WO2023061485A1 - 年轻化骨骼肌肉细胞及其制备方法和应用 - Google Patents

年轻化骨骼肌肉细胞及其制备方法和应用 Download PDF

Info

Publication number
WO2023061485A1
WO2023061485A1 PCT/CN2022/125388 CN2022125388W WO2023061485A1 WO 2023061485 A1 WO2023061485 A1 WO 2023061485A1 CN 2022125388 W CN2022125388 W CN 2022125388W WO 2023061485 A1 WO2023061485 A1 WO 2023061485A1
Authority
WO
WIPO (PCT)
Prior art keywords
lin28a
days
expression
cells
skeletal muscle
Prior art date
Application number
PCT/CN2022/125388
Other languages
English (en)
French (fr)
Other versions
WO2023061485A8 (zh
WO2023061485A9 (zh
Inventor
黄仕强
王瑞琦
王鹏
刘旭鹏
赵赫
程业倩
马诗琳
广璐
陈煜�
姚子月
Original Assignee
北京干细胞与再生医学研究院
中国科学院动物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京干细胞与再生医学研究院, 中国科学院动物研究所 filed Critical 北京干细胞与再生医学研究院
Publication of WO2023061485A1 publication Critical patent/WO2023061485A1/zh
Publication of WO2023061485A9 publication Critical patent/WO2023061485A9/zh
Publication of WO2023061485A8 publication Critical patent/WO2023061485A8/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0658Skeletal muscle cells, e.g. myocytes, myotubes, myoblasts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/33Fibroblasts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/34Muscles; Smooth muscle cells; Heart; Cardiac stem cells; Myoblasts; Myocytes; Cardiomyocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian

Definitions

  • the present invention relates to the field of skeletal muscle cells. Specifically, the present invention relates to a method for rejuvenating skeletal muscle cells, and the use of said cells in cell transplantation, tissue repair and/or tissue regeneration cell therapy and gene therapy.
  • Aging is associated with progressive degeneration of tissues, which negatively affects the structure and function of vital organs and is one of the most important known risk factors for most chronic diseases. Given that the proportion of the world's population over the age of 60 is expected to double in the next 40 years, the increased incidence of age-related chronic diseases will place a huge burden on healthcare resources. Aging is characterized by the gradual accumulation of damage, leading to loss of physiological integrity, impaired function, and increased vulnerability to death. The aging process affects the entire organism, including the human germline. After two decades or more of active metabolism, all human cells, including the human germline, accumulate molecular damage such as modified long-lived proteins, genetic and epigenetic mutations, metabolic byproducts, and other age-related Detrimental changes can then produce offspring that are younger again. Recently, by using the concept of an epigenetic clock, scientists have observed that during early embryogenesis, the biological age of cells is significantly reduced, i.e., a rejuvenation event occurs (Kerepesi et al., 2021).
  • the inventor of the present application has obtained a young skeletal muscle cell, its preparation method and reagent, and the application of the cell and reagent in cell therapy through a large number of experiments and repeated exploration.
  • certain pathways and genes involved in the regulation of the above processes in skeletal muscle cells not only enable skeletal muscle cells to partially reverse aging, exhaustion, incompetence, epigenetic clock, cell biological Age can also allow skeletal muscle cells to prolong their self-renewal ability and continue to expand and reproduce in vitro.
  • the application provides an isolated, modified skeletal muscle cell, which has the following characteristics:
  • Bcl11a Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Increased expression of any or more genes of Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4
  • (ii) can be stably passaged for at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times or more.
  • the isolated modified skeletal muscle cells provided herein can be stably passaged for at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times or More; its rejuvenation transcription factor network: Grhl2, Zic5, Zic2, Utf1, Otx2, Snai3, Lmo2, Hopx have increased expression of any gene or genes relative to unmodified skeletal muscle cells.
  • the expression of LIN28 is concurrently increased relative to unmodified skeletal muscle cells.
  • the isolated modified skeletal muscle cells provided herein can be stably passaged for at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times or More; its rejuvenating epigenetic modification network: Bcl11a, Bcl11b, Dnmt3b, Mettl20, Arid3c any gene or genes have increased expression relative to unmodified skeletal muscle cells.
  • the expression of LIN28 is concurrently increased relative to unmodified skeletal muscle cells.
  • the isolated modified skeletal muscle cells provided herein can be stably passaged for at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times or More; its rejuvenation signaling ligands, receptors and related kinase networks: expression of any gene or multiple genes of Fgf5, Wnt3, Calcr, Epha1, Epor, Galr2, Piezo2, Ripk4, Pak6, Map3k15, Pdzd4, Shc4 increased relative to unmodified skeletal muscle cells.
  • expression of LIN28 is concurrently increased relative to unmodified skeletal muscle cells in addition to the genes of the rejuvenation signaling ligands, receptors, and associated kinase networks described above.
  • the isolated modified skeletal muscle cells provided herein can be stably passaged for at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times or More; its rejuvenation nucleic acid binding factor network: Foxr2, Hif3a, Pbx1, Zfp946, Batf3, Pabpc4l, Celf4, Lin28 Any gene or multiple genes have increased expression relative to unmodified skeletal muscle cells.
  • the expression of LIN28 (including LIN28A or LIN28B) is simultaneously increased relative to unmodified skeletal muscle cells.
  • the isolated modified skeletal muscle cells provided herein can be stably passaged for at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times or More; gene expression of LIN28 (including LIN28A or LIN28B) was increased relative to unmodified skeletal muscle cells.
  • the isolated modified skeletal muscle cells provided herein can be stably passaged for at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times or More; LIN28 (including LIN28A or LIN28B), BCL11A, BCL11B, LMO2, OTX2, PBX1, PABPC4L any gene or multiple gene expression is increased relative to unmodified skeletal muscle cells.
  • LIN28 including LIN28A or LIN28B
  • BCL11A, BCL11B, LMO2, OTX2, PBX1, PABPC4L any gene or multiple gene expression is increased relative to unmodified skeletal muscle cells.
  • the skeletal muscle cells of the present invention are selected from one or more of the following (for example, 1, 2, 3, 4, 5, 6, 7, 8, 9 , 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 , 27, 28, 29, 30, 31, 32, 33, 34, 35 or 36) gene expression levels compared to those in unmodified skeletal muscle cells
  • Expression levels exhibit at least about 2-fold, at least about 3-fold, at least about 4-fold, at least about 5-fold, at least about 6-fold, at least about 7-fold, at least about 8-fold, at least about 9-fold, at least about 10-fold, at least about 100-fold, at least about 150-fold, at least about 200-fold increase in: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946 , Mettl20
  • skeletal muscle cells of the invention have expression levels of one or more rejuvenating transcription factor network genes selected from the group consisting of these rejuvenating transcription factor networks in unmodified skeletal muscle cells
  • the expression level of the gene exhibits at least about 2-fold, at least about 3-fold, at least about 4-fold, at least about 5-fold, at least about 6-fold, at least about 7-fold, at least about 8-fold, at least about 9-fold, at least about 10-fold, At least about 100-fold, at least about 150-fold, at least about 200-fold increase: Grhl2, Zic5, Zic2, Utf1, Otx2, Snai3, Lmo2, Hopx.
  • the expression level of the LIN28 (LIN28A or LIN28B) gene of the modified skeletal muscle cells of the present invention is compared to at least about 2 times, at least about 3 times, at least about 4 times, at least about 5 times, at least about 6 times, at least about 7 times, at least about 8 times, at least about 9 times, at least about 10 times, at least about 100 times, at least About 150 times, at least about 200 times.
  • the skeletal muscle cells of the invention have expression levels of one or more rejuvenating epigenetic modification network genes selected from The expression level of the genetic modification network genes exhibits at least about 2-fold, at least about 3-fold, at least about 4-fold, at least about 5-fold, at least about 6-fold, at least about 7-fold, at least about 8-fold, at least about 9-fold, at least about 10-fold, at least about 100-fold, at least about 150-fold, at least about 200-fold increase: Bcl11a, Bcl11b, Dnmt3b, Mettl20, Arid3c.
  • the LIN28 (LIN28A or LIN28B) gene expression level of the modified skeletal muscle cells according to the present invention is compared with that of the unmodified skeletal muscle cells At least about 2 times, at least about 3 times, at least about 4 times, at least about 5 times, at least about 6 times, at least about 7 times, at least about 8 times, at least about 9 times, at least about 10 times, at least about 100 times , at least about 150 times, at least about 200 times.
  • the expression levels of one or more rejuvenation signaling ligands, receptors and associated kinase network genes in the skeletal muscle cells of the invention are compared to those in unmodified skeletal muscle cells
  • Expression levels of these rejuvenation signaling ligands, receptors, and associated kinase network genes exhibit at least about 2-fold, at least about 3-fold, at least about 4-fold, at least about 5-fold, at least about 6-fold, at least about 7-fold, at least about 8-fold, at least about 9-fold, at least about 10-fold, at least about 100-fold, at least about 150-fold, at least about 200-fold increase in: Fgf5, Wnt3, Calcr, Epha1, Epor, Galr2, Piezo2, Ripk4, Pak6, Map3k15, Pdzd4, Shc4.
  • the expression level of the LIN28 (LIN28A or LIN28B) gene of the modified skeletal muscle cells described in the present invention is compared with At least about 2-fold, at least about 3-fold, at least about 4-fold, at least about 5-fold, at least about 6-fold, at least about 7-fold, at least about 8-fold, at least about 9-fold, at least about 10-fold larger than unmodified skeletal muscle cells times, at least about 100 times, at least about 150 times, at least about 200 times.
  • skeletal muscle cells of the invention have expression levels of one or more rejuvenating nucleic acid binding factor network genes selected from the group consisting of these rejuvenating nucleic acid binding factors in unmodified skeletal muscle cells
  • the expression level of network genes exhibits at least about 2-fold, at least about 3-fold, at least about 4-fold, at least about 5-fold, at least about 6-fold, at least about 7-fold, at least about 8-fold, at least about 9-fold, at least about 10-fold , at least about 100-fold, at least about 150-fold, at least about 200-fold increase: Foxr2, Hif3a, Pbx1, Zfp946, Batf3, Pabpc4l, Celf4, Lin28.
  • the LIN28 (LIN28A or LIN28B) gene expression level of the modified skeletal muscle cells according to the present invention is compared with that of unmodified skeletal muscle At least about 2 times, at least about 3 times, at least about 4 times, at least about 5 times, at least about 6 times, at least about 7 times, at least about 8 times, at least about 9 times, at least about 10 times, at least about 100 times the number of cells times, at least about 150 times, at least about 200 times.
  • the expression levels of LIN28 (LIN28A or LIN28B) in the skeletal muscle cells of the invention exhibit at least about 2 times, at least about 3 times, at least about 4 times, at least about 5 times, at least about 6 times, at least about 7 times, at least about 8 times, at least about 9 times, at least about 10 times, at least about 100 times, at least about A 150-fold, at least about 200-fold increase.
  • the expression levels of BCL11A, BCL11B, LMO2, OTX2, PBX1, PABPC4L in the skeletal muscle cells of the invention are compared to the expression levels of any one or more of these rejuvenation factors in unmodified skeletal muscle cells
  • Expression levels exhibit at least about 2-fold, at least about 3-fold, at least about 4-fold, at least about 5-fold, at least about 6-fold, at least about 7-fold, at least about 8-fold, at least about 9-fold, at least about 10-fold, at least about A 100-fold, at least about 150-fold, at least about 200-fold increase.
  • transgene which also includes elements that regulate the expression of a gene (such as promoters, drug-regulated promoters, protein-regulated promoters, tissue Specific promoters, inteins, transposons, endonucleases (such as cre-lox system), retrotransposons, etc.) to increase the expression of genes in cells.
  • elements that regulate the expression of a gene such as promoters, drug-regulated promoters, protein-regulated promoters, tissue Specific promoters, inteins, transposons, endonucleases (such as cre-lox system), retrotransposons, etc.
  • genes to cells such as but not limited to using viruses, transposons, nanoparticles, lipid vesicles and so on.
  • Non-transgenic modes of increasing gene expression include the use of CRISPRa to regulate endogenous genes and upregulate the expression of a gene.
  • the expression level of a certain gene in a cell can be measured by methods known in biology, such as but not limited to Western blot, immunofluorescence, fluorescent quantitative PCR, RNA or DNA sequencing, and the like.
  • the expression of any one or more of the following genes in the skeletal muscle cells is increased by transgenic means, and the expression lasts for at least 12 hours: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4.
  • the expression of any one or more of the following rejuvenation transcription factor network genes in the skeletal muscle cells is increased by transgenic means, and the expression lasts for at least 12 hours: Grhl2, Zic5, Zic2, Utf1, Otx2, Snai3 , Lmo2, Hopx.
  • the gene expression level of the skeletal muscle cell LIN28 (LIN28A or LIN28B) is also increased by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of any one or more of the following rejuvenation epigenetic modification network genes in the skeletal muscle cells is increased by transgenic means, and the expression lasts for at least 12 hours: Bcl11a, Bcl11b, Dnmt3b, Mett120, Arid3c.
  • the gene expression level of the skeletal muscle cell LIN28 (LIN28A or LIN28B) is also increased by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of any one or more of the following rejuvenation signaling ligands, receptors, or related kinase network genes in the skeletal muscle cells is increased by transgenic means, and the expression lasts for at least 12 hours: Fgf5, Wnt3, Calcr, Epha1, Epor, Galr2, Piezo2, Ripk4, Pak6, Map3k15, Pdzd4, Shc4.
  • the gene expression level of the skeletal muscle cell LIN28 (LIN28A or LIN28B) is also increased by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of any one or more of the following young nucleic acid binding factor network genes in the skeletal muscle cells is increased by transgenic means, and the expression lasts for at least 12 hours: Foxr2, Hif3a, Pbx1, Zfp946, Batf3, Pabpc4l, Celf4, Lin28.
  • the gene expression level of the skeletal muscle cell LIN28 (LIN28A or LIN28B) is also increased by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of LIN28 (LIN28A or LIN28B) in the skeletal muscle cells of the present invention is increased by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of any one or more of the following rejuvenation factor genes in the skeletal muscle cells is increased by transgenic means, and the expression lasts for at least 12 hours: Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l.
  • the expression of the gene is transient gene expression. In certain embodiments, the gene expression is constitutive gene expression.
  • the skeletal muscle cells are capable of continuous expansion in vitro for at least 4 days, 5 days, 6 days, 8 days, 9 days, 10 days, 20 days, 30 days, 40 days, 50 days, 100 days days, 150 days, 200 days, 300 days, 400 days or even more days.
  • the skeletal muscle cells express at least about 5-fold, 10-fold, 20-fold, 30-fold, or even greater expression of MDM4 and TEP1 than skeletal muscle cells.
  • the cells have a significantly reduced biological age, which can be measured by testing the cells for gene expression or epigenetic modifications (e.g., epigenetic clocks), compared to skeletal muscle cells.
  • Biological age is not the same as actual chronological age, because two animals of the same actual age may also have differences in aging rates, that is, differences in biological age, which will lead to differences in the risk of animals suffering from aging-related diseases.
  • the epigenetic clock has emerged as a powerful biomarker of the aging process in mammals, including humans, mice, dogs and wolves, and humpback whales.
  • the epigenetic clock is a mathematical model that can predict age and biological age using the epigenetic modification status of a small number of genomic sites in the genome after training with large data sets (Horvath and Raj, 2018; Bell et al., 2019). In 2013, Steve Horvath developed the most widely used multi-tissue epigenetic clock in humans (Horvath 2013). Interestingly, the deviation between the biological age predicted by the epigenetic clock and the actual chronological age (also known as epigenetic age acceleration or EAA) is strongly correlated with the time of death and many progeria diseases in humans, including HIV infection, Tang syndrome, obesity, Werner syndrome, and Huntington's disease.
  • EAA epigenetic age acceleration
  • the epigenetic clock can be understood as a representative used to quantify changes in the epigenome with aging (Martin-Herranz et al., 2019), such as using the DNA methylation status of CpG sites to predict human biological age (Horvath clock; Horvath 2013), mouse biological age (Stubbs multi-t.clock; Stubbs et al., 2017), mouse blood biological age (Petkovitch blood clock; Petkovitch et al., 2018), mouse multi-organ biological age (Thompson multi-t.EN clock; Thompson et al., 2018), or use ribosomal nucleic acid rDNA methylation status to predict mouse blood biological age (Wang blood rDNA clock; Wang and Lemos, 2019), or use staining Histone H3 methylation status to predict biological age (Martin-Herranz et al., 2019; Jeffries et al., 2019).
  • the expression profile of the genome is also altered by aging-related epigenetic changes (Martin-Herranz e
  • the present invention provides an isolated cell population comprising the skeletal muscle cells described above or any combination thereof; preferably, at least 50% (e.g. at least 60%, at least 70%, At least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or about 100%) of the cells are skeletal muscle cells as described above.
  • the present invention also provides a pharmaceutical combination, which comprises the above-mentioned skeletal muscle cells or cell populations, and pharmaceutically acceptable carriers and/or excipients.
  • the pharmaceutical combination described in the present invention can be applied to cell therapy, including administering the cells described in the present invention together with pharmaceutically acceptable carriers and/or internal agents to patients.
  • cell therapy is widely used in the medical field, and the cells produced by the present invention can provide high-quality, younger cells for cell therapy, and increase the yield of cells.
  • the present invention provides a method for reversing cellular senescence comprising increasing any one or more of the following genes (for example 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 , 25, 26, 27, 28 or 29) gene expression: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4.
  • genes for example 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 , 25, 26, 27, 28 or 29
  • the present invention provides a method of reversing cellular senescence comprising increasing the expression of any one or more of the following rejuvenation transcription factor network genes: Grhl2, Zic5, Zic2, Utf1, Otx2, Snai3, Lmo2 , Hopx.
  • the method for reversing cellular senescence provided by the present invention increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the rejuvenation transcription factor network described above.
  • the present invention provides a method of reversing cellular senescence comprising increasing the expression of any one or more of the following rejuvenation epigenetic modification network genes: Bcl11a, Bcl11b, Dnmt3b, Mettl20, Arid3c.
  • the method for reversing cellular senescence provided by the present invention increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the aforementioned rejuvenation epigenetic modification network genes.
  • the present invention provides a method of reversing cellular senescence, comprising increasing the expression of any one or more of the following rejuvenation signaling ligands, receptors, and associated kinase network genes: Fgf5, Wnt3, Calcr, Epha1, Epor, Galr2, Piezo2, Ripk4, Pak6, Map3k15, Pdzd4, Shc4.
  • the method for reversing cellular senescence provided by the present invention increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of genes of the above-mentioned rejuvenation signaling ligands, receptors and related kinase networks.
  • the present invention provides a method for reversing cellular senescence, comprising increasing the expression of any one or more of the following rejuvenation nucleic acid binding factor network genes: Foxr2, Hif3a, Pbx1, Zfp946, Batf3, Pabpc4l, Celf4, Lin28.
  • the method for reversing cellular senescence provided by the present invention increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the aforementioned young nucleic acid binding factor network genes.
  • the present invention provides a method of reversing cellular senescence comprising increasing the expression of LIN28 (LIN28A or LIN28B).
  • the present invention provides a method for reversing cellular senescence, which includes increasing the expression of any one or more genes of Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, and Pabpc4l.
  • the method for reversing cellular senescence provided by the present invention increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the above-mentioned genes.
  • the regimen is to increase the expression of the gene by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of the gene is transient gene expression.
  • the gene expression is constitutive gene expression.
  • cellular senescence refers to the loss of normal cellular activities such as proliferation and differentiation, although cells maintain certain vitality and metabolic activity.
  • Cellular senescence can be caused by various stimuli or factors, including telomere shortening due to duplication of DNA ends, DNA damage, altered activity of tumor suppressor and oncogenes, oxidative stress, inflammation, chemotherapeutic agents, and exposure to ultraviolet radiation or ionization Radiation (Kuilman et al., Genes & Development. (2010) 24:2463-2479).
  • reversing cellular senescence or “reversing senescence” refers to restoring a cell's ability to proliferate and/or differentiate.
  • reversal of cellular senescence or “reversal of senescence” refers to allowing cells to restore normal cell activities such as proliferation and/or differentiation, which can also be measured and identified using ⁇ -galactosidase activity reagents.
  • the present invention also provides a method for preparing the above young skeletal muscle cells, which includes increasing any or more of the following genes (for example, 1, 2, 3, 4, 5, 6 1, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 or 29) Gene expression: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2 , Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4; Biological age can be measured by testing cells for gene expression or genetic modifications such as epigenetic clocks.
  • genes for example, 1, 2, 3, 4, 5,
  • the present invention provides a method for producing the above youthful cells, comprising increasing the expression of any one or more of the following youthful transcription factor network genes: Grhl2, Zic5, Zic2, Utf1, Otx2, Snai3, Lmo2 , Hopx.
  • the method for preparing the above youthful cells provided by the present invention increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the youthful transcription factor network genes described above.
  • the present invention provides a method for preparing the above youthful cells, which includes increasing the expression of any one or more of the following youthful epigenetic modification network genes: Bcl11a, Bcl11b, Dnmt3b, Mettl20, Arid3c.
  • the method for preparing the above youthful cells increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the above youthful epigenetic modification network genes.
  • the present invention provides methods for producing the above rejuvenated cells, which include increasing the gene expression of any one or more of the following rejuvenated signaling ligands, receptors and related kinase networks: Fgf5, Wnt3, Calcr, Epha1, Epor, Galr2, Piezo2, Ripk4, Pak6, Map3k15, Pdzd4, Shc4.
  • the method for preparing the above youthful cells in addition to increasing the expression of the youthful signaling ligands, receptors and related kinase network genes described above, simultaneously increases the expression of LIN28 (LIN28A or LIN28B) Express.
  • the present invention provides a method for preparing the above youthful cells, which includes increasing the expression of any one or more of the following youthful nucleic acid binding factor network genes: Foxr2, Hif3a, Pbx1, Zfp946, Batf3, Pabpc4l, Celf4, Lin28.
  • the method for preparing the above youthful cells increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the youthful nucleic acid binding factor network genes described above.
  • the present invention provides a method of making the above youthful cells, comprising increasing the expression of LIN28 (LIN28A or LIN28B).
  • the present invention provides a method for preparing the above young cells, which includes increasing the expression of any one or more genes of Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l.
  • the method for preparing the above young cells provided by the present invention increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the above-mentioned genes.
  • the regimen is to increase the expression of the gene by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of the gene is transient gene expression.
  • the gene expression is constitutive gene expression.
  • the term "rejuvenating” refers to a cell or species that has decreased biological age or has biological characteristics of young cells such as greater self-renewal, regeneration, growth, closer embryonic Gene expression or epigenetic modification profiles or better biological function.
  • the biological age of the cells described above can be measured by testing the cells for gene expression or genetic modifications such as epigenetic clocks.
  • the method is capable of reversing cellular exhaustion in skeletal muscle cells, comprising increasing any one or more of the following genes (e.g., 1, 2, 3, 4, 5, 6, 7 1, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40 ) gene expression: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat , Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4.
  • genes e.g., 1, 2, 3, 4,
  • the method reverses cellular depletion in skeletal muscle cells comprising increasing expression of any one or more of the following rejuvenation transcription factor network genes: Grhl2, Zic5, Zic2, Utf1, Otx2, Snai3, Lmo2 , Hopx.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the rejuvenation transcription factor network genes described above.
  • the method reverses cellular depletion in skeletal muscle cells, comprising increasing expression of any one or more of the following rejuvenation epigenetic modification network genes: Bcl11a, Bcl11b, Dnmt3b, Mett120, Arid3c.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the rejuvenation epigenetic modification network genes described above.
  • the method is capable of reversing cellular exhaustion in skeletal muscle cells, comprising increasing the expression of any one or more of the following genes of rejuvenation signaling ligands, receptors, and associated kinase networks: Fgf5, Wnt3, Calcr , Epha1, Epor, Galr2, Piezo2, Ripk4, Pak6, Map3k15, Pdzd4, Shc4.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of genes of the above-mentioned rejuvenation signaling ligands, receptors, and related kinase networks.
  • the method is capable of reversing cell exhaustion in skeletal muscle cells, comprising increasing the expression of any one or more of the following rejuvenation nucleic acid binding factor network genes: Foxr2, Hif3a, Pbx1, Zfp946, Batf3, Pabpc4l, Celf4, Lin28.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of the youthful nucleic acid binding factor network genes described above.
  • the method reverses cellular depletion in skeletal muscle cells comprising increasing expression of LIN28 (LIN28A or LIN28B).
  • the method is capable of reversing cell depletion in skeletal muscle cells, comprising increasing the expression of any one or more of Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the genes described above.
  • the regimen is to increase the expression of the gene by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of the gene is transient gene expression.
  • the gene expression is constitutive gene expression.
  • cell depletion refers to the loss of some functions of cells during long-term activation, which can generally be identified by cell function tests, such as the differentiation efficiency of skeletal muscle stem cells, the ability to repair damage, and the degree of muscle fiber hypertrophy wait.
  • reversal of cellular exhaustion refers to restoration of cell function, as can also be identified using functional assays.
  • the method is capable of reversing anergy in skeletal muscle cells, comprising increasing any one or more of the following genes (e.g., 1, 2, 3, 4, 5, 6, 7 1, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40 ) gene expression: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat , Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4.
  • genes e.g., 1, 2, 3, 4, 5,
  • the method reverses anergy in skeletal muscle cells, comprising increasing expression of any one or more of the following rejuvenation transcription factor network genes: Grhl2, Zic5, Zic2, Utf1, Otx2, Snai3, Lmo2 , Hopx.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the rejuvenation transcription factor network genes described above.
  • the method reverses anergy in skeletal muscle cells, comprising increasing expression of any one or more of the following rejuvenation epigenetic modification network genes: Bcl11a, Bcl11b, Dnmt3b, Mettl20, Arid3c.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the rejuvenation epigenetic modification network genes described above.
  • the method is capable of reversing anergy in skeletal muscle cells, comprising increasing the expression of any one or more of the following genes for rejuvenation signaling ligands, receptors, and associated kinase networks: Fgf5, Wnt3, Calcr , Epha1, Epor, Galr2, Piezo2, Ripk4, Pak6, Map3k15, Pdzd4, Shc4.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of genes of the above-mentioned rejuvenation signaling ligands, receptors, and related kinase networks.
  • the method is capable of reversing anergy in skeletal muscle cells, comprising increasing the expression of any one or more of the following rejuvenation nucleic acid binding factor network genes: Foxr2, Hif3a, Pbx1, Zfp946, Batf3, Pabpc4l, Celf4, Lin28.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of the youthful nucleic acid binding factor network genes described above.
  • the methods reverse anergy in skeletal muscle cells comprising increasing expression of LIN28 (LIN28A or LIN28B).
  • the method is capable of reversing anergy in skeletal muscle cells, comprising increasing the expression of any one or more of Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the genes described above.
  • the regimen is to increase the expression of the gene by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of the gene is transient gene expression.
  • the gene expression is constitutive gene expression.
  • the term "anergy” refers to the inability of cells to respond to external signals.
  • the anergy of muscle stem cells means that they lose response to FGF2 and fail to proliferate, which can generally be tested by cell proliferation experiments.
  • reversal of anergy refers to allowing cells to restore their proper response and function to external signals, including proliferation.
  • the method is capable of extending the lifespan of skeletal muscle cells comprising increasing any one or more of the following genes (e.g., 1, 2, 3, 4, 5, 6, 7 , 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 , 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40) Gene expression: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4.
  • genes e.g., 1, 2, 3, 4, 5, 6, 7 ,
  • the method prolongs the lifespan of skeletal muscle cells, comprising increasing expression of any one or more of the following regeneration transcription factor rejuvenation transcription factor network subgenes: Grhl2, Zic5, Zic2, Utf1, Otx2, Snai3, Lmo2, Hopx.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the rejuvenation transcription factor network genes described above.
  • the method prolongs the lifespan of skeletal muscle cells comprising increasing the expression of any one or more of the following rejuvenation epigenetic modification network genes: Bcl11a, Bcl11b, Dnmt3b, Mett120, Arid3c.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the rejuvenation epigenetic modification network genes described above.
  • the method prolongs the lifespan of skeletal muscle cells, comprising increasing the expression of any one or more of the following genes of rejuvenation signaling ligands, receptors, and associated kinase networks: Fgf5, Wnt3, Calcr, Epha1, Epor, Galr2, Piezo2, Ripk4, Pak6, Map3k15, Pdzd4, Shc4.
  • the method simultaneously increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of genes of the above-described rejuvenation signaling ligands, receptors, and associated kinase networks.
  • the method prolongs the lifespan of skeletal muscle cells, comprising increasing the expression of any one or more of the following rejuvenation nucleic acid binding factor network genes: Foxr2, Hif3a, Pbx1, Zfp946, Batf3, Pabpc4l, Celf4 , Lin28.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of the youthful nucleic acid binding factor network genes described above.
  • the methods extend the lifespan of skeletal muscle cells comprising increasing the expression of LIN28 (LIN28A or LIN28B). In certain embodiments, the method prolongs the lifespan of skeletal muscle cells, comprising increasing the expression of any one or more of the following genes: Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l. In certain embodiments, the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the genes described above. In certain embodiments, the regimen is to increase the expression of the gene by transgenic means, and the expression lasts for at least 12 hours. In certain embodiments, the expression of the gene is transient gene expression. In certain embodiments, the gene expression is constitutive gene expression.
  • the lifespan of a cell can be measured by the length of time the cell survives, and whether the cell survives can be identified by staining (such as propidium iodide), and those skilled in the art can also observe the cell morphology under a microscope to identify.
  • staining such as propidium iodide
  • the method enables sustained expansion of cells in vitro for at least 4 days, 5 days, 6 days, 8 days, 9 days, 10 days, 20 days, 30 days, 40 days, 50 days, 100 days , 150 days, 200 days, 300 days, 400 days or even more days, including increasing any one or more of the following genes (for example, 1, 2, 3, 4, 5, 6, 7 , 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 , 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40) Gene expression: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1,
  • the method enables sustained expansion of cells in vitro for at least 4 days, 5 days, 6 days, 8 days, 9 days, 10 days, 20 days, 30 days, 40 days, 50 days, 100 days , 150 days, 200 days, 300 days, 400 days or even more days, including increasing the expression of any one or more of the following rejuvenation transcription factor network genes: Grhl2, Zic5, Zic2, Utf1, Otx2, Snai3, Lmo2, Hopx.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the rejuvenation transcription factor network genes described above.
  • the method enables sustained expansion of cells in vitro for at least 4 days, 5 days, 6 days, 8 days, 9 days, 10 days, 20 days, 30 days, 40 days, 50 days, 100 days , 150 days, 200 days, 300 days, 400 days or even more days, including increasing the expression of any one or more of the following rejuvenation epigenetic modification network genes: Bcl11a, Bcl11b, Dnmt3b, Mettl20, Arid3c.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the rejuvenation epigenetic modification network genes described above.
  • the method enables sustained expansion of cells in vitro for at least 4 days, 5 days, 6 days, 8 days, 9 days, 10 days, 20 days, 30 days, 40 days, 50 days, 100 days , 150 days, 200 days, 300 days, 400 days or even more days, including increasing the expression of any one or more of the following genes of the rejuvenation signaling ligands, receptors and related kinase networks: Fgf5, Wnt3, Calcr, Epha1, Epor, Galr2, Piezo2, Ripk4, Pak6, Map3k15, Pdzd4, Shc4.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of genes of the above-mentioned rejuvenation signaling ligands, receptors, and related kinase networks.
  • the method enables sustained expansion of cells in vitro for at least 4 days, 5 days, 6 days, 8 days, 9 days, 10 days, 20 days, 30 days, 40 days, 50 days, 100 days , 150 days, 200 days, 300 days, 400 days or even more days, including increasing the expression of any one or more of the following rejuvenation nucleic acid binding factor network genes: Foxr2, Hif3a, Pbx1, Zfp946, Batf3, Pabpc4l, Celf4 , Lin28.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of the youthful nucleic acid binding factor network genes described above.
  • the method is capable of extending skeletal muscle cells and the method is capable of sustained expansion of cells in vitro for at least 4 days, 5 days, 6 days, 8 days, 9 days, 10 days, 20 days, 30 days , 40 days, 50 days, 100 days, 150 days, 200 days, 300 days, 400 days or even more days, including increasing the expression of LIN28 (LIN28A or LIN28B).
  • the method enables sustained expansion of cells in vitro for at least 4 days, 5 days, 6 days, 8 days, 9 days, 10 days, 20 days, 30 days, 40 days, 50 days, 100 days , 150 days, 200 days, 300 days, 400 days or even more days, including increasing the expression of any one or more of the following rejuvenation factor genes: Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the genes described above.
  • the regimen is to increase the expression of the gene by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of the gene is transient gene expression.
  • the gene expression is constitutive gene expression.
  • the method enables stable passage of skeletal muscle cells at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times or more, including increasing any of the following A gene or multiple (e.g.
  • the method enables stable passage of skeletal muscle cells at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times or more, including increasing any of the following Expression of one or more rejuvenation transcription factor network genes: Grhl2, Zic5, Zic2, Utf1, Otx2, Snai3, Lmo2, Hopx.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the rejuvenation transcription factor network genes described above.
  • the method enables stable passage of skeletal muscle cells at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times or more, including increasing any of the following Expression of one or more rejuvenation epigenetic modification network genes: Bcl11a, Bcl11b, Dnmt3b, Mettl20, Arid3c.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the rejuvenation epigenetic modification network genes described above.
  • the method enables stable passage of skeletal muscle cells at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times or more, including increasing any of the following Expression of one or more genes of the rejuvenation signaling ligands, receptors and associated kinase networks: Fgf5, Wnt3, Calcr, Epha1, Epor, Galr2, Piezo2, Ripk4, Pak6, Map3k15, Pdzd4, Shc4.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of genes of the above-mentioned rejuvenation signaling ligands, receptors, and related kinase networks.
  • the method enables stable passage of skeletal muscle cells at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times or more, including increasing any of the following Expression of one or more rejuvenation nucleic acid binding factor network genes: Foxr2, Hif3a, Pbx1, Zfp946, Batf3, Pabpc4l, Celf4, Lin28.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of the youthful nucleic acid binding factor network genes described above.
  • the method enables stable passage of skeletal muscle cells at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times or more, including increasing any of the following Expression of one or more rejuvenation factor genes: Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of the rejuvenation factor genes described above.
  • the method enables stable passage of skeletal muscle cells at least 5 times, such as at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 30 times or more, including increasing LIN28( Expression of LIN28A or LIN28B).
  • the regimen is to increase the expression of the gene by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of the gene is transient gene expression.
  • the gene expression is constitutive gene expression.
  • the method is capable of rejuvenating aged skeletal muscle cells comprising increasing any one or more of the following genes (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 , 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 each) gene expression: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4.
  • genes e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
  • the method rejuvenates aged skeletal muscle cells comprising increasing expression of any one or more of the following rejuvenation transcription factor network genes: Grhl2, Zic5, Zic2, Utf1, Otx2, Snai3, Lmo2, Hopx.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the rejuvenation transcription factor network genes described above.
  • the method is capable of rejuvenating aged skeletal muscle cells comprising increasing expression of any one or more of the following rejuvenation epigenetic modification network genes: Bcl11a, Bcl11b, Dnmt3b, Mettl20, Arid3c .
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to increasing the expression of the rejuvenation epigenetic modification network genes described above.
  • the method is capable of rejuvenating aged skeletal muscle cells comprising increasing the expression of any one or more of the following genes of rejuvenation signaling ligands, receptors and associated kinase networks: Fgf5, Wnt3 , Calcr, Epha1, Epor, Galr2, Piezo2, Ripk4, Pak6, Map3k15, Pdzd4, Shc4.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of genes of the above-mentioned rejuvenation signaling ligands, receptors, and related kinase networks.
  • the method is capable of rejuvenating aged skeletal muscle cells comprising increasing expression of any one or more of the following rejuvenation nucleic acid binding factor network genes: Foxr2, Hif3a, Pbx1, Zfp946, Batf3, Pabpc4l , Celf4, Lin28.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of the youthful nucleic acid binding factor network genes described above.
  • the methods are capable of rejuvenating aged skeletal muscle cells comprising increasing expression of LIN28 (LIN28A or LIN28B).
  • the method rejuvenates aged skeletal muscle cells comprising increasing expression of any one or more of the following rejuvenation factor genes: Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l.
  • the method increases the expression of LIN28 (LIN28A or LIN28B) in addition to the expression of the rejuvenation factor genes described above.
  • the regimen is to increase the expression of the gene by transgenic means, and the expression lasts for at least 12 hours.
  • the expression of the gene is transient gene expression.
  • the gene expression is constitutive gene expression.
  • the expression of any one or more of the following genes in the skeletal muscle cells is increased by transgenic means, and the expression lasts for at least 12 hours: LIN28 (LIN28A or LIN28B), Bcl11b, Arid3c, Otx2, Lmo2, Pabpc4l , Mettl20, Pbx1.
  • the method is to increase the expression of one or more of the following genes in the cell through a promoter responsive to inflammation or injury: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2 , Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2 , Shc4.
  • the method includes transgenic means to increase the expression of one or more of the following genes in the cell: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4.
  • the cells are treated (eg, genetically engineered) so that the skeletal muscle cells express higher levels of regenerative factors than they would in the absence of such treatment.
  • the cells are treated so that the skeletal muscle cells overexpress one or more of the following genes: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5 , Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4.
  • One method of cell treatment is to infect the cell with a virus (e.g., retrovirus, lentivirus, adenovirus, adeno-associated virus) or to transfect the cell with a viral vector (e.g., retrovirus, lentivirus, adenovirus) comprising operably linked Factor sequences into appropriate expression control elements to drive expression in cells following infection or transfection, and optionally integrated into the genome as known in the art.
  • the method of treating cells also includes using a transposon or a transposon to deliver the above-mentioned genes and the promoters that control the expression level of the genes.
  • the protocol for treating cells may utilize electroporation to deliver elements (promoters, inteins, endonucleases) comprising transposons or retrotransposons, elements that control protein expression (promoters, inteins, endonucleases) (e.g.
  • cre-lox system cre-lox system
  • Bcl11a Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c
  • Bcl11b Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx
  • the transgenic method utilized by the method comprises the use of any vector known in medicine such as but not limited to viral vectors, transposons, nanoparticles, retrotransposons, endonucleases).
  • the present invention also provides a kit or a combination of reagents, which can be used to generate the above-mentioned young skeletal muscle cells, including:
  • Nucleic acid eg, deoxyribonucleic acid, ribonucleic acid
  • Nucleic acid encoding any one or more of the following proteins: Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a , Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4
  • Medically acceptable carriers such as viral vectors, nanoparticles, lipid vesicles, transposons, retrotransposons, exosomes, etc.
  • the kit or combination of reagents also includes elements for regulating the expression of the above-mentioned genes or proteins, such as but not limited to promoters, drug-regulated promoters, protein-regulated promoters, tissue-specific promoters , inteins, transposons, endonucleases (eg cre-lox system), retrotransposons.
  • elements for regulating the expression of the above-mentioned genes or proteins such as but not limited to promoters, drug-regulated promoters, protein-regulated promoters, tissue-specific promoters , inteins, transposons, endonucleases (eg cre-lox system), retrotransposons.
  • the kit or combination of reagents, the contained vectors, etc. also contain any of the above-mentioned elements that regulate the expression of the above-mentioned genes or proteins, and the components encoding Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Nucleic acid of one or more proteins of Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4.
  • the agent or combination of agents is infection of a cell with a virus (e.g., retrovirus, lentivirus, adenovirus, adeno-associated virus) or infection of a cell with a viral vector (e.g., retrovirus, lentivirus, adenovirus)
  • a virus e.g., retrovirus, lentivirus, adeno-associated virus
  • a viral vector e.g., retrovirus, lentivirus, adenovirus
  • Transfected cells contain factor sequences operably linked to appropriate expression control elements to drive expression in the cell following infection or transfection, and optionally integrate into the genome as known in the art.
  • the reagent or combination of reagents comprises the use of transposons or retrotransposons to deliver the genes described above and a promoter that controls the expression level of the genes.
  • the reagent or combination of reagents is used to deliver elements (promoters, inteins, endonucleases) comprising transposons or retrotransposons, elements that control protein expression (promoters, inteins, endonucleases) enzyme (e.g.
  • cre-lox system cre-lox system
  • Bcl11a Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c
  • Bcl11b Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3, Zfp946, Mettl20, Hopx , Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4 one or more protein nucleic acid sequence carrier. Further details regarding the compositions and methods of the invention are provided below.
  • skeletal muscle cell refers to a cell with a defined fate that cannot differentiate into a variety of different cells, such as adult cells, germ cells, adult stem cells, etc., and is not an embryonic stem cell, induced pluripotent stem cell
  • biological age refers to determining how old or young a species is through its health indicators and aging indicators.
  • epigenetic clock or “epigenetic clock” refers to epigenetics as a biological indicator to measure the biological age of a species.
  • self-renewal ability refers to the ability of cells to self-maintain their cell properties over multiple passages without significant changes in their properties such as cell fate.
  • the number of passages is at least about 5, at least about 10, at least about 20, at least about 30, at least about 50, or at least about 100.
  • expand or “proliferate” refers to maintaining cells substantially without differentiation and ultimately cell growth, ie, increasing (eg, at least 2-fold) a population of cells without concomitant increased differentiation.
  • the term "precursor cell” or “group cell” refers to a cell that has a specific fate and can only differentiate into a specific adult cell or a certain germ layer.
  • in vitro refers to an artificial environment, and processes and reactions therein. In vitro environments are exemplified by, but not limited to, test tubes and cell cultures.
  • in vivo refers to the natural environment (ie, an animal or a cell) and the processes and reactions within it.
  • basic medium refers to any medium capable of supporting cell growth, generally comprising inorganic salts, vitamins, glucose, buffer systems and essential amino acids, and generally having an osmotic pressure of about 280-330 mOsmol.
  • serum substitute has a meaning known to those skilled in the art, which refers to a combination of serum used as a substitute for serum during the culture of stem cells while maintaining an undifferentiated state. substances or formulations. That is, serum replacement is capable of supporting the growth of undifferentiated stem cells without supplementation of serum.
  • the serum replacement comprises: one or more amino acids, one or more vitamins, one or more trace metal elements.
  • the serum replacement may further comprise one or more components selected from the group consisting of albumin, reduced glutathione, transferrin, insulin, and the like.
  • Non-limiting examples of serum substitutes include, but are not limited to, KnockOut TM SR (abbreviated as KSR), N-2, B-27, Physiologix TM XF SR, StemSure TM Serum Substitute Supplement, and the like.
  • the term "pharmaceutically acceptable carrier or excipient” refers to a carrier and/or excipient that is pharmacologically and/or physiologically compatible with the subject and the active ingredient, which are well known in the art (see, for example, Remington's Pharmaceutical Sciences. Edited by Gennaro AR, 19th ed. Pennsylvania: Mack Publishing Company, 1995), and include, but are not limited to: pH adjusters, surfactants, ionic strength enhancers, Agents for maintaining osmotic pressure, agents for delaying absorption, diluents, adjuvants, preservatives, etc.
  • pH adjusting agents include, but are not limited to, phosphate buffers.
  • Surfactants include but are not limited to cationic, anionic or nonionic surfactants such as Tween-80.
  • Ionic strength enhancers include, but are not limited to, sodium chloride.
  • Agents to maintain osmotic pressure include, but are not limited to, sugars, NaCl, and the like.
  • Agents that delay absorption include, but are not limited to, monostearates and gelatin.
  • Diluents include, but are not limited to, water, aqueous buffers (eg, buffered saline), alcohols and polyols (eg, glycerol), and the like.
  • Adjuvants include, but are not limited to, aluminum adjuvants (such as aluminum hydroxide), Freund's adjuvant (such as complete Freund's adjuvant), and the like.
  • Preservatives include, but are not limited to, various antibacterial and antifungal agents, such as thimerosal, 2-phenoxyethanol, parabens, chlorobutanol, phenol, sorbic acid, and the like.
  • the pharmaceutically acceptable carrier or excipient is a sterile isotonic aqueous or non-aqueous solution (eg, balanced salt solution or physiological saline), dispersion, suspension or emulsion.
  • "pharmaceutically acceptable carrier” also includes means for delivering nucleic acids such as but not limited to viral vectors, nanoparticles, lipid vesicles, exosomes, and the like.
  • the term "about” refers to a value or composition within an acceptable error range for a particular value or composition as determined by one of ordinary skill in the art, which will depend in part on how the value or composition is measured or determined, That is, the limitation of the measurement system. For example, when “about” is used to describe a measurable value (eg, concentration of a substance, mass ratio, etc.), it means including a range of ⁇ 10%, ⁇ 5%, or ⁇ 1% of the given value.
  • Figure 1 shows that Lin28a+ satellite cells engage all types of myofibers during regeneration.
  • Figure 1(A) shows a schematic diagram of tamoxifen treatment. Tamoxifen was injected 6 days before cryoinjury, injected once a day in the first week, injected every other day on the 7th day after injury, and collected on the 14th day after injury (B) For Lin28a-T2A-CreER; LSL-tdTO small The tibialis anterior muscle and soleus muscle of rats were hypothermically injured, and samples were collected on the 14th day after injury. The control was the contralateral tibialis anterior or soleus. Scale bar: 200 ⁇ m.
  • D The tibialis anterior muscle of Lin28a-T2A-CreER; LSL-tdTO mice was injured by low temperature, and the muscle slices were collected 14 days after injury. Muscle sections were co-stained for laminin (grey), DAPI (blue) and Pax7 (green) or Pax3 (green).
  • G Immunofluorescent staining of muscle cross-sections of the soleus muscle and tibialis anterior muscle of Lin28a-T2A-CreER; LSL-tdTO mice at 14 days after injury, muscle fibers type I (red), type IIA (green), type IIX (blue) ) and type IIB (black) myofibers compared with tdTO+ fluorescence (arrows).
  • Scale bar 100 ⁇ m.
  • Lin28a+ cells are muscle satellite cells that exhibit strong myogenic potential in vitro.
  • FIG. 2A Flow cytometry analysis of Lin28a-tdTO+ cells in muscle of injured or uninjured Lin28a-T2A-CreER; LSL-tdTO mice.
  • the control group was uninjured Lin28a-T2A-CreER; LSL-tdTO mice. All mice were injected with tamoxifen and collected 14 days after injury.
  • FIG. 1 Flow cytometry analysis of tdTO+ cells.
  • Cells were first labeled with antibodies that bind CD31 (APC), CD45 (BV421), VCAM1 (PE), Sca1 (FITC) fluorescent dyes.
  • Lin28a-tdTO+ cells were mainly VCAM1+CD31+Sca1+CD45- cells.
  • Lin28a+ cells started confluent, differentiated and formed multinucleated myotubes on day 1-2 in differentiation medium. Scale bar: 100 ⁇ m.
  • G Myosin heavy chain (MHC) (green) and Hoechst (blue) staining shows that most Lin28a-tdTO+ cells express MHC after differentiation into myotubes. Scale bar: 50 ⁇ m.
  • FIG. 1 Lin28a promotes MuSCs self-renewal.
  • Figure 4 (A-B) Cell proliferation rates of con MuSCs (A) and Lin28a-tdTO+ MuSCs (B) after infection with retroviruses expressing empty vector (CTRL) or Lin28a at P20 (con) or P10 (Lin28a+). (P represents the number of passages).
  • C-D Quantitative RT-PCR detection of myogenic differentiation markers in con MuSCs overexpressing Lin28a (C) or Lin28a-tdTO+MuSCs (D) relative to con MuSCs or Lin28a-tdTO+MuSCs with empty vector (CTRL). Data are mean ⁇ SEM, 3 independent experiments.
  • Panel (E) shows the photos of Pax7-CreERT2(PC) and Pax7-CreER; NFKB-LSL-Lin28a(PM) mice 7 days after injury, muscle inflammation subsided and muscle regeneration of tibialis anterior muscle. Scale bar: 5 mm.
  • F Hematoxylin and eosin staining of tibialis anterior muscle sections from PC and PM mice on days 7 and 14 after frostbite. Scale bar: 300 ⁇ m.
  • FIG. 1 Generation of Lin28a-T2A-CreERT2 mice and evaluation of lineage tracing.
  • A Targeting strategy to generate Lin28a-T2A-CreERT2 mice. The CreERT2 fragment was inserted between the last exon of Lin28a and the 3'UTR.
  • B Lin28a-T2A-CreERT2 mouse genotype results.
  • C Lin28a-T2A-CreER;LSL-tdTO mouse testes showed 14-day lineage tracing of PLZF+ spermatogonial stem cells (SSCs) subpopulation as tdTO+. Scale bar: 50 ⁇ m.
  • SSCs spermatogonial stem cells
  • FIG. 7A Western blot analysis of Lin28a protein in testis of wild-type (WT), LSL-tdTO, Lin28a-T2A-CreERT2, Lin28a-T2A-CreERT; LSL-tdTO mice. Lin28a-T2A-CreERT2 mice exhibit low bands of endogenous Lin28a and high bands of Lin28a-T2A. The intensities of both bands were quantified using the Lin28a/GAPDH ratio. GAPDH protein was used as loading control.
  • A Phase-contrast and fluorescence microscopy evaluation of in vitro differentiated Lin28a+ cells under adipogenic, endothelial or osteogenic conditions.
  • Alkaline phosphatase (ALP) staining revealed that tdTO+ cells still expressed MyoD after 10 days of differentiation under osteogenic conditions. Yellow arrows indicate some tdTO+ cells lightly stained by ALP and co-stained by MyoD. Scale bar: 100 ⁇ m.
  • A Western blot analysis of Lin28a protein in mouse C2C12 myoblasts, conventional (con) MuSCs and Lin28a+ cells in myogenic growth medium (GM) and differentiation medium (DM).
  • LTS is a positive control cell line overexpressing Lin28a. Once the cells were cultured in the medium, either growth or differentiation medium, Lin28a expression disappeared undetectably, and GAPDH protein was used as a loading control.
  • FIG. 3A Whole genome bisulfite sequencing (WGBS) analysis of Lin28a+MuSCs from embryonic and adult Pax7+MuSCs (with 3 independent experiments).
  • E GO and KEGG analysis of cluster 2 in Fig. 3A.
  • F GO and KEGG analysis of cluster 3 in Fig. 3A.
  • G GO and KEGG analysis of cluster 5 in Fig. 3A.
  • H Quantitative RT-PCR analysis of the expression of let-7 target proteins (Hmga2, Igfbp2), Igf2 and let-7 pathway-related genes (Zcchc6, Zcchc11, Dis3l2) in freshly screened con MuSCs and Lin28a+MuSCs in GM.
  • Figure 8 Lin28a+ cells in E12.5 embryonic limbs.
  • Lin28a-T2A-CreER LSL-tdTO embryos were treated with tamoxifen (TMX) at E11.5 and collected at E12.5.
  • White arrows indicate Lin28a+ limb progenitors of embryonic limbs, and yellow arrows indicate Lin28a+ muscle fibers of embryonic limbs.
  • Scale bar 500 ⁇ m.
  • Figure 9 shows the classification table of rejuvenation genes, including rejuvenation transcription factor network genes, rejuvenation epigenetic modification network genes, rejuvenation signaling ligands, receptors and related kinase network genes, rejuvenation nucleic acid binding factor network genes , its expression can make non-pluripotent cells rejuvenate, reverse aging, reverse non-pluripotent cell exhaustion, reverse non-pluripotent cell anergy, prolong the life of non-pluripotent cells, and increase the passage of non-pluripotent cells frequency.
  • rejuvenation transcription factor network genes including rejuvenation transcription factor network genes, rejuvenation epigenetic modification network genes, rejuvenation signaling ligands, receptors and related kinase network genes, rejuvenation nucleic acid binding factor network genes , its expression can make non-pluripotent cells rejuvenate, reverse aging, reverse non-pluripotent cell exhaustion, reverse non-pluripotent cell anergy, prolong the life of non-pluripotent cells, and
  • Figure 10 shows the degree of activation of Lin28a-tdTomato+ positive muscle cells by Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l virus compared with empty vector virus 48 hours after infection.
  • Figure 11 shows the degree of activation of Lin28a-tdTomato+ positive muscle cells by Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l virus compared with empty vector virus after 72 hours of infection.
  • Figure 12 shows the final SA of aging mouse muscle cells (MuSCs-6G) transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) and empty vector control - Proportion of Bgal+ senescent cells.
  • FIG. 13 shows that aging mouse muscle cells (MuSCs-6G) transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) and empty vector control aging mouse muscle cells (MuSCs) stimulated by FGF2 Proliferation rate and cell lifespan after 3 days. Aging mouse muscle cells (MuSCs) are apparently incompetent, reaching the end of life, unable to proliferate, and unable to be passaged.
  • 6 genes Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l
  • MeSCs-6G Aged mouse muscle cells (MuSCs-6G) transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) restored FGF2 sensing ability and proliferation ability, and could be passaged >10 times.
  • Figure 14A shows the percentage of aging human muscle cells (6 viruses) transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) and empty vector controls (control) after FGF2 stimulation Senescent cell area.
  • Figure 14B shows the percentage of aging human muscle cells (6 viruses) transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) and empty vector controls (control) after FGF2 stimulation number of senescent cells. Six genes significantly reversed the proportion of senescent cells.
  • Figure 15 shows that the aging mouse muscle cells (6 viruses) and the aging mouse muscle cells (empty control) of empty vector control that have been transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) are significantly Six genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) were overexpressed. ***P ⁇ 0.001
  • Figure 16 shows that the aging human muscle cells (6 viruses) and the aging human muscle cells (empty control) of the empty vector control that have been transfected with 6 genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) are all significantly overexpressed Six genes (Bcl11a, Bcl11b, Lmo2, Otx2, Pbx1, Pabpc4l) were identified. ***P ⁇ 0.001
  • the molecular biology experiment methods and immunoassay methods used in the present invention are basically with reference to J.Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, 1989, and F.M.Ausubel et al., Compiled Molecular Biology Experimental Guide, 3rd Edition, John Wiley & Sons, Inc., 1995 by the method described; restriction endonucleases were used in accordance with the conditions recommended by the product manufacturer.
  • restriction endonucleases were used in accordance with the conditions recommended by the product manufacturer.
  • Lin28a a candidate tissue rejuvenation factor
  • Somatic cell reprogramming and embryogenesis but its function in skeletal muscle is unknown.
  • lineage tracing we identified a rare population of Lin28a-expressing muscle satellite cells that respond to acute injury by partially expressing Pax3 or Pax7 during proliferation and contribute to all types of myofibers during muscle regeneration.
  • MuSCs muscle stem cells
  • Lin28a+MuSCs expressed more Pax3 and showed enhanced myogenic ability in vitro.
  • Lin28a+ MuSCs are positioned between adult Pax7+ MuSCs and embryonic Pax7+ myoblasts based on DNA methylation profiles.
  • MuSCs overexpressing Lin28a+ upregulated several fetal limb bud mesoderm transcription factors and could maintain a stable dedifferentiated youthful state in vitro and in vivo, enhancing stem cell self-renewal and stress response.
  • Skeletal muscle has a strong regenerative capacity.
  • Skeletal muscle satellite cells (MuSCs), a population of resident stem cells embedded between the muscle fiber membrane and basement membrane, are capable of self-renewal and are required for skeletal muscle regeneration 12.
  • MuSCs are activated and begin to proliferate as fate Determined myogenic progenitor cells13 . These activated myogenic cells fuse with existing myofibers or form myofibers de novo for muscle repair and regeneration14 .
  • Lin28a15 Although only observed in mammalian normal adult tissues during muscle regeneration In the upregulation of Lin28a15 , it is unclear what cell types express Lin28a and whether Lin28a plays a role in maintaining MuSC self-renewal. This is partly because Lin28a has not been studied rigorously for lineage tracing.
  • Lin28a+ satellite cells can generate all types of myofibers during regeneration
  • Pax7 is generally regarded as a definitive marker of adult muscle stem cells (MuSCs), but it has also been reported that some MuSCs do not express Pax7 but instead express Pax320-22. We therefore sought to determine whether Lin28a-tdTO+ monocytes expressed Pax3 or Pax7. Immunofluorescence results showed that all Lin28a-tdTO+ monocytes were located between the basement membrane and sarcolemma, similar to the location of Pax7+ muscle satellite cells, but only a small fraction co-expressed Pax7 or Pax3 (Fig. 1D). Overall, Lin28a-tdTO+ cells accounted for only ⁇ 30% of the Pax7+ or Pax3+ MuSC pool (Fig.
  • Skeletal muscle fibers exhibit a degree of metabolic and functional diversity as they terminally differentiate, with each muscle group containing different types of myofibers, such as type I, IIa, IIx, and IIb myofibers.
  • myofibers such as type I, IIa, IIx, and IIb myofibers.
  • These muscle fibers can be broadly classified as slow-twitch (I) and fast-twitch (IIa, IIx, IIb), or oxidative (I, IIa) and glycolytic (IIx, IIb)23.
  • Lin28a+ cells are MuSCs and exhibit enhanced myogenic potential in vitro
  • Lin28a-tdTO+ cells accounted for only a small fraction (0.73%) of the total VCAM1+ cells.
  • traditional MuSCs are only CD31- and Sca1-, while about 60% of Lin28a+ cells are CD31 positive, about 70% are Sca1 positive, and the rest are CD31/CD45 like traditional Pax7+ MuSCs -Sca1-, ( Figure 2D).
  • Lin28a+ cells were differentiated into different cell lineages such as skeletal muscle, vascular endothelial cells, adipocytes or osteoblasts in various differentiation media.
  • the results showed that after differentiation of Lin28a+ cells in adipogenic medium, osteogenic medium and endothelial medium, most of the cells underwent senescence or apoptosis and could not differentiate further, although a small fraction ( ⁇ 20%) did differentiate into alkaline phosphatase-positive osteoblasts (Fig. 6B-E). However, all cells retained MyoD expression, suggesting that they maintain myogenic differentiation potential even under conditions that induce differentiation of other lineages (Fig. 6B-E).
  • Lin28a+ cells In order to further compare the muscle differentiation potential of Lin28a+ cells with VCAM1+CD31-Sca1-Pax7+MuSC (hereinafter referred to as conventional MuSC), we proliferated and differentiated Lin28a+ cells in muscle stem cell expansion medium and differentiation medium, respectively, and then performed Immunofluorescence staining. The results showed that 100% of Lin28a+ cells could express the muscle stem/progenitor cell markers MyoD and Pax7 when proliferating (Fig. 2E), and they could form robust, multinucleated cells expressing myosin heavy chain (MHC) proteins when they differentiated. Myotubes (Fig. 2F-L).
  • MHC myosin heavy chain
  • Lin28a+ cells expressed more Pax3 protein compared with conventional MuSC (Fig. 2K), while Pax7 protein and MyoD protein were expressed at similar levels during proliferation (Fig. 2K).
  • Lin28a+ cell-derived myotubes expressed more MHC proteins and MyoG proteins than conventional MuSC-derived myotubes (Fig. 2L).
  • the expression level of mRNA was similar to that of WB, in which Lin28a+ cells expressed significantly higher levels of Pax3 in expansion medium than conventional MuSC (Fig. 2K).
  • Lin28a+ cell-derived myotubes expressed higher levels of Myf5, MyoG, Ckm, Myh1, and Myh4 than conventional MuSC-derived myotubes (Fig. 2L).
  • these early programmed myogenic differences persisted even after quenching of Lin28a expression in Lin28a+ cells in vitro, as they were not detectable either in expanded culture or in differentiation Expression of Lin28a protein and mRNA (Fig. 7A, B).
  • Fig. 7A, B Expression of Lin28a protein and mRNA
  • Clusters 1 and 4 demonstrate the similarity of the two adult MuSCs.
  • Cluster 3 consisted of 6573 DMRs and 5883 genes, showing striking similarities between adult Lin28a+ MuSCs and embryonic Pax7+ myoblasts.
  • Clusters 2 and 5 demonstrate the epigenetic uniqueness of Lin28a+ cells as a distinct subset of MuSCs.
  • cluster 2 was highly enriched for muscle development and epithelialization genes according to GO gene enrichment analysis ( Figures 3B and 7E), suggesting that Lin28a+ cells have silenced many genes involved in skeletal muscle differentiation, as well as genes that induce terminal differentiation , indicating that Lin28a+MuSCs are easier to dedifferentiate than Pax7+MuSCs.
  • cluster 3 was highly enriched in growth hormone signaling involved in adult muscle-associated calcium signaling contraction, neuromuscular junction axon guidance signaling, phospholipase D signaling, and hypertrophic growth (Figures 3C and 7F).
  • Lin28a+MuSCs still originated from adults like Pax7+MuSCs, such as their proximity to the myogenic transcription factor Myf5 gene, similar methylation patterns (Fig. 3F). Overall, Lin28a+MuSCs were more similar to adult Pax7+MuSCs but had unique embryonic features and were dedifferentiated at the epigenome level.
  • GSEA Gene set enrichment analysis
  • Lin28a overexpression again led to increased stemness signals, such as Wnt, Notch, and Hedgehog signaling pathways, as well as e2f-related mitotic or DNA replication signals (Fig. 7K,L).
  • Lin28a also upregulated some hypoxia signaling pathways, genes that were downregulated by HIF1A RNAi (Manalo_Hypoxia).
  • Lin28a significantly downregulated myogenic differentiation signatures (Myogenic_Targets_of_Pax3; Striated_Muscle_Contraction) (Fig. 7K, L), suggesting that Lin28a promotes the self-renewal and dedifferentiation of MuSCs.
  • Lin28a promotes self-renewal of MuSCs and rejuvenates aged human muscle progenitors.
  • Lin28a promotes MuSC dedifferentiation and muscle regeneration in vivo
  • Lin28a is mainly expressed during embryonic development and decreases during development, while its ectopic overexpression can promote the regeneration of various adult tissues11,49.
  • its endogenous expression and role in adult tissue regeneration has been unknown so far.
  • lineage tracing we identified a previously unrecognized group of Lin28a-expressing skeletal MuSCs that respond to muscle injury and display enhanced regenerative potential.
  • this population of cells is not conventional Pax7+ MuSCs, as they have distinct epigenomic and transcriptomic profiles, suggesting that they lie between adult and embryonic Pax7+ muscle stem cells.
  • Lin28a+ cells expressed more Pax3 and limb-bud mesoderm transcription factors, such as Meis2, Six1, and Eya4, than conventional Pax7+ MuSCs.
  • Pax3 regulates limb muscle development by regulating the Six1 and Eya families27,35,36,50–53, whereas Lin28a is expressed at an early stage of limb bud development during mouse embryogenesis54,55.
  • Lin28a+ cells during embryonic limb development (Fig. 8) and found migratory limb muscle progenitors that also give rise to limb muscle fibers.
  • Lin28a upregulates Notch signaling, enhances the self-renewal and stress response capabilities of MuSCs, and inhibits terminal differentiation, further supporting the idea that Lin28a can reverse the epigenetic clock and maintain a stable dedifferentiation state.
  • Lin28a can reverse the epigenetic clock and maintain a stable dedifferentiation state.
  • inflammation-inducing Lin28a in Pax7+ cells after cryo-injury such that Lin28a was activated only in MuSCs undergoing injury and inflammation.
  • injury-activated Lin28a enhanced the number of Pax7+ and MyoD+ muscle progenitors, thereby accelerating the resolution of necrotic areas and improving muscle regeneration after cryo-injury.
  • Lin28a This extends our knowledge of Lin28a, which was previously thought to promote cell proliferation only during reprogramming and regeneration5,56,57. Given the low number of Lin28a+ cells ( ⁇ 0.7% of VCAM1+ cells), ablation of Lin28a+ cells likely had no effect on steady-state adult muscle mass, quantity, and hypertrophy. Although a previous report found that Lin28a itself is not essential for myogenesis, it does not rule out the importance of Lin28a for maintaining a stable dedifferentiated state in a small number of muSCs, as we have shown by lineage tracing. In addition, previous findings have shown that Lin28a has an important physiological role in the development of mouse limb and tail bud mesoderm55,58. Given our findings on Lin28a in human muscle progenitors, future work may also focus on the role of Lin28+ cells during primate development.
  • Lin28a-tdTO cells When we sorted Lin28a-tdTO cells by flow cytometry and cultured them in vitro, we found that the expression of Lin28a was quenched. In order to distinguish whether the expression of Lin28a also caused the phenotype or was only related, we re-overexpressed lin28a in Lin28-tdTO and conventional MuSCs, and found that Lin28a can promote the dedifferentiation and proliferation of adult MuSCs. In addition, the myogenic ability of conventional MuSCs was also significantly improved after Lin28a reactivation, which is important given that the myogenic ability of MuSCs declines steadily with development and aging, and may be used to improve muscle stem cell viability in the elderly. muscle power.
  • FIG. 1A The strategy for constructing Lin28a-T2A-CreERT2 transgenic mice is shown in Figure S1A.
  • Construction of the donor vector The genomic fragment extending from the third exon of Lin28a to the last intron and the genomic fragment in the Lin28a 3′UTR were used as two homology arms, respectively. Insert the Frt-Neo-Frt-last exon-2A-CreERT2 expression cassette between the two arms to obtain the donor vector. Electroporation of the donor vector into mouse embryonic stem cells. Through homologous recombination, the donor vector can insert a Frt-Neo-Frt-2A-CreERT2 fragment between the last exon of Lin28a and the 3′UTR. Target ES cell clones were selected by G418 selection.
  • Transgenic mice can be identified by their coat color, and then amplified by mating with normal C57BL/6 mice, and genotypes are identified at the same time.
  • NF ⁇ B-LSL-lin28a-T2A-luc No.mt190 transgenic mice
  • the construction of the donor vector the NF- ⁇ B response element and its downstream TAp promoter (minimal TA promoter of herpes simplex virus) 65 Inserted upstream of the LSL fragment.
  • the LSL fragment contains 2 LoxP sites and 3 SV40 late polyA fragments between the 2 LoxP sites.
  • LSL fragment Downstream of the LSL fragment is the CDS of Lin28a, which is tagged with T2A-luc (firefly luciferase reporter gene).
  • Targeting vectors were integrated into the H11 site in C57BL/6 mice as described previously to ensure specificity of NF- ⁇ B response elements.
  • R26-tdTO ((ROSA)26Sortm14(CAG-tdTomato), stock no.007914) was obtained from JAX Laboratories. All animal procedures were approved by the Institute of Zoology and the Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences.
  • Tamoxifen (TMX, Sigma-Aldrich) was dissolved in corn oil at a concentration of 20 mg ml , and 100 mg/kg of TMX was administered intraperitoneally to 6-week-old mice as indicated. All mice were anesthetized with isoflurane before cryoinjury. Cut the skin with a scalpel to expose the tibial anterior (TA) muscle. A steel probe with a diameter of 4 mm was cooled in liquid nitrogen and placed on the TA muscle for 10 s, twice. Immediately afterwards, the skin incision was closed with surgical sutures, and betadine was applied to the wound to prevent post-injury infection. TA and soleus muscles were harvested 10 or 14 days after cryo-injury.
  • slides were treated with 0.3% Triton X-100/PBS for 15 minutes at room temperature according to the manufacturer's instructions, and then incubated with mouse IgG blocking solution (M.O.M.kit, Vector Lab) for 1 hour. Slides were incubated overnight at 4°C with primary antibodies diluted in 0.3% Triton X-100, 5% goat serum/PBS. The next morning, slides were washed with PBS and incubated with secondary antibodies diluted in 0.3% Triton X-100, 5% goat serum/PBS, protected from light, for 1 hr at room temperature. Slides were then washed with PBS and mounted with glycerol and DAPI.
  • mouse IgG blocking solution M.O.M.kit, Vector Lab
  • type I and IIa myofibers were identified by staining with antibodies directed against myosin I (BA-D5) and myosin IIa (SC-71), and type IIb myofibers with Fast Myosin antibody (Abcam, ab91506 ), the staining was lighter, and the type IIx muscle fiber was dyed darker with the same antibody, but it could not be stained with myosin IIa antibody (SC-71).
  • Lin28a+ cells and conventional MuSCs cells were cultured in Matrigel-coated plates, and all cells were incubated at 37°C, 5% CO2 with growth medium (GM) including DMEM/F-12 (Gibco) and 20% fetal bovine serum (FBS) (GE Healthcare), 1% L-glutamine (Gibco) and 1% penicillin-streptomycin (Gibco).
  • GM growth medium
  • FBS fetal bovine serum
  • Libco fetal bovine serum
  • penicillin-streptomycin Gabco
  • DM differentiation medium
  • DMEM/F-12 fetal mesenchymal cells
  • Gibco knockout serum replacement
  • 1% L-glutamine Gibco
  • Penicillin-Streptavidin prime Gibco
  • DM differentiation medium
  • Lin28a+ cells and 1:1 mixed cells were cultured in GM respectively, and then transferred to DM to induce myotube formation.
  • Freshly sorted Lin28a+ cells were grown in GM for 3 days and then differentiated into myotubes, adipocytes or osteoblasts. For myotube differentiation, replace the growth medium with DM for 2-3 days.
  • Primary antibodies include: Pax3 (DSHB, 1:20), Pax7, (DSHB, 1:20), MyoD (Santa Cruz Biotechnology, sc-377460, 1:100), MyoG (Santa Cruz Biotechnology, sc-12732, 1: 100), MYH1 (clone MF20, DSHB, 5 ⁇ g/ml).
  • MYHC-IIb eFluor 660 50-6503-32; Thermo Fisher; 1:100), ⁇ -actinin (sc-7453; Santa Cruz; 1:500), 8-oxoguanine (ab206461; Abcam; 1:400).
  • the fusion index was calculated as the ratio of the number of tdTO+ or MuSC nuclei to the total number of tdTO+ or MuSC nuclei within multinucleated myotubes.
  • RNA-seq was performed using Illumina Novaseq-6000.
  • Proteins were extracted with RIPA buffer supplemented with protease inhibitor cocktail I and II (Sigma) and phosphatase inhibitor cocktail group III (Calbiochem). Proteins were quantified using the Pierce BCA protein assay kit (Thermo Fisher) and analyzed using a Sunrise Tecan plate reader.
  • lentiviral vector plasmid (Addgene #19119), dR8.2 packaging plasmid (Addgene #8455), VSV-G envelope plasmid (Addgene #8454), pMSCV-mLin28A ( Addgene #26357), virus supernatants were collected within a 48-96 hour window and filtered with a 0.45 ⁇ m filter (Sartorius). Lentiviral vectors with CMV promoters can also overexpress other rejuvenation genes.
  • Case 2 According to our genomic and epigenetic biological information analysis, we found that a series of gene networks interact with Lin28a, and play an important role in the rejuvenation factor in mediating Lin28a's rejuvenation of cells. As shown in Figure 9, these networks can be divided into rejuvenation transcription factor networks (Grhl2, Zic5, Zic2, Utf1, Otx2, Snai3, Lmo2, Hopx), rejuvenation epigenetic modification networks (Bcl11a, Bcl11b, Dnmt3b, Mettl20, Arid3c), rejuvenation signaling ligands, receptors and related kinase network (Fgf5, Wnt3, Calcr, Epha1, Epor, Galr2, Piezo2, Ripk4, Pak6, Map3k15, Pdzd4, Shc4), and rejuvenation nucleic acid binding factor network (Foxr2 , Hif3a, Pbx1, Zfp946, Batf3, Pabpc4l, Celf4,
  • lentiviral vector plasmid (Addgene #19119), dR8.2 packaging plasmid (Addgene #8455), VSV-G envelope plasmid (Addgene #8454), within 48 hours to Viral supernatants were collected over a 96 hour window and filtered through a 0.45 ⁇ m filter (Sartorius). Lentiviral vectors with CMV promoters overexpress all rejuvenation genes.
  • Lin28a Bcl11a, Fgf5, Wnt3, Batf3, Lin28a, Lin28b, Dnmt3b, Arid3c, Bcl11b, Lmo2, Grhl2, Zic5, Foxr2, Hif3a, Zic2, Pbx1, Snai3 , Zfp946, Mettl20, Hopx, Utf1, Otx2, Aadat, Mal2, Pabpc4l, Calcr, Epha1, Epor, Galr2, Ripk4, Pak6, Map3k15, Celf4, Pdzd4, Piezo2, Shc4. Case 1 shows that Lin28a+ cells have the ability to reverse aging.
  • Lin28a-tdTomato as a reporter gene to predict whether muscle cells can prolong lifespan.
  • Bcl11a, Bcl11b, Otx2, Lmo2, Pbx1, and Pabpc4l can promote FGF2 sensing ability, proliferation ability, and passage ability in mouse senescent cells, thereby reversing aging.
  • the cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell88, 637-646(1997).
  • Grifone, R. et al. Eya1 and Eya2 proteins are required for hypaxial somitic myogenesis in the mouse embryo. Developmental Biology 302, 602-616 (2007).
  • Grifone, R. et al. Eya1 and Eya2 proteins are required for hypaxial somitic myogenesis in the mouse embryo. Dev Biol 302, 602-616 (2007).
  • TEP1 Poderycki, M.J., Rome, L.H., Harrington, L. & Kickhoefer, V.A.
  • the p80 homology region of TEP1 is sufficient for its association with the vault RNAs, and the vault particle.
  • HIF1 ⁇ and HIF2 ⁇ are dispensable for embryonic muscle development but essential for postnatal muscle regeneration.
  • mice livers are slowed by dwarfism, calorie restriction, and rapamycin treatment. Genome Biol. 18, 57 (2017).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Rheumatology (AREA)
  • Plant Pathology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

提供一种年轻化、骨骼肌肉细胞,产生所述年轻化、骨骼肌肉细胞的方法,以及所述细胞的应用。

Description

年轻化骨骼肌肉细胞及其制备方法和应用 技术领域
本发明涉及骨骼肌肉细胞领域。具体而言,本发明涉及一种年轻化骨骼肌肉细胞的方法,以及所述细胞在细胞移植、组织修复和/或组织再生细胞治疗和基因治疗的用途。
背景技术
衰老与组织的进行性退化有关,这对重要器官的结构和功能有负面影响,是大多数慢性病最重要的已知危险因素之一。鉴于世界上60岁以上人口的比例将在未来40年内翻倍,与年龄相关的慢性疾病发病率的增加将给医疗资源带来巨大负担。衰老的特点是损伤的逐渐累积,导致生理完整性的丧失、功能受损和死亡的脆弱性增加。衰老过程影响整个有机体,包括人类生殖系。在经历二十年或以上的活跃代谢后,包括人类生殖系在内的所有人类细胞都会积累分子损伤,例如经过修饰的长寿蛋白质、遗传和表观遗传突变、代谢副产物以及其他与年龄相关的有害变化,然后才能产生再次年轻化的后代。最近,通过使用表观遗传时钟的概念,科学家们观察到在早期胚胎发生期间,细胞的生物年龄显著降低,即发生了一次年轻化事件(Kerepesiet al.,2021)。
然而这过程中所涉及的通路和因子对于体外骨骼肌肉细胞的影响,仍然是个谜。在生物学中,虽然有很多促进生长、增殖和再生因子曾被报道过,但是这些因子一般上都不具备逆转衰老、耗竭、无能性、表观时钟的功能。尽管我们对多能性、重编程和转分化的理解有了巨大的进步,但是我们对骨骼肌肉细胞的年轻化和/或延长自我更新能力的分子基础仍然知之甚少。尤其是,我们仍然还没有发现任何一个可以使体细胞部分年轻化的因素或因子。
发明内容
本申请的发明人经过大量实验和反复摸索,获得了一种年轻化的骨骼肌肉细胞,以及其制备方法和试剂,以及其细胞和试剂在细胞治疗的应用。通过一项令人惊讶的发现,发明人发现,在骨骼肌肉细胞调控以上过程所涉及的某些通路和基因,不仅能够使骨骼肌 肉细胞部分逆转衰老、耗竭、无能性、表观时钟、细胞生物年龄,也能够让骨骼肌肉细胞延长自我更新能力,在体外持续扩增繁殖。
年轻化骨骼肌肉细胞、细胞群和药物组合
本申请提供一种分离的、经修饰骨骼肌肉细胞,其具备以下特征:
(i)其Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4的任一基因或多个基因的表达有所增加
(ii)可以稳定传代至少5次,例如至少10次、至少15次、至少20次、至少25次、至少30次或更多。
在某些实施方案中,本申请所提供所提供的分离的经修饰骨骼肌肉细胞,可以稳定传代至少5次、例如至少10次、至少15次、至少20次、至少25次、至少30次或更多;其年轻化转录因子网络:Grhl2,Zic5,Zic2,Utf1,Otx2,Snai3,Lmo2,Hopx的任一基因或多个基因的表达相对于未经修饰的骨骼肌肉细胞有所增加。在某些实施方案中,除了以上所述年轻化转录因子网络基因外,LIN28(包括LIN28A或LIN28B)的表达相对于未经修饰的骨骼肌肉细胞同时有所增加。在某些实施方案中,本申请所提供所提供的分离的经修饰骨骼肌肉细胞,可以稳定传代至少5次、例如至少10次、至少15次、至少20次、至少25次、至少30次或更多;其年轻化表观遗传修饰网络:Bcl11a,Bcl11b,Dnmt3b,Mettl20,Arid3c的任一基因或多个基因的表达相对于未经修饰的骨骼肌肉细胞有所增加。在某些实施方案中,除了以上所述年轻化表观遗传修饰网络基因外,LIN28(包括LIN28A或LIN28B)的表达相对于未经修饰的骨骼肌肉细胞同时有所增加。在某些实施方案中,本申请所提供所提供的分离的经修饰骨骼肌肉细胞,可以稳定传代至少5次、例如至少10次、至少15次、至少20次、至少25次、至少30次或更多;其年轻化信号配体、受体及相关激酶网络:Fgf5,Wnt3,Calcr,Epha1,Epor,Galr2,Piezo2,Ripk4,Pak6,Map3k15,Pdzd4,Shc4的任一基因或多个基因的表达相对于未经修饰的骨骼肌肉细胞有所增加。在某些实施方案中,除了以上所述年轻化信号配体、受体及相关激酶网络的基因 外,LIN28(包括LIN28A或LIN28B)的表达相对于未经修饰的骨骼肌肉细胞同时有所增加。在某些实施方案中,本申请所提供所提供的分离的经修饰骨骼肌肉细胞,可以稳定传代至少5次、例如至少10次、至少15次、至少20次、至少25次、至少30次或更多;其年轻化核酸结合因子网络:Foxr2,Hif3a,Pbx1,Zfp946,Batf3,Pabpc4l,Celf4,Lin28的任一基因或多个基因的表达相对于未经修饰的骨骼肌肉细胞有所增加。在某些实施方案中,除了以上所述年轻化核酸结合因子网络外,LIN28(包括LIN28A或LIN28B)的表达相对于未经修饰的骨骼肌肉细胞同时有所增加。在某些实施方案中,本申请所提供所提供的分离的经修饰骨骼肌肉细胞,可以稳定传代至少5次、例如至少10次、至少15次、至少20次、至少25次、至少30次或更多;其LIN28(包括LIN28A或LIN28B)的基因表达相对于未经修饰的骨骼肌肉细胞有所增加。在某些实施方案中,本申请所提供所提供的分离的经修饰骨骼肌肉细胞,可以稳定传代至少5次、例如至少10次、至少15次、至少20次、至少25次、至少30次或更多;其LIN28(包括LIN28A或LIN28B),BCL11A,BCL11B,LMO2,OTX2,PBX1,PABPC4L的任一基因或多个基因表达相对于未经修饰的骨骼肌肉细胞有所增加。
在某些实施方案中,本发明的骨骼肌肉细胞在选自以下的一个或多个(例如1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个、21个、22个、23个、24个、25个、26个、27个、28个29个、30个、31个、32个、33个、34个、35个或36个)基因的表达水平上相比于未经修饰的骨骼肌肉细胞中这些基因的表达水平显示至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约100倍、至少约150倍、至少约200倍的增加:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。在某些实施方案中,本发明的骨骼肌肉细胞在选自以下的一个或多个年轻化转录因子网络基因的表达水平上相比于未经修饰的骨骼肌肉细胞中这些年轻化再生转录因子网络基因的表达水平显示至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约100 倍、至少约150倍、至少约200倍的增加:Grhl2,Zic5,Zic2,Utf1,Otx2,Snai3,Lmo2,Hopx。在某些实施方案中,除了以上所述年轻化转录网络基因以外,同时本发明所述的经修饰骨骼肌肉细胞的LIN28(LIN28A或LIN28B)基因表达水平相比于未经修饰骨骼肌肉细胞的至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约100倍、至少约150倍、至少约200倍。在某些实施方案中,本发明的骨骼肌肉细胞在选自以下的一个或多个年轻化表观遗传修饰网络基因的表达水平上相比于未经修饰的骨骼肌肉细胞中这些年轻化表观遗传修饰网络基因的表达水平显示至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约100倍、至少约150倍、至少约200倍的增加:Bcl11a,Bcl11b,Dnmt3b,Mettl20,Arid3c。在某些实施方案中,除了以上所述年轻化表观遗传修饰网络以外,同时本发明所述的经修饰骨骼肌肉细胞的LIN28(LIN28A或LIN28B)基因表达水平相比于未经修饰骨骼肌肉细胞的至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约100倍、至少约150倍、至少约200倍。在某些实施方案中,本发明的骨骼肌肉细胞在选自以下的一个或多个年轻化信号配体、受体及相关激酶网络基因的表达水平上相比于未经修饰的骨骼肌肉细胞中这些年轻化信号配体、受体及相关激酶网络基因的表达水平显示至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约100倍、至少约150倍、至少约200倍的增加:Fgf5,Wnt3,Calcr,Epha1,Epor,Galr2,Piezo2,Ripk4,Pak6,Map3k15,Pdzd4,Shc4。在某些实施方案中,除了以上所述年轻化信号配体、受体及相关激酶网络基因以外,同时本发明所述的经修饰骨骼肌肉细胞的LIN28(LIN28A或LIN28B)基因表达水平相比于未经修饰骨骼肌肉细胞的至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约100倍、至少约150倍、至少约200倍。在某些实施方案中,本发明的骨骼肌肉细胞在选自以下的一个或多个年轻化核酸结合因子网络基因的表达水平上相比于未经修饰的骨骼肌肉细胞中这些年轻化核酸结合因子网络基因的表达水平显示至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约100倍、至少约150倍、至少约200倍的增加:Foxr2,Hif3a,Pbx1,Zfp946,Batf3,Pabpc4l,Celf4,Lin28。在某些实施方案中,除 了以上所述年轻化核糖酸结合因子网络基因以外,同时本发明所述的经修饰骨骼肌肉细胞的LIN28(LIN28A或LIN28B)基因表达水平相比于未经修饰骨骼肌肉细胞的至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约100倍、至少约150倍、至少约200倍。在某些实施方案中,本发明的骨骼肌肉细胞在LIN28(LIN28A或LIN28B)的表达水平上相比于未经修饰的骨骼肌肉细胞中这些年轻化核糖酸结合因子网络基因的表达水平显示至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约100倍、至少约150倍、至少约200倍的增加。在某些实施方案中,本发明的骨骼肌肉细胞在BCL11A,BCL11B,LMO2,OTX2,PBX1,PABPC4L的表达水平上相比于未经修饰的骨骼肌肉细胞中这些任一或多个年轻化因子的表达水平显示至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约100倍、至少约150倍、至少约200倍的增加。
在细胞上,增加某个基因的表达或表达水平有很多方式。最常见的方式是通过转基因,向细胞递送编码某基因的核酸(例如DNA或RNA),其中也包括在调控某基因表达量的原件(如启动子、药物调控启动子、蛋白调控启动子、组织特异启动子、蛋白内含子(intein)、转座子、核酸内切酶(例如cre-lox系统)、逆转座子等)来提高基因在细胞内的表达。这些都是领域内技术人员广为人知的。另外,向细胞递送基因的方式也有很多种,譬如但不限于利用病毒、转座子、纳米颗粒、脂质囊泡等等。增加基因表达的非转基因模式的方式包括利用CRISPRa对内源基因进行调控,上调某基因的表达。某个基因在细胞内的表达量是可以通过生物学中已知的方式去测量,譬如但不限于蛋白质印迹法、免疫荧光、荧光定量PCR、RNA或DNA测序等。
在某些实施方案中,所述骨骼肌肉细胞在以下任一或多个基因的表达是通过转基因方式提高,表达持续至少12小时:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。在某些实施方案中, 所述骨骼肌肉细胞在以下任一或多个年轻化转录因子网络基因的表达是通过转基因方式提高,表达持续至少12小时:Grhl2,Zic5,Zic2,Utf1,Otx2,Snai3,Lmo2,Hopx。在某些实施方案中,所述骨骼肌肉细胞LIN28(LIN28A或LIN28B)的基因表达水平同时也通过转基因方式提高,表达持续至少12小时。在某些实施方案中,所述骨骼肌肉细胞在以下任一或多个年轻化表观修饰网络基因的表达是通过转基因方式提高,表达持续至少12小时:Bcl11a,Bcl11b,Dnmt3b,Mettl20,Arid3c。在某些实施方案中,所述骨骼肌肉细胞LIN28(LIN28A或LIN28B)的基因表达水平同时也通过转基因方式提高,表达持续至少12小时。在某些实施方案中,所述骨骼肌肉细胞在以下任一或多个年轻化信号配体、受体或相关激酶网络基因的表达是通过转基因方式提高,表达持续至少12小时:Fgf5,Wnt3,Calcr,Epha1,Epor,Galr2,Piezo2,Ripk4,Pak6,Map3k15,Pdzd4,Shc4。在某些实施方案中,所述骨骼肌肉细胞LIN28(LIN28A或LIN28B)的基因表达水平同时也通过转基因方式提高,表达持续至少12小时。在某些实施方案中,所述骨骼肌肉细胞在以下任一或多个年轻化核酸结合因子网络基因的表达是通过转基因方式提高,表达持续至少12小时:Foxr2,Hif3a,Pbx1,Zfp946,Batf3,Pabpc4l,Celf4,Lin28。在某些实施方案中,所述骨骼肌肉细胞LIN28(LIN28A或LIN28B)的基因表达水平同时也通过转基因方式提高,表达持续至少12小时。在某些实施方案中,本发明的骨骼肌肉细胞在LIN28(LIN28A或LIN28B)的表达是通过转基因方式提高,表达持续至少12小时。在某些实施方案中,所述骨骼肌肉细胞在以下任一或多个年轻化因子基因的表达是通过转基因方式提高,表达持续至少12小时:Bcl11a,Bcl11b,Lmo2,Otx2,Pbx1,Pabpc4l。在某些实施方案中,所述基因的表达是瞬时基因表达。在某些实施方案中,所述基因表达是组成性基因表达。
在某些实施方案中,所述骨骼肌肉细胞能够在体外持续扩增至少4天、5天、6天、8天、9天、10天、20天、30天、40天、50天、100天、150天、200天、300天、400天或甚至更多天。
骨骼肌肉细胞在某些实施方案中,所述骨骼肌肉细胞,其MDM4和TEP1的表达相比于骨骼肌肉细胞的至少约5倍、10倍、20倍、30倍或甚至更高。
在某些实施方案中,所述细胞的生物年龄相比于骨骼肌肉细胞,显著降低,其生物年 龄能够通过测试其细胞的基因表达或表观遗传修饰(如表观遗传时钟)来衡量。生物年龄与实际时间年龄不一样,因为两个同样实际岁数的动物也可能存在衰老率差异,也就是生物年龄差异,会导致动物患上衰老相关疾病的风险也有所差异。近年来,表观遗传时钟已成为哺乳动物衰老过程的有力生物标志物,包括人类、小鼠、狗和狼以及座头鲸。表观遗传时钟是一种数学模型,经过大数据训练可以利用基因组中少量基因组位点的表观遗传修饰状态来预测岁数和生物年龄(Horvath and Raj,2018;Bell et al.,2019)。2013年,Steve Horvath开发了人类最广泛使用的多组织表观遗传时钟(Horvath 2013)。有趣的是,表观遗传时钟预测的生物年龄与实际时间年龄(又称表观遗传年龄加速或EAA)的偏差与死亡时间和人类的许多早衰疾病有极强相关性,包括艾滋病毒感染、唐氏综合征、肥胖、沃纳综合征和亨廷顿病。表观遗传钟可以被理解为一种用来量化表观基因组随衰老变化的代表(Martin-Herranz et al.,2019),比如利用CpG位点的DNA甲基化状态来预测人类生物年龄(Horvath clock;Horvath 2013)、小鼠生物年龄(Stubbs multi-t.clock;Stubbs et al.,2017)、小鼠血液生物年龄(Petkovitch blood clock;Petkovitch et al.,2018)、小鼠多器官生物年龄(Thompson multi-t.EN clock;Thompson et al.,2018),或利用核糖体核酸rDNA甲基化状态来预测小鼠血液生物年龄(Wang blood rDNA clock;Wang and Lemos,2019),或利用染色质组蛋白H3甲基化状态来预测生物年龄(Martin-Herranz et al.,2019;Jeffries et al.,2019)。另外,基因组的表达图谱也会随着衰老相关的表观遗传变化而有所改变(Martin-Herranz et al.,2019),而衡量这些基因的表达也能测量物种或细胞的生物年龄。
在另一方面,本发明提供一种分离的细胞群体,其包含以上所述的骨骼肌肉细胞或其任意组合;优选地,所述细胞群体中至少50%(例如至少60%、至少70%、至少80%、至少85%、至少90%、至少95%、至少98%、至少99%或约100%)的细胞是以上所述的骨骼肌肉细胞。
在另一方面,本发明也提供一种药物组合,其包含以上所述的骨骼肌肉细胞或细胞群体,以及药学上可接受的载体和/或赋形剂。在某些实施方案中,本发明所述的药物组合可以应用于细胞治疗,包括将本发明所述细胞配上药学上可接受的载体和/或腑剂施予患者。目前,细胞治疗在医学领域应用广泛,本发明所产生的细胞能够为细胞治疗提供优质、年 轻化的细胞,并提高细胞的产量。
制备年轻化细胞或逆转骨骼肌肉细胞衰老的方法
在另一方面,本发明提供了一种逆转细胞衰老的方法,其中包括增加以下任一基因或多个(例如1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个、21个、22个、23个、24个、25个、26个、27个、28个或29个)基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。在某些实施方案中,本发明提供了一种逆转细胞衰老的方法,其中包括增加以下任一个或多个年轻化转录因子网络基因的表达:Grhl2,Zic5,Zic2,Utf1,Otx2,Snai3,Lmo2,Hopx。在某些实施方案中,本发明所提供逆转细胞衰老的方法,除了增加以上所述年轻化转录因子网络的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,本发明提供了一种逆转细胞衰老的方法,其中包括增加以下任一个或多个年轻化表观遗传修饰网络基因的表达:Bcl11a,Bcl11b,Dnmt3b,Mettl20,Arid3c。在某些实施方案中,本发明所提供逆转细胞衰老的方法,除了增加以上所述年轻化表观遗传修饰网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,本发明提供了一种逆转细胞衰老的方法,其中包括增加以下任一个或多个年轻化信号配体、受体及相关激酶网络基因的表达:Fgf5,Wnt3,Calcr,Epha1,Epor,Galr2,Piezo2,Ripk4,Pak6,Map3k15,Pdzd4,Shc4。在某些实施方案中,本发明所提供逆转细胞衰老的方法,除了增加以上所述年轻化信号配体、受体及相关激酶网络的基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,本发明提供了一种逆转细胞衰老的方法,其中包括增加以下任一个或多个年轻化核酸结合因子网络基因的表达:Foxr2,Hif3a,Pbx1,Zfp946,Batf3,Pabpc4l,Celf4,Lin28。在某些实施方案中,本发明所提供逆转细胞衰老的方法,除了增加以上所述年轻化核酸结合因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,本发明提供了一种逆转细胞衰老的方法,其中包括增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,本发明提供了一种逆转细胞衰老的方法,其中包括增加Bcl11a,Bcl11b,Lmo2,Otx2,Pbx1,Pabpc4l任一或多个基因的表达。在某些实施方案中,本发明所提供逆转细胞衰老的方法, 除了增加以上所述基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方案是通过转基因的方式来提高基因的表达,表达持续至少12小时。在某些实施方案中,所述基因的表达是瞬时基因表达。在某些实施方案中,所述基因表达是组成性基因表达。
如本文中所使用,术语“细胞衰老”是指细胞虽保持一定的活力和代谢活性但丧失了增殖能力和分化能力等正常细胞活性。细胞衰老可能由各种刺激或因素引起,包括由于DNA末端复制导致的端粒缩短、DNA损伤、肿瘤抑制基因和癌基因的活性改变、氧化应激、炎症、化疗剂以及暴露于紫外线照射或电离辐射(Kuilman等人,Genes&Development.(2010)24:2463-2479)。如本文所述,“逆转细胞衰老”或“逆转衰老”指的是让细胞恢复增殖能力和/或分化能力。在生物学上,测量细胞衰老一般上可以利用β半乳糖苷酶活性试剂鉴定。如本文所述,“逆转细胞衰老”或“逆转衰老”指的是让细胞恢复增殖能力和/或分化能力等正常细胞活性,同样也可以用β半乳糖苷酶活性试剂来测量鉴定。
在某些实施方案中,本发明也提供了制备以上年轻化骨骼肌肉细胞的方法,其中包括增加以下任一基因或多个(例如1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个、21个、22个、23个、24个、25个、26个、27个、28个或29个)基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4;其细胞的生物年龄能够通过测试细胞的基因表达或遗传修饰(如表观遗传时钟)来衡量。在某些实施方案中,本发明提供了制备以上年轻化细胞的方法,其中包括增加以下任一个或多个年轻化转录因子网络基因的表达:Grhl2,Zic5,Zic2,Utf1,Otx2,Snai3,Lmo2,Hopx。在某些实施方案中,本发明所提供制备以上年轻化细胞的方法,除了增加以上所述年轻化转录因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,本发明提供制备以上年轻化细胞的方法,其中包括增加以下任一个或多个年轻化表观遗传修饰网络基因的表达:Bcl11a,Bcl11b,Dnmt3b,Mettl20,Arid3c。在某些实施方案中,本发明所提供制备以上年轻化 细胞的方法,除了增加以上所述年轻化表观遗传修饰网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,本发明提供了制备以上年轻化细胞的方法,其中包括增加以下任一个或多个年轻化信号配体、受体及相关激酶网络的基因表达:Fgf5,Wnt3,Calcr,Epha1,Epor,Galr2,Piezo2,Ripk4,Pak6,Map3k15,Pdzd4,Shc4。在某些实施方案中,本发明所提供制备以上年轻化细胞的方法,除了增加以上所述年轻化信号配体、受体及相关激酶网络德基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,本发明提供了制备以上年轻化细胞的方法,其中包括增加以下任一个或多个年轻化核酸结合因子网络基因的表达:Foxr2,Hif3a,Pbx1,Zfp946,Batf3,Pabpc4l,Celf4,Lin28。在某些实施方案中,本发明所提供制备以上年轻化细胞的方法,除了增加以上所述年轻化核酸结合因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,本发明提供了一种制备以上年轻化细胞的方法,其中包括增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,本发明提供了一种制备以上年轻化细胞的方法,其中包括增加Bcl11a,Bcl11b,Lmo2,Otx2,Pbx1,Pabpc4l任一或多个基因的表达。在某些实施方案中,本发明所提供制备以上年轻化细胞的方法,除了增加以上所述基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方案是通过转基因的方式来提高基因的表达,表达持续至少12小时。在某些实施方案中,所述基因的表达是瞬时基因表达。在某些实施方案中,所述基因表达是组成性基因表达。
如本文中所使用的,术语“年轻化”是指细胞或物种的生物年龄有所降低或者具备年轻细胞具有的生物特征如更强大的自我更新能力、再生能力、生长能力、更接近胚胎期的基因表达或表观遗传修饰图谱或更好的生物功能。以上所述细胞的生物年龄能够通过测试细胞的基因表达或遗传修饰(如表观遗传时钟)来衡量。
骨骼肌肉细胞
在某些实施方案中,所述方法能够在骨骼肌肉细胞逆转细胞耗竭,其中包括增加以下任一基因或多个(例如1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个、21个、22个、23个、24个、25个、26个、27个、28个、29个、30个、31个、32个、33个、34个、35个、36个、37个、38个、39个或40个)基因的表达:Bcl11a、Fgf5、 Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。在某些实施方案中,所述方法能够在骨骼肌肉细胞逆转细胞耗竭,其中包括增加以下任一个或多个年轻化转录因子网络基因的表达:Grhl2,Zic5,Zic2,Utf1,Otx2,Snai3,Lmo2,Hopx。在某些实施方案中,所述方法除了增加以上所述年轻化转录因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够在骨骼肌肉细胞逆转细胞耗竭,其中包括增加以下任一个或多个年轻化表观遗传修饰网络基因的表达:Bcl11a,Bcl11b,Dnmt3b,Mettl20,Arid3c。在某些实施方案中,所述方法除了增加以上所述年轻化表观遗传修饰网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够在骨骼肌肉细胞逆转细胞耗竭,其中包括增加以下任一个或多个年轻化信号配体、受体及相关激酶网络的基因的表达:Fgf5,Wnt3,Calcr,Epha1,Epor,Galr2,Piezo2,Ripk4,Pak6,Map3k15,Pdzd4,Shc4。在某些实施方案中,所述方法除了增加以上所述年轻化信号配体、受体及相关激酶网络的基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够在骨骼肌肉细胞逆转细胞耗竭,其中包括增加以下任一个或多个年轻化核酸结合因子网络基因的表达:Foxr2,Hif3a,Pbx1,Zfp946,Batf3,Pabpc4l,Celf4,Lin28。在某些实施方案中,所述方法除了增加以上所述年轻化核酸结合因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够在骨骼肌肉细胞逆转细胞耗竭,其中包括增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够在骨骼肌肉细胞逆转细胞耗竭,其中包括增加Bcl11a,Bcl11b,Lmo2,Otx2,Pbx1,Pabpc4l任一或多个基因的表达。在某些实施方案中,所述方法除了增加以上所述基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方案是通过转基因的方式来提高基因的表达,表达持续至少12小时。在某些实施方案中,所述基因的表达是瞬时基因表达。在某些实施方案中,所述基因表达是组成性基因表达。
如本文中所使用,术语“细胞耗竭”是指细胞在长期激活的过程中,丧失部分功能,一般上可以利用细胞功能测试鉴定,譬如骨骼肌肉干细胞的分化效率、损伤修复能力、肌肉纤维肥厚程度等。
如本文中所使用,术语“逆转细胞耗竭“是指让细胞恢复功能,同样也能利用功能测试鉴定。
在某些实施方案中,所述方法能够在骨骼肌肉细胞逆转无能性,其中包括增加以下任一基因或多个(例如1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个、21个、22个、23个、24个、25个、26个、27个、28个、29个、30个、31个、32个、33个、34个、35个、36个、37个、38个、39个或40个)基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。在某些实施方案中,所述方法能够在骨骼肌肉细胞逆转无能性,其中包括增加以下任一个或多个年轻化转录因子网络基因的表达:Grhl2,Zic5,Zic2,Utf1,Otx2,Snai3,Lmo2,Hopx。在某些实施方案中,所述方法除了增加以上所述年轻化转录因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够在骨骼肌肉细胞逆转无能性,其中包括增加以下任一个或多个年轻化表观遗传修饰网络基因的表达:Bcl11a,Bcl11b,Dnmt3b,Mettl20,Arid3c。在某些实施方案中,所述方法除了增加以上所述年轻化表观遗传修饰网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够在骨骼肌肉细胞逆转无能性,其中包括增加以下任一个或多个年轻化信号配体、受体及相关激酶网络的基因的表达:Fgf5,Wnt3,Calcr,Epha1,Epor,Galr2,Piezo2,Ripk4,Pak6,Map3k15,Pdzd4,Shc4。在某些实施方案中,所述方法除了增加以上所述年轻化信号配体、受体及相关激酶网络的基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够在骨骼肌肉细胞逆转无能性,其中包括增加以下任一个或多个年轻化核酸结合因子网络基因的表达:Foxr2,Hif3a,Pbx1,Zfp946,Batf3,Pabpc4l,Celf4,Lin28。在某些实施方案中,所述方法除了增加以上所述年轻化核酸结合因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够在骨骼肌肉细胞逆转无能性,其中包括增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够在骨骼肌肉细胞逆转无能性,其中包括增加Bcl11a,Bcl11b, Lmo2,Otx2,Pbx1,Pabpc4l任一或多个基因的表达。在某些实施方案中,所述方法除了增加以上所述基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方案是通过转基因的方式来提高基因的表达,表达持续至少12小时。在某些实施方案中,所述基因的表达是瞬时基因表达。在某些实施方案中,所述基因表达是组成性基因表达。
如本文中所使用,术语“无能性”是指细胞无法对外在的信号启动应有的反应,譬如肌肉干细胞无能性,就是对FGF2失去反应,无法增殖,一般可以通过细胞增殖实验测试。
如本文所使用,术语“逆转无能性”是指让细胞能够恢复对于外界信号应有的反应与功能,也包括增殖。
在某些实施方案中,所述方法能够延长骨骼肌肉细胞的寿命,其中包括增加以下任一基因或多个(例如1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个、21个、22个、23个、24个、25个、26个、27个、28个、29个、30个、31个、32个、33个、34个、35个、36个、37个、38个、39个或40个)基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。在某些实施方案中,所述方法能够延长骨骼肌肉细胞的寿命,其中包括增加以下任一个或多个再生转录因年轻化转录因子网络子基因的表达:Grhl2,Zic5,Zic2,Utf1,Otx2,Snai3,Lmo2,Hopx。在某些实施方案中,所述方法除了增加以上所述年轻化转录因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够延长骨骼肌肉细胞的寿命,其中包括增加以下任一个或多个年轻化表观遗传修饰网络基因的表达:Bcl11a,Bcl11b,Dnmt3b,Mettl20,Arid3c。在某些实施方案中,所述方法除了增加以上所述年轻化表观遗传修饰网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够延长骨骼肌肉细胞的寿命,其中包括增加以下任一个或多个年轻化信号配体、受体及相关激酶网络的基因的表达:Fgf5,Wnt3,Calcr,Epha1,Epor,Galr2,Piezo2,Ripk4,Pak6,Map3k15,Pdzd4,Shc4。在某些实施方案中,所述方法除了增加以上所述年轻化信号配体、受体及相关激 酶网络的基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够延长骨骼肌肉细胞的寿命,其中包括增加以下任一个或多个年轻化核酸结合因子网络基因的表达:Foxr2,Hif3a,Pbx1,Zfp946,Batf3,Pabpc4l,Celf4,Lin28。在某些实施方案中,所述方法除了增加以上所述年轻化核酸结合因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够延长骨骼肌肉细胞的寿命,其中包括增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够延长骨骼肌肉细胞的寿命,其中包括增加以下任一个或多个基因的表达:Bcl11a,Bcl11b,Lmo2,Otx2,Pbx1,Pabpc4l。在某些实施方案中,所述方法除了增加以上所述基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方案是通过转基因的方式来提高基因的表达,表达持续至少12小时。在某些实施方案中,所述基因的表达是瞬时基因表达。在某些实施方案中,所述基因表达是组成性基因表达。
在一般情况下,细胞的寿命可以通过细胞存活的时间长短来衡量,而细胞是否存活可以通过染色(譬如碘化丙啶)来鉴定,本领域的技术人员也可以通过显微镜下的细胞形态的观察来鉴定。
在某些实施方案中,所述方法能够让细胞体外持续扩增至少4天、5天、6天、8天、9天、10天、20天、30天、40天、50天、100天、150天、200天、300天、400天或甚至更多天,其中包括增加以下任一基因或多个(例如1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个、21个、22个、23个、24个、25个、26个、27个、28个、29个、30个、31个、32个、33个、34个、35个、36个、37个、38个、39个或40个)基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。在某些实施方案中,所述方法能够让细胞体外持续扩增至少4天、5天、6天、8天、9天、10天、20天、30天、40天、50天、100天、150天、200天、300天、400天或甚至更多天,其中包括增加以下任一个或多个年轻化转录因子网络基因的表达:Grhl2,Zic5,Zic2,Utf1, Otx2,Snai3,Lmo2,Hopx。在某些实施方案中,所述方法除了增加以上所述年轻化转录因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够让细胞体外持续扩增至少4天、5天、6天、8天、9天、10天、20天、30天、40天、50天、100天、150天、200天、300天、400天或甚至更多天,其中包括增加以下任一个或多个年轻化表观遗传修饰网络基因的表达:Bcl11a,Bcl11b,Dnmt3b,Mettl20,Arid3c。在某些实施方案中,所述方法除了增加以上所述年轻化表观遗传修饰网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够让细胞体外持续扩增至少4天、5天、6天、8天、9天、10天、20天、30天、40天、50天、100天、150天、200天、300天、400天或甚至更多天,其中包括增加以下任一个或多个年轻化信号配体、受体及相关激酶网络的基因的表达:Fgf5,Wnt3,Calcr,Epha1,Epor,Galr2,Piezo2,Ripk4,Pak6,Map3k15,Pdzd4,Shc4。在某些实施方案中,所述方法除了增加以上所述年轻化信号配体、受体及相关激酶网络的基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够让细胞体外持续扩增至少4天、5天、6天、8天、9天、10天、20天、30天、40天、50天、100天、150天、200天、300天、400天或甚至更多天,其中包括增加以下任一个或多个年轻化核酸结合因子网络基因的表达:Foxr2,Hif3a,Pbx1,Zfp946,Batf3,Pabpc4l,Celf4,Lin28。在某些实施方案中,所述方法除了增加以上所述年轻化核酸结合因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够延长骨骼肌肉细胞的所述方法能够让细胞体外持续扩增至少4天、5天、6天、8天、9天、10天、20天、30天、40天、50天、100天、150天、200天、300天、400天或甚至更多天,其中包括增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够让细胞体外持续扩增至少4天、5天、6天、8天、9天、10天、20天、30天、40天、50天、100天、150天、200天、300天、400天或甚至更多天,其中包括增加以下任一个或多个年轻化因子基因的表达:Bcl11a,Bcl11b,Lmo2,Otx2,Pbx1,Pabpc4l。在某些实施方案中,所述方法除了增加以上所述基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方案是通过转基因的方式来提高基因的表达,表达持续至少12小时。在某些实施方案中,所述基因的表达是瞬时基因表达。在某些实施方案中,所述基因表达是组成性基因表达。
在某些实施方案中,所述方法能够让骨骼肌肉细胞稳定传代至少5次,例如至少10次、至少15次、至少20次、至少25次、至少30次或更多,其中包括增加以下任一基因或多个(例如1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个、21个、22个、23个、24个、25个、26个、27个、28个、29个、30个、31个、32个、33个、34个、35个、36个、37个、38个、39个或40个)基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。在某些实施方案中,所述方法能够让骨骼肌肉细胞稳定传代至少5次,例如至少10次、至少15次、至少20次、至少25次、至少30次或更多,其中包括增加以下任一个或多个年轻化转录因子网络基因的表达:Grhl2,Zic5,Zic2,Utf1,Otx2,Snai3,Lmo2,Hopx。在某些实施方案中,所述方法除了增加以上所述年轻化转录因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够让骨骼肌肉细胞稳定传代至少5次,例如至少10次、至少15次、至少20次、至少25次、至少30次或更多,其中包括增加以下任一个或多个年轻化表观遗传修饰网络基因的表达:Bcl11a,Bcl11b,Dnmt3b,Mettl20,Arid3c。在某些实施方案中,所述方法除了增加以上所述年轻化表观遗传修饰网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够让骨骼肌肉细胞稳定传代至少5次,例如至少10次、至少15次、至少20次、至少25次、至少30次或更多,其中包括增加以下任一个或多个年轻化信号配体、受体及相关激酶网络的基因的表达:Fgf5,Wnt3,Calcr,Epha1,Epor,Galr2,Piezo2,Ripk4,Pak6,Map3k15,Pdzd4,Shc4。在某些实施方案中,所述方法除了增加以上所述年轻化信号配体、受体及相关激酶网络的基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够让骨骼肌肉细胞稳定传代至少5次,例如至少10次、至少15次、至少20次、至少25次、至少30次或更多,其中包括增加以下任一个或多个年轻化核酸结合因子网络基因的表达:Foxr2,Hif3a,Pbx1,Zfp946,Batf3,Pabpc4l,Celf4,Lin28。在某些实施方案中,所述方法除了增加以上所述年轻化核酸结合因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够让骨骼肌肉细胞稳定传代至少5次, 例如至少10次、至少15次、至少20次、至少25次、至少30次或更多,其中包括增加以下任一个或多个年轻化因子基因的表达:Bcl11a,Bcl11b,Lmo2,Otx2,Pbx1,Pabpc4l。在某些实施方案中,所述方法除了增加以上所述年轻化因子基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够让骨骼肌肉细胞稳定传代至少5次,例如至少10次、至少15次、至少20次、至少25次、至少30次或更多,其中包括增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方案是通过转基因的方式来提高基因的表达,表达持续至少12小时。在某些实施方案中,所述基因的表达是瞬时基因表达。在某些实施方案中,所述基因表达是组成性基因表达。
在某些实施方案中,所述方法能够让老年骨骼肌肉细胞重返青春,其中包括增加以下任一基因或多个(例如1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个、21个、22个、23个、24个、25个、26个、27个、28个、29个、30个、31个、32个、33个、34个、35个、36个、37个、38个、39个或40个)基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。在某些实施方案中,所述方法能够让老年骨骼肌肉细胞重返青春,其中包括增加以下任一个或多个年轻化转录因子网络基因的表达:Grhl2,Zic5,Zic2,Utf1,Otx2,Snai3,Lmo2,Hopx。在某些实施方案中,所述方法除了增加以上所述年轻化转录因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够让让老年骨骼肌肉细胞重返青春,其中包括增加以下任一个或多个年轻化表观遗传修饰网络基因的表达:Bcl11a,Bcl11b,Dnmt3b,Mettl20,Arid3c。在某些实施方案中,所述方法除了增加以上所述年轻化表观遗传修饰网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够让让老年骨骼肌肉细胞重返青春,其中包括增加以下任一个或多个年轻化信号配体、受体及相关激酶网络的基因的表达:Fgf5,Wnt3,Calcr,Epha1,Epor,Galr2,Piezo2,Ripk4,Pak6,Map3k15,Pdzd4,Shc4。在某些实施方案中,所述方法除了增加以上所述年轻化信号配体、受体及相关激酶网络的基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方 案中,所述方法能够让老年骨骼肌肉细胞重返青春,其中包括增加以下任一个或多个年轻化核酸结合因子网络基因的表达:Foxr2,Hif3a,Pbx1,Zfp946,Batf3,Pabpc4l,Celf4,Lin28。在某些实施方案中,所述方法除了增加以上所述年轻化核酸结合因子网络基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够让让老年骨骼肌肉细胞重返青春,其中包括增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方法能够让老年骨骼肌肉细胞重返青春,其中包括增加以下任一个或多个年轻化因子基因的表达:Bcl11a,Bcl11b,Lmo2,Otx2,Pbx1,Pabpc4l。在某些实施方案中,所述方法除了增加以上所述年轻化因子基因的表达,同时增加LIN28(LIN28A或LIN28B)的表达。在某些实施方案中,所述方案是通过转基因的方式来提高基因的表达,表达持续至少12小时。在某些实施方案中,所述基因的表达是瞬时基因表达。在某些实施方案中,所述基因表达是组成性基因表达。在某些实施方案中,所述骨骼肌肉细胞在以下任一或多个基因的表达是通过转基因方式提高,表达持续至少12小时:LIN28(LIN28A或LIN28B),Bcl11b,Arid3c,Otx2,Lmo2,Pabpc4l,Mettl20,Pbx1。
在某些实施方案中,所述方法是通过响应炎症或损伤的启动子来提高细胞以下一个或多个基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
在某些实施方案中,所述方法包括转基因的方式来提高细胞以下一个或多个基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
在某些实施例中,对细胞进行处理(例如,基因工程),以使骨骼肌肉细胞所表达的再生因子高于在没有这种处理的情况下的水平。在某些一些实施例中,对细胞进行处理,以使 骨骼肌肉细胞过表达以下一个或多个基因:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。一种细胞处理方法是用病毒(如逆转录病毒、慢病毒、腺病毒、腺相关病毒)感染细胞或用病毒载体(如逆转录病毒、慢病毒、腺病毒)转染细胞包含可操作地连接到合适的表达控制元件的因子序列,以在感染或转染后驱动细胞中的表达,并任选地整合到本领域已知的基因组中。在某些实施方案中,处理细胞的方法也包括利用转座子或你转座子来递送以上所述基因以及控制基因表达量的启动子。在某些实施方案中,所述处理细胞的方案可利用电穿孔法来递送包含转座子或逆转座子、控制蛋白表达的原件(启动子、蛋白内含子(intein)、核酸内切酶(例如cre-lox系统))和编码Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4一个或多个蛋白的核酸序列的载体。下面提供关于本发明的组合物和方法的进一步细节。
在某些实施方案中,所述方法所利用的转基因方法包含利用医学上所知的任何一个载体譬如但不限于病毒载体、转座子、纳米颗粒、反转座子、核算内切酶)。
骨骼肌肉细胞年轻化或逆转细胞衰老的试剂和试剂盒
本发明也提供了一个试剂盒或试剂组合,所述试剂盒或试剂组合能够用于产生以上所述的年轻化骨骼肌肉细胞,其中包括:
(i)编码以下任一或多个蛋白的核酸(例如脱氧核糖核酸、核糖核酸):Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4
(ii)医学上可接受的载体(例如病毒载体、纳米颗粒、脂质囊泡、转座子、逆转座子、外泌体等)。
在某些实施方案中,所述试剂盒或试剂组合也包含调控以上所述基因或蛋白的表达量的原件,例如但不限于启动子、药物调控启动子、蛋白调控启动子、组织特异启动子、蛋白内含子(intein)、转座子、核酸内切酶(例如cre-lox系统)、逆转座子。在某些实施方案中,所述的试剂盒或试剂组合,所包含的载体等,同时包含以上所述任一调控以上所述基因或蛋白的表达量的原件,以及编码Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4一个或多个蛋白的核酸。在某些实施方案中,所述试剂或试剂组合是用病毒(如逆转录病毒、慢病毒、腺病毒、腺相关病毒)感染细胞或用病毒载体(如逆转录病毒、慢病毒、腺病毒)转染细胞包含可操作地连接到合适的表达控制元件的因子序列,以在感染或转染后驱动细胞中的表达,并任选地整合到本领域已知的基因组中。在某些实施方案中,所述试剂或试剂组合包含利用转座子或逆转座子来递送以上所述基因以及控制基因表达量的启动子。在某些实施方案中,所述试剂或试剂组合得通过利用电穿孔法来递送包含转座子或逆转座子、控制蛋白表达的原件(启动子、蛋白内含子(intein)、核酸内切酶(例如cre-lox系统))和编码Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4一个或多个蛋白的核酸序列的载体。下面提供关于本发明的组合物和方法的进一步细节。
术语定义
在本发明中,除非另有说明,否则本文中使用的科学和技术名词具有本领域技术人员所通常理解的含义。并且,本文中所用的干细胞、生物化学、核酸化学、免疫学等领域的实验室操作步骤均为相应领域内广泛使用的常规步骤。同时,为了更好地理解本发明,下面提供相关术语的定义和解释。
如本文所述,术语“骨骼肌肉细胞“指的是命运已定,不能够分化成多种不同细胞的 细胞,例如成体细胞、生殖细胞、成体干细胞等,且不是胚胎干细胞、诱导多能干细胞
如本文中所使用的,术语”生物年龄“是指通过物种的健康指标和衰老指标来确定物种的衰老或年轻程度。
如本文所述,术语“表观时钟“或”表观遗传时钟“是指表观遗传为生物指标来衡量物种的生物年龄。
如本文中所使用的,术语“自我更新能力”是指细胞能够在多次传代中自我维持细胞特性,其细胞命运等性质没有显著变化。在一些实施方案中,传代的数量为至少约5,至少约10,至少约20、至少约30、至少约50或至少约100。
如本文中所使用的,术语“扩增”或“增殖”是指基本上不分化地维持细胞及最终细胞生长,即,使细胞群增加(例如至少2倍)而不存在伴随增加的分化。
如本文所使用,术语“前体细胞”或“组细胞”是指已有特定命运,只能分化成某个特定成体细胞或某个胚层的细胞。
如本文中所使用的,术语“体外”指人为环境,和在其中的过程和反应。体外环境通过试管和细胞培养进行例证,但不限制于此。
如本文中所使用的,术语“体内”指自然环境(即动物或细胞)和在其中的过程和反应。
如本文中所使用的,术语“基础培养基”是指能够支持细胞生长的任何培养基,通常包含无机盐、维生素、葡萄糖、缓冲体系和必需氨基酸,并且通常具有约280-330mOsmol的渗透压。
如本文中所使用的,术语“血清替代物”具有本领域技术人员公知的含义,其是指在维持未分化状态的情况下对干细胞进行培养的过程中,作为血清的替代物而使用的组合物或调配物。也即,血清替代物能够支持未分化干细胞的生长而无需补充血清。在某些示例性实施方案中,所述血清替代物包含:一种或多种氨基酸、一种或多种维生素、一种或多种微量金属元素。在一些情况下,血清替代物可以进一步包含一种或多种选自下列的成分:白蛋白、还原型谷胱甘肽、转铁蛋白、胰岛素等。血清替代物的非限制性实例包括但不限于,KnockOut TMSR(简称为KSR)、N-2、B-27、Physiologix TMXF SR、StemSure TM Serum Substitute Supplement等。
如本文中所使用的,术语“药学上可接受的载体或赋形剂”是指,在药理学和/或生理学上与受试者和活性成分相容的载体和/或赋形剂,其是本领域公知的(参见例如Remington′s Pharmaceutical Sciences.Edited by Gennaro AR,19th ed. Pennsylvania:Mack Publishing Company,1995),并且包括但不限于:pH调节剂,表面活性剂,离子强度增强剂,维持渗透压的试剂,延迟吸收的试剂,稀释剂,佐剂,防腐剂等。例如,pH调节剂包括但不限于磷酸盐缓冲液。表面活性剂包括但不限于阳离子,阴离子或者非离子型表面活性剂,例如Tween-80。离子强度增强剂包括但不限于氯化钠。维持渗透压的试剂包括但不限于糖、NaCl及其类似物。延迟吸收的试剂包括但不限于单硬脂酸盐和明胶。稀释剂包括但不限于水,水性缓冲液(如缓冲盐水),醇和多元醇(如甘油)等。佐剂包括但不限于铝佐剂(例如氢氧化铝),弗氏佐剂(例如完全弗氏佐剂)等。防腐剂包括但不限于各种抗细菌试剂和抗真菌试剂,例如硫柳汞,2-苯氧乙醇,对羟苯甲酸酯,三氯叔丁醇,苯酚,山梨酸等。在某些实施方案中,所述药学上可接受的载体或赋形剂是无菌等渗水性或非水性溶液(例如,平衡盐溶液或生理盐水)、分散液、悬浮液或乳液。在某些实施方案中,“药学上可接受的载体“也包含递送核酸的工具例如但不限于病毒载体、纳米颗粒、脂质囊泡、外泌体等。
如本文中所使用的,术语“约”是指在由本领域普通技术人员确定的特定值或组成可接受的误差范围内的值或组成,这将部分地取决于值或组成如何测量或确定,即测量系统的限制。例如,当“约”用于描述可测量的值(例如,物质的浓度、质量比等)时,意味着包含给定值的±10%、±5%、或±1%的范围。
下面将结合附图和实施例对本发明的实施方案进行详细描述,但是本领域技术人员将理解,下列附图和实施例仅用于说明本发明,而不是对本发明的范围的限定。根据附图和优选实施方案的下列详细描述,本发明的各种目的和有利方面对于本领域技术人员来说将变得明显。
附图说明
图1显示在再生过程中,Lin28a+卫星细胞参与所有类型的肌纤维。图1(A)显示的是他莫昔芬处理示意图。冷冻损伤前6天注射他莫昔芬,第1周每天注射一次,伤后第7天每隔一天注射一次,伤后第14天收样(B)对Lin28a-T2A-CreER;LSL-tdTO小鼠的胫骨前肌和比目鱼肌低温损伤,损伤后第14天收样。对照为对侧胫骨前肌或比目鱼肌。比例尺:200微米。(C)定量测定Lin28a-T2A-CreER;LSL-tdTO小鼠未损伤和损伤14天时胫骨前 肌和比目鱼肌中每100条肌纤维中tdTomato+(tdTO+)肌纤维的数量,对(B)中的图像进行量化。对于每张肌肉切片,至少有3个完整的视野被量化和平均。(D)低温损伤Lin28a-T2A-CreER;LSL-tdTO小鼠胫骨前肌,损伤后14天收样进行肌肉切片。肌肉切片共染色层粘连蛋白(灰色)、DAPI(蓝色)和Pax7(绿色)或Pax3(绿色)。箭头表示Lin28a+Pax7+或Lin28a+Pax3+细胞,三角箭头表示Lin28a+Pax3-或Lin28a+Pax7-细胞。比例尺:20微米。(E)定量检测Lin28a-T2A-CreER;LSL-tdTO小鼠损伤后14天时胫骨前肌中Pax7+,Lin28a+和Pax7+/Lin28a+双阳性细胞数量。对(D)中的图像进行量化。对于每一张肌肉切片,至少5个不同的区域被量化和平均。
(F)定量检测Lin28a-T2A-CreER;LSL-tdTO小鼠损伤后14天时胫骨前肌中Pax3+,Lin28a+和Pax3+/Lin28a+双阳性细胞数量。对(D)中的图像进行量化。对于每一张肌肉切片,至少5个不同的区域被量化和平均。
(G)损伤后14天时Lin28a-T2A-CreER;LSL-tdTO小鼠的比目鱼肌和胫骨前肌肌肉横断面免疫荧光染色,肌纤维I型(红色)、IIA型(绿色)、IIX型(蓝色)和IIB型(黑色)肌纤维与tdTO+荧光(箭头)比较。比例尺:100微米。
(H)未损伤14天时Lin28a-T2A-CreER;LSL-tdTO小鼠的胫骨前肌肌肉横断面免疫荧光染色,肌纤维I型(红色)、IIA型(绿色)、IIX型(蓝色)和IIB型(黑色)肌纤维与tdTO+荧光(箭头)比较。比例尺:100微米。
图2.Lin28a+细胞是在体外表现出强成肌潜能的肌肉卫星细胞。
图2A)流式细胞术分析损伤或未损伤的Lin28a-T2A-CreER;LSL-tdTO小鼠肌肉中Lin28a-tdTO+细胞情况。对照组为未损伤的Lin28a-T2A-CreER;LSL-tdTO小鼠。所有小鼠都被注射他莫昔芬,并在损伤14天后收样。
(B)损伤或未损伤Lin28a-T2A-CreER;LSL-tdTO小鼠中tdTO+细胞数量的量化,每组6 个重复。
(C)用共聚焦显微镜观察新鲜的流式细胞术分离的Lin28a-tdTO+细胞。比例尺:50微米。
(D)流式细胞术分析tdTO+细胞。首先用结合CD31(APC),CD45(BV421),VCAM1(PE),Sca1(FITC)荧光染料的抗体标记细胞。Lin28a-tdTO+细胞主要为VCAM1+CD31+Sca1+CD45-细胞。
(E)Pax7和MyoD免疫荧光染色(绿色)显示,生长培养基培养的Lin28a+细胞大部分表达Pax7和MyoD。比例尺:100微米。
(F)Lin28a+细胞在分化培养基在第1-2天开始融合、分化并形成多核肌管。比例尺:100微米。
(G)肌球蛋白重链(MHC)(绿色)和Hoechst(蓝色)染色显示,大多数Lin28a-tdTO+细胞分化成肌管后表达MHC。比例尺:50微米。
(H)定量RT-PCR显示,相对于生长培养基中未分化的Lin28a+细胞,分化培养基培养7d后,MyoG、Ckm、Myh1、Myh2、Myh4等肌源性分化相关基因被强烈激活,而Pax3、Pax7、MyoD、Myf5等肌源性祖细胞相关基因明显减少。
(I)免疫荧光图像展示的是从Lin28a-T2A-CreER;LSL-tdTO小鼠损伤14天后的胫骨前肌分离出常规(con)MuSCs(CellTrace Violet标记)、Lin28a+细胞,单独或者con MuSCs与Lin28a+细胞的1∶1混合,分化36h成肌管。比例尺:100微米。
(J)Lin28a+细胞与/或con MuSCs融合形成的肌管直径的相对频率分布。每组定量200支肌管,P=6.15×10 -7。右图:肌管融合指数的量化。每组至少有3个不同的领域被量化。
(K)Western blot检测Pax3、Pax7和MyoD蛋白在Lin28a+细胞中的表达,定量RT-PCR检测到在生长培养基(GM)中增殖时,Lin28a+细胞中相对于con MuSCs的Pax3、 Pax7、MyoD、Myf5和Twist1的表达水平的变化。Gapdh作为上样对照。
(L)Western blot检测Lin28a+细胞源性肌管中MHC和MyoG蛋白的表达,定量RT-PCR检测在分化培养中分化后,Myf5、Twist1、Ckm、MyoG、Myh1/2/4/7在Lin28a+和con MuSCs源性肌管中的表达水平。Gapdh作为上样对照。
*:P<0.05;**:P<0.01;***:P<0.001.
图3.转录组分析显示Lin28a促进MuSC去分化。
(A)成体Lin28a+MuSCs、成体Pax7+MuSCs和胚胎Pax7+MuSCs转录组的聚类分析。每组3个重复。
(B)(A)中聚类2的GO分析。
(C)(A)中聚类3的KEGG分析。
(D)(A)聚类5的GO分析。
(E)Lin28a+MuSCs、Pax7+胚胎和Pax7+成体MuSCs的Mef2c基因附近CpG位点甲基化水平(信号值0-100%)。
(F)Lin28a+MuSCs、Pax7+胚胎和Pax7+成体MuSCs的Myf5基因附近CpG位点甲基化水平(信号值0-100%)。
(G)Lin28a+MuSCs和常规MuSCs转录组的聚类分析。每组3个重复。
(H)Lin28a+MuSCs相对于con MuSCs差异表达基因的火山图分析。红色:上调>2倍且p<0.05;绿色:下降>2倍且p<0.05。
(I)三种原始肢体中胚层祖转录因子Meis2、Six1、Eya4、tep1和Mdm4在Lin28a+MuSCs中相对于con MuSCs的表达水平。(J)与con MuSCs相比,在Lin28a+MuSCs中其他非传统PAX7肌肉祖细胞的标记因子Peg3和Pdgfra的表达水平。(K)与 con MuSCs相比,Lin28a+MuSCs中肌源性末端分化标志物的表达水平,包括许多肌钙蛋白(Tnni1,Tnnt1,Tnnt3)、肌集钙蛋白(Casq1)、肌肉多糖(Sgcd)和原肌凝蛋白(Tpm3)。(L)基因集富集分析鉴定的Lin28a+MuSCs(黑色)或con MuSCs(灰色)富集特征。(M)展示了有代表性的GSEA配置文件以及标准化富集分数(NES)和P值。*:P<0.05;**:P<0.01;***:P<0.001
图4.Lin28a促进MuSCs自我更新。图4(A-B)表达空载体(CTRL)或Lin28a的逆转录病毒感染P20(con)或P10(Lin28a+)后con MuSCs(A)和Lin28a-tdTO+MuSCs(B)的细胞增殖率。(P表示传代数)。(C-D)定量RT-PCR检测过表达Lin28a的con MuSCs(C)或Lin28a-tdTO+MuSCs(D)相对于空载体(CTRL)的con MuSCs或Lin28a-tdTO+MuSCs的肌源分化标记。数据为平均值±SEM,3个独立实验。图(E)展示Pax7-CreERT2(PC)和Pax7-CreER;NFKB-LSL-Lin28a(PM)小鼠损伤7天后,胫骨前肌肌肉炎症消退和肌肉再生的照片。比例尺:5毫米。(F)冻伤后第7天和第14天,PC和PM小鼠胫骨前肌肌肉切片的苏木精和伊红染色。比例尺:300微米。(G)PM和PC小鼠受损的胫骨前肌MyoD、Pax7和Ki67的免疫荧光染色。比例尺:20微米。(H)损伤胫骨前肌肌肉切片染色MyoD和Pax7阳性细胞百分比的量化。对于每一块肌肉,至少有7个不同的区域被量化。*:P<0.05;**:P<0.01;***:P<0.001.
图5.Lin28a-T2A-CreERT2小鼠的生成及谱系追踪评价。(A)产生Lin28a-T2A-CreERT2小鼠的靶向策略。CreERT2片段插入Lin28a的最后一个外显子和3′UTR之间。(B)Lin28a-T2A-CreERT2小鼠基因型结果。(C)Lin28a-T2A-CreER;LSL-tdTO小鼠睾丸经14天谱系追踪显示PLZF+精原干细胞(SSCs)亚群为tdTO+。比例尺:50微米。(D)体外培养后不久,常规(Con)MuSCs和tdTO+MuSCs中Cre蛋白的Western blot分析。Lin28-Cre细胞是过度表达Cre蛋白的阳性对照细胞。体外培养Con MuSCs和tdTO+ MuSCs后不久,Lin28a表达消失(图7A)。(E)Western blot分析野生型(WT)、LSL-tdTO、Lin28a-T2A-CreERT2、Lin28a-T2A-CreERT;LSL-tdTO小鼠睾丸中的Lin28a蛋白。Lin28a-T2A-CreERT2小鼠表现为内源性Lin28a的低带和Lin28a-T2A的高带。用Lin28a/GAPDH比值对两个波段的强度进行量化。GAPDH蛋白为上样对照。
图6.新鲜分选Lin28a+MuSCs的体外分化。
(A)相差和荧光显微镜评估体外分化后的Lin28a+细胞在成脂、内皮或成骨条件下的变化。碱性磷酸酶(ALP)染色显示,tdTO+细胞在成骨条件下分化10天后仍表达MyoD。黄色箭头表示一些经ALP轻度染色和MyoD共染色的tdTO+细胞。比例尺:100微米。
(B)成脂条件下培养后每个视野中油红染色阳性细胞和MyoD阳性细胞的比例。数据为平均值±SEM,有3个独立实验,每次试验取5个视野的平均值。
(C)内皮条件下培养后每个视野中MyoD阳性细胞比例。数据为平均值±SEM,有3个独立实验,每次试验取5个视野的平均值。
(D)成骨条件下培养后每个视野中ALP阳性细胞和MyoD阳性细胞的比例。数据为平均值±SEM。数据为平均值±SEM,有3个独立实验,每次试验取5个视野的平均值。
图7.常规和Lin28a+MuSCs的基因表达。
(A)Western blot分析小鼠C2C12成肌细胞、常规(con)MuSCs和Lin28a+细胞在肌源性生长培养基(GM)和分化培养基(DM)中的Lin28a蛋白。LTS是一个过表达Lin28a的阳性对照细胞系。一旦细胞在培养基中培养,无论是生长还是分化培养基,Lin28a表达都消失无法检测到,以GAPDH蛋白作为上样对照。
(B)定量RT-PCR显示Lin28a在常规(con)MuSCs和Lin28a+细胞在肌源性生长培养基(GM)和分化培养基(DM)中的表达水平。数据为平均值±SEM,有3个独立实验。
(C)与常规MuSCs相比,过表达Lin28a后con MuSCs基因差异表达的火山图分析。
(D)对胚胎和成体Pax7+MuSCs的Lin28a+MuSCs进行亚硫酸氢盐全基因组测序(WGBS)分析(有3个独立实验)。(E)图3A中聚类2的GO和KEGG分析。(F)图3A中聚类3的GO和KEGG分析。(G)图3A中聚类5的GO和KEGG分析。(H)定量RT-PCR分析GM中新鲜筛选的con MuSCs和Lin28a+MuSCs中let-7靶蛋白(Hmga2、Igfbp2)、Igf2和let-7通路相关基因(Zcchc6、Zcchc11、Dis3l2)的表达。(I)Western blot分析在过表达Lin28a的con MuSCs或Lin28a-tdTO+MuSCs中相对于空载体(CTRL)的con MuSCs或Lin28a-tdTO+MuSCs,Lin28a和let-7靶蛋白IGF2BP2和HMGA2的表达。(J)定量RT-PCR分析相对于空载体(CTRL),过表达Lin28a的Lin28a-tdTO+MuSCs中脂肪、成骨和血管基因的表达。数据为平均值±SEM,有3个独立实验。(K)通过基因集富集分析,在con MuSCs过表达Lin28a(黑色)或空载体(灰色)中富集。(L)展示了有代表性的GSEA配置文件以及标准化富集分数(NES)和P值。Ns,没有显著差异.*:P<0.05;**:P<0.01;***:P<0.001.
图8.在E12.5胚胎肢体中的Lin28a+细胞。
在E11.5用他莫昔芬(TMX)处理Lin28a-T2A-CreER;LSL-tdTO胚胎,在E12.5收样。白色箭头表示胚胎肢体的Lin28a+肢体祖细胞,黄色箭头表示胚胎肢体的Lin28a+肌纤维。比例尺:500微米。
图9显示了年轻化基因的归类表,包括年轻化转录因子网络基因、年轻化表观修饰网络基因、年轻化信号配体、受体及相关激酶网络的基因、年轻化核酸结合因子网络基因,其表达能够使非多能性细胞年轻化、逆转衰老、逆转非多能性细胞耗竭、逆转非多能性细胞的无能性、延长非多能性细胞寿命、增加非多能性细胞传代的次数。
图10显示Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l病毒对比空载体病毒,在感染48小时后,激活Lin28a-tdTomato+阳性肌肉细胞的程度。
图11显示Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l病毒对比空载体病毒,在感染72小时后,激活Lin28a-tdTomato+阳性肌肉细胞的程度。
图12显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老小鼠肌肉细胞(MuSCs-6G)和空载体对照的衰老小鼠肌肉细胞(MuSCs)的最终SA-Bgal+衰老细胞比例。
图13显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老小鼠肌肉细胞(MuSCs-6G)和空载体对照的衰老小鼠肌肉细胞(MuSCs)在FGF2刺激后的3天增殖率与细胞寿命。衰老小鼠肌肉细胞(MuSCs)显然已无能,到了寿命终点,无法增殖,无法传代。转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老小鼠肌肉细胞(MuSCs-6G)则恢复了FGF2感应能力和增殖能力,还能传代>10次。
图14A显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老人类肌肉细胞(6病毒)和空载体对照的衰老人类肌肉细胞(对照)在FGF2刺激后的%衰老细胞面积。图14B显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老人类肌肉细胞(6病毒)和空载体对照的衰老人类肌肉细胞(对照)在FGF2刺激后的%衰老细胞数量。6个基因显著逆转了衰老细胞比例。
图15显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老小鼠肌肉细胞(6病毒)和空载体对照的衰老小鼠肌肉细胞(空载对照)都显著过表达了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)。***P<0.001
图16显示被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老人类肌肉细胞(6病毒)和空载体对照的衰老人类肌肉细胞(空载对照)都显著过表达了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)。***P<0.001
具体实施方式
现参照下列意在举例说明本发明(而非限定本发明)的实施例来描述本发明。
除非特别指明,本发明中所使用的分子生物学实验方法和免疫检测法,基本上参照J.Sambrook等人,分子克隆:实验室手册,第2版,冷泉港实验室出版社,1989,以及F.M.Ausubel等人,精编分子生物学实验指南,第3版,John Wiley&Sons,Inc.,1995中所述的方法进行;限制性内切酶的使用依照产品制造商推荐的条件。本领域技术人员知晓,实施例以举例方式描述本发明,且不意欲限制本发明所要求保护的范围。
以下实施例涉及的主要试剂的来源如下:
案例1
对于幼年和组织再生之间的保守关系,查尔斯·达尔文是第一个提出来的人。Lin28a是一个使组织年轻化的候选因子,以其在体细胞重编程和胚胎发生中的功能而闻名,但其在骨骼肌中的功能尚不清楚。通过谱系追踪,我们发现一群罕见的表达Lin28a的肌卫星细胞,它们在增殖过程中,可以通过部分表达P ax3或Pax7的来应对急性损伤,并在肌肉再生过程中贡献为所有类型的肌纤维。与传统的MuSCs(肌肉干细胞)相比,Lin28a+MuSCs表达更多的Pax3,并在体外显示出增强的生肌能力。在表观遗传时钟方面,根据DNA甲基化谱,成年Lin28a+MuSC位于成年Pax7+MuSC和胚胎Pax7+成肌细胞之间。我们发现,过表达Lin28a+的MuSCs上调了几种胎儿肢芽中胚层转录因子,并且可以在体外和体内维持稳定的去分化的年轻状态,增强干细胞自我更新和应激反应。
介绍
尽管我们对多能性、体细胞重编程和转分化的理解取得了巨大进步,但干细胞自我更新的 分子基础仍不清楚。特别是,没有发现单个因子可以使体细胞重返青春。利用Oct4、Sox2、Klf4、Myc等多个重编程因子实现体细胞重返青春的潜在风险是:若细胞彻底重返青春,获得多能性的干性,就会产生畸胎瘤。若能发现哪一个单个干细胞因子能让细胞部分重返或维持青春,且在成体细胞正常表达又不致癌,将会是这个领域的突破。Lin28是最早被发现与幼年发育和生长程序相关的基因之一,这一概念与干细胞自我更新和分化相关 1-3,并且可以由lin28-let-7通路 4-8解释一部分机制。
骨骼肌具有很强的再生能力。骨骼肌卫星细胞(MuSCs)是一群常驻干细胞,嵌入肌肉纤维膜和基底膜之间,可以自我更新,是骨骼肌再生所必需的 12.在受伤的肌肉中,MuSCs被激活并开始增殖为命运决定的的肌源性祖细胞 13.这些活化的肌源性细胞与现有的肌纤维融合,或从头形成肌纤维,以实现肌肉修复和再生 14.尽管仅在肌肉再生期间观察到哺乳动物正常成年组织中Lin28a的上调 15,还不清楚什么细胞类型表达Lin28a以及Lin28a是否在维持MuSC自我更新中发挥作用。这部分是因为尚未对Lin28a进行严格的谱系追踪研究。
在这篇文章中,我们考虑到Lin28a mRNA在转录后受到调控 16的事实,采用“自切割”CreERT2重组酶偶联Lin28a蛋白以追踪成年鼠肌肉中的Lin28a+细胞谱系。我们惊奇的发现了一群以前未知且罕见的MuSCs,它们可以在成年肌肉中形成所有类型的肌纤维,具有胎儿肢体肌肉祖细胞的特征。Lin28a+MuSCs表现出更高的应激反应能力和自我更新能力,并具有增强的肌肉生成能力。可以在损伤应激条件下激活Lin28a表达的转基因小鼠,也显示Lin28a可以促进体内骨骼肌再生。
结果
Lin28a+卫星细胞在再生过程中可以生成所有类型的肌纤维
为了观察Lin28a是否在特定的骨骼肌肉细胞亚群中表达,我们使用同源重组在Lin28a蛋白C端偶联了“自切割”T2A-CreERT2,构建了人工Lin28a-T2A-CreERT2转基因小鼠(图5A,B),并与Rosa26-loxp-stop-loxp-tdTomato(tdTO)报告小鼠杂交,以追踪肌肉损伤后Lin28a+细胞的命运。经过大约20天的追踪(图1A),我们发现未受伤小鼠的胫骨前(TA)肌肉在肌肉间质中有少量Lin28a-tdTO+肌纤维和Lin28a-tdTO+单核细胞(图1B),表明Lin28a+细胞存在于肌肉间质中,并且在正常肌肉稳态期间可以与约10%的现有TA肌纤维融合(图1B)。损伤后,Lin28a-tdTO+肌纤维和Lin28a-tdTO+单核细胞的数量显着增加(图1B、C),表明损伤刺激了Lin28a+细胞增殖,并且使它们与现有肌纤维的融合数增加了超过3倍的量(图1C)。在另一个更新较慢的肌肉群(比目鱼肌)17中,Lin28a-tdTO+肌纤维的数量在受伤后也显着增加(图1B、C)。为了确保我们的Lin28a-tdTO+谱系追踪可以特异且真实的反应内源lin28a的表达,我们检查了tdTO+细胞在睾丸中的分布。结果,我们发现在谱系追踪20天后,只有一部分位于生精小管外围的PLZF+精原干细胞被特异性标记为Lin28a-tdTO+细胞(图5C)。在体外培养Lin28a+细胞时,Lin28a蛋白和Cre蛋白的表达同时消失,表明“切割”的T2A-CreERT2的周转速度足够快,可以高保真地准确标记Lin28a+细胞(图5D)。因为此人工操作可干扰Lin28a末端和3′UTR,Lin28a活性有可能略微提升。为了确保内源性Lin28a的表达不受偶联的T2A-CreERT2的干扰,我们检查了杂合Lin28a-T2A-CreERT2小鼠的总Lin28a蛋白表达,发现野生型和Lin28a-T2A-CreERT2;LSL-tdTO小鼠之间虽有些差异,但差异不太大(图5E)。
Pax7通常被认为是成体肌肉干细胞(MuSCs)19的决定性标志物,但也有报道表明,一些MuSCs不表达Pax7,而是表达Pax320-22。因此,我们试图确定Lin28a-tdTO+单核细胞是否表达Pax3或Pax7。免疫荧光结果显示,所有Lin28a-tdTO+单核细胞都位于基底膜和肌原纤维膜之间,与Pax7+肌肉卫星细胞的位置相似,但只有一小部分共表达Pax7或Pax3(图1D)。总体而言,Lin28a-tdTO+细胞仅占Pax7+或Pax3+MuSC池的<30%(图1E、F),表明它们仅占Pax7/Pax3+MuSC群体的一小部分。定量显示,37.1%的Lin28a-tdTO+单核细胞共表达Pax7(图1E),而40.6%的Lin28a-tdTO+单核细胞共表达Pax3(图1F),其余的Lin28a-tdTO+细胞是Pax7-Pax3-。总的来说,我们的蛋白质印迹和谱系追踪结果表明,至少一些卫星细胞或MuSCs表达Lin28a,但不表达Pax7和Pax3,并且这些Lin28a+MuSCs可以通过瞬时增殖为Lin28a-Pax7+/Pax3+MuSCs来应对损伤,从而在肌肉再生中有所贡献。
骨骼肌纤维在终末分化时表现出一定程度的代谢和功能多样性,每个肌肉群包含不同类型的肌纤维,例如I、IIa、IIx和IIb型肌纤维。这些肌纤维可以大致分为慢肌纤维(I)和快肌纤维(IIa,IIx,IIb),或氧化性(I,IIa)和糖酵解(IIx,IIb)23。鉴于Lin28a-tdTO+标记在快肌TA和慢肌比目鱼肌中的差异结果,我们接下来鉴定了由Lin28a-tdTO+细胞形成的肌纤维类型是否具有特异性。未受伤小鼠肌纤维的免疫荧光染色显示,在20天的追踪窗口中,Lin28a-tdTO+细胞可以生成TA肌肉中的IIa、IIx和IIb型肌纤维(图1H),但没有生成比目鱼肌中的I型肌纤维(图1B、C)。然而,受伤后,Lin28a-tdTO+细胞可以生成慢肌比目鱼肌和快肌TA肌肉中所有类型的肌纤维(图1G)。这些结果表明,在体内骨骼肌再生过程中,Lin28a+MuSCs可以增殖分化为所有类型的肌纤维。
Lin28a+细胞是MuSC,并且在体外表现出增强的生肌潜能
为了进一步确定Lin28a-tdTO+单核细胞相对于传统Pax7+MuSC的特性,我们决定使用流式细胞术来分析这群细胞。在tdTomato通道上,我们观察到tdTO+细胞仅在肌肉损伤后显着增加(P<0.001)。为了进一步表征tdTO+细胞,我们使用了不同的细胞表面抗体:CD31(内皮谱系)、CD45(造血谱系)、Sca1(中胚层)、VCAM1(传统的Pax7+MuSC)来鉴定这些细胞(Liu等,2015)。流式细胞术分析显示,tdTO细胞主要是CD45阴性(~90%)(图2D)和VCAM1阳性(>99.99%),类似于Pax7+MuSC(Liu等人,2015)。然而,应该注意的是,Lin28a-tdTO+细胞仅占VCAM1+细胞总量的一小部分(0.73%)。不同之处在于,传统的MuSC仅是CD31-和Sca1-,而约60%的Lin28a+细胞是CD31阳性,约70%是Sca1阳性,而其余的则是像传统的Pax7+MuSC一样的CD31/CD45-Sca1-,(图2D).这些结果表明,大多数Lin28a+细胞可能是更原始的VCAM1+CD31+Sca1+中胚层祖细胞。
鉴于这些表面标志物谱,我们尝试在各种分化培养基中将新鲜分选的Lin28a+细胞分化为不同的细胞谱系,比如骨骼肌、血管内皮细胞、脂肪细胞或成骨细胞。结果表明,Lin28a+细胞在成脂培养基、成骨培养基和内皮细胞培养基中分化后,大部分细胞发生衰老或凋亡,不能进一步分化,尽管一小部分(~20%)确实分化为碱性磷酸酶阳性的成骨细胞(图6B-E)。但是,所有细胞都保留了MyoD表达,这表明它们即使在其他谱系分化诱导的条件下也能保持生肌分化潜能(图6B-E)。
为了进一步比较Lin28a+细胞与VCAM1+CD31-Sca1-Pax7+MuSC(以下称为常规MuSC)的肌肉分化潜能,我们分别在肌肉干细胞扩增培养基和分化培养基中,增殖和分 化Lin28a+细胞,然后进行免疫荧光染色。结果表明,100%的Lin28a+细胞在增殖时可以表达肌肉干/祖细胞标志物MyoD和Pax7(图2E),并且它们在分化时可以稳健地形成,表达肌球蛋白重链(MHC)蛋白的多核肌管(图2F-L)。在肌源性分化过程中,Pax3、Pax7、MyoD、Myf5等许多肌肉干/祖细胞标志物的表达下调,而肌肉肌酸激酶(Ckm)和肌球蛋白等许多肌源性分化相关基因的表达重链(Myh1、Myh2和Myh4)显着上调(图2H)。这些结果表明,Lin28a+细胞可以在体外,以骨骼肌祖细胞的形式增殖,并且能够进行肌源性融合并分化为多核肌管。
为了比较Lin28a+细胞与常规MuSCs的融合效率,我们培养了Lin28a+细胞、常规MuSCs和1∶1混合细胞,并测量了它们在肌原性分化时的融合指数。有趣的是,我们观察到,与传统的MuSC衍生的肌管相比,Lin28a+细胞衍生的肌管直径更厚,因此更肥大(图2I、J;P=6.15 x 10-7)。此外,我们的结果表明,Lin28a+细胞的融合指数高于传统的MuSCs,表明Lin28a+细胞具有更高的肌肉生成能力。
为了进一步比较Lin28a+细胞和传统MuSCs之间的分子差异,我们通过qRT-PCR和蛋白质印迹分析比较了两组细胞的肌原性因子表达。我们发现,与传统的MuSC相比,Lin28a+细胞表达更多的Pax3蛋白(图2K),而在增殖过程中,Pax7蛋白和MyoD蛋白的表达水平相似(图2K)。分化后,Lin28a+细胞来源的肌管比传统的MuSC来源的肌管表达更多的MHC蛋白和MyoG蛋白(图2L)。mRNA的表达量与WB类似,其中Lin28a+细胞在扩增培养基中表达的Pax3水平显着高于常规MuSC(图2K)。终末分化后,Lin28a+细胞衍生的肌管表达的Myf5、MyoG、Ckm、Myh1和Myh4的水平高于传统MuSC衍生的肌管(图2L)。值得注意的是,即使在体外培养时,Lin28a+ 细胞中的Lin28a表达淬灭后,这些早期编程导致的肌原性差异仍然存在,因为无论是在扩增培养时,还是在分化时都无法检测到Lin28a蛋白和mRNA的表达(图7A,B)。综上所述,这些结果表明,无论在功能还是分子水平上,这些早期编程的Lin28a+细胞都与常规MuSC不同。
表观基因组和转录组谱显示Lin28a去分化MuSCs
在胚胎发生和胎儿发育过程中,Lin28a和Pax3均是典型的表达基因。鉴于先前的研究表明,在哺乳动物中,DNA甲基化表观遗传时钟可以专一地指示,从胚胎干细胞到成年细胞,再到衰老细胞的生物学衰老,于是,我们想在全基因组水平上了解一下Lin28a+细胞的表观遗传图谱。因此,我们通过全基因组亚硫酸氢盐测序,将Lin28a+MuSCs与胚胎和成人Pax7+MuSCs(N=3各)进行了比较(WGBS;图7D)。聚类分析表明,虽然成年Lin28a+MuSCs与成人Pax7+MuSCs更相似,但它们也与胚胎Pax7+成肌细胞有些相似(图3a)。有5个差异甲基化区域的簇(DMRs),而不是随机偶然预期的8个簇,这表明MuSC子集之间的随机分布的一致性,显示出比预期更高的信息结构(图3A)。簇1和4表明两种成人MuSCs的相似性。簇3由6573个DMRs和5883个基因组成,表明成年Lin28a+MuSCs和胚胎Pax7+成肌细胞之间存在惊人的相似性。聚类2和簇5表明了Lin28a+细胞作为MuSCs的一个独特子集的表观遗传独特性。
特别是,根据GO基因富集分析,簇2的肌肉发育和上皮化基因高度富集(图3B和7E),这表明Lin28a+细胞已经沉默了许多骨骼肌分化的基因,以及诱导终末分化的基因,说明Lin28a+MuSCs比Pax7+MuSCs更容易去分化。根据KEGG分析,簇3中高度富集参与成人肌肉相关钙信号收缩、神经肌肉连接轴突引导信号、磷脂酶D信号26和肥大生长 的生长激素信号(图3C和7F)。这些结果证实了成年Lin28a+MuSCs类似于胚胎Pax7+成肌细胞,沉默了许多肌肉成熟相关基因。簇5高度富集了参与细胞迁移、血管化或血管生成的基因(图3D和7G),这表明Lin28a+细胞类似于原始的体节祖细胞,它们具有高度的迁移能力和血管生成能力。27,28例如,相对于胚胎和成人Pax7+MuSCs,Lin28a+中原始肌转录组因子Mef2c位点29、30相对去甲基化(图3E)。然而,Lin28a+MuSCs仍然像成人Pax7+MuSCs一样起源于成人,例如它们在肌原性转录因子Myf5基因附近,相似的甲基化模式(图3F)。总的来说,Lin28a+MuSCs与成人Pax7+MuSCs更相似,但具有独特的胚胎样特征,并且在表观基因组水平上去分化。
然后,我们进行了RNA-seq分析,以确认成年Lin28a+和Pax7+MuSCs之间的异同性。聚类分析(N=3各)显示,Lin28a+细胞在转录组上与传统的Pax7+MuSCs有很大差异(图3G)火山图分析显示,78个基因显著上调>2倍(P<0.05),83个基因显著下调>2倍(P<0.05)(图3H)。上调的基因中有3个原始肢体芽中胚层祖细胞转录因子31-36:Meis2(~27倍)、Six1(~10倍)和Eya4(~3倍),表明Lin28a+细胞与胎儿肢体肌肉祖细胞相似(图3I)。此外,Lin28a+细胞也具有更高的Mdm4(~25倍)和Tep1(~6倍)(图3I)。有趣的是,显著的let-7靶点如Igf2bp2和Hmga2并没有显著上调(图7H,I)。我们还检测了其他非常规的,不依赖Pax7的肌肉祖细胞标记基因Peg3和Pdgfra的表达20,37,发现与传统的Pax7+MuSCs相比,lin28a+细胞并没有显著差异(图3J)。相比之下,肌源性终末分化的标记基因集是下调最显著的基因集之一,包括肌钙蛋白和原肌凝蛋白(图3K),证实了Lin28a+MuSCs相对于Pax7+MuSCs发生了去分化。基因集合富集分析(GSEA)显示,在Lin28a+细胞中,一些干细胞信号上调,包括Notch通路、神经祖细胞(Meissner_NPC_ICP_H3K4me3)以及造血干细胞和祖细胞的信号(Eppert_HSC_R和Eppert_Progenitor)(P<0.05;图3L)。在Lin28a+细胞中,许多应激 反应通路也表达上调:PERK介导的未折叠蛋白反应,TNF-NFκB和IL6-STAT3介导的促炎应激反应,以及FoxO介导的氧化应激反应(图3L)。相反,与传统的MuSCs相比,Lin28a+细胞中的mTOR通路成分、Ca2+信号相关信号和肌源性分化标志物(Myogenic_Targets_of_Pax3),都下调了,这些都意味着肌源性终末分化被抑制(图3L,M)。总的来说,我们的分析结果表明,与传统的Pax7+MuSCs相比,Lin28a+细胞表现出更高的去分化和应激反应性。为了检测这些特征是否只是与Lin28a的表达相关,还是由于Lin28a的表达造成的,我们在传统的MuSCs中过表达了Lin28a 2倍以上,并重复了分析(图7C)。GSEA显示,Lin28a过表达再次导致干性信号增加,如Wnt、Notch和刺猬信号通路,以及e2f相关的有丝分裂或DNA复制信号(图7K,L)。有趣的是,Lin28a也上调了一些缺氧信号通路,即在HIF1A RNAi(Manalo_Hypoxia)上下调的基因。相比之下,Lin28a显著下调了肌原性分化特征(Myogenic_Targets_of_Pax3;Striated_Muscle_Contraction)(图7K,L),表明Lin28a促进了MuSCs的自我更新和去分化。
Lin28a促进MuSCs的自我更新,使老年人类肌肉祖细胞重返青春。
考虑到Lin28a+细胞体外培养后Lin28a的表达消失,我们在Lin28a-tdTO+细胞和传统MuSCs中用带有CMV启动子的慢病毒载体重新过表达了Lin28a 2倍以上,以探索Lin28a在肌肉干细胞中的功能。与空载体对照和常规MuSCs相比,在3天内,过表达Lin28a的tdTO+细胞的增殖自我更新能力略强(图4A、B)。qRT-PCR也证实了这些发现(图4C,D),显示Lin28a过表达后,与分化相关的基因如Ckm、MyoG、Myh1、Myh2、Myh4显著降低(图4C、D)。此外,我们还测试了过表达是否改变了tdTO+细胞的谱系分化潜能,通过将细胞分别向脂肪细胞、成骨细胞和内皮细胞分化。根据qRT- PCR结果,我们发现过表达Lin28a增强了成骨分化能力,对成脂分化能力抑制较弱但很显著,对血管细胞分化影响不大(图7J)。这些结果表明,培养tdTO+细胞中Lin28a的活化可以部分模拟新鲜分选的Lin28a+细胞的特征,比如显示出微弱的成骨倾向,但没有脂肪形成或血管分化(图6和7J)。综上所述,这些结果表明,Lin28a在Lin28a+MuSCs中的功能可能是促进自我更新,同时保留增强的成肌甚至成骨分化潜能。
Lin28a在体内促进MuSC去分化和肌肉再生
我们的体外实验表明,Lin28a过表达2倍以上,3天内能促进小鼠肌肉干细胞的自我更新和去分化而不影响它们的肌生成能力,于是我们想知道,在成体Pax7+肌肉干细胞中过表达Lin28a是否也可以增强体内肌肉再生。
因此,我们构建了NFKB-loxp-停止-loxp-Lin28a转基因小鼠(mt190),并与Pax7-CreERT2小鼠杂交,获得杂合子PM(Pax7-CreERT2;mt190)小鼠,该小鼠仅在肌肉损伤期间才能在Pax7+MuSCs中表达Lin28a,并在炎症信号消退后关闭它。遵循与我们的谱系追踪实验相同的注射TMX和损伤的计划(图1A),我们在对TA肌肉进行双盲冷冻损伤试验后的第7天和第14天测试了PM小鼠的再生能力。在损伤后7天,视觉上已经很明显,PM小鼠比PC小鼠(Pax7-CReERT2)的肌肉修复好,炎症程度更轻(图5K)
对损伤后肌肉进行苏木精和伊红染色,PM小鼠损伤后7-14天,PM小鼠的TA肌肉有更小的粉红色坏死区域,和更大的中央核肌纤维再生区域(图5L)。这些结果表明,Lin28a显著增强了PM小鼠的肌肉再生能力。为了确定PM小鼠的肌肉再生的哪个阶段得到了增强,我们对TA肌肉切片进行了免疫荧光染色。我们发现,与我们的观察一致,Lin28a过表达促进MuSCs自我更新,因为PM小鼠TA肌肉中增殖的Pax7+MuSCs和MyoD+成肌细胞的数量明显高于PC小鼠(图5N,O)。这些结果表明,Pax7+MuSCs损伤诱导 Lin28a过表达促进了它们的自我更新和增殖,从而增强了骨骼肌在急性损伤后的再生能力。
讨论
Lin28a主要在胚胎发育过程中表达,随着发育过程而下降,而其异位过表达可促进各种成体组织的再生11,49。然而,其在成人组织再生中的内源性表达和作用迄今尚不清楚。通过谱系追踪,我们发现了一组之前未被确认的表达Lin28a的骨骼MuSCs,它们可以对肌肉损伤做出反应,并显示出增强的再生潜力。有趣的是,这一群细胞并不是传统的Pax7+MuSCs,因为它们具有独特的表观基因组和转录组谱,表明它们位于成人和胚胎的Pax7+肌肉干细胞之间。此外,我们证实,与传统的Pax7+MuSCs相比,Lin28a+细胞表达了更多的Pax3和肢芽中胚层转录因子,如Meis2、Six1和Eya4。Pax3通过调节Six1和Eya家族27、35、36、50-53来调节肢体肌肉发育,而Lin28a在小鼠胚胎发生期间肢体芽发育的早期阶段表达54,55。与这些报道一致的是,我们还追踪到了胚胎肢体发育过程中的Lin28a+细胞(图8),发现迁移的肢体肌肉祖细胞,他们也会产生肢体肌纤维。Lin28a上调Notch信号,增强MuSCs的自我更新和应激反应能力,同时抑制终末分化,进一步支持了Lin28a可以逆转表观遗传时钟,维持稳定的去分化状态的观点。为了在体内进一步证实这些发现,我们在冰冻损伤后的Pax7+细胞表达了炎症诱导的Lin28a,使得Lin28a仅在经历损伤和炎症的MuSCs中被激活。我们发现,损伤激活的Lin28a增强了Pax7+和MyoD+肌肉祖细胞的数量,从而加速了坏死区的消退,改善了冷冻损伤后的肌肉再生。这扩展了我们对Lin28a的认识,它之前被认为只是在重编程和再生过程中促进细胞增殖5,56,57。鉴于Lin28a+细胞的数量较少(VCAM1+细胞的~为 0.7%),Lin28a+细胞的消融很可能对稳定状态的成年肌肉质量、数量和肥大没有影响。虽然先前的报道发现Lin28a本身对肌的发生并不是必需的,但它并不排除Lin28a在少数musc中维持稳定去分化状态的重要性,正如我们通过谱系追踪所显示的那样。此外,先前的研究结果表明,Lin28a在小鼠肢芽和尾芽中胚层的发育中具有重要的生理作用55,58。鉴于我们在Lin28a在人类肌肉祖细胞中的发现,未来的工作也可能集中在Lin28+细胞在灵长类动物发育过程中的作用上。
当我们通过流式将Lin28a-tdTO细胞分选出来,在体外培养后,发现Lin28a的表达淬灭。为了分辨是Lin28a表达还导致的表型还是只是有相关性,我们重新在Lin28-tdTO和常规MuSCs中,过表达了lin28a,结果发现Lin28a可以促进成年MuSCs的去分化和增殖。此外,在Lin28a重新激活后,常规MuSCs的生肌能力也得到显著改善,鉴于MuSCs的生肌能力随着发育和衰老而稳步下降,这一点很重要,或许可以用来改善老年人肌肉干细胞的生肌能力。
材料和方法
转基因小鼠
构建Lin28a-T2A-CreERT2转基因小鼠的策略如图S1A所示。供体载体的构建:将Lin28a第三个外显子延伸到最后一个内含子的基因组片段和Lin28a 3′UTR中的基因组片段分别作为两个同源臂。将Frt-Neo-Frt-last exon-2A-CreERT2表达盒插入两条臂之间以获得供体载体。将供体载体电穿孔到小鼠胚胎干细胞中。通过同源重组,供体载体可以 在Lin28a的最后一个外显子和3′UTR之间插入一个Frt-Neo-Frt-2A-CreERT2片段。通过G418选择,选择目标ES细胞克隆。接下来,删除所选ES细胞克隆中的Frt-Neo-Frt表达盒,并将所得ES细胞注射到C57BL/6白化胚胎中。带有转基因的小鼠可以通过其毛色识别,再通过与正常C57BL/6小鼠交配扩增,同时鉴定基因型。在构建NFκB-LSL-lin28a-T2A-luc(No.mt190)转基因小鼠时,供体载体的构建:将NF-κB反应元件及其下游TAp启动子(单纯疱疹病毒的最小TA启动子)65插到LSL片段的上游。LSL片段包含2个LoxP位点和2个LoxP位点之间的3个SV40晚期polyA片段。位于LSL片段下游的是Lin28a的CDS,它被标记上T2A-luc(萤火虫荧光素酶报告基因)。如前所述,靶向载体被整合到C57BL/6小鼠的H11位点,以确保NF-κB响应元件的特异性。R26-tdTO((ROSA)26Sortm14(CAG-tdTomato),stock no.007914)从JAX实验室获得。所有动物程序均经中国科学院动物研究所和干细胞与再生医学研究所批准。
他莫昔芬和冰冻损伤
他莫昔芬(TMX,Sigma-Aldrich)以20mg ml -1的浓度溶解在玉米油中,并将100mg/kg的TMX通过腹膜内注射给药至6周龄小鼠,如图所示。冰冻损伤前,所有小鼠都使用异氟醚麻醉。用手术刀切开皮肤以暴露胫骨前(TA)肌肉。将直径为4毫米的钢探针在液氮中冷却并放置在TA肌肉上10秒,两次。随后,立即用手术缝合线缝合皮肤切口,并在伤口上涂抹优碘,以防止受伤后感染。在冷冻损伤后10或14天收获TA和比目鱼肌。
免疫荧光。
采集骨骼肌后,将其在4%多聚甲醛中于4℃下固定1小时。然后将组织转换为20% 蔗糖/ddH2O,在4℃下过夜,然后用OCT冷冻包埋并切片,切片厚度为10μm。在免疫染色前,冷冻载玻片在室温甲醇中固定10分钟,然后用PBS洗涤。接下来,将浸入柠檬酸盐抗原修复溶液(ab208572)的载玻片置于压力锅中,进行抗原修复。接下来,根据制造商的说明,室温,用0.3%Triton X-100/PBS处理载玻片15分钟,然后,用小鼠IgG封闭溶液(M.O.M.kit,Vector Lab)孵育1小时。将载玻片与稀释在0.3%Triton X-100、5%山羊血清/PBS中的一抗在4℃下孵育过夜。第二天早上,用PBS洗涤载玻片,并在室温下与稀释在0.3%Triton X-100、5%山羊血清/PBS中的二抗一起孵育,避光,1小时。然后用PBS洗涤载玻片并用甘油和DAPI封片。对于免疫荧光,使用以下抗体:Pax7、Pax3、肌球蛋白I(BA-D5)、肌球蛋白IIa(SC-71)(均来自Developmental Studies Hybridoma Bank(DSHB),1∶10)、IIx、IIb(快速肌球蛋白),(Abcam,ab91506),层粘连蛋白(Sigma-Aldrich,no.L9393,1∶500),desmin(abcam,ab32362,1∶200)。按照制造商的说明使用Alexa Fluor二抗。图像是在Nikon共聚焦显微镜或PerkinElmer Vectra Polaris上拍摄的。对于肌纤维类型识别,I型和IIa型肌纤维通过直接针对肌球蛋白I(BA-D5)和肌球蛋白IIa(SC-71)的抗体进行染色识别,IIb型肌纤维用Fast Myosin抗体(Abcam,ab91506),染出来的着色较轻,IIx型肌纤维用同样的抗体,染出来的着色较深,但同时用肌球蛋白IIa抗体(SC-71)染不出来。
荧光激活细胞分选分析。
常规Pax7+MuSC通过FACS分选分离为VCAM1阳性和CD45/CD31/Sca1阴性群体,如前所述67.如前所述分离单核细胞68.分离后,来自一只小鼠的单核细胞(~107个细胞)重悬于500ul PBS/10%FBS/3mM EDTA,然后在冰上使用以下荧光团偶联抗体孵育40分钟:APC-CD31(克隆MEC13.3)、FITC-Sca1(克隆E13-161.7)、VCAM1-生 物素(克隆429)(均来自Biolegend,1∶100)、BV421-CD45(Becton Dickinson,克隆30-F11,1∶250),然后用PE-Cy7链霉亲和素(BioL egend,cat.no.405206,1∶100)处理20分钟。对这些细胞进行FMO对照处理。从野生型小鼠中分离出的,染相同抗体的细胞被用作tdTomato FMO对照。从野生型小鼠中分离的未染色细胞用作未染色的对照。在BD FACSAria融合流式细胞仪上分析细胞,并使用FlowJo软件(TreeStar)分析FACS数据。FACS分析的值取自超过三个独立实验的平均值。
体外细胞培养和肌生成、脂肪生成和成骨细胞分化实验。
Lin28a+细胞和常规MuSCs细胞在Matrigel包被的平板中培养,所有细胞在37℃、5%CO 2和生长培养基(GM)下孵育,生长培养基(GM)包括DMEM/F-12(Gibco)和20%胎牛血清(FBS)(GE Healthcare)、1%L-谷氨酰胺(Gibco)和1%青霉素-链霉素(Gibco)。在每次传代时,在达到80%汇合后,将细胞用胰蛋白酶消化并按1∶4稀释传代。分化通过用分化培养基(DM)代替生长培养基开始,包括DMEM/F-12、2%敲除血清替代品(Gibco)、1%L-谷氨酰胺(Gibco)和1%青霉素-链霉素(Gibco)。对于融合比较实验,用CellTrace Violet(Thermo Fisher,C34557)、Lin28a+细胞和1∶1混合细胞分别在GM中培养,然后转为DM以诱导肌管形成。新鲜分选的Lin28a+细胞在GM中生长3天,随后向肌管、脂肪细胞或成骨细胞分化。对于肌管分化,用DM代替生长培养基2-3天。然后对细胞进行MyoG(Santa Cruz Biotechnology,sc-12732,1∶100)和MYH1(克隆MF20,DSHB,5μg/ml)的免疫染色,以观察分化的肌管。对于脂肪细胞和成骨细胞分化,按照先前描述的方法69,然后染色处理,检测细胞。
培养细胞的免疫染色。
对于免疫染色,培养在平板上的细胞在室温下用4%多聚甲醛固定15分钟,然后用0.3%Triton X-100/PBS进行透化。室温,10%山羊血清,0.1%Triton X-100/PBS封闭1小时。一抗在1%山羊血清/0.1%Triton X-100中稀释,并在室温下孵育2小时。洗涤细胞并将二抗稀释在1%山羊血清/0.1%Triton X-100中,室温孵育1小时。细胞在室温下用Hoechst染料(PBS中1∶2,000)染色10分钟。一抗包括:Pax3(DSHB,1∶20),Pax7,(DSHB,1∶20),MyoD(Santa Cruz Biotechnology,sc-377460,1∶100),MyoG(Santa Cruz Biotechnology,sc-12732,1∶100),MYH1(克隆MF20,DSHB,5μg/ml)。MYHC-IIb eFluor 660(50-6503-32;Thermo Fisher;1∶100),α-辅肌动蛋白(sc-7453;Santa Cruz;1∶500),8-氧代鸟嘌呤(ab206461;Abcam;1∶400)。融合指数计算为多核肌管内tdTO+或MuSC核数与tdTO+或MuSC核总数的比率。在24和36小时的DM中,在三个独立的分化实验中,每组至少使用4个独立的显微视野。
RNA分离和RNA-seq分析。
将细胞重悬于500ul Trizol中,并根据制造商的说明(Invitrogen)分离总RNA。RNA质量由Agilent 2100生物分析仪验证,RIN≥7,28S/18S≥1.5∶1。并且通过QUBIT RNA ASSAY KIT验证RNA数量。使用NEBNext Ultra RNA Library Prep Kit for Illumina构建cDNA文库。RNA-seq使用Illumina Novaseq-6000进行。
实时定量PCR分析。
按照制造商的说明,用Trizol(Invitrogen)从分选的细胞中提取总RNA。使用PrimeScript RT试剂盒(Takara,RR047B)从该RNA中逆转录cDNA。在使用qPCR SYBR Green Mix进行qPCR之前,将所得cDNA稀释5倍。QPCR引物序列来自 OriGene网站。
蛋白质印迹分析。
用补充有蛋白酶抑制剂混合物I和II(Sigma)和磷酸酶抑制剂混合物组III(Calbiochem)的RIPA缓冲液提取蛋白质。使用Pierce BCA蛋白质测定试剂盒(Thermo Fisher)对蛋白质进行定量,并使用Sunrise Tecan读板器进行分析。在SDS-PAGE和电转移到PVDF膜上后,使用以下一抗和浓度进行蛋白质印迹:Lin28a(1∶1000,CST)、Pax7(0.28μg/ml,DSHB)、Pax3(0.31μg/ml,DSHB)、MyoD(1∶1000,Santa Cruz Biotechnology)、MHC(0.23μg/ml,DSHB)、MyoG(1∶1000,Santa Cruz Biotechnology)、IGF2BP2(1∶1000,Proteintech)、Hmga2(1∶1000,CST)、Cre(1∶1000,Millipore)、GAPDH(1∶1000,CST)、Vinculin(K106900P,1∶5000,Solarbio)、Tubulin(ab210797;Abcam;1∶1000)、P53(sc-126;Santa Cruz;1∶100)、IMP1/2/3(sc-271785;Santa Cruz;1∶1000)、柠檬酸合酶(G-3)(sc-390693;Santa Cruz;1∶1000)。
病毒生产
以下质粒用于为各种转基因细胞系生产病毒:慢病毒载体质粒(Addgene#19119)、dR8.2包装质粒(Addgene#8455)、VSV-G包膜质粒(Addgene#8454)、pMSCV-mLin28A(Addgene#26357)、在48小时至96小时窗口内收集病毒上清液,并用0.45μm过滤器(Sartorius)过滤。拥有CMV启动子的慢病毒载体也可过表达其他年轻化基因。
细胞生长速率与寿命测定
将8 x 10 4细胞接种在6孔板(Falcon)的一个孔中,生长培养基包含DMEM/F-12(Gibco)和20%胎牛血清(FBS)(GE)、1%L-谷氨酰胺(Gibco)和1%青霉素-链霉素(Gibco)。用Hoechst染细胞核,荧光显微镜下拍照,imageJ计数。重复这个过程至3天。
统计方法。
所有统计分析均使用GraphPad Prism 6(GraphPadSoftware)进行。数据表示为平均值±sem。使用双样本t检验检验组间差异的统计显着性。P<0.05被认为是显着的。每个实验的生物学(非技术)重复次数在图例中表示。
案例2:根据我们的基因组与表观遗传生物信息分析,我们发现一系列的基因网络与Lin28a有互作关系,在介导Lin28a年轻化细胞过程中扮演年轻化因子的重要角色。如图9所示,这些网络可分为年轻化转录因子网络(Grhl2,Zic5,Zic2,Utf1,Otx2,Snai3,Lmo2,Hopx)、年轻化表观遗传修饰网络(Bcl11a,Bcl11b,Dnmt3b,Mettl20,Arid3c)、年轻化信号配体、受体及相关激酶网络(Fgf5,Wnt3,Calcr,Epha1,Epor,Galr2,Piezo2,Ripk4,Pak6,Map3k15,Pdzd4,Shc4)、以及年轻化核酸结合因子网络(Foxr2,Hif3a,Pbx1,Zfp946,Batf3,Pabpc4l,Celf4,Lin28a,Lin28b)。我们利用带有CMV启动子的慢病毒载体在骨骼肌肉干细胞里过表达以上年轻化基因超过2倍,1周后发现这些年轻化基因可实现细胞年轻化,降低生物年龄,尤其是逆转细胞衰老、逆转耗竭(分化效率)、逆转无能性(FGF2敏感性)、延长细胞寿命和自我更新能力(增加传代次数)、增强细胞再生能力。我们也利用表观遗传组学技术(Stubbs multi-t.clock;Stubbs et al.,2017)和基因转录组学技术(Martin-Herranz et al.,2019)计算生物年龄,发现这些年轻化基因均 可显著逆转表观遗传时钟(P<0.05)和使得基因表达图谱更加接近胚胎发育时期(R>0.6)。
病毒生产
以下质粒用于为各种转基因细胞系生产病毒:慢病毒载体质粒(Addgene#19119)、dR8.2包装质粒(Addgene#8455)、VSV-G包膜质粒(Addgene#8454)、在48小时至96小时窗口内收集病毒上清液,并用0.45μm过滤器(Sartorius)过滤。拥有CMV启动子的慢病毒载体可过表达所有年轻化基因。
细胞生长速率与寿命测定
将8 x 10 4细胞接种在6孔板(Falcon)的一个孔中,生长培养基包含DMEM/F-12(Gibco)和20%胎牛血清(FBS)(GE)、1%L-谷氨酰胺(Gibco)和1%青霉素-链霉素(Gibco)。用Hoechst染细胞核,荧光显微镜下拍照,imageJ计数。重复这个过程至3天。
生物信息和统计方法。
用于执行表观遗传时钟和基因转录组分析的所有代码可以在GitHub存储库中找到(https://github.com/demh/epigenetic_ageing_clock))。所有统计分析均使用GraphPad Prism 6(GraphPad Software)进行。数据表示为平均值±sem。使用双样本t检验检验组间差异的统计显着性。P<0.05被认为是显着的。每个实验的生物学(非技术)重复次数在图例中表示。
案例3:
从上述细胞表达图谱,我们得到了与Lin28a共表达的基因单子:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。案例1显示了Lin28a+细胞具有逆转衰老的能力。因此我们利用Lin28a-tdTomato作为报告基因预测肌肉细胞是否得以延长寿命。作为案例,我们测试了单子中的以下6个基因:Bcl11a,Bcl11b,Lmo2,Otx2,Pbx1,Pabpc4l是否能够让衰老小鼠肌肉细胞启动Lin28a表达,逆转衰老,恢复FGF2感应能力、增殖能力、传代能力,并延长其寿命。众所周知,衰老细胞一般上会丢失FGF2感应能力、增殖能力、传代能力,并且开始表达SA-Bgal。因此,我们想测试Bcl11a,Bcl11b,Otx2,Lmo2,Pbx1,Pabpc4l可否在小鼠衰老细胞促进FGF2感应能力、增殖能力、传代能力,从而逆转衰老。我们利用已知的方法从小鼠提取衰老的肌肉细胞并分别转染了6个病毒(分别含有Bcl11a,Bcl11b,Otx2,Lmo2,Pbx1,Pabpc4l的载体)和空载体的病毒,并在72小时内,测量了衰老细胞的Lin28a+比列,SA-Bgal+比列,同时在24小时、48小时、72小时测量细胞的增殖倍数,以及衰老细胞的面积%与数量%。如图10和图11所示,我们利用荧光显微镜(Nikon)发现被转染单子中6个基因(分别含有Bcl11a,Bcl11b,Otx2,Lmo2,Pbx1,Pabpc4l的载体)的衰老小鼠肌肉细胞在48-72小时内,Lin28a+比例都显著高于空载体对照组。如图12所示,经过戊二醛固定和衰老相关β-半乳糖苷酶染色(Solarbio#G1580)后显示被转染单子中6个基因的衰老小鼠肌肉细胞在48-72小时内的SA-Bgal+比例也小于被转染空载体的衰老小鼠肌肉细胞,从而证实了我们可以通过转基因模式(转染含有单子中6个基因的病毒载体)来逆转衰老,让衰老肌肉细胞年轻化。 与此同时,如图13所示,我们利用Operetta高内涵显微镜(PerkinElmer)发现能够通过转基因模式(转染含有单子中6个基因的病毒载体)促进同等量衰老肌肉细胞感应培养基FGF2(GeminiBio,10ng/ml)的能力、增殖能力,以及传代能力。空载体对照组衰老肌肉细胞在1代内就停止增殖了,但6病毒的衰老肌肉细胞可再传代>10次。我们进一步测试了单子中6个基因是否能够在人类非多能性细胞逆转衰老。我们利用已知的方案,将胚胎多能干细胞分化成肌肉细胞(Chua et al.,2019),并在这些细胞衰老后(停止增殖的时候),分别转染了含有单子中6个基因和包含空载体的病毒,并在72小时内,利用Operetta高内涵显微镜(PerkinElmer)测量衰老细胞的百分比。如图14所示,我们可以通过转基因方式(病毒转染),过表达单子中6个基因,且成功逆转人类肌肉细胞的衰老面积%和衰老数量%。由此可见,单子中的基因都具有启动Lin28a表达,逆转衰老,逆转无能性,恢复增殖能力、传代能力,并延长其寿命的能力。
我们进一步采用荧光定量核酸扩增检测(qPCR),测试了被转染6个基因(分别含有Bcl11a,Bcl11b,Otx2,Lmo2,Pbx1,Pabpc4l的载体)的衰老肌肉细胞Bcl11a,Bcl11b,Otx2,Lmo2,Pbx1,Pabpc4l基因的表达。如图15、图16分别所示,被转染了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)的衰老肌肉细胞(6病毒)和空载体对照的衰老肌肉细胞(空载对照)都显著过表达了6个基因(Bcl11a、Bcl11b、Lmo2、Otx2、Pbx1、Pabpc4l)。
尽管本发明的具体实施方式已经得到详细的描述,但本领域技术人员将理解:根据已经公布的所有教导,可以对细节进行各种修改和变动,并且这些改变均在本发明的保护范围之内。本发明的全部分为由所附权利要求及其任何等同物给出。
References
1.Horvitz,H.R.&Sulston,J.E.Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans.Genetics 96,435-454(1980).
2.Sulston,J.E.&Horvitz,H.R.Abnormal cell lineages in mutants of the nematode Caenorhabditis elegans.Developmental biology82,41-55(1981).
3.Ambros,V.&Horvitz,H.R.Heterochronic mutants of the nematode Caenorhabditis elegans.Science(NewYork,N.Y.)226,409-416(1984).
4.Viswanathan,S.R.,Daley,G.Q.&Gregory,R.I.Selective Blockade of MicroRNA Processing by Lin28.320,97-100(2008).
5.Zhu,H.et al.Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies.Nature Genetics 42,626-630(2010).
6.Tsanov,K.M.et al.LIN28 phosphorylation by MAPK/ERK couples signalling to the post-transcriptional control of pluripotency.Nature cell biology 19,60-67(2017).
7.Yermalovich,A.V.et al.Lin28 and let-7 regulate the timing of cessation of murine nephrogenesis.Nature communications 10,168(2019).
8.Osborne,J.K.et al.Lin28 paralogs regulate lung branching morphogenesis.Cell Rep 36,109408-109408(2021).
9.Kerepesi,C.,Zhang,B.,Lee,S.-G.,Trapp,A.&Gladyshev,V.N.Epigenetic clocks reveal a rejuvenation event during embryogenesis followed by aging.Sci Adv 7, eabg6082(2021).
10.Moss,E.G.,Lee,R.C.&Ambros,V.The cold shock domain protein LIN-28 controls developmental timing in C.elegans and is regulated by the lin-4 RNA.Cell88,637-646(1997).
11.Shyh-Chang,N.et al.Lin28 enhances tissue repair by reprogramming cellular metabolism.Cell 155,778-792(2013).
12.Mauro,A.Satellite cell of skeletal muscle fibers.The Journal of biophysical and biochemical cytology 9,493-495(1961).
13.Yin,H.,Price,F.&Rudnicki,M.A.Satellite cells and the muscle stem cell niche.Physiological reviews 93,23-67(2013).
14.von Maltzahn,J.,Chang,N.C.,Bentzinger,C.F.&Rudnicki,M.A.Wnt signaling in myogenesis.Trends in cell biology 22,602-609(2012).
15.Polesskaya,A.et al.Lin-28 binds IGF-2 mRNA and participates in skeletal myogenesis by increasing translation efficiency.Genes&development 21,1125-1138(2007).
16.West,J.A.et al.A role for Lin28 in primordial germ-cell development and germ-cell malignancy.Nature 460,909-913(2009).
17.Keefe,A.C.et al.Muscle stem cells contribute to myofibres in sedentary adult mice.Nature Communications 6,7087(2015).
18.Zheng,K.,Wu,X.,Kaestner,K.H.&Wang,P.J.The pluripotency factor LIN28 marks undifferentiated spermatogonia in mouse.BMC Developmental Biology 9,38(2009).
19.Seale,P.et al.Pax7 Is Required for the Specification of Myogenic Satellite Cells.Cell 102,777-786(2000).
20.Tedesco,F.S.,Dellavalle,A.,Diaz-Manera,J.,Messina,G.&Cossu,G.Repairing skeletal muscle:regenerative potential of skeletal muscle stem cells.The Journal of clinical investigation 120,11-19(2010).
21.Der Vartanian,A.et al.PAX3 Confers Functional Heterogeneity in Skeletal Muscle Stem Cell Responses to Environmental Stress.Cell stem cell 24,958-973.e959(2019).
22.de Morree,A.et al.Alternative polyadenylation of Pax3 controls muscle stem cell fate and muscle function.Science(New York,N.Y.)366,734-738(2019).
23.Schiaffino,S.&Reggiani,C.Fiber Types in Mammalian Skeletal Muscles.91,1447-1531(2011).
24.Horvath,S.DNA methylation age of human tissues and cell types.Genome Biology 14,3156(2013).
25.Horvath,S.&Raj,K.DNA methylation-based biomarkers and the epigenetic clock theory of ageing.Naturereviews.Genetics 19,371-384(2018).
26.Jaafar,R.et al.Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling.Cell Communication and Signaling 11,55(2013).
27.Bober,E.,Franz,T.,Arnold,H.H.,Gruss,P.&Tremblay,P.Pax-3 is required for the development of limb muscles:a possible role for the migration of dermomyotomal muscle progenitor cells.Development(Cambridge,England)120, 603-612(1994).
28.Yusuf,F.et al.Inhibitors of CXCR4 affect the migration and fate of CXCR4+progenitors in the developing limb of chick embryos.235,3007-3015(2006).
29.Edmondson,D.G.,Lyons,G.E.,Martin,J.F.&Olson,E.N.Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis.Development(Cambridge,England)120,1251-1263(1994).
30.Subramanian,S.V.&Nadal-Ginard,B.Early expression of the different isoforms of the myocyte enhancer factor-2(MEF2)protein in myogenic as well as non-myogenic cell lineages during mouse embryogenesis.Mechanisms of development 57,103-112(1996).
31.Mercader,N.et al.Opposing RA and FGF signals control proximodistal vertebrate limb development through regulation of Meis genes.Development(Cambridge,England)127,3961-3970(2000).
32.Capdevila,J.,Tsukui,T.,Esteban,C.R.,Zappavigna,V.&Belmonte,J.C.I.Control of Vertebrate Limb Outgrowth by the Proximal Factor Meis2 and Distal Antagonism of BMPs by Gremlin.Molecular Cell 4,839-849(1999).
33.Oliver,G.et al.Homeobox genes and connective tissue patterning.121,693-705(1995).
34.Grifone,R.et al.Eya1 and Eya2 proteins are required for hypaxial somitic myogenesis in the mouse embryo.Developmental Biology 302,602-616(2007).
35.Heanue,T.A.et al.Synergistic regulation of vertebrate muscle development by Dach2,Eya2,and Six1,homologs of genes required for Drosophila eye formation. Genes&Development 13,3231-3243(1999).
36.Grifone,R.et al.Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo.Development(Cambridge,England)132,2235-2249(2005).
37.Mitchell,K.J.et al.Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development.Nature cell biology 12,257-266(2010).
38.Scaramozza,A.et al.Lineage Tracing Reveals a Subset of Reserve Muscle Stem Cells Capable of Clonal Expansion under Stress.Cell stem cell 24,944-957.e945(2019).
39.Drummond,M.J.et al.Aging and microRNA expression in human skeletal muscle:a microarray and bioinformatics analysis.Physiological genomics 43,595-603(2011).
40.Chua,M.-W.J.et al.Assessment of different strategies for scalable production and proliferation of human myoblasts.52,e12602(2019).
41.Shyh-Chang,N.&Daley,G.Q.Lin28:primal regulator of growth and metabolism in stem cells.Cell stem cell 12,395-406(2013).
42.De Cecco,M.et al.L1 drives IFN in senescent cells and promotes age-associated inflammation.Nature 566,73-78(2019).
43.Peng,S.et al.Genome-wide studies reveal that Lin28 enhances the translation of genes important for growth and survival of human embryonic stem cells.Stem cels(Dayton,Ohio)29,496-504(2011).
44.Zhang,J.et al.LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency.Cellstem cell 19,66-80(2016).
45.Miwa,S.&Brand,M.D.Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling.Biochemical Society transactions 31,1300-1301(2003).
46.Sena,L.A.&Chandel,N.S.Physiological roles of mitochondrial reactive oxygen species.Molecular cell 48,158-167(2012).
47.Gutscher,M.et al.Real-time imaging of the intracellular glutathione redox potential.Nature methods 5,553-559(2008).
48.Emerling,B.M.et al.Mitochondrial reactive oxygen species activation of p38 mitogen-activated protein kinase is required for hypoxia signaling.Molecular and celular biology 25,4853-4862(2005).
49.Jun-Hao,E.T.,Gupta,R.R.&Shyh-Chang,N.Lin28 and let-7 in the Metabolic Physiology of Aging.Trends in endocrinology and metabolism:TEM 27,132-141(2016).
50.Relaix,F.,Rocancourt,D.,Mansouri,A.&Buckingham,M.A Pax3/Pax7-dependent population of skeletal muscle progenitor cells.Nature 435,948-953(2005).
51.Tremblay,P.et al.A Crucial Role forPax3in the Development of the Hypaxial Musculature and the Long-Range Migration of Muscle Precursors.Developmental Biology 203,49-61(1998).
52.Ridgeway,A.G.&Skerjanc,I.S.Pax3 Is Essential for Skeletal Myogenesis and  the Expression of Six1 and Eya2*.Journal of Biological Chemistry 276,19033-19039(2001).
53.Grifone,R.et al.Eya1 and Eya2 proteins are required for hypaxial somitic myogenesis in the mouse embryo.Dev Biol 302,602-616(2007).
54.Yang,D.H.&Moss,E.G.Temporally regulated expression of Lin-28 in diverse tissues of the developing mouse.Gene expression patterns:GEP 3,719-726(2003).
55.Yokoyama,S.et al.Dynamic gene expression of Lin-28 during embryonic development in mouse and chicken.Gene Expression Patterns 8,155-160(2008).
56.Buganim,Y.et al.Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase.Cell 150,1209-1222(2012).
57.Yu,J.et al.Induced pluripotent stem cell lines derived from human somatic cells.Science(New York,N.Y.)318,1917-1920(2007).
58.Robinton,D.A.et al.The Lin28/let-7 Pathway Regulates the Mammalian Caudal Body Axis Elongation Program.Developmental cell 48,396-405.e393(2019).
59.
Figure PCTCN2022125388-appb-000001
-Cánoves,P.,Neves,J.&Sousa-Victor,P.Understanding muscle regenerative decline with aging:new approaches to bring back youthfulness to aged stem cells.The FEBS Journal 287,406-416(2020).
60.Sousa-Victor,P.&
Figure PCTCN2022125388-appb-000002
-Cánoves,P.Regenerative decline of stem cells in sarcopenia.Molecular Aspects of Medicine 50,109-117(2016).
61.Francoz,S.et al.Mdm4 and Mdm2 cooperate to inhibit activity in proliferating and quiescent cells<em>in vivo</em>.103,3232-3237(2006).
62.Poderycki,M.J.,Rome,L.H.,Harrington,L.&Kickhoefer,V.A.The p80 homology region of TEP1 is sufficient for its association with the vault RNAs,and the vault particle.Nucleic acids research 33,893-902(2005).
63.Majmundar,A.J.,Wong,W.J.&Simon,M.C.Hypoxia-inducible factors and the response to hypoxic stress.Molecular cell 40,294-309(2010).
64.Yang,X.,Yang,S.,Wang,C.&Kuang,S.The hypoxia-inducible factors HIF1α and HIF2α are dispensable for embryonic muscle development but essential for postnatal muscle regeneration.The Journal of biological chemistry 292,5981-5991(2017).
65.Wilson,A.A.et al.Lentiviral delivery of RNAi for in vivo lineage-specific modulation of gene expression in mouse lung macrophages.Molecular therapy:the journal of the American Society of Gene Therapy 21,825-833(2013).
66.Tasic,B.et al.Site-specific integrase-mediated transgenesis in mice via pronuclear injection.108,7902-7907(2011).
67.Liu,L.,Cheung,T.H.,Charville,G.W.&Rando,T.A.Isolation of skeletal muscle stem cells by fluorescence-activated cell sorting.Nature protocols 10,1612-1624(2015).
68.Feige,P.&Rudnicki,M.A.Isolation of satellite cells and transplantation into mice for lineage tracing in muscle.Nat Protoc 15,1082-1097(2020).
69.Liu,T.M.et al.Ascorbate and Iron Are Required for the Specification and  Long-Term Self-Renewal of Human Skeletal Mesenchymal Stromal Cells.Stem cell reports 14,210-225(2020).
70.Hanson,G.T.et al.Investigating Mitochondrial Redox Potential with Redox-sensitive Green Fluorescent Protein Indicators.Journal of Biological Chemistry 279,13044-13053(2004).
71.S.Horvath,DNA methylation age of human tissues and cell types.Genome Biol.14,3156(2013).
72.S.Horvath,K.Raj,DNA methylation-based biomarkers and the epigenetic clock theory of ageing.Nat.Rev.Genet.19,371-384(2018).
73.C.G.Bell,R.Lowe,P.D.Adams,A.A.Baccarelli,S.Beck,J.T.Bell,B.C.Christensen,V.N.Gladyshev,B.T.Heijmans,S.Horvath,T.Ideker,J.P.J.Issa,K.T.Kelsey,R.E.Marioni,W.Reik,C.L.Relton,L.C.Schalkwyk,A.E.Teschendorff,W.Wagner,K.Zhang,V.K.Rakyan,DNA methylation aging clocks:Challenges and recommendations.Genome Biol.20,249(2019).
74.D.A.Petkovich,D.I.Podolskiy,A.V.Lobanov,S.-G.Lee,R.A.Miller,V.N.Gladyshev.Using DNA methylation profiling to evaluate biological age and longevity interventions.Cell Metab.25,954-960.e6(2017).
75.T.Wang,B.Tsui,J.F.Kreisberg,N.A.Robertson,A.M.Gross,M.K.Yu,H.Carter,H.M.Brown-Borg,P.D.Adams,T.Ideker,Epigenetic aging signatures in mice livers are slowed by dwarfism,calorie restriction,and rapamycin treatment.Genome Biol.18,57(2017).
76.M.V.Meer,D.I.Podolskiy,A.Tyshkovskiy,V.N.Gladyshev,A whole lifespan  mouse multi-tissue DNA methylation clock.eLife 7,e40675(2018).
77.M.J.Thompson,K.
Figure PCTCN2022125388-appb-000003
L.Rubbi,A.J.Lusis,R.C.Davis,A.Srivastava,R.Korstanje,G.A.Churchill,S.Horvath,M.Pellegrini,A multi-tissue full lifespan epigenetic clock for mice.Aging 10,2832(2018).
78.T.M.Stubbs,M.J.Bonder,A.-K.Stark,F.Krueger,F.von Meyenn,O.Stegle,W.Reik.Multi-tissue DNA methylation age predictor in mouse.Genome Biol.18,68(2017).
79.M.Wang,B.Lemos,Ribosomal DNA harbors an evolutionarily conserved clock of biological aging.Genome Res.29,325-333(2019).
80.Martin-Herranz DE et al.Genome Biol 20:146(2019).
81.Jeffries AR,Maroofian R,Salter CG,Chioza BA,Cross HE,Patton MA,et al.Growth disrupting mutations in epigenetic regulatory molecules are associated with abnormalities of epigenetic aging.Genome Res.29:1057-1066(2019).

Claims (19)

  1. 一种分离的经修饰骨骼肌肉细胞,其具备以下特征:
    (i)其Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4的任一基因或多个基因的表达相对于未经修饰的骨骼肌肉细胞有所增加。
    (ii)可以稳定传代至少5次,例如至少10次、至少15次、至少20次、至少25次、至少30次或更多。
  2. 权利要求1所述的骨骼肌肉细胞,其Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4的任一基因或多个基因的表达相比于未修饰的骨骼肌肉细胞,至少约1.5、2、3、4、5、6、7、8、9、10、100、150、200倍或甚至更高。
  3. 权利要求1-2所述骨骼肌肉细胞,能够持续扩增至少4天、5天、6天、8天、9天、10天、20天、30天、40天、50天、100天、150天、200天、300天、400天或甚至更多天。
  4. 权利要求1-3所述骨骼肌肉细胞,其生物年龄相比于未修饰的骨骼肌肉细胞显著降低。
    骨骼肌肉细胞
  5. 权利要求1-4任一项所述的骨骼肌肉细胞,其MDM4和TEP1的表达相比于未经修饰的骨骼肌肉细胞的至少约5倍、10倍、20倍、30倍或甚至更高。
  6. 一种分离的细胞群体,其包含权利要求1-5任一项所述的骨骼肌肉细胞或其任意组合;
    优选地,所述细胞群体中至少50%(例如至少60%、至少70%、至少80%、至少85%、至少90%、至少95%、至少98%、至少99%或约100%)的细胞是权利要求1-5任一项所述的骨骼肌肉细胞。
  7. 一种药物组合物,其包含权利要求1-6任一项所述的骨骼肌肉细胞或权利要求8所述的细胞群体,以及药学上可接受的载体和/或赋形剂。
  8. 一种用于生产权利要求1-5任一项所述细胞或权利要求6所述细胞群的方法,其中通过提高以下一个或多个基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
  9. 一种用于让骨骼肌肉细胞年轻化或降低骨骼肌肉细胞生物年龄或骨骼肌肉细胞修复的方法,其中通过提高以下一个或多个基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
  10. 一种能够在骨骼肌肉细胞逆转衰老的方法,其中通过提高以下一个或多个基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
  11. 一种能够在骨骼肌肉细胞逆转细胞耗竭的方法,其中通过提高以下一个或多个基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
  12. 一种能够在骨骼肌肉细胞逆转细胞无能性的方法,其中通过提高以下一个或多个基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
  13. 一种能够延长骨骼肌肉细胞寿命的方法,其中通过提高以下一个或多个基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
  14. 一种能够让细胞体外持续扩增至少4天、5天、6天、8天、9天、10天、20天、30天、40天、50天、100天、150天、200天、300天、400天或甚至更多天的方法,其中通过提高以下一个或多个基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
  15. 一种能够让骨骼肌肉细胞稳定传代至少5次,例如至少10次、至少15次、至少20次、至少25次、至少30次或更多次的方法,其中通过提高以下一个或多个基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、 Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
  16. 一种能够让老年人类骨骼肌肉细胞重返青春,其中通过提高以下一个或多个基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
  17. 权利要求8-15任一项所述方法,其包括转基因的方式来提高细胞以下一个或多个基因的表达:Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
  18. 一种用于产生权利要求1-5任何一项所描述的细胞或细胞群或逆转骨骼肌肉细胞衰老的试剂或试剂盒,其中包含
    (i)编码以下任一蛋白的核酸(例如脱氧核糖核酸、核糖核酸):Bcl11a、Fgf5、Wnt3、Batf3、Lin28a、Lin28b、Dnmt3b、Arid3c、Bcl11b、Lmo2、Grhl2、Zic5、Foxr2、Hif3a、Zic2、Pbx1、Snai3、Zfp946、Mettl20、Hopx、Utf1、Otx2、Aadat、Mal2、Pabpc4l、Calcr、Epha1、Epor、Galr2、Ripk4、Pak6、Map3k15、Celf4、Pdzd4、Piezo2、Shc4。
    (ii)医学上可接受的载体(例如病毒载体、纳米颗粒、脂质囊泡、外泌体等)。
  19. 权利要求所述的试剂或试剂盒、其中也包括调控以上基因的表达量的原件,例如但不限于启动子、药物调控启动子、蛋白调控启动子、组织特异启动子、蛋白内含子(intein)、转座子、核酸内切酶(例如cre-lox系统)、逆转座子。
PCT/CN2022/125388 2021-10-14 2022-10-14 年轻化骨骼肌肉细胞及其制备方法和应用 WO2023061485A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111199261.7 2021-10-14
CN202111199261 2021-10-14

Publications (3)

Publication Number Publication Date
WO2023061485A1 true WO2023061485A1 (zh) 2023-04-20
WO2023061485A9 WO2023061485A9 (zh) 2023-08-03
WO2023061485A8 WO2023061485A8 (zh) 2023-11-02

Family

ID=85987283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125388 WO2023061485A1 (zh) 2021-10-14 2022-10-14 年轻化骨骼肌肉细胞及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN116334002A (zh)
WO (1) WO2023061485A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020238961A1 (en) * 2019-05-29 2020-12-03 Institute Of Zoology, Chinese Academy Of Sciences Compositions and use of engineered myogenic cells
CN112154210A (zh) * 2018-03-13 2020-12-29 利兰斯坦福初级大学董事会 用于逆转细胞老化的瞬时细胞重编程

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112154210A (zh) * 2018-03-13 2020-12-29 利兰斯坦福初级大学董事会 用于逆转细胞老化的瞬时细胞重编程
WO2020238961A1 (en) * 2019-05-29 2020-12-03 Institute Of Zoology, Chinese Academy Of Sciences Compositions and use of engineered myogenic cells

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DUONG, BRITTANY BACH: "Abstract: Bcl11a and Bcl11b Regulation of the Decision for Murine Cells to Proliferate or Differentiate During Skeletal Muscle Development and Repair", THESIS, ARIZONA STATE UNIVERSITY, USA, USA, XP009545800, Retrieved from the Internet <URL:https://keep.lib.asu.edu/items/137093> *
GIRARDI, FRANCESCO; LE GRAND, FABIEN: "Wnt Signaling in Skeletal Muscle Development and Regeneration", PROGRESS IN MOLECULAR BIOLOGYANDTRANSLATIONAL SCIENCE, vol. 153, 31 December 2018 (2018-12-31), pages 157 - 179, XP009545419, ISSN: 1877-1173, DOI: 10.1016/bs.pmbts.2017.11.026 *
MAVES, L. ET AL.: "Pbx homeodomain proteins direct Myod activity to promote fast-muscle differentiation", DEVELOPMENT, vol. 134, no. 18, 15 August 2007 (2007-08-15), pages 3371 - 3382, XP093057945, DOI: 10.1242/dev.003905 *
SHA, JIBIN: "Research Progress in Skeletal Muscle Ageing", JOURNAL OF SHANDONG PHYSICAL EDUCATION INSTITUTE, CN, vol. 18, no. 54, 31 December 2002 (2002-12-31), CN, pages 43 - 46, XP009545625, ISSN: 1006-2076, DOI: 10.14104/j.cnki.1006-2076.2002.02.012 *

Also Published As

Publication number Publication date
WO2023061485A8 (zh) 2023-11-02
CN116334002A (zh) 2023-06-27
WO2023061485A9 (zh) 2023-08-03

Similar Documents

Publication Publication Date Title
Buskin et al. Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa
Andoniadou et al. Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma
US10828346B2 (en) Compositions and methods for modulating stem cells and uses thereof
JP6535028B2 (ja) 非肝細胞を肝細胞にリプログラミングするためのキットおよび方法
US20090186414A1 (en) Methods of Generating Cardiomyocytes and Cardiac Progenitors and Compositions
US9102920B2 (en) Method of effecting de-differentiation of a cell
Sesé et al. SMYD2 is induced during cell differentiation and participates in early development
Simon‐Areces et al. Neurogenin 3 cellular and subcellular localization in the developing and adult hippocampus
Ujhelly et al. Lack of Rybp in mouse embryonic stem cells impairs cardiac differentiation
Tsai et al. Dysregulation of mitochondrial functions and osteogenic differentiation in Cisd2-deficient murine induced pluripotent stem cells
US20210395692A1 (en) Method For Reducing Differentiation Resistance Of Pluripotent Stem Cells
WO2023061485A1 (zh) 年轻化骨骼肌肉细胞及其制备方法和应用
Sharma et al. Myosin heavy chain-embryonic is a crucial regulator of skeletal muscle development and differentiation
CN118318046A (zh) 年轻化骨骼肌肉细胞及其制备方法和应用
Wang et al. Lin28a maintains a subset of adult muscle stem cells in an embryonic-like state
US20190224251A1 (en) Methods of differentiating stem cells into endoderm
Petit et al. Autoregulatory loop of Msx1 expression involving its antisense transcripts
Wang et al. Lin28a rejuvenates muscle stem cells via mitochondrial optimization
US20200299727A1 (en) Methods of treating danon disease
Goes Barbosa Buskin Improving our understanding of autosomal dominant Retinitis Pigmentosa using PRPF31 patient-specific induced pluripotent stem cells (iPSCs)
Santana Enhancing reprogramming and transdifferentiation through long non-coding RNAs
Rios Molecular mechanisms of self-renewal in marrow stromal stem cells
Lu Transcriptional Regulation of Heart Development and Function
Rosenfeld GATA4 regulates distinct developmental programs during formation of the embryonic heart
Atkinson The Role of Xin in the Regulation of Myogenic Satellite Cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE