WO2023060932A1 - 一种具有精定位功能的自动搬运系统、自动化系统及方法 - Google Patents

一种具有精定位功能的自动搬运系统、自动化系统及方法 Download PDF

Info

Publication number
WO2023060932A1
WO2023060932A1 PCT/CN2022/100607 CN2022100607W WO2023060932A1 WO 2023060932 A1 WO2023060932 A1 WO 2023060932A1 CN 2022100607 W CN2022100607 W CN 2022100607W WO 2023060932 A1 WO2023060932 A1 WO 2023060932A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
measured
robot
detection
jaw
Prior art date
Application number
PCT/CN2022/100607
Other languages
English (en)
French (fr)
Inventor
王超
员振东
陈志亮
Original Assignee
江苏莱克智能电器有限公司
莱克电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏莱克智能电器有限公司, 莱克电气股份有限公司 filed Critical 江苏莱克智能电器有限公司
Publication of WO2023060932A1 publication Critical patent/WO2023060932A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/90Devices for picking-up and depositing articles or materials
    • B65G47/905Control arrangements

Definitions

  • the invention relates to the technical field of automatic handling, in particular to an automatic handling system with a precise positioning function, an automation system and a method.
  • Industrial robots are a kind of high-tech automatic production equipment developed in recent decades. The accuracy of operations and the ability to complete operations in the environment make industrial robots more and more widely used.
  • the industrial robot is mainly composed of three parts: the actuator, the drive mechanism and the control system.
  • the hand of the robotic arm is used to grasp the workpiece. There are many types according to the shape, size, weight, material and operation requirements of the grasped object.
  • the driving mechanism is used to make the hand complete various rotations, movements or compound movements to achieve prescribed actions and change the position and posture of the grasped object, but the robot When moving workpieces, it is easy to place them inaccurately due to inaccurate positioning, which reduces the pass rate and consistency of workpieces, and even affects the operation of the entire automatic production line.
  • the present invention provides an automatic handling system, automatic system and method with fine positioning function, specifically:
  • an automatic handling system with fine positioning function which includes a transition mechanism, a detection device, a controller and a robot, and the robot is used to place the workpiece to be measured on the pick-up machine in the transition mechanism and then from the transition mechanism.
  • the workpiece to be measured is clamped in the mechanism and placed in the detection device.
  • the transition mechanism includes a guide mechanism and a fixed seat.
  • the guide mechanism is vertically fixed on the fixed seat.
  • the fixed seat is connected to the workpiece to be measured.
  • the width of the corresponding position is smaller than the width of the workpiece to be measured, and the controller is used to obtain the position of the robot according to the position of the guide mechanism in the transition mechanism when the robot clamps the workpiece to be measured and places it in the transition mechanism.
  • the corresponding relationship between the clamping position and the position of the workpiece to be measured is used to accurately place the workpiece to be measured in the detection device.
  • Another aspect provides an automatic system for processing and flatness detection, including a feeder, a processing center and the above-mentioned automatic handling system with fine positioning function, the processing center is used to carry out the inspection of the workpiece detected by the detection device Processing
  • the feeder is a loading and unloading machine
  • the loading and unloading machine includes a material storage plate, the width of the material storage plate at the corresponding position of the workpiece is smaller than the width of the workpiece, and the material storage plate is used to place The workpiece to be measured and the processed workpiece
  • the controller is used to control the robot fixture to clamp the workpiece to be measured on the loading and unloading machine, and then place the workpiece processed in the machining center on the workpiece to be measured in the vacant position.
  • Another aspect provides an automatic handling method with fine positioning function, said method is realized based on the above-mentioned automatic handling system with fine positioning function, including:
  • the control robot takes the workpiece to be measured from the transition mechanism and places it in the detection device.
  • An automatic handling system, automatic system and method with fine positioning function provided by the present invention have beneficial effects as follows:
  • the present invention sets the transition mechanism so that when the robot grips the workpiece to be measured and places it in the transition mechanism, the controller can determine the exact position of the workpiece to be measured according to the position of the guide mechanism in the transition mechanism, thereby obtaining the clamping position and the position of the robot to be measured. Measure the corresponding relationship between the positions of the workpieces, so as to realize the accurate handling of the workpieces, and solve the problem that in the prior art, when the robot is handling the workpieces, it is easy to cause inaccurate positioning after the transportation due to inaccurate positioning, which affects or reduces the detection accuracy of the workpieces. The problem of production efficiency.
  • Fig. 1 is a structural schematic diagram of a transition mechanism carrying a workpiece in an automatic handling system with a fine positioning function provided by an embodiment of this specification;
  • Fig. 2 is a schematic structural diagram of a transition mechanism in an automatic handling system with a fine positioning function provided by an embodiment of this specification;
  • Fig. 3 is a schematic structural view of the robot gripper provided by the embodiment of this specification.
  • Fig. 4 is a schematic structural diagram of an automatic system for processing and flatness detection provided by the embodiment of this specification;
  • Fig. 5 is a schematic structural view of the flatness automatic detection device provided by the embodiment of this specification when the workpiece is carried on the conveying mechanism;
  • Fig. 6 is a schematic structural view of the flatness automatic detection device provided by the embodiment of this specification when no workpiece is carried on the conveying mechanism;
  • Fig. 7 is a schematic structural diagram of the cooperation between the flatness detection mechanism and the slider provided by the embodiment of this specification;
  • Fig. 8 is the bottom view of Fig. 7;
  • Fig. 9 is a schematic structural diagram of the cooperation between the flatness automatic detection device and the robot fixture provided by the embodiment of this specification;
  • Fig. 10 is a schematic structural view of the machining center provided by the embodiment of this specification.
  • Figure 11 is a schematic structural view of the loading and unloading machine provided by the embodiment of this specification.
  • Fig. 12 is a schematic structural diagram of the cooperation between the storage plate and the workpiece provided by the embodiment of this specification;
  • Fig. 13 is a schematic structural diagram of the cooperation between the loading and unloading machine and the robot gripper provided by the embodiment of this specification.
  • the embodiment of this specification provides an automatic handling system with fine positioning function, including a transition mechanism 7, a detection device, a controller and a robot 3, and the robot 3 is used for gripping materials
  • the workpiece 4 to be measured on the machine is placed in the transition mechanism 7, and then the workpiece 4 to be measured is clamped from the transition mechanism 7 and placed in the detection device.
  • the transition mechanism 7 includes a guide mechanism 71 and a fixed seat 72, and the guide mechanism 71 is vertically fixed on the fixed seat.
  • the width of the position corresponding to the workpiece to be measured on the fixed seat 72 is smaller than the width of the workpiece 4 to be measured, and the controller is used to guide the transition mechanism 7 according to the guide mechanism 71 when the robot 3 clamps the workpiece 4 to be measured and places it in the transition mechanism 7.
  • the exact position of the workpiece 4 to be measured is obtained to accurately clamp the workpiece 4 to be measured and place it in the flatness automatic detection device 8 .
  • the robot 3 picks and places the workpiece 4 through the robot fixture, and the placement position of the workpiece 4 to be measured on the material machine is not precisely positioned.
  • the robot clamp grabs the workpiece 4 from the material machine, the clamp of the robot
  • the corresponding relationship between the sampling position and the position of the workpiece 4 to be measured is uncertain, that is, the precise coordinates of the workpiece 4 to be measured cannot be determined according to the coordinates of the robot fixture.
  • the controller can obtain The exact position of the workpiece 4 to be measured, thereby obtaining the corresponding relationship between the coordinates of the gripping position of the robot gripper and the coordinates of the workpiece 4 to be measured, so as to realize accurate handling of the workpiece 4 .
  • a square groove is arranged symmetrically at the front and rear ends of the fixing seat 72 respectively, and the distance between the bottoms of the two square grooves is smaller than the width of the workpiece 4 to be measured, which is convenient for the robot 3 Fixtures for picking and placing the workpiece 4 to be tested.
  • the guide mechanism 71 includes a plurality of guide blocks 711 , the guide blocks 711 are profiling structures, and the side of the guide blocks 711 close to the workpiece 4 to be measured matches the corresponding position of the workpiece 4 to be measured.
  • the surface of the guide block 711 near the workpiece 4 to be measured is covered with a non-metallic material or the guide block 711 is made of a non-metallic material.
  • the non-metallic material can be a hard material such as hard plastic, preferably MC nylon material, to ensure that when When the workpiece 4 to be tested slides down from between the guide blocks 711, the surface of the workpiece 4 will not be scratched.
  • the guide block 711 is made of non-metallic material such as hard plastic.
  • the fixed seat 72 is fixed with a third positioning pin 721, and the third positioning pin 721 matches the positioning hole of the workpiece 4 to be measured.
  • the third positioning pin 721 Limit the workpiece 4 to be measured on the fixed seat 72 .
  • the robot 3 includes a robot gripper and a mechanical arm 301
  • the robot gripper includes a rotating connector 2 and a plurality of gripper assemblies 1, and a plurality of gripper assemblies 1 are fixedly connected to one end of the rotating connector 2, and the other end of the rotating connector 2 It is connected to the rotation of the mechanical arm 301, and the rotation of the connecting member 2 around the axial rotation of the mechanical arm 301 completes the switching between the positions of multiple fixture assemblies 1 to complete the detection of the workpiece 4 in the detection device and automatically put it into the workpiece to be tested 4.
  • the clamp assembly 1 includes a base 101, a linear clamping mechanism 102, a first clamping jaw 103 and a second clamping jaw 104, the linear clamping mechanism 102 can move left and right relative to the base 101, the first clamping jaw 103 and the second clamping jaw One of the jaws 104 is fixedly connected to the base 101, the other is fixedly connected to the linear clamping mechanism 102 and can move between the first position and the second position during the process of grabbing the workpiece 4, the first jaw 103 or the second When the jaws 104 are in the second position, the distance between the first jaw 103 and the second jaw 104 is greater than the width of the workpiece 4 .
  • the left-right direction is the X direction
  • the front-rear direction is the Y direction.
  • the controller is used to control the rotation of the robot gripper to switch the other of the plurality of gripper assemblies 1 to the first preset position to grip after one of the plurality of gripper assemblies 1 grips the workpiece 4 to be measured from the transition mechanism 7
  • the clamp assembly 1 for clamping the workpiece 4 to be tested is controlled to switch to the first preset position, and the workpiece 4 to be measured is placed in the detection device.
  • the detection device is an automatic flatness detection device 8, which is used to detect the flatness of the workpiece 4 to be tested and detect whether the detection position of the key part is defective, thereby realizing the automatic detection function of the flatness of the workpiece.
  • the embodiment of this specification also provides an automatic handling method with a fine positioning function, which is implemented based on the automatic handling system with a fine positioning function in Embodiment 1, including:
  • the control robot 3 takes the workpiece 4 to be measured from the transition mechanism 7 and places it in the flatness automatic detection device 8 .
  • the controller can obtain the clamping position and the position of the robot 3 according to the position of the guide mechanism 71 in the transition mechanism 7.
  • the relative position of the workpiece 4 to be measured, so as to realize the accurate handling of the workpiece 4 solves the problem that in the prior art, when the robot 3 is handling the workpiece 4, it is easy to cause inaccurate positioning after the transportation due to inaccurate positioning of the robot 3, which affects the accuracy of the detection of the workpiece 4 rate or reduce productivity.
  • the controller in the embodiment of this specification also includes a fine positioning control module, which is used to control the robot 3 to clamp the workpiece 4 to be measured from the material machine; control the robot 3 to place the workpiece 4 to be measured in the transition mechanism 7, and at the same time According to the position of the guide mechanism 71 in the transition mechanism 7, the gripping position of the robot 3 and the relative position of the workpiece 4 to be measured are obtained to complete the positioning of the workpiece 4 to be measured; the robot 3 is controlled to take the workpiece 4 to be measured from the transition mechanism 7 and place it on the In the flatness automatic detection device 8.
  • a fine positioning control module which is used to control the robot 3 to clamp the workpiece 4 to be measured from the material machine; control the robot 3 to place the workpiece 4 to be measured in the transition mechanism 7, and at the same time According to the position of the guide mechanism 71 in the transition mechanism 7, the gripping position of the robot 3 and the relative position of the workpiece 4 to be measured are obtained to complete the positioning of the workpiece 4 to be measured; the robot 3 is controlled to take
  • the embodiment of this specification provides an automatic system for processing and flatness detection, including a loading and unloading machine 6, a machining center 9, and the automatic handling system with fine positioning function in Embodiment 1, and the robot 3 is used to drive the robot fixture to move between the feeder, the transition mechanism 7, the flatness automatic detection device 8 and the machining center 9 through the control of the controller.
  • the flatness automatic detection device 8 is used to detect the flatness of the back side of the workpiece 4
  • the machining center 9 is used to process the workpiece 4 from the front side.
  • the controller controls the robot 3 to grip the workpiece 4 detected in the flatness automatic detection device 8 and put it into the machining center 9 for processing, so as to ensure that the workpiece 4 is processed after the flatness detection is completed, thereby ensuring the production of the workpiece 4 Quality, at the same time, use the robot 3 to carry out the operation, so that the pick-and-place time of the workpiece 4 is fixed, so that the output of the workpiece 4 after processing is stable, and solves the problem of manually operating the flatness automatic detection device 8 and the machining center 9 in the prior art. , leading to the problem that the operating machine clamps the workpiece 4 for processing, and the output is unstable and defective products are prone to occur.
  • the controller is used to control the rotation of the gripper of the robot so that one of the plurality of gripper assemblies 1 can be switched to the first preset position, and the workpiece 4 to be measured is clamped by the transition mechanism 7, and then another of the plurality of gripper assemblies 1 can be used.
  • the clamp assembly 1 that has not clamped the workpiece 4 clamps the detected workpiece 4 in the flatness automatic detection device 8, and then controls the clamp assembly 1 that has clamped the detected workpiece 4 to switch to the first preset position, and then passes the clamping Take the fixture assembly 1 of the workpiece 4 to be measured and place the workpiece 4 in the flatness automatic detection device 8 for flatness detection.
  • the controller is also used to control one of the plurality of clamp assemblies 1 that does not clamp the workpiece 4 to switch to the second preset position and clamp the processed workpiece 4 in the machining center 9, and then clamp the flatness
  • the fixture assembly 1 of the detected workpiece 4 in the automatic detection device 8 is switched to the second preset position, and the corresponding workpiece 4 is placed in the machining center 9 for processing.
  • the controller controls the switching between the clamp components 1 of the robot clamp to complete the clamping and placing of the workpiece 4, thereby realizing the automation of flatness detection and processing.
  • the angle between the clamping direction of the clamp assembly 3 and the horizontal direction is greater than 0 degrees and less than 90 degrees, preferably 30 degrees, which is convenient for picking and placing workpieces in the machining center 9 4.
  • the second preset position may also be the same as the first preset position.
  • FIG. 3 there are two clamp assemblies 1 , and the two clamp assemblies 1 are symmetrically arranged up and down with respect to the axial direction of the mechanical arm 301 .
  • the clamp assembly 1 is switched to a first preset position, and the first preset position is located directly below the mechanical arm 301 axially.
  • the first jaw 103 and the second jaw 104 have the same structure, the first jaw 103 and the second jaw 104 are symmetrically and fixedly arranged on the left and right sides of the base 101 respectively, and the second jaw 104 and the base 101 are fixed
  • the linear clamping mechanism 102 is a cylinder provided with a pusher 1021, the cylinder is fixed on the base 101 in parallel, the cylinder is used to drive the pusher 1021 to move in the left and right direction, the first jaw 103 and the pusher 1021 are fixedly connected, When the pushing member 1021 moves to the left relative to the base 101 , it drives the first jaw 103 to move to the left together.
  • the initial position of the first jaw 103 is the first position, and the first jaw 103 is located at the second position after moving to the left.
  • the first jaw 103 moves to the left to the second position, it is driven by the mechanical arm 301
  • the fixture assembly 1 approaches the workpiece 4 to be processed so that the first jaw 103 and the second jaw 104 are respectively located on both sides of the workpiece 4 to be processed, and then the pusher 1021 is controlled by the cylinder to move to the right to drive the first jaw 103 to move to the right together , when the first jaw 103 and the second jaw 104 clamp the workpiece 4 to be processed, the cylinder stops moving.
  • the first jaw 103 is provided with a first slot 1031 near the workpiece 4
  • the second jaw 104 is provided with a second slot 1041 near the workpiece 4, the first slot 1031 and the second slot 1041
  • the structures are the same and located on the same horizontal plane, and the first slot 1031 and the second slot 1041 both match the thickness of the gripped positions at both ends of the workpiece 4 .
  • the workpiece 4 is clamped through the first slot 1031 and the second slot 1041, the workpiece 4 is limited in the two slots, the problem of dropping the workpiece 4 due to improper operation is reduced, and the gripping performance of the two jaws is improved. of stability.
  • the first slot 1031 is a slot extending through the first jaw 103 in the Y direction
  • the second slot 1041 is a slot extending through the second jaw 104 in the Y direction, so that the thickness of the workpiece 4 is less than or equal to In the case of slotting thickness, it can be widely applied to workpieces 4 of different widths, which improves the utilization rate of the fixture assembly 1 .
  • the direction from the first jaw 103 to the second jaw 104 is the Y direction
  • the Y direction is the width direction of the workpiece 4
  • the extension direction of the first slot 1031 is the X direction
  • the X direction is the length direction of the workpiece 4, perpendicular to the horizontal
  • the direction is the Z direction.
  • the inner wall surfaces of the first slot 1031 and the second slot 1041 are covered with non-metallic materials, and the non-metallic materials may be hard materials such as hard plastics, preferably MC nylon materials.
  • the non-metallic materials may be hard materials such as hard plastics, preferably MC nylon materials.
  • the structures of the two clamping jaws at the corresponding positions of the first slot 1031 and the second slot 1041 are made of non-metallic materials such as hard plastic.
  • the clamp assembly 1 further includes a lower jacking mechanism 105, which is arranged between the base 101 and the workpiece 4, and the lower jacking mechanism 105 can move up and down relative to the base 101, between the first jaw 103 and the second jaw 104 After the workpiece 4 is grasped, the lower jacking mechanism 105 moves toward the workpiece 4 and abuts against the workpiece 4 .
  • a lower jacking mechanism 105 which is arranged between the base 101 and the workpiece 4, and the lower jacking mechanism 105 can move up and down relative to the base 101, between the first jaw 103 and the second jaw 104 After the workpiece 4 is grasped, the lower jacking mechanism 105 moves toward the workpiece 4 and abuts against the workpiece 4 .
  • the push-down mechanism 105 is provided with a cylinder on the side away from the workpiece 4, and the cylinder is fixedly arranged between the base 101 and the workpiece 4.
  • the cylinder is used to drive the push-down mechanism 105 to move up and down.
  • the air cylinder is used to drive the lowering mechanism 105 to move toward the workpiece 4 and abut against the workpiece 4, so that the clamp assembly 1 pushes above the workpiece 4 during the process of clamping the workpiece 4 Hold the workpiece 4, so that the workpiece 4 will not tilt during the clamping process, and ensure that the process of putting the workpiece 4 to be processed into the machining center 9 is smooth.
  • the bottoms of the first jaw 103 and the second jaw 104 are fixed with a profiling structure 106, the profiling structure 106 matches the upper surface of the workpiece 4, and the profiling structure 106 is used to move after grabbing the workpiece 4 During the process, the position of the workpiece 4 is limited, and the accurate positioning of the clamping position of the workpiece 4 by the fixture assembly 1 is realized.
  • the profiling structure 106 is used to carry the processed workpiece 4 to effectively prevent the workpiece 4 from falling.
  • the flatness automatic detection device 8 includes a base frame 10, a jacking mechanism 11 and a flatness detection mechanism 12, the base frame 10 is used to carry the workpiece 4 to be tested, and a support seat 13 is fixed above the base frame 10 to support
  • the seat 13 is provided with a plurality of sliding parts 131, and the plurality of sliding parts 131 can move up and down relative to the support seat 13.
  • the positions of the plurality of sliding parts 131 on the support seat 13 correspond to the detection positions of the workpiece 4 to be measured one by one.
  • the bottom of the support base 13 is fixedly provided with a plurality of first positioning pins 132, the first positioning pins 132 match the positioning holes 41 of the workpiece 4 to be measured, and the first positioning pins 132 are used to align the workpiece 4 to be measured during the jacking process.
  • the workpiece 4 to be measured is positioned, and the jacking mechanism 11 is arranged under the base frame 10.
  • the jacking mechanism 11 is used to lift the workpiece 4 to be measured from the first height to the second height to jack up the slider 131, and the flatness detection
  • the mechanism 12 is used for detecting the height of the sliding member 131 when the workpiece 4 to be measured is at the second height.
  • the sliding member 131 is simultaneously lifted up after the workpiece 4 to be measured is lifted by the jacking mechanism 11, and then passed the flatness detection.
  • the mechanism 12 measures the height of the slider 131 to complete the flatness detection of the workpiece 4 to be measured and the detection of whether the detection position of the key part is flawed, thereby realizing the automatic detection function of the flatness of the workpiece.
  • the workpieces 4 to be measured are located directly below the slider 131 one by one, the workpieces 4 to be measured are at the first height at this time; , the workpiece 4 to be measured is located at the second height.
  • the first positioning pin 132 is inserted into the positioning hole 41 of the workpiece 4 to be measured, so that the workpiece 4 to be measured is limited in the horizontal direction during the process of being lifted, so that the workpiece 4 to be measured After jacking up to the second height, it is attached to the bottom of the support seat 13. At the same time, the first positioning pin 132 is inserted into the corresponding positioning hole 41 on the workpiece 4. With the jacking mechanism 11, the workpiece is limited in the horizontal and vertical directions. position, which solves the problem that the flatness detector in the prior art needs to adjust the center and level of the workpiece before the test, which wastes man-hours.
  • the flatness detection mechanism 12 includes a plurality of laser sensors 121, and the plurality of laser sensors 121 are arranged above the slider 131 in one-to-one correspondence, and the laser sensors 121 are used to measure the laser sensor 121 when the workpiece 4 to be measured is at the second height. to the distance between slider 131.
  • the detection position on the workpiece 4 to be measured is determined according to the detection requirements of the workpiece 4 to be measured.
  • the detection position may include a plurality of corresponding positions that need to be tested for flatness, and may also include whether the detection position of a key part needs to be detected. , such as studs on the workpiece 4 to be tested, etc.
  • the flatness detection mechanism 12 can detect a plurality of flatness corresponding to a plurality of detection positions at the same time, that is, the plurality of detection positions are divided into a plurality of detection position combinations, each detection position combination corresponds to a flatness detection requirement, and each flatness detection requirement Can be the same or different.
  • the laser sensor 121 is a laser displacement sensor, and a plurality of laser sensors 121 are arranged directly above the plurality of sliders 131 in one-to-one correspondence. The positions are in one-to-one correspondence in the horizontal direction.
  • the slider 131 is lifted.
  • the multiple laser sensors 121 respectively reach the corresponding slider 131 by emitting laser light and receiving Calculate the distance between the returned laser and the corresponding slider 131, so as to determine the height of the corresponding slider 131, and judge multiple The height deviation between the sliding parts is used to calculate the corresponding flatness of the workpiece 4 to be tested, and the testing process is short and efficient.
  • the sliding member 131 is a travel pin.
  • a defective product storage area 21 is provided near the flatness automatic detection device 8 for storing defective products when the flatness automatic detection device 8 detects that the workpiece 4 is a defective product.
  • it also includes a conveying mechanism 14 and a guide rail 15 positioned in the horizontal direction, the guide rail 15 is fixedly arranged on the base frame 10, the conveying mechanism 14 is arranged above the guide rail 15, and the conveying mechanism 14 is used to carry the workpiece 4 to be measured and transmit it through the guide rail 15 to the detection position.
  • the conveying mechanism 14 is fixed with a second positioning pin 141, and the second positioning pin 141 is matched with the positioning hole 41 of the workpiece 4 to be measured, so as to complete the limit of the horizontal direction of the workpiece 4 on the conveying mechanism 14, so that in The workpiece 4 can be kept stable without shaking during the conveying process.
  • the front end of the guide rail 15 is provided with a first detection mechanism 16, the first detection mechanism 16 is used to detect whether the workpiece 4 to be measured is placed on the conveying mechanism 14, when the first detector detects that the workpiece to be measured is placed on the conveying mechanism 14 At 4 o'clock, the control guide rail 15 conveys the conveying mechanism 14 to move toward the direction of the detection position.
  • the driving mechanism of the control guide rail 15 drives the guide rail 15 to move the conveying mechanism 14 from the conveying position to the detection position.
  • the front end of the guide rail 15 is the conveying position, and the conveying position is exposed to the outside for conveniently placing the workpiece 4 to be measured on the conveying mechanism 14 located at the conveying position.
  • the conveying mechanism 14 reaches the rear end of the guide rail 15, The conveying mechanism 14 is at the detection position, and the workpiece 4 to be measured is at the first height at this moment.
  • a second detection mechanism 17 is provided at the rear end of the guide rail 15, and the second detection mechanism 17 is used to detect whether the conveying mechanism 14 has reached the detection position.
  • a limit mechanism 19 is fixed at the rear end of the guide rail 15, and the limit mechanism 19 is used to limit the conveying mechanism 14 at the detection position.
  • the front end of the guide rail 15 is fixed with a first limit mechanism.
  • the conveying mechanism 14 carries the detected workpiece 4 from the detection position. Moving to the conveying position, when the conveying mechanism 14 reaches the first limit mechanism, the conveying mechanism 14 will be limited at the conveying position, so that the workpiece 4 that has been tested can be taken out and the next workpiece 4 to be measured can be placed.
  • the conveying mechanism 14 is provided with a third detection mechanism 18, and the third detecting mechanism 18 is used to detect whether the workpiece 4 is in place on the conveying mechanism 14, and can reconfirm whether the workpiece 4 is in place on the conveying mechanism 14 to ensure a flat surface.
  • the effectiveness of degree detection when the second detection mechanism 17 detects that the conveying mechanism 14 reaches the detection position, it controls the third detection mechanism 18 to detect, and when the third detection mechanism 18 detects that the workpiece 4 on the conveying mechanism 14 is in place, it controls the jacking Mechanism 11 moves upwards.
  • the first detection mechanism 16, the second detection mechanism 17, and the third detection mechanism 18 are matched with the conveying mechanism 14, so that when it is detected that the workpiece 4 is placed on the conveying mechanism 14, the flatness detection of the workpiece 4 is automatically completed to realize automatic conveying and Automatic detection function to improve production efficiency.
  • the present embodiment provides a kind of flatness automatic detection method, the method realizes based on the flatness automatic detection device 8 in embodiment 2, comprises:
  • the conveying mechanism 14 is controlled to move from the conveying position to the detecting position through the guide rail 15;
  • the third detecting mechanism 18 is controlled to detect whether the workpiece 4 on the conveying mechanism 14 is in place;
  • the lifting mechanism 11 is controlled to move upward to lift the workpiece 4 to be measured from the first height to the second height to lift the slider 131;
  • the flatness detection mechanism 12 is controlled to detect the heights of the plurality of sliding members 131 pushed up by the workpiece 4 to complete the flatness detection of the workpiece 4 .
  • the first detection mechanism 16 detects that the workpiece 4 to be measured is placed on the conveying mechanism 14, and the first detecting mechanism 16 sends a signal to control the guide rail 15 to transfer the conveying mechanism 14 from the conveying The bit moves to the detection position; when the conveying mechanism 14 reaches the detection position, the rear end of the conveying mechanism 14 reaches the limit mechanism 19 so that the conveying mechanism 14 is limited at the detection position; when the second detection mechanism 17 detects that the conveying mechanism 14 reaches the detection position When in place, the second detection mechanism 17 sends a signal to control the third detection mechanism 18 to detect whether the workpiece 4 is in place on the conveying mechanism 14, and can confirm whether the workpiece 4 is in place on the conveying mechanism 14, so as to ensure the flatness detection.
  • the third detection mechanism 18 when the third detection mechanism 18 detects that the workpiece 4 is in place on the conveying mechanism 14, the third detection mechanism 18 sends a signal to control the upward movement of the jacking mechanism 11 to lift the workpiece 4 to be measured from the first height to the second height.
  • the height is to jack up a plurality of sliders 131 corresponding to the detection position of the workpiece 4 to be measured.
  • the jacking mechanism 11 sends a signal to control the flatness detection mechanism 12 to detect the plurality of sliders 131 to complete the flatness detection of the workpiece 4 to be measured.
  • the jacking mechanism 11 is controlled to move downward so that the workpiece 4 to be tested is lowered from the second height to the first height, and the jacking mechanism 11 sends a signal to control the guide rail 15 to be uploaded in the direction from the detection position to the delivery position.
  • the embodiment of this specification also provides a controller, the controller includes a flatness detection control module, and the flatness detection control module is used to control the conveying mechanism 14 when the first detection mechanism 16 detects that the workpiece 4 to be measured is placed on the conveying mechanism 14 Transmit by guide rail 15 and move from delivery position to detection position;
  • second detection mechanism 17 detects that delivery mechanism 14 arrives detection position, control the 3rd detection mechanism 18 whether workpiece 4 on the delivery mechanism 14 is detected;
  • the detection mechanism 18 detects that the workpiece 4 is in place on the conveying mechanism 14, it controls the lifting mechanism 11 to move upward to lift the workpiece 4 to be measured from the first height to the second height to lift the slider 131;
  • the flatness detection mechanism 12 is controlled to detect the heights of the plurality of sliding members 131 pushed up by the workpiece 4 to be measured to complete the flatness detection of the workpiece 4 to be measured.
  • the flatness detection control module controls the first detection mechanism 16, the second detection mechanism 17 and the third detection mechanism 18 to cooperate with the conveying mechanism 14, so that when it is detected that the workpiece 4 to be measured is placed on the conveying mechanism 14, the workpiece 4 is automatically completed.
  • Flatness detection realizes automatic conveying and automatic detection functions and improves production efficiency.
  • the workpiece 4 to be measured is placed on the conveying mechanism 14, and at this time, the second positioning pin 141 is inserted into the corresponding position of the workpiece 4 to be measured.
  • the positioning of the workpiece 4 to be measured in the horizontal direction where the conveying mechanism 14 is located is realized in the positioning hole 41 .
  • the embodiment of this specification also provides a robot control method, which is implemented based on the robot 3 in Embodiment 2, including:
  • control mechanical arm 301 drives the robot clamp to move to the top of the workpiece 4 to be measured;
  • Controlling the movement of the linear clamping mechanism 102 of one of the two clamping components 1 drives the first clamping jaw 103 or the second clamping jaw 104 fixedly connected to it to move from the first position to the second position;
  • the corresponding clamp assembly 1 is controlled to descend, and the workpiece 4 to be measured is placed in the flatness automatic detection device 8. At this time, the second positioning pin 141 is inserted into the positioning hole 41 of the workpiece 4 to be measured;
  • the corresponding clamp assembly 1 is controlled to place the defective product in the defective product placement area 21, and the above steps are repeated;
  • control mechanical arm 301 drives the gripper assembly 1 that grabs the detected workpiece 4 to move to the vicinity of the processing position of the machining center 9;
  • Controlling the gripper assembly 1 grabbing the inspected workpiece 4 is switched to the second preset position and placing the inspected workpiece 4 in the machining center 9 .
  • the flatness automatic detection device 8 sends a signal to control the robot 3 to grip the workpiece 4 to be measured and move to below the delivery position of the flatness automatic detection device 8;
  • Another jaw assembly 1 in the jaw assembly 1 grabs the detected workpiece 4 in the flatness automatic detection device 8 and removes the workpiece 4 from the second positioning pin 141, and then controls the robot gripper from the guide rail along the direction of the guide rail 15.
  • the workpiece 4 to be measured or processed can be quickly replaced at the flatness automatic detection device and the machining center, and the workpiece 4 is shortened.
  • the processing time is reduced, and the production efficiency is improved.
  • the controller in the embodiment of this specification also includes a robot control module, which is used to control the robot arm 301 to drive the robot fixture to move above the workpiece 4 to be measured when the workpiece processing in the machining center 9 is completed; control multiple fixture assemblies 1
  • the movement of the linear clamping mechanism 102 of one clamp assembly 1 drives the first clamping jaw 103 or the second clamping jaw 104 fixedly connected with it to move from the first position to the second position; control the first clamping jaw 103 and the second clamping jaw 104 moves to both sides of the workpiece 4 to be measured and grabs the workpiece 4; controls the other jaw assembly 1 in the two jaw assemblies 1 to grab the workpiece 4 that has been detected in the flatness automatic detection device 8 and grabs the workpiece 4
  • the robot gripper is controlled to slide out from the guide rail 15 along the direction of the guide rail 15; the gripper assembly 1 of the workpiece 4 that is controlled to be detected is switched to the first preset position and the workpiece 4 to be measured is clamped.
  • the clamp assembly 1 slides in from the guide rail 15 while keeping the height of the workpiece 4 higher than the second positioning pin 141; when the positioning hole 41 of the workpiece 4 reaches the position directly above the second positioning pin 141, control the corresponding The fixture assembly 1 is lowered, and the workpiece 4 to be tested is placed in the flatness automatic detection device 8.
  • the second positioning pin 141 is inserted into the positioning hole 41 of the workpiece 4 to be measured; the control robot 301 is driven to grab the detected workpiece
  • the gripper assembly 1 of 4 moves to above the processing position of the machining center 9; the robot gripper is controlled to rotate to switch another jaw assembly 1 among the plurality of jaw assemblies 1 to the second preset position to grab the processing in the machining center 9 to complete
  • the workpiece 4 is controlled; the jaw assembly 1 that grabs the detected workpiece 4 is controlled to switch to the second preset position and the detected workpiece 4 is placed in the machining center 9 .
  • the machining center 9 is used to process the workpiece 4 detected by the flatness automatic detection device 8.
  • the machining center 9 includes a bearing seat 91, a positioning mechanism 92 and a plurality of swing arm pressing mechanisms 93, and the positioning mechanism 92 is fixed.
  • the positioning mechanism 92 is used to locate the workpiece 4 to be processed.
  • the swing arm pressing mechanism 93 is connected to the bearing seat 91 in rotation.
  • a plurality of swing arm pressing mechanisms 93 are arranged symmetrically on both sides of the workpiece 4 to be processed, and the swing arm pressing mechanisms 93 are used to press the workpiece 4 to be processed on the bearing seat 91 .
  • the positioning mechanism 92 includes a plurality of fourth positioning pins 921 , and the fourth positioning pins 921 are matched with the positioning holes 41 of the workpiece 4 .
  • the controller is configured to control the bearing seat 91 to rotate to a third preset position after the processing of the workpiece 4 by the machining center 9 is completed, and the third preset position is parallel to the second preset position.
  • the robot gripper is fixedly provided with the pipe body 5 at a position opposite to the position where the robot arm 301 is fixedly connected, and the controller is configured to control the pair of pipe body 5 before the gripper assembly 1 clamps the processed workpiece 4 in the machining center 9 Blow air at the position of the bearing seat 91 or place the workpiece 4 to be processed in the fixture assembly 1 before the machining center 9 and control the pipe body 5 to blow air at the position of the bearing seat 91 .
  • the two ends of the bearing seat 91 are drivingly connected with the drive mechanism 20.
  • the bearing seat 91 is in a horizontal position;
  • the seat 91 rotates from the horizontal position to a third preset position.
  • the driving mechanism 20 is a motor.
  • the pipe body 5 blows air to the position of the bearing seat 91, and before the clamp assembly 1 places the workpiece 4 to be processed on the machining center 9, the position of the bearing seat 91 is adjusted again. Air blowing is carried out so that when the clamp assembly 1 reaches the corresponding position of the processing position, i.e.
  • the third preset position air is blown on the finished workpiece 4 in the machining center 9 to ensure that there will be no debris after the workpiece 4 is processed Residue on the surface, before placing the workpiece 4 to be processed, blow again to the position of the bearing seat 91 in the machining center 9, so as to prevent the debris in the machining center 9 from sticking to the position of the bearing seat 91 in the machining center 9 and affect the accuracy of processing.
  • the processing time of the machining center 9 is equivalent to twice the flatness detection time of the flatness automatic detection device 8
  • the quantity of the machining center 9 is set to be two to improve the production output of the workpiece 4, and Setting the robot 3 between the two machining centers 9 can realize the operation of the two machining centers 9 .
  • the feeding machine is a loading and unloading machine 6, and the loading and unloading machine 6 includes a material storage plate 61, and the width of the material storage plate 61 at the corresponding position of the workpiece 4 is smaller than the width of the workpiece 4, and the material storage plate 61 is used to place the material to be tested.
  • the controller is used to control the robot fixture to clamp the workpiece 4 to be measured on the loading and unloading machine 6, and then place the workpiece 4 processed in the machining center 9 on the vacant position after the workpiece 4 to be measured is taken .
  • the material storage plate 61 is a rectangular material storage plate, the width of the material storage plate 61 is smaller than the width of the workpiece 4, the fifth positioning pin 611 is arranged on the material storage plate 61, and the position of the fifth positioning pin 611 is positioned on the workpiece 4.
  • the position of the hole 41 corresponds, and the size of the fifth positioning pin 611 is smaller than the size of the positioning hole 41, so that the workpiece 4 can be positioned on the material storage plate 61 without precise positioning during manual loading, which makes it easier to place and saves loading time .
  • the loading and unloading machine 6 is a laminated structure, and the loading and unloading machine 6 includes a plurality of horizontally placed material storage plates 61 at different heights and a plurality of translational conveying mechanisms 62, and the translational conveying mechanism 62 corresponds to the loading and unloading machine 6 one-to-one
  • the drive is connected, and the translation mechanism is used to drive the corresponding loading and unloading machine 6 to move upward in Y, so that after completing the upper storage plate 61 in the loading and unloading machine 6, it can move in the Y direction under the drive of the corresponding translation conveying mechanism 62, So that the upper layer of material storage plate 61 and the adjacent next layer of material storage plate 61 do not overlap in the vertical direction, so that the robot gripper can pick and place workpieces 4 on the material storage plate 61 layer by layer, and after batch processing can be completed Then, the loading and unloading machine 6 is uniformly replaced with the workpiece 4 to be tested, so as to reduce the number of loading times of the work
  • the controller controls the corresponding translational conveying mechanism 62 to drive the storage plate 61 from close to the robot 3 to one by one. Move laterally away from the side of the robot 3 to expose the adjacent material storage plate 61 of the next layer, which is convenient for the robot 3 to take the workpiece 4 to be measured in the material storage plate 61 of the next layer.
  • the controller controls the translation conveying mechanism 62 corresponding to the upper stock plate 61 to drive the stock plate 61 from close to the robot.
  • the 3 side moves away from the robot 3 side.
  • the loading and unloading machine 6 includes a material storage rack 63, which is a multi-layer structure, and each layer of the material storage rack 63 is fixedly provided with three slide bars 631 extending in the Y direction, and the material storage plate 61 and the corresponding slide bar
  • the rod 631 is slidably connected, and when driven by the translation conveying mechanism 62 , slides along the slide rod 631 .
  • the working principle (automatic control method) of the automatic system for processing and flatness detection is as follows:
  • the movement of the mechanical arm 301 of the control robot 3 drives the clamp assembly 1 that grips the processed workpiece 4 to move synchronously to the top of the corresponding workpiece 4 to be tested on the loading and unloading machine 6;
  • Controlling the gripper assembly 1 clamping the workpiece 4 to be measured is switched to the first preset position, and placing the workpiece 4 to be measured in the transition mechanism 7;
  • control bearing seat 91 When the processing of the workpiece 4 in the machining center 9 is completed, the control bearing seat 91 is rotated to the third preset position, and the control pipe body 5 blows air to the workpiece 4 that has been processed on the bearing seat 91 to ensure that there will be no air on the workpiece 4 that has been processed. Debris remains on the surface;
  • Controlling the rotation of the gripper of the robot switches the gripper assembly 1 that has gripped the inspected workpiece 4 to a second preset position and places the inspected workpiece 4 in the machining center 9 for processing.
  • the controller includes a processor and a memory, and at least one instruction, at least one program, code set or instruction set are stored in the memory, and the at least one instruction, the at least one program, the code set or The instruction set is loaded and executed by the processor to realize the automatic control method of the automatic system of processing and flatness detection as mentioned above.

Abstract

本发明涉及一种具有精定位功能的自动搬运系统、自动化系统及方法,自动搬运系统包括过渡机构、检测装置、控制器和机器人,所述机器人用于夹取料机上的待测工件放置在所述过渡机构中再从所述过渡机构中夹取所述待测工件放置在所述检测装置中,所述过渡机构包括导向机构和底座,所述导向机构垂直固定在所述固定座上,所述控制器用于当所述机器人夹取待测工件放置在所述过渡机构中时根据所述过渡机构中所述导向机构的位置得到所述机器人的夹取位置和所述待测工件位置之间的对应关系以将所述待测工件准确放置在所述检测装置中。通过设置过渡机构,使得将工件放置在过渡机构中后再次取出时完成机器人夹取位置和工件之间精准对应以实现工件的准确搬运。

Description

一种具有精定位功能的自动搬运系统、自动化系统及方法 技术领域
本发明涉及自动搬运技术领域,尤其涉及一种具有精定位功能的自动搬运系统、自动化系统及方法。
背景技术
工业机器人是近几十年发展起来的一种高科技自动生产设备,作业的准确性和环境中完成作业的能力使得工业机器人的应用越来越广泛。工业机器人主要由执行机构、驱动机构和控制系统三大部分组成,机械臂的手是用来抓持工件的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等,驱动机构用于使手部完成各种转动、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势,但是机器人在搬运工件的时候很容易因为定位不准导致搬运后放置位置不准确,降低工件的合格率和一致性,甚至影响整个自动生产线的运行。
因此,需要提供一种搬运位置准确并且方便操作并且可以实现自动化的自动搬运系统来解决上述技术问题。
发明内容
为了解决现有技术中的问题,本发明提供了一种具有精定位功能的自动搬运系统、自动化系统及方法,具体地:
一方面提供了一种具有精定位功能的自动搬运系统,包括过渡机构、检测装置、控制器和机器人,所述机器人用于夹取料机上的待测工件放置在所述过渡机构中再从过渡机构中夹取所述待测工件放置在所述检测装置中,所述过渡机构包括导向机构和固定座,所述导向机构垂直固定在所述固定座上,所述固定座上与待测工件对应位置的宽度小于待测工件的宽度,所述控制器用于当所述机器人夹取待测工件放置在所述过渡机构中时根据所述过渡机构中所述导向机构的位置得到所述机器人的夹取位置和所述待测工件位置之间的对应关系以将所述待测工件准确放置在所述检测装置中。
另一方面提供了一种加工及平面度检测的自动化系统,包括料机、加工中心和上述的具有精定位功能的自动搬运系统,所述加工中心用于对所述检测装置检测完成的工件进行加工,所述料机为上下料机,所述上下料机包括储料板, 所述储料板的在所述工件对应位置的宽度小于所述工件的宽度,所述储料板用于放置待测工件和加工完成的工件,所述控制器用于控制所述机器人夹具夹取所述上下料机上待测工件后将所述加工中心中加工完成的工件放置在所述待测工件被拿取后空余的位置上。
另一方面提供了一种具有精定位功能的自动搬运方法,所述方法基于上述的具有精定位功能的自动搬运系统实现的,包括:
控制机器人从料机上夹取待测工件;
控制机器人将待测工件放置在过渡机构中,同时,根据所述过渡机构中所述导向机构的位置得到所述机器人的夹取位置和所述待测工件的相对位置完成对所述待测工件的定位;
控制机器人从过渡机构中拿取所述待测工件放置在所述检测装置中。
本发明提供的一种具有精定位功能的自动搬运系统、自动化系统及方法,具有的有益效果为:
本发明通过设置过渡机构,使得当机器人夹取待测工件放置在过渡机构中时控制器可以根据过渡机构中导向机构的位置确定出待测工件的准确位置,从而得到机器人的夹取位置和待测工件位置之间的对应关系,从而实现工件的准确搬运,解决了现有技术中机器人在搬运工件的时候很容易因为定位不准导致搬运后放置位置不准确,影响工件的检测准确率或减低生产效率的问题。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还能够根据这些附图获得其它附图。
图1是本说明书实施例提供的一种具有精定位功能的自动搬运系统中过渡机构承载工件时的结构示意图;
图2是本说明书实施例提供的一种具有精定位功能的自动搬运系统中过渡机构的结构示意图;
图3是本说明书实施例提供的机器人夹具的结构示意图;
图4是本说明书实施例提供的一种加工及平面度检测的自动化系统的结构示意图;
图5是本说明书实施例提供的当输送机构上承载工件时平面度自动检测装置的结构示意图;
图6是本说明书实施例提供的当输送机构上没有承载工件时平面度自动检测装置的结构示意图;
图7是本说明书实施例提供的平面度检测机构和滑动件配合的结构示意图;
图8是图7的仰视图;
图9是本说明书实施例提供的平面度自动检测装置和机器人夹具配合的结构示意图;
图10是本说明书实施例提供的加工中心的结构示意图;
图11是本说明书实施例提供的上下料机的结构示意图;
图12是本说明书实施例提供的储料板和工件配合的结构示意图;
图13是本说明书实施例提供的上下料机和机器人夹具配合的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
如图1、图2和图3所示,本说明书实施例提供了一种具有精定位功能的自动搬运系统,包括过渡机构7、检测装置、控制器和机器人3,机器人3用于夹取料机上的待测工件4放置在过渡机构7中再从过渡机构7中夹取待测工件4放置在检测装置中,过渡机构7包括导向机构71和固定座72,导向机构71垂直固定在固定座72上,固定座72上与待测工件对应位置的宽度小于待测工件4的宽度,控制器用于当机器人3夹取待测工件4放置在过渡机构7中时根据过渡机构7中导向机构71的位置得到得到待测工件4的准确位置以准确夹取待测工件4放置在平面度自动检测装置8中。
需要说明的是,机器人3通过机器人夹具进行工件4的取放,料机上待测工件4的放置位置不是精确定位的,当机器人夹具从料机上抓取到待测工件4时,机器人夹具的夹取位置和待测工件4的位置之间的对应关系是不确定的,即根据机器人夹具的坐标无法确定待测工件4的精确坐标。通过设置过渡机构 7,使得当机器人夹具夹取待测工件4放置在过渡机构7中时,由于过渡机构7的坐标是可以精确定位的,控制器可以根据过渡机构7中导向机构71的位置得到待测工件4的准确位置,从而得到控制机器人夹具的夹取位置的坐标和所述待测工件4的坐标对应关系,实现工件4的准确搬运。
具体地,如图2所示,固定座72的前、后两端对称分别设有一个方形凹槽,两个方形凹槽底部之间的距离小于待测工件4的宽度,便于机器人3的机器人夹具对待测工件4的取放。
优选地,导向机构71包括多个导向块711,导向块711为仿形结构,导向块711靠近待测工件4一侧和待测工件4对应位置匹配。
优选地,导向块711靠近待测工件4一侧表面覆有非金属材料或导向块711为非金属材料制成,非金属材料可以是硬塑料等硬质材料,优选为MC尼龙材料,确保当待测工件4从导向块711之间滑下的过程中不会将工件4表面划伤。
在一些其他实施例中,导向块711为硬塑料等非金属材料制成。
优选地,固定座72上固定设有第三定位销721,第三定位销721和待测工件4的定位孔匹配,当待测工件4从导向机构71上滑下后,第三定位销721将待测工件4限位在固定座72上。通过导向块711和第三定位销721配合,便于机器人3从过渡机构7中取出工件4时实现工件4的精确定位。
优选地,机器人3包括机器人夹具和机械臂301,机器人夹具包括转动连接件2和多个夹具组件1,多个夹具组件1均和转动连接件2的一端固定连接,转动连接件2的另一端和机械臂301的转动连接,转动连接件2围绕机械臂301的轴向转动完成多个夹具组件1位置之间的切换以完成拿取检测装置中检测完成的工件4后自动放入待测工件4。
优选地,夹具组件1包括底座101、直线夹紧机构102、第一夹爪103和第二夹爪104,直线夹紧机构102相对于底座101可左右运动,第一夹爪103和第二夹爪104中的一个和底座101固定连接,另一个和直线夹紧机构102固定连接且在抓取工件4过程中可在第一位置和第二位置之间移动,第一夹爪103或第二夹爪104位于第二位置时,第一夹爪103和第二夹爪104之间的距离大于工件4的宽度。
具体地,导向块711为四个,分别对称设于待测工件4左、右两侧,搭配第一夹爪103和第二夹爪104在过渡机构7中取放工件4时,位于待测工件4 的前、后两端,保证工件4取放的顺利。左右方向为X向,前后方向为Y向。
优选地,控制器用于当多个夹具组件1中的一个从过渡机构7夹取待测工件4后控制机器人夹具旋转将多个夹具组件1中的另一个切换至第一预设位置来夹取检测装置中的检测完成的工件4,再控制将夹取待测工件4的夹具组件1切换至第一预设位置将待测工件4放置在检测装置中。
具体地,检测装置为平面度自动检测装置8,用于对待测工件4的进行平整度检测和对关键部的检测位置是否有残缺的进行检测,从而实现对工件平面度的自动检测功能。
本说明书实施例中还提供一种具有精定位功能的自动搬运方法,方法基于实施例1中的具有精定位功能的自动搬运系统实现的,包括:
控制机器人3从料机上夹取待测工件4;
控制机器人3将待测工件4放置在过渡机构7中,同时,根据过渡机构7中导向机构71的位置确定出待测工件4的定位以得到使机器人3的夹取位置和待测工件4位置的相对位置关系;
控制机器人3从过渡机构7中拿取待测工件4放置在平面度自动检测装置8中。
通过所述具有精定位功能的自动搬运方法,使得当机器人3夹取待测工件4放置在过渡机构7中时控制器可以根据过渡机构7中导向机构71的位置得到机器人3的夹取位置和待测工件4的相对位置,从而实现工件4的准确搬运,解决了现有技术中机器人3在搬运工件4的时候很容易因为定位不准导致搬运后放置位置不准确,影响工件4的检测准确率或减低生产效率的问题。
本说明书实施例中的控制器还包括精定位控制模块,精定位控制模块用于控制机器人3从料机上夹取待测工件4;控制机器人3将待测工件4放置在过渡机构7中,同时,根据过渡机构7中导向机构71的位置得到机器人3的夹取位置和待测工件4的相对位置完成对待测工件4的定位;控制机器人3从过渡机构7中拿取待测工件4放置在平面度自动检测装置8中。
实施例2:
如图1-13所示,本说明书实施例提供了一种加工及平面度检测的自动化系统,包括上下料机6、加工中心9和实施例1中的具有精定位功能的自动搬运系统,机器人3用于通过控制器控制来带动机器人夹具在料机、过渡机构7、平 面度自动检测装置8和加工中心9之间移动。其中,平面度自动检测装置8用于对工件4的背面进行平面度检测,加工中心9用于从工件4的正面进行加工。通过控制器控制机器人3夹取所述平面度自动检测装置8中检测完成的工件4放入加工中心9进行加工,确保工件4均完成平面度检测后再进行加工,从而保证了工件4的生产质量,同时,使用机器人3进行作业,使得工件4的取放时间固定,使得工件4加工完成的产量稳定,解决了现有技术中由人工操作平面度自动检测装置8和加工中心9的机台,导致操作机台装夹工件4进行加工产量不稳定、容易产生不良品的问题。
其中,控制器用于控制机器人夹具旋转使多个夹具组件1中的一个夹具组件1切换至第一预设位置从过渡机构7夹取待测工件4后再用多个夹具组件1中的另一个未夹取工件4的夹具组件1夹取平面度自动检测装置8中的检测完成的工件4,再控制将夹取检测完成的工件4的夹具组件1切换至第一预设位置,再通过夹取待测工件4的夹具组件1将待测工件4放置在平面度自动检测装置8中进行平面度检测。
控制器还用于控制多个夹具组件1中的一个没有夹取工件4的夹具组件1切换至第二预设位置并夹取加工中心9中的加工完成的工件4,再将夹取平面度自动检测装置8中检测完成的工件4的夹具组件1切换至第二预设位置将对应的工件4放置在加工中心9中进行加工。通过控制器控制机器人夹具的夹具组件1之间进行切换完成工件4的夹取和放置,实现了平面度检测及加工的自动化。
其中,当夹具组件1位于第二预设位置时,夹具组件3的夹持方向和水平方向之间夹角大于0度且小于90度,优选为30度,方便在加工中心9中取放工件4。
在一些其他实施例中,第二预设位置也可以和第一预设位置相同。
本实施例中,如图3所示,夹具组件1为两个,两个夹具组件1关于机械臂301轴向呈上下对称设置,通过控制转动连接件2转动将两个夹具组件1中的一个夹具组件1切换至第一预设位置,第一预设位置位于机械臂301轴向正下方。
其中,第一夹爪103和第二夹爪104结构相同,第一夹爪103和第二夹爪104分别对称固定设置在底座101的左、右两侧,第二夹爪104和底座101固 定连接,直线夹紧机构102为设有推动件1021的气缸,气缸平行固定在底座101上,气缸用于驱动推动件1021在左右方向上运动,第一夹爪103和推动件1021固定连接,在推动件1021相对于底座101向左运动时带动第一夹爪103一同向左运动。
具体地,第一夹爪103的初始位置为第一位置,第一夹爪103向左移动后位于第二位置,当第一夹爪103向左运动至第二位置时,通过机械臂301带动夹具组件1向待加工工件4靠近使得第一夹爪103和第二夹爪104分别位于待加工工件4两侧,然后通过气缸控制推动件1021向右运动带动第一夹爪103一同向右运动,当第一夹爪103和第二夹爪104将待加工工件4夹紧后气缸停止运动。
优选地,第一夹爪103靠近工件4一侧设有第一开槽1031,第二夹爪104靠近工件4一侧设有第二开槽1041,第一开槽1031和第二开槽1041结构相同且位于同一水平面上,第一开槽1031、第二开槽1041均和工件4两端被抓取位置的厚度匹配。通过第一开槽1031和第二开槽1041夹取工件4,将工件4限位在两个开槽中,减少由于操作不当造成掉落工件4的问题,提升了两个夹爪夹取性能的稳定度。
优选地,第一开槽1031为Y向延伸贯穿于第一夹爪103的开槽,第二开槽1041为Y向延伸贯穿于第二夹爪104的开槽,使得在工件4厚度小于等于开槽厚度的情况下,可以广泛适用于不同宽度的工件4,提高了夹具组件1的利用率。第一夹爪103到第二夹爪104的方向为Y向,Y向为工件4的宽度方向,第一开槽1031的延伸方向为X向,X向为工件4的长度方向,垂直于水平方向为Z向。
具体地,第一开槽1031和第二开槽1041的内壁表面覆有非金属材料,非金属材料可以是硬塑料等硬质材料,优选为MC尼龙材料。通过在第一开槽1031和第二开槽1041内壁表面覆有非金属材料,确保在两个夹爪在取放工件4的过程中不会将工件4表面划伤。
在一些其他实施例中,两个夹爪在第一开槽1031和第二开槽1041对应位置的结构为硬塑料等非金属材料制成。
优选地,夹具组件1还包括下顶机构105,下顶机构105设置于底座101和工件4之间,下顶机构105相对于底座101可上下运动,在第一夹爪103和 第二夹爪104完成抓取工件4后下顶机构105向靠近工件4方向运动抵接在工件4上。
具体地,下顶机构105在远离工件4一侧设有气缸,气缸固定设置在底座101和工件4之间,气缸用于驱动下顶机构105在上下方向上运动,在第一夹爪103和第二夹爪104抓取工件4运动过程中气缸用于驱动下顶机构105向靠近工件4方向运动抵接在工件4上,使得在夹具组件1在夹取工件4过程中在工件4上方顶住工件4,使得工件4在被夹取过程中不会倾斜,保证将待加工工件4放入加工中心9的过程顺畅。
优选地,第一夹爪103和第二夹爪104的底部均固定设有仿形结构106,仿形结构106和工件4的上表面匹配,仿形结构106用于在抓取工件4后移动过程中对工件4限位,实现夹具组件1对工件4夹取位置的准确定位。
同时,在夹具组件1从加工中心9中夹取出加工完成的工件4从下方位置被旋转至上方位置时,仿形结构106用于承载加工完成的工件4,有效防止工件4的掉落。
本实施例中,平面度自动检测装置8包括底座框架10、顶升机构11和平面度检测机构12,底座框架10用于承载待测工件4,底座框架10上方固定设有支撑座13,支撑座13上贯穿设有多个滑动件131,多个滑动件131相对于支撑座13可上下运动,多个滑动件131在支撑座13上所在位置与待测工件4的检测位置一一对应,支撑座13的下方固定设有多个第一定位销132,第一定位销132和待测工件4的定位孔41匹配,第一定位销132用于当待测工件4在顶起过程中对的待测工件4进行定位,顶升机构11设于底座框架10下方,顶升机构11用于将待测工件4由第一高度顶升至第二高度以顶起滑动件131,平面度检测机构12用于在待测工件4位于第二高度时检测滑动件131的所在高度。
需要说明的是,通过在支撑座13上的待测工件4对应位置上设置滑动件131,使得在待测工件4被顶升机构11顶起后同时顶起滑动件131,再通过平面度检测机构12对滑动件131的高度进行测量,完成对待测工件4的平整度检测和对关键部的检测位置是否有残缺的检测,从而实现对工件平面度的自动检测功能。
具体地,当待测工件4的检测位置一一对应位于滑动件131正下方时,此 时待测工件4位于第一高度,当待测工件4被顶起至平贴在支撑座13下方时,待测工件4位于第二高度。
其中,待测工件4位于第二高度时,第一定位销132插入待测工件4的定位孔41中,使得待测工件4在被顶起过程中在水平方向上限位,使得待测工件4顶升至第二高度后贴紧在支撑座13的下方,同时第一定位销132插入到工件4上对应的定位孔41中,搭配顶升机构11,完成工件在水平和竖直方向的限位,解决了现有技术中平面度检测仪需要在测试前对工件进行调心、调水平,浪费工时的问题。
优选地,平面度检测机构12包括多个激光传感器121,多个激光传感器121一一对应设置于滑动件131的上方,激光传感器121用于当待测工件4位于第二高度时测量激光传感器121到滑动件131之间的距离。
具体地,根据待测工件4的检测要求确定出待测工件4上的检测位置,检测位置可以包括需要检测平面度的对应的多个位置,还可以包括需要检测关键部的检测位置是否断缺,例如待测工件4上的螺柱等。平面度检测机构12可以同时检测多个检测位置对应的多个平面度,即将多个检测位置分为多个检测位置组合,每一个检测位置组合对应一个平面度检测要求,每个平面度检测要求可以相同,也可以不同。
具体地,激光传感器121为激光位移传感器,多个激光传感器121分别一一对应设置于多个滑动件131的正上方,多个滑动件131在支撑座13上所在位置与待测工件4的检测位置在水平向上一一对应,当待测工件4由第一高度顶升至第二高度时顶起滑动件131,此时,多个激光传感器121分别通过发射激光和接收到达对应的滑动件131返回的激光计算出和对应的滑动件131之间的距离,从而确定对应的滑动件131的所在高度,通过滑动件131的原来默认高度和检测到的被顶起后所在高度,从而判断多个滑动件之间的高度偏差,计算出待测工件4的对应的平面度,测试过程时间短,效率高。
其中,滑动件131为行程销。
具体地,平面度自动检测装置8的附近还设有不良品放置区21,用于当平面度自动检测装置8检测出工件4为不良品时存放不良品。优选地,还包括输送机构14和位于水平方向上的导轨15,导轨15固定设于底座框架10上,输送机构14设于导轨15上方,输送机构14用于承载待测工件4通过导轨15传 送至检测位。
优选地,输送机构14上固定设有第二定位销141,第二定位销141和待测工件4的定位孔41匹配,完成对输送机构14上工件4在水平方向上的限位,使得在工件4在输送过程中可以保持稳定不摇晃。
优选地,导轨15的前端设有第一检测机构16,第一检测机构16用于检测输送机构14上是否放置待测工件4,当第一检测机检测到输送机构14上放置有待测工件4时控制导轨15传送输送机构14向检测位方向运动。
具体地,如图5所示,当第一检测机检测到输送机构14上放置有待测工件4时,控制导轨15的驱动机构驱动导轨15运动将输送机构14从输送位向检测位方向传送。
具体地,导轨15的前端为输送位,输送位暴露于外侧用于方便将待测工件4放置于位于输送位的输送机构14上,对应的,当输送机构14到达导轨15的后端时,输送机构14位于检测位,此时待测工件4位于第一高度。
优选地,导轨15的后端还设有第二检测机构17,第二检测机构17用于检测输送机构14是否到达检测位。
优选地,导轨15的后端固定设有限位机构19,限位机构19用于将输送机构14限位在检测位。
具体地,导轨15的前端固定设有第一限位机构,当工件4检测完成后,待测工件4从第二高度下降至第一高度后,输送机构14承载检测完成的工件4从检测位向输送位运动,当输送机构14抵到第一限位机构时将输送机构14限位在输送位,以便后续取出检测完成的工件4和放置下一个待测工件4。
优选地,输送机构14上设有第三检测机构18,第三检测机构18用于检测输送机构14上工件4是否在位,可以对输送机构14上工件4是否在位进行再次确认,保证平面度检测的有效性,当第二检测机构17检测到输送机构14到达检测位时控制第三检测机构18进行检测,当第三检测机构18检测到输送机构14上工件4在位时控制顶升机构11向上运动。通过第一检测机构16、第二检测机构17、第三检测机构18搭配输送机构14,使得当检测到工件4放置到输送机构14上时自动完成对工件4的平面度检测,实现自动输送及自动检测功能,提升生产效率。
本实施例提供了一种平面度自动检测方法,方法基于实施例2中的平面度 自动检测装置8实现的,包括:
当第一检测机构16检测到输送机构14上放置待测工件4时,控制输送机构14通过导轨15传送从输送位向检测位运动;
当第二检测机构17检测到输送机构14到达检测位时,控制第三检测机构18对输送机构14上工件4是否在位进行检测;
当第三检测机构18检测到输送机构14上工件4在位时,控制顶升机构11向上运动将待测工件4从第一高度顶升至第二高度以顶起滑动件131;
当待测工件4位于第二高度时,控制平面度检测机构12检测被待测工件4顶起的多个滑动件131的高度完成待测工件4的平面度检测。
具体地,当输送机构14上放置待测工件4时,第一检测机构16检测到待测工件4放置在输送机构14上,第一检测机构16发出信号以控制导轨15传送输送机构14从输送位向检测位运动;当输送机构14到达检测位时,输送机构14后端抵到限位机构19以使输送机构14限位在检测位;当第二检测机构17检测到输送机构14到达检测位时,第二检测机构17发出信号以控制第三检测机构18对输送机构14上工件4是否在位进行检测,可以对输送机构14上工件4是否在位进行确认,以保证平面度检测的有效性;当第三检测机构18检测到输送机构14上工件4在位时,第三检测机构18发出信号以控制顶升机构11向上运动将待测工件4从第一高度顶升至第二高度以顶起与待测工件4的检测位置对应的多个滑动件131,当待测工件4位于第二高度时,顶升机构11发出信号以控制平面度检测机构12检测多个滑动件131的高度完成待测工件4的平面度检测。
当工件4检测完成后,控制顶升机构11向下运动以使待测工件4从第二高度下降至第一高度,顶升机构11发出信号以控制导轨15在从检测位向输送位方向上传送承载检测完成的工件4的输送机构14;当输送机构14抵到第一限位机构时将输送机构14限位在输送位,以便后续取出检测完成的工件4和放置下一个待测工件4。
通过所述平面度自动检测方法控制第一检测机构16、第二检测机构17、第三检测机构18、顶升机构11和导轨15的驱动机构,使得当检测到待测工件4放置到输送机构14上时自动完成对工件4的平面度检测,实现了自动输送及自动检测功能,提升生产效率。
本说明书实施例还提供一种控制器,控制器包括平面度检测控制模块,平面度检测控制模块用于当第一检测机构16检测到输送机构14上放置待测工件4时,控制输送机构14通过导轨15传送从输送位向检测位运动;当第二检测机构17检测到输送机构14到达检测位时,控制第三检测机构18对输送机构14上工件4是否在位进行检测;当第三检测机构18检测到输送机构14上工件4在位时,控制顶升机构11向上运动将待测工件4从第一高度顶升至第二高度以顶起滑动件131;当待测工件4位于第二高度时,控制平面度检测机构12检测被待测工件4顶起的多个滑动件131的高度完成待测工件4的平面度检测。通过平面度检测控制模块控制第一检测机构16、第二检测机构17和第三检测机构18搭配输送机构14,使得当检测到待测工件4放置到输送机构14上时自动完成对工件4的平面度检测,实现了自动输送及自动检测功能,提升生产效率。
需要说明的是,平面度自动检测装置8和机器人3之间的配合关系如下:
控制机器人夹具的绕机械臂301轴向转动以使一个夹具组件1切换至第一预设位置去夹取待测工件4,再控制机器人夹具运动至位于输送位的输送机构14下方,控制机器人夹具的绕机械臂301轴向转动以使另一个没有夹取工件4的夹具组件1位于输送机构14的正下方,通过控制机械臂301运动带动没有夹取工件4的夹具组件1去夹取输送机构14上检测完成的工件4并将工件4举升从第二定位销141上取下,机器人夹具再沿从检测位到输送位方向移动,从而完成对检测完成工件4的拿取;再通过旋转机器人夹具将夹取待测工件4的夹具组件1朝上设置,通过机械臂301向上运动将工件4举升超过第二定位销141的高度,在通过机械臂301沿从输送位向检测位方向移动至当待测工件4的定位孔41位于第二定位销141正上方时,将待测工件4放置在输送机构14上,此时,第二定位销141插入待测工件4上的对应的定位孔41中实现待测工件4在输送机构14所在水平方向上的定位。
通过在机械臂301上转动连接多个夹具组件1,使得可以完成多个夹具组件1在输送位下方的切换,可以实现使用没有夹取待测工件4的夹具组件1从输送机构14中拿取后通过旋转转动连接件2将夹取待测工件4的夹具组件1切换至输送位下方将待测工件4放置在输送机构14中,提升了生产效率,解决了现有技术中使用机器人夹具先取出检测完成的工件4再去拿取待测工件4,导致 操作不便并且影响生产效率的问题;同时,通过旋转转动连接件2切换夹具组件1到第一预设位置时,在平行于输送位的方向(X、Y方向)上不需要二次定位,使得拿取检测完成的工件4后不需再定位放置待测工件的位置,保证了夹具组件1定位的精准度,避免了二次定位的额外功耗。
本说明书实施例中还提供一种机器人控制方法,方法基于实施例2中的机器人3实现的,包括:
当平面度自动检测装置8中工件4检测完成时,控制机械臂301带动机器人夹具运动至待测工件4上方;
控制两个夹具组件1中的一个夹具组件1的直线夹紧机构102运动带动与其固定连接的第一夹爪103或第二夹爪104从第一位置移动至第二位置;
控制第一夹爪103和第二夹爪104运动至待测工件4的两侧并抓取工件4;
控制机械臂301带动机器人夹具运动至平面度自动检测装置8的输送位下方;
控制两个夹爪组件1中的另一个夹爪组件1抓取平面度自动检测装置8中的检测完成的工件4并将工件4从第二定位销141上取下后控制机器人夹具沿导轨15方向从导轨15中滑出;
控制检测完成的工件4的夹爪组件1切换至第一预设位置并通过夹取待测工件4的夹具组件1从导轨15中滑进同时保持待测工件4的高度高于第二定位销141;
当待测工件4的定位孔41到达第二定位销141位置的正上方时,控制对应的夹具组件1下降,将待测工件4放置在平面度自动检测装置8中,此时第二定位销141插入待测工件4的定位孔41中;
当平面度自动检测装置8中的检测完成的工件4为不良品时,控制对应的夹具组件1将不良品放置在不良品放置区21中,重复上述步骤;
当平面度自动检测装置8中的检测完成的工件4为良品时,控制机械臂301带动抓取到检测完成的工件4的夹具组件1运动至加工中心9的加工位附近;
控制机器人夹具旋转将多个夹爪组件1中的另一个夹爪组件1切换至第二预设位置抓取加工中心9中的加工完成的工件4;
控制抓取检测完成的工件4的夹爪组件1切换至第二预设位置并将检测完成的工件4放置在加工中心9中。
具体地,当平面度自动检测装置8中工件4检测完成时,平面度自动检测装置8发出信号控制机器人3夹取待测工件4运动至平面度自动检测装置8的输送位下方;控制两个夹爪组件1中的另一个夹爪组件1抓取平面度自动检测装置8中的检测完成的工件4并将工件4从第二定位销141上取下后控制机器人夹具沿导轨15方向从导轨15中滑出;控制检测完成的工件4的夹爪组件1切换至第一预设位置并通过夹取待测工件4的夹具组件1从导轨15中滑进同时保持待测工件4的高度高于第二定位销141;当待测工件4的定位孔41到达第二定位销141位置的正上方时,控制对应的夹具组件1下降,将待测工件4放置在平面度自动检测装置8中,此时第二定位销141插入待测工件4的定位孔41中进行平面度检测;当平面度自动检测装置8中所述待测工件4检测完成时,控制机械臂301带动抓取到检测完成的工件4的夹具组件1运动至加工中心9的加工位上方进行加工。
通过所述机器人控制方法控制机械臂301的移动和多个夹具组件1之间位置的切换,实现了在平面度自动检测装置和加工中心位置快速更换待测或待加工工件4,缩短了工件4的加工时间,提升了生产效率。
本说明书实施例中的控制器还包括机器人控制模块,机器人控制模块用于当加工中心9中工件加工完成时,控制机械臂301带动机器人夹具运动至待测工件4上方;控制多个夹具组件1中的一个夹具组件1的直线夹紧机构102运动带动与其固定连接的第一夹爪103或第二夹爪104从第一位置移动至第二位置;控制第一夹爪103和第二夹爪104运动至待测工件4的两侧并抓取工件4;控制两个夹爪组件1中的另一个夹爪组件1抓取平面度自动检测装置8中的检测完成的工件4并将工件4从第二定位销141上取下后控制机器人夹具沿导轨15方向从导轨15中滑出;控制检测完成的工件4的夹爪组件1切换至第一预设位置并通过夹取待测工件4的夹具组件1从导轨15中滑进同时保持待测工件4的高度高于第二定位销141;当待测工件4的定位孔41到达第二定位销141位置的正上方时,控制对应的夹具组件1下降,将待测工件4放置在平面度自动检测装置8中,此时第二定位销141插入待测工件4的定位孔41中;控制机械臂301带动抓取到检测完成的工件4的夹具组件1运动至加工中心9的加工位上方;控制机器人夹具旋转将多个夹爪组件1中的另一个夹爪组件1切换至第二预设位置抓取加工中心9中的加工完成的工件4;控制抓取检测完成的工件 4的夹爪组件1切换至第二预设位置并将检测完成的工件4放置在加工中心9中。
本实施例中,加工中心9用于对平面度自动检测装置8检测完成的工件4进行加工,加工中心9包括承载座91、定位机构92和多个摆臂下压机构93,定位机构92固定设置在承载座91上,定位机构92用于对待加工工件4进行定位,摆臂下压机构93转动连接于承载座91上,摆臂下压机构93的转动范围所在平面垂直于承载座91所在平面,多个摆臂下压机构93对称设于待加工工件4两侧,摆臂下压机构93用于将待加工工件4压紧在承载座91上。
优选地,定位机构92包括多个第四定位销921,第四定位销921和工件4的定位孔41匹配。
优选地,控制器设置为当加工中心9对工件4加工完成后控制承载座91旋转至第三预设位置,第三预设位置和第二预设位置平行。
优选地,机器人夹具在固定连接机械臂301的位置的相对位置上固定设有管体5,控制器设置为在夹具组件1夹取加工中心9中的加工完成的工件4前控制管体5对承载座91位置进行吹气或在夹具组件1放置待加工工件4在加工中心9前控制管体5对承载座91位置进行吹气。
具体地,承载座91两端驱动连接有驱动机构20,当加工中心9中对工件4进行加工时,承载座91处于水平位置;当工件4加工完成后,在驱动机构20的驱动下,承载座91从水平位置旋转至第三预设位置。其中,驱动机构20为电机。
具体地,在工件4加工完成后旋转至第三预设位置,管体5对承载座91位置进行吹气,并且在夹具组件1放置待加工工件4在加工中心9前对承载座91位置再次进行吹气,使得在夹具组件1到达加工位的对应位置,即第三预设位置时,对加工中心9中的完成加工的工件4进行吹气,确保工件4加工完成后不会有碎屑残留在表面,在放置待加工工件4前对加工中心9中承载座91位置进行再次吹气,避免加工中心9中的碎屑粘在加工中心9中承载座91位置上影响加工的准确度。
具体地,本实施例中由于加工中心9的加工时间相当于平面度自动检测装置8的平面度检测时间的两倍,因此设置加工中心9的数量为两个来提升工件4生产的产量,并且将机器人3设于两个加工中心9之间,可以实现对两个加工 中心9的操作。
本实施例中,料机为上下料机6,上下料机6包括储料板61,储料板61的在工件4对应位置的宽度小于工件4的宽度,储料板61用于放置待测工件4和加工完成的工件,控制器用于控制机器人夹具夹取上下料机6上待测工件4后将加工中心9中加工完成的工件4放置在待测工件4被拿取后空余的位置上。
具体地,储料板61为矩形储料板,储料板61的宽度小于工件4的宽度,储料板61上设有第五定位销611,第五定位销611的位置和工件4上定位孔41的位置对应,第五定位销611的尺寸小于定位孔41的尺寸,使得在人工上料时,将工件4可以不需精定位在储料板61上,放置更容易,节省上料时间。
优选地,上下料机6为叠层结构,上下料机6包括多个位于不同高度的水平放置的储料板61和多个平移输送机构62,平移输送机构62和上下料机6一一对应驱动连接,平移机构用于驱动对应的上下料机6在Y向上运动,使得在完成上下料机6中上一层储料板61后可以在对应平移输送机构62的驱动下向Y向运动,以使上一层储料板61和相邻下一层储料板61在竖直方向上不重叠,使得机器人夹具可以逐层地在储料板61上取放工件4,可以完成批量加工后再对上下料机6统一更换上待测工件4,减少上下料机6上待测工件4的上料次数,节约工时。
具体地,如图11所示,当上一层的储料板61上的待测工件4均完成加工后,控制器控制对应的平移输送机构62驱动所述储料板61从靠近机器人3一侧向远离机器人3一侧运动以将相邻的下一层的储料板61暴露出来,方便机器人3拿取下一层储料板61中待测工件4。
具体地,当上一层的储料板61上的所有工件4均加工完成后,通过控制器控制上一层的储料板61对应的平移输送机构62驱动所述储料板61从靠近机器人3一侧向远离机器人3一侧运动。
具体地,上下料机6包括储料架63,储料架63为多层结构,储料架63的每层固定设有3个Y向延伸的滑杆631,储料板61和对应的滑杆631滑动连接,当受到平移输送机构62驱动时,沿滑杆631滑动。
加工及平面度检测的自动化系统的工作原理(自动控制方法)如下:
当机器人夹具夹取到加工完成工件4后,控制机器人3的机械臂301运动带动夹取加工完成工件4的夹具组件1同步运动至上下料机6上对应的待测工 件4上方;
控制机器人夹具上未夹取工件4的夹具组件1夹取待测工件4;
控制夹取加工完成的工件4的夹爪组件1切换至第二预设位置并将加工完成的工件4放置在取出待测工件4的空余位置上;
控制机器人3的机械臂301运动带动夹取待测工件4的夹具组件1同步运动至过渡机构7上方;
控制夹取待测工件4的夹具组件1切换至第一预设位置,并将待测工件4放置在过渡机构7中;
根据过渡机构7中导向机构71的位置和机器人3的夹取位置得到待测工件4的准确位置;
控制夹爪组件1从过渡机构7中夹取出待测工件4并控制机械臂301带动夹爪组件1运动至平面度自动检测装置8的输送位下方;
当平面度自动检测装置8中工件4检测完成时,控制另一个夹具组件1夹取出平面度自动检测装置8中位于输送位的输送机构14中平面度检测完成的工件4;
控制夹取检测完成的工件4的夹爪组件1切换至第一预设位置并通过夹取待测工件4的夹具组件1将待测工件4放置在平面度自动检测装置8的输送机构14中;
控制导轨15转动将承载待测工件4的输送机构14传送至检测位对待测工件4进行平面度检测;
控制夹取到平面度自动检测装置8中检测完成的工件4的夹爪组件1通过机械臂301带动运动至加工中心9附近;
当加工中心9中工件4加工完成时,控制承载座91转动至第三预设位置,控制管体5对承载座91上加工完成的工件4进行吹气确保加工完成的工件4上不会有碎屑残留在表面;
控制机器人夹具上未夹取工件4的夹具组件1夹取待测工件4;
控制机器人夹具旋转将夹取到检测完成的工件4的夹具组件1切换至第二预设位置并将检测完成的工件4放置在加工中心9中进行加工。
其中,加工及平面度检测的自动化系统的工作原理中的所有动作均通过本实施例中的控制器实现。
本说明书实施例中控制器包括处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如上述的加工及平面度检测的自动化系统的自动控制方法。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种具有精定位功能的自动搬运系统,其特征在于,包括过渡机构(7)、检测装置、控制器和机器人(3),所述机器人(3)用于夹取料机上的待测工件(4)放置在所述过渡机构(7)中再从所述过渡机构(7)中夹取所述待测工件(4)放置在所述检测装置中,所述过渡机构(7)包括导向机构(71)和固定座(72),所述导向机构(71)垂直固定在所述固定座(72)上,所述固定座(72)上与待测工件对应位置的宽度小于待测工件(4)的宽度,所述控制器用于当所述机器人(3)夹取待测工件(4)放置在所述过渡机构(7)中时根据所述过渡机构(7)中所述导向机构(71)的位置得到所述机器人(3)的夹取位置和所述待测工件(4)位置之间的对应关系以将所述待测工件(4)准确放置在所述检测装置中。
  2. 根据权利要求1所述的具有精定位功能的自动搬运系统,其特征在于,所述导向机构(71)包括多个导向块(711),所述导向块(711)为仿形结构,所述导向块(711)靠近所述待测工件(4)一侧和所述待测工件(4)对应位置匹配。
  3. 根据权利要求2所述的具有精定位功能的自动搬运系统,其特征在于,所述导向块(711)靠近所述待测工件(4)一侧表面覆有非金属材料或所述导向块(711)为非金属材料制成。
  4. 根据权利要求1所述的具有精定位功能的自动搬运系统,其特征在于,所述固定座(72)上固定设有第三定位销(721),所述第三定位销(721)和所述待测工件(4)的定位孔匹配,当所述待测工件(4)从所述导向机构(71)上滑下后,所述第三定位销(721)将所述待测工件(4)限位在所述固定座(72)上。
  5. 根据权利要求1所述的具有精定位功能的自动搬运系统,其特征在于,所述机器人(3)包括机器人夹具和机械臂(301),所述机器人夹具包括转动连接件(2)和多个夹具组件(1),多个所述夹具组件(1)均和所述转动连接件(2)的一端固定连接,所述转动连接件(2)的另一端和所述机械臂(301)的转动连接,所述转动连接件(2)围绕所述机械臂(301)的轴向转动完成多个所述夹具组件(1)位置之间的切换以完成拿取检测装置中检测完成的工件(4)后自动放入待测工件(4)。
  6. 根据权利要求5所述的具有精定位功能的自动搬运系统,其特征在于,所述夹具组件(1)包括底座(101)、直线夹紧机构(102)、第一夹爪(103)和第二夹爪(104),所述直线夹紧机构(102)相对于所述底座(101)可左右运动,所述第一夹爪(103)和所述第二夹爪(104)中的一个和所述底座(101)固定连接,另一个和所述直线夹紧机构(102)固定连接且在抓取工件(4)过程中可在第一位置和第二位置之间移动,所述第一夹爪(103)或所述第二夹爪(104)位于第二位置时,所述第一夹爪(103)和所述第二夹爪(104)之间的距离工件(4)大于所述工件(4)的宽度。
  7. 根据权利要求5所述的具有精定位功能的自动搬运系统,其特征在于,所述控制器用于当多个所述夹具组件(1)中的一个从所述过渡机构(7)夹取待测工件(4)后控制多个所述夹具组件(1)中的另一个夹取所述检测装置中的检测完成的工件(4),再控制将夹取检测完成的工件(4)的所述夹具组件(1)切换至第一预设位置以使夹取待测工件(4)得夹具组件(1)将待测工件(4)放置在所述检测装置中。
  8. 一种加工及平面度检测的自动化系统,其特征在于,包括上下料机(6)、加工中心(9)和如权利要求1-7任一项所述的具有精定位功能的自动搬运系统,所述加工中心(9)用于对所述检测装置检测完成的工件(4)进行加工,所述上下料机(6)包括储料板(61),所述储料板(61)的在所述工件(4)对应位置的宽度小于所述工件(4)的宽度,所述储料板(61)用于放置待测工件(4)和加工完成的工件,所述控制器用于控制所述机器人夹具夹取所述上下料机(6)上待测工件(4)后将所述加工中心(9)中加工完成的工件(4)放置在所述待测工件(4)被拿取后空余的位置上。
  9. 根据权利要求8所述的加工及平面度检测的自动化系统,其特征在于,所述上下料机(6)为叠层结构,所述上下料机(6)包括多个位于不同高度的水平放置的储料板(61)和多个平移输送机构(62),所述平移输送机构(62)和所述上下料机(6)一一对应驱动连接,所述平移机构用于驱动对应的所述上下料机(6)在Y向上运动。
  10. 一种具有精定位功能的自动搬运方法,所述方法基于如权利要求1-7任一项所述的具有精定位功能的自动搬运系统实现的,其特征在于,包括:
    控制机器人(3)从料机上夹取待测工件(4);
    控制机器人(3)将待测工件(4)放置在过渡机构(7)中,同时,根据所述过渡机构(7)中所述导向机构(71)的位置得到所述机器人(3)的夹取位置和所述待测工件(4)的相对位置完成对所述待测工件(4)的定位;
    控制机器人(3)从过渡机构(7)中拿取所述待测工件(4)放置在所述检测装置中。
PCT/CN2022/100607 2021-10-13 2022-06-23 一种具有精定位功能的自动搬运系统、自动化系统及方法 WO2023060932A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111192293.4A CN113636337B (zh) 2021-10-13 2021-10-13 一种具有精定位功能的自动搬运系统、自动化系统及方法
CN202111192293.4 2021-10-13

Publications (1)

Publication Number Publication Date
WO2023060932A1 true WO2023060932A1 (zh) 2023-04-20

Family

ID=78426694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100607 WO2023060932A1 (zh) 2021-10-13 2022-06-23 一种具有精定位功能的自动搬运系统、自动化系统及方法

Country Status (2)

Country Link
CN (1) CN113636337B (zh)
WO (1) WO2023060932A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116748873A (zh) * 2023-08-22 2023-09-15 莱克电气股份有限公司 一种毛刺冲切装置、自动化打磨系统及毛刺冲切方法
CN116880460A (zh) * 2023-08-22 2023-10-13 武汉汉非科技有限公司 一种太阳能控制器自动检测装置及检测方法
CN117326311A (zh) * 2023-11-13 2024-01-02 广州载德自动化智能科技有限公司 横移换向装置、输送线及输送方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113636337B (zh) * 2021-10-13 2022-04-01 江苏莱克智能电器有限公司 一种具有精定位功能的自动搬运系统、自动化系统及方法
CN114988087B (zh) * 2022-05-20 2024-04-09 贵州航天电器股份有限公司 一种多功能夹爪装置
CN116118027B (zh) * 2022-12-20 2024-01-16 苏州镁伽科技有限公司 取料方法、取料装置、划片机、可读存储介质以及电子设备
CN117067506B (zh) * 2023-10-17 2024-04-19 莱克电气股份有限公司 一种自动化注塑系统及注塑方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013182045A1 (zh) * 2012-06-05 2013-12-12 深圳深蓝精机有限公司 刀具自动检测设备
WO2017107638A1 (zh) * 2015-12-25 2017-06-29 深圳艾尼尔角膜工程有限公司 一种角膜包装体的自动化分类收集系统及方法
CN109605381A (zh) * 2019-01-29 2019-04-12 欧米瑞(广东)智能制造有限公司 一种三维定位取料系统及取料方法
CN110316558A (zh) * 2019-06-28 2019-10-11 武汉闻道复兴智能科技有限责任公司 一种搬运机器人夹具位置控制方法和系统
CN110576330A (zh) * 2019-09-30 2019-12-17 莱克电气股份有限公司 回转体工件搬运机构及回转体工件生产线
WO2020127575A1 (de) * 2018-12-19 2020-06-25 Poly-Clip System Gmbh & Co. Kg System zum aufnehmen, fördern und abgeben eines produkts sowie verfahren zum steuern eines solchen systems
CN113636337A (zh) * 2021-10-13 2021-11-12 江苏莱克智能电器有限公司 一种具有精定位功能的自动搬运系统、自动化系统及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010034071B4 (de) * 2010-08-12 2019-10-10 Grenzebach Maschinenbau Gmbh Vorrichtung und Verfahren zum automatisierten Vereinzeln und Zusammenstellen unterschiedlich strukturierter Gebinde von Kommisionsware
CN104444342B (zh) * 2014-12-01 2017-01-11 宁夏共享机床辅机有限公司 一种精确定位的自动上料辊道
CN208932477U (zh) * 2018-08-14 2019-06-04 珠海市运泰利自动化设备有限公司 一种高精度定位全功能自动检测固定料盘模组
CN109455496B (zh) * 2018-12-29 2023-08-29 广东文灿压铸股份有限公司 一种用于自动化生产线的工件定位装置
US11767181B2 (en) * 2019-03-14 2023-09-26 Mujin, Inc. Robotic system with handling mechanism and method of operation thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013182045A1 (zh) * 2012-06-05 2013-12-12 深圳深蓝精机有限公司 刀具自动检测设备
WO2017107638A1 (zh) * 2015-12-25 2017-06-29 深圳艾尼尔角膜工程有限公司 一种角膜包装体的自动化分类收集系统及方法
WO2020127575A1 (de) * 2018-12-19 2020-06-25 Poly-Clip System Gmbh & Co. Kg System zum aufnehmen, fördern und abgeben eines produkts sowie verfahren zum steuern eines solchen systems
CN109605381A (zh) * 2019-01-29 2019-04-12 欧米瑞(广东)智能制造有限公司 一种三维定位取料系统及取料方法
CN110316558A (zh) * 2019-06-28 2019-10-11 武汉闻道复兴智能科技有限责任公司 一种搬运机器人夹具位置控制方法和系统
CN110576330A (zh) * 2019-09-30 2019-12-17 莱克电气股份有限公司 回转体工件搬运机构及回转体工件生产线
CN113636337A (zh) * 2021-10-13 2021-11-12 江苏莱克智能电器有限公司 一种具有精定位功能的自动搬运系统、自动化系统及方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116748873A (zh) * 2023-08-22 2023-09-15 莱克电气股份有限公司 一种毛刺冲切装置、自动化打磨系统及毛刺冲切方法
CN116880460A (zh) * 2023-08-22 2023-10-13 武汉汉非科技有限公司 一种太阳能控制器自动检测装置及检测方法
CN116748873B (zh) * 2023-08-22 2023-12-15 莱克电气股份有限公司 一种毛刺冲切装置、自动化打磨系统及毛刺冲切方法
CN117326311A (zh) * 2023-11-13 2024-01-02 广州载德自动化智能科技有限公司 横移换向装置、输送线及输送方法
CN117326311B (zh) * 2023-11-13 2024-02-23 广州载德自动化智能科技有限公司 横移换向装置、输送线及输送方法

Also Published As

Publication number Publication date
CN113636337B (zh) 2022-04-01
CN113636337A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2023060932A1 (zh) 一种具有精定位功能的自动搬运系统、自动化系统及方法
CN107438357B (zh) 自动组装装置
US20060099064A1 (en) On-the-fly robotic stacking system for flat glass
CN111646204B (zh) 多工位曲轴自动化三维测量系统
CN113635335B (zh) 一种加工及平面度检测的自动化系统
CN110977080A (zh) 一种全自动环形pcb板和fpc软板焊接系统
CN112278757B (zh) 一种连接环自动化生产工艺
CN113323422B (zh) 工件夹持系统及工件夹持方法
CN113639703B (zh) 一种平面度自动检测装置、自动化系统及方法
CN116781590B (zh) 一种路由器自动化测试系统
CN216370924U (zh) 一种自动化装配产线的工件上料及检测装置
CN116764968A (zh) 一种曲面屏边缘检测装置
CN113639702B (zh) 一种加工及平面度检测的自动化系统及方法
CN110125027B (zh) 一种长条形工件自动检测装置
JPH06155119A (ja) 平板用全自動穿孔機
JP2740441B2 (ja) 遊戯盤の製造装置
CN219057817U (zh) 一种机器人托盘搬运装置以及供料工作站
CN216785017U (zh) 一种用于无板边双面pcba的在线检测供料装置
KR101434617B1 (ko) 자동중심정렬 공급수단이 구비된 평판소재용 수치제어 가공기
JPH082491B2 (ja) インサ−ト部材供給装置
CN213976059U (zh) 一种瓷砖搬运、镭雕系统
CN219506973U (zh) 电路板上料装置
CN117324967B (zh) 重载生产线
CN219876349U (zh) 一种精准对位机构
CN114838683B (zh) 一种检测设备及检验钻夹头精度的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22879879

Country of ref document: EP

Kind code of ref document: A1