WO2023060889A1 - 一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法 - Google Patents

一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法 Download PDF

Info

Publication number
WO2023060889A1
WO2023060889A1 PCT/CN2022/092438 CN2022092438W WO2023060889A1 WO 2023060889 A1 WO2023060889 A1 WO 2023060889A1 CN 2022092438 W CN2022092438 W CN 2022092438W WO 2023060889 A1 WO2023060889 A1 WO 2023060889A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric furnace
leaching
reaction
oxalic acid
extracting
Prior art date
Application number
PCT/CN2022/092438
Other languages
English (en)
French (fr)
Inventor
汪大亚
华绍广
裴德健
李书钦
李香梅
Original Assignee
中钢集团马鞍山矿山研究总院股份有限公司
华唯金属矿产资源高效循环利用国家工程研究中心有限公司
中钢集团马鞍山矿院工程勘察设计有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中钢集团马鞍山矿山研究总院股份有限公司, 华唯金属矿产资源高效循环利用国家工程研究中心有限公司, 中钢集团马鞍山矿院工程勘察设计有限公司 filed Critical 中钢集团马鞍山矿山研究总院股份有限公司
Priority to ZA2023/02411A priority Critical patent/ZA202302411B/en
Publication of WO2023060889A1 publication Critical patent/WO2023060889A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the field of solid waste treatment and resource utilization in the metallurgical industry, specifically a method for the clean extraction, resource recovery and high-value utilization of valuable elements Fe, Zn and Pb in the dust removal ash of bulk hazardous waste electric furnaces in iron and steel enterprises, especially Suitable for FeO x content ⁇ 40.0%, and mainly in the form of Fe 3+ , ZnO content greater than 10.0%, other main components, such as CaO, MgO, SiO 2 , Al 2 O 3 , etc., the total content does not exceed 10% Recycling and high-value utilization of metallurgical iron-containing dust.
  • iron and steel industry is the basic industry of my country's national economy, and it is also a heavy industry with high emissions and high consumption.
  • iron and steel enterprises will produce a large amount of iron-rich solid waste, such as sintering dust, blast furnace dust, steelmaking dust and iron sheet produced in the rolling stage, etc.
  • iron-rich solid waste such as sintering dust, blast furnace dust, steelmaking dust and iron sheet produced in the rolling stage, etc.
  • the annual production of solid waste in each process including iron-containing solid waste products, carbon-containing solid waste products, and other types of solid waste products, is nearly 7 million tons.
  • the secondary resource utilization of these solid wastes has become an urgent issue for iron and steel enterprises to solve.
  • the annual output of electric furnace steel in my country is about 100 million tons. For every ton of steel produced by electric furnace, about 40-50kg of electric furnace dust will be produced. According to estimates, the annual output of electric furnace dust removal in my country is nearly 5 million tons, which has become an important part of the bulk hazardous/solid waste of iron and steel enterprises.
  • iron and steel enterprises mainly dispose of dust from electric furnaces by distributing them in rotary kilns or rotary hearth furnaces for recycling.
  • the recovery and utilization of valuable components in electric furnace dust removal mainly includes the following methods: physical method, that is, through magnetic separation and other methods, the main element iron in electric furnace dust removal is recycled, and other valuable components
  • the element is enriched in the tailings after magnetic separation to achieve the purpose of cascade recovery, but the recovery efficiency of this method is low, and the recovery rate of Fe is only about 50%.
  • dust sludge with high Na and K content, the applicability and application range are small, and there is no precedent for large-scale industrial utilization in most iron and steel enterprises.
  • Zinc oxide products can be obtained after flue gas is recovered by waste heat and collected by a dust collector. This process equipment investment cost is high, and the added value of the product is low, so it has not been widely used in industry.
  • iron and steel enterprises pay more and more attention to the comprehensive utilization of Fe resources in iron-rich dust.
  • the iron resources in the dust removal dust of electric furnace are rich and the chemical composition is complex. According to the characteristics of different resources, targeted process methods should be selected to carry out cascade recycling of the valuable components. From the perspective of the actual technical requirements of iron and steel enterprises, the comprehensive new process of electric furnace dust removal should have the following characteristics: simple production process, low process cost; high recovery rate of valuable elements; small environmental pollution; high added value of products, etc.
  • the present invention proposes a process flow for cascade separation and recovery of the valuable elements Fe, Zn and Pb in the electric furnace dust removal process. Recycling and high-value recycling of resources not only achieves the recycling and harmless disposal of large quantities of hazardous waste electric furnace ash, but also achieves the purpose of reducing the source of electric furnace dust and controlling the whole process of pollutants. Value products can bring actual profits to enterprises and have broad market promotion and application value.
  • the technical problem to be solved by the present invention is to overcome the problems of low comprehensive recycling rate, serious secondary pollution, high equipment investment cost and low added value of products existing in the comprehensive utilization technology of dust removal dust in electric furnaces, and provide a kind of process condition with milder process conditions.
  • the method of extracting Fe, Zn, and Pb from electric furnace dedusting ash with simple equipment and high Fe leaching rate and making high-value utilization uses hydrothermal complexation to leach electric furnace dedusting ash and iron, and then achieves cascade recovery of Fe, Zn and Pb
  • the purpose of Pb resources is to realize the stepwise separation and efficient extraction of Fe and Zn resources in the dust removal dust of electric furnaces.
  • the present invention uses electric furnace dedusting ash actually produced by iron and steel enterprises as a raw material, organic acid solution (preferably oxalic acid) as a leaching agent, and iron powder as a reducing agent.
  • organic acid solution preferably oxalic acid
  • iron powder as a reducing agent.
  • the complexation reaction between ions (such as oxalate ions) under the experimental conditions of low temperature and low pressure, transforms the rich iron resources in the dust removal ash of the electric furnace into a high value-added product of ferrous oxalate; the solid-liquid separation of the reacted slurry
  • the Zn content in the leaching slag can be greatly increased, and it can be used as a raw material for zinc extraction, while greatly reducing the amount of raw material processing in the zinc extraction stage, and the purity of the obtained zinc product is higher; iron, zinc, and lead are extracted
  • the content of harmful elements is low, and it can be used as a raw material for the preparation of ceramic products such as ceramsite and
  • step (1) The reaction product in step (1) is subjected to solid-liquid separation, and the separated product is filtered and washed to obtain iron-rich complex ion leaching solution, leaching residue containing zinc-rich slag and ferrous oxalate respectively;
  • step (3) Utilizing the density difference between ferrous oxalate and zinc-rich slag, the leach slag obtained in step (2) is centrifuged, and the obtained solids are dried respectively to obtain zinc-rich slag and ferrous oxalate solid;
  • step (2) Use the iron-rich complex ion leaching solution obtained in step (2) as the reaction raw material, oxalic acid as the reactant, and Fe powder as the reducing agent to carry out the precipitation reaction, and finally obtain high-purity oxalic acid iron powder.
  • step (1) oxalic acid mass concentration is advisable in the scope of 5 ⁇ 30%, and the liquid-solid ratio of oxalic acid solution and electric furnace dedusting ash is in the scope of 10:1 ⁇ 50:1;
  • Step (The leaching temperature in 1) is controlled in the range of 30-90°C; the leaching reaction time is 0.5-4h; the stirring speed is 200-500r/min, preferably 300-400r/min.
  • the particle size of the raw material of electric furnace dedusting ash is preferably in the range of 50-500 mesh, preferably 200-300 mesh.
  • the drying temperature in the step (3) is preferably in the range of 40-90° C., more preferably in the range of 50-65° C., and the drying time is 8-12 hours.
  • the amount of oxalic acid and iron powder added is adjusted according to the content of Fe element in the leachate obtained in step (2): if the amount of Fe in the leachate is x mol, add The amount of oxalic acid is 0.8-2.0x mol, preferably 1-1.5x mol; the amount of added reduced iron powder is 2-5x mol, preferably 3-3.5x mol.
  • the precipitation reaction temperature is 70-90°C, preferably 80-85°C; the precipitation reaction time is 2-5h, preferably 3-4h; the stirring speed is 200-500r/ min, preferably 300 to 400 r/min.
  • the recovery rate of the main elements Fe, Zn and Pb is greater than 90%; through gravity separation and centrifugal separation, ferrous oxalate can be highly separated from the leaching residue, and the separation rate can reach 90% %, the purity of ferrous oxalate is stable above 95%; the purity of Zn-Pb alloy obtained by vacuum smelting can also be kept above 90%;
  • the method of the present invention is more efficient, economical and environmentally friendly: for iron and steel enterprises themselves, the zinc-rich raw materials obtained after iron extraction can be directly returned to the rotary hearth furnace or rotary kiln for further processing Zinc recovery and utilization, at this time, the recovery rate of zinc can be increased by 20-30%, and the purity of the obtained metal zinc can also be increased by more than 20%; in addition, the waste water after hydrothermal complexation leaching and hydrothermal precipitation reaction can be collected, And return to the electric furnace dust removal ash leaching reaction stage for recycling, without causing unnecessary emissions and pollution, saving 50-60% of environmental treatment costs;
  • the present invention has more general raw material applicability; it does not need to develop new special equipment, and the investment cost is low; the method of oxalic acid complex leaching is adopted, the leaching temperature is low, and the overall production process can Reduce energy consumption and gas emissions by more than 60%; compared with conventional processes, selling high value-added products produced by this project, such as ferrous oxalate, zinc-rich raw materials and cementitious materials, can produce 5 to 7 times the direct Profit is an urgently needed technology for enterprises and has good market promotion and application value;
  • Fig. 1 is a kind of process flow chart of the method principle of extracting Fe, Zn, Pb in the dust removal dust of electric furnace and high-value utilization of the present invention
  • Fig. 2 is the XRD spectrum of the ferrous oxalate product prepared by the embodiment of the present invention (reaction conditions are: oxalic acid solution with a concentration of 15%, liquid-solid ratio of 30:1, leaching temperature of 90°C, reaction time of 2h, stirring speed of 300r/min) ;
  • Fig. 3 is the particle size distribution law figure of the ferrous oxalate product prepared by the embodiment of the present invention (reaction condition is: the oxalic acid solution of concentration 15%, liquid-solid ratio 30:1, leaching temperature 90 °C, reaction time 2h, stirring speed are 300r /min);
  • Fig. 4 is the scanning electron microscope picture (reaction condition is: the oxalic acid solution of concentration 15%, liquid-solid ratio 30:1, leaching temperature 90 °C, reaction time 2h of the ferrous oxalate product prepared in the embodiment of the present invention under secondary electron mode , Stirring speed is 300r/min).
  • a method principle process flow chart for extracting Fe, Zn, Pb in the electric furnace dedusting ash and high-value utilization of the present invention shows that a kind of extraction of the electric furnace dedusting ash in the present invention Fe, Zn, Pb and high-value utilization
  • the method of value-based utilization is implemented through the following steps:
  • reaction condition is: oxalic acid mass concentration is 5 ⁇ 30%, and the liquid-solid ratio of oxalic acid solution and electric furnace dedusting ash is 10:1 ⁇ 50: 1.
  • the leaching temperature is 30-90°C, the leaching reaction time is 0.5-4h, and the stirring speed is 200-500r/min.
  • step (1) The reaction product in step (1) is subjected to solid-liquid separation, and the separated product is filtered and washed to obtain iron-rich complex ion leaching solution, leaching residue I containing zinc-rich slag and ferrous oxalate respectively.
  • step (3) Using the density difference between ferrous oxalate and zinc-rich slag, centrifuge the leach slag obtained in step (2), and dry the obtained solid at 50-65°C for 8-12 hours to obtain zinc-rich slag Slag II and ferrous oxalate solid.
  • Zn-Pb alloy can be obtained through iron and steel smelting.
  • step (2) Use the iron-rich complex ion leaching solution obtained in step (2) as the reaction raw material, oxalic acid as the reactant, and Fe powder as the reducing agent to carry out the precipitation reaction, and finally obtain high-purity oxalic acid iron powder.
  • the amount of oxalic acid and iron powder added is adjusted according to step (2) to obtain the content of Fe element in the leaching solution: if the amount of Fe in the leaching solution is x mol, the amount of adding oxalic acid is 1 ⁇ 1.5x mol, the amount of added reduced iron powder is 3-3.5x mol; the precipitation reaction temperature is 80-85°C, the precipitation reaction time is 3-4h, and the stirring speed is 300-400r/min.
  • the leachate was cooled to room temperature for solid-liquid separation. After the reaction product is filtered and washed, the iron-rich complex ion leaching solution A and leaching residue I are obtained, and the ferrous oxalate and zinc-rich slag in the leaching residue are fully separated by centrifugation. After ICP-AES detection, in the obtained leachate A, the concentration of Fe ions was 1602 mg/L, and the leaching rate of Fe element was converted to 92.35%; the Zn content (calculated as ZnO) in the leach residue I was 36.51%.
  • the leachate was cooled to room temperature for solid-liquid separation. After the reaction product is filtered and washed, the iron-rich complex ion leaching solution A and leaching residue I are obtained, and the ferrous oxalate and zinc-rich slag in the leaching residue are fully separated by centrifugation. After ICP-AES detection, in the obtained leaching solution A, the concentration of Fe ions was 1495 mg/L, and the leaching rate of Fe element was 86.78%; the Zn content (calculated as ZnO) in the leaching residue I was 28.75%.
  • the leachate was cooled to room temperature for solid-liquid separation. After the reaction product is filtered and washed, the iron-rich complex ion leaching solution A and leaching residue I are obtained, and the ferrous oxalate and zinc-rich slag in the leaching residue are fully separated by centrifugation. After ICP-AES detection, in the obtained leachate A, the concentration of Fe ions was 1539 mg/L, and the leaching rate of Fe element was 88.38%; the Zn content (calculated as ZnO) in the leach residue I was 29.63%.
  • the leachate was cooled to room temperature for solid-liquid separation. After the reaction product is filtered and washed, the iron-rich complex ion leaching solution A and leaching residue I are obtained, and the ferrous oxalate and zinc-rich slag in the leaching residue are fully separated by centrifugation. After ICP-AES detection, in the obtained leaching solution A, the concentration of Fe ions was 1220 mg/L, and the leaching rate of Fe element was 70.00%; the Zn content (calculated as ZnO) in the leaching residue I was 23.49%.
  • the leachate was cooled to room temperature for solid-liquid separation. After the reaction product is filtered and washed, the iron-rich complex ion leaching solution A and leaching residue I are obtained, and the ferrous oxalate and zinc-rich slag in the leaching residue are fully separated by centrifugation. After ICP-AES detection, in the obtained leaching solution A, the concentration of Fe ions was 1432 mg/L, and the leaching rate of Fe element was 82.15%; the Zn content (calculated as ZnO) in the leaching residue I was 25.78%.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the leachate was cooled to room temperature for solid-liquid separation. After the reaction product is filtered and washed, the iron-rich complex ion leaching solution A and leaching residue I are obtained, and the ferrous oxalate and zinc-rich slag in the leaching residue are fully separated by centrifugation. After ICP-AES detection, in the obtained leaching liquid A, the concentration of Fe ions was 1594 mg/L, and the leaching rate of Fe element was 91.85%; the Zn content (calculated as ZnO) in the leaching residue I was 31.05%.
  • the present invention uses organic acid-oxalic acid as a solvent, adopts direct leaching at low temperature, utilizes the strong complexation of oxalate ions, and reacts with Fe in the dust removal dust of the electric furnace to form [Fe(C 2 O 4 ) 3 ] 3- into the solution; Subsequently, under the action of reduced iron powder, [Fe(C 2 O 4 ) 3 ] 3- reacts with Fe powder to generate high value-added product ferrous oxalate.
  • the high-grade zinc-containing tailings obtained by solid-liquid separation can be sold as zinc-rich raw materials to downstream zinc extraction manufacturers, and can also be used as vacuum reduction to extract zinc to obtain high value-added Zn-
  • oxalic acid is used as the leaching agent in step (1)
  • other organic acids can also be used, such as one of formic acid, acetic acid and citric acid, or a mixed solution of oxalic acid, formic acid, acetic acid and citric acid .

Abstract

一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法,以大宗危废电炉除尘灰作为原料,草酸作为浸出剂,在低温常压的反应条件下进行络合反应,进而达到梯级分离铁、锌资源的目的。在草酸浓度5~30%、液固比10:1~50:1、反应温度30~90℃、反应时间0.5~4h的条件下,电炉除尘灰中Fe浸出率能够达到92%以上,浸出渣中Zn含量(以ZnO计)可以达到36%以上,最终得到草酸亚铁的纯度可以达到97%以上。该方法工艺简单,能耗低,反应成本少;得到的草酸亚铁、富锌渣具有更高附加值的同时,对环境的影响更小,具有良好的市场应用前景。

Description

一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法 技术领域
本发明涉及冶金行业固废处理及资源化利用领域,具体为一种针对钢铁企业大宗危废电炉除尘灰中有价元素Fe、Zn及Pb清洁提取与资源化、高值化利用的方法,特别适合于FeO x含量≥40.0%,且主要以Fe 3+的形式存在,ZnO含量大于10.0%,其他主要成分,如CaO、MgO、SiO 2、Al 2O 3等,总含量不超过10%的冶金含铁尘泥的资源化、高值化利用。
背景技术
钢铁行业是我国国民经济基础产业,同时也是高排放、高消耗的重工业行业。在正常的生产活动中,钢铁企业会产生大量的富铁固体废弃物,如烧结粉尘、高炉灰尘、炼钢尘泥及轧钢阶段产生的铁皮等等。以年产量为900万t粗钢的生产线为例,各工序固体废弃物,包括含铁固废产物、含碳固废产物以及其它类固废产物等,年生产量近700万t。对这些固体废弃物进行二次资源利用,已成为各钢铁企业迫在眉睫需要解决的课题。现阶段,对于该类冶金固废的处理处置,由于资金及技术的掣肘,大多数企业只能选择焚烧、填埋或堆存的方式进行处理。但这样粗放的处理方式,不仅造成了资源的严重浪费,更带来了严重的环境问题。因此,开发钢铁企业大宗固废综合利用新技术,实现其高效、高值及资源化利用,对钢铁企业循环经济的可持续发展,具有极其重要的战略意义。
我国电炉钢年产量在1亿吨左右,电炉每生产1吨钢,会产生40~50kg左右的电炉除尘灰。据测算,我国电炉除尘灰的年产量近500万吨,已成为钢铁企业大宗危/固废中的重要组成部分。现阶段,钢铁企业对于电炉除尘灰的处理处置,主要为配入回转窑或转底炉中进行回收利用。然而,由于电炉除尘灰中常含有Na、K等碱金属元 素,直接利用会腐蚀炉壁炉衬,严重影响设备的使用寿命;此外,电炉除尘灰中含有大量的Fe、Zn资源,对其进行回收利用,更能为我国Fe、Zn资源的供给提供新的途径。目前对于电炉除尘灰中有价组元的回收利用,主要包括以下几种方法:物理法,即通过磁选等方法,对电炉除尘灰中的主要元素铁进行回收利用,并使其他有价组元富集在磁选后的尾矿中,进而达到梯级回收的目的,但该方法回收效率低,Fe的回收率仅为50%左右;火法和湿法则分别用于处理含锌量较高及含Na、K含量较高的尘泥,可适用性及应用范围小,且在大多数钢铁企业中并没有大规模工业化利用的先例。
为了综合回收电炉除尘灰中的有价金属元素,中国专利“一种从电除尘灰中综合回收银、铅、铁的方法(CN201610617875.5)”提出了一种湿法梯级回收银、铅、铁的方法,但该方法工艺流程长、药剂消耗量大,大量的生产废水不仅增加了污染的风险,也提高了环境治理的成本;中国专利专利“一种含锌含铁尘泥资源化利用的装置及(CN201810919589.3)”提出了一种含锌含铁尘泥资源化利用的装置及方法,该工艺设计了一种新的环形预热还原炉,经过还原熔炼得到还原铁水的同时,烟气通过余热回收后经除尘器收集即可得到氧化锌产品,该工艺流程设备投资成本高,且产品附加值低,因此并未在工业上得到大规模的推广应用。
目前,受上游铁矿石价格疯涨的影响,钢铁企业对于富铁粉尘中Fe资源的综合利用越来越重视。电炉除尘灰中铁资源丰富,且化学成分复杂,应当根据不同资源的特性,选择针对性的工艺方法,对其中的有价组元进行梯级回收利用。从钢铁企业实际的技术需求来说,电炉除尘灰综合新工艺应当具有以下特点:生产流程简单,工艺成本低;有价元素回收率高;环境污染小;产品附加值高等。鉴于此,针对现有电炉除尘灰处理工艺所面临的成本问题与环境问题,本发明提出了一种梯级分离回收电炉除尘灰有价元素Fe、Zn及Pb的工艺流 程,对其中丰富铁、锌资源进行资源化、高值化回收利用,不仅达到了对大宗危废电炉除尘灰的资源化、无害化处置,实现电炉除尘灰源头减量、污染物全过程控制的目的,产生的高附加值产物更能为企业带来实际的利润,具有广阔的市场推广应用价值。
发明内容
本发明要解决的技术问题是克服现有电炉除尘灰综合利用技术存在的综合回收利用率低、二次污染严重、设备投资成本高且产品附加值低等问题,而提供一种过程条件较温和、设备简单、Fe浸出率高的提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法,本发明方法通过水热络合浸出电炉除尘灰提铁,进而达到梯级回收Fe、Zn及Pb资源的目的,能够实现电炉除尘灰中Fe、Zn资源的梯级分离与高效提取。
本发明以钢铁企业实际产生的电炉除尘灰作为原料,以有机酸溶液(优选草酸)作为浸出剂,铁粉作为还原剂,将三者按照一定比例混合制成料浆,利用铁离子与有机酸根离子(如草酸根离子)间的络合反应,在低温低压的实验条件下,将电炉除尘灰中丰富的铁资源转变为高附加值产品草酸亚铁;将反应后的料浆进行固液分离,此时浸出渣中的Zn含量可以得到大幅度提高,将其作为提锌原料,大幅度降低提锌阶段原料处理量的同时,得到的锌产品纯度更高;提铁、提锌、提铅后尾渣中,有害元素含量低,可以将其作为制备陶粒、发泡陶瓷等陶瓷产品的原料,总体实现近零排放。为实现本发明的上述目的,本发明一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法,采用采用以下步骤实施:
(1)将电炉除尘灰、草酸溶液按比例添加,充分混匀,形成均匀分布的料浆;随即将料浆注入置于恒温的反应器中,通过控制浸出温度、浸出时间、草酸浓度、液固比及搅拌速度,进行水热浸出反应;
(2)将步骤(1)中的反应产物进行固液分离,并对分离产物进行过滤、洗涤,分别得到富铁络合离子浸出液、含有富锌渣和草酸亚铁的浸出渣;
(3)利用草酸亚铁与富锌渣之间的密度差异,将步骤(2)中得到的浸出渣进行离心分离,对得到的固体分别进行烘干,得到富锌渣及草酸亚铁固体;
(4)以步骤(2)得到的富铁络合离子浸出液为反应原料,草酸作为反应剂、Fe粉作为还原剂进行沉淀反应,通过调控沉淀反应温度和沉淀反应时间,最终得到高纯草酸亚铁粉末。
作为本发明方法的优选,在步骤(1)中,草酸质量浓度在5~30%范围为宜,草酸溶液与电炉除尘灰的液固比在10:1~50:1范围为佳;步骤(1)中的浸出温度控制在30~90℃范围,;浸出反应时间为0.5~4h;搅拌速度为200~500r/min,优选为300~400r/min。
进一步地,步骤(1)中电炉除尘灰原料的粒度在50~500目范围为宜,优选200~300目。
进一步地,所述步骤(3)中的烘干温度在40~90℃范围为宜,以50~65℃范围为佳,烘干时间为8~12h。
进一步地,在步骤(4)的沉淀反应中,添加的草酸与铁粉的量依步骤(2)得到浸出液中Fe元素的含量进行调整:若浸出液中的Fe的物质的量为x mol,添加草酸的物质的量为0.8~2.0x mol,以1~1.5x mol为优;添加的还原铁粉物质的量为2~5x mol,以3~3.5x mol为优。
进一步地,在步骤(4)的沉淀反应中,沉淀反应温度为70~90℃,优选为80~85℃;沉淀反应时间为2~5h,优选为3~4h;搅拌速度为200~500r/min,优选为300~400r/min。
与现有技术相比,本发明一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法具有如下优点:
(1)与常规处理工艺相比,本发明一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法,通过湿法草酸络合处理电炉除尘灰,进而实现电炉除尘灰中Fe、Zn及Pb资源梯级回收利用,工艺流程简单,生产成本低,有价元素回收率及产品纯度更高:电炉除尘灰粒度细,首先对其进行湿法浸出处理,无需经过破碎及磨矿,能够减少50~60%左右的选矿成本;主要元素Fe、Zn及Pb的回收率均大于90%;通过重力分离、离心分离,可以使得草酸亚铁与浸出渣进行高度分离,分离率可以达到90%以上,得到草酸亚铁的纯度稳定在95%以上;通过真空冶炼得到Zn-Pb合金,其纯度同样可以保持在90%以上;
(2)与传统电炉除尘灰工艺相比,本发明方法更高效,且经济、环保:对钢铁企业本身而言,提铁结束后得到的富锌原料,可以直接返回转底炉或回转窑进行锌的回收利用,此时,锌的回收率可提高20~30%,且得到的金属锌纯度也可以提高20%以上;此外,水热络合浸出、水热沉淀反应后的废水可收集,并返回至电炉除尘灰浸出反应阶段循环使用,不带来多余的排放与污染,节省50~60%的环境治理成本;
(3)与传统电炉除尘灰工艺相比,本发明具有更普遍的原料适用性;不需要开发新的专用设备,投资成本低;采用草酸络合浸出的方法,浸出温度低,整体生产工艺能够减少60%以上的能耗及气体排放;与常规工艺相比,外售本项目产生的高附加值产物,如草酸亚铁、富锌原料以及胶凝材料等,能产生5~7倍的直接利润,是企业亟需的技术,具有较好的市场推广应用价值;
附图说明
图1为本发明一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法原则工艺流程图;
图2为本发明实施例制备的草酸亚铁产品XRD图谱(反应条件为:浓度15%的草酸溶液、液固比30:1、浸出温度90℃、反应时间2h、搅拌速度为300r/min);
图3为本发明实施例制备的草酸亚铁产品的粒度分布规律图(反应条件为:浓度15%的草酸溶液、液固比30:1、浸出温度90℃、反应时间2h、搅拌速度为300r/min);
图4为本发明实施例制备的草酸亚铁产品在二次电子模式下的扫描电镜图片(反应条件为:浓度15%的草酸溶液、液固比30:1、浸出温度90℃、反应时间2h、搅拌速度为300r/min)。
具体实施方式
为描述本发明,下面结合附图和实施例对本发明一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法做进一步详细说明。
如图1所示的本发明一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法原则工艺流程图看出,本发明一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法,采用以下步骤实施:
(1)将电炉除尘灰、草酸溶液按比例添加,充分混匀,形成均匀分布的料浆;随即将料浆注入置于恒温的反应器中,通过控制浸出温度、浸出时间、有机酸-草酸浓度、液固比及搅拌速度,进行水热浸出反应;在该步骤中,反应条件为:草酸质量浓度为5~30%,草酸溶液与电炉除尘灰的液固比为10:1~50:1,浸出温度为30~90℃,浸出反应时间为0.5~4h,搅拌速度为200~500r/min。
(2)将步骤(1)中的反应产物进行固液分离,并对分离产物进行过滤、洗涤,分别得到富铁络合离子浸出液、含有富锌渣和草酸亚铁的浸出渣Ⅰ。
(3)利用草酸亚铁与富锌渣之间的密度差异,将步骤(2)中得到的浸出渣进行离心分离,对得到的固体分别在50~65℃烘干8~12h,得到富锌渣Ⅱ及草酸亚铁固体。
对于富锌渣Ⅱ,既可以直接作为富锌原料外售至下游提锌厂家,也可以通过钢铁冶炼获得Zn-Pb合金。
(4)以步骤(2)得到的富铁络合离子浸出液为反应原料,草酸作为反应剂、Fe粉作为还原剂进行沉淀反应,通过调控沉淀反应温度和沉淀反应时间,最终得到高纯草酸亚铁粉末。在该步骤中,添加的草酸与铁粉的量依步骤(2)得到浸出液中Fe元素的含量进行调整:若浸出液中的Fe的物质的量为x mol,添加草酸的物质的量为1~1.5x mol,添加的还原铁粉物质的量为3~3.5x mol;沉淀反应温度为80~85℃,沉淀反应时间为3~4h,搅拌速度为300~400r/min。
下面将结合具体实施例对发明内容予以详细说明:
实施例1:
称取钢铁企业电炉除尘灰1g,配置浓度为15%的草酸溶液,液固比为30:1,混匀成均匀分布的料浆,随后将料浆注入三口烧瓶中,随即开始反应。具体反应条件为:浸出温度90℃,反应时间为2h,搅拌速度为300r/min。
反应结束后,待浸出液冷却至室温进行固液分离。反应产物经过滤、洗涤后,得到富铁络合离子浸出液A及浸出渣Ⅰ,通过离心分离,将浸出渣中的草酸亚铁及富锌渣充分分离。经过ICP-AES检测,所得的浸出液A中,Fe离子浓度大小为1602mg/L,折算为Fe元素浸出率大小为92.35%;浸出渣Ⅰ中Zn含量(以ZnO计)为36.51%。
选取500mL富铁络合离子浸出液A为反应原料,制备高纯度草酸亚铁粉末,具体的反应条件为:添加2.0g草酸、2.5g还原铁粉,浸出温度85℃,反应时间为3h,搅拌速度为300r/min。反应结束后,待溶液却至室温进行固液分离,反应产物经过滤、洗涤、干燥后,得到高纯度草酸亚铁粉末。经过ICP-AES检测,所得的尾液中,Fe离子浓度大小为78mg/L;制备的草酸亚铁粉末纯度为97.32%。其XRD图谱、粒径分布及扫描电镜图片(二次电子模式)如图2、图3 及图4所示,可以发现:制备的草酸亚铁粉末晶型较好,平均粒径大小为4.31μm,是表面光滑、形状规则的球形颗粒,可以作为合成电池材料、医药产品及照相显影剂的原料。
实施例2:
称取钢铁企业电炉除尘灰1g,配置浓度为10%的草酸溶液,液固比为50:1,混匀成均匀分布的料浆,随后将料浆注入三口烧瓶中,随即开始反应。具体反应条件为:浸出温度90℃,反应时间为4h,搅拌速度为300r/min。
反应结束后,待浸出液冷却至室温进行固液分离。反应产物经过滤、洗涤后,得到富铁络合离子浸出液A及浸出渣Ⅰ,通过离心分离,将浸出渣中的草酸亚铁及富锌渣充分分离。经过ICP-AES检测,所得的浸出液A中,Fe离子浓度大小为1495mg/L,折算为Fe元素浸出率大小为86.78%;浸出渣Ⅰ中Zn含量(以ZnO计)为28.75%。
选取500mL富铁络合离子浸出液A为反应原料,制备高纯度草酸亚铁粉末,具体的反应条件为:添加1.5g草酸、2.2g还原铁粉,浸出温度80℃,反应时间为3h,搅拌速度为300r/min。反应结束后,待溶液却至室温进行固液分离,反应产物经过滤、洗涤、干燥后,得到高纯度草酸亚铁粉末。经过ICP-AES检测,所得的尾液中,Fe离子浓度大小为105mg/L;制备的草酸亚铁粉末纯度为90.15%。
实施例3:
称取钢铁企业电炉除尘灰1g,配置浓度为20%的草酸溶液,液固比为50:1,混匀成均匀分布的料浆,随后将料浆注入三口烧瓶中,随即开始反应。具体反应条件为:浸出温度90℃,反应时间为1h,搅拌速度为300r/min。
反应结束后,待浸出液冷却至室温进行固液分离。反应产物经过滤、洗涤后,得到富铁络合离子浸出液A及浸出渣Ⅰ,通过离心分离,将浸出渣中的草酸亚铁及富锌渣充分分离。经过ICP-AES检测,所 得的浸出液A中,Fe离子浓度大小为1539mg/L,折算为Fe元素浸出率大小为88.38%;浸出渣Ⅰ中Zn含量(以ZnO计)为29.63%。
选取500mL富铁络合离子浸出液A为反应原料,制备高纯度草酸亚铁粉末,具体的反应条件为:添加1.8g草酸、2.5g还原铁粉,浸出温度80℃,反应时间为3h,搅拌速度为300r/min。反应结束后,待溶液却至室温进行固液分离,反应产物经过滤、洗涤、干燥后,得到高纯度草酸亚铁粉末。经过ICP-AES检测,所得的尾液中,Fe离子浓度大小为133mg/L;制备的草酸亚铁粉末纯度为91.27%。
实施例4:
称取钢铁企业电炉除尘灰1g,配置浓度为5%的草酸溶液,液固比为30:1,混匀成均匀分布的料浆,随后将料浆注入三口烧瓶中,随即开始反应。具体反应条件为:浸出温度90℃,反应时间为4h,搅拌速度为300r/min。
反应结束后,待浸出液冷却至室温进行固液分离。反应产物经过滤、洗涤后,得到富铁络合离子浸出液A及浸出渣Ⅰ,通过离心分离,将浸出渣中的草酸亚铁及富锌渣充分分离。经过ICP-AES检测,所得的浸出液A中,Fe离子浓度大小为1220mg/L,折算为Fe元素浸出率大小为70.00%;浸出渣Ⅰ中Zn含量(以ZnO计)为23.49%。
选取500mL富铁络合离子浸出液A为反应原料,制备高纯度草酸亚铁粉末,具体的反应条件为:添加1.3g草酸、1.5g还原铁粉,浸出温度85℃,反应时间为3h,搅拌速度为300r/min。反应结束后,待溶液却至室温进行固液分离,反应产物经过滤、洗涤、干燥后,得到高纯度草酸亚铁粉末。经过ICP-AES检测,所得的尾液中,Fe离子浓度大小为147mg/L;制备的草酸亚铁粉末纯度为88.35%。
实施例5:
称取钢铁企业电炉除尘灰1g,配置浓度为15%的草酸溶液,液固比为20:1,混匀成均匀分布的料浆,随后将料浆注入三口烧瓶中, 随即开始反应。具体反应条件为:浸出温度90℃,反应时间为1.5h,搅拌速度为300r/min。
反应结束后,待浸出液冷却至室温进行固液分离。反应产物经过滤、洗涤后,得到富铁络合离子浸出液A及浸出渣Ⅰ,通过离心分离,将浸出渣中的草酸亚铁及富锌渣充分分离。经过ICP-AES检测,所得的浸出液A中,Fe离子浓度大小为1432mg/L,折算为Fe元素浸出率大小为82.15%;浸出渣Ⅰ中Zn含量(以ZnO计)为25.78%。
选取500mL富铁络合离子浸出液A为反应原料,制备高纯度草酸亚铁粉末,具体的反应条件为:添加1.6g草酸、2.0g还原铁粉,浸出温度85℃,反应时间为3h,搅拌速度为300r/min。反应结束后,待溶液却至室温进行固液分离,反应产物经过滤、洗涤、干燥后,得到高纯度草酸亚铁粉末。经过ICP-AES检测,所得的尾液中,Fe离子浓度大小为122mg/L;制备的草酸亚铁粉末纯度为92.15%。
实施例6:
称取钢铁企业电炉除尘灰1g,配置浓度为15%的草酸溶液,液固比为30:1,混匀成均匀分布的料浆,随后将料浆注入三口烧瓶中,随即开始反应。具体反应条件为:浸出温度80℃,反应时间为1.5h,搅拌速度为300r/min。
反应结束后,待浸出液冷却至室温进行固液分离。反应产物经过滤、洗涤后,得到富铁络合离子浸出液A及浸出渣Ⅰ,通过离心分离,将浸出渣中的草酸亚铁及富锌渣充分分离。经过ICP-AES检测,所得的浸出液A中,Fe离子浓度大小为1594mg/L,折算为Fe元素浸出率大小为91.85%;浸出渣Ⅰ中Zn含量(以ZnO计)为31.05%。
选取500mL富铁络合离子浸出液A为反应原料,制备高纯度草酸亚铁粉末,具体的反应条件为:添加2.0g草酸、2.5g还原铁粉,浸出温度85℃,反应时间为3h,搅拌速度为300r/min。反应结束后,待溶液却至室温进行固液分离,反应产物经过滤、洗涤、干燥后, 得到高纯度草酸亚铁粉末。经过ICP-AES检测,所得的尾液中,Fe离子浓度大小为98mg/L;制备的草酸亚铁粉末纯度为95.33%。
本发明采用有机酸-草酸作为溶剂,采用低温直接浸出,利用草酸根离子较强的络合作用,与电炉除尘灰中的Fe反应形成[Fe(C 2O 4) 3] 3-进入溶液;随后,在还原铁粉的作用下,[Fe(C 2O 4) 3] 3-与Fe粉反应,生成高附加值产品草酸亚铁。得到高附加值草酸亚铁产品后,固液分离得到的高品位含锌尾矿即可以作为富锌原料外售至下游提锌厂家,又可以作为真空还原提锌、进而获得高附加值Zn-Pb合金的原料;针对提铁、提锌后尾渣中,可以将其作为制备陶粒、发泡陶瓷等陶瓷产品的原料,总体实现电炉除尘灰的梯级综合利用与近零排放,能耗更低,环境影响更小,且产品的附加值更高,具有广阔的市场应用前景。
需要进一步说明的是,本发明在步骤(1)中采用草酸作为浸出剂,也可以采用其它有机酸,如甲酸、乙酸及柠檬酸中一种,或草酸、甲酸、乙酸及柠檬酸的混合液。

Claims (8)

  1. 一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法,其特征在于采用以下步骤实施:
    (1)将电炉除尘灰、草酸溶液按比例添加,充分混匀,形成均匀分布的料浆;随即将料浆注入置于恒温的反应器中,通过控制浸出温度、浸出时间、草酸浓度、液固比及搅拌速度,进行水热浸出反应;
    (2)将步骤(1)中的反应产物进行固液分离,并对分离产物进行过滤、洗涤,分别得到富铁络合离子浸出液、含有富锌渣和草酸亚铁的浸出渣;
    (3)利用草酸亚铁与富锌渣之间的密度差异,将步骤(2)中得到的浸出渣进行离心分离,对得到的固体分别进行烘干,得到富锌渣及草酸亚铁固体;
    (4)以步骤(2)得到的富铁络合离子浸出液为反应原料,草酸作为反应剂、Fe粉作为还原剂进行沉淀反应,通过调控沉淀反应温度和沉淀反应时间,最终得到高纯草酸亚铁粉末。
  2. 根据权利要求1所述的一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法,其特征在于:所述步骤(1)中,草酸质量浓度为5~30%;草酸溶液与电炉除尘灰的液固比为10:1~50:1;
  3. 根据权利要求2所述的一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法,其特征在于:所述步骤(1)中的浸出温度为30~90℃;浸出反应时间为0.5~4h;搅拌速度为200~500r/min。
  4. 根据权利要求1、2或3所述的一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法,其特征在于:所述步骤(3)中的烘干温度为40~90℃,烘干时间为8~12h。
  5. 根据权利要求4所述的一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法,其特征在于:步骤(4)的沉淀反应中,添加的草酸与铁粉的量依步骤(2)得到浸出液中Fe元素的含量进行调整: 若浸出液中的Fe的物质的量为x mol,添加草酸的物质的量为0.8~2.0x mol;添加的还原铁粉物质的量为2~5x mol;
  6. 根据权利要求5所述的一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法,其特征在于:步骤(4)的沉淀反应中,沉淀反应温度为70~90℃,沉淀反应时间为2~5h,搅拌速度为200~500r/min。
  7. 如根据权利要求6所述的一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法,其特征在于:步骤(4)的沉淀反应中,沉淀反应温度为80~85℃,沉淀反应时间为3~4h,搅拌速度为300~400r/min。
  8. 如权利要求7所述的一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法,其特征在于:步骤(3)中的烘干温度为50~65℃;步骤(4)添加草酸的物质的量为1~1.5x mol,添加的还原铁粉物质的量为3~3.5x mol。
PCT/CN2022/092438 2021-10-14 2022-05-12 一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法 WO2023060889A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2023/02411A ZA202302411B (en) 2021-10-14 2023-02-23 Method for extraction and high-value utilization of fe, zn and pb in electric furnace dedusting ash

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111198498.3 2021-10-14
CN202111198498.3A CN113787085A (zh) 2021-10-14 2021-10-14 一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法

Publications (1)

Publication Number Publication Date
WO2023060889A1 true WO2023060889A1 (zh) 2023-04-20

Family

ID=79185056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092438 WO2023060889A1 (zh) 2021-10-14 2022-05-12 一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法

Country Status (3)

Country Link
CN (3) CN113787085A (zh)
WO (1) WO2023060889A1 (zh)
ZA (1) ZA202302411B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113787085A (zh) * 2021-10-14 2021-12-14 中钢集团马鞍山矿山研究总院股份有限公司 一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法
CN114315255B (zh) * 2022-01-27 2023-03-28 中钢集团马鞍山矿山研究总院股份有限公司 一种利用电炉除尘灰制备高纯合金及尾渣资源化利用方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110136198A1 (en) * 2009-12-03 2011-06-09 Biosigma S.A. Hydrometallurgical procedure for the production of ferric-sulfate from fayalite slag
CN102719668A (zh) * 2012-07-09 2012-10-10 山东理工大学 全湿法处理锌浸出渣分步提取锌、铅、银的工艺
JP2016108583A (ja) * 2014-12-03 2016-06-20 Dowaメタルマイン株式会社 貴金属製錬スラグからの希土類元素回収方法
CN105695738A (zh) * 2016-03-25 2016-06-22 武汉科技大学 一种含钒石煤浸出液的除铁方法
CN110306044A (zh) * 2019-07-18 2019-10-08 北京科技大学 一种水热草酸络合浸出钒铁尖晶石含钒矿物中钒的方法
CN111041200A (zh) * 2019-11-18 2020-04-21 北京科技大学 水热法有机酸浸出钒、钛、铬原料中钒、钛、铬的方法
JP2020125521A (ja) * 2019-02-05 2020-08-20 信越化学工業株式会社 酸性スラリーの製造方法及び希土類元素の回収方法
CN113787085A (zh) * 2021-10-14 2021-12-14 中钢集团马鞍山矿山研究总院股份有限公司 一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3582117B2 (ja) * 1994-11-28 2004-10-27 石川島播磨重工業株式会社 焼却灰溶融炉における溶融塩の分解方法
JP3257954B2 (ja) * 1996-06-21 2002-02-18 多摩化学工業株式会社 二次電池のアルミ箔廃材の燃焼処理法
JP4158706B2 (ja) * 2003-01-14 2008-10-01 三菱マテリアル株式会社 白金族含有溶液から金を分離する処理方法および製造方法
WO2009015565A1 (en) * 2007-07-31 2009-02-05 Byd Company Limited Method for preparing lithium iron phosphate as positive electrode active material for lithium ion secondary battery
ES2712722T3 (es) * 2008-04-11 2019-05-14 Electrochem Tech & Materials Inc Procedimiento electroquímico para la recuperación de valores de hierro metálico y ácido sulfúrico a partir de desechos de sulfatos ricos en hierro, residuos de minería y licores decapantes
CN101499527B (zh) * 2009-03-11 2011-08-31 中南大学 一种硅酸铁锂正极材料的制备方法
WO2014012258A1 (zh) * 2012-07-20 2014-01-23 深圳市德方纳米科技有限公司 一种电池正极材料的自热蒸发液相合成法
WO2014056143A1 (zh) * 2012-10-09 2014-04-17 上海交通大学 磷酸铁锂材料及其制备方法
WO2015006796A1 (en) * 2013-07-17 2015-01-22 Technological Resources Pty. Limited Treatment of minerals
CN103746115B (zh) * 2013-12-13 2016-03-02 灵宝金源矿业股份有限公司 一种利用硫铁矿烧渣制备电池级磷酸铁锂的方法
CN105129761A (zh) * 2015-08-31 2015-12-09 无锡市嘉邦电力管道厂 一种磷酸亚铁锂正极材料的制备方法
CN107502740B (zh) * 2017-06-26 2019-12-13 四川大学 一种从软锰矿浸出渣中回收铁资源方法
CN108531729A (zh) * 2018-04-18 2018-09-14 武汉科技大学 一种含钒溶液的钒铁分离方法
CN109721043B (zh) * 2018-12-29 2021-09-17 宁德时代新能源科技股份有限公司 一种回收制备磷酸铁锂正极材料的方法
CN110112481B (zh) * 2019-04-23 2020-12-04 广东光华科技股份有限公司 废旧磷酸铁锂电池循环利用制备磷酸铁锂正极材料的方法
CN110256235B (zh) * 2019-07-26 2021-08-17 攀枝花学院 一种利用钒渣制备草酸亚铁的方法
CN110358923B (zh) * 2019-08-15 2021-01-01 昆明理工大学 一种利用氧化锌烟尘提取铟及回收利用氧化锌烟尘的方法
CN110607537B (zh) * 2019-09-26 2021-02-26 江西理工大学 一种同步高效提取高值回用钕铁硼废料中稀土和铁的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110136198A1 (en) * 2009-12-03 2011-06-09 Biosigma S.A. Hydrometallurgical procedure for the production of ferric-sulfate from fayalite slag
CN102719668A (zh) * 2012-07-09 2012-10-10 山东理工大学 全湿法处理锌浸出渣分步提取锌、铅、银的工艺
JP2016108583A (ja) * 2014-12-03 2016-06-20 Dowaメタルマイン株式会社 貴金属製錬スラグからの希土類元素回収方法
CN105695738A (zh) * 2016-03-25 2016-06-22 武汉科技大学 一种含钒石煤浸出液的除铁方法
JP2020125521A (ja) * 2019-02-05 2020-08-20 信越化学工業株式会社 酸性スラリーの製造方法及び希土類元素の回収方法
CN110306044A (zh) * 2019-07-18 2019-10-08 北京科技大学 一种水热草酸络合浸出钒铁尖晶石含钒矿物中钒的方法
CN111041200A (zh) * 2019-11-18 2020-04-21 北京科技大学 水热法有机酸浸出钒、钛、铬原料中钒、钛、铬的方法
CN113787085A (zh) * 2021-10-14 2021-12-14 中钢集团马鞍山矿山研究总院股份有限公司 一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法

Also Published As

Publication number Publication date
CN113787085A (zh) 2021-12-14
CN115463935B (zh) 2023-07-28
CN115532770A (zh) 2022-12-30
CN115463935A (zh) 2022-12-13
ZA202302411B (en) 2023-05-31

Similar Documents

Publication Publication Date Title
CN104911356B (zh) 一种固废瓦斯灰、含锌铁钒渣综合回收工艺
WO2023060889A1 (zh) 一种提取电炉除尘灰中Fe、Zn、Pb并高值化利用的方法
CN106399699B (zh) 一种含铜污泥的处理工艺
CN103343174B (zh) 一种从含钛混合熔渣中分离钛铁钒钙的方法
CN203728902U (zh) 一种固废瓦斯灰、含锌铁钒渣综合回收装置
CN104532007A (zh) 一种烧结机头电场除尘灰与高炉瓦斯灰综合利用的方法
CN101787407B (zh) 一种微波碳热还原提取铜冶炼废弃渣中铁的方法
CN114672643B (zh) 一种高铁赤泥和熔融钢渣协同利用方法
CN108998661A (zh) 一种立式烘干窑烧结联合富氧侧吹熔炼工艺
CN105648228A (zh) 用于处理含铅锌冶炼渣的转底炉
JP2014534349A (ja) 物理化学的選別法による銅、亜鉛、鉛等の非鉄金属の製錬工程で排出される廃非鉄スラグから鉄を分離回収する方法
CN110669942A (zh) 一种处理钢铁厂含锌粉尘的方法
CN102102153B (zh) 用还原回窑处理锌矿(渣)同时制取氧化锌和铁的方法
WO2023004925A1 (zh) 含铬污泥与含铬废渣协同利用富集、回收铬资源的方法
CN105803205A (zh) 一种高效节能再生铅冶炼工艺
CN114645141A (zh) 一种含锌、铁烟尘及炉渣的综合回收处置工艺
CN110904328B (zh) 一种提高球团厂粉尘综合利用率的方法
JP2002105550A (ja) 亜鉛回収法
CN110724821A (zh) 低品位多金属危险废物综合回收有价金属的方法
CN109371251B (zh) 一种含铬、镍除尘灰的处理方法
CN110564969B (zh) 一种综合回收高炉瓦斯灰中铅、锌、铁的方法
EP0040659B1 (en) Heavy metal recovery in ferrous metal production processes
JP2001098339A (ja) バナジウム合金鉄及びバナジウム合金鋼の製造方法
CN111440908A (zh) 一种含钛高炉渣中钛组分转化为钛铁矿的方法
CN115491504B (zh) 电炉炼钢烟尘真空短流程收锌系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22879839

Country of ref document: EP

Kind code of ref document: A1