WO2017107638A1 - 一种角膜包装体的自动化分类收集系统及方法 - Google Patents

一种角膜包装体的自动化分类收集系统及方法 Download PDF

Info

Publication number
WO2017107638A1
WO2017107638A1 PCT/CN2016/102860 CN2016102860W WO2017107638A1 WO 2017107638 A1 WO2017107638 A1 WO 2017107638A1 CN 2016102860 W CN2016102860 W CN 2016102860W WO 2017107638 A1 WO2017107638 A1 WO 2017107638A1
Authority
WO
WIPO (PCT)
Prior art keywords
cornea
detector
transparent package
control system
package
Prior art date
Application number
PCT/CN2016/102860
Other languages
English (en)
French (fr)
Inventor
张爱兵
左楠
张晋南
张斌
Original Assignee
深圳艾尼尔角膜工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510989182.4A external-priority patent/CN105616038B/zh
Priority claimed from CN201510991732.6A external-priority patent/CN105466932B/zh
Application filed by 深圳艾尼尔角膜工程有限公司 filed Critical 深圳艾尼尔角膜工程有限公司
Publication of WO2017107638A1 publication Critical patent/WO2017107638A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/90Devices for picking-up and depositing articles or materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens

Definitions

  • the invention relates to the technical field of medical instruments, and in particular to an automatic classification and collection system and method for a corneal package.
  • Keratopathy is the second blind eye disease worldwide and is increasing at a rate of 1.5 to 2 million cases per year.
  • Corneal transplantation is currently the only effective method for treating corneal blindness, and the source of corneal graft material is mainly corneal donation and corneal substitutes, such as acellular corneal stroma.
  • corneal substitutes such as acellular corneal stroma.
  • it is usually necessary to move the cornea to the target position of the detecting device for detection to determine whether the cornea meets the requirements, and perform classification and collection according to the detection result.
  • the degree of manual participation is higher and the efficiency is lower.
  • Embodiments of the present invention provide an automated classification and collection system and method for a corneal package, which can realize automatic classification and collection of corneal packaging bodies, reduce manual labor, and improve classification and collection efficiency.
  • embodiments of the present invention provide an automated sorting and collecting system for a corneal package, comprising: a detector that can acquire optical properties of a cornea located within its detection range; and a plurality of product collectors a plurality of said product collection stations for respectively collecting corneal products of different optical performance types; a robot assembly for holding a transparent package containing a cornea, and driving the transparent package to move a control unit, the control unit can drive the transparent package to move within a detection range of the detector, and can detect the cornea according to the detector Optical properties, the control robot assembly moves the transparent package into a corresponding product collection station.
  • An embodiment of the present invention further provides an automated classification and collection method for a corneal package, comprising the steps of: controlling a robot component to move the transparent package to a detection range of the detector; The optical properties of the cornea in the transparent package are detected, and the detection result is sent to the control unit; the control unit controls the robot component to move the transparent package according to the optical performance of the cornea detected by the detector Put in the corresponding product collection station.
  • an automatic classification and collection system and method for a corneal package provided by an embodiment of the present invention, the manipulator assembly clamps a transparent package with a cornea, and drives the transparent package to move into the detection range of the detector. At this time, the detector The optical performance of the cornea in the transparent package can be detected, and the detection result is sent to the control unit. After receiving the detection result, the control unit can control the robot component to move the transparent package and put it into the corresponding product collection according to the detection result.
  • the workstation enables automated sorting of corneal packaging.
  • the automatic classification and collection system and method of the corneal package provided by the embodiment of the invention realizes automatic classification and collection of the corneal package, the required manual labor is small, and the efficiency of classification and collection is high.
  • FIG. 1 is a top plan view of an automated sorting and collecting system for a corneal package according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a product collection station in an automated sorting and collecting system for a corneal package according to an embodiment of the present invention
  • FIG. 3 is a perspective view of an automated sorting and collecting system for a corneal package according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of a robot in an automated sorting and collecting system of a corneal package according to an embodiment of the present invention
  • FIG. 5 is a schematic structural view of a sample stage in an automated sorting and collecting system of a corneal package according to an embodiment of the present invention
  • FIG. 6 is a schematic structural view of a computer system in an automated classification and collection system for a corneal package according to an embodiment of the present invention
  • FIG. 7 is a schematic flow chart 1 of an automated classification and collection method of a corneal package according to an embodiment of the present invention.
  • FIG. 8 is a schematic flow chart 2 of an automated classification and collection method of a corneal package according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an operation interface of a mechanical control system in an automated sorting and collecting system for a corneal package according to an embodiment of the present invention.
  • the automated sorting and collecting system of the corneal package of the present embodiment includes: a detector 2, which can be obtained by the detector 2 Optical properties of the cornea located within its detection range; multiple product collection stations 3, multiple of the product collection stations 3 points It is not used to collect corneal products of different optical performance types; the robot assembly 4 is used for clamping the transparent package containing the cornea, and can drive the transparent package to move; the control unit (not shown) The control unit can drive the transparent package to move into the detection range of the detector 2, and can control the robot component 4 to transparently package according to the optical performance of the cornea detected by the detector 2. The body moves and is placed in the corresponding product collection station 3.
  • the automatic classification and collection system of the corneal package provided by the embodiment of the present invention, the manipulator assembly 4 clamps the transparent package with the cornea, and drives the transparent package to move into the detection range of the detector 2, at this time, the detector (2) detecting the optical performance of the cornea in the transparent packaging, and sending the detection result to the control unit. After receiving the detection result, the control unit can control the robot assembly 4 to move the transparent package into the corresponding product according to the detection result.
  • Collecting station 3 which enables automated sorting of corneal packaging.
  • the automatic classification and collection system of the corneal package provided by the embodiment of the invention realizes automatic classification and collection of the corneal package, and the required manual labor is small, and the efficiency of classification and collection is high.
  • the corneal positioning device 1 which can acquire the position of the non-transparent object located within the detection range thereof.
  • the information control unit can control the robot assembly 4 to move the transparent package to the detection range of the corneal positioning device 1 to determine the position information of the cornea in the transparent package before moving the transparent package into the detection range of the detector 2. According to the position information, the cornea in the transparent package can be accurately moved to the detection range of the detector 2.
  • the corneal positioning device 1 includes a background light curtain 11 and an image recognition device 12 disposed opposite to and spaced apart from the background light curtain 11 when the corneal transparent package is moved between the background light curtain 11 and the image recognition device 12,
  • the background light curtain 11 can emit a monochrome background light
  • the image recognition device 12 can acquire an image formed by the background light of the transparent package body held by the background light curtain 1 by the robot hand assembly 4, and determine the position of the non-transparent portion according to the image. This can obtain positional information of the non-transparent object located between the background light curtain 11 and the image recognition device 12.
  • the detector 2 can be a laser optical detector, which is a desktop high-precision instrument for measuring the appearance of films and other transparent materials, using a vertical illumination sample surface.
  • the measurement method is to measure the scattering angle of the transmitted light by using a spherical object (0°/scattering) to obtain the transparency of the cornea, wherein the transparency of the cornea includes the total transmittance (also referred to as total light transmittance). Haze ( ⁇ index) and perspective clarity.
  • the laser optical detector has the advantages of high precision, good reliability, and operation at the time of starting, so that the measured corneal transparency has high accuracy, and the measuring process takes less time and has higher efficiency.
  • the background light curtain 11, the image recognition device 12, the detector 2, the plurality of product collection stations 3, the robot assembly 4, and the control unit are collectively disposed on the carrier platform 100.
  • the background light curtain 11 and the image recognition device 12 may be disposed on the plane where the carrier platform 100 is located, or the background light curtain 11 may be disposed on the plane where the carrier platform 100 is located, and the image recognition device 12 is disposed on the background.
  • the image curtain device 11 is disposed above the image recognition device 12 and is disposed above the image recognition device 12 and is disposed above the light curtain 11 and is spaced apart from the background light curtain 11 . Keep a certain interval and do not limit it here.
  • the detector 2 can be set horizontally or vertically, and is not limited herein.
  • the product collection station 3 includes a feeding port 31, a feeding chute 32 and a collecting box 33.
  • the upper end of the feeding chute 32 is connected with the inlet port 31, and the lower end and the set are connected.
  • the material box 33 is internally connected, and the inlet port 31 is located on the movement track of the robot assembly 4.
  • the robot assembly 4 holds the transparent package and moves to the corresponding product collection station 3, and the clamping is transparent.
  • the package is placed in the inlet 31 of the product collection station 3, and the transparent package placed in the inlet 31 can be slid into the collection box 33 along the feed chute 32 to achieve collection of the transparent package.
  • This structure is simple and convenient to implement.
  • the feeding chute 32 can be a vertical chute, or can be connected to the inlet 31 at one end as shown in FIG. 2, and the other end is inclined downward and communicates with the inside of the collecting box 33, so that the transparent package can be Under the action of gravity, it slides into the collecting box 33 along the feeding chute 32, There is no limit here.
  • the shape of the collecting box 33 may be a cylindrical shape, a cubic shape, or the like, which is not limited herein, and the volume of the collecting box 33 is not limited. Specifically, the collecting box 33 can accommodate a certain amount of transparent. The package can be.
  • the product collection station 3 includes a first collection station and a second collection station, and the first collection station is used to collect transparency in the pre-preparation. Set the cornea in the range, and the second collection station is used to collect the cornea with transparency outside the preset range.
  • the transparent package detected by the detector 2 When the transparency of the cornea in the transparent package detected by the detector 2 is within a preset range, it is determined that the transparent package is a qualified product, and can be placed in the corresponding inlet 31 of the first collection station; When the transparency of the cornea in the transparent package detected by the detector 2 is outside the preset range, it is determined that the transparent package is a defective product, and can be placed in the inlet port 31 corresponding to the second collection station. This achieves a classified collection of transparent packages.
  • the preset range is set by the user in advance, and the setting of the upper and lower limits of the preset range is based on the normal distribution of the light transmission performance under the premise that a large amount of data is collected for the cornea of the same thickness, combined with a certain Linear algorithm derived. For different thickness of the cornea, the preset range is different.
  • the robot assembly 4 includes a robot 41 for holding a transparent package containing a cornea, and a moving device 42 for fixing the robot 41 and the transparent package. In the relative position, the moving device 42 is used to drive the robot 41 to move, thereby driving the transparent package on the robot 41 to move.
  • This structure is simple and easy to operate.
  • the robot 41 can be made as shown in FIG. 4, specifically, including a bracket 411, a first clamping plate 412, a second clamping plate 413 and a driving mechanism 418 disposed on the bracket 411, and the driving mechanism 418 is used for
  • the first clamping plate 412 and the second clamping plate 413 are driven to be fitted or opened.
  • the middle portions of the first clamping plate 412 and the second clamping plate 413 are provided with a light-transmissive window 414. When the first clamping plate 412 and the second clamping plate 413 are attached, they can be located.
  • the edge of the transparent package between the first clamping plate 412 and the second clamping plate 413 is clamped once a week, whereby the portion of the transparent packaging body with the cornea is located at the light-transmitting window 414 to facilitate light transmission. Location information of the cornea within window 414.
  • first clamping plate 412 may be integrally designed to be made of a transparent material, or only the central transparent window 414 of the first clamping plate 412 may be made of a transparent material, and the first clamping plate 412 may be transparent to the central portion 414. It is directly set as a through hole and is not limited here.
  • the second clamping plate 413 may be integrally designed to be made of a transparent material, or only the central transparent window 414 of the second clamping plate 413 may be made of a transparent material, or the central portion of the second clamping plate 413 may be directly disposed. It is a through hole and is not limited here.
  • first clamping plate 412 and the second clamping plate 413 can be designed according to the shape of the transparent packaging body, which is not limited herein, as long as the first clamping plate 412 and the second clamping plate 413 can clamp the transparent packaging body.
  • the robot 41 can be configured as shown in FIG. 4, that is, the first clamping plate 412 is fixed to the bracket 411 by the fixing arm 415, The two clamping plates 413 are hinged to the bracket 411 by the rotating arm 416.
  • the fixed arm 415 and the rotating arm 416 are connected by a resetting member 417.
  • the driving mechanism 418 includes a motor 4181.
  • the output shaft of the motor 4181 is connected with a swing arm 4182, and the swing arm 4182 is far away. One end of the output shaft of the motor 4181 abuts against the second clamping plate 413.
  • the swing arm 4182 When the swing arm 4182 swings toward the second clamping plate 413, the swing arm 4182 can push the second clamping plate 413 to rotate toward the first clamping plate 412 until the first A clamping plate 412 and the second clamping plate 413 are fitted together.
  • the motor 4181 drives the swing arm 4182, and the swing arm 4182 pushes the second clamp plate 413 to rotate toward the first clamp plate 412.
  • the motor 4181 can be disposed close to the support body of the robot 41, as shown in the figure.
  • the support body 5 in 4 is a part of the support body, which avoids placing the motor 4181 on the cantilever beam and increases the load on the cantilever beam, thereby preventing the cantilever beam from being deformed or even broken.
  • the driving mechanism 418 of the present invention can also apply an external force to the first clamping plate 412 through the swing arm 4182 so that the first clamping plate 412 is externally received.
  • the first embodiment of the present invention is not limited, as long as the first one can be made to be the same as the first clamping plate 412 and the second clamping plate 413.
  • the splint 412 and the second cleat 413 can clamp the transparent package in the working state.
  • the restoring member 417 is an elastic member, and the elastic modulus of the elastic member is not particularly limited as long as the elastic member can enable the first clamping plate 412 and the second clamping plate 413 to be in an open state, the first clamping plate.
  • the maximum opening distance between the 412 and the second clamping plate 413 is greater than or equal to the thickness of the transparent package, or when the motor 4181 drives the swing arm 4182 to rotate and press the first clamping plate 412 to rotate toward the second clamping plate 413, located at the first clamping plate 412 and
  • the elastic member of the second clamping plate 413 can make the first clamping plate 412 and the second clamping plate 413 capable of clamping the transparent package when the external force is pressed and deformed.
  • the reset member 417 is a spring, and the spring is a commonly used elastic member, so the structure is simple and easy to implement.
  • the end of the swing arm 4182 away from the output shaft of the motor 4181 is provided with a roller 4183, and the outer surface of the roller 4183 is The second clamping plate 413 abuts.
  • the roller 4183 abuts against the second clamping plate 413 and generates a relative slip with the second clamping plate 413 to cause the roller 4183 to roll, thereby generating rolling friction. Under the same conditions of sliding friction, rolling friction has less friction and less wear.
  • a sample stage 50 is also included, which is used to place a transparent package (not shown) to be collected.
  • the specific structure of the sample stage 50 is not limited.
  • the sample stage 50 is disposed at the initial position of the robot 41 and is located below the first clamping plate 412 and the second clamping plate 413, as shown in the sample stage 50 of FIG.
  • a limiting slot 501 is provided.
  • the limiting slot 501 is located directly under the nip between the first clamping plate 412 and the second clamping plate 413 when the first clamping plate 412 and the second clamping plate 413 are in a clamped state.
  • the transparent package is moved along the limiting slot 501 of the sample stage 50 to the initial position of the robot 41.
  • the width of the limiting slot 501 is the same as the thickness of the transparent package.
  • the transparent package can be manually placed along the limiting slot 501 The movement can also move the transparent package to the initial position of the robot 41 along the limiting slot 501 by the main control system, which is not limited in this embodiment of the present invention.
  • the mobile device 42 in order to enable the transparent package to move in the horizontal and vertical directions, includes a horizontal movement assembly 421 and a vertical movement assembly 422, and the robot 41 is coupled to the vertical movement assembly 422.
  • the vertical moving component 422 can drive the robot 41 to reciprocate in the vertical direction
  • the horizontal moving component 421 can drive the vertical moving component 422 and the robot 41 to reciprocate in the horizontal direction, thereby realizing the transparent package in the horizontal direction and the vertical direction. mobile.
  • This structure is simple and easy to implement.
  • the horizontal moving component 421 includes a first driving member 4211, a horizontal rail 4212, a horizontal lead screw (not shown) disposed in the horizontal rail 4212, and a first nut matched with the horizontal screw (not shown)
  • the first nut is slidably coupled to the horizontal rail 4212, the first driving member 4211 can drive the horizontal screw to rotate, and the vertical moving component 422 is fixedly coupled to the first nut.
  • the first driving member 4211 can be a motor or other driving device. It is not limited here as long as the horizontal screw can be driven to rotate on its own axis.
  • the structure is simple and easy to implement, and because the screw nut fits itself has the advantages of compact structure, accurate positioning, convenient control, etc., the horizontal moving component 421 can accurately realize the horizontal positioning of the transparent package, and occupy small space, and is convenient for automation. control.
  • the vertical moving assembly 422 includes a second driving member 4223, a vertical rail 4221, a vertical lead screw (not shown) disposed in the vertical rail 4221, and a second nut mated with the vertical lead screw. 4222, the second nut 4222 is slidably connected to the vertical rail 4221, and the second driving member 4223 can drive the vertical screw to rotate.
  • the second driving member 4223 can be a motor or other driving device, which is not limited herein, as long as the vertical screw can be driven to rotate on its own axis. The compact structure, small footprint, accurate positioning, and convenient automatic control.
  • the embodiment of the present invention further provides an automated classification and collection method for a corneal package.
  • the automated classification and collection method of the corneal package is based on an automated classification and collection system for a corneal package provided by the embodiment of the present invention, comprising the following steps:
  • control unit controls the robot assembly to move the transparent package to the detection range of the detector
  • the detector detects the optical performance of the cornea in the transparent package, and sends the detection result to the control unit;
  • the control unit controls the robot component to move the transparent package into a corresponding product collection station according to the optical performance of the cornea detected by the detector.
  • the automatic classification and collection method of the corneal package provided by the embodiment of the invention can control the robot component to move the transparent package to the detection range of the detector, and the control unit can obtain the detection result of the optical performance of the cornea. According to the detection result, the corresponding product collection station of the cornea is determined, and the transparent package containing the cornea is moved and placed in the product collection system, thereby realizing automatic classification and collection of the transparent package.
  • the automatic classification and collection method of the embodiment of the invention has high automation degree, requires less manual labor, and has higher collection efficiency.
  • step S1 in order to accurately move the cornea in the transparent package to the detection range of the detector, before step S1, the following steps are further included:
  • the robot component clamps the transparent package with the cornea, and drives the transparent package to move to the monitoring range of the corneal positioning device;
  • the corneal positioning device acquires position information of the cornea in the transparent package, and sends the position information to the control unit.
  • step S1 specifically includes the following steps: the control unit controls the movement of the transparent package by the robot component according to the position information of the cornea, so that the cornea in the transparent package The center coincides with the detection light center of the laser optical detector, so that the cornea in the transparent package is completely within the detection range of the detector, so as to facilitate accurate detection of the optical performance of the cornea in the transparent package.
  • the detector detects the optical properties of the cornea in the transparent package, and specifically includes the following steps: the detector detects the transparency of the cornea in the transparent package.
  • step S3 specifically includes the following steps:
  • control unit controls the robot component to move the transparent package into the first collection station;
  • control unit controls the robot component to move the transparent package and put it into the second collection station to realize the classified collection of the cornea.
  • control unit may include a computer system, a mechanical control system, and a main control system, wherein:
  • the computer system is connected to the detector 2 for analyzing and calculating the optical performance acquired by the detector 2 to obtain an optical performance type of the cornea in the transparent package;
  • the mechanical control system is coupled to the robot assembly 4 for controlling the movement of the robot assembly 4 to move the transparent package to the detection range of the detector 2 and a plurality of product collection stations 3;
  • the main control system is connected to the detector 2, the computer system and the mechanical control system for controlling the optical performance of the detector 2 to obtain the cornea in the transparent package within the detection range of the detector 2;
  • the computer system analyzes and calculates the optical performance acquired by the detector 2, obtains an optical performance type of the cornea in the transparent package; and controls the mechanical control system according to the optical performance type of the cornea acquired by the computer system
  • the robot assembly 4 is moved to move the transparent package into a corresponding product collection station 3.
  • the computer system and the detector 2 may be connected by a wireless connection or a wired connection, and is not specifically limited herein.
  • the mechanical control system and the robot component 4 can be connected by a wireless connection or a wired connection, which is not specifically limited herein.
  • the main control system may be connected to the detector 2, the mechanical control system, and the computer system through a wireless connection or a wired connection, and is not specifically limited herein.
  • the product collection station 3 includes a first collection station for collecting a cornea of a first optical performance type, and a second collection station for collecting a cornea of a second optical performance type; wherein the cornea of the first optical performance type is a cornea whose transparency of the cornea meets a predetermined condition, and the cornea of the second optical performance type is a cornea whose transparency of the cornea does not satisfy a preset condition ;
  • the transparency of the cornea satisfies a preset condition, and the following three strips are simultaneously satisfied.
  • the transparency of the cornea does not satisfy the preset condition means that at least one of the following three conditions is not satisfied:
  • the haze is within the preset haze range
  • the total transmittance is within the preset transmittance range
  • Perspective clarity is within the preset resolution range.
  • the preset haze range, the preset light transmittance range, and the preset definition range are not specifically limited in the embodiment of the present invention, and may be set as needed during actual operation.
  • the preset range is set by the user in advance, and the preset haze range, the preset light transmittance range, and the upper and lower limits of the preset sharpness range are set under the premise that a large amount of data is collected for the cornea of the same thickness. According to the normal distribution of light transmission performance, combined with a certain linear algorithm. For different thickness corneas, the preset haze range, preset light transmittance range and preset sharpness range are different.
  • each of the first collection station and the second collection station includes a feeding port 31, a feeding chute 32, and a collecting box 33, respectively.
  • the upper end of the feed chute 32 communicates with the inlet port 31, and the lower end communicates with the inside of the collecting box 33, and the inlet port 31 is located on the moving track of the robot assembly 4.
  • the robot assembly 4 Under the control of the main control system, the robot assembly 4 holds the transparent package and moves to the corresponding product collection station 3, and puts the clamped transparent package into the inlet of the product collection station 3, and puts the material into the feed.
  • the transparent package in the port 31 can be slid into the collecting box 33 along the feed chute 32 to achieve the collection of the transparent package.
  • the inlet of the first collection station is disposed at a position where the movement trajectory of the robot assembly 4 is close to the detector 2, and the inlet of the second collection station is disposed at the robot assembly. 4 initial position.
  • the initial position is an initialization state preset by the robot component 4 on the mechanical control system, so that the robot component 4 can be directly returned to the initial position, thereby facilitating detection of the next set of transparent packages, thereby saving Time.
  • the embodiment of the present invention does not limit the initial position, and may be set according to actual conditions during actual needs.
  • the preset initial position may be that the main control system controls the mechanical control system to move the robot to Preset initialization
  • the mechanical control system may receive a positioning instruction input by the user, and move the robot to a preset initialization state according to the positioning instruction.
  • the initialization state of the robot preset may also be any of the robot on the robot component 4. A state, for example, a state after the previous positioning before the current time is located.
  • the main control system controls the mechanical control system to drive the robot assembly 4 to put the transparent package into the first Receiving the inlet of the station
  • the main control system controls the mechanical control system to drive the robot assembly 4 into the second collection station
  • the nozzle direction moves a preset distance.
  • the main control system controls the robot assembly 4 to place the transparent package into the inlet of the second collection station.
  • the computer system 200 of the embodiment of the present invention includes:
  • the obtaining module 201 is configured to acquire optical properties of the cornea in the transparent package detected by the detector 2;
  • the processing module 202 is configured to compare the optical performance with a preset preset range or a preset algorithm
  • the determining module 203 is configured to determine an optical performance type of the cornea in the transparent package according to the comparison result of the processing module 202.
  • the processing module 202 may determine, according to a preset constraint condition, a corresponding coordinate position of the optical performance acquired by the acquiring module 201 in the preset coordinate system, and according to the coordinate position, the cornea of the transparent package is
  • the optical properties are classified, and the optical properties whose coordinate positions satisfy certain constraints are classified into one class.
  • the optical properties in the coordinate system satisfy certain linear constraints, and the linear constraints and the linear constraints are satisfied.
  • the nearby optical performance is classified as the first optical performance type, and the optical performance that does not satisfy the linear constraint and the linear constraint offset is classified as the second optical performance type.
  • linear constraint condition may be preset by the system, or may be obtained according to the dispersion rule of each optical property in the coordinate system.
  • the optimal optical performance may be a preset optical performance or a most desirable optical performance selected according to a corresponding positional relationship in each coordinate system.
  • the present invention Without limitation, in practical applications, the user can preset through the system according to his own needs, or according to the distribution of each optical performance in the coordinate system.
  • the mechanical control system controls the robot component 4 to move the transparent package to the detection range of the detector 2 according to a control signal sent by the main control system.
  • a signal that the mechanical control system moves the transparent package to the detection range of the detector 2 is fed back to the main control system.
  • the detector 2 can be controlled by the main control system to obtain the optical performance of the cornea in the transparent package, or the detector 2 can be manually opened, and then the detector 2 is operated on the transparent package.
  • the cornea is tested, which is not limited in the embodiment of the present invention.
  • the mechanical control system automatically controls each operation process, thereby reducing manual intervention in the automated classification and collection system of the corneal package.
  • the mechanical control system adopts an embedded Arcus controller having eight digital input ports and eight digital output ports, and the input port is used for acquiring instructions from the main control system to move the transparent package to the detector Within the detection range of 2 and when the detector 2 detects the optical properties of the transparent package located within the range of the detector 2, it is determined that the relevant information of the optical properties of the cornea in the transparent package cannot be detected, that is, During the deviation, the position of the robot assembly 4 within the detection range of the detector 2 is controlled by the Arcus controller according to the deviation until the detector 2 can To detect information about the optical properties of the cornea in the transparent package.
  • An output port is operative to feed back a completion status to the primary control system in accordance with an instruction sent by the primary control system.
  • the main control system may include one or more microprocessors, a memory, a user interface, a network interface, and a communication bus.
  • the communication bus is used to control communication between the various components of the automated sorting system of the corneal package.
  • the user interface is used to plug in external devices, such as a touch screen, a mouse, a keyboard, etc., to receive information input by the user.
  • the network interface is used for the controller to communicate with the outside, and the network interface mainly includes a wired interface and a wireless interface.
  • the memory can be used to store the software program and the module, the database, the program instruction/module corresponding to the automated classification and collection method of the corneal package as described in the embodiment of the present invention, and the mechanical control system to control the robot component 4 to drive the transparent package
  • a program instruction/module or background component that moves in a horizontal direction or moves in a vertical direction provides a program instruction/module corresponding to the background light or a program instruction/module that the computer system analyzes and calculates the image acquired by the image recognition system.
  • the memory can include high speed random access memory and can also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • the memory can further include a memory remotely located relative to the microprocessor, the remote memory being connectable to the control device over a network.
  • networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the microprocessor performs various functional applications and data processing by running software program instructions and modules stored in the memory, for example, by calling the corneal delocalization application in the memory to achieve a fast and accurate corneal implementation.
  • the positioning process controls the robot component 4 to move the corresponding program command/module by calling a mechanical control system in the memory to implement a process of driving the transparent package to move in a horizontal direction or in a vertical direction.
  • the microprocessor of the present invention adopts an chicken pro
  • the output of the chicken pro is connected to the digital input port of the Arcus controller
  • the input of the chicken pro is connected to the main control system.
  • the above-mentioned main control system can automatically control the realization of each operation step in the control process, and only inputs the set operation program to the main control system, and is called by the microprocessor in the actual application.
  • the application stored in the main control system can complete the entire operation process.
  • an embodiment of the present invention may provide an automated classification collection method for a corneal package, the method comprising:
  • the mechanical control system controls the robot component to clamp a transparent package containing a cornea at an initial position
  • the mechanical control system controls the robot component to move the transparent package into a detection range of the detector
  • the main control system controls the detector to detect optical performance of a cornea in a transparent package located within a detection range of the detector;
  • the main control system controls a computer system to perform an analysis and calculation on the optical performance obtained by the detector, and obtain an optical performance type of the cornea in the transparent package.
  • step S101 the following steps may be specifically included for step S101:
  • the mechanical control system receives a start instruction input by a user
  • the user may input an instruction to open the operation of the robot component on the operation interface of the mechanical control system, for example, start an operation button set on the operation interface of the mechanical control system to send an instruction to the robot control system to open the operation of the robot component.
  • the operation interface of the mechanical control system can refer to the operation interface shown in FIG. 9.
  • the left side portion 1001 of the operation interface is used to display the running state information of the robot assembly as a whole, such as the initial position of the robot assembly, the current position, the preset position, the distance between the current position and the initial position, etc., and the right portion 1002 of the interface is used for control.
  • the operating state of the robotic arm control system such as the positioning button 10021
  • the start button 10022 is used to return the robot assembly to the starting position during operation
  • the emergency stop button The 10023 is used to stop the motion state of the robot assembly and the mechanical control system
  • the setting button 10024 is configured to set the operating parameter of the movement of the robot assembly to the preset position
  • the return button 10025 is used to exit the operation interface of the robot control system.
  • FIG. 9 is only a schematic diagram showing an operation interface of a mechanical control system. Of course, there may be other possible operation interfaces, which are not specifically limited in the embodiment of the present invention.
  • the mechanical control system transmits a start command input by the user to the main control system
  • the mechanical control system receives a positioning instruction sent by the main control system according to the start instruction.
  • the mechanical control system controls the robot component to return to an initial position according to the positioning instruction.
  • the mechanical control system sends a first signal to the main control system, where the first signal is used to indicate that the robot component returns to an initial position;
  • the mechanical control system receives a first control signal sent by the main control system, and clamps a corneal-equipped transparent package at an initial position according to the first control signal.
  • the method further includes:
  • the main control system controls, according to the optical performance type acquired by the computer system, the mechanical control system to drive the robot component to move the transparent package into a corresponding product collection station.
  • the product collection station includes a first collection station for collecting a cornea of a first optical performance type, and a second collection station for Collecting a cornea of a second optical performance type; wherein the cornea of the first optical performance type is a cornea having a transparency within a predetermined range, and the cornea of the second optical performance type is a cornea having a transparency outside a preset range;
  • step S105 can be implemented by the following steps:
  • S1051 The computer system analyzes and calculates an optical performance of a cornea in a transparent package detected by the detector;
  • the inlet of the first collection station is disposed at a position where the movement trajectory of the robot assembly is close to the detector, and the inlet of the second collection station is disposed at an initial position of the robot assembly;
  • the initial position is an initialization state preset by the robot component on the mechanical control system.
  • step S1052 can be implemented by the following steps:
  • the main control system When the main control system receives the first signal, the main control system acquires a position difference between a current location of the robot component and a first collection station.
  • the main control system sends a back instruction to the mechanical control system, the back instruction instructing the mechanical system to follow the position. Differentially moving the robot assembly to move the position difference backward;
  • the main control system sends a forward instruction to the mechanical control system, the forward instruction instructing the mechanical system to follow the position Differentially moving the robot assembly to move the position difference forward;
  • the main control system controls the robot arm system to drive the robot assembly to move the transparent package into the The first collection station.
  • the main control system sends a second control to the mechanical control system according to the second signal.
  • the mechanical control system is based on The second control signal controls the robot assembly to move the transparent package into the second collection station.
  • step S1053 The specific implementation steps of the step S1053 can be referred to the S1052 embodiment of the present invention, and details are not described herein again.
  • the optical properties of the cornea include transparency of the cornea, the transparency of the cornea including haze, total transmittance, and perspective clarity;
  • the S1051 can be implemented in the following manner:
  • the computer system acquires a haze, a total transmittance, and a perspective definition of a cornea in the transparent package;
  • the transparency of the cornea satisfies the preset condition that the following three conditions are satisfied at the same time, and the transparency of the cornea does not satisfy the preset condition, at least one of the following three conditions is not satisfied:
  • the haze is within the preset haze range
  • the total transmittance is within the preset transmittance range
  • Perspective clarity is within the preset resolution range.
  • the preset light transmittance, the preset haze, and the preset sharpness may be set as needed, and details are not described herein again in the embodiments of the present invention.
  • step S102 the method further includes:
  • the main control system controls the mechanical control system to move the transparent package to make the center of the cornea in the transparent package coincide with the center of the detection light of the detector.
  • step S106 can be specifically implemented in the following manner:
  • the main control system sends a third control signal to the detector according to the third signal.
  • the detector detects a center position coordinate of a cornea in the transparent package according to the third control signal
  • the detector matches a center position coordinate of a cornea in the transparent package with a preset center coordinate
  • the detector may deviate from the center position coordinate of the cornea in the transparent package and the preset center coordinate. Information is sent to the main control system;
  • the main control system sends the deviation information to the mechanical control system
  • the mechanical control system adjusts a center position of a cornea in the transparent package according to the deviation information.
  • step S104 can be specifically implemented by:
  • the detector After the detector acquires the optical performance of the cornea in the transparent package within the detection range of the detector, the detector sends a fourth signal to the main control system, and the fourth signal indicates the detection.
  • the instrument has obtained the optical properties of the cornea in the transparent package within its detection range;
  • S1042 The main control system sends a fourth control signal to the computer system according to the fourth signal;
  • the computer system analyzes and calculates an optical performance of a cornea in a transparent package obtained by the detector according to the fourth control signal, and obtains an optical performance type of the cornea in the transparent package.
  • step S103 can be specifically implemented by:
  • the mechanical control system drives the robot assembly to move the transparent package into the detection range of the detector
  • the mechanical control system sends a fifth signal to the main control system, where the fifth signal indicates
  • the mechanical control system drives the robot assembly to move the transparent package into the detection range of the detector
  • S1032 The main control system sends a fifth control signal to the detector according to the fifth signal;
  • the detector detects optical properties of a cornea in a transparent package located within a detection range thereof according to the fifth control signal.
  • the method further includes:
  • the main control system sends a sixth control signal to the mechanical control system according to the sixth signal.
  • the mechanical control system controls the robot component to drive the transparent package to move within the detection range of the detector according to the sixth control signal, until the detector can detect the corneal optics in the transparent package. Information about performance.

Abstract

一种角膜包装体的自动化分类收集系统,包括检测仪(2)、多个产品收集工位(3)、机械手组件(4)、控制系统,其中控制系统可带动透明包装体移动至检测仪(2)的检测范围,根据检测仪(2)检测的角膜的光学性能,控制机械手组件(4)移动透明包装体并放入相应的产品收集工位(3)。该角膜包装体的自动化分类收集系统及对应方法解决了现有技术收集角膜包装体所需的人工劳动量大、效率低的问题。

Description

一种角膜包装体的自动化分类收集系统及方法
本申请要求于2015年12月25日提交中国专利局、申请号为201510989182.4、发明名称为“一种角膜包装体的自动化分类收集系统及方法”,以及于2015年12月25日提交中国专利局、申请号为201510991732.6、发明名称为“一种角膜自动检测系统及方法”的两件中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及医疗器械技术领域,尤其涉及一种角膜包装体的自动化分类收集系统及方法。
背景技术
角膜病是全球范围内第二致盲眼病,并且以每年150-200万病例的速度递增。角膜移植是目前治疗角膜盲唯一有效的方法,而角膜移植材料的来源主要是角膜捐献和角膜替代品,如脱细胞角膜基质等。为了克服不规则散光等移植缺陷,通常需要将角膜移动至检测装置的目标位置进行检测,以确定角膜是否满足要求,并根据检测结果进行分类收集。在传统的分类收集方法中,人工参与度较高,效率较低。
发明内容
本发明的实施例提供一种角膜包装体的自动化分类收集系统及方法,能够实现角膜包装体的自动化分类收集,降低人工劳动量,提高分类收集效率。
为达到上述目的,本发明的实施例提供了一种角膜包装体的自动化分类收集系统,包括:检测仪,所述检测仪可获取位于其检测范围内的角膜的光学性能;多个产品收集工位,多个所述产品收集工位分别用于收集不同光学性能类型的角膜产品;机械手组件,所述机械手组件用于夹持装有角膜的透明包装体,并且可带动所述透明包装体移动;控制单元,所述控制单元可带动所述透明包装体移动至所述检测仪的检测范围内,并可根据所述检测仪检测的角膜的 光学性能,控制机械手组件将所述透明包装体移动并放入相应的产品收集工位。
本发明的实施例还提供了一种角膜包装体的自动化分类收集方法,包括以下步骤:控制单元控制机械手组件带动所述透明包装体移动至所述检测仪的检测范围内;所述检测仪对所述透明包装体内角膜的光学性能进行检测,并将检测结果发送至所述控制单元;所述控制单元根据所述检测仪检测的角膜的光学性能,控制机械手组件将所述透明包装体移动并放入相应的产品收集工位。
本发明实施例提供的一种角膜包装体的自动化分类收集系统及方法,机械手组件夹持装有角膜的透明包装体,并带动透明包装体移动至检测仪的检测范围内,此时,检测仪可对透明包装体内角膜的光学性能进行检测,并将检测结果发送至控制单元,控制单元接收到检测结果后,可根据此检测结果,控制机械手组件将透明包装体移动并放入相应的产品收集工位,从而实现了角膜包装体的自动化分类收集。本发明实施例提供的角膜包装体的自动化分类收集系统及方法,实现了角膜包装体的自动化分类收集,所需的人工劳动量较小,且分类收集的效率较高。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例角膜包装体的自动化分类收集系统的俯视图;
图2为本发明实施例角膜包装体的自动化分类收集系统中产品收集工位的结构示意图;
图3为本发明实施例角膜包装体的自动化分类收集系统的立体图;
图4为本发明实施例角膜包装体的自动化分类收集系统中机械手的结构示意图;
图5为本发明实施例角膜包装体的自动化分类收集系统中样品台的结构示意图;
图6为本发明实施例角膜包装体的自动化分类收集系统中计算机系统的结构示意图;
图7为本发明实施例角膜包装体的自动化分类收集方法的流程示意图一;
图8为本发明实施例角膜包装体的自动化分类收集方法的流程示意图二;
图9为本发明实施例角膜包装体的自动化分类收集系统中机械控制系统的操作界面示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
参照图1,图1为本发明实施例角膜包装体的自动化分类收集系统的一个具体实施例,本实施例的角膜包装体的自动化分类收集系统包括:检测仪2,所述检测仪2可获取位于其检测范围内的角膜的光学性能;多个产品收集工位3,多个所述产品收集工位3分 别用于收集不同光学性能类型的角膜产品;机械手组件4,所述机械手组件4用于夹持装有角膜的透明包装体,并且可带动所述透明包装体移动;控制单元(图中未示出),所述控制单元可带动所述透明包装体移动至所述检测仪2的检测范围内,并可根据所述检测仪2检测的角膜的光学性能,控制机械手组件4将所述透明包装体移动并放入相应的产品收集工位3。
本发明实施例提供的一种角膜包装体的自动化分类收集系统,机械手组件4夹持装有角膜的透明包装体,并带动透明包装体移动至检测仪2的检测范围内,此时,检测仪2对透明包装体内角膜的光学性能进行检测,并将检测结果发送至控制单元,控制单元接收到检测结果后,可根据此检测结果,控制机械手组件4将透明包装体移动并放入相应的产品收集工位3,从而实现了角膜包装体的自动化分类收集。本发明实施例提供的角膜包装体的自动化分类收集系统,实现了角膜包装体的自动化分类收集,所需的人工劳动量较小,分类收集的效率较高。
在上述实施例中,为了将透明包装体内的角膜准确移动至检测仪的检测范围内,优选地,还包括角膜定位装置1,角膜定位装置1可获取位于其检测范围内的非透明物体的位置信息,控制单元可控制机械手组件4带动透明包装体移动至角膜定位装置1的检测范围内,以在将透明包装体移动至检测仪2的检测范围内之前,确定角膜在透明包装体内的位置信息,根据此位置信息即可将透明包装体内的角膜准确移动至检测仪2的检测范围内。
其中,角膜定位装置1包括背景光幕11以及与背景光幕11相对且间隔设置的图像识别装置12,当装有角膜的透明包装体移动至背景光幕11和图像识别装置12之间时,背景光幕11可发出单色背景光,图像识别装置12能够获取背景光幕1透过机械手组件4夹持的透明包装体的背景光形成的图像,并根据图像确定非透明部分的位置,由此可获取位于背景光幕11和图像识别装置12之间的非透明物体的位置信息。
为了检测透明包装体中角膜的光学性能,检测仪2可以为镭射光学检测仪,镭射光学检测仪是一台用于测量薄膜、及其他透明材料外观的台式高精密仪器,采用了垂直照射样品表面的测量方法,即使用一个球状物体(0°/散射)测量透过的光线的散射角度,获取检测角膜的透明度,其中,角膜的透明度包括全透过率(又称光全透过率)、雾度(朦胧指数)以及透视清晰度。且镭射光学检测仪具有精度高、可靠性好、开机即可操作等优点,使测量得到的角膜透明度具有较高的准确性,且测量过程耗时较短,效率较高。
为了方便统一管理,背景光幕11、图像识别装置12、检测仪2、多个产品收集工位3、机械手组件4和控制单元集中布置于承载平台100上。
需要说明的是,背景光幕11和图像识别装置12可均设置于承载平台100所在的平面上,也可将背景光幕11设置于承载平台100所在的平面上,图像识别装置12设置于背景光幕11上方并与背景光幕11之间保持一定的间隔,或者将图像识别装置12设置于承载平台100所在的平面上,背景光幕11设置于图像识别装置12上方并与图像识别装置12保持一定的间隔,在此不做限定。同理,检测仪2可以水平设置,也可以竖直设置,在此不做限定。
为了收集透明包装体,如图2所示,产品收集工位3包括入料口31、入料滑道32及集料箱33,入料滑道32上端与入料口31连通,下端与集料箱33内部连通,入料口31位于机械手组件4的移动轨迹上,在控制单元的控制下,机械手组件4夹持透明包装体移动至相应的产品收集工位3,并将夹持的透明包装体放入产品收集工位3的入料口31内,放入入料口31内的透明包装体可沿入料滑道32滑入集料箱33内,以实现透明包装体的收集。此结构简单,实现方便。
其中,入料滑道32可以为竖直滑道,也可以为如图2所示一端与入料口31连通,另一端向下倾斜并连通于集料箱33内部,使透明包装体能够在其重力的作用下沿入料滑道32滑入集料箱33内, 在此不做限定。
另外,集料箱33的形状可以为圆筒形、立方形等等,在此不做限定,且对集料箱33的容积不做限定,具体地,集料箱33可以容纳一定数量的透明包装体即可。
由于透明包装体根据包装体中角膜的透明度分为合格产品和不合格产品,因此产品收集工位3包括第一收集工位和第二收集工位,第一收集工位用于收集透明度在预设范围内的角膜,第二收集工位用于收集透明度在预设范围之外的角膜。当通过检测仪2检测得到的透明包装体内角膜的透明度处于预设范围内时,则判定此透明包装体为合格产品,可将其放入第一收集工位对应的入料口31内;当通过检测仪2检测得到的透明包装体内角膜的透明度处于预设范围外时,则判定此透明包装体为不合格产品,可将其放入第二收集工位所对应的入料口31内,由此实现透明包装体的分类收集。
其中,预设范围是用户事先设定的,预设范围上下限的设定,是在已经针对相同厚度的角膜进行大量数据采集的前提下,根据透光性能的正态分布情况,结合一定的线性算法得出的。而针对不同厚度的角膜,得出的预设范围不同。
为了方便透明包装体移动,优选地,如图3所示,机械手组件4包括机械手41和移动装置42,机械手41用于夹持装有角膜的透明包装体,以固定机械手41与透明包装体的相对位置,移动装置42用于带动机械手41移动,从而带动机械手41上的透明包装体移动。此结构简单,操作方便。
其中,优选地,机械手41可以制作为如图4所示的结构,具体地,包括支架411,设置于支架411上的第一夹板412、第二夹板413以及驱动机构418,驱动机构418用于驱动第一夹板412和第二夹板413贴合或打开,第一夹板412和第二夹板413的中部设有透光窗口414,当第一夹板412和第二夹板413贴合时,可将位于第一夹板412和第二夹板413之间的透明包装体的边沿一周夹紧,由此透明包装体装有角膜的部分位于透光窗口414处,以利于获取透光 窗口414内的角膜的位置信息。此结构简单,容易实现。
需要说明的是,第一夹板412可以整体设计为由透明材料制作,也可以仅第一夹板412的中部透光窗口414区域由透明材料制作,还可以将第一夹板412中部透光窗口414区域直接设为通孔,在此不做限定。
同理,第二夹板413可以整体设计为由透明材料制作,也可以仅第二夹板413的中部透光窗口414区域由透明材料制作,还可以将第二夹板413中部透光窗口414区域直接设为通孔,在此不做限定。
而且,第一夹板412和第二夹板413的具体形状可以根据透明包装体的形状进行设计,在此不做限定,只要第一夹板412和第二夹板413能够夹紧透明包装体即可。
为了实现第一夹板412与第二夹板413之间的贴合或打开,优选地,机械手41可以制作为如图4所示结构,即第一夹板412通过固定臂415固定于支架411上,第二夹板413通过旋转臂416铰接于支架411上,固定臂415和旋转臂416之间通过复位件417连接,驱动机构418包括电机4181,电机4181的输出轴连接有摆臂4182,摆臂4182远离电机4181输出轴的一端与第二夹板413抵靠,当摆臂4182向靠近第二夹板413的方向摆动时,摆臂4182可推动第二夹板413向靠近第一夹板412的方向转动,直至第一夹板412和第二夹板413相贴合,当摆臂4182向远离第二夹板413的方向摆动时,第二夹板413在复位件417的作用下向远离第一夹板412的方向转动。此结构简单,操作方便,且电机4181通过驱动摆臂4182,摆臂4182推动第二夹板413向靠近第一夹板412的方向转动,可以将电机4181设置于靠近机械手41支撑主体的位置,如图4中的支撑体5为支撑主体的一部分,避免将电机4181设置于悬臂梁上而增加悬臂梁的负担,从而防止悬臂梁产生变形甚至断裂。
需要说明的是,在实际应用中,本发明的驱动机构418也可以通过摆臂4182施加外力给第一夹板412使得第一夹板412在受到外 力的作用下向靠近或者远离第二夹板413的方向转动,以实现第一夹板412与第二夹板413之间的贴合或打开,本发明实施例对此不进行限制,只要能够使得第一夹板412和第二夹板413在工作状态时能夹紧透明包装体即可。
在图4所示的实施例中,复位件417为弹性件,对弹性件的弹性系数不做具体限定,只要弹性件能够使得第一夹板412与第二夹板413处于打开状态时,第一夹板412和第二夹板413之间的最大张开距离大于等于透明包装体的厚度,或当电机4181带动摆臂4182转动挤压第一夹板412朝向第二夹板413转动时,位于第一夹板412和第二夹板413的弹性件在外力挤压发生形变时可以使得第一夹板412与第二夹板413能够夹紧透明包装体即可。优选的,复位件417为弹簧,弹簧为常用的弹性件,因此结构简单,容易实现。
为了减小摆臂4182与第二夹板413在相对运动过程中产生的摩擦力,参见图4,优选地,摆臂4182远离电机4181输出轴的一端设有滚轮4183,滚轮4183的外轮面与第二夹板413抵靠,当电机4181驱动摆臂4182带动第二夹板413运动时,滚轮4183抵靠第二夹板413并与第二夹板413产生相对滑移使滚轮4183滚动,产生滚动摩擦,相比于同等条件下的滑动摩擦,滚动摩擦的摩擦力较小,磨损较小。
进一步可选的,参见图5,还包括样品台50,所述样品台50用于放置待收集的透明包装体(图中未画出)。
其中,对所述样品台50的具体结构不做限定,该样品台50设置于机械手41的初始位置,且位于第一夹板412和第二夹板413的下方,如图5所示样品台50上设置有限位槽501,限位槽501位于第一夹板412与所述第二夹板413处于夹紧状态时,第一夹板412与所述第二夹板413之间夹缝的正下方。
示例的,在实际应用中将透明包装体沿着所述样品台50的限位槽501移动至所述机械手41的初始位置。该限位槽501的宽度与所述透明包装体的厚度相同。可以通过人工将透明包装体沿限位槽501 移动也可以通过主控制系统沿着限位槽501将透明包装体移动至机械手41的初始位置,本发明实施例对此不作限制。
在图3所示的实施例中,为了使透明包装体能够沿水平方向和竖直方向移动,移动装置42包括水平移动组件421和竖直移动组件422,机械手41与竖直移动组件422连接,竖直移动组件422可带动机械手41沿竖直方向往复移动,水平移动组件421可带动竖直移动组件422和机械手41沿水平方向往复移动,从而实现了透明包装体沿水平方向和竖直方向的移动。此结构简单,容易实现。
其中,水平移动组件421包括第一驱动件4211、水平导轨4212、设置于水平导轨4212内的水平丝杠(图中未示出)、以及与水平丝杠配合的第一螺母(图中未示出),第一螺母与水平导轨4212滑动连接,第一驱动件4211可带动水平丝杠转动,竖直移动组件422与第一螺母固定连接,第一驱动件4211可以为电机或者其他驱动装置,在此不做限定,只要能够驱动水平丝杠以其自身轴线转动即可。此结构简单,容易实现,且由于丝杠螺母配合自身具有结构紧凑、定位准确、方便控制等优点,因此水平移动组件421能够准确地实现透明包装体的水平定位,且占用空间小,方便实现自动化控制。
另外,竖直移动组件422包括第二驱动件4223、竖直导轨4221、设置于竖直导轨4221内的竖直丝杠(图中未示出)、以及与竖直丝杠配合的第二螺母4222,第二螺母4222与竖直导轨4221滑动连接,第二驱动件4223可带动竖直丝杠转动。第二驱动件4223可以为电机或者其他驱动装置,在此不做限定,只要能够驱动竖直丝杠以其自身轴线转动即可。此结构紧凑,占用空间小,能够实现准确定位,且方便实现自动化控制。
本发明实施例还提供了一种角膜包装体的自动化分类收集方法,该角膜包装体的自动化分类收集方法基于本发明实施例提供的一种角膜包装体的自动化分类收集系统,包括以下步骤:
S1、控制单元控制机械手组件带动所述透明包装体移动至所述检测仪的检测范围内;
S2、所述检测仪对所述透明包装体内角膜的光学性能进行检测,并将检测结果发送至所述控制单元;
S3、所述控制单元根据所述检测仪检测的角膜的光学性能,控制机械手组件将所述透明包装体移动并放入相应的产品收集工位。
本发明实施例提供的一种角膜包装体的自动化分类收集方法,控制单元可控制机械手组件带动透明包装体移动至检测仪的检测范围内,控制单元在获取到角膜光学性能的检测结果之后,可根据此检测结果,确定此角膜相应的产品收集工位,并带动装有此角膜的透明包装体移动并放入此产品收集系统内,从而实现了透明包装体的自动化分类收集。本发明实施例自动化分类收集方法,自动化程度较高,所需的人工劳动量较小,收集的效率较高。
在上述实施例中,为了将透明包装体内的角膜准确移动至检测仪的检测范围内,在步骤S1之前,还包括以下步骤:
S4、机械手组件夹持装有角膜的透明包装体,并带动透明包装体移动至角膜定位装置的监测范围内;
S5、角膜定位装置获取透明包装体内角膜的位置信息,并将位置信息发送至控制单元。
当检测仪为镭射光学检测仪时,为了准确检测透明包装体内角膜的光学性能,步骤S1具体包括以下步骤:控制单元根据角膜的位置信息控制机械手组件带动透明包装体移动,使透明包装体内的角膜的中心与镭射光学检测仪的检测光线中心重合,从而使透明包装体内的角膜完全处于检测仪的检测范围内,以利于透明包装体内角膜光学性能的准确检测。
角膜的透明度是判断角膜是否能够用于移植的重要参量,因此,检测仪对透明包装体内角膜的光学性能进行检测,具体包括以下步骤:检测仪对透明包装体内角膜的透明度进行检测。
为了实现分类收集,步骤S3具体包括以下步骤:
S31、当角膜的透明度在预设范围内时,控制单元控制机械手组件将透明包装体移动并放入第一收集工位;
S32、当角膜的透明度在预设范围外时,控制单元控制机械手组件将透明包装体移动并放入第二收集工位,以实现角膜的分类收集。
在图1所示的实施例中,具体的,控制单元可以包括计算机系统、机械控制系统和主控制系统,其中:
所述计算机系统与所述检测仪2连接,用于对所述检测仪2获取的光学性能进行分析计算,获取透明包装体内角膜的光学性能类型;
所述机械控制系统与所述机械手组件4连接,用于控制所述机械手组件4移动,以带动所述透明包装体移动至所述检测仪2的检测范围以及多个产品收集工位3;
所述主控制系统与所述检测仪2、计算机系统以及机械控制系统均连接,用于控制所述检测仪2获取位于所述检测仪2检测范围内的透明包装体内角膜的光学性能;以及控制所述计算机系统对所述检测仪2获取的光学性能进行分析计算,获取所述透明包装体内角膜的光学性能类型;以及根据所述计算机系统获取的角膜的光学性能类型,控制所述机械控制系统带动所述机械手组件4移动,以将所述透明包装体移动并放入相应的产品收集工位3。
需要说明的是,所述计算机系统与所述检测仪2之间可以通过无线连接,也可以通过有线连接,在此不做具体限定。
同理,所述机械控制系统与所述机械手组件4之间可以通过无线连接,也可以通过有线连接,在此不做具体限定。主控制系统分别与检测仪2、机械控制系统以及计算机系统之间可以通过无线连接,也可以通过有线连接,在此不做具体限定。
其中,所述产品收集工位3包括第一收集工位和第二收集工位,所述第一收集工位用于收集第一光学性能类型的角膜,所述第二收集工位用于收集第二光学性能类型的角膜;其中,所述第一光学性能类型的角膜为角膜的透明度满足预设条件的角膜,所述第二光学性能类型的角膜为角膜的透明度不满足预设条件的角膜;
其中,所述角膜的透明度满足预设条件指同时满足以下三个条 件,所述角膜的透明度不满足预设条件指至少不满足以下三个条件中任一条件:
雾度在预设雾度范围之内;
全透过率在预设透光率范围之内;
透视清晰度在预设清晰度范围之内。
其中,本发明实施例对预设雾度范围、预设透光率范围及预设清晰度范围不进行具体限定,在实际操作过程中,可以根据需要进行设置。预设范围是用户事先设定的,预设雾度范围、预设透光率范围及预设清晰度范围上下限的设定,是在已经针对相同厚度的角膜进行大量数据采集的前提下,根据透光性能的正态分布情况,结合一定的线性算法得出的。而针对不同厚度的角膜,得出的预设雾度范围、预设透光率范围及预设清晰度范围不同。
进一步可选的,如图2所示,所述第一收集工位和所述第二收集工位中每个收集工位分别包括入料口31、入料滑道32以及集料箱33,入料滑道32上端与所述入料口31连通,下端与所述集料箱33内部连通,所述入料口31位于所述机械手组件4的移动轨迹上。
在主控制系统的控制下,机械手组件4夹持透明包装体移动至相应的产品收集工位3,并将夹持的透明包装体放入产品收集工位3的入料口内,放入入料口31内的透明包装体可沿入料滑道32滑入集料箱33内,以实现透明包装体的收集。此结构简单,实现方便。
进一步可选的,所述第一收集工位的入料口设置于所述机械手组件4的移动轨迹靠近所述检测仪2的位置,第二收集工位的入料口设置于所述机械手组件4初始位置。
其中,所述初始位置为所述机械手组件4在所述机械控制系统上预设的初始化状态,这样可以直接将所述机械手组件4返回初始位置,便于对下一组透明包装体进行检测,节约了时间。
本发明实施例对所述初始位置不进行限定,在实际需要过程中可以根据实际情况进行设置,当然,该预设的初始位置可以是主控制系统控制所述机械控制系统将所述机械手移动至预设的初始化状 态,也可以是机械控制系统接收用户输入的定位指令,根据定位指令将所述机械手移动至预设的初始化状态,当然所述机械手预设的初始化状态也可以是机械手在机械手组件4上任意的一个状态,例如,在当前时刻定位之前的前一次定位后的状态。
例如,若所述计算机系统确定所述透明包装体内的角膜属于第一光学性能类型的角膜,则主控制系统控制所述机械控制系统带动所述机械手组件4将所述透明包装体放入第一收集工位的入料口,若确定所述透明包装体内的角膜属于第二光学性能类型的角膜,则主控制系统控制所述机械控制系统带动所述机械手组件4向第二收集工位的入料口方向移动预设距离,在移动至所述第二收集工位的入料口时,主控制系统控制所述机械手组件4将所述透明包装体放入第二收集工位的入料口。
参见图6,示例性的,本发明实施例的计算机系统200包括:
获取模块201,用于获取所述检测仪2检测的透明包装体内角膜的光学性能;
处理模块202,用于根据所述光学性能与设定的预设范围或者预设的算法进行比较;
确定模块203,用于根据所述处理模块202的比较结果,确定所述透明包装体内角膜的光学性能类型。
示例性的,所述处理模块202可以根据预设的约束条件,确定获取模块201获取的光学性能在预设坐标系中对应的坐标位置,并根据所述坐标位置对所述透明包装体内角膜的光学性能进行分类,将坐标位置满足一定约束条件的光学性能划为一类,例如,位于坐标系中的光学性能满足一定的线性约束条件,将该满足线性约束条件及在线性约束条件偏移量附近的光学性能划为第一光学性能类型,将不满足线性约束条件及在线性约束条件偏移量附近的光学性能划为第二光学性能类型。
需要说明的是,该线性约束条件可以通过系统预设,也可以根据各个光学性能在坐标系中的分散规律获取。
或以坐标系中某一最佳的光学性能为中心及预设的某一阈值为偏移量绘制圆形区域,将落在该圆形区域内的光学性能划为第一光学性能类型,将落在该圆形区域之外的光学性能划为第二光学性能类型。
需要说明的是,该最佳的光学性能可以为预设设置的光学性能也可以为根据各个光学性能在坐标系中对应的位置关系选取的最符合要求的光学性能,对于偏移量,本发明不作限制,在实际应用中,用户可以根据自己的需求通过系统预设,也可以根据各个光学性能在坐标系中的分布选取。
需要说明的是,本发明实施例在实际应用过程中,机械控制系统根据主控制系统发送的控制信号控制所述机械手组件4将所述透明包装体移至所述检测仪2的检测范围内,当所述透明包装体移至所述检测仪2的检测范围内时,机械控制系统将所述透明包装体移至所述检测仪2的检测范围内的信号反馈给所述主控制系统,此时,可以通过所述主控制系统控制所述检测仪2获取透明包装体内角膜的光学性能,也可以通过手动方式打开所述检测仪2,然后操作所述检测仪2对所述透明包装体内的角膜进行检测,本发明实施例对此不作限制。
综上所述,在角膜包装体的自动化分类收集系统的整个操作过程中,通过所述机械控制系统对各个操作过程进行自动化控制,减少了在角膜包装体的自动化分类收集系统中的人工干预,能够提交角膜定位的准确性。
其中,所述的机械控制系统采用嵌入式Arcus控制器,该Arcus控制器具有8个数字输入端口和8个数字输出端口,输入端口用于从主控制系统获取指令将透明包装体移动至检测仪2的检测范围内及当所述检测仪2对位于所述检测仪2范围内的透明包装体的光学性能进行检测时,确定无法检测到所述透明包装体内角膜光学性能的相关信息,即存在偏差时,通过Arcus控制器根据所述偏差控制机械手组件4在检测仪2检测范围内的位置,直至所述检测仪2可 以检测到所述透明包装体内角膜光学性能的相关信息。输出端口用于根据所述主控制系统发送的指令向所述主控制系统反馈完成状态。
其中,所述主控制系统可以包括一个或多个微处理器、存储器、用户接口、网络接口以及通信总线。
通信总线用于控制角膜包装体的自动化分类收集系统中各组成部件之间的通信。用户接口用于插接外部设备,例如触摸屏、鼠标及键盘等,以接收用户输入的信息。网络接口用于所述控制器与外部进行互相通信,该网络接口主要包括有线接口和无线接口。
存储器可用于存储软件程序以及模块,数据库,如本发明实施例中所述的角膜包装体的自动化分类收集方法对应的程序指令/模块及机械控制系统控制所述机械手组件4带动所述透明包装体沿水平方向移动或沿竖直方向移动所对应的程序指令/模块或背景组件提供背景光对应的程序指令/模块或计算机系统对所述图像识别系统获取的图像进行分析计算的程序指令/模块。存储器可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器可进一步包括相对于微处理器远程设置的存储器,这些远程存储器可以通过网络连接至所述控制设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
微处理器通过运行存储在存储器内的软件程序指令以及模块,从而执行各种功能应用以及数据处理,例如,处理器通过调用存储器中的角膜脱定位的应用程序,以实现快速而准确的实现角膜定位过程,通过调用存储器中的机械控制系统控制所述机械手组件4移动对应的程序指令/模块,以实现带动所述透明包装体沿水平方向移动或沿竖直方向移动的过程。
优选的,本发明的微处理器采用Arduino pro,该Arduino pro的输出接Arcus控制器的数字输入端口,Arduino pro的输入接主控制系统。
综上所述,上述主控制系统在控制过程中,能够对各个操作步骤中的实现自动化控制,仅将设定好的操作程序输入给所述主控制系统,在实际应用中通过微处理器调用存储于所述主控制系统中的应用程序,就可以完成整个操作过程。
参见图7,当控制单元包括计算机系统、机械控制系统和主控制系统时,本发明实施例可提供一种角膜包装体的自动化分类收集方法,所述方法包括:
S101、所述机械控制系统控制所述机械手组件在初始位置夹持住装有角膜的透明包装体;
S102、所述机械控制系统控制所述机械手组件将所述透明包装体移动至检测仪的检测范围内;
S103、所述主控制系统控制所述检测仪对位于所述检测仪检测范围内的透明包装体内角膜的光学性能进行检测;
S104、所述主控制系统控制计算机系统对所述检测仪获取的光学性能进行分析计算,获取所述透明包装体内角膜的光学性能类型。
参见图8,示例性的,对于步骤S101可以具体包括以下步骤:
S1011、所述机械控制系统接收用户输入的开始指令;
具体的,用户可在机械控制系统的操作界面输入开启机械手组件工作的指令,例如启动设置在机械控制系统的操作界面的运行按钮向机械臂控制系统发送开启机械手组件工作的指令。其中,机械控制系统的操作界面可参考图9所示操作界面。操作界面左侧部分1001用于显示机械手组件整体的运行状态信息,如机械手组件的初始位置、当前位置、预设位置、当前位置与初始位置之间的距离等,界面右侧部分1002用于控制机械臂控制系统的运行状态,如定位按钮10021,用于通过限位传感器将机械手组件移动至预设位置,起始按钮10022用于在操作过程中使机械手组件回复到起始位置,紧急停止按钮10023用于停止机械手组件及机械控制系统的运动状态,设置按钮10024,用于设置机械手组件的移动到预设位置的运行参数,返回按钮10025用于退出机械臂控制系统的操作界面。
需要说明的是,图9仅是示例性的给出一种机械控制系统的操作界面示意图,当然,还可能存在其它可能的操作界面,本发明实施例对此不作具体限定。
S1012、所述机械控制系统将所述用户输入的开始指令传输至所述主控制系统;
S1013、所述机械控制系统接收所述主控制系统根据所述开始指令发送的定位指令;
S1014、所述机械控制系统根据所述定位指令控制所述机械手组件回复至初始位置;
S1015、所述机械控制系统向所述主控制系统发送第一信号,所述第一信号用于指示所述机械手组件回复至初始位置;
S1016、所述机械控制系统接收所述主控制系统发送的第一控制信号,并根据所述第一控制信号在初始位置夹持住装有角膜的透明包装体。
为了对计算机系统确定的光学性能类型进行分类,所述方法,还包括:
S105、所述主控制系统根据所述计算机系统获取的光学性能类型,控制所述机械控制系统带动所述机械手组件将所述透明包装体移动并放入相应的产品收集工位。
可选的,所述产品收集工位包括第一收集工位和第二收集工位,所述第一收集工位用于收集第一光学性能类型的角膜,所述第二收集工位用于收集第二光学性能类型的角膜;其中,所述第一光学性能类型的角膜为透明度在预设范围内的角膜,所述第二光学性能类型的角膜为透明度在预设范围之外的角膜;
相应的,所述步骤S105可以通过以下步骤实现:
S1051、所述计算机系统对所述检测仪检测的透明包装体内角膜的光学性能进行分析计算;
S1052、若确定所述角膜的光学性能属于第一光学性能类型,则向所述主控制系统发送第一信号;所述主控制系统根据所述第一信 号向所述机械控制系统发送第一控制信号;所述机械控制系统根据所述第一控制信号控制所述机械手组件将所述透明包装体移动并放入所述第一收集工位;
可选的,所述第一收集工位的入料口设置于所述机械手组件的移动轨迹靠近所述检测仪的位置,第二收集工位的入料口设置于所述机械手组件初始位置;
其中,所述初始位置为所述机械手组件在所述机械控制系统上预设的初始化状态。
相应的,所述步骤S1052可以通过以下步骤实现:
S10521、在所述主控制系统接收到所述第一信号时,所述主控制系统获取所述机械手组件当前位置与第一收集工位之间的位置差;
S10522、若确定所述第一收集工位位于所述机械手组件移动轨迹的后方,则所述主控制系统向所述机械控制系统发送后退指令,所述后退指令指示所述机械系统按照所述位置差带动所述机械手组件向后移动所述位置差;
S10523、在所述机械系统按照所述位置差带动所述机械手组件向后移动所述位置差之后,主控制系统控制所述机械臂系统带动机械手组件将所述透明包装体移动并放入所述第一收集工位;
S10524、若确定所述第一收集工位位于所述机械手组件移动轨迹的前方,则所述主控制系统向所述机械控制系统发送前进指令,所述前进指令指示所述机械系统按照所述位置差带动所述机械手组件向前移动所述位置差;
S10525、在所述机械系统按照所述位置差带动所述机械手组件向前移动所述位置差之后,主控制系统控制所述机械臂系统带动机械手组件将所述透明包装体移动并放入所述第一收集工位。
S1053、若确定所述角膜的光学性能属于第二光学性能类型,则向所述主控制系统发送第二信号;所述主控制系统根据所述第二信号向所述机械控制系统发送第二控制信号;所述机械控制系统根据 所述第二控制信号控制所述机械手组件将所述透明包装体移动并放入所述第二收集工位。
其中,步骤S1053的具体实现步骤可以参见S1052本发明实施例在此不再赘述。
进一步可选的,所述角膜的光学性能包含角膜的透明度,所述角膜的透明度包括雾度、全透过率以及透视清晰度;
相应的,所述S1051可以通过以下方式具体实现:
S10511、所述计算机系统获取所述透明包装体内角膜的雾度、全透过率以及透视清晰度;
S10512、根据所述雾度、全透过率以及透视清晰度;若确定所述角膜的透明度满足预设条件,则确定所述角膜的光学性能属于第一光学性能类型;若确定所述角膜的透明度不满足预设条件,则确定所述角膜的光学性能属于第二光学性能类型;
其中,所述角膜的透明度满足预设条件指同时满足以下三个条件,所述角膜的透明度不满足预设条件指至少不满足以下三个条件中任一条件:
雾度在预设雾度范围之内;
全透过率在预设透光率范围之内;
透视清晰度在预设清晰度范围之内。
其中,预设透光率、预设雾度、预设清晰度可以根据需要进行设置,本发明实施例在此不再赘述。
可选的,在步骤S102之后,所述方法还包括:
S106、所述主控制系统控制所述机械控制系统带动所述透明包装体移动,使所述透明包装体内的角膜的中心与所述检测仪的检测光线中心重合。
进一步的,所述步骤S106可以通过以下方式具体实现:
S1061、在所述机械控制系统控制所述机械手组件将所述透明包装体移动至检测仪的检测范围内之后,所述机械控制系统向所述主控制系统发送第三信号,以指示所述机械手组件已将所述透明包装 体移动至检测仪的检测范围内;
S1062、所述主控制系统根据所述第三信号向所述检测仪发送第三控制信号;
S1063、所述检测仪根据所述第三控制信号检测所述透明包装体内的角膜的中心位置坐标;
S1064、所述检测仪将所述透明包装体内的角膜的中心位置坐标与预设的中心坐标进行匹配;
S1065、若所述透明包装体内的角膜的中心位置坐标与预设的中心坐标不匹配,则所述检测仪将所述透明包装体内的角膜的中心位置坐标与预设的中心坐标之间的偏差信息发送至所述主控制系统;
S1066、所述主控制系统将所述偏差信息发送至所述机械控制系统;
S1067、所述机械控制系统根据所述偏差信息对所述透明包装体内的角膜的中心位置进行调整。
示例性的,所述步骤S104可以通过以下方式具体实现:
S1041、在所述检测仪获取位于所述检测仪检测范围内的透明包装体内角膜的光学性能之后,所述检测仪向所述主控制系统发送第四信号,所述第四信号指示所述检测仪已获取到位于其检测范围内的透明包装体内角膜的光学性能;
S1042、所述主控制系统根据所述第四信号,向所述计算机系统发送第四控制信号;
S1043、所述计算机系统根据所述第四控制信号,对所述检测仪获取的透明包装体内角膜的光学性能进行分析计算,获取所述透明包装体内角膜的光学性能类型。
示例性的,所述步骤S103可以通过以下方式具体实现:
S1031、在所述机械控制系统带动所述机械手组件将透明包装体移动至检测仪的检测范围内之后,所述机械控制系统向所述主控制系统发送第五信号,所述第五信号指示所述机械控制系统带动所述机械手组件已将所述透明包装体移动至检测仪的检测范围内;
S1032、所述主控制系统根据所述第五信号向所述检测仪发送第五控制信号;
S1033、所述检测仪根据所述第五控制信号对位于其检测范围内的透明包装体内的角膜的光学性能进行检测。
进一步可选的,所述方法还包括:
S107、若所述检测仪对位于所述检测仪范围内的透明包装体的光学性能进行检测时,确定无法检测到所述透明包装体内角膜光学性能的相关信息,则向所述主控制系统发送第六信号;
S108、所述主控制系统根据所述第六信号向所述机械控制系统发送第六控制信号;
S109、所述机械控制系统根据所述第六控制信号控制所述机械手组件带动所述透明包装体在所述检测仪检测范围内移动,直至所述检测仪可以检测到所述透明包装体内角膜光学性能的相关信息。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种角膜包装体的自动化分类收集系统,其特征在于,包括:
    检测仪,所述检测仪可获取位于其检测范围内的角膜的光学性能;
    多个产品收集工位,多个所述产品收集工位分别用于收集不同光学性能类型的角膜产品;
    机械手组件,所述机械手组件用于夹持装有角膜的透明包装体,并且可带动所述透明包装体移动;
    控制单元,所述控制单元可带动所述透明包装体移动至所述检测仪的检测范围内,并可根据所述检测仪检测的角膜的光学性能,控制机械手组件将所述透明包装体移动并放入相应的产品收集工位。
  2. 根据权利要求1所述的角膜包装体的自动化分类收集系统,其特征在于,还包括角膜定位装置,所述角膜定位装置可获取位于其检测范围内的非透明物体的位置信息,所述控制单元可控制所述机械手组件带动所述透明包装体移动至所述角膜定位装置的检测范围内。
  3. 根据权利要求1所述的角膜包装体的自动化分类收集系统,其特征在于,所述检测仪为镭射光学检测仪,所述镭射光学检测仪可检测角膜的透明度。
  4. 根据权利要求1所述的角膜包装体的自动化分类收集系统,其特征在于,所述产品收集工位包括入料口、入料滑道以及集料箱,入料滑道上端与所述入料口连通,下端与所述集料箱内部连通,所述入料口位于所述机械手组件的移动轨迹上。
  5. 根据权利要求1所述的角膜包装体的自动化分类收集系统,其特征在于,所述产品收集工位包括第一收集工位和第二收集工位,所述第一收集工位用于收集透明度在预设范围内的角膜,所述第二收集工位用于收集透明度在预设范围外的角膜。
  6. 根据权利要求1所述的角膜包装体的自动化分类收集系统,其特征在于,所述机械手组件包括机械手和移动装置,所述机械手用于夹持装有角膜的透明包装体,所述移动装置用于带动所述机械手移动。
  7. 根据权利要求6所述的角膜包装体的自动化分类收集系统,其特 征在于,所述机械手包括支架,设置于支架上的第一夹板、第二夹板以及驱动机构,所述驱动机构用于驱动所述第一夹板和第二夹板贴合或打开,所述第一夹板和第二夹板的中部设有透光窗口,当所述第一夹板和第二夹板贴合时,可将位于所述第一夹板和第二夹板之间的所述透明包装体的边沿一周夹紧,所述透明包装体装有角膜的部分位于所述窗口处。
  8. 根据权利要求7所述的角膜包装体的自动化分类收集系统,其特征在于,所述第一夹板通过固定臂固定于所述支架上,所述第二夹板通过旋转臂与铰接于所述支架上,所述固定臂和所述旋转臂之间通过复位件连接,所述驱动机构包括电机,所述电机的输出轴连接有摆臂,所述摆臂远离所述电机输出轴的一端与所述第二夹板抵靠,当所述摆臂向靠近所述第二夹板的方向摆动时,所述摆臂可推动所述第二夹板向靠近所述第一夹板的方向转动,直至所述第一夹板和第二夹板相贴合,当所述摆臂向远离所述第二夹板的方向摆动时,所述第二夹板在所述复位件的作用下向远离所述第一夹板的方向转动。
  9. 根据权利要求6所述的角膜包装体的自动化分类收集系统,其特征在于,所述移动装置包括水平移动组件和竖直移动组件,所述机械手与所述竖直移动组件连接,所述竖直移动组件可带动所述机械手沿竖直方向往复移动,所述水平移动组件可带动竖直移动组件和所述机械手沿水平方向往复移动。
  10. 根据权利要求9所述的角膜包装体的自动化分类收集系统,其特征在于,所述水平移动组件包括第一驱动件、水平导轨、设置于所述水平导轨内的水平丝杠、以及与所述水平丝杠配合的第一螺母,所述第一螺母与所述水平导轨滑动连接,所述第一驱动件可带动所述水平丝杠转动,所述竖直移动组件与所述第一螺母固定连接。
  11. 根据权利要求9或10所述的角膜包装体的自动化分类收集系统,其特征在于,所述竖直移动组件包括第二驱动件、竖直导轨、设置于所述竖直导轨内的竖直丝杠、以及与所述竖直丝杠配合的第二螺母,所述第二螺母与所述竖直导轨滑动连接,所述第二驱动件可带动所述竖直丝杠转动。
  12. 一种应用于权利要求1所述的角膜包装体的自动化分类收集系统 的自动化分类收集方法,其特征在于,包括以下步骤:
    控制单元控制机械手组件带动所述透明包装体移动至所述检测仪的检测范围内;
    所述检测仪对所述透明包装体内角膜的光学性能进行检测,并将检测结果发送至所述控制单元;
    所述控制单元根据所述检测仪检测的角膜的光学性能,控制机械手组件将所述透明包装体移动并放入相应的产品收集工位。
  13. 根据权利要求12所述的方法,其特征在于,所述控制单元控制所述机械手组件带动所述透明包装体移动至所述检测仪的检测范围内之前,还包括:
    所述机械手组件夹持装有角膜的所述透明包装体,并带动所述透明包装体移动至角膜定位装置的监测范围内;
    所述角膜定位装置获取所述透明包装体内角膜的位置信息,并将所述位置信息发送至所述控制单元。
  14. 根据权利要求13所述的方法,其特征在于,所述检测仪为镭射光学检测仪,
    所述控制单元控制所述机械手组件带动所述透明包装体移动至所述检测仪的检测范围内,具体包括:
    所述控制单元根据所述角膜的位置信息控制所述机械手组件带动所述透明包装体移动,使所述透明包装体内的角膜的中心与所述镭射光学检测仪的检测光线中心重合。
  15. 根据权利要求14所述的方法,其特征在于,所述检测仪对所述透明包装体内角膜的光学性能进行检测,包括:
    所述检测仪对所述透明包装体内角膜的透明度进行检测。
  16. 根据权利要求15所述的方法,其特征在于,所述产品收集工位包括第一收集工位和第二收集工位,
    所述控制单元根据所述检测仪检测的角膜的光学性能,控制机械手组件将所述透明包装体移动并放入相应的产品收集工位,具体包括:
    当所述角膜的透明度在预设范围内时,所述控制单元控制机械手组件 将所述透明包装体移动并放入第一收集工位;
    当所述角膜的透明度在预设范围外时,所述控制单元控制机械手组件将所述透明包装体移动并放入第二收集工位。
  17. 根据权利要求1所述的角膜包装体的自动化分类收集系统,其特征在于,所述控制单元包括计算机系统、机械控制系统和主控制系统,
    所述计算机系统与所述检测仪连接,用于对所述检测仪获取的光学性能进行分析计算,获取透明包装体内角膜的光学性能类型;
    所述机械控制系统与所述机械手组件连接,用于控制所述机械手组件移动,以带动所述透明包装体移动至所述检测仪的检测范围以及多个产品收集工位;
    所述主控制系统与所述检测仪、计算机系统以及机械控制系统均连接,用于控制所述检测仪获取位于所述检测仪检测范围内的透明包装体内角膜的光学性能;以及控制所述计算机系统对所述检测仪获取的光学性能进行分析计算,获取所述透明包装体内角膜的光学性能类型;以及根据所述计算机系统获取的角膜的光学性能类型,控制所述机械控制系统带动所述机械手组件移动,以将所述透明包装体移动并放入相应的产品收集工位。
  18. 根据权利要求17所述的角膜包装体的自动化分类收集系统,其特征在于,所述产品收集工位包括第一收集工位和第二收集工位,所述第一收集工位用于收集第一光学性能类型的角膜,所述第二收集工位用于收集第二光学性能类型的角膜;其中,所述第一光学性能类型的角膜为角膜的透明度满足预设条件的角膜,所述第二光学性能类型的角膜为角膜的透明度不满足预设条件的角膜;
    其中,所述角膜的透明度满足预设条件指同时满足以下三个条件,所述角膜的透明度不满足预设条件指至少不满足以下三个条件中任一条件:
    雾度在预设雾度范围之内;
    全透过率在预设透光率范围之内;
    透视清晰度在预设清晰度范围之内。
  19. 根据权利要求18所述的角膜包装体的自动化分类收集系统,其特征在于,所述第一收集工位和所述第二收集工位中每个收集工位分别包 括入料口、入料滑道以及集料箱,入料滑道上端与所述入料口连通,下端与所述集料箱内部连通,所述入料口位于所述机械手组件的移动轨迹上。
  20. 根据权利要求18或19所述的角膜包装体的自动化分类收集系统,其特征在于,所述第一收集工位的入料口设置于所述机械手组件的移动轨迹靠近所述检测仪的位置,第二收集工位的入料口设置于所述机械手组件初始位置;
    其中,所述初始位置为所述机械手组件在所述机械控制系统上预设的初始化状态。
  21. 一种应用于权利要求17所述的角膜包装体的自动化分类收集系统的自动化分类收集方法,其特征在于,所述方法包括:
    所述机械控制系统控制所述机械手组件在初始位置夹持住装有角膜的透明包装体;
    所述机械控制系统控制所述机械手组件将所述透明包装体移动至检测仪的检测范围内;
    所述主控制系统控制所述检测仪对位于所述检测仪检测范围内的透明包装体内角膜的光学性能进行检测;
    所述主控制系统控制计算机系统对所述检测仪获取的光学性能进行分析计算,获取所述透明包装体内角膜的光学性能类型。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    所述主控制系统根据所述计算机系统获取的光学性能类型,控制所述机械控制系统带动所述机械手组件将所述透明包装体移动并放入相应的产品收集工位。
  23. 根据权利要求22所述的方法,其特征在于,所述产品收集工位包括第一收集工位和第二收集工位,所述第一收集工位用于收集第一光学性能类型的角膜,所述第二收集工位用于收集第二光学性能类型的角膜;其中,所述第一光学性能类型的角膜为角膜的透明度满足预设条件的角膜,所述第二光学性能类型的角膜为角膜的透明度不满足预设条件的角膜;
    相应的,所述主控制系统根据所述计算机系统获取的光学性能类型,控制所述机械控制系统带动所述机械手组件将所述透明包装体移动并放入 相应的产品收集工位,包括:
    所述计算机系统对所述检测仪检测的透明包装体内角膜的光学性能进行分析计算;
    若确定所述角膜的光学性能属于第一光学性能类型,则向所述主控制系统发送第一信号;所述主控制系统根据所述第一信号向所述机械控制系统发送第一控制信号;所述机械控制系统根据所述第一控制信号控制所述机械手组件将所述透明包装体移动并放入所述第一收集工位;
    若确定所述角膜的光学性能属于第二光学性能类型,则向所述主控制系统发送第二信号;所述主控制系统根据所述第二信号向所述机械控制系统发送第二控制信号;所述机械控制系统根据所述第二控制信号控制所述机械手组件将所述透明包装体移动并放入所述第二收集工位。
  24. 根据权利要求23所述的方法,其特征在于,所述角膜的光学性能包含角膜的透明度,所述角膜的透明度包括雾度、全透过率以及透视清晰度;
    相应的,所述计算机系统对所述检测仪检测的透明包装体内角膜的光学性能进行分析计算包括:
    所述计算机系统获取所述透明包装体内角膜的雾度、全透过率以及透视清晰度;
    根据所述雾度、全透过率以及透视清晰度;若确定所述角膜的透明度满足预设条件,则确定所述角膜的光学性能属于第一光学性能类型;若确定所述角膜的透明度不满足预设条件,则确定所述角膜的光学性能属于第二光学性能类型;
    其中,所述角膜的透明度满足预设条件指同时满足以下三个条件,所述角膜的透明度不满足预设条件指至少不满足以下三个条件中任一条件:
    雾度在预设雾度范围之内;
    全透过率在预设透光率范围之内;
    透视清晰度在预设清晰度范围之内。
  25. 根据权利要求21所述的方法,其特征在于,
    在所述机械控制系统控制所述机械手组件将所述透明包装体移动至 检测仪的检测范围内之后,所述方法还包括:
    所述主控制系统控制所述机械控制系统带动所述透明包装体移动,使所述透明包装体内的角膜的中心与所述检测仪的检测光线中心重合。
  26. 根据权利要求25所述的方法,其特征在于,所述主控制系统控制所述机械控制系统带动所述透明包装体移动,使所述透明包装体内的角膜的中心与所述检测仪的检测光线中心重合,包括:
    在所述机械控制系统控制所述机械手组件将所述透明包装体移动至检测仪的检测范围内之后,所述机械控制系统向所述主控制系统发送第三信号,以指示所述机械手组件已将所述透明包装体移动至检测仪的检测范围内;
    所述主控制系统根据所述第三信号向所述检测仪发送第三控制信号;
    所述检测仪根据所述第三控制信号检测所述透明包装体内的角膜的中心位置坐标;
    所述检测仪将所述透明包装体内的角膜的中心位置坐标与预设的中心坐标进行匹配;
    若所述透明包装体内的角膜的中心位置坐标与预设的中心坐标不匹配,则所述检测仪将所述透明包装体内的角膜的中心位置坐标与预设的中心坐标之间的偏差信息发送至所述主控制系统;
    所述主控制系统将所述偏差信息发送至所述机械控制系统;
    所述机械控制系统根据所述偏差信息对所述透明包装体内的角膜的中心位置进行调整。
  27. 根据权利要求21所述的方法,其特征在于,所述主控制系统控制计算机系统对所述检测仪获取的光学性能进行分析计算,获取所述透明包装体内角膜的光学性能类型,包括:
    在所述检测仪获取位于所述检测仪检测范围内的透明包装体内角膜的光学性能之后,所述检测仪向所述主控制系统发送第四信号,所述第四信号指示所述检测仪已获取到位于其检测范围内的透明包装体内角膜的光学性能;
    所述主控制系统根据所述第四信号,向所述计算机系统发送第四控制 信号;
    所述计算机系统根据所述第四控制信号,对所述检测仪获取的透明包装体内角膜的光学性能进行分析计算,获取所述透明包装体内角膜的光学性能类型。
  28. 根据权利要求21所述的方法,其特征在于,所述主控制系统控制所述检测仪对位于所述检测仪检测范围内的透明包装体内角膜的光学性能进行检测,包括:
    在所述机械控制系统带动所述机械手组件将透明包装体移动至检测仪的检测范围内之后,所述机械控制系统向所述主控制系统发送第五信号,所述第五信号指示所述机械控制系统带动所述机械手组件已将所述透明包装体移动至检测仪的检测范围内;
    所述主控制系统根据所述第五信号向所述检测仪发送第五控制信号;
    所述检测仪根据所述第五控制信号对位于其检测范围内的透明包装体内的角膜的光学性能进行检测。
  29. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    若所述检测仪对位于所述检测仪范围内的透明包装体的光学性能进行检测时,确定无法检测到所述透明包装体内角膜光学性能的相关信息,则向所述主控制系统发送第六信号;
    所述主控制系统根据所述第六信号向所述机械控制系统发送第六控制信号;
    所述机械控制系统根据所述第六控制信号控制所述机械手组件带动所述透明包装体在所述检测仪检测范围内移动,直至所述检测仪可以检测到所述透明包装体内角膜光学性能的相关信息。
PCT/CN2016/102860 2015-12-25 2016-10-21 一种角膜包装体的自动化分类收集系统及方法 WO2017107638A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510991732.6 2015-12-25
CN201510989182.4A CN105616038B (zh) 2015-12-25 2015-12-25 一种角膜包装体的自动化分类收集系统及方法
CN201510991732.6A CN105466932B (zh) 2015-12-25 2015-12-25 一种角膜自动检测系统及方法
CN201510989182.4 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017107638A1 true WO2017107638A1 (zh) 2017-06-29

Family

ID=59089079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102860 WO2017107638A1 (zh) 2015-12-25 2016-10-21 一种角膜包装体的自动化分类收集系统及方法

Country Status (1)

Country Link
WO (1) WO2017107638A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113458006A (zh) * 2021-06-17 2021-10-01 广州机械科学研究院有限公司 一种基于软plc控制技术的物料检测系统及其控制方法
WO2023060932A1 (zh) * 2021-10-13 2023-04-20 江苏莱克智能电器有限公司 一种具有精定位功能的自动搬运系统、自动化系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132818A (zh) * 2004-08-13 2008-02-27 渥太华健康研究所 眼科装置及有关方法和组合物
US20140354985A1 (en) * 2013-06-04 2014-12-04 Hon Hai Precision Industry Co., Ltd. Detection system and detection method
CN204064972U (zh) * 2014-06-25 2014-12-31 台州振皓自动化科技有限公司 光学镜片表面缺陷检测系统
CN104332426A (zh) * 2014-11-18 2015-02-04 天津中环领先材料技术有限公司 非接触式扫描抛光片表面粗糙度的检测设备和检测方法
CN205246563U (zh) * 2015-12-25 2016-05-18 深圳艾尼尔角膜工程有限公司 一种角膜产品的检测分类系统
CN205374271U (zh) * 2015-12-25 2016-07-06 深圳艾尼尔角膜工程有限公司 一种角膜包装体的自动化归集系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132818A (zh) * 2004-08-13 2008-02-27 渥太华健康研究所 眼科装置及有关方法和组合物
US20140354985A1 (en) * 2013-06-04 2014-12-04 Hon Hai Precision Industry Co., Ltd. Detection system and detection method
CN204064972U (zh) * 2014-06-25 2014-12-31 台州振皓自动化科技有限公司 光学镜片表面缺陷检测系统
CN104332426A (zh) * 2014-11-18 2015-02-04 天津中环领先材料技术有限公司 非接触式扫描抛光片表面粗糙度的检测设备和检测方法
CN205246563U (zh) * 2015-12-25 2016-05-18 深圳艾尼尔角膜工程有限公司 一种角膜产品的检测分类系统
CN205374271U (zh) * 2015-12-25 2016-07-06 深圳艾尼尔角膜工程有限公司 一种角膜包装体的自动化归集系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113458006A (zh) * 2021-06-17 2021-10-01 广州机械科学研究院有限公司 一种基于软plc控制技术的物料检测系统及其控制方法
WO2023060932A1 (zh) * 2021-10-13 2023-04-20 江苏莱克智能电器有限公司 一种具有精定位功能的自动搬运系统、自动化系统及方法

Similar Documents

Publication Publication Date Title
CN203508418U (zh) 烟草包装箱外观的检测装置
CN104111260A (zh) 陶瓷砖无损检测设备及检测方法
CN105548217B (zh) 平面玻璃镀膜制品的外观检测装置及检测方法
WO2017107638A1 (zh) 一种角膜包装体的自动化分类收集系统及方法
CN203526083U (zh) 一种工件自动快速分选装置及系统
CN110238081A (zh) 一种镜片正反面自动检测和分拣设备
CN214347989U (zh) 一种对丝螺纹自动检测装置
CN108759754A (zh) 高度尺寸自动检测设备
CN103196373B (zh) 一种电池正负极耳端子长度的自动检测方法
CN111505012A (zh) 香烟全外观质量缺陷在线检测系统
CN209479165U (zh) 一种适用于平板电脑触摸屏的自动贴合装置
CN209542625U (zh) 一种胶体金检测仪
CN106000903B (zh) 一种用于检测织布机布铗刀口缝隙的非接触式检测系统及方法
CN103196375B (zh) 一种电池正负极耳胶高度的自动检测方法
CN109228606A (zh) 一种适用于平板电脑触摸屏的自动贴合工艺
TWI528038B (zh) Mouse automatic test equipment and methods
CN203116696U (zh) 一种电池正负极耳端子长度的自动检测装置
CN206583407U (zh) 应力二次元检测一体机
CN210719029U (zh) 一种芯块几何尺寸及密度自动测量系统
CN207479024U (zh) 手机配件检测设备
CN209148564U (zh) 一种透明构件缺陷检测装置
CN105466932A (zh) 一种角膜自动检测系统及方法
CN105973901B (zh) 一种装配质量检测装置
CN105547156A (zh) 快速二次元光学测量装置
CN107362985A (zh) 手机配件检测设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877449

Country of ref document: EP

Kind code of ref document: A1