1.5-fold, at least about a 2-fold increase in: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1 , Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pd
  • the non-pluripotent cells of the invention are rejuvenated in expression levels of one or more rejuvenated transcription factor network genes selected from Expression levels of transcription factor network genes exhibit at least about 2-fold, at least about 3-fold, at least about 4-fold, at least about 5-fold, at least about 6-fold, at least about 7-fold, at least about 8-fold, at least about 9-fold, at least about 10-fold, at least about 100-fold, at least about 150-fold, at least about 200-fold increase: Grhl2, Zic5, Zic2, Utf1, Otx2, Snai3, Lmo2, Hopx.
  • the LIN28 (LIN28A or LIN28B) gene expression level of the engineered non-pluripotent cells according to the present invention is compared with that of unmodified non-pluripotent cells. at least about 2-fold, at least about 3-fold, at least about 4-fold, at least about 5-fold, at least about 6-fold, at least about 7-fold, at least about 8-fold, at least about 9-fold, at least about 10-fold, at least About 100 times, at least about 150 times, at least about 200 times.
  • non-pluripotent cells of the invention have expression levels of one or more rejuvenation epigenetic modification network genes selected from the group consisting of
  • the expression level of the rejuvenation epigenetic modification network gene gene exhibits at least about 2-fold, at least about 3-fold, at least about 4-fold, at least about 5-fold, at least about 6-fold, at least about 7-fold, at least about 8-fold, at least about 9-fold, at least about 10-fold, at least about 100-fold, at least about 150-fold, at least about 200-fold increase: Bcl11a, Bcl11b, Dnmt3b, Mettl20, Arid3c.
  • the LIN28 (LIN28A or LIN28B) gene expression level of the engineered non-pluripotent cells described in the present invention is compared with that of unmodified non-pluripotent cells. at least about 2-fold, at least about 3-fold, at least about 4-fold, at least about 5-fold, at least about 6-fold, at least about 7-fold, at least about 8-fold, at least about 9-fold, at least about 10-fold, At least about 100 times, at least about 150 times, at least about 200 times.
  • the non-pluripotent cells of the invention have expression levels of one or more rejuvenation signaling ligands, receptors, and associated kinase network genes selected from the group compared to unmodified non-pluripotent cells.
  • Expression levels of these rejuvenation signaling ligands, receptors, and associated kinase network genes in competent cells exhibit at least about 2-fold, at least about 3-fold, at least about 4-fold, at least about 5-fold, at least about 6-fold, at least about 7-fold Fold, at least about 8-fold, at least about 9-fold, at least about 10-fold, at least about 100-fold, at least about 150-fold, at least about 200-fold increase: Fgf5, Wnt3, Calcr, Epha1, Epor, Galr2, Piezo2, Ripk4, Pak6, Map3k15, Pdzd4, Shc4.
  • the expression level of the LIN28 (LIN28A or LIN28B) gene of the engineered non-pluripotent cells described in the present invention At least about 2-fold, at least about 3-fold, at least about 4-fold, at least about 5-fold, at least about 6-fold, at least about 7-fold, at least about 8-fold, at least about 9-fold compared to unmodified non-pluripotent cells times, at least about 10 times, at least about 100 times, at least about 150 times, at least about 200 times.
  • the non-pluripotent cells of the invention have expression levels of one or more young nucleic acid binding factor network genes selected from The expression level of the BL nucleic acid binding factor network genes exhibits at least about 2-fold, at least about 3-fold, at least about 4-fold, at least about 5-fold, at least about 6-fold, at least about 7-fold, at least about 8-fold, at least about 9-fold, At least about 10-fold, at least about 100-fold, at least about 150-fold, at least about 200-fold increase: Foxr2, Hif3a, Pbx1, Zfp946, Batf3, Pabpc4l, Celf4, Lin28.
  • the expression level of LIN28 (LIN28A or LIN28B) in the engineered non-pluripotent cells of the present invention is compared to that of unmodified non-pluripotent cells. at least about 2-fold, at least about 3-fold, at least about 4-fold, at least about 5-fold, at least about 6-fold, at least about 7-fold, at least about 8-fold, at least about 9-fold, at least about 10-fold, At least about 100 times, at least about 150 times, at least about 200 times.
  • the non-pluripotent cells of the invention exhibit expression levels of LIN28 (LIN28A or LIN28B) that are at least about 2-fold, at least about 3 times, at least about 4 times, at least about 5 times, at least about 6 times, at least about 7 times, at least about 8 times, at least about 9 times, at least about 10 times, at least about 100 times, at least about 150 times, at least about a 200-fold increase.
  • LIN28 LIN28A or LIN28B
  • non-pluripotent cells of the invention have expression levels of one or more rejuvenation factor genes selected from the group consisting of The expression level of exhibits at least about 2-fold, at least about 3-fold, at least about 4-fold, at least about 5-fold, at least about 6-fold, at least about 7-fold, at least about 8-fold, at least about 9-fold, at least about 10-fold, at least About 100-fold, at least about 150-fold, at least about 200-fold increase, at least about 1000-fold increase: Bcl11a, Bcl11b, Otx2, Lmo2, Pbx1, Pabpc4l, Lin28.
  • nucleic acid such as DNA or RNA
  • transgene which also includes elements that regulate the expression of a gene (promoter, drug-regulated promoter, protein-regulated promoter, tissue-specific Promoter, protein intein (intein), transposon, endonuclease (such as cre-lox system), retrotransposon.) to increase gene expression in cells.
  • promoter drug-regulated promoter
  • protein-regulated promoter tissue-specific Promoter
  • protein intein intein
  • transposon such as cre-lox system
  • retrotransposon retrotransposon.
  • Non-transgenic modes of increasing gene expression include the use of CRISPRa to regulate endogenous genes and upregulate the expression of a gene.
  • the expression level of a certain gene in a cell can be measured by methods known in biology, such as but not limited to Western blot, immunofluorescence, fluorescent quantitative PCR, RNA or DNA sequencing, and the like.
  • the expression of any one or more of the following genes in the non-pluripotent cells is increased by transgenic means, and the expression lasts for at least 12 hours: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4.
  • the expression of any one or more of the following rejuvenation transcription factor network genes in the non-pluripotent cells is increased by transgenic means, and the expression lasts for at least 12 hours: Grhl2, Zic5, Zic2, Utf1, Otx2 , Snai3, Lmo2, Hopx.
  • the gene expression level of the non-pluripotent cell LIN28 (LIN28A or LIN28B) is also increased by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of any one or more of the following youthful epigenetic modification network genes in the non-pluripotent cells is increased by transgenic means, and the expression lasts for at least 12 hours: Bcl11a, Bcl11b, Dnmt3b, Mett120 , Arid3c.
  • the gene expression level of the non-pluripotent cell LIN28 (LIN28A or LIN28B) is also increased by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of any one or more of the following rejuvenation signaling ligands, receptors, and related kinase network genes in the non-pluripotent cells is increased by transgenic means, and the expression lasts for at least 12 hours: Fgf5, Wnt3, Calcr, Epha1, Epor, Galr2, Piezo2, Ripk4, Pak6, Map3k15, Pdzd4, Shc4.
  • the gene expression level of the non-pluripotent cell LIN28 (LIN28A or LIN28B) is also increased by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of any one or more of the following young nucleic acid binding factor network genes in the non-pluripotent cells is increased by transgenic means, and the expression lasts for at least 12 hours: Foxr2, Hif3a, Pbx1, Zfp946, Batf3, Pabpc4l, Celf4, Lin28.
  • the gene expression level of the non-pluripotent cell LIN28 (LIN28A or LIN28B) is also increased by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of LIN28 (LIN28A or LIN28B) in the non-pluripotent cells of the invention is increased by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of any one or more of the following rejuvenation factor genes in the non-pluripotent cells is increased by transgenic means, and the expression lasts for at least 12 hours: Bcl11a, Bcl11b, Otx2, Lmo2, Pbx1, Pabpc4l .
  • the gene expression level of the non-pluripotent cell LIN28 (LIN28A or LIN28B) is also increased by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of the gene is transient gene expression.
  • the gene expression is constitutive gene expression.
  • the non-pluripotent cells are capable of sustained expansion in vitro for at least 4 days, 5 days, 6 days, 8 days, 9 days, 10 days, 20 days, 30 days, 40 days, 50 days , 100 days, 150 days, 200 days, 300 days, 400 days or even more days.
  • the non-pluripotent cells are selected from endoderm, ectoderm, mesoderm origin or germ cells. In certain embodiments, the non-pluripotent cells exclude muscle cells, and fibroblasts.
  • the non-pluripotent cells are neural cells (such as but not limited to neuroectodermal progenitor cells, glial cells (including microglia, astrocytes)).
  • the non-pluripotent cells are neural crest cells (neural crest cells and their derived daughter cells).
  • said non-pluripotent cells are mesenchymal stem cells.
  • said non-pluripotent cells are blood cells (eg hematopoietic stem cells, hematopoietic stem progenitor cells, red blood cells, white blood cells, neutrophils, platelets, eosinophils).
  • said non-pluripotent cells are immune cells (e.g. leukocytes, lymphocytes, natural killer cells (NK cells), T cells, ⁇ T cells, NKT cells, macrophages, B cells, microglia, spleen Immune Cells).
  • said non-pluripotent cells are skin cells (eg keratinocytes).
  • the non-pluripotent cells are liver cells (such as but not limited to liver precursor cells).
  • the non-pluripotent cells are pancreatic cells (eg pancreatic precursor cells or pancreatic progenitor cells).
  • the non-pluripotent cells are selected from spermatocytes (including spermatogonial stem cells) or oocytes.
  • the non-pluripotent cells still retain some or all of the functions of unmodified cells or enhance their functions, for example, engineered immune cells (such as natural killer cells) have the ability to kill tumor and cancer cells.
  • the non-pluripotent cells have expression of MDM4 and TEP1 that is at least about 5-fold, 10-fold, 20-fold, 30-fold, or even higher than that of the non-pluripotent cells.
  • the biological age of the cell is significantly reduced compared to the unmodified pluripotent cell, and its biological age can be tested by testing its gene expression or epigenetic modification (such as an epigenetic clock) to measure.
  • Biological age is not the same as actual chronological age, because two animals of the same actual age may also have differences in aging rates, that is, differences in biological age, which will lead to differences in the risk of animals suffering from aging-related diseases.
  • the epigenetic clock has emerged as a powerful biomarker of the aging process in mammals, including humans, mice, dogs and wolves, and humpback whales.
  • the epigenetic clock is a mathematical model that can predict age and biological age using the epigenetic modification status of a small number of genomic sites in the genome after training with large data sets (Horvath and Raj, 2018; Bell et al., 2019). In 2013, Steve Horvath developed the most widely used multi-tissue epigenetic clock in humans (Horvath 2013). Interestingly, the deviation between the biological age predicted by the epigenetic clock and the actual chronological age (also known as epigenetic age acceleration or EAA) is strongly correlated with the time of death and many progeria diseases in humans, including HIV infection, Tang syndrome, obesity, Werner syndrome, and Huntington's disease.
  • EAA epigenetic age acceleration
  • the epigenetic clock can be understood as a representative used to quantify changes in the epigenome with aging (Martin-Herranz et al., 2019), such as using the DNA methylation status of CpG sites to predict human biological age (Horvath clock; Horvath 2013), mouse biological age (Stubbs multi-t.clock; Stubbs et al., 2017), mouse blood biological age (Petkovitch blood clock; Petkovitch et al., 2018), mouse multi-organ biological age (Thompson multi-t.EN clock; Thompson et al., 2018), or use ribosomal nucleic acid rDNA methylation status to predict mouse blood biological age (Wang blood rDNA clock; Wang and Lemos, 2019), or use staining Histone H3 methylation status to predict biological age (Martin-Herranz et al., 2019; Jeffries et al., 2019).
  • the expression profile of the genome is also altered by age-related epigenetic changes (Martin-Herranz et
  • the present invention provides an isolated cell population comprising the non-pluripotent cells described above or any combination thereof; preferably, at least 50% (e.g. at least 60%, at least 70%) of said cell population %, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or about 100%) of the cells are non-pluripotent cells as described above.
  • the present invention also provides a pharmaceutical combination, which comprises the above-mentioned non-pluripotent cells or cell populations, and pharmaceutically acceptable carriers and/or excipients.
  • the pharmaceutical combination of the present invention can be applied to cell therapy, including administering the cells of the present invention to a patient with a pharmaceutically acceptable carrier and/or organ agent (such as but not limited to using the present invention)
  • a pharmaceutically acceptable carrier and/or organ agent such as but not limited to using the present invention
  • the immune cells described in the invention are used to treat cancer, or the blood cells described in the invention are used to provide patients with excessive blood loss.
  • cell therapy is widely used in the medical field, and the cells produced by the invention can provide high-quality , rejuvenated cells, and increased cell production.
  • the present invention provides a method for reversing cellular senescence comprising increasing any one or more of the following genes (for example 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 , 25, 26, 27, 28 or 29) gene expression: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4.
  • genes for example 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 , 25, 26, 27, 28 or 29
  • the present invention provides a method of reversing cellular senescence comprising increasing the expression of any one or more of the following rejuvenation transcription factor network genes: Grhl2, Zic5, Zic2, Utf1, Otx2, Snai3, Lmo2 , Hopx.
  • the method for reversing cellular senescence provided by the present invention increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the aforementioned rejuvenation transcription factor network genes.
  • the present invention provides a method of reversing cellular senescence comprising increasing the expression of any one or more of the following rejuvenation epigenetic modification network genes: Bcl11a, Bcl11b, Dnmt3b, Mettl20, Arid3c.
  • the method for reversing cellular senescence provided by the present invention increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the above-mentioned rejuvenation epigenetic modification network genes.
  • the present invention provides a method of reversing cellular senescence, comprising increasing the expression of any one or more of the following rejuvenation signaling ligands, receptors, and associated kinase network genes: Fgf5, Wnt3, Calcr, Epha1, Epor, Galr2, Piezo2, Ripk4, Pak6, Map3k15, Pdzd4, Shc4.
  • the method for reversing cellular senescence provided by the present invention increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the above-mentioned rejuvenation signaling ligands, receptors and related kinase network genes.
  • the present invention provides a method for reversing cellular senescence, comprising increasing the expression of any one or more of the following rejuvenation nucleic acid binding factor network genes: Foxr2, Hif3a, Pbx1, Zfp946, Batf3, Pabpc4l, Celf4, Lin28.
  • the method for reversing cellular senescence provided by the present invention increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the aforementioned young nucleic acid binding factor network genes.
  • the present invention provides a method of reversing cellular senescence comprising increasing the expression of LIN28 (LIN28A or LIN28B).
  • the present invention provides a method for reversing cellular senescence, comprising increasing the expression of any one or more of the following rejuvenation factor genes: Bcl11a, Bcl11b, Otx2, Lmo2, Pbx1, Pabpc4l.
  • the method for reversing cellular senescence provided by the present invention increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the aforementioned rejuvenation factor genes.
  • the regimen is to increase the expression of the gene by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of the gene is transient gene expression.
  • the gene expression is constitutive gene expression.
  • cellular senescence refers to the loss of normal cellular activities such as proliferation and differentiation, although cells maintain certain vitality and metabolic activity.
  • Cellular senescence can be caused by various stimuli or factors, including telomere shortening due to duplication of DNA ends, DNA damage, altered activity of tumor suppressor and oncogenes, oxidative stress, inflammation, chemotherapeutic agents, and exposure to ultraviolet radiation or ionization Radiation (Kuilman et al., Genes & Development. (2010) 24:2463-2479).
  • reversal of cellular senescence or “reversal of senescence” refers to restoring the ability of cells to proliferate and/or differentiate.
  • reversing cellular senescence or “reversing senescence” refers to allowing cells to restore normal cell activities such as proliferation and/or differentiation, which can also be measured and identified using ⁇ -galactosidase activity reagents.
  • the present invention also provides a method for preparing the above young non-pluripotent cells, which includes increasing any one or more of the following genes (for example, 1, 2, 3, 4, 5 , 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 , 23, 24, 25, 26, 27, 28 or 29) gene expression: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5 , Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4; A cell's biological age can be measured by testing the cell's gene expression or genetic modifications, such as
  • the present invention provides a method for producing the above youthful cells, comprising increasing the expression of any one or more of the following youthful transcription factor network genes: Grhl2, Zic5, Zic2, Utf1, Otx2, Snai3, Lmo2 , Hopx.
  • the method for preparing the above youthful cells provided by the present invention increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the youthful transcription factor network genes described above.
  • the present invention provides a method for preparing the above youthful cells, which includes increasing the expression of any one or more of the following youthful epigenetic modification network genes: Bcl11a, Bcl11b, Dnmt3b, Mettl20, Arid3c.
  • the method for preparing the above youthful cells increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the above youthful epigenetic modification network genes.
  • the present invention provides methods for preparing the above youthful cells, including increasing the expression of any one or more of the following youthful signaling ligands, receptors, and related kinase network genes: Fgf5, Wnt3, Calcr, Epha1, Epor, Galr2, Piezo2, Ripk4, Pak6, Map3k15, Pdzd4, Shc4.
  • the method for preparing the above youthful cells increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the above-mentioned youthful signaling ligands, receptors and related kinase network genes .
  • the present invention provides a method for preparing the above youthful cells, which includes increasing the expression of any one or more of the following youthful nucleic acid binding factor network genes: Foxr2, Hif3a, Pbx1, Zfp946, Batf3, Pabpc4l, Celf4, Lin28.
  • the method for preparing the above youthful cells increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the youthful nucleic acid binding factor network genes described above.
  • the present invention provides a method of making the above youthful cells, comprising increasing the expression of LIN28 (LIN28A or LIN28B).
  • the present invention provides a method for preparing the above rejuvenating cells, which includes increasing the expression of any one or more of the following rejuvenating factor genes: Bcl11a, Bcl11b, Otx2, Lmo2, Pbx1, Pabpc4l.
  • the method for preparing the above youthful cells provided by the present invention in addition to increasing the expression of the above youthful factor genes, simultaneously increases the expression of LIN28 (LIN28A or LIN28B).
  • the regimen is to increase the expression of the gene by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of the gene is transient gene expression.
  • the gene expression is constitutive gene expression.
  • the term "rejuvenating” refers to a cell or species that has decreased biological age or has biological characteristics of young cells such as greater self-renewal capacity, regeneration capacity, growth capacity, closer embryonic Gene expression or epigenetic modification profiles or better biological function.
  • the biological age of the cells described above can be measured by testing the cells for gene expression or genetic modifications such as epigenetic clocks.
  • the method is capable of reversing cellular exhaustion in non-pluripotent cells, comprising increasing any one or more of the following genes (e.g., 1, 2, 3, 4, 5, 6 , 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 , 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40) Gene expression: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2 , Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4.
  • genes e.g
  • the method reverses cellular exhaustion in non-pluripotent cells comprising increasing expression of any one or more of the following rejuvenation transcription factor network genes: Grhl2, Zic5, Zic2, Utf1, Otx2, Snai3 , Lmo2, Hopx.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the rejuvenation transcription factor network genes described above.
  • the method is capable of reversing cellular exhaustion in non-pluripotent cells, comprising increasing expression of any one or more of the following rejuvenation epigenetic modification network genes: Bcl11a, Bcl11b, Dnmt3b, Mettl20, Arid3c .
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the rejuvenation epigenetic modification network genes described above.
  • the method reverses cellular exhaustion in non-pluripotent cells, comprising increasing expression of any one or more of the following rejuvenation signaling ligands, receptors, and associated kinase network genes: Fgf5, Wnt3, Calcr, Epha1, Epor, Galr2, Piezo2, Ripk4, Pak6, Map3k15, Pdzd4, Shc4.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of the above-mentioned rejuvenation signaling ligands, receptors, and related kinase network genes.
  • the method is capable of reversing cellular exhaustion in non-pluripotent cells, comprising increasing the expression of any one or more of the following rejuvenation nucleic acid binding factor network genes: Foxr2, Hif3a, Pbx1, Zfp946, Batf3, Pabpc4l, Celf4, Lin28.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of the youthful nucleic acid binding factor network genes described above.
  • the method reverses cellular exhaustion in non-pluripotent cells, comprising increasing expression of any one or more of the following rejuvenation factor genes: Bcl11a, Bcl11b, Otx2, Lmo2, Pbx1, Pabpc4l.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of the rejuvenation factor genes described above.
  • the methods reverse cellular exhaustion in non-pluripotent cells comprising increasing expression of LIN28 (LIN28A or LIN28B).
  • the regimen is to increase the expression of the gene by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of the gene is transient gene expression.
  • the gene expression is constitutive gene expression.
  • cell depletion refers to the loss of some functions of cells during the long-term activation process, which can generally be identified by cell function tests, for example, after co-cultivation of immune cells with tumor and cancer cells in vitro, immune cells against The killing ability of tumor cancer cells, etc.
  • reversal of cell exhaustion refers to the restoration of cell function, which can generally be identified by cell function tests, such as the ability of immune cells to kill tumor and cancer cells in vitro after co-cultivation of immune cells with tumor and cancer cells in vitro wait.
  • the method is capable of reversing anergy in non-pluripotent cells, comprising increasing any one or more of the following genes (e.g., 1, 2, 3, 4, 5, 6 , 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 , 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40) Gene expression: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2 , Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4.
  • genes e.g.
  • the method reverses anergy in non-pluripotent cells comprising increasing expression of any one or more of the following rejuvenation transcription factor network genes: Grhl2, Zic5, Zic2, Utf1, Otx2, Snai3 , Lmo2, Hopx.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the rejuvenation transcription factor network genes described above.
  • the method reverses anergy in non-pluripotent cells, comprising increasing expression of any one or more of the following rejuvenation epigenetic modification network genes: Bcl11a, Bcl11b, Dnmt3b, Mett120, Arid3c .
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the rejuvenation epigenetic modification network genes described above.
  • the method reverses anergy in non-pluripotent cells, comprising increasing the expression of any one or more of the following rejuvenation signaling ligands, receptors, and associated kinase network genes: Fgf5, Wnt3, Calcr, Epha1, Epor, Galr2, Piezo2, Ripk4, Pak6, Map3k15, Pdzd4, Shc4.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of the above-mentioned youth signaling ligands, receptors and related kinase network genes.
  • the method is capable of reversing anergy in non-pluripotent cells, comprising increasing the expression of any one or more of the following young nucleic acid binding factor network genes: Foxr2, Hif3a, Pbx1, Zfp946, Batf3, Pabpc4l, Celf4, Lin28.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of the youthful nucleic acid binding factor network genes described above.
  • the method reverses anergy in a non-pluripotent cell comprising increasing expression of LIN28 (LIN28A or LIN28B). In certain embodiments, the method reverses anergy in non-pluripotent cells, comprising increasing the expression of any one or more of the following rejuvenation factor genes: Bcl11a, Bcl11b, Otx2, Lmo2, Pbx1, Pabpc4l. In some embodiments, the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of the rejuvenation factor genes described above. In certain embodiments, the regimen is to increase the expression of the gene by transgenic means, and the expression lasts for at least 12 hours. In certain embodiments, the expression of the gene is transient gene expression. In certain embodiments, the gene expression is constitutive gene expression.
  • the term "anergy” refers to the inability of cells to initiate a proper response to external signals.
  • the anergy of immune cells refers to the inability of immune cells to initiate an immune response to an immune antigen, and the inability to respond to an immune antigen.
  • a large amount of proliferation can generally be tested by the number of immune cell proliferation.
  • reversing anergy refers to allowing cells to restore their proper response and function to external signals, including proliferation.
  • reversing immune cell anergy refers to allowing immune cells to restore their proper response to immune antigens.
  • the immune response to the immune antigen proliferates in large quantities, which can generally be tested by the number of immune cell proliferation.
  • the method prolongs the lifespan of a non-pluripotent cell comprising increasing any one or more of the following genes (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 , 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 each) gene expression: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4.
  • genes e.g., 1, 2, 3, 4, 5, 6, 7,
  • the method prolongs the lifespan of a non-pluripotent cell comprising increasing the expression of any one or more of the following rejuvenation transcription factor network genes: Grhl2, Zic5, Zic2, Utf1, Otx2, Snai3, Lmo2, Hopx.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the rejuvenation transcription factor network genes described above.
  • the method prolongs the lifespan of a non-pluripotent cell comprising increasing expression of any one or more of the following rejuvenation epigenetic modification network genes: Bcl11a, Bcl11b, Dnmt3b, Mettl20, Arid3c.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the rejuvenation epigenetic modification network genes described above.
  • the method prolongs the lifespan of non-pluripotent cells comprising increasing expression of any one or more of the following rejuvenation signaling ligands, receptors, and associated kinase network genes: Fgf5, Wnt3, Calcr , Epha1, Epor, Galr2, Piezo2, Ripk4, Pak6, Map3k15, Pdzd4, Shc4.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of the above-mentioned youth signaling ligands, receptors and related kinase network genes.
  • the method prolongs the lifespan of a non-pluripotent cell comprising increasing expression of any one or more of the following rejuvenation nucleic acid binding factor network genes: Foxr2, Hif3a, Pbx1, Zfp946, Batf3, Pabpc4l , Celf4, Lin28.
  • the method increases the expression of LIN28 (LIN28A or LIN 28B) in addition to increasing the expression of the youthful nucleic acid binding factor network genes described above.
  • the method prolongs the lifespan of non-pluripotent cells, comprising increasing the expression of any one or more of the following rejuvenation factor genes: Bcl11a, Bcl11b, Otx2, Lmo2, Pbx1, Pabpc4l.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of the rejuvenation factor genes described above.
  • the method prolongs the lifespan of a non-pluripotent cell comprising increasing expression of LIN28 (LIN28A or LIN28B).
  • the regimen is to increase the expression of the gene by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of the gene is transient gene expression.
  • the gene expression is constitutive gene expression.
  • the lifespan of a cell can be measured by the length of time the cell survives, and whether the cell survives can be identified by staining (such as propidium iodide), and those skilled in the art can also observe the cell morphology under a microscope to identify.
  • staining such as propidium iodide
  • the method enables sustained expansion of cells in vitro for at least 4 days, 5 days, 6 days, 8 days, 9 days, 10 days, 20 days, 30 days, 40 days, 50 days, 100 days , 150 days, 200 days, 300 days, 400 days or even more days, including increasing any one or more of the following genes (for example, 1, 2, 3, 4, 5, 6, 7 , 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 , 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40) Gene expression: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1,
  • the method enables sustained expansion of cells in vitro for at least 4 days, 5 days, 6 days, 8 days, 9 days, 10 days, 20 days, 30 days, 40 days, 50 days, 100 days , 150 days, 200 days, 300 days, 400 days or even more days, including increasing the expression of any one or more of the following rejuvenation transcription factor network genes: Grhl2, Zic5, Zic2, Utf1, Otx2, Snai3, Lmo2, Hopx.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the rejuvenation transcription factor network genes described above.
  • the method enables sustained expansion of cells in vitro for at least 4 days, 5 days, 6 days, 8 days, 9 days, 10 days, 20 days, 30 days, 40 days, 50 days, 100 days , 150 days, 200 days, 300 days, 400 days or even more days, including increasing the expression of any one or more of the following rejuvenation epigenetic modification network genes: Bcl11a, Bcl11b, Dnmt3b, Mettl20, Arid3c.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the rejuvenation epigenetic modification network genes described above.
  • the method enables sustained expansion of cells in vitro for at least 4 days, 5 days, 6 days, 8 days, 9 days, 10 days, 20 days, 30 days, 40 days, 50 days, 100 days , 150 days, 200 days, 300 days, 400 days or even more days, including increasing the expression of any one or more of the following rejuvenation signaling ligands, receptors and related kinase network genes: Fgf5, Wnt3, Calcr, Epha1 , Epor, Galr2, Piezo2, Ripk4, Pak6, Map3k15, Pdzd4, Shc4.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of the above-mentioned rejuvenation signaling ligands, receptors, and related kinase network genes.
  • the method enables sustained expansion of cells in vitro for at least 4 days, 5 days, 6 days, 8 days, 9 days, 10 days, 20 days, 30 days, 40 days, 50 days, 100 days , 150 days, 200 days, 300 days, 400 days or even more days, including increasing the expression of any one or more of the following rejuvenation nucleic acid binding factor network genes: Foxr2, Hif3a, Pbx1, Zfp946, Batf3, Pabpc4l, Celf4 , Lin28.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of the youthful nucleic acid binding factor network genes described above.
  • the method is capable of extending non-pluripotent cells, and the method is capable of sustained expansion of cells in vitro for at least 4 days, 5 days, 6 days, 8 days, 9 days, 10 days, 20 days, 30 days, 40 days, 50 days, 100 days, 150 days, 200 days, 300 days, 400 days or even more days, including increasing the expression of LIN28 (LIN28A or LIN28B).
  • the method enables sustained expansion of cells in vitro for at least 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 8 days, 9 days, 10 days, 20 days, 30 days , 40 days, 50 days, 100 days, 150 days, 200 days, 300 days, 400 days or even more days, including increasing the expression of any one or more of the following rejuvenation factor genes: Bcl11a, Bcl11b, Otx2, Lmo2 , Pbx1, Pabpc4l.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of the rejuvenation factor genes described above.
  • the regimen is to increase the expression of the gene by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of the gene is transient gene expression.
  • the gene expression is constitutive gene expression.
  • the method enables stable passage of non-pluripotent cells at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times or more, including increasing Any one or more of the following genes (e.g.
  • Bcl11a Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b , Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4 , Piezo2, Shc4.
  • the method enables stable passage of non-pluripotent cells at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times or more, including increasing Expression of any one or more of the following rejuvenation transcription factor network subgenes: Grhl2, Zic5, Zic2, Utf1, Otx2, Snai3, Lmo2, Hopx.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the rejuvenation transcription factor network genes described above.
  • the method enables stable passage of non-pluripotent cells at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times or more, including increasing Expression of any one or more of the following rejuvenation epigenetic modification network genes: Bcl11a, Bcl11b, Dnmt3b, Mettl20, Arid3c.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the rejuvenation epigenetic modification network genes described above.
  • the method enables stable passage of non-pluripotent cells at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times or more, including increasing Expression of any one or more of the following rejuvenation signaling ligands, receptors and related kinase network genes: Fgf5, Wnt3, Calcr, Epha1, Epor, Galr2, Piezo2, Ripk4, Pak6, Map3k15, Pdzd4, Shc4.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of the above-mentioned youth signaling ligands, receptors and related kinase network genes.
  • the method enables stable passage of non-pluripotent cells at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times or more, including increasing Expression of any one or more of the following rejuvenation nucleic acid binding factor network genes: Foxr2, Hif3a, Pbx1, Zfp946, Batf3, Pabpc4l, Celf4, Lin28.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of the youthful nucleic acid binding factor network genes described above.
  • the method enables stable passage of non-pluripotent cells at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times or more, including increasing Expression of LIN28 (LIN28A or LIN28B).
  • the method enables stable passage of non-pluripotent cells at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times or more, including increasing Expression of any one or more of the following rejuvenation factor genes: Bcl11a, Bcl11b, Otx2, Lmo2, Pbx1, Pabpc4l.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of the rejuvenation factor genes described above.
  • the regimen is to increase the expression of the gene by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of the gene is transient gene expression.
  • the gene expression is constitutive gene expression.
  • the non-pluripotent cells are selected from endoderm, ectoderm, mesoderm origin or germ cells. In certain embodiments, the non-pluripotent cells exclude muscle cells and fibroblasts.
  • the non-pluripotent cells are neural cells (such as but not limited to neuroectodermal progenitor cells, glial cells (including microglia, astrocytes)).
  • the non-pluripotent cells are neural crest cells (neural crest cells and their derived daughter cells).
  • said non-pluripotent cells are mesenchymal stem cells.
  • said non-pluripotent cells are blood cells (eg hematopoietic stem cells, hematopoietic stem progenitor cells, red blood cells, white blood cells, neutrophils, platelets, eosinophils).
  • said non-pluripotent cells are immune cells (e.g. leukocytes, lymphocytes, natural killer cells (NK cells), T cells, ⁇ T cells, NKT cells, macrophages, B cells, microglia, spleen Immune Cells).
  • said non-pluripotent cells are skin cells (eg keratinocytes).
  • the non-pluripotent cells are liver cells (such as but not limited to liver precursor cells).
  • the non-pluripotent cells are pancreatic cells (eg pancreatic precursor cells or pancreatic progenitor cells).
  • the non-pluripotent cells are selected from spermatocytes (including spermatogonial stem cells) or oocytes.
  • the non-pluripotent cells still retain some or all of the functions of unmodified cells or enhance their functions, for example, engineered immune cells (such as natural killer cells) have the ability to kill tumor and cancer cells.
  • the method includes transgenic means to increase the expression of one or more of the following genes in the cell: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4.
  • cells are treated (eg, genetically engineered) so that non-pluripotent cells express higher levels of regenerative factors than they would in the absence of such treatment.
  • the cells are treated such that the non-pluripotent cells overexpress one or more of the following genes: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4.
  • One method of cell treatment is to infect the cell with a virus (e.g., retrovirus, lentivirus, adenovirus, adeno-associated virus) or to transfect the cell with a viral vector (e.g., retrovirus, lentivirus, adenovirus) comprising operably linked Factor sequences into appropriate expression control elements to drive expression in cells following infection or transfection, and optionally integrated into the genome as known in the art.
  • the method of treating cells also includes using a transposon or a transposon to deliver the above-mentioned genes and the promoters that control the expression level of the genes.
  • the protocol for treating cells may utilize electroporation to deliver elements (promoters, inteins, endonucleases) comprising transposons or retrotransposons, elements that control protein expression (promoters, inteins, endonucleases) (e.g.
  • cre-lox system cre-lox system
  • Bcl11a Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c
  • Bcl11b Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx
  • the transgenic method utilized by the method comprises the use of any vector known in medicine such as but not limited to viral vectors, transposons, nanoparticles, retrotransposons, endonucleases).
  • the present invention also provides a kit or combination of reagents, which can be used to generate the above-mentioned young non-pluripotent cells, including:
  • Nucleic acid eg, deoxyribonucleic acid, ribonucleic acid
  • Nucleic acid encoding any one or more of the following proteins: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a , Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4
  • Medically acceptable carriers such as viral vectors, nanoparticles, lipid vesicles, transposons, retrotransposons, exosomes, etc.
  • the kit or combination of reagents also includes elements for regulating the expression of the above-mentioned genes or proteins, such as but not limited to promoters, drug-regulated promoters, protein-regulated promoters, tissue-specific promoters , inteins, transposons, endonucleases (eg cre-lox system), retrotransposons.
  • elements for regulating the expression of the above-mentioned genes or proteins such as but not limited to promoters, drug-regulated promoters, protein-regulated promoters, tissue-specific promoters , inteins, transposons, endonucleases (eg cre-lox system), retrotransposons.
  • the kit or combination of reagents, the contained vectors, etc. also contain any of the above-mentioned elements that regulate the expression of the above-mentioned genes or proteins, and the components encoding Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Nucleic acid of one or more proteins of Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4.
  • the kit or combination of reagents, the contained vectors, etc. also contain any of the above-mentioned elements that regulate the expression of the above-mentioned genes or proteins, and the components encoding Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Nucleic acid of one or more proteins of Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4.
  • the agent or combination of agents is infection of a cell with a virus (e.g., retrovirus, lentivirus, adenovirus, adeno-associated virus) or infection of a cell with a viral vector (e.g., retrovirus, lentivirus, adenovirus)
  • a virus e.g., retrovirus, lentivirus, adeno-associated virus
  • a viral vector e.g., retrovirus, lentivirus, adenovirus
  • Transfected cells contain factor sequences operably linked to appropriate expression control elements to drive expression in the cell following infection or transfection, and optionally integrate into the genome as known in the art.
  • the reagent or combination of reagents comprises the use of transposons or retrotransposons to deliver the genes described above and a promoter that controls the expression level of the genes.
  • the reagent or combination of reagents is used to deliver elements (promoters, inteins, endonucleases) comprising transposons or retrotransposons, elements that control protein expression (promoters, inteins, endonucleases) enzyme (e.g.
  • cre-lox system cre-lox system
  • Bcl11a Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c
  • Bcl11b Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx , Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4 one or more protein nucleic acid sequence carrier.
  • the reagent or kit can be used in vitro or in vivo of a subject.
  • non-pluripotent cell refers to a cell whose germ layer fate is determined and cannot differentiate into different cell types of various germ layers, such as adult cells, germ cells, adult stem cells, etc., and is not an embryonic stem cell, induced pluripotent stem cells.
  • the term "precursor cell” or “set of cells” refers to a cell that has a specific fate and can only differentiate into a specific adult cell or a certain germ layer.
  • biological age refers to determining how old or young a species is by its health and aging indicators.
  • epigenetic clock or “epigenetic clock” refers to the use of epigenetic modifications as biological indicators to measure the biological age of a species.
  • self-renewal ability refers to the ability of cells to self-maintain cell characteristics over multiple passages without significant changes in properties such as cell fate.
  • the number of passages is at least about 5, at least about 10, at least about 20, at least about 30, at least about 50, or at least about 100.
  • expansion or “proliferation” refers to maintaining cells substantially without differentiation and ultimately cell growth, ie, increasing (eg, at least 2-fold) a population of cells without concomitant increased differentiation.
  • in vitro refers to an artificial environment, and the processes and reactions therein. In vitro environments are exemplified by, but not limited to, test tubes and cell cultures.
  • in vivo refers to the natural environment (ie, an animal or a cell) and the processes and reactions within it.
  • basic medium refers to any medium capable of supporting cell growth, generally comprising inorganic salts, vitamins, glucose, buffer systems and essential amino acids, and generally having an osmotic pressure of about 280-330 mOsmol.
  • serum substitute has the meaning known to those skilled in the art, which refers to the combination used as a substitute for serum in the process of culturing stem cells while maintaining an undifferentiated state. substances or formulations. That is, serum replacement is capable of supporting the growth of undifferentiated stem cells without supplementation of serum.
  • the serum replacement comprises: one or more amino acids, one or more vitamins, one or more trace metal elements.
  • the serum replacement may further comprise one or more components selected from the group consisting of albumin, reduced glutathione, transferrin, insulin, and the like.
  • Non-limiting examples of serum substitutes include, but are not limited to, KnockOut TM SR (abbreviated as KSR), N-2, B-27, Physiologix TM XF SR, StemSure TM Serum Substitute Supplement, and the like.
  • the term "pharmaceutically acceptable carrier or excipient” refers to a carrier and/or excipient that is pharmacologically and/or physiologically compatible with the subject and the active ingredient, which are well known in the art (see for example Remlngton's Pharmaceutical Sciences. Edited by Gennaro AR, 19th ed. Pennsylvania: Mack Publishing Company, 1995), and include, but are not limited to: pH adjusters, surfactants, ionic strength enhancers, Agents for maintaining osmotic pressure, agents for delaying absorption, diluents, adjuvants, preservatives, etc.
  • pH adjusting agents include, but are not limited to, phosphate buffers.
  • Surfactants include but are not limited to cationic, anionic or nonionic surfactants such as Tween-80.
  • Ionic strength enhancers include, but are not limited to, sodium chloride.
  • Agents to maintain osmotic pressure include, but are not limited to, sugars, NaCl, and the like.
  • Agents that delay absorption include, but are not limited to, monostearates and gelatin.
  • Diluents include, but are not limited to, water, aqueous buffers (eg, buffered saline), alcohols and polyols (eg, glycerol), and the like.
  • Adjuvants include, but are not limited to, aluminum adjuvants (such as aluminum hydroxide), Freund's adjuvant (such as complete Freund's adjuvant), and the like.
  • Preservatives include, but are not limited to, various antibacterial and antifungal agents, such as thimerosal, 2-phenoxyethanol, parabens, chlorobutanol, phenol, sorbic acid, and the like.
  • the pharmaceutically acceptable carrier or excipient is a sterile isotonic aqueous or non-aqueous solution (eg, balanced salt solution or physiological saline), dispersion, suspension or emulsion.
  • "pharmaceutically acceptable carrier” also includes means for delivering nucleic acids such as, but not limited to, viral vectors, nanoparticles, lipid vesicles, exosomes, and the like.
  • the term "about” refers to a value or composition within an acceptable error range for a particular value or composition as determined by one of ordinary skill in the art, which will depend in part on how the value or composition is measured or determined, That is, the limitation of the measurement system. For example, when “about” is used to describe a measurable value (eg, concentration of a substance, mass ratio, etc.), it means including a range of ⁇ 10%, ⁇ 5%, or ⁇ 1% of the given value.
  • Figure 1 shows the expression of Lin28a in testis and placenta.
  • A Proportion of Lin28a-tdTO+PLZF+spermatogonia SSCs located in the periphery of seminiferous tubules compared to all PLZF+spermatogonia SSCs.
  • B Lin28a-tdTO+trophoblast giant cells (TGCs), placental giant cells.
  • C Lin28a-tdTO+glycogen trophoblast cells (Gly-T), placental glycogen trophoblast cells.
  • D Lin28a-tdTO+sycytiotrophoblast cells (Syn), placental syncytiotrophoblast cells, located in the LZ labyrinth.
  • IPYS Intraplacental yolk sac cells
  • Figure 2 shows the expression of Lin28a at the placental-fetal interface.
  • A Lin28a-tdTO+decidual natural killer cells (dNK cells), decidual natural killer cells.
  • B Lin28a-tdTO+decidual macrophages decidual macrophages.
  • C Lin28a-tdTO+ extravillous trophoblast cells (EVT), extravillous trophoblast cells of the placenta, located in the wall of the spiral artery of the maternal blood sinus.
  • dNK cells decidual natural killer cells
  • B Lin28a-tdTO+decidual macrophages decidual macrophages.
  • C Lin28a-tdTO+ extravillous trophoblast cells (EVT), extravillous trophoblast cells of the placenta, located in the wall of the spiral artery of the maternal blood sinus.
  • ETT extravillous trophoblast cells
  • Figure 3 shows the expression of Lin28a in embryonic lung. Between embryonic development E11.5-16.5, Lin28a-tdTO+ (stained with tdTomato antibody, green) bronchial epithelial stem cells, lung bronchial stem cells appeared in the lung.
  • Lin28a-tdTO+ stained with tdTomato antibody, green
  • Figure 4 shows the expression of Lin28a in embryonic liver. Between E7.5-16.5 of embryonic development, the liver presents a large number of Lin28a-tdTO+ (stained with tdTomato antibody, green; with tdTomato autofluorescence, red) hepatoblasts, liver progenitor cells.
  • Lin28a-tdTO+ stained with tdTomato antibody, green; with tdTomato autofluorescence, red
  • Figure 5 shows the expression of Lin28a in embryonic somites.
  • A. Between embryonic development E11.5-12.5, a large number of Lin28a-tdTO+ cartilage stem cells appeared in the ossification cartilage primordia.
  • B. Between embryonic development E11.5-12.5, a large number of Lin28a-tdTO+ raw skin muscle stem cells appeared in the tail bud.
  • a large number of renal progenitor cells also appeared in paramesonephric duct.
  • Figure 6 shows the expression of Lin28a in embryonic brain.
  • A Between embryonic development E11.5-12.5, a large number of Lin28a-tdTO+ neural stem cells appeared in the cerebellar primordium.
  • B Between embryonic development E14.5-15.5, a large number of Lin28a-tdTO+ ependymal progenitor cells appeared in the choroid plexus of the lateral ventricle.
  • C Between embryonic development E11.5-16.5, a large number of Lin28a-tdTO+ neural stem cells appeared in the striatum of the brain (the caudal ganglion bulge in the subventricular zone) striatum ganglionic eminence.
  • Figure 7 shows the expression of Lin28a in the embryonic esophagus.
  • A Between E14.5-15.5 of embryonic development, a large number of Lin28a-tdTO+ stem cells appeared in teeth primordia and primordia of follicles of vibrissae.
  • B Between embryonic development E11.5-16.5, a large number of Lin28a-tdTO+ gastrointestinal stem cells appeared in the duodenum duodenum.
  • Figure 8 shows the proportion of Lin28a+ cells in different organs analyzed by flow cytometry.
  • A The blood of LsL-tdTO single heterozygous mice was used as the negative control (NC) of this flow cytometric analysis.
  • Figure 9 shows the culture and identification of adult cardiac Lin28a+ cells.
  • A In vitro culture morphology of Xinzhuang Lin28a+ cells.
  • B qRT-PCR identification of the expression of marker genes of different types of cardiac cells in Lin28a-/+ cells.
  • the control sample was Lin28a+ muscle stem cells (MuSCs).
  • Myh6, Myh7, Acta1, Tnnt2, Nkx2.5 are marker genes of cardiomyocytes; Pdgfra, Col1a1, Tcf21 are marker genes of fibroblasts; Sirpa2, Sirpa3 are marker genes of hematopoietic cells; Pecam1, Cdh5, Fabp4 are marker genes of endothelial cells Cell marker genes; Acta2, Myh11, Actg2 are smooth muscle cell marker genes; Pax6, Sox9 are neural stem cell marker genes; Nestin, Msi1, Msi2, Sox9, Sox10, Foxc1, Foxc2 are neural crest cell marker genes; Tubb3, Map2, Fabp4 are Mature neuron marker gene; Olig2, glial cell marker gene; GFAP, astrocyte marker gene; mGAPDH, internal control. In summary, it is concluded that cardiac Lin28a+ cells are stem cells similar to neural crest.
  • Figure 10 shows flow cytometric analysis of Lin28a+ cells in the blood of 2-month-old mice. After the blood cells were lysed red, 4 cell surface marker gene antibodies were co-stained, CD3 (T cells), CD49b (NK natural killer cells), CD11b (myeloid-derived granulocytes, macrophages, etc.), B220 (B cell ).
  • T cells T cells
  • CD49b NK natural killer cells
  • CD11b myeloid-derived granulocytes, macrophages, etc.
  • B220 B cell .
  • A. Undamaged Undamaged mouse blood td+ cells, about 50% NK (CD49b+), 10% T (CD3+) cells, 24% granulocytes (CD11b+), 14% B cells (B220+).
  • td+ cells in the blood of the injured mice increased several times, and there were about 96% NK (CD49b+), 0.8% T (CD3+) cells, 5% granulocytes (CD11b+), and 1.5% B cells (B220+).
  • Figure 11 shows flow cytometric analysis of Lin28a+ cells in the blood of 5-month-old mice.
  • A Further analysis and identification of Lin28a-tdTO+ cells in mouse blood after injury, most (>93%) were CD11b+.
  • Neutrophils (Ly6G+F40/80-), macrophages (Ly6G-F4/80+).
  • B Statistics of the percentage of neutrophils and macrophages.
  • Figure 12 shows the role of Lin28a in NK natural killer cells in vivo.
  • Figure 13 shows the effect of Lin28a in NK natural killer cells in vitro. After human NK cells were activated for 20 days and then overexpressed Lin28a for 3 days, the self-renewal ability and proliferation rate increased significantly.
  • Figure 14 shows the effect of Lin28a in NK natural killer cells in vitro.
  • the human NK killing rate detected by 293T cancer cells as target cells shows that Lin28a enhances the killing rate of human NK cells.
  • FIG 15 shows that Lin28a is reactivated and expressed in various hematopoietic stem cell-derived and/or immune cells, including NK cells, T cells, B cells and neutrophils. Lin28a was also expressed in very small numbers of cardiac neural crest cells (0.951%) and keratinocytes (0.12%). Lin28a is also expressed in a large number of spermatocytes and oocytes. Lin28a is also expressed in hematopoietic stem cells and hematopoietic stem-progenitor cells. In contrast, Lin28a is not expressed in mesenchymal stem cells (MSCs) or fibroblasts.
  • MSCs mesenchymal stem cells
  • Figure 16 shows that overexpression of Lin28a can significantly increase the lifespan of primary hematopoietic stem cell sources and/or immune cells (including natural killer cells, T cells, B cells and neutrophils, and cardiac neural crest cells and related cardiomyocytes) ( % original ex vivo lifespan in days), skin keratinocytes, hematopoietic stem cells, hematopoietic stem progenitors, spermatocytes and associated spermatozoa, oocytes and associated germ cells.
  • Lin28a did not increase the lifespan of mesenchymal stem cells (MSCs) or fibroblasts.
  • Figure 17 shows a table of rejuvenation genes, including rejuvenation transcription factor network genes, rejuvenation epigenetic modification network genes, rejuvenation signaling ligands, genes of receptors and related kinase networks, rejuvenation nucleic acid binding factor network genes, which Expression can rejuvenate non-pluripotent cells, reverse aging, reverse exhaustion of non-pluripotent cells, reverse the anergy of non-pluripotent cells, prolong the lifespan of non-pluripotent cells, and increase the number of passages of non-pluripotent cells.
  • rejuvenation transcription factor network genes including rejuvenation transcription factor network genes, rejuvenation epigenetic modification network genes, rejuvenation signaling ligands, genes of receptors and related kinase networks, rejuvenation nucleic acid binding factor network genes, which Expression can rejuvenate non-pluripotent cells, reverse aging, reverse exhaustion of non-pluripotent cells, reverse the anergy of non-pluripotent cells, prolong the lifespan of non-plu
  • FIG 18 shows that the aging mouse cardiomyocytes (cardiomyocytes (6 viruses)) and the aging mouse cardiomyocytes (cardiomyocytes) of empty vector control were transfected with 6 genes (Control)) Proliferation rate and cell lifespan 3 days after FGF2 stimulation. Aging mouse cardiomyocytes are apparently incompetent, and at the end of life, they cannot proliferate and cannot be passaged. Aged mouse cardiomyocytes transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) (cardiomyocytes (6 virus)) restored FGF F2 sensing ability and proliferation ability, and could be passaged > 10 times .
  • Figure 19 shows the senescent mouse glial cells (6 viruses) and the senescent mouse glial cells (control) of the empty vector control that have been transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) 24-hour proliferation rate and cell lifespan after serum stimulation.
  • 6 genes Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l
  • Figure 20 shows that the aging human mesenchymal stem cells (6 viruses) that have been transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) and the aging mouse mesenchymal stem cells (control) of the empty vector control 3-day proliferation rate and cell lifespan after serum stimulation. Aging mouse mesenchymal stem cells are obviously incompetent, and at the end of life, they cannot proliferate and cannot be passaged.
  • 6 viruses that have been transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) and the aging mouse mesenchymal stem cells (control) of the empty vector control 3-day proliferation rate and cell lifespan after serum stimulation.
  • Aging mouse mesenchymal stem cells are obviously incompetent, and at the end of life, they cannot proliferate and cannot be passaged.
  • Figure 21 shows the senescent human neural cells (6 viruses) transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) and the senescent human neural cells (control) of empty vector control (control) after FGF2 stimulation Day proliferation rate and cell lifespan.
  • the neurons of aging mice are obviously incompetent, and at the end of their lifespan, they cannot proliferate and cannot be passed on to the next generation.
  • Senescent human neural cells (6 viruses) transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) restored FGF2 sensing ability and proliferation ability, and could be passed for more than 5 times.
  • Figure 22 shows that the aging mouse liver cells (6 viruses) and the aging mouse liver cells (control) of the empty vector contrast were stimulated by insulin The 3-day proliferation rate and cell lifespan. Liver cells in aging mice are apparently incompetent, and at the end of their lifespan they cannot proliferate and cannot be passaged. Senescent mouse hepatocytes (6 viruses) transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) restored insulin sensing ability and proliferation ability, and could be passaged > 5 times.
  • Figure 23 shows that the senescent mouse spleen immune cells (red) transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) and the empty vector control senescent mouse spleen immune cells (blue) in ⁇ - 3-day proliferation rate and cell lifespan after CD3/ ⁇ -CD28 stimulation.
  • the spleen immune cells (blue) of aging mice are obviously incompetent, and at the end of life, they cannot proliferate and cannot be passaged.
  • the senescent mouse spleen immune cells (red) transfected with 6 genes recovered the ⁇ -CD3/ ⁇ -CD28 sensing ability and continued to proliferate, diluting the CFSE signal, and the peak at 3x10 3 was shifted to the left by ⁇ 12%.
  • the peak at 10 2 represents ruptured apoptotic cells.
  • the results showed that immune cells in the spleen of aging mice (blue) had apparently begun to undergo apoptosis, reaching the end of life.
  • Figure 24 shows Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l virus (immune cell-6 virus) compared with empty vector virus (immune cell-control), after 48 hours of infection, the degree of activation of Lin28a-tdTomato+ positive immune cells.
  • Figure 25A shows senescent human mesenchymal stem cells transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) (Mesenchymal stem cells (6 viruses)) and senescent human mesenchymal stem cells of empty vector control % Senescent Cell Area of Stem Cells (Mesenchymal Stem Cells (Control)) after Serum Stimulation.
  • 6 genes Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l
  • Figure 25B shows senescent human mesenchymal stem cells transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) (Mesenchymal stem cells (6 viruses)) and senescent human mesenchymal stem cells of empty vector control % Senescent Cell Number of Stem Cells (Mesenchymal Stem Cells (Control)) after Serum Stimulation.
  • 6 genes significantly reversed the proportion of senescent cells.
  • Figure 26A shows senescent human liver precursor cells transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) (liver precursor cells (6 virus)) and empty vector control ( % senescent cell area of hepatic precursor cells (control) after insulin stimulation.
  • Figure 26B shows senescent human liver progenitor cells transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) (hepatic progenitor cells (6 viruses)) and the senescent human liver precursor of empty vector control % Senescent Cell Number of Cells (Hepatic Precursor Cells (Control)) After Insulin Stimulation.
  • 6 genes significantly reversed the proportion of senescent cells.
  • Figure 26A data: P value 0.0000
  • Figure 26B data: P value 0.0001
  • Figure 27A shows senescent human neural progenitor cells transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) (neural progenitor cells (6 viruses)) and empty vector control (neural precursor cells (control)) % senescent cell area after FGF2 stimulation.
  • Figure 27B shows senescent human neural progenitor cells transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) (neural progenitor cells (6 viruses)) and an empty vector control senescent human neural progenitor cells % senescent cell number of cells (neural precursor cells (control)) after FGF2 stimulation.
  • 6 genes significantly reversed the proportion of senescent cells.
  • Figure 27B data: P value 0.293
  • Figure 28A shows the aging human pancreatic precursor cells transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) (Pancreatic precursor cells (6 viruses)) and empty vector control (Pancreatic precursor cells (control)) % senescent cell area after EGF stimulation.
  • Figure 28B shows senescent human pancreatic precursor cells transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) (Pancreatic Precursor Cells (6 Virus)) and an empty vector control senescent human pancreatic precursor % senescent cell number of cells (pancreatic precursor cells (control)) after EGF stimulation.
  • 6 genes significantly reversed the proportion of senescent cells.
  • Figure 29A shows senescent human cardiomyocyte precursor cells transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) (cardiac precursor cells (6 viruses)) and empty vector control (cardiac precursor cells (control)) % senescent cell area after B27 stimulation.
  • Figure 29B shows senescent human cardiomyocyte precursors transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) (cardiac precursor cells (6 viruses)) and empty vector control senescent human cardiomyocyte precursors % senescent cell number of cells (cardiac precursor cells (control)) after B27 stimulation.
  • Figure 29A data: P value 0.0000
  • Figure 29B data: P value 0.0000
  • Figure 30 shows the aging human mesenchymal stem cells (6 viruses) that have been transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) and the aging human mesenchymal stem cells (empty control) of empty vector control All significantly overexpressed 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l). ***P ⁇ 0.001
  • Figure 31 shows that the senescent hepatocytes (6 viruses) and the senescent hepatocytes (empty control) of the empty vector control that have been transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) have significantly overexpressed 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l). ***P ⁇ 0.001
  • Figure 32 shows that the senescent cardiomyocytes (6 viruses) and the senescent cardiomyocytes (empty control) of empty vector control that have been transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) all significantly overexpress 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l). ***P ⁇ 0.001
  • Figure 33 shows that the senescent glial cells (6 viruses) and the senescent glial cells (empty control) of the empty vector control that have been transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) are significantly Six genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) were overexpressed. **P ⁇ 0.001, **P ⁇ 0.01
  • Figure 34 shows that the aging spleen T cells (6 viruses) and the aging spleen T cells (empty control) of the empty vector control were significantly overexpressed Six genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) were identified.
  • Figure 35 shows the senescence of aging spleen NK cells (6 viruses) transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) and empty vector control Six genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) were significantly overexpressed in spleen NK cells (empty control). **P ⁇ 0.001, **P ⁇ 0.01
  • Figure 36 shows the 5-day proliferation rate and cell lifespan of senescent mouse T cells (infection group) infected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) after ⁇ -CD3, ⁇ -CD28 stimulation, Compared with the aging mouse T cell control (uninfected), there was a significant increase.
  • Figure 37 shows the 5-day proliferation rate and cell lifespan of senile mouse NK cells (infection group) transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) after ⁇ -CD3, ⁇ -CD28 stimulation , compared with the aging mouse NK cell control (uninfected), all were significantly improved.
  • Figure 38 shows that in senescent mouse T cells infected with 6 genes (carriers containing Bcl11a, Bcl11b, Otx2, Lmo2, Pbx1, Pabpc4l respectively) within 5 days, the Lin28a+ ratio was significantly higher than that of the control group (0.016% vs 0.007 %).
  • Figure 39 shows that the Lin28a+ ratio of senescent mouse NK cells infected with six genes (carriers containing Bcl11a, Bcl11b, Otx2, Lmo2, Pbx1, and Pabpc4l respectively) within 5 days was significantly higher than that of the control group (0.022% vs 0.012 %).
  • the molecular biology experiment methods and immunoassay methods used in the present invention are basically with reference to J.Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, 1989, and F.M.Ausubel et al., Compiled Molecular Biology Experimental Guide, 3rd Edition, John Wiley & Sons, Inc., 1995 by the method described; restriction endonucleases were used in accordance with the conditions recommended by the product manufacturer.
  • restriction endonucleases were used in accordance with the conditions recommended by the product manufacturer.
  • Lin28a functions in specific cell types.
  • lineage tracing of Lin28a in all embryonic and adult tissues.
  • tdTO Rosa26-loxp-stop-loxp-tdTomato
  • TMX tamoxifen
  • Lin28a-tdTO+ cells spread throughout the placenta ( Figure 1B-E), the maternal-fetal interface ( Figure 2), embryonic lung bronchial wall stem cells (Figure 3), liver progenitor cells ( Figure 4), somatic cartilage stem cells, Raw skin muscle stem cells, kidney progenitor cells ( Figure 5), ependymal progenitor cells, neural stem cells ( Figure 6), stem cells of tooth primordia and vibrissa hair follicle primordium, gastrointestinal stem cells ( Figure 7) and other cells.
  • Lin28a+ cells are present in the adult heart ( Figure 9A). qRT-PCR identification revealed that cardiac Lin28a+ cells were neural crest-like stem cells (Fig. 9B). qRT-PCR identification revealed that cardiac Lin28a+ cells were neural crest-like stem cells (Fig. 9B). There are also a large number of Lin28a+ cells in the blood cells of adult mice, including CD3+T cells, CD49b+NK cells, CD11b+myeloid-derived granulocytes, macrophages, etc., B220+B cells, Ly6G+F40/80-neutral Granulocytes, Ly6G-F4/80+ macrophages (Fig. 10, 11).
  • Lin28a-tdTomato was reactivated and expressed in a variety of hematopoietic stem cell-derived and/or immune cells, including NK cells, T cells, B cells and neutrophils. Lin28a was also expressed in very small numbers of cardiac neural crest cells (0.951%) and skin keratinocytes (0.12%). Lin28a is also expressed in a large number of spermatocytes and oocytes. Lin28a is also expressed in hematopoietic stem cells and hematopoietic stem-progenitor cells. In contrast, Lin28a is not expressed in mesenchymal stem cells (MSCs) or fibroblasts.
  • MSCs mesenchymal stem cells
  • Lin28a can prolong the cell lifespan and rejuvenate these specific cell types
  • Lin28a significantly increased adult hematopoietic stem cell-derived and/or immune cells (including natural killer cells, T cells, B cells and neutrophils, and cardiac neural crest cells and associated cardiomyocytes), skin keratinocytes, hematopoietic stem cells, hematopoietic stem progenitor cells, spermatocytes, oocytes, and associated germ cell lifespans (% of original ex vivo lifespan in days) .
  • Lin28a did not increase the lifespan of mesenchymal stem cells (MSCs) or fibroblasts.
  • MSCs mesenchymal stem cells
  • Lin28a can also specifically prolong the cell lifespan of placental cells, lung cells, liver cells, kidney cells, chondrocytes, ependymal cells, nerve cells, dental cells, gastrointestinal cells, etc.
  • these networks can be divided into rejuvenation transcription factor networks (Grhl2, Zic5, Zic2, Utf1, Otx2, Snai3, Lmo2, Hopx), rejuvenation epigenetic modification networks (Bcl11a, Bcl11b, Dnmt3b, Mettl20, Arid3c), rejuvenation signaling ligands, receptors and related kinase network (Fgf5, Wnt3, Calcr, Epha1, Epor, Galr2, Piezo2, Ripk4, Pak6, Map3k15, Pdzd4, Shc4), and rejuvenation nucleic acid binding factor network (Foxr2 , Hif3a, Pbx1, Zfp946, Batf3, Pabpc4l, Celf4, Lin28
  • rejuvenation transcription factor networks Grhl2, Zic5, Zic2, Utf1, Otx2, Snai3, Lmo2, Hopx
  • Overexpression of one or more of the above-mentioned rejuvenation factors can also achieve cell rejuvenation, reduce biological age, in particular reverse cellular senescence, reverse exhaustion, reverse anergy, prolong cell lifespan and self-renewal capacity (increased passage number).
  • Lin28a Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3 , Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4. Case 1 shows that Lin28a+ cells have the ability to reverse aging.
  • Lin28a-tdTomato as a reporter gene to predict whether non-pluripotent cells can prolong lifespan.
  • Bcl11a, Bcl11b, Otx2, Lmo2, Pbx1, and Pabpc4l can promote cytokine sensing, proliferation, and passage in mouse senescent cells, thereby reversing aging.
  • mice We used known methods to extract aging mice to obtain human non-pluripotent cells (cardiomyocytes, glial cells (including microglia, astrocytes), mesenchymal stem cells, nerve cells, liver cells , spleen immune cells) and were transfected with 6 viruses (vectors containing Bcl11a, Bcl11b, Otx2, Lmo2, Pbx1, Pabpc4l respectively) and empty vector viruses, and the cell proliferation multiples were measured at 24 hours, 48 hours and 72 hours , and measured the Lin28a+ ratio, SA-Bgal+ ratio of senescent cells, and the area% and number% of senescent cells within 72 hours.
  • viruses vectors containing Bcl11a, Bcl11b, Otx2, Lmo2, Pbx1, Pabpc4l respectively
  • the aging muscle cells in the empty vector control group stopped proliferating within one generation, but the aging non-pluripotent cells of the 6 virus could be subcultured for more than 5 times, and the multiplication factor was significantly increased at 24 hours, 48 hours, and 72 hours.
  • the aging mouse immune cells (red) transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) and the aging mouse immune cells of the empty vector control ( Blue) 3-day proliferation rate and cell lifespan after ⁇ -CD3/ ⁇ -CD28 stimulation.
  • the spleen immune cells (blue) of aging mice are obviously incompetent, and at the end of life, they cannot proliferate and cannot be passaged.
  • the senescent mouse spleen immune cells (red) transfected with 6 genes recovered the ⁇ -CD3/ ⁇ -CD28 sensing ability and continued to proliferate, diluting the CFSE (carboxyfluorescein succinimidyl ester, Invitrogen, 10uM) signal,
  • the peak at 3x103 is shifted to the left by -12%.
  • the peak at 10 2 represents ruptured apoptotic cells.
  • the results showed that immune cells in the spleen of aging mice (blue) had apparently begun to undergo apoptosis, reaching the end of life.
  • the aging mouse spleen immune cells (red) transfected with 6 genes reversed the apoptosis and immune cell senescence.
  • we used flow cytometry analysis (Becton Dickinson, Flowjo) to find that the spleen cells of aged mice were transfected with 6 genes (carriers containing Bcl11a, Bcl11b, Otx2, Lmo2, Pbx1, Pabpc4l respectively)
  • the proportion of Lin28a+ was significantly higher than that of the empty vector control group. It can be seen that all the genes in the monad have the ability to activate the expression of Lin28a, reverse aging, reverse incompetence, restore the ability of proliferation and generation, and prolong its lifespan.
  • qRT-PCR fluorescent quantitative nucleic acid amplification detection
  • non-pluripotent cells (6 virus) and the senescent non-pluripotent cells of the empty vector control (empty control) significantly overexpressed 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l).
  • NK cells of aging mice are obviously incompetent, and at the end of life, they cannot proliferate and cannot be passed on to the next generation.
  • flow cytometry analysis Becton Dickinson, Flowjo
  • senescent mouse T cells infected with 6 genes carriers containing Bcl11a, Bcl11b, Otx2, Lmo2, Pbx1, Pabpc4l respectively
  • the ratio of Lin28a-tdTomato+ was significantly higher than that of the control group (0.016% vs 0.007%).

Abstract

涉及细胞领域。具体而言,涉及一种年轻化、非多能性细胞,产生所述年轻化、非多能性细胞的方法,以及所述细胞的应用。

Description

年轻化非多能性细胞及其制备方法和应用 技术领域
本发明涉及非多能性细胞领域。具体而言,本发明涉及一种年轻化非多能性细胞的方法,以及所述细胞在细胞移植、组织修复和/或组织再生细胞治疗和基因治疗的用途。
背景技术
衰老与组织的进行性退化有关,这对重要器官的结构和功能有负面影响,是大多数慢性病最重要的已知危险因素之一。鉴于世界上60岁以上人口的比例将在未来40年内翻倍,与年龄相关的慢性疾病发病率的增加将给医疗资源带来巨大负担。衰老的特点是损伤的逐渐累积,导致生理完整性的丧失、功能受损和死亡的脆弱性增加。衰老过程影响整个有机体,包括人类生殖系。在经历二十年或以上的活跃代谢后,包括人类生殖系在内的所有人类细胞都会积累分子损伤,例如经过修饰的长寿蛋白质、遗传和表观遗传突变、代谢副产物以及其他与年龄相关的有害变化,然后才能产生再次年轻化的后代。最近,通过使用表观遗传时钟的概念,科学家们观察到在早期胚胎发生期间,细胞的生物年龄显著降低,即发生了一次年轻化事件(Kerepesiet al.,2021)。
然而这过程中所涉及的通路和因子对于体外非多能性细胞的影响,仍然是个谜。在生物学中,虽然有很多促进生长、增殖和再生因子曾被报道过,但是这些因子一般上都不具备逆转衰老、耗竭、无能性、表观时钟的功能。尽管我们对多能性、重编程和转分化的理解有了巨大的进步,但是我们对成体干细胞、体内祖细胞或非多能性细胞的年轻化和/或延长自我更新能力的分子基础仍然知之甚少。尤其是,我们仍然还没有发现任何一个可以使体细胞部分年轻化的因素或因子。
发明内容
本申请的发明人经过大量实验和反复摸索,获得了一种年轻化的非多能性细胞,以及其制备方法和试剂,以及其细胞和试剂在细胞治疗的应用。通过一项令人惊讶的发现,发明人发现,在非多能性细胞调控以上过程所涉及的某些通路和基因,不仅能够使非多能 性细胞部分逆转细胞衰老、耗竭、无能性、表观时钟、生物年龄,也能够让非多能性细胞延长自我更新能力和细胞寿命。
年轻化非多能性细胞、细胞群和药物组合
本申请提供一种分离的、工程化非多能性细胞,其具备以下特征:
(i)其Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4的任一基因或多个基因的表达有所增加
(ii)可以稳定传代至少5次,例如至少10次、至少15次、至少20次、至少25次、至少30次或更多。
在某些实施方案中,本申请所提供所提供的分离的工程化非多能性细胞,可以稳定传代至少5次、例如至少10次、至少15次、至少20次、至少25次、至少30次或更多;其年轻化转录因子网络:Grhl2,Zic5,Zic2,Utf1,Otx2,Snai3,Lmo2,Hopx的任一基因或多个基因的表达相对于未经修饰的非多能性细胞有所增加。在某些实施方案中,除了以上所述年轻化转录因子网络的基因外,LIN28(包括LIN28A或LIN28B)的表达相对于未经修饰的非多能性细胞同时有所增加。在某些实施方案中,本申请所提供所提供的分离的工程化非多能性细胞,可以稳定传代至少5次、例如至少10次、至少15次、至少20次、至少25次、至少30次或更多;其年轻化表观遗传修饰网络:Bcl11a,Bcl11b,Dnmt3b,Mettl20,Arid3c的任一基因或多个基因的表达相对于未经修饰的非多能性细胞有所增加。在某些实施方案中,除了以上所述年轻化表观遗传修饰网络基因外,LIN28(包括LIN28A或LIN28B)的表达相对于未经修饰的非多能性细胞同时有所增加。在某些实施方案中,本申请所提供所提供的分离的工程化非多能性细胞,可以稳定传代至少5次、例如至少10次、至少15次、至少20次、至少25次、至少30次或更多;其年轻化信号配体、受体及相关激酶网络:Fgf5,Wnt3,Calcr,Epha1,Epor,Galr2,Piezo2,Ripk4,Pak6,Map3k15,Pdzd4,Shc4的任一基因或多个基因的表达相对于未经修饰的非多能性细胞有所增加。在某些实施方案中,除了以上所述年轻化信号配体、受体及相关激酶网络的基因 外,LIN28(包括LIN28A或LIN28B)的表达相对于未经修饰的非多能性细胞同时有所增加。在某些实施方案中,本申请所提供所提供的分离的工程化非多能性细胞,可以稳定传代至少5次、例如至少10次、至少15次、至少20次、至少25次、至少30次或更多;其年轻化核酸结合因子网络:Foxr2,Hif3a,Pbx1,Zfp946,Batf3,Pabpc4l,Celf4,Lin28的任一基因或多个基因的表达相对于未经修饰的非多能性细胞有所增加。在某些实施方案中,除了以上所述年轻化核酸结合因子基因外,LIN28(包括LIN28A或LIN28B)的表达相对于未经修饰的非多能性细胞同时有所增加。在某些实施方案中,本申请所提供所提供的分离的工程化非多能性细胞,可以稳定传代至少5次、例如至少10次、至少15次、至少20次、至少25次、至少30次或更多;其LIN28(包括LIN28A或LIN28B)的基因表达相对于未经修饰的非多能性细胞有所增加。在某些实施方案中,本申请所提供所提供的分离的工程化非多能性细胞,可以稳定传代至少5次、例如至少10次、至少15次、至少20次、至少25次、至少30次或更多;其年轻化因子:Bcl11a,Bcl11b,Otx2,Lmo2,Pbx1,Pabpc4l,Lin28的任一基因或多个基因的表达相对于未经修饰的非多能性细胞有所增加。
在某些实施方案中,本发明的非多能性细胞在选自以下的一个或多个(例如1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个、21个、22个、23个、24个、25个、26个、27个、28个29个、30个、31个、32个、33个、34个、35个或36个)基因的表达水平上相比于未经修饰的非多能性细胞中这些基因的表达水平显示至少约1.5倍、至少约2倍的增加:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。在某些实施方案中,本发明的非多能性细胞在选自以下的一个或多个年轻化转录因子网络基因的表达水平上相比于未经修饰的非多能性细胞中这些年轻化转录因子网络基因的表达水平显示至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约100倍、至少约150倍、至少约200倍的增加:Grhl2,Zic5,Zic2,Utf1,Otx2,Snai3,Lmo2,Hopx。在某些实施方案中,除了以上所述年轻化 转录因子网络基因以外,同时本发明所述的工程化非多能性细胞的LIN28(LIN28A或LIN28B)基因表达水平相比于未经修饰非多能性细胞的至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约100倍、至少约150倍、至少约200倍。在某些实施方案中,本发明的非多能性细胞在选自以下的一个或多个年轻化表观遗传修饰网络基因的表达水平上相比于未经修饰的非多能性细胞中这些年轻化表观遗传修饰网络基因基因的表达水平显示至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约100倍、至少约150倍、至少约200倍的增加:Bcl11a,Bcl11b,Dnmt3b,Mettl20,Arid3c。在某些实施方案中,除了以上所述年轻化表观遗传修饰网络以外,同时本发明所述的工程化非多能性细胞的LIN28(LIN28A或LIN28B)基因表达水平相比于未经修饰非多能性细胞的至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约100倍、至少约150倍、至少约200倍。在某些实施方案中,本发明的非多能性细胞在选自以下的一个或多个年轻化信号配体、受体及相关激酶网络基因的表达水平上相比于未经修饰的非多能性细胞中这些年轻化信号配体、受体及相关激酶网络基因的表达水平显示至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约100倍、至少约150倍、至少约200倍的增加:Fgf5,Wnt3,Calcr,Epha1,Epor,Galr2,Piezo2,Ripk4,Pak6,Map3k15,Pdzd4,Shc4。在某些实施方案中,除了以上所述年轻化信号配体、受体及相关激酶网络的基因以外,同时本发明所述的工程化非多能性细胞的LIN28(LIN28A或LIN28B)基因表达水平相比于未经修饰非多能性细胞的至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约100倍、至少约150倍、至少约200倍。在某些实施方案中,本发明的非多能性细胞在选自以下的一个或多个年轻化核酸结合因子网络基因的表达水平上相比于未经修饰的非多能性细胞中这些年轻化核酸结合因子网络基因的表达水平显示至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约100倍、至少约150倍、至少约200倍的增加:Foxr2,Hif3a,Pbx1,Zfp946,Batf3,Pabpc4l,Celf4,Lin28。在某些实施方案中,除了以上所述年轻化核酸结合因子网络基因以外,同时本发明所述的工程化非多能性细胞的LIN28(LIN28A或LIN28B)基因表达水平 相比于未经修饰非多能性细胞的至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约100倍、至少约150倍、至少约200倍。在某些实施方案中,本发明的非多能性细胞在LIN28(LIN28A或LIN28B)的表达水平上相比于未经修饰的非多能性细胞中LIN28的表达水平显示至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约100倍、至少约150倍、至少约200倍的增加。在某些实施方案中,本发明的非多能性细胞在选自以下的一个或多个年轻化因子基因的表达水平上相比于未经修饰的非多能性细胞中这些年轻化因子基因的表达水平显示至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约100倍、至少约150倍、至少约200倍的增加、至少约1000倍的增加:Bcl11a,Bcl11b,Otx2,Lmo2,Pbx1,Pabpc4l,Lin28。
在细胞上,增加某个基因的表达或表达水平有很多方式。最常见的方式是通过转基因,向细胞递送编码某基因的核酸(例如DNA或RNA),其中也包括在调控某基因表达量的原件(启动子、药物调控启动子、蛋白调控启动子、组织特异启动子、蛋白内含子(intein)、转座子、核酸内切酶(例如cre-lox系统)、逆转座子。)来提高基因在细胞内的表达。这些都是已知的。另外,向细胞递送基因的方式也有很多种,譬如但不限于利用病毒、转座子、纳米颗粒、脂质囊泡等等。增加基因表达的非转基因模式的方式包括利用CRISPRa对内源基因进行调控,上调某基因的表达。某个基因在细胞内的表达量是可以通过生物学中已知的方式去测量,譬如但不限于蛋白质印迹法、免疫荧光、荧光定量PCR、RNA或DNA测序等。
在某些实施方案中,所述非多能性细胞在以下任一或多个基因的表达是通过转基因方式提高,表达持续至少12小时:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。在某些实施方案中,所述非多能性细胞在以下任一或多个年轻化转录因子网络基因的表达是通过转基因方式提高,表达持续至少12小时:Grhl2,Zic5,Zic2,Utf1,Otx2,Snai3,Lmo2,Hopx。在某些实施方案中,所述非多能性细胞LIN28(LIN28A或LIN28B)的基因表达水平同时也通过转 基因方式提高,表达持续至少12小时。在某些实施方案中,所述非多能性细胞在以下任一或多个年轻化表观遗传修饰网络基因的表达是通过转基因方式提高,表达持续至少12小时:Bcl11a,Bcl11b,Dnmt3b,Mettl20,Arid3c。在某些实施方案中,所述非多能性细胞LIN28(LIN28A或LIN28B)的基因表达水平同时也通过转基因方式提高,表达持续至少12小时。在某些实施方案中,所述非多能性细胞在以下任一或多个年轻化信号配体、受体及相关激酶网络基因的表达是通过转基因方式提高,表达持续至少12小时:Fgf5,Wnt3,Calcr,Epha1,Epor,Galr2,Piezo2,Ripk4,Pak6,Map3k15,Pdzd4,Shc4。在某些实施方案中,所述非多能性细胞LIN28(LIN28A或LIN28B)的基因表达水平同时也通过转基因方式提高,表达持续至少12小时。在某些实施方案中,所述非多能性细胞在以下任一或多个年轻化核酸结合因子网络基因的表达是通过转基因方式提高,表达持续至少12小时:Foxr2,Hif3a,Pbx1,Zfp946,Batf3,Pabpc4l,Celf4,Lin28。在某些实施方案中,所述非多能性细胞LIN28(LIN28A或LIN28B)的基因表达水平同时也通过转基因方式提高,表达持续至少12小时。在某些实施方案中,本发明的非多能性细胞在LIN28(LIN28A或LIN28B)的表达是通过转基因方式提高,表达持续至少12小时。在某些实施方案中,所述非多能性细胞在以下任一或多个年轻化因子基因的表达是通过转基因方式提高,表达持续至少12小时:Bcl11a,Bcl11b,Otx2,Lmo2,Pbx1,Pabpc4l。在某些实施方案中,所述非多能性细胞LIN28(LIN28A或LIN28B)的基因表达水平同时也通过转基因方式提高,表达持续至少12小时。在某些实施方案中,所述基因的表达是瞬时基因表达。在某些实施方案中,所述基因表达是组成性基因表达。
在某些实施方案中,所述非多能性细胞能够在体外持续扩增至少4天、5天、6天、8天、9天、10天、20天、30天、40天、50天、100天、150天、200天、300天、400天或甚至更多天。
在某些实施方案中,所述非多能性细胞是选自内胚层、外胚层、中胚层来源或生殖细胞(germ cells)。在某些实施方案中,所述非多能性细胞不包括肌肉细胞、和成纤维细胞。优选地,所述非多能性细胞是神经细胞(例如但不限于神经外胚层祖细胞、神经胶质细胞(包括小胶质细胞、星型胶质细胞))。优选地,所述非多能性细胞是神经嵴细胞(neural crest细胞以及其所衍生出来的子细胞)。优选地,所述非多能性细胞是间充质 干细胞。优选地,所述非多能性细胞是血液细胞(例如造血干细胞、造血干祖细胞、红细胞、白细胞、中性粒细胞、血小板、嗜酸性粒细胞)。优选地,所述非多能性细胞是免疫细胞(例如白细胞、淋巴细胞、自然杀伤细胞(NK细胞)、T细胞、γδT细胞、NKT细胞、巨噬细胞、B细胞、小胶质细胞、脾脏免疫细胞)。优选地,所述非多能性细胞是皮肤细胞(例如角质形成细胞)。优选地,所述非多能性细胞是肝脏细胞(例如但不限于肝脏前体细胞)。优选地,所述非多能性细胞是胰腺细胞(例如胰腺前体细胞或胰腺祖细胞)。优选地,所述非多能性细胞选自精母细胞(包括精原干细胞)或卵母细胞。在某些实施方案中,所述非多能性细胞仍然保留未经修饰细胞部分或全部功能或增强其的功能,例如工程化的免疫细胞(譬如自然杀伤细胞)具备肿瘤癌症细胞杀伤能力。
在某些实施方案中,所述非多能性细胞,其MDM4和TEP1的表达相比于非多能性细胞的至少约5倍、10倍、20倍、30倍或甚至更高。
在某些实施方案中,所述细胞的生物年龄相比于未经修饰多能性细胞,显著降低,其生物年龄能够通过测试其细胞的基因表达或表观遗传修饰(如表观遗传时钟)来衡量。生物年龄与实际时间年龄不一样,因为两个同样实际岁数的动物也可能存在衰老率差异,也就是生物年龄差异,会导致动物患上衰老相关疾病的风险也有所差异。近年来,表观遗传时钟已成为哺乳动物衰老过程的有力生物标志物,包括人类、小鼠、狗和狼以及座头鲸。表观遗传时钟是一种数学模型,经过大数据训练可以利用基因组中少量基因组位点的表观遗传修饰状态来预测岁数和生物年龄(Horvath and Raj,2018;Bell et al.,2019)。2013年,Steve Horvath开发了人类最广泛使用的多组织表观遗传时钟(Horvath2013)。有趣的是,表观遗传时钟预测的生物年龄与实际时间年龄(又称表观遗传年龄加速或EAA)的偏差与死亡时间和人类的许多早衰疾病有极强相关性,包括艾滋病毒感染、唐氏综合征、肥胖、沃纳综合征和亨廷顿病。表观遗传钟可以被理解为一种用来量化表观基因组随衰老变化的代表(Martin-Herranz et al.,2019),比如利用CpG位点的DNA甲基化状态来预测人类生物年龄(Horvath clock;Horvath 2013)、小鼠生物年龄(Stubbs multi-t.clock;Stubbs et al.,2017)、小鼠血液生物年龄(Petkovitch blood clock;Petkovitch et al.,2018)、小鼠多器官生物年龄(Thompson multi-t.EN clock;Thompson et al.,2018),或利用核糖体核酸rDNA甲基化状态来预测小鼠血液生物年龄(Wang blood rDNA clock;Wang and Lemos,2019),或利用染色质组蛋白H3甲基化状态来预测生物年龄(Martin-Herranz et al.,2019;Jeffries et al.,2019)。另外,基 因组的表达图谱也会随着衰老相关的表观遗传变化而有所改变(Martin-Herranz et al.,2019),而衡量这些基因的表达也能测量物种或细胞的生物年龄。
在另一方面,本发明提供一种分离的细胞群体,其包含以上所述的非多能性细胞或其任意组合;优选地,所述细胞群体中至少50%(例如至少60%、至少70%、至少80%、至少85%、至少90%、至少95%、至少98%、至少99%或约100%)的细胞是以上所述的非多能性细胞。
在另一方面,本发明也提供一种药物组合,其包含以上所述的非多能性细胞或细胞群体,以及药学上可接受的载体和/或赋形剂。在某些实施方案中,本发明所述的药物组合可以应用于细胞治疗,包括将本发明所述细胞配上药学上可接受的载体和/或腑剂施予患者(譬如但不限于利用本发明所述的免疫细胞来治疗癌症、或利用本发明所述的血液细胞提供给失血过多的患者。)目前,细胞治疗在医学领域应用广泛,本发明所产生的细胞能够为细胞治疗提供优质、年轻化的细胞,并提高细胞的产量。
制备年轻化细胞或逆转非多能性细胞衰老的方法
在另一方面,本发明提供了一种逆转细胞衰老的方法,其中包括增加以下任一基因或多个(例如1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个、21个、22个、23个、24个、25个、26个、27个、28个或29个)基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。在某些实施方案中,本发明提供了一种逆转细胞衰老的方法,其中包括增加以下任一个或多个年轻化转录因子网络基因的表达:Grhl2,Zic5,Zic2,Utf1,Otx2,Snai3,Lmo2,Hopx。在某些实施方案中,本发明所提供逆转细胞衰老的方法,除了增加以上所述年轻化转录因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,本发明提供了一种逆转细胞衰老的方法,其中包括增加以下任一个或多个年轻化表观遗传修饰网络基因的表达:Bcl11a,Bcl11b,Dnmt3b,Mettl20,Arid3c。在某些实施方案中,本发明所提供逆转细胞衰老的方法,除了增加以上所述年轻化表观遗 传修饰网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,本发明提供了一种逆转细胞衰老的方法,其中包括增加以下任一个或多个年轻化信号配体、受体及相关激酶网络基因的表达:Fgf5,Wnt3,Calcr,Epha1,Epor,Galr2,Piezo2,Ripk4,Pak6,Map3k15,Pdzd4,Shc4。在某些实施方案中,本发明所提供逆转细胞衰老的方法,除了增加以上所述年轻化信号配体、受体及相关激酶网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,本发明提供了一种逆转细胞衰老的方法,其中包括增加以下任一个或多个年轻化核酸结合因子网络基因的表达:Foxr2,Hif3a,Pbx1,Zfp946,Batf3,Pabpc4l,Celf4,Lin28。在某些实施方案中,本发明所提供逆转细胞衰老的方法,除了增加以上所述年轻化核酸结合因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,本发明提供了一种逆转细胞衰老的方法,其中包括增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,本发明提供了一种逆转细胞衰老的方法,其中包括增加以下任一个或多个年轻化因子基因的表达:Bcl11a,Bcl11b,Otx2,Lmo2,Pbx1,Pabpc4l。在某些实施方案中,本发明所提供逆转细胞衰老的方法,除了增加以上所述年轻化因子基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方案是通过转基因的方式来提高基因的表达,表达持续至少12小时。在某些实施方案中,所述基因的表达是瞬时基因表达。在某些实施方案中,所述基因表达是组成性基因表达。
如本文中所使用,术语″细胞衰老″是指细胞虽保持一定的活力和代谢活性但丧失了增殖能力和分化能力等正常细胞活性。细胞衰老可能由各种刺激或因素引起,包括由于DNA末端复制导致的端粒缩短、DNA损伤、肿瘤抑制基因和癌基因的活性改变、氧化应激、炎症、化疗剂以及暴露于紫外线照射或电离辐射(Kuilman等人,Genes&Development.(2010)24:2463-2479)。如本文所述,″逆转细胞衰老″或″逆转衰老″指的是让细胞恢复增殖能力和/或分化能力。在生物学上,测量细胞衰老一般上可以利用β半乳糖苷酶活性试剂鉴定。如本文所述,″逆转细胞衰老″或″逆转衰老″指的是让细胞恢复增殖能力和/或分化能力等正常细胞活性,同样也可以用β半乳糖苷酶活性试剂来测量鉴定。
在某些实施方案中,本发明也提供了制备以上年轻化非多能性细胞的方法,其中包括增加以下任一基因或多个(例如1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个、21个、22个、23个、24个、25个、26个、27个、28个或29个)基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4;其细胞的生物年龄能够通过测试细胞的基因表达或遗传修饰(如表观遗传时钟)来衡量。在某些实施方案中,本发明提供了制备以上年轻化细胞的方法,其中包括增加以下任一个或多个年轻化转录因子网络基因的表达:Grhl2,Zic5,Zic2,Utf1,Otx2,Snai3,Lmo2,Hopx。在某些实施方案中,本发明所提供制备以上年轻化细胞的方法,除了增加以上所述年轻化转录因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,本发明提供制备以上年轻化细胞的方法,其中包括增加以下任一个或多个年轻化表观遗传修饰网络基因的表达:Bcl11a,Bcl11b,Dnmt3b,Mettl20,Arid3c。在某些实施方案中,本发明所提供制备以上年轻化细胞的方法,除了增加以上所述年轻化表观遗传修饰网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,本发明提供了制备以上年轻化细胞的方法,其中包括增加以下任一个或多个年轻化信号配体、受体及相关激酶网络基因的表达:Fgf5,Wnt3,Calcr,Epha1,Epor,Galr2,Piezo2,Ripk4,Pak6,Map3k15,Pdzd4,Shc4。在某些实施方案中,本发明所提供制备以上年轻化细胞的方法,除了增加以上所述年轻化信号配体、受体及相关激酶网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,本发明提供了制备以上年轻化细胞的方法,其中包括增加以下任一个或多个年轻化核酸结合因子网络基因的表达:Foxr2,Hif3a,Pbx1,Zfp946,Batf3,Pabpc4l,Celf4,Lin28。在某些实施方案中,本发明所提供制备以上年轻化细胞的方法,除了增加以上所述年轻化核酸结合因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,本发明提供了一种制备以上年轻化细胞的方法,其中包括增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,本发明提供制备以上年轻化细胞的方法,其中包括增加以下任一个或多个年轻化因子基因的表达:Bcl11a,Bcl11b,Otx2,Lmo2,Pbx1,Pabpc4l。在某些实施方案中,本发明所提供 制备以上年轻化细胞的方法,除了增加以上所述年轻化因子基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方案是通过转基因的方式来提高基因的表达,表达持续至少12小时。在某些实施方案中,所述基因的表达是瞬时基因表达。在某些实施方案中,所述基因表达是组成性基因表达。
如本文中所使用的,术语″年轻化″是指细胞或物种的生物年龄有所降低或者具备年轻细胞具有的生物特征如更强大的自我更新能力、再生能力、生长能力、更接近胚胎期的基因表达或表观遗传修饰图谱或更好的生物功能。以上所述细胞的生物年龄能够通过测试细胞的基因表达或遗传修饰(如表观遗传时钟)来衡量。
在某些实施方案中,所述方法能够在非多能性细胞逆转细胞耗竭,其中包括增加以下任一基因或多个(例如1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个、21个、22个、23个、24个、25个、26个、27个、28个、29个、30个、31个、32个、33个、34个、35个、36个、37个、38个、39个或40个)基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。在某些实施方案中,所述方法能够在非多能性细胞逆转细胞耗竭,其中包括增加以下任一个或多个年轻化转录因子网络基因的表达:Grhl2,Zic5,Zic2,Utf1,Otx2,Snai3,Lmo2,Hopx。在某些实施方案中,所述方法除了增加以上所述年轻化转录因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够在非多能性细胞逆转细胞耗竭,其中包括增加以下任一个或多个年轻化表观遗传修饰网络基因的表达:Bcl11a,Bcl11b,Dnmt3b,Mettl20,Arid3c。在某些实施方案中,所述方法除了增加以上所述年轻化表观遗传修饰网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够在非多能性细胞逆转细胞耗竭,其中包括增加以下任一个或多个年轻化信号配体、受体及相关激酶网络基因的表达:Fgf5,Wnt3,Calcr,Epha1,Epor,Galr2,Piezo2,Ripk4,Pak6,Map3k15,Pdzd4,Shc4。在某些实施方案中,所述方法除了增加以上所述年轻化信号配体、受体及 相关激酶网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够在非多能性细胞逆转细胞耗竭,其中包括增加以下任一个或多个年轻化核酸结合因子网络基因的表达:Foxr2,Hif3a,Pbx1,Zfp946,Batf3,Pabpc4l,Celf4,Lin28。在某些实施方案中,所述方法除了增加以上所述年轻化核酸结合因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够在非多能性细胞逆转细胞耗竭,其中包括增加以下任一个或多个年轻化因子基因的表达:Bcl11a,Bcl11b,Otx2,Lmo2,Pbx1,Pabpc4l。在某些实施方案中,所述方法除了增加以上所述年轻化因子基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够在非多能性细胞逆转细胞耗竭,其中包括增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方案是通过转基因的方式来提高基因的表达,表达持续至少12小时。在某些实施方案中,所述基因的表达是瞬时基因表达。在某些实施方案中,所述基因表达是组成性基因表达。
如本文中所使用,术语″细胞耗竭″是指细胞在长期激活的过程中,丧失部分功能,一般上可以利用细胞功能测试鉴定,譬如免疫细胞与体外肿瘤癌症细胞共培养后,免疫细胞针对体外肿瘤癌症细胞的杀伤能力等。
如本文中所使用,术语″逆转细胞耗竭″是指让细胞恢复功能,一般上可以利用细胞功能测试鉴定,譬如免疫细胞与体外肿瘤癌症细胞共培养后,免疫细胞针对体外肿瘤癌症细胞的杀伤能力等。
在某些实施方案中,所述方法能够在非多能性细胞逆转无能性,其中包括增加以下任一基因或多个(例如1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个、21个、22个、23个、24个、25个、26个、27个、28个、29个、30个、31个、32个、33个、34个、35个、36个、37个、38个、39个或40个)基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。在某些实施方案中,所述方法能够在非多能性细胞逆转无能性,其中包括增加以下任一个或多个年轻化转录因子网络基因的表达:Grhl2,Zic5,Zic2,Utf1, Otx2,Snai3,Lmo2,Hopx。在某些实施方案中,所述方法除了增加以上所述年轻化转录因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够在非多能性细胞逆转无能性,其中包括增加以下任一个或多个年轻化表观遗传修饰网络基因的表达:Bcl11a,Bcl11b,Dnmt3b,Mettl20,Arid3c。在某些实施方案中,所述方法除了增加以上所述年轻化表观遗传修饰网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够在非多能性细胞逆转无能性,其中包括增加以下任一个或多个年轻化信号配体、受体及相关激酶网络基因的表达:Fgf5,Wnt3,Calcr,Epha1,Epor,Galr2,Piezo2,Ripk4,Pak6,Map3k15,Pdzd4,Shc4。在某些实施方案中,所述方法除了增加以上所述年轻化信号配体、受体及相关激酶网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够在非多能性细胞逆转无能性,其中包括增加以下任一个或多个年轻化核酸结合因子网络基因的表达:Foxr2,Hif3a,Pbx1,Zfp946,Batf3,Pabpc4l,Celf4,Lin28。在某些实施方案中,所述方法除了增加以上所述年轻化核酸结合因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够在非多能性细胞逆转无能性,其中包括增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够在非多能性细胞逆转无能性,其中包括增加以下任一个或多个年轻化因子基因的表达:Bcl11a,Bcl11b,Otx2,Lmo2,Pbx1,Pabpc4l。在某些实施方案中,所述方法除了增加以上所述年轻化因子基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方案是通过转基因的方式来提高基因的表达,表达持续至少12小时。在某些实施方案中,所述基因的表达是瞬时基因表达。在某些实施方案中,所述基因表达是组成性基因表达。
如本文中所使用,术语″无能性″是指细胞无法针对外界信号启动应有的反应,譬如免疫细胞无能性指的是免疫细胞无法针对免疫抗原启动应有的免疫反应,无法针对免疫抗原而大量增殖,一般上可以通过免疫细胞增殖数量测试。
如本文所使用,术语″逆转无能性″是指让细胞能够恢复对于外界信号应有的反应与功能,也包括增殖,譬如逆转免疫细胞无能性指的是让免疫细胞恢复针对免疫抗原启动应有的免疫反应,针对免疫抗原而大量增殖,一般上可以通过免疫细胞增殖数量测试。
在某些实施方案中,所述方法能够延长非多能性细胞的寿命,其中包括增加以下任一 基因或多个(例如1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个、21个、22个、23个、24个、25个、26个、27个、28个、29个、30个、31个、32个、33个、34个、35个、36个、37个、38个、39个或40个)基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。在某些实施方案中,所述方法能够延长非多能性细胞的寿命,其中包括增加以下任一个或多个年轻化转录因子网络基因的表达:Grhl2,Zic5,Zic2,Utf1,Otx2,Snai3,Lmo2,Hopx。在某些实施方案中,所述方法除了增加以上所述年轻化转录因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够延长非多能性细胞的寿命,其中包括增加以下任一个或多个年轻化表观遗传修饰网络基因的表达:Bcl11a,Bcl11b,Dnmt3b,Mettl20,Arid3c。在某些实施方案中,所述方法除了增加以上所述年轻化表观遗传修饰网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够延长非多能性细胞的寿命,其中包括增加以下任一个或多个年轻化信号配体、受体及相关激酶网络基因的表达:Fgf5,Wnt3,Calcr,Epha1,Epor,Galr2,Piezo2,Ripk4,Pak6,Map3k15,Pdzd4,Shc4。在某些实施方案中,所述方法除了增加以上所述年轻化信号配体、受体及相关激酶网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够延长非多能性细胞的寿命,其中包括增加以下任一个或多个年轻化核酸结合因子网络基因的表达:Foxr2,Hif3a,Pbx1,Zfp946,Batf3,Pabpc4l,Celf4,Lin28。在某些实施方案中,所述方法除了增加以上所述年轻化核酸结合因子网络基因的表达,同时增加LIN28(LIN28A或LI N 28B)的表达。在某些实施方案中,所述方法能够延长非多能性细胞的寿命,其中包括增加以下任一个或多个年轻化因子基因的表达:Bcl11a,Bcl11b,Otx2,Lmo2,Pbx1,Pabpc4l。在某些实施方案中,所述方法除了增加以上所述年轻化因子基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够延长非多能性细胞的寿命,其中包括增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方案是通过转基因的方式来提高基因的表达,表达持续至少12小时。在某些实施方案中,所述基因的表达是瞬时基因表达。在某些实施方案中,所述基因表达是组成性基因表达。
在一般情况下,细胞的寿命可以通过细胞存活的时间长短来衡量,而细胞是否存活可以通过染色(譬如碘化丙啶)来鉴定,本领域的技术人员也可以通过显微镜下的细胞形态的观察来鉴定。
在某些实施方案中,所述方法能够让细胞体外持续扩增至少4天、5天、6天、8天、9天、10天、20天、30天、40天、50天、100天、150天、200天、300天、400天或甚至更多天,其中包括增加以下任一基因或多个(例如1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个、21个、22个、23个、24个、25个、26个、27个、28个、29个、30个、31个、32个、33个、34个、35个、36个、37个、38个、39个或40个)基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。在某些实施方案中,所述方法能够让细胞体外持续扩增至少4天、5天、6天、8天、9天、10天、20天、30天、40天、50天、100天、150天、200天、300天、400天或甚至更多天,其中包括增加以下任一个或多个年轻化转录因子网络基因的表达:Grhl2,Zic5,Zic2,Utf1,Otx2,Snai3,Lmo2,Hopx。在某些实施方案中,所述方法除了增加以上所述年轻化转录因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够让细胞体外持续扩增至少4天、5天、6天、8天、9天、10天、20天、30天、40天、50天、100天、150天、200天、300天、400天或甚至更多天,其中包括增加以下任一个或多个年轻化表观遗传修饰网络基因的表达:Bcl11a,Bcl11b,Dnmt3b,Mettl20,Arid3c。在某些实施方案中,所述方法除了增加以上所述年轻化表观遗传修饰网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够让细胞体外持续扩增至少4天、5天、6天、8天、9天、10天、20天、30天、40天、50天、100天、150天、200天、300天、400天或甚至更多天,其中包括增加以下任一个或多个年轻化信号配体、受体及相关激酶网络基因的表达:Fgf5,Wnt3,Calcr,Epha1,Epor,Galr2,Piezo2,Ripk4,Pak6,Map3k15,Pdzd4,Shc4。在某 些实施方案中,所述方法除了增加以上所述年轻化信号配体、受体及相关激酶网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够让细胞体外持续扩增至少4天、5天、6天、8天、9天、10天、20天、30天、40天、50天、100天、150天、200天、300天、400天或甚至更多天,其中包括增加以下任一个或多个年轻化核酸结合因子网络基因的表达:Foxr2,Hif3a,Pbx1,Zfp946,Batf3,Pabpc4l,Celf4,Lin28。在某些实施方案中,所述方法除了增加以上所述年轻化核酸结合因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够延长非多能性细胞的所述方法能够让细胞体外持续扩增至少4天、5天、6天、8天、9天、10天、20天、30天、40天、50天、100天、150天、200天、300天、400天或甚至更多天,其中包括增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够让细胞体外持续扩增至少1天、2天、3天、4天、5天、6天、8天、9天、10天、20天、30天、40天、50天、100天、150天、200天、300天、400天或甚至更多天,其中包括增加以下任一个或多个年轻化因子基因的表达:Bcl11a,Bcl11b,Otx2,Lmo2,Pbx1,Pabpc4l。在某些实施方案中,所述方法除了增加以上所述年轻化因子基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方案是通过转基因的方式来提高基因的表达,表达持续至少12小时。在某些实施方案中,所述基因的表达是瞬时基因表达。在某些实施方案中,所述基因表达是组成性基因表达。
在某些实施方案中,所述方法能够让非多能性细胞稳定传代至少5次,例如至少10次、至少15次、至少20次、至少25次、至少30次或更多,其中包括增加以下任一基因或多个(例如1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个、21个、22个、23个、24个、25个、26个、27个、28个、29个、30个、31个、32个、33个、34个、35个、36个、37个、38个、39个或40个)基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。在某些实施方案中,所述方法能够让非多能性细胞稳定传代至少5次, 例如至少10次、至少15次、至少20次、至少25次、至少30次或更多,其中包括增加以下任一个或多个年轻化转录因子网络子基因的表达:Grhl2,Zic5,Zic2,Utf1,Otx2,Snai3,Lmo2,Hopx。在某些实施方案中,所述方法除了增加以上所述年轻化转录因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够让非多能性细胞稳定传代至少5次,例如至少10次、至少15次、至少20次、至少25次、至少30次或更多,其中包括增加以下任一个或多个年轻化表观遗传修饰网络基因的表达:Bcl11a,Bcl11b,Dnmt3b,Mettl20,Arid3c。在某些实施方案中,所述方法除了增加以上所述年轻化表观遗传修饰网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够让非多能性细胞稳定传代至少5次,例如至少10次、至少15次、至少20次、至少25次、至少30次或更多,其中包括增加以下任一个或多个年轻化信号配体、受体及相关激酶网络基因的表达:Fgf5,Wnt3,Calcr,Epha1,Epor,Galr2,Piezo2,Ripk4,Pak6,Map3k15,Pdzd4,Shc4。在某些实施方案中,所述方法除了增加以上所述年轻化信号配体、受体及相关激酶网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够让非多能性细胞稳定传代至少5次,例如至少10次、至少15次、至少20次、至少25次、至少30次或更多,其中包括增加以下任一个或多个年轻化核酸结合因子网络基因的表达:Foxr2,Hif3a,Pbx1,Zfp946,Batf3,Pabpc4l,Celf4,Lin28。在某些实施方案中,所述方法除了增加以上所述年轻化核酸结合因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够让非多能性细胞稳定传代至少5次,例如至少10次、至少15次、至少20次、至少25次、至少30次或更多,其中包括增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够让非多能性细胞稳定传代至少5次,例如至少10次、至少15次、至少20次、至少25次、至少30次或更多,其中包括增加以下任一个或多个年轻化因子基因的表达:Bcl11a,Bcl11b,Otx2,Lmo2,Pbx1,Pabpc4l。在某些实施方案中,所述方法除了增加以上所述年轻化因子基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方案是通过转基因的方式来提高基因的表达,表达持续至少12小时。在某些实施方案中,所述基因的表达是瞬时基因表达。在某些实施方案中,所述基因表达是组成性基因表达。
在某些实施方案中,所述非多能性细胞是选自内胚层、外胚层、中胚层来源或生殖细胞 (germ cells)。在某些实施方案中,所述非多能性细胞不包括肌肉细胞和成纤维细胞。优选地,所述非多能性细胞是神经细胞(例如但不限于神经外胚层祖细胞、神经胶质细胞(包括小胶质细胞、星型胶质细胞))。优选地,所述非多能性细胞是神经嵴细胞(neural crest细胞以及其所衍生出来的子细胞)。优选地,所述非多能性细胞是间充质干细胞。优选地,所述非多能性细胞是血液细胞(例如造血干细胞、造血干祖细胞、红细胞、白细胞、中性粒细胞、血小板、嗜酸性粒细胞)。优选地,所述非多能性细胞是免疫细胞(例如白细胞、淋巴细胞、自然杀伤细胞(NK细胞)、T细胞、γδT细胞、NKT细胞、巨噬细胞、B细胞、小胶质细胞、脾脏免疫细胞)。优选地,所述非多能性细胞是皮肤细胞(例如角质形成细胞)。优选地,所述非多能性细胞是肝脏细胞(例如但不限于肝脏前体细胞)。优选地,所述非多能性细胞是胰腺细胞(例如胰腺前体细胞或胰腺祖细胞)。优选地,所述非多能性细胞选自精母细胞(包括精原干细胞)或卵母细胞。在某些实施方案中,所述非多能性细胞仍然保留未经修饰细胞部分或全部功能或增强其的功能,例如工程化的免疫细胞(譬如自然杀伤细胞)具备肿瘤癌症细胞杀伤能力。
在某些实施方案中,所述方法包括转基因的方式来提高细胞以下一个或多个基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
在某些实施例中,对细胞进行处理(例如,基因工程),以使非多能细胞所表达的再生因子高于在没有这种处理的情况下的水平。在某些一些实施例中,对细胞进行处理,以使非多能细胞过表达以下一个或多个基因:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。一种细胞处理方法是用病毒(如逆转录病毒、慢病毒、腺病毒、腺相关病毒)感染细胞或用病毒载体(如逆转录病毒、慢病毒、腺病毒)转染细胞包含可操作地连接到合适的表达控制元件的因子序列,以在感染或转染后驱动细胞中的表达,并任选地整合到本领域已知的 基因组中。在某些实施方案中,处理细胞的方法也包括利用转座子或你转座子来递送以上所述基因以及控制基因表达量的启动子。在某些实施方案中,所述处理细胞的方案可利用电穿孔法来递送包含转座子或逆转座子、控制蛋白表达的原件(启动子、蛋白内含子(intein)、核酸内切酶(例如cre-lox系统))和编码Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4一个或多个蛋白的核酸序列的载体。下面提供关于本发明的组合物和方法的进一步细节。
在某些实施方案中,所述方法所利用的转基因方法包含利用医学上所知的任何一个载体譬如但不限于病毒载体、转座子、纳米颗粒、反转座子、核算内切酶)。
非多能性细胞年轻化或逆转细胞衰老的试剂和试剂盒
本发明也提供了一个试剂盒或试剂组合,所述试剂盒或试剂组合能够用于产生以上所述的年轻化非多能性细胞,其中包括:
(i)编码以下任一或多个蛋白的核酸(例如脱氧核糖核酸、核糖核酸):Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4
(ii)医学上可接受的载体(例如病毒载体、纳米颗粒、脂质囊泡、转座子、逆转座子、外泌体等)。
在某些实施方案中,所述试剂盒或试剂组合也包含调控以上所述基因或蛋白的表达量的原件,例如但不限于启动子、药物调控启动子、蛋白调控启动子、组织特异启动子、蛋白内含子(intein)、转座子、核酸内切酶(例如cre-lox系统)、逆转座子。在某些实施方案中,所述的试剂盒或试剂组合,所包含的载体等,同时包含以上所述任一调控以上所述基因或蛋白的表达量的原件,以及编码Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、 Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4一个或多个蛋白的核酸。在某些实施方案中,所述的试剂盒或试剂组合,所包含的载体等,同时包含以上所述任一调控以上所述基因或蛋白的表达量的原件,以及编码Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4一个或多个蛋白的核酸。在某些实施方案中,所述试剂或试剂组合是用病毒(如逆转录病毒、慢病毒、腺病毒、腺相关病毒)感染细胞或用病毒载体(如逆转录病毒、慢病毒、腺病毒)转染细胞包含可操作地连接到合适的表达控制元件的因子序列,以在感染或转染后驱动细胞中的表达,并任选地整合到本领域已知的基因组中。在某些实施方案中,所述试剂或试剂组合包含利用转座子或逆转座子来递送以上所述基因以及控制基因表达量的启动子。在某些实施方案中,所述试剂或试剂组合得通过利用电穿孔法来递送包含转座子或逆转座子、控制蛋白表达的原件(启动子、蛋白内含子(intein)、核酸内切酶(例如cre-lox系统))和编码Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4一个或多个蛋白的核酸序列的载体。
在某些实施方案中,所述试剂或试剂盒可以在受试者体外使用,也可以在受试者的体内使用。
术语定义
在本发明中,除非另有说明,否则本文中使用的科学和技术名词具有本领域技术人员所通常理解的含义。并且,本文中所用的干细胞、生物化学、核酸化学、免疫学等领域的实验室操作步骤均为相应领域内广泛使用的常规步骤。同时,为了更好地理解本发明,下面提供相关术语的定义和解释。
如本文所述,术语″非多能性细胞″指的是胚层命运已定,不能够分化成多种胚层不 同细胞类的细胞,例如成体细胞、生殖细胞、成体干细胞等,且不是胚胎干细胞、诱导多能干细胞。
如本文所使用,术语″前体细胞″或″组细胞″是指已有特定命运,只能分化成某个特定成体细胞或某个胚层的细胞。
如本文中所使用的,术语″生物年龄″是指通过物种的健康指标和衰老指标来确定物种的衰老或年轻程度。
如本文所述,术语″表观时钟″或″表观遗传时钟″是指利用表观遗传修饰为生物指标来衡量物种的生物年龄。
如本文中所使用的,术语″自我更新能力″是指细胞能够在多次传代中自我维持细胞特性,其细胞命运等性质没有显著变化。在一些实施方案中,传代的数量为至少约5,至少约10,至少约20、至少约30、至少约50或至少约100。
如本文中所使用的,术语″扩增″或″增殖″是指基本上不分化地维持细胞及最终细胞生长,即,使细胞群增加(例如至少2倍)而不存在伴随增加的分化。
如本文中所使用的,术语″体外″指人为环境,和在其中的过程和反应。体外环境通过试管和细胞培养进行例证,但不限制于此。
如本文中所使用的,术语″体内″指自然环境(即动物或细胞)和在其中的过程和反应。
如本文中所使用的,术语″基础培养基″是指能够支持细胞生长的任何培养基,通常包含无机盐、维生素、葡萄糖、缓冲体系和必需氨基酸,并且通常具有约280-330mOsmol的渗透压。
如本文中所使用的,术语″血清替代物″具有本领域技术人员公知的含义,其是指在维持未分化状态的情况下对干细胞进行培养的过程中,作为血清的替代物而使用的组合物或调配物。也即,血清替代物能够支持未分化干细胞的生长而无需补充血清。在某些示例性实施方案中,所述血清替代物包含:一种或多种氨基酸、一种或多种维生素、一种或多种微量金属元素。在一些情况下,血清替代物可以进一步包含一种或多种选自下列的成分:白蛋白、还原型谷胱甘肽、转铁蛋白、胰岛素等。血清替代物的非限制性实例包括但不限于,KnockOut TM SR(简称为KSR)、N-2、B-27、Physiologix TM XF SR、StemSure TMSerum Substitute Supplement等。
如本文中所使用的,术语″药学上可接受的载体或赋形剂″是指,在药理学和/或生理学上与受试者和活性成分相容的载体和/或赋形剂,其是本领域公知的(参见例如 Remlngton′s Pharmaceutical Sciences.Edited by Gennaro AR,19th ed.Pennsylvania:Mack Publishing Company,1995),并且包括但不限于:pH调节剂,表面活性剂,离子强度增强剂,维持渗透压的试剂,延迟吸收的试剂,稀释剂,佐剂,防腐剂等。例如,pH调节剂包括但不限于磷酸盐缓冲液。表面活性剂包括但不限于阳离子,阴离子或者非离子型表面活性剂,例如Tween-80。离子强度增强剂包括但不限于氯化钠。维持渗透压的试剂包括但不限于糖、NaCl及其类似物。延迟吸收的试剂包括但不限于单硬脂酸盐和明胶。稀释剂包括但不限于水,水性缓冲液(如缓冲盐水),醇和多元醇(如甘油)等。佐剂包括但不限于铝佐剂(例如氢氧化铝),弗氏佐剂(例如完全弗氏佐剂)等。防腐剂包括但不限于各种抗细菌试剂和抗真菌试剂,例如硫柳汞,2-苯氧乙醇,对羟苯甲酸酯,三氯叔丁醇,苯酚,山梨酸等。在某些实施方案中,所述药学上可接受的载体或赋形剂是无菌等渗水性或非水性溶液(例如,平衡盐溶液或生理盐水)、分散液、悬浮液或乳液。在某些实施方案中,″药学上可接受的载体″也包含递送核酸的工具例如但不限于病毒载体、纳米颗粒、脂质囊泡、外泌体等。
如本文中所使用的,术语″约″是指在由本领域普通技术人员确定的特定值或组成可接受的误差范围内的值或组成,这将部分地取决于值或组成如何测量或确定,即测量系统的限制。例如,当″约″用于描述可测量的值(例如,物质的浓度、质量比等)时,意味着包含给定值的±10%、±5%、或±1%的范围。
下面将结合附图和实施例对本发明的实施方案进行详细描述,但是本领域技术人员将理解,下列附图和实施例仅用于说明本发明,而不是对本发明的范围的限定。根据附图和优选实施方案的下列详细描述,本发明的各种目的和有利方面对于本领域技术人员来说将变得明显。
附图说明
图1显示Lin28a在睾丸和胎盘里的表达。A.位于生精小管外围的Lin28a-tdTO+PLZF+spermatogonia精原干细胞相较于所有PLZF+spermatogonia精原干细胞的比例。B.Lin28a-tdTO+trophoblast giant cells(TGCs),胎盘巨细胞。C.Lin28a-tdTO+glycogen trophoblast cells(Gly-T),胎盘糖原滋养细胞。D.Lin28a-tdTO+sycytiotrophoblast cells(Syn),胎盘合体滋养层细胞,处于LZ迷宫层。E.Lin28a- tdTO+intraplacental yolk sac cells(IPYS),胎盘内卵黄囊细胞。
图2显示Lin28a在胎盘母胎界面里的表达。A.Lin28a-tdTO+decidual natural killer cells(dNK cells),蜕膜自然杀伤细胞。B.Lin28a-tdTO+decidual macrophages蜕膜巨噬细胞。C.Lin28a-tdTO+extravillous trophoblast cells(EVT),胎盘绒毛外滋养层细胞,处于子宫母血窦螺旋动脉壁。
图3显示Lin28a在胚胎肺部的表达。在胚胎发育E11.5-16.5之间,肺部出现Lin28a-tdTO+(用tdTomato抗体染色,绿色)bronchial epithelial stem cells,肺支气管壁干细胞。
图4显示Lin28a在胚胎肝脏的表达。在胚胎发育E7.5-16.5之间,肝脏出现大量Lin28a-tdTO+(用tdTomato抗体染色,绿色;用tdTomato自身荧光,红色)hepatoblasts,肝脏祖细胞。
图5显示Lin28a在胚胎体节的表达。A.在胚胎发育E11.5-12.5之间,体节ossification cartilage primordia出现大量Lin28a-tdTO+软骨干细胞。B.在胚胎发育E11.5-12.5之间,尾芽tail bud出现大量Lin28a-tdTO+生皮肌干细胞。副中肾管paramesonephric duct也出现大量肾脏祖细胞。
图6显示Lin28a在胚胎脑的表达。A.在胚胎发育E11.5-12.5之间,小脑原基cerebellar primordium出现大量Lin28a-tdTO+神经干细胞。B.在胚胎发育E14.5-15.5之间,侧脑室的脉络丛lateral ventricle choroid plexus出现大量Lin28a-tdTO+室管膜祖细胞。C.在胚胎发育E11.5-16.5之间,大脑纹状体(脑室下区的尾神经节隆起)stiratum ganglionic eminence出现大量Lin28a-tdTO+神经干细胞。
图7显示Lin28a在胚胎食道的表达。A.在胚胎发育E14.5-15.5之间,牙原基teeth primordia和触须毛囊原基primordia of follicles of vibrissae出现大量Lin28a-tdTO+干细胞。B.在胚胎发育E11.5-16.5之间,十二指肠duodenum出现大量Lin28a-tdTO+肠胃干细胞。
图8显示流式分析Lin28a+细胞在不同器官占比。A.LsL-tdTO单杂合鼠的血液被作为本次流式分析的阴性对照(NC)。B.Lin28a-creERT2:LSL-tdTO双杂合鼠肌肉做为本次流式分析的阳性对照(PC)。C.Lin28a+细胞分别在小鼠肝脏,脑,心脏和胰腺中的百分比。根据荧光强度,td+细胞被分为两群,荧光较弱的td-low和荧光较强的td-high。相对于阴性对照,4个器官的td-low群都显著增多,意味4个成年器官都含有极少量的 Lin28a+干细胞。
图9显示成年心脏Lin28a+细胞的培养与鉴定。A.心庄Lin28a+细胞的体外培养形态。B.qRT-PCR鉴定心脏不同类型细胞标记基因在Lin28a-/+细胞中的表达。对照样品为Lin28a+肌肉干细胞(MuSCs)。其中,Myh6,Myh7,Acta1,Tnnt2,Nkx2.5,为心肌细胞的标记基因;Pdgfra,Col1a1,Tcf21为成纤维细胞的标记基因;Sirpa2,Sirpa3为造血细胞标记基因;Pecam1,Cdh5,Fabp4为内皮细胞标记基因;Acta2,Myh11,Actg2为平滑肌细胞标记基因;Pax6,Sox9为神经干细胞标记基因;Nestin,Msi1,Msi2,Sox9,Sox10,Foxc1,Foxc2为神经嵴细胞标记基因;Tubb3,Map2,Fabp4为成熟神经元标记基因;Olig2为神经胶质细胞标记基因;GFAP为星形胶质细胞标记基因;mGAPDH为内参对照。综上所述,断定心脏Lin28a+细胞是类似神经嵴的干细胞。
图10显示2个月大的鼠血液中Lin28a+细胞流式分析。血液细胞裂红后,共染了4个细胞表面标记基因抗体,CD3(T细胞),CD49b(NK自然杀伤细胞),CD11b(髓系来源的粒细胞,巨噬细胞等),B220(B细胞)。A.未损伤:未损伤鼠血液td+细胞,大约有50%NK(CD49b+),10%T(CD3+)细胞,24%粒细胞(CD11b+),14%B细胞(B220+)。B.损伤后7天:损伤鼠血液td+细胞激增数倍,大约有96%NK(CD49b+),0.8%T(CD3+)细胞,5%粒细胞(CD11b+),1.5%B细胞(B220+)。
图11显示5个月大的鼠血液中Lin28a+细胞流式分析。A.损伤后小鼠血液中Lin28a-tdTO+细胞进一步分析鉴定,大部分(>93%)为CD11b+。中性粒细胞(Ly6G+F40/80-),巨噬细胞(Ly6G-F4/80+)。B.中性粒细胞和巨噬细胞百分比统计。
图12显示Lin28a在体内NK自然杀伤细胞里的作用。2个月大的鼠血液中Lin28a+NK细胞数量随损伤后激增。
图13显示Lin28a在体外NK自然杀伤细胞里的作用。人NK细胞激活20天后,再过表达Lin28a3天后,自我更新能力和增值率显著上升率。
图14显示Lin28a在体外NK自然杀伤细胞里的作用。293T癌症细胞作为靶细胞检测的人类NK杀伤率,显示Lin28a提升人类NK细胞杀伤率。
图15显示Lin28a在多种造血干细胞源性和/或免疫细胞中重新激活和表达,包括NK细胞、T细胞、B细胞和中性粒细胞。Lin28a也在极少量的心脏神经嵴细胞(0.951%)和角质形成细胞(0.12%)中表达。Lin28a也在大量精母细胞和卵母细胞中表达。Lin28a 也在造血干细胞和造血干祖细胞中表达。反之,Lin28a在间充质干细胞(MSCs)或成纤维细胞中不表达。
图16显示Lin28a过表达可显著增加原代造血干细胞来源和/或免疫细胞(包括自然杀伤细胞、T细胞、B细胞和中性粒·细胞,以及心脏神经嵴细胞和相关心肌细胞)的寿命(%原始离体寿命,以天为单位),皮肤角质形成细胞、造血干细胞、造血干祖细胞、精母细胞和相关精子、卵母细胞和相关生殖细胞。反之,Lin28a并没有增加间充质干细胞(MSCs)或成纤维细胞的寿命。
图17显示了年轻化基因的表,包括年轻化转录因子网络基因、年轻化表观修饰网络基因、年轻化信号配体、受体及相关激酶网络的基因、年轻化核酸结合因子网络基因,其表达能够使非多能性细胞年轻化、逆转衰老、逆转非多能性细胞耗竭、逆转非多能性细胞的无能性、延长非多能性细胞寿命、增加非多能性细胞传代的次数。
图18显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老小鼠心肌细胞(心肌细胞(6病毒))和空载体对照的衰老小鼠心肌细胞(心肌细胞(对照))在FGF2刺激后的3天增殖率与细胞寿命。衰老小鼠心肌细胞显然已无能,到了寿命终点,无法增殖,无法传代。转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老小鼠心肌细胞(心肌细胞(6病毒))则恢复了FG F2感应能力和增殖能力,还能传代>10次。
图19显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老小鼠神经胶质细胞(6病毒)和空载体对照的衰老小鼠神经胶质细胞(对照)在血清刺激后的24小时增殖率与细胞寿命。衰老小鼠心肌细胞显然已无能,到了寿命终点,无法增殖,无法传代。转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老小鼠神经胶质细胞(6病毒)则恢复了血清感应能力和增殖能力,还能传代>5次。图20显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老人类间充质干细胞(6病毒)和空载体对照的衰老小鼠间充质干细胞(对照)在血清刺 激后的3天增殖率与细胞寿命。衰老小鼠间充质干细胞显然已无能,到了寿命终点,无法增殖,无法传代。转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老小鼠间充质干细胞(6病毒)则恢复了血清感应能力和增殖能力,还能传代>10次。
图21显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老人类神经细胞(6病毒)和空载体对照的衰老人类神经细胞(对照)在FGF2刺激后的3天增殖率与细胞寿命。衰老小鼠神经细胞显然已无能,到了寿命终点,无法增殖,无法传代。转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老人类神经细胞(6病毒)则恢复了FGF2感应能力和增殖能力,还能传代>5次。
图22显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老小鼠肝脏细胞(6病毒)和空载体对照的衰老小鼠肝脏细胞(对照)在胰岛素刺激后的3天增殖率与细胞寿命。衰老小鼠肝脏细胞显然已无能,到了寿命终点,无法增殖,无法传代。转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老小鼠肝细胞(6病毒)则恢复了胰岛素感应能力和增殖能力,还能传代>5次。
图23显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老小鼠脾脏免疫细胞(红色)和空载体对照的衰老小鼠脾脏免疫细胞(蓝色)在α-CD3/α-CD28刺激后的3天增殖率与细胞寿命。衰老小鼠脾脏免疫细胞(蓝色)显然已无能,到了寿命终点,无法增殖,无法传代。转染了6个基因的衰老小鼠脾脏免疫细胞(红色)则恢复了α-CD3/α-CD28感应能力而继续增殖,稀释CFSE信号,位于3x10 3的峰向左偏移了~12%。位于10 2的峰代表破裂的凋亡细胞。结果显示衰老小鼠脾脏免疫细胞(蓝色)显然已开始凋亡,到了寿命终点。转染了6个基因的衰老小鼠脾脏免疫细胞(红色)则逆转了凋亡、逆转了免疫细胞衰老。
图24显示Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l病毒(免疫细胞-6病毒)对比空载体病毒(免疫细胞-对照),在感染48小时后,激活Lin28a-tdTomato+阳性免疫细胞的程度。
图25A显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老人类间充质干细胞(间充质干细胞(6病毒))和空载体对照的衰老人类间充质干细胞(间充质干细胞(对照))在血清刺激后的%衰老细胞面积。图25B显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老人类间充质干细胞(间充质干细胞(6病毒))和空载体对照的衰老人类间充质干细胞(间充质干细胞(对照))在血清刺激后的%衰老细胞数量。6个基因显著逆转了衰老细胞比例。图25A数据:P值=0.009921,图25B数据:P值=0.012727
图26A显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)衰老人类肝脏前体细胞(肝前体细胞(6病毒))和空载体对照的衰老人类肝脏前提细胞(肝前体细胞(对照))在胰岛素刺激后的%衰老细胞面积。图26B显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老人类肝脏前体细胞(肝前体细胞(6病毒))和空载体对照的衰老人类肝脏前体细胞(肝前体细胞(对照))在胰岛素刺激后的%衰老细胞数量。6个基因显著逆转了衰老细胞比例。图26A数据:P值=0.0000,图26B数据:P值=0.0001
图27A显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)衰老人类神经前体细胞(神经前体细胞(6病毒))和空载体对照的衰老人类神经前体细胞(神经前体细胞(对照))在FGF2刺激后的%衰老细胞面积。图27B显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老人类神经前体细胞(神经前体细胞(6病毒))和空载体对照的衰老人类神经前体细胞(神经前体细胞(对 照))在FGF2刺激后的%衰老细胞数量。6个基因显著逆转了衰老细胞比例。图27A数据:P值=0.262,图27B数据:P值=0.293
图28A显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)衰老人类胰腺前体细胞(胰腺前体细胞(6病毒))和空载体对照的衰老人类胰腺前体细胞(胰腺前体细胞(对照))在EGF刺激后的%衰老细胞面积。图28B显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老人类胰腺前体细胞(胰腺前体细胞(6病毒))和空载体对照的衰老人类胰腺前体细胞(胰腺前体细胞(对照))在EGF刺激后的%衰老细胞数量。6个基因显著逆转了衰老细胞比例。图28A数据:P值=0.495,图28B数据:P值=0.639
图29A显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)衰老人类心肌前体细胞(心肌前体细胞(6病毒))和空载体对照的衰老人类心肌前体细胞(心肌前体细胞(对照))在B27刺激后的%衰老细胞面积。图29B显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老人类心肌前体细胞(心肌前体细胞(6病毒))和空载体对照的衰老人类心肌前体细胞(心肌前体细胞(对照))在B27刺激后的%衰老细胞数量。6个基因显著逆转了衰老细胞比例。。图29A数据:P值=0.0000,图29B数据:P值=0.0000
图30显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老人类间充质干细胞(6病毒)和空载体对照的衰老人类间充质干细胞(空载对照)都显著过表达了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)。***P<0.001
图31显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老肝细胞(6病毒)和空载体对照的衰老肝细胞(空载对照)都显著过表达了6个基因 (Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)。***P<0.001
图32显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老心肌细胞(6病毒)和空载体对照的衰老心肌细胞(空载对照)都显著过表达了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)。***P<0.001
图33显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老神经胶质细胞(6病毒)和空载体对照的衰老神经胶质细胞(空载对照)都显著过表达了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)。***P<0.001,**P<0.01
图34显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老脾脏T细胞(6病毒)和空载体对照的衰老脾脏T细胞(空载对照)都显著过表达了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)。***P<0.001,**P<0.01图35显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老脾脏NK细胞(6病毒)和空载体对照的衰老脾脏NK细胞(空载对照)都显著过表达了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)。***P<0.001,**P<0.01
图36显示染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老小鼠T细胞(感染组)在α-CD3、α-CD28刺激后的5天增殖率与细胞寿命,比起衰老小鼠T细胞对照(未感染),都有所显著提升。
图37显示转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老小鼠NK细胞(感染组)在α-CD3、α-CD28刺激后的5天增殖率与细胞寿命,比起衰老小鼠NK细胞对照(未感染),都有所显著提升。
图38显示被感染单子中6个基因(分别含有Bcl11a,Bcl11b,Otx2,Lmo2,Pbx1, Pabpc4l的载体)的衰老小鼠T细胞在5天内,Lin28a+比例都显著高于对照组(0.016%vs 0.007%)。
图39显示被感染单子中6个基因(分别含有Bcl11a,Bcl11b,Otx2,Lmo2,Pbx1,Pabpc4l的载体)的衰老小鼠NK细胞在5天内,Lin28a+比例都显著高于对照组(0.022%vs 0.012%)。
具体实施方式
现参照下列意在举例说明本发明(而非限定本发明)的实施例来描述本发明。
除非特别指明,本发明中所使用的分子生物学实验方法和免疫检测法,基本上参照J.Sambrook等人,分子克隆:实验室手册,第2版,冷泉港实验室出版社,1989,以及F.M.Ausubel等人,精编分子生物学实验指南,第3版,John Wiley&Sons,Inc.,1995中所述的方法进行;限制性内切酶的使用依照产品制造商推荐的条件。本领域技术人员知晓,实施例以举例方式描述本发明,且不意欲限制本发明所要求保护的范围。
以下实施例涉及的主要试剂的来源如下:
案例1
介绍
尽管我们对多能性、体细胞重编程和转分化的理解取得了巨大进步,但干细胞自我更新的分子基础仍不清楚。特别是,没有发现单个因子可以使体细胞重返青春。利用Oct4、Sox2、Klf4、Myc等多个重编程因子实现体细胞重返青春的潜在风险是:若细胞彻底重返青春,获得多能性的干性,就会产生畸胎瘤。若能发现哪一个单个干细胞因子能让细胞部分重返或维持青春,且在成体细胞正常表达又不致癌,将会是这个领域的突破。Lin28 是最早被发现与幼年发育和生长程序相关的基因之一,这一概念与干细胞自我更新和分化相关。
为了测试Lin28a是否在特定的细胞类型中发挥作用,我们对所有胚胎和成年组织进行了Lin28a的谱系追踪。我们使用同源重组在Lin28a蛋白C端偶联了″自切割″T2A-CreERT2,构建了人工Lin28a-T2A-CreERT2转基因小鼠,并与Rosa26-loxp-stop-loxp-tdTomato(tdTO)报告小鼠杂交,以追踪Lin28a+细胞的命运。为了确保我们的Lin28a-tdTO+谱系追踪可以特异且真实的反应内源Lin28a的表达,我们检查了tdTO+细胞在睾丸中的分布。结果,我们发现在谱系追踪20天后,有~30%位于生精小管外围的PLZF+精原干细胞和~61%的精母细胞被特异性标记为Lin28a-tdTO+细胞,表明Lin28a-tdTO的分布正确(图1A,15)。虽然分布正确,但人工操作依然可干扰Lin28a末端和3′UTR,Lin28a活性有可能略微提升。为了确保内源性Lin28a的表达不受偶联的T2A-CreERT2的干扰,我们检查了杂合Lin28a-T2A-CreERT2小鼠的总Lin28a蛋白表达,发现野生型和Lin28a-T2A-CreERT2;LSL-tdTO小鼠之间虽有些差异,但差异不太大。因此我们利用tamoxifen(TMX)对胚胎组织各时间点进行谱系追踪。我们发现在胚胎里,Lin28a-tdTO+细胞遍布于胎盘(图1B-E),母胎界面(图2),胚胎肺支气管壁干细胞(图3),肝脏祖细胞(图4),体节软骨干细胞,生皮肌干细胞,肾脏祖细胞(图5),室管膜祖细胞,神经干细胞(图6),牙原基和触须毛囊原基的干细胞,肠胃干细(图7)等细胞。
如图8所示,我们通过FACSAria(Becton Dickinson)细胞分选在成体小鼠里发现Lin28a-tdTO+(简称td+)细胞在不同成年小鼠器官的占比。根据荧光强度,td+细胞被 分为两群,荧光较弱的td-low和荧光较强的td-high。相对于阴性对照,Lin28a+细胞分别在小鼠肝脏,脑,心脏和胰腺中的的td-low群都比阴性对照显著更多,意味4个成年器官都含有极少量的Lin28a+干细胞。
如图9所示,成年心脏存在Lin28a+细胞(图9A)。qRT-PCR鉴定显示心脏Lin28a+细胞是类似神经嵴的干细胞(图9B)。qRT-PCR鉴定显示心脏Lin28a+细胞是类似神经嵴的干细胞(图9B)。成年小鼠血液细胞里也存在大量的Lin28a+细胞,包括CD3+T细胞,CD49b+NK细胞,CD11b+髓系来源的粒细胞,巨噬细胞等,B220+B细胞,Ly6G+F40/80-中性粒细胞,Ly6G-F4/80+巨噬细胞(图10、11)。我们进一步发现2个月大的鼠血液中Lin28a+NK细胞数量会随损伤后激增,提示Lin28a能在体内促进NK细胞增殖(图12)。我们在体外人类NK细胞过表达Lin28a超过2倍,3后发现Lin28a能促进NK自然杀伤细胞的自我更新能力和增殖率(图13),且能提升NK自然杀伤细胞针对293T癌症细胞的杀伤力(图14)。
如图15所示,Lin28a-tdTomato在多种造血干细胞源性和/或免疫细胞中重新激活和表达,包括NK细胞、T细胞、B细胞和中性粒细胞。Lin28a也在极少量的心脏神经嵴细胞(0.951%)和皮肤角质形成细胞(0.12%)中表达。Lin28a也在大量精母细胞和卵母细胞中表达。Lin28a也在造血干细胞和造血干祖细胞细胞中表达。反之,Lin28a在间充质干细胞(MSCs)或成纤维细胞中不表达。
为了进一步测试我们的Lin28a是否能延长这些特定细胞类型的细胞寿命,将其年轻化,我们利用带有CMV启动子和G418抗性转基因的FUGW慢病毒载体,在多种未经修饰的成年细胞类型中过度表达了Lin28a。FUGW慢病毒感染2天后,再进行2天G418筛 选后,将过表达成功的细胞传代,在合适的细胞培养基里养殖。如图16所示,我们发现相较于未经修饰的成年细胞,Lin28a过表达可显著增加成年造血干细胞来源和/或免疫细胞(包括自然杀伤细胞、T细胞、B细胞和中性粒细胞,以及心脏神经嵴细胞和相关心肌细胞)、皮肤角质形成细胞、造血干细胞、造血干祖细胞细胞、精母细胞、卵母细胞和相关生殖细胞的寿命(%原始离体寿命,以天为单位)。反之,Lin28a并没有增加间充质干细胞(MSCs)或成纤维细胞的寿命。根据谱系追踪的结果,Lin28a也能特异地延长胎盘细胞、肺细胞、肝脏细胞、肾脏细胞、软骨细胞、室管膜细胞、神经细胞、牙齿细胞、肠胃细胞等的细胞寿命。
根据我们的基因组与表观遗传生物信息分析,我们发现一系列的基因网络与Lin28a有互作关系,在介导Lin28a年轻化细胞过程中扮演年轻化因子的重要角色。如图17所示,这些网络可分为年轻化转录因子网络(Grhl2,Zic5,Zic2,Utf1,Otx2,Snai3,Lmo2,Hopx)、年轻化表观遗传修饰网络(Bcl11a,Bcl11b,Dnmt3b,Mettl20,Arid3c)、年轻化信号配体、受体及相关激酶网络(Fgf5,Wnt3,Calcr,Epha1,Epor,Galr2,Piezo2,Ripk4,Pak6,Map3k15,Pdzd4,Shc4)、以及年轻化核酸结合因子网络(Foxr2,Hif3a,Pbx1,Zfp946,Batf3,Pabpc4l,Celf4,Lin28a,Lin28b)。过表达一个或多个上述年轻化因子也能实现细胞年轻化,降低生物年龄,尤其是逆转细胞衰老、逆转耗竭、逆转无能性、延长细胞寿命和自我更新能力(增加传代次数)。
案例2
从上述细胞表达图谱,我们得到了与Lin28a共表达的基因单子:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、 Piezo2、Shc4。案例1显示了Lin28a+细胞具有逆转衰老的能力。因此我们利用Lin28a-tdTomato作为报告基因预测非多能性细胞是否得以延长寿命。作为案例,我们测试了单子中的以下6个基因:Bcl11a,Bcl11b,Lmo2,Otx2,Pbx1,Pabpc4l是否能够让衰老小鼠非多能性细胞逆转衰老,并延长其寿命。众所周知,衰老细胞一般上会丢失细胞因子感应能力、增殖能力、传代能力,并且开始表达SA-Bgal。因此,我们想测试Bcl11a,Bcl11b,Otx2,Lmo2,Pbx1,Pabpc4l可否在小鼠衰老细胞促进细胞因子感应能力、增殖能力、传代能力,从而逆转衰老。我们利用已知的方法提取衰老的小鼠获人类非多能性细胞(心肌细胞、神经胶质细胞(包括小胶质细胞、星型胶质细胞)、间充质干细胞、神经细胞、肝脏细胞、脾脏免疫细胞)并分别转染了6个病毒(分别含有Bcl11a,Bcl11b,Otx2,Lmo2,Pbx1,Pabpc4l的载体)和空载体的病毒,在24小时、48小时、72小时测量细胞的增殖倍数,并在72小时内测量了衰老细胞的Lin28a+比列,SA-Bgal+比列,以及衰老细胞的面积%与数量%。如图18、图19、图20、图21、图22所示,我们利用Operetta高内涵显微镜(PerkinElmer)发现能够通过转基因模式(转染含有单子中6个基因的病毒载体)促进同等量衰老细胞感应培养基FGF2(GeminiBio,10ng/ml)或牛血清(BI,10%)或B27(Gibco,1%)或胰岛素(BI,4ug/ml)或α-CD3/α-CD28抗体(Invitrogen,2-4ug/ml)或EGF(Peprotech)的能力,以及增殖能力和传代能力。空载体对照组衰老肌肉细胞在1代内就停止增殖了,但6病毒的衰老非多能性细胞可再传代>5次,而且增殖倍数在24小时、48小时、72小时都显著提高。与此同时,如图23所示,被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老小鼠免疫细胞(红色)和空载体对照的衰老小鼠免疫细胞(蓝色)在α-CD3/α-CD28刺激后的3天增殖率与细胞寿命。衰老小鼠脾脏免疫细胞(蓝色)显然已无能,到了寿命终点,无法增殖,无法传代。转染了6个基因的衰老小鼠脾脏免疫细胞 (红色)则恢复了α-CD3/α-CD28感应能力而继续增殖,稀释CFSE(羧基荧光素琥珀酰亚胺酯,Invitrogen,10uM)信号,位于3x10 3的峰向左偏移了~12%。位于10 2的峰代表破裂的凋亡细胞。结果显示衰老小鼠脾脏免疫细胞(蓝色)显然已开始凋亡,到了寿命终点。转染了6个基因的衰老小鼠脾脏免疫细胞(红色)则逆转了凋亡、逆转了免疫细胞衰老。如图24所示,我们利用流式分析(Becton Dickinson,Flowjo),发现被转染单子中6个基因(分别含有Bcl11a,Bcl11b,Otx2,Lmo2,Pbx1,Pabpc4l的载体)的衰老小鼠脾脏细胞在48-72小时内,Lin28a+比例都显著高于空载体对照组。由此可见,单子中的基因都具有启动Lin28a表达,逆转衰老,逆转无能性,恢复增殖能力、传代能力,并延长其寿命的能力。
我们进一步测试了单子中6个基因是否能够在人类非多能性细胞逆转衰老。我们利用已知的方案(Ang et al.,2018,Koh et al.,2016,Liu et al.,2020,Martin et al.,2020),将胚胎多能干细胞分化成不同种类的非多能性细胞(间充质干细胞、肝脏前体细胞、神经前体细胞、胰腺前体细胞和心肌前体细胞),并在这些细胞衰老后(停止增殖的时候),分别转染了含有单子中6个基因和包含空载体的病毒,并在72小时内,利用β-半乳糖苷酶染色(Solarbio#G1580)标记衰老细胞,再用Operetta高内涵显微镜(PerkinElmer)测量衰老细胞的百分比。如图25、图26、图27、图28、图29所示,我们可以通过转基因方式(病毒转染),过表达单子中6个基因,且成功逆转人类非多能性细胞的衰老面积%和衰老数量%。由此可见,单子中的基因都具有逆转衰老,逆转无能性,恢复增殖能力、传代能力,并延长其寿命的能力。
我们进一步采用荧光定量核酸扩增检测(qRT-PCR),测试了被转染6个基因(分别含有Bcl11a,Bcl11b,Otx2,Lmo2,Pbx1,Pabpc4l的载体)的衰老非多能性细胞(间充质干细胞、肝细胞、心肌细胞、神经胶质细胞、脾脏T细胞、脾脏NK细胞)Bcl11a,Bcl11b, Otx2,Lmo2,Pbx1,Pabpc4l基因的表达。如图30、图31、图32、图33、图34、图35分别所示,被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的非多能性细胞(6病毒)和空载体对照的衰老非多能性细胞(空载对照)都显著过表达了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)。
我们还进一步用已知方案对Lin28a-tdTomato衰老小鼠的脾脏进行免疫细胞流式分选(Becton Dickinson)。如图36所示,我们进一步发现被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老小鼠T细胞(感染组)在α-CD3(Invitrogen#16-0031-81,4ug/ml)和α-CD28(Invitrogen#16-0281-81,2ug/ml)刺激后的5天增殖率与细胞寿命,比起衰老小鼠T细胞对照(未感染),都有所显著提升。衰老小鼠T细胞(未感染)则显然已无能,到了寿命终点,无法增殖,无法传代。如图37所示,我们进一步发现被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老小鼠NK细胞(感染组)在α-CD3(Invitrogen#16-0031-81,4ug/ml)和α-CD28(Invitrogen#16-0281-81,2ug/ml)刺激后的5天增殖率与细胞寿命,比起衰老小鼠NK细胞对照(未感染),都有所显著提升。衰老小鼠NK细胞(未感染)则显然已无能,到了寿命终点,无法增殖,无法传代。如图38所示,我们进一步利用流式分析(Becton Dickinson,Flowjo)发现被感染单子中6个基因(分别含有Bcl11a,Bcl11b,Otx2,Lmo2,Pbx1,Pabpc4l的载体)的衰老小鼠T细胞在5天内,Lin28a-tdTomato+比例都显著高于对照组(0.016%vs 0.007%)。如图39所示,我们进一步利用流式分析(Becton Dickinson,Flowjo)发现被感染单子中6个基因(分别含有Bcl11a,Bcl11b,Otx2,Lmo2,Pbx1,Pabpc4l的载体)的衰老小鼠NK细胞在5天内,Lin28a-tdTomato+比例都显著高于对照组(0.022%vs 0.012%)。由此可见,单子中的基因都具有启动Lin28a表达,逆转衰老,逆转无能性,逆转免疫细胞耗竭,恢复增殖能 力、传代能力,并延长细胞寿命的能力。
尽管本发明的具体实施方式已经得到详细的描述,但本领域技术人员将理解:根据已经公布的所有教导,可以对细节进行各种修改和变动,并且这些改变均在本发明的保护范围之内。本发明的全部分为由所附权利要求及其任何等同物给出。

Claims (22)

  1. 一种分离的工程化非多能性细胞,其具备以下特征:
    (i)其Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4的任一基因或多个基因的表达相对于未经修饰的非多能性细胞有所增加。
    (ii)可以稳定传代至少5次,例如至少10次、至少15次、至少20次、至少25次、至少30次或更多。
  2. 权利要求1所述的非多能性细胞,其Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4的任一基因或多个基因的表达相比于未修饰的非多能性细胞,至少约2、3、4、5、6、7、8、9、10、100、150、200倍或甚至更高。
  3. 权利要求1-2所述非多能性细胞,能够持续扩增至少4天、5天、6天、8天、9天、10天、20天、30天、40天、50天、100天、150天、200天、300天、400天或甚至更多天。
  4. 权利要求1-3所述非多能性细胞,其生物年龄相比于未修饰的非多能性细胞显著降低。
  5. 权利要求1-4任一项所述的非多能性细胞,所述细胞源自于内胚层、外胚层、中胚层或生殖细胞。
  6. 权利要求1-5任一项所述的非多能性细胞,所述细胞选自神经嵴细胞(neural crest细胞及其所衍生出来的子细胞)、神经细胞(例如神经前体细胞、神经胶质细胞)、血液细胞(例如造血干细胞、造血干祖细胞、红细胞、白细胞、中性粒细胞、血小板、嗜酸性粒细胞)、免疫细胞(例如白细胞、淋巴细胞、自然杀伤细胞(NK细胞)、T细胞、γδT细胞、NKT细胞、巨噬细胞、B细胞、小胶质细胞、脾脏前体细胞)、肝脏细胞(例如肝脏前体细胞)、胰腺细胞(胰腺前体细胞)、心肌细胞(例如心肌前体细胞)、皮肤细胞(例如角质形成细胞)、精母细胞(包括精原干细胞)、卵母细胞。
  7. 权利要求1-6任一项所述的非多能性细胞,其MDM4和TEP1的表达相比于非多能性细胞的至少约5倍、10倍、20倍、30倍或甚至更高。
  8. 一种分离的细胞群体,其包含权利要求1-7任一项所述的非多能性细胞或其任意组合;
    优选地,所述细胞群体中至少50%(例如至少60%、至少70%、至少80%、至少85%、至少90%、至少95%、至少98%、至少99%或约100%)的细胞是权利要求1-7任一项所述的非多能性细胞。
  9. 一种药物组合物,其包含权利要求1-7任一项所述的非多能性细胞或权利要求8所述的细胞群体,以及药学上可接受的载体和/或赋形剂。
  10. 一种用于生产权利要求1-7任一项所述细胞或权利要求8所述细胞群的方法,其中通过提高以下一个或多个基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
  11. 一种用于让非多能性细胞年轻化或降低非多能性细胞生物年龄的方法,其中通过提高以下一个或多个基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
  12. 一种能够在非多能性细胞逆转衰老的方法,其中通过提高以下一个或多个基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
  13. 一种能够在非多能性细胞逆转细胞耗竭的方法,其中通过提高以下一个或多个基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
  14. 一种能够在非多能性细胞逆转细胞无能性的方法,其中通过提高以下一个或多个基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
  15. 一种能够延长非多能性细胞寿命的方法,其中通过提高以下一个或多个基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
  16. 一种能够让细胞体外持续扩增至少4天、5天、6天、8天、9天、10天、20天、30天、40天、50天、100天、150天、200天、300天、400天或甚至更多天的方法,其中通过提高以下一个或多个基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
  17. 一种能够让非多能性细胞稳定传代至少5次,例如至少10次、至少15次、至少20次、至少25次、至少30次或更多次的方法,其中通过提高以下一个或多个基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
  18. 权利要求10-17任一项所述方法,其方法能用于的细胞选自内胚层、外胚层、中胚层来源或生殖细胞。优选地,所述非多能性细胞选自神经嵴细胞(neural crest细胞及其所衍生出来的子细胞)、神经细胞(例如神经前体细胞、神经胶质细胞(包括小胶质细胞、星型胶质细胞))、血液细胞(例如造血干细胞、造血干祖细胞、红细胞、白细胞、中性粒细胞、血小板、嗜酸性粒细胞)、免疫细胞(例如白细胞、淋巴细胞、自然杀伤细胞(NK细胞)、T细胞、γδT细胞、NKT细胞、巨噬细胞、B细胞、小胶质细胞、脾脏前体细胞)、间充质干细胞、肝脏细胞(例如肝脏前体细胞)、胰腺细胞(胰腺前体细胞)、心肌细胞(例如心肌前体细胞)、皮肤细胞(例如角质形成细胞)、精母细胞(包括精原干细胞)、卵母细胞。
  19. 权利要求10-18任一项所述方法,其包括转基因的方式来提高细胞以下一个或多个基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、 Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
  20. 一种用于产生权利要求1-7任何一项所描述的细胞或细胞群或逆转非多能性细胞衰老的试剂或试剂盒,其中包含
    (i)编码以下任一蛋白的核酸(例如脱氧核糖核酸、核糖核酸):Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
    (ii)医学上可接受的载体(例如病毒载体、纳米颗粒、脂质囊泡、外泌体等)。
  21. 权利要求所述的试剂或试剂盒、其中也包括调控以上基因的表达量的原件,例如但不限于启动子、药物调控启动子、蛋白调控启动子、组织特异启动子、蛋白内含子(intein)、转座子、核酸内切酶(例如cre-lox系统)、逆转座子。
  22. 权利要求20-21所述的试剂或试剂盒、其中包含在体内或体外的用途。
PCT/CN2022/125387 2021-10-14 2022-10-14 年轻化非多能性细胞及其制备方法和应用 WO2023061484A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111199245 2021-10-14
CN202111199245.8 2021-10-14

Publications (1)

Publication Number Publication Date
WO2023061484A1 true WO2023061484A1 (zh) 2023-04-20

Family

ID=85966947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125387 WO2023061484A1 (zh) 2021-10-14 2022-10-14 年轻化非多能性细胞及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115975944A (zh)
WO (1) WO2023061484A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107846903A (zh) * 2015-05-28 2018-03-27 细胞结构公司 胎盘来源的干细胞及其用于恢复再生引擎、纠正蛋白质组缺陷并延长衰老个体寿命的用途
CN110423721A (zh) * 2018-05-01 2019-11-08 云南济慈再生医学研究院有限公司 一种年轻化的修复型成纤维细胞的制备方法及其应用
CN110423719A (zh) * 2018-05-01 2019-11-08 云南济慈再生医学研究院有限公司 调控Jak-Stat通路使细胞分化、去分化、年轻化的技术及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107846903A (zh) * 2015-05-28 2018-03-27 细胞结构公司 胎盘来源的干细胞及其用于恢复再生引擎、纠正蛋白质组缺陷并延长衰老个体寿命的用途
CN110423721A (zh) * 2018-05-01 2019-11-08 云南济慈再生医学研究院有限公司 一种年轻化的修复型成纤维细胞的制备方法及其应用
CN110423719A (zh) * 2018-05-01 2019-11-08 云南济慈再生医学研究院有限公司 调控Jak-Stat通路使细胞分化、去分化、年轻化的技术及其应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JIN‐HO PARK; BONG‐WOOK PARK; YOUNG‐HOON KANG; SUNG‐HOON BYUN; SUN‐CHUL HWANG; DEOK RYONG KIM; DONG KYUN WOO; JUNE‐HO BYUN: "Lin28a enhances in vitro osteoblastic differentiation of human periosteum‐derived cells", CELL BIOCHEMISTRY AND FUNCTION., BUTTERWORTH, GUILDFORD., GB, vol. 35, no. 8, 16 November 2017 (2017-11-16), GB , pages 497 - 509, XP071523045, ISSN: 0263-6484, DOI: 10.1002/cbf.3305 *
WANG PENG, LIU XUPENG, ELWIN TAN JUN-HAO, JASON CHUA MIN-WEN, BENJAMIN CHUA YAN-JIANG, LUO LANFANG, MA SHILIN, CAO WENHUA, MA WENW: "Lin28a rejuvenates muscle stem cells via mitochondrial optimization", BIORXIV, 15 October 2021 (2021-10-15), XP093056955, Retrieved from the Internet <URL:https://www.biorxiv.org/content/10.1101/2021.10.14.462144v1.full.pdf> [retrieved on 20230622], DOI: 10.1101/2021.10.14.462144 *
WEINGART MELANIE F., ROTH JACQUELYN J., HUTT-CABEZAS MARIANNE, BUSSE TRACY M., KAUR HARPREET, PRICE ANTOINETTE, MAYNARD RACHAEL, R: "Disrupting LIN28 in atypical teratoid rhabdoid tumors reveals the importance of the mitogen activated protein kinase pathway as a therapeutic target", ONCOTARGET, vol. 6, no. 5, 20 February 2015 (2015-02-20), pages 3165 - 3177, XP093056958, DOI: 10.18632/oncotarget.3078 *
YONGHUN SUNG; JAIN JEONG; RI JIN KANG; MINJEE CHOI; SONG PARK; WOOKBONG KWON; JINHEE LEE; SOYOUNG JANG; SI JUN PARK; SUNG‐HYUN KIM: "Lin28a expression protects against streptozotocin‐induced β‐cell destruction and prevents diabetes in mice", CELL BIOCHEMISTRY AND FUNCTION., BUTTERWORTH, GUILDFORD., GB, vol. 37, no. 3, 18 March 2019 (2019-03-18), GB , pages 139 - 147, XP071522833, ISSN: 0263-6484, DOI: 10.1002/cbf.3376 *
YU YONG, WANG JUEXUAN, KHALED WALID, BURKE SHANNON, LI PENG, CHEN XIONGFENG, YANG WEI, JENKINS NANCY A., COPELAND NEAL G., ZHANG S: "Bcl11a is essential for lymphoid development and negatively regulates p53", JOURNAL OF EXPERIMENTAL MEDICINE, ROCKEFELLER UNIVERSITY PRESS, US, vol. 209, no. 13, 17 December 2012 (2012-12-17), US , pages 2467 - 2483, XP055920320, ISSN: 0022-1007, DOI: 10.1084/jem.20121846 *
YUKO ANTONIA ELIZABETH, CARVALHO RIGAUD VAGNER OLIVEIRA, KURIAN JUSTIN, LEE JI H., KASATKIN NICOLE, BEHANAN MICHAEL, WANG TAO, LUC: "LIN28a induced metabolic and redox regulation promotes cardiac cell survival in the heart after ischemic injury", REDOX BIOLOGY, ELSEVIER, NL, vol. 47, 1 November 2021 (2021-11-01), NL , pages 102162, XP093056952, ISSN: 2213-2317, DOI: 10.1016/j.redox.2021.102162 *

Also Published As

Publication number Publication date
CN115975944A (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
JP6894941B2 (ja) ミエリン障害の治療のための誘導多能性細胞由来オリゴデンドロサイト前駆細胞
JP7051748B2 (ja) 細胞を幼若化するための方法
WO2009148057A1 (ja) 血球細胞の初期化法
US8178349B2 (en) Homogeneous neural precursor cells
WO2014157257A1 (ja) 細胞の選別方法
JP2019058176A (ja) 新規方法
JP5751548B2 (ja) イヌiPS細胞及びその製造方法
KR20140004724A (ko) 전분화능을 위한 선천적 잠재력을 갖는 체세포
WO2014069672A1 (ja) Mait様細胞およびその作製方法
JP2021019592A (ja) より未分化状態への細胞の誘導方法
WO2012133942A1 (ja) 生体の臍帯又は脂肪組織から単離できる多能性幹細胞
JP2011522520A (ja) 細胞の脱分化を行う方法
RU2399667C1 (ru) Способ получения плюрипотентных клеток
WO2013004135A1 (zh) 诱导性多能干细胞的制备方法和用于制备诱导性多能干细胞的培养基
WO2023061484A1 (zh) 年轻化非多能性细胞及其制备方法和应用
WO2015178496A1 (ja) 肺前駆細胞の作製方法
JPWO2007094301A1 (ja) 硝子体細胞株
JP2022534693A (ja) パーキンソン病のための自家細胞置換療法
KR101552047B1 (ko) 약 유도 시스템을 이용해 체세포를 도파민 신경세포로 직접교차분화 시키는 방법
KR102534488B1 (ko) 기능성 신경교세포를 단기간에 효율적으로 분화시키는 방법
EP4349967A1 (en) Novel pluripotent cells
WO2023061485A1 (zh) 年轻化骨骼肌肉细胞及其制备方法和应用
US20210010030A1 (en) Method for reprogramming somatic cells
Goes Barbosa Buskin Improving our understanding of autosomal dominant Retinitis Pigmentosa using PRPF31 patient-specific induced pluripotent stem cells (iPSCs)
KR20220067308A (ko) 베체트 환자 신경병증 아바타 모델

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880420

Country of ref document: EP

Kind code of ref document: A1