WO2023058753A1 - フッ素化ポリエーテルの製造方法 - Google Patents
フッ素化ポリエーテルの製造方法 Download PDFInfo
- Publication number
- WO2023058753A1 WO2023058753A1 PCT/JP2022/037644 JP2022037644W WO2023058753A1 WO 2023058753 A1 WO2023058753 A1 WO 2023058753A1 JP 2022037644 W JP2022037644 W JP 2022037644W WO 2023058753 A1 WO2023058753 A1 WO 2023058753A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- formula
- compound
- molecular weight
- raw material
- polymerization
- Prior art date
Links
- 229920000570 polyether Polymers 0.000 title claims abstract description 85
- 239000004721 Polyphenylene oxide Substances 0.000 title claims abstract description 81
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 48
- 150000001875 compounds Chemical class 0.000 claims abstract description 294
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 148
- 239000002994 raw material Substances 0.000 claims abstract description 143
- 239000007789 gas Substances 0.000 claims abstract description 90
- 239000011737 fluorine Substances 0.000 claims abstract description 86
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 86
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 83
- 238000009826 distribution Methods 0.000 claims abstract description 76
- 239000002904 solvent Substances 0.000 claims abstract description 49
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 47
- 238000000034 method Methods 0.000 claims abstract description 38
- 229920000642 polymer Polymers 0.000 claims abstract description 23
- 239000011261 inert gas Substances 0.000 claims abstract description 20
- 150000002430 hydrocarbons Chemical group 0.000 claims description 37
- 125000004432 carbon atom Chemical group C* 0.000 claims description 35
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 21
- 229930195735 unsaturated hydrocarbon Natural products 0.000 claims description 20
- 125000000217 alkyl group Chemical group 0.000 claims description 13
- 238000004458 analytical method Methods 0.000 claims description 13
- 238000002156 mixing Methods 0.000 claims description 11
- 125000002252 acyl group Chemical group 0.000 claims description 10
- 150000002148 esters Chemical class 0.000 claims description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims 2
- 125000006239 protecting group Chemical group 0.000 abstract description 19
- 125000001183 hydrocarbyl group Chemical group 0.000 abstract 1
- -1 ethoxyacetyl Chemical group 0.000 description 66
- 239000000243 solution Substances 0.000 description 60
- 239000000047 product Substances 0.000 description 52
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 50
- 229910001873 dinitrogen Inorganic materials 0.000 description 50
- 238000003682 fluorination reaction Methods 0.000 description 38
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 36
- 238000006243 chemical reaction Methods 0.000 description 26
- ZQBFAOFFOQMSGJ-UHFFFAOYSA-N hexafluorobenzene Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1F ZQBFAOFFOQMSGJ-UHFFFAOYSA-N 0.000 description 24
- 238000011084 recovery Methods 0.000 description 23
- 238000005481 NMR spectroscopy Methods 0.000 description 22
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 22
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 21
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 16
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 16
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 15
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 15
- 239000007787 solid Substances 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 11
- 239000012346 acetyl chloride Substances 0.000 description 11
- 239000000460 chlorine Substances 0.000 description 11
- 239000003960 organic solvent Substances 0.000 description 11
- 235000013024 sodium fluoride Nutrition 0.000 description 11
- 239000011775 sodium fluoride Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 125000001153 fluoro group Chemical group F* 0.000 description 10
- 238000000926 separation method Methods 0.000 description 10
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 9
- 238000001816 cooling Methods 0.000 description 9
- 229920001577 copolymer Polymers 0.000 description 9
- 229920001519 homopolymer Polymers 0.000 description 9
- 239000010702 perfluoropolyether Substances 0.000 description 9
- 229910052938 sodium sulfate Inorganic materials 0.000 description 9
- 235000011152 sodium sulphate Nutrition 0.000 description 9
- 238000005160 1H NMR spectroscopy Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- 238000010926 purge Methods 0.000 description 8
- 229910000029 sodium carbonate Inorganic materials 0.000 description 8
- 125000001424 substituent group Chemical group 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- 239000011550 stock solution Substances 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 125000003545 alkoxy group Chemical group 0.000 description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 5
- 238000004237 preparative chromatography Methods 0.000 description 5
- 239000002516 radical scavenger Substances 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 4
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 4
- 238000007086 side reaction Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000002194 synthesizing effect Effects 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910001515 alkali metal fluoride Inorganic materials 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 3
- 125000001309 chloro group Chemical group Cl* 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000012279 sodium borohydride Substances 0.000 description 3
- 229910000033 sodium borohydride Inorganic materials 0.000 description 3
- 125000004044 trifluoroacetyl group Chemical group FC(C(=O)*)(F)F 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 235000002597 Solanum melongena Nutrition 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 125000000777 acyl halide group Chemical group 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 125000001246 bromo group Chemical group Br* 0.000 description 2
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 150000001733 carboxylic acid esters Chemical class 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 150000004292 cyclic ethers Chemical class 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000002274 desiccant Substances 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000000806 fluorine-19 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- RGCLLPNLLBQHPF-HJWRWDBZSA-N phosphamidon Chemical compound CCN(CC)C(=O)C(\Cl)=C(/C)OP(=O)(OC)OC RGCLLPNLLBQHPF-HJWRWDBZSA-N 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 235000003270 potassium fluoride Nutrition 0.000 description 2
- 239000011698 potassium fluoride Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000010898 silica gel chromatography Methods 0.000 description 2
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 125000000547 substituted alkyl group Chemical group 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 125000005270 trialkylamine group Chemical group 0.000 description 2
- ZBZJXHCVGLJWFG-UHFFFAOYSA-N trichloromethyl(.) Chemical compound Cl[C](Cl)Cl ZBZJXHCVGLJWFG-UHFFFAOYSA-N 0.000 description 2
- QAEDZJGFFMLHHQ-UHFFFAOYSA-N trifluoroacetic anhydride Chemical compound FC(F)(F)C(=O)OC(=O)C(F)(F)F QAEDZJGFFMLHHQ-UHFFFAOYSA-N 0.000 description 2
- KHFGPBNEILANTD-UHFFFAOYSA-N 1,1,1,2-tetrachloro-2,3,3,4,4,4-hexafluorobutane Chemical compound FC(F)(F)C(F)(F)C(F)(Cl)C(Cl)(Cl)Cl KHFGPBNEILANTD-UHFFFAOYSA-N 0.000 description 1
- QSSVZVNYQIGOJR-UHFFFAOYSA-N 1,1,2-trichloro-3,3,3-trifluoroprop-1-ene Chemical compound FC(F)(F)C(Cl)=C(Cl)Cl QSSVZVNYQIGOJR-UHFFFAOYSA-N 0.000 description 1
- JDCMOHAFGDQQJX-UHFFFAOYSA-N 1,2,3,4,5,6,7,8-octafluoronaphthalene Chemical compound FC1=C(F)C(F)=C(F)C2=C(F)C(F)=C(F)C(F)=C21 JDCMOHAFGDQQJX-UHFFFAOYSA-N 0.000 description 1
- ONUFSRWQCKNVSL-UHFFFAOYSA-N 1,2,3,4,5-pentafluoro-6-(2,3,4,5,6-pentafluorophenyl)benzene Chemical group FC1=C(F)C(F)=C(F)C(F)=C1C1=C(F)C(F)=C(F)C(F)=C1F ONUFSRWQCKNVSL-UHFFFAOYSA-N 0.000 description 1
- BYDZRYBEVBQSAC-UHFFFAOYSA-N 1,2,3-trichloro-4,5,6-trifluorobenzene Chemical compound FC1=C(F)C(Cl)=C(Cl)C(Cl)=C1F BYDZRYBEVBQSAC-UHFFFAOYSA-N 0.000 description 1
- ZDOYHCIRUPHUHN-UHFFFAOYSA-N 1-(2-chlorophenyl)ethanone Chemical group CC(=O)C1=CC=CC=C1Cl ZDOYHCIRUPHUHN-UHFFFAOYSA-N 0.000 description 1
- KGCDGLXSBHJAHZ-UHFFFAOYSA-N 1-chloro-2,3,4,5,6-pentafluorobenzene Chemical compound FC1=C(F)C(F)=C(Cl)C(F)=C1F KGCDGLXSBHJAHZ-UHFFFAOYSA-N 0.000 description 1
- UTQNKKSJPHTPBS-UHFFFAOYSA-N 2,2,2-trichloroethanone Chemical group ClC(Cl)(Cl)[C]=O UTQNKKSJPHTPBS-UHFFFAOYSA-N 0.000 description 1
- OTTXCOAOKOEENK-UHFFFAOYSA-N 2,2-difluoroethenone Chemical group FC(F)=C=O OTTXCOAOKOEENK-UHFFFAOYSA-N 0.000 description 1
- YQTCQNIPQMJNTI-UHFFFAOYSA-N 2,2-dimethylpropan-1-one Chemical group CC(C)(C)[C]=O YQTCQNIPQMJNTI-UHFFFAOYSA-N 0.000 description 1
- AWRHGKKFIUAKHZ-UHFFFAOYSA-N 3,3-dichloro-1,1,2,3-tetrafluoroprop-1-ene Chemical compound FC(F)=C(F)C(F)(Cl)Cl AWRHGKKFIUAKHZ-UHFFFAOYSA-N 0.000 description 1
- 125000000242 4-chlorobenzoyl group Chemical group ClC1=CC=C(C(=O)*)C=C1 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- 239000012448 Lithium borohydride Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- CSCPPACGZOOCGX-UHFFFAOYSA-N acetone Substances CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 125000002668 chloroacetyl group Chemical group ClCC(=O)* 0.000 description 1
- HEDRZPFGACZZDS-UHFFFAOYSA-N chloroform Substances ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- VILAVOFMIJHSJA-UHFFFAOYSA-N dicarbon monoxide Chemical group [C]=C=O VILAVOFMIJHSJA-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- MQRJBSHKWOFOGF-UHFFFAOYSA-L disodium;carbonate;hydrate Chemical compound O.[Na+].[Na+].[O-]C([O-])=O MQRJBSHKWOFOGF-UHFFFAOYSA-L 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- 239000012527 feed solution Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 238000004508 fractional distillation Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000000268 heptanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- CKAPSXZOOQJIBF-UHFFFAOYSA-N hexachlorobenzene Chemical compound ClC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl CKAPSXZOOQJIBF-UHFFFAOYSA-N 0.000 description 1
- 125000003104 hexanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000001402 nonanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000007344 nucleophilic reaction Methods 0.000 description 1
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 1
- 125000002801 octanoyl group Chemical group C(CCCCCCC)(=O)* 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 125000003232 p-nitrobenzoyl group Chemical group [N+](=O)([O-])C1=CC=C(C(=O)*)C=C1 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- RVZRBWKZFJCCIB-UHFFFAOYSA-N perfluorotributylamine Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)N(C(F)(F)C(F)(F)C(F)(F)C(F)(F)F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F RVZRBWKZFJCCIB-UHFFFAOYSA-N 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- XHFLOLLMZOTPSM-UHFFFAOYSA-M sodium;hydrogen carbonate;hydrate Chemical compound [OH-].[Na+].OC(O)=O XHFLOLLMZOTPSM-UHFFFAOYSA-M 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 238000004724 ultra fast liquid chromatography Methods 0.000 description 1
- 125000003774 valeryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/30—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
- C07C67/307—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of halogen; by substitution of halogen atoms by other halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/66—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
- C07C69/67—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
- C07C69/708—Ethers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Definitions
- the present invention relates to a new method for producing fluorinated polyethers.
- Perfluoropolyether compounds which are fluorinated polyethers, are known to exhibit high performance over an extremely wide range as lubricants. For this reason, perfluoropolyether compounds are widely used in vacuum pump oils as lubricating oils, heat media, non-adhesives, and other uses.
- Perfluoropolyether compounds are produced by fluorinating CH in the raw material hydrocarbon compound to CF, and a method of electrochemical fluorination using hydrogen fluoride (electrolytic fluorination reaction) or fluorine gas is known.
- the liquid phase method is a method for solving such problems, and is reported in Patent Documents 1 and 2, for example.
- Patent Document 1 discloses a method for liquid-phase fluorination of a wide variety of hydrogen-containing compounds for complete fluorination. Specifically, it discloses dissolving or dispersing a hydrogen-containing compound in a medium such as a liquid perfluorocarbon, introducing a mixture of a fluorine gas and a diluent gas, and continuously performing fluorine substitution.
- a polyether compound is used as a raw material, and a hydrogen fluoride scavenger, an inert gas, a fluorine gas, and a solvent that is a completely halogen-substituted saturated compound having 2 to 8 carbon atoms are introduced into a reactor. , removing the hydrogen fluoride scavenger from the reactor, and circulating a perhalogen unsaturated compound in the reactor while circulating an inert gas and a fluorine gas, thereby fluorinating a predetermined polyether compound. disclosed.
- Patent Document 1 the production method of Patent Document 1 is not suitable for fluorinating high-molecular-weight polyethylene glycol, and there are problems that the target product cannot be obtained and the production efficiency is low.
- polyether compounds synthesized by sequential polymerization were used as raw materials.
- hydrogen atoms in the raw material compound are substituted with fluorine atoms, so the structure of the perfluoropolyether compound to be produced can be predicted from the structure of the polyether compound as the raw material.
- the large discrepancy between the theoretical number-average molecular weight and the measured value, or the low yield of the perfluoropolyether compound is due to the fact that the raw material contains many components that cannot be recovered even by fluorination. It is assumed that Expensive fluorine gas is consumed in the fluorination of such components in the raw material, increasing production costs.
- an object of the present invention is to provide a method for producing a fluorinated polyether having a theoretical number-average molecular weight calculated from the number-average molecular weight of the raw material polyether compound in high yield.
- the present inventors investigated the cause and found that the polyether compound used as the fluorination raw material has a wide molecular weight distribution, and the low molecular weight component is the fluorinated As a result, the boiling point is lowered and flowed out of the system together with the gas introduced during the reaction, and the high molecular weight component is fluorinated and precipitated as an insoluble solid that cannot be recovered, resulting in a decrease in yield. I found out that there is Such a decrease in yield also causes an increase in production cost.
- a method for producing a fluorinated polyether is as follows.
- R 4 —O—(R 1 —O) x —R 5 (X) R 1 represents a divalent hydrocarbon group having 2 to 5 carbon atoms.
- R 1 in each structural unit represented by (R 1 —O) may all be the same, some or All may be different, R 4 and R 5 each independently represent a hydroxyl-protecting group, x represents an average degree of polymerization, and is a real number of 2.7 to 15.
- step (1) includes step (1B) of adjusting the molecular weight distribution of the compound represented by formula (B).
- the operation of adjusting the molecular weight distribution in the step (1) is an operation of adjusting the polymer compound having the same structural unit as that of formula (X) so as to narrow the molecular weight distribution; and An operation of mixing two or more types of monodisperse polymer compounds having the same structural unit as the formula (X) to adjust the molecular weight distribution;
- the operation of adjusting the molecular weight distribution in the step (1) is The fluorinated polyether according to any one of [1] to [6], which is an operation to adjust the polymer compound having the same structural unit as the formula (X) so that the molecular weight distribution is narrowed.
- Production method [8] The method for producing a fluorinated polyether according to any one of [1] to [7], wherein Mw/Mn representing the molecular weight distribution of the raw material compound is 1.30 or less.
- step (2) including a step (3) of introducing a perhalogenated unsaturated hydrocarbon compound into the reactor while circulating an inert gas and a fluorine gas in the reactor [1]
- step (3) including a step (3) of introducing a perhalogenated unsaturated hydrocarbon compound into the reactor while circulating an inert gas and a fluorine gas in the reactor [1]
- Rf 1 represents a divalent perfluorohydrocarbon group having 2 to 5 carbon atoms.
- Rf 1 in each structural unit represented by (Rf 1 —O) may be the same,
- Rf 2 and Rf 3 each independently represent a perfluorohydrocarbon group having 1 to 4 carbon atoms, and the structural unit located at the terminal in formula (X) may be partially or wholly different.
- R 6 and R 7 each independently represent an alkyl group having 1 to 3 carbon atoms
- y represents an average degree of polymerization, and is a real number of 0.7 to 13.
- a fluorinated polyether having a theoretical number-average molecular weight calculated from the number-average molecular weight of the raw material polyether compound can be produced at a high yield.
- FIG. 1 is a 1 H-NMR spectrum of the fluorinated raw material of Example 1.
- FIG. 1 is a 1 H-NMR spectrum of the product of step (4) in Example 1.
- FIG. 1 is the 19 F-NMR spectrum of the product of step (4) in Example 1;
- 1 is a GPC chart of the fluorinated raw material of Example 1.
- FIG. 1 is a GPC chart of the product of step (4) in Example 1.
- the production method of this embodiment comprises a step (1) of performing an operation for adjusting the molecular weight distribution of a polymer compound having a structural unit (R 1 —O) to obtain a raw material compound represented by formula (X); After the step (1), the raw material compound represented by the formula (X), an inert gas, a fluorine gas, and a solvent are introduced into a reactor to fluorinate the raw material compound (2).
- a method for producing a fluorinated polyether characterized by:
- R 4 —O—(R 1 —O) x —R 5 (X) R 1 represents a divalent hydrocarbon group having 2 to 5 carbon atoms.
- R 1 in each structural unit represented by (R 1 —O) may all be the same, some or All may be different, R 4 and R 5 each independently represent a hydroxyl-protecting group, x represents an average degree of polymerization, and is a real number of 2.7 to 15.
- step (1) an operation for adjusting the molecular weight distribution of the polymer compound having the structural unit (R 1 —O) is performed to obtain the raw material compound represented by formula (X).
- each R 1 in each structural unit independently represents a divalent hydrocarbon group having 2 to 5 carbon atoms.
- the hydrocarbon group may be a straight chain hydrocarbon group or a branched hydrocarbon group.
- R 1 in formula (X) is preferably a hydrocarbon group having 2 to 4 carbon atoms, such as -CH 2 -CH 2 -, -CH 2 -CH 2 -CH 2 -, -CH 2 - CH(CH 3 )-, -CH(CH 3 )-CH 2 -, -CH 2 -CH 2 -CH 2 -, -CH(CH 3 )-CH 2 -CH 2 -, -CH 2 - CH(CH 3 )—CH 2 —, —CH 2 —CH 2 —CH(CH 3 )— are exemplified.
- R 1 in formula (X) is more preferably a linear hydrocarbon group, i.e. -CH 2 -CH 2 -, -CH 2 -CH 2 -CH 2 -, -CH 2 -CH 2 -CH 2 - CH 2 —, more preferably —CH 2 —CH 2 —.
- all R 1 in each structural unit represented by (R 1 —O) may be the same, or may be partially or wholly different. That is, the raw material compound represented by formula (X) may be a homopolymer (single polymer) in which R 1 in each structural unit represented by (R 1 —O) is the same, A copolymer (copolymer) in which at least part of R 1 in each structural unit represented by (R 1 —O) is different may be used.
- the number of types of structural units represented by (R 1 —O) is not particularly limited. Also, the order of arrangement of the structural units is not particularly limited, and may be any of random arrangement, block arrangement, alternating arrangement, and the like.
- x represents the average degree of polymerization and is a real number from 2.7 to 15. Since x is the average degree of polymerization, it is not necessarily an integer. x is preferably a real number of 2.8 to 12, more preferably a real number of 2.9 to 10, and even more preferably a real number of 3 to 8. When the raw material compound represented by formula (X) is a copolymer, x represents the total value of the average degree of polymerization for each type of structural unit.
- the raw material compound represented by the formula (X) is a homopolymer
- the compound represented by the formula (Xa) can be mentioned as the raw material compound.
- R 4 —O—(R 1a —O) xa —R 5 (Xa) R 1a represents a divalent hydrocarbon group having 2 to 5 carbon atoms, and xa R 1a are all the same. R 4 and R 5 each independently represent a hydroxyl-protecting group. xa is It represents the average degree of polymerization and is a real number from 2.7 to 15.)
- a compound represented by formula (Xb) or formula (Xc) can be mentioned as a raw material compound.
- R 4 O—(R 1b —O) xb —(R 1c —O) xc —R 5 (Xb)
- R 1b and R 1c each independently represent a divalent hydrocarbon group having 2 to 5 carbon atoms, and R 1b and R 1c have different structures.
- R 4 and R 5 each independently represent a hydroxyl
- Each of xb and xc represents a protecting group, and the sum of xb and xc is a real number of 2.7 to 15.
- R 4 and R 5 each independently represent a hydroxyl-protecting group
- xd, xe, and xf each represent an average degree of polymerization
- the sum of xd, xe, and xf is a real number of 2.7 to 15.
- R 4 and R 5 each independently represent a hydroxyl-protecting group.
- the hydroxyl-protecting group includes an acyl group, an alkoxycarbonyl group, a silyl group, an optionally substituted alkyl group, and the like.
- R 4 and R 5 may be the same or different. Synthesis is easy when R 4 and R 5 are the same, which is preferred.
- R 8 is an optionally substituted alkyl group having 1 to 8 carbon atoms
- the alkyl group may be linear or branched.
- the substituent include an alkoxy group, a fluoro group, a chloro group and a bromo group.
- R 8 is an aryl group having 1 to 8 carbon atoms which may have a substituent
- substituents include an alkoxy group, a fluoro group, a chloro group, a bromo group, an acetoxy group, and a nitro group. be done.
- acyl groups include formyl, acetyl, ethoxyacetyl, fluoroacetyl, difluoroacetyl, trifluoroacetyl, chloroacetyl, dichloroacetyl, trichloroacetyl, bromoacetyl, and dibromoacetyl.
- alkoxycarbonyl group examples include a methoxycarbonyl group, an ethoxycarbonyl group, a 2,2,2-trichloroethoxycarbonyl group and an allyloxycarbonyl group.
- silyl group examples include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, and a t-butyldiphenylsilyl group.
- alkyl group optionally having a substituent examples include an alkyl group having a substituent selected from the group consisting of an alkoxy group, an aryl group, and an acyl halide group, and an alkyl group having no substituent. .
- the number of carbon atoms in the alkyl group is not particularly limited, those with 1 to 8 carbon atoms are usually used.
- alkyl groups having an alkoxy group include a methoxymethyl group, a methoxyethoxymethyl group, and a 1-ethoxyethyl group.
- the alkyl group having an alkoxy group may be a cyclic ether that forms an acetal structure or a ketal structure together with the oxygen atom derived from the hydroxyl group in the formula (X), and specifically includes a 2-tetrahydropyranyl group and the like. be done.
- alkyl groups having an aryl group include a benzyl group, a trityl group, an o-methoxybenzyl group, an m-methoxybenzyl group, and a p-methoxybenzyl group.
- alkyl groups having no substituents include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group and t-butyl group.
- R4 and R5 are more preferably an acyl group, more preferably an acetyl group, a trifluoroacetyl group, a propionyl group, a pentafluoropropionyl group, a butyryl group, a heptafluorobutyryl group, An acetyl group or a trifluoroacetyl group is particularly preferred.
- an operation is performed to adjust the molecular weight distribution of the polymer compound having the structural unit (R 1 —O) (hereinafter sometimes referred to as “compound to be adjusted”).
- the compound to be adjusted has the same structural unit as formula (X). That is, the compound to be adjusted has the same structural unit as the combination of (R 1 —O) in formula (X).
- the compound to be adjusted is a polymer compound whose structural unit is represented by (R 1a -O). be.
- the compound to be adjusted has structural units (R 1b —O) and (R 1c —O). It is a polymer compound that is used.
- the compound to be adjusted has structural units (R 1d —O), (R 1e —O), ( It is a polymer compound represented by R 1f —O).
- the compound to be adjusted include compounds represented by Formula (A) or Formula (B).
- R 1 is the same as in formula (X). That is, the compounds represented by Formula (A) and Formula (B) may be homopolymers or copolymers.
- the compound represented by formula (A) is a compound in which the hydroxyl group of a polyether compound is protected.
- the compound represented by formula (B) is a compound in which the hydroxyl group of the polyether compound is not protected.
- step (1) comprises step (1A) of adjusting the molecular weight distribution of the compound represented by formula (A).
- a commercially available product or a synthetic product may be used as the compound represented by the formula (A).
- step (1) includes step (1A), before step (1A), a polyether compound with unprotected hydroxyl groups (a hydrogen atom is bonded instead of R 2 and R 3 in formula (A)
- the compound represented by the formula (A) may be obtained by protecting the hydroxyl group of the compound represented by the formula (A).
- a commercially available product or a synthetic product may be used as the polyether compound in which the hydroxyl group is not protected.
- R 2 and R 3 in formula (A) As the protective groups represented by R 2 and R 3 in formula (A), the protective groups exemplified for R 4 and R 5 in formula (X) can be used.
- R 2 and R 3 in formula (A) may be the same as or different from R 4 and R 5 in formula (X). That is, as R 2 and R 3 in formula (A), protecting groups different from R 4 and R 5 in formula (X) are used, and after step (1A), the protecting groups are replaced to give formula (X) It may have a step of obtaining the represented raw material compound. In this case, a protective group suitable for adjusting the molecular weight distribution and a protective group suitable for the fluorination reaction can be selected and used.
- the compound obtained in step (1A) can be used as a raw material compound for the fluorination reaction. ,preferable.
- p representing the average degree of polymerization in formula (A) is a real number of 1 or more, may be a real number of 1.5 to 30, or may be a real number of 2 to 20.
- step (1) includes step (1B) of adjusting the molecular weight distribution of the compound represented by formula (B).
- a commercially available product or a synthetic product may be used as the compound represented by the formula (B).
- synthesizing the compound represented by formula (B) it is preferable to synthesize by sequential polymerization.
- q representing the average degree of polymerization in formula (B) is a real number of 1 or more, may be a real number of 1.5 to 30, or may be a real number of 2 to 20.
- step (1) includes step (1B)
- the protecting groups exemplified for R 4 and R 5 in formula (X) can be used, and the same as R 4 and R 5 in formula (X). or may be different.
- the protecting group used to protect the hydroxyl group in step (1C) is the same as R 4 and R 5 in formula (X)
- the compound obtained in step (1C) can be used as a starting compound for the fluorination reaction. It is possible and preferable.
- step (1) includes step (1B) and step (1C)
- step (1D) of adjusting the molecular weight distribution of the compound obtained in step (1C) may be included after step (1C).
- step (1C) when the hydroxyl group is protected with a protecting group different from R 4 and R 5 in formula (X), after step (1D), the protecting group is replaced to give a starting compound represented by formula (X).
- a protective group suitable for adjusting the molecular weight distribution and a protective group suitable for the fluorination reaction can be selected and used.
- step (1C) when the hydroxyl group is protected with the same protective group as R 4 and R 5 in formula (X), the compound obtained in step (1D) can be used as a raw material compound for the fluorination reaction, which is preferred. .
- Polyether compounds in which hydroxyl groups are not protected are synthesized by sequential polymerization.
- a conventionally known method can be used as the synthesis method.
- a method of synthesizing by polymerization reaction of diol a method of synthesizing by ring-opening polymerization of cyclic ether, and the like can be used.
- Polyether compounds in which hydroxyl groups are not protected (compounds in which hydrogen atoms are bonded in place of R 2 and R 3 in formula (A), or compounds represented by formula (B)) are polyether chains (or a monomer unit constituting a polyether chain) can be synthesized by a nucleophilic substitution reaction between compounds.
- a compound having a leaving group at one end of a polyether chain (or a monomer unit constituting the polyether chain) and a protected hydroxyl group at the other end (hereinafter referred to as "leaving group A compound having a hydroxyl group at one end of a polyether chain (or a monomer unit constituting a polyether chain) and a protected hydroxyl group at the other end. (hereinafter sometimes referred to as a “protected diol compound”) to extend the polyether chain.
- the compound having a leaving group on one end and the protected diol compound can be reacted in a molar ratio of about 1:1 to extend the polyether chain at one end of the protected diol compound.
- the compound having a leaving group at one end and the compound having hydroxyl groups at both ends of the polyether chain (hereinafter sometimes referred to as "diol compound"). ) may be reacted.
- the compound having a leaving group at one end and the diol compound can be reacted in a molar ratio of about 2:1 to extend the polyether chain at both ends of the diol compound.
- the above protected diol compound and a compound having a leaving group at both ends of the polyether chain (or the monomer units constituting the polyether chain) (hereinafter referred to as "a compound having a leaving group at both ends” ) may be reacted.
- the protected diol compound and the leaving group-terminated compound can be reacted in a molar ratio of about 2:1 to extend the polyether chain at both ends of the leaving group-terminated compound.
- the protecting group is an acyl group
- the acylating agent may be an acid halide such as R 8 —(C ⁇ O)Cl, R 8 —(C ⁇ O)F, or R 8 —(C ⁇ O) Acid anhydrides such as —O—(C ⁇ O)—R 8 can be used.
- the operation of adjusting the molecular weight distribution in the step (1) is performed by adjusting the polymer compound having the same structural unit as that of the formula (X) so that the molecular weight distribution is narrowed, and the same operation as in the formula (X). At least one operation selected from the operation of mixing two or more types of monodisperse of polymer compounds having structural units to adjust the molecular weight distribution is preferred.
- step (1) when the step of adjusting the molecular weight distribution is performed twice or more, the operation of adjusting the molecular weight distribution in each step may be the same or different. For example, when step (1) includes steps (1B), (1C), and (1D), the operations for adjusting the molecular weight distribution in steps (1B) and (1D) may be the same or different. may be
- the compound to be adjusted is a compound having a wide molecular weight distribution.
- Mw/Mn Mw is the weight average molecular weight and Mn is the number average molecular weight.
- the Mw/Mn of the compound to be adjusted is greater than 1.30, but the compound to be adjusted having an Mw/Mn of 1.30 or less may be adjusted to further narrow the molecular weight distribution.
- adjustment method 1 The operation for adjusting the molecular weight distribution to be narrow (hereinafter sometimes referred to as "adjustment method 1") is not particularly limited, but includes chromatography, distillation, extraction, crystallization, filtration, and the like.
- silica gel column chromatography When chromatography is used as adjustment method 1, silica gel column chromatography is preferred. For example, there is a method of fractionating using a column packed with silica gel having a particle size (diameter) of 30 to 70 ⁇ m in an amount (mass ratio) 10 to 100 times that of the compound to be adjusted.
- solvents for dissolving or dispersing the compound to be adjusted include single or mixed solvents selected from the group consisting of hexane, ethyl acetate, toluene, methylene chloride, methanol, ethanol, and isopropyl alcohol.
- distillation is performed as adjustment method 1
- fractional distillation is performed under normal pressure or reduced pressure to remove components with an unnecessary degree of polymerization contained in the compound to be adjusted, or to selectively obtain components with a required degree of polymerization. be able to.
- an appropriate reflux ratio may be set, or a filler may be used for rectification.
- the compound to be adjusted is dissolved in water or an organic solvent, and a solvent immiscible with this is used to remove components with an unnecessary degree of polymerization, or obtain components with a required degree of polymerization. can do.
- the type and mixing ratio of the solvent used for extraction, the number of extractions, and the like can be adjusted according to the type of compound to be adjusted and the molecular weight of the component to be extracted.
- crystallization is performed as adjustment method 1, for example, a method of cooling a solution in which the compound to be adjusted is dissolved in water or an organic solvent, or a poor solvent is added to a solution in which the compound to be adjusted is dissolved in water or an organic solvent. Depending on the method, it can be separated by precipitating a portion of it as a solid.
- the type and mixing ratio of the solvent used for crystallization, the crystallization temperature, and the like can be adjusted according to the type of the compound to be adjusted and the molecular weight of the component to be precipitated.
- the compound to be adjusted is A method of mixing a monodisperse having the same structural unit as and having a molecular weight close to the peak of the molecular weight distribution of the compound to be adjusted can also be used. By mixing the monodisperse, the central molecular weight component of the molecular weight distribution becomes relatively larger than the low molecular weight component and the high molecular weight component, resulting in a narrow molecular weight distribution.
- a monodisperse may be obtained by performing an operation to adjust the molecular weight distribution to be narrow, and the nucleophilic reaction between compounds having a polyether chain (or a monomer unit constituting a polyether chain) as described above. It may be synthesized by a substitution reaction.
- the mixing ratio of the compound to be adjusted and the monodisperse and the degree of polymerization of the monodisperse to be mixed can be adjusted according to the molecular weight distribution of the compound to be adjusted.
- the compound to be adjusted has a molecular weight distribution of formula (A): R 2 —O—(R 1 —O) p —R 3 (R 1 , R 2 , R 3 , and p are defined as above.
- step (1) two or more monodispersions of a polymer compound having the same structural unit as the formula (X) are mixed to adjust the molecular weight distribution (hereinafter sometimes referred to as "adjustment method 2". ) may be performed.
- a monodisperse is as described above.
- the number of types of monodisperse to be mixed may be two, three, or four or more.
- the mixing ratio of the monodisperse and the degree of polymerization of the monodisperse to be mixed may be selected so that the molecular weight distribution after the adjusting operation is in the desired range.
- R 2 —O—(R 1 —O) 3 —R 3 and R 2 —O—(R 1 —O) 7 —R 3 The definitions of R 1 , R 2 and R 3 are as described above.).
- Mw/Mn representing the molecular weight distribution of the raw material compound represented by formula (X) obtained in step (1) is preferably 1.30 or less, more preferably 1.20 or less, and 1 It is more preferably 0.10 or less, and particularly preferably 1.05 or less.
- the structure represented by —O—(R 1 —O) x — (the structure excluding R 4 and R 5 in formula (X) ) preferably has a number average molecular weight of 130 or more and 1300 or less, more preferably 170 or more and 870 or less.
- the total ratio of the compound represented by formula (X-1) contained in the raw material compound represented by formula (X) obtained in step (1) is 5% or less in peak area ratio based on GPC analysis. is preferred.
- R 4 —O—(R 1 —O) r —R 5 (X-1) (R 1 , R 4 and R 5 are the same as in formula (X). r represents 1 or 2.)
- the compound represented by formula (X-1) has the same R 1 , R 4 and R 5 as those of formula (X), r representing the degree of polymerization is 1 or 2, and represents a low molecular weight component.
- a fluorinated polyether having a theoretical number-average molecular weight calculated from the number-average molecular weight of the raw material compound can be obtained in high yield in step (2). easier.
- the total ratio of the compound represented by formula (X-1) contained in the raw material compound is more preferably 3% or less, more preferably 2% or less, in peak area ratio based on GPC analysis, 1% or less is particularly preferable.
- the method for calculating the peak area ratio of the compound represented by formula (X-1) based on GPC analysis is determined by the method described in Examples.
- the raw material compound represented by formula (X) obtained in step (1) is a homopolymer in which R 1 in each structural unit in formula (X) is the same (for example, formula (Xa) compound represented by formula (X-1) contained in the raw material compound, by setting the total proportion of the compound represented by formula (X-1) within the above range, the fluorinated polyether can be easily obtained at a high yield.
- the total ratio of the compound represented by formula (X-2) contained in the raw material compound represented by formula (X) obtained in step (1) is 15% or less in peak area ratio based on GPC analysis. is preferred.
- R 4 —O—(R 1 —O) s —R 5 (X-2) (R 1 , R 4 and R 5 are the same as in formula (X).
- s is an integer and satisfies s ⁇ (average degree of polymerization x+4 in formula (X)).
- the compound represented by formula (X-2) has the same R 1 , R 4 and R 5 as formula (X), and s representing the degree of polymerization is s ⁇ (average degree of polymerization of formula (X) x+4) and represents a high molecular weight component.
- step (1) it is preferable to remove high molecular weight components by an operation to adjust the molecular weight distribution.
- a fluorinated polyether having a theoretical number average molecular weight calculated from the number average molecular weight of the raw material compound can be obtained in high yield. easier.
- the total ratio of the compound represented by formula (X-2) contained in the raw material compound is more preferably 10% or less, more preferably 5% or less, in peak area ratio based on GPC analysis, 1% or less is particularly preferable.
- the method for calculating the peak area ratio of the compound represented by formula (X-2) based on GPC analysis is determined by the method described in Examples.
- the raw material compound represented by formula (X) obtained in step (1) is a homopolymer in which R 1 in each structural unit in formula (X) is the same (for example, formula (Xa) compound represented by formula (X-2) contained in the raw material compound, by setting the total proportion of the compound represented by formula (X-2) within the above range, the fluorinated polyether can be easily obtained in a high yield. Become.
- the total ratio of the compound represented by formula (X-1) contained in the raw material compound represented by formula (X) obtained in step (1) is 5% or less in peak area ratio based on GPC analysis. and the total ratio of the compounds represented by formula (X-2) is preferably 15% or less in peak area ratio based on GPC analysis.
- both the low-molecular-weight component and the high-molecular-weight component are reduced in the raw material compound, and in the step (2), the fluorinated polyether having the theoretical number-average molecular weight calculated from the number-average molecular weight of the raw material compound. can be easily obtained in high yield.
- the raw material compound represented by formula (X) obtained in step (1) is a homopolymer in which R 1 in each structural unit in formula (X) is the same (for example, formula (Xa) compound represented by formula), the total proportion of the compound represented by formula (X-1) and the total proportion of the compound represented by formula (X-2) contained in the raw material compound are within the above range. By doing so, it becomes easier to obtain a fluorinated polyether in a high yield.
- step (2) In the production method of this embodiment, in step (2), the raw material compound represented by formula (X), the inert gas, the fluorine gas, and the solvent are introduced into the reactor to fluorinate the raw material compound.
- the equivalent of fluorine gas introduced into the reactor is preferably 1.0 to 5.0 equivalents, more preferably 1.1 to 3.0 equivalents, relative to the number of moles of hydrogen atoms contained in the raw material compound.
- the equivalent of fluorine gas is 1.0 equivalent or more with respect to the number of moles of hydrogen atoms contained in the raw material compound, the fluorination reaction proceeds sufficiently. If the equivalent of fluorine gas is 5.0 equivalents or less with respect to the number of moles of hydrogen atoms contained in the raw material compound, it is possible to prevent the fluorine gas that is not consumed from being wasted.
- the concentration of fluorine gas circulated in the reactor is preferably 1 to 30% by volume, more preferably 10 to 20% by volume, based on the total amount of circulating gas (fluorine gas + inert gas).
- fluorine gas concentration is 1% by volume or more, it is possible to prevent the reaction rate from decreasing and the reaction time from becoming longer.
- fluorine gas concentration is 30% by volume or less, it is possible to prevent reaction runaway and side reactions from occurring.
- the pressure in the reactor when the fluorine gas is introduced is preferably 0.08 to 0.12 MPa, more preferably normal pressure (0.1 MPa) to 0.115 MPa. When the pressure is 0.12 MPa or less, runaway reactions and side reactions can be prevented.
- Inert gas is circulated in the reactor so that the fluorine gas concentration is within the above range.
- the inert gas and the fluorine gas may be introduced through separate systems, or a mixed gas obtained by diluting the fluorine gas with the inert gas in advance may be introduced into the reactor.
- Nitrogen gas, helium gas, argon gas and the like are preferable as the inert gas because of their availability and ease of handling.
- the solvent used for the fluorination reaction is not particularly limited, but a solvent in which the raw material compound and the fluorinated polyether product are highly soluble is preferred, and a solvent that does not react with the raw material compound, product, and fluorine gas is more preferred. Specifically, a completely halogen-substituted solvent containing no carbon-carbon unsaturated bonds is preferred. A solvent that is fully halogen-substituted and does not contain carbon-carbon unsaturated bonds does not contain C-H bonds and carbon-carbon unsaturated bonds. can prevent an increase in the amount of fluorine gas used and an increase in temperature due to heat of reaction. Further, it is preferable because the decomposition reaction of the raw material compound by hydrogen fluoride, which is generated when the C—H bond reacts with the fluorine gas, does not occur.
- solvent used for the fluorination reaction examples include perhalogenated alkanes, perhalogenated polyethers, perhalogenated carboxylic acids and their anhydrides.
- a solvent may be used individually by 1 type, or may be used in combination of 2 or more type.
- perhalogenalkane a perhalogenalkane having 2 to 8 carbon atoms is preferable.
- Perhalogenated alkanes containing fluorine atoms and chlorine atoms are more preferable from the viewpoint of the solubility of the raw material compound. is mentioned.
- perhalogen polyethers examples include commercially available products such as DEMNUM (registered trademark) manufactured by Daikin Industries, Ltd., FLUORINERT (registered trademark) manufactured by 3M, GALDEN (registered trademark) manufactured by Solvay Specialty Polymers, KRYTOX (registered trademark) manufactured by Chemours. trademark), etc.
- perhalogencarboxylic acids or anhydrides thereof examples include trifluoroacetic acid and trifluoroacetic anhydride.
- the solvent used for the fluorination reaction is preferably introduced into the reactor before introducing the raw material compound.
- a raw material solution obtained by dissolving the raw material compound in a solvent is prepared, and the raw material solution is supplied into the reactor while an inert gas and a fluorine gas are circulated in the reactor.
- the solvent for dissolving the raw material compound those exemplified as the solvent used for the fluorination reaction can be used, and it is preferably the same as the solvent used for the fluorination reaction.
- the concentration of the raw material compound in the reactor may be adjusted according to the solubility in the solvent, preferably 0 to 3.0 mol/L, more preferably 0 to 1.5 mol/L.
- the feed rate of the raw material solution to the reactor may be adjusted according to the concentration and flow rate of the fluorine gas to be circulated so that the equivalent of the fluorine gas to the raw material compound is within the above range.
- the temperature in the reactor during the fluorine gas introduction is preferably -30 to 60°C, more preferably -20 to 30°C.
- the temperature in the reactor is preferably 20 to 60°C, more preferably 20 to 30°C when the fluorine gas is introduced.
- the temperature in the reactor is preferably equal to or higher than the boiling point (20° C.) of hydrogen fluoride in order to efficiently remove by-produced hydrogen fluoride.
- the temperature is 20° C. or higher, hydrogen fluoride does not remain and the decomposition reaction of the raw material is less likely to occur, which is preferable.
- the temperature is 60° C. or lower, it is preferable because the runaway reaction and side reactions can be prevented.
- the temperature inside the reactor may be -30 to 20°C or -20 to 0°C when the fluorine gas is introduced.
- Hydrogen fluoride scavengers include alkali metal fluorides such as sodium fluoride and potassium fluoride, and organic bases such as trialkylamines.
- a reactor for the fluorination reaction it is preferable to use a reactor with high pressure resistance, and an autoclave is usually used.
- the material of the reactor is not particularly limited, but a metal container made of stainless steel or nickel, or a container coated with a fluororesin is preferable because it hardly reacts with fluorine gas.
- the flow rate of the raw material solution supplied to the reactor is not particularly limited, but is adjusted according to the equivalent of fluorine gas to the raw material compound, the size of the reactor, the pressure in the reactor, and the like.
- the flow rate of the raw material solution supplied to the reactor is preferably 0.5 to 100 mmol/min, more preferably 2 to 30 mmol/min, based on the number of moles of hydrogen atoms contained in the raw material compound.
- a fluorinated polyether is obtained in which hydrogen atoms bonded to carbon atoms contained in the raw material compound represented by formula (X) are substituted with fluorine atoms.
- a compound represented by formula (Xf) can be produced by step (2).
- Rf 4 —O—(Rf 1 —O) x —Rf 5 (Xf) Rf 1 represents a divalent perfluorohydrocarbon group in which all hydrogen atoms of R 1 in formula (X) are substituted with fluorine atoms.
- Rf 4 represents all of R 4 in formula (X) represents a group in which hydrogen atoms of are substituted with fluorine atoms.
- Rf 5 represents a group in which all hydrogen atoms of R 5 in formula (X) are substituted with fluorine atoms.x is the same as formula (X) is.)
- step (3) of introducing the perhalogenated unsaturated hydrocarbon compound into the reactor while circulating the inert gas and the fluorine gas in the reactor may be performed. good.
- the reaction rate of the fluorination reaction may decrease. Therefore, after the step (2), it is preferable to include the step (3) of introducing the perhalogen unsaturated hydrocarbon compound into the reactor while circulating the inert gas and the fluorine gas.
- the step (3) By introducing the perhalogen unsaturated hydrocarbon compound, the unsaturated bonds in the perhalogen unsaturated hydrocarbon compound react with fluorine gas to generate fluorine radicals. Since the generated fluorine radicals react with the raw material compound to progress fluorination, the step (3) can promote the fluorination reaction.
- step (3) those exemplified in step (2) can be used.
- the flow rates of the inert gas and the fluorine gas in step (3) are preferably adjusted so that the concentration of the fluorine gas circulated in the reactor is within the range exemplified in step (2).
- Perhalogen unsaturated hydrocarbon compounds include hexafluorobenzene, hexachlorobenzene, chloropentafluorobenzene, trichlorotrifluorobenzene, decafluorobiphenyl, octafluoronaphthalene, tetrachloroethylene, trichlorofluoroethylene, dichlorodifluoroethylene, trichlorotrifluoropropene, Dichlorotetrafluoropropene and the like can be mentioned, and among these, hexafluorobenzene, which is easily available and easy to handle, is particularly preferred.
- step (3) By using a perhalogen-unsaturated hydrocarbon compound in step (3), as in the case of using an unsaturated hydrocarbon compound having a C-H bond such as benzene, the C-H bond in the unsaturated hydrocarbon compound Fluorine gas is not consumed in the fluorination of , and the amount of fluorine gas used does not increase.
- the perhalogenated unsaturated hydrocarbon compound in step (3) it is preferable to dissolve the perhalogenated unsaturated hydrocarbon compound in a solvent and introduce a constant amount of the compound into the reactor.
- the flow rate of the perhalogen unsaturated hydrocarbon compound is preferably 1/50 to 1/5 mol with respect to the flow rate of the fluorine gas in terms of the number of moles of unsaturated bonds in the perhalogen unsaturated hydrocarbon compound. It is a double amount, more preferably 1/30 to 1/10 molar amount.
- the perhalogenated unsaturated hydrocarbon compound When the perhalogenated unsaturated hydrocarbon compound is distributed in an amount of 1/50 times the molar amount or more, the progress of the fluorination reaction does not slow down, and the reaction time can be prevented from becoming long.
- the amount of the perhalogen unsaturated hydrocarbon compound to be distributed is 1/5 times the molar amount or less, it is possible to prevent the reaction from running out of control and the occurrence of side reactions.
- the pressure in the reactor when the perhalogen unsaturated hydrocarbon compound is introduced is preferably 0.08 to 0.12 MPa, more preferably normal pressure (0.1 MPa) to 0.115 MPa.
- the temperature in the reactor when the perhalogenated unsaturated hydrocarbon compound is introduced is preferably -30 to 60°C, more preferably -20 to 30°C.
- step (3) it is preferable to use the same solvent as in step (2).
- solvent used in step (3) it is preferable to use the same solvent as in step (2).
- those exemplified in step (2) can be used.
- the concentration of the perhalogenated unsaturated hydrocarbon compound in the feed solution may be adjusted according to the solubility in the solvent. , preferably 0.01 to 100 mol/L, more preferably 0.1 to 10 mol/L, based on the number of moles of unsaturated bonds in the perhalogen unsaturated hydrocarbon compound.
- step (4) of reacting the fluorinated polyether with an alcohol having 1 to 3 carbon atoms may be performed after step (2) or step (3).
- the fluorinated polyether produced in step (2) and/or step (3) may readily react with moisture in the air to form a carboxylic acid compound. Therefore, it is preferable to perform the step (4) in consideration of the ease of handling in the post-process. In particular, when R 4 and R 5 are acyl groups in the raw material compound represented by formula (X), it is preferable to carry out step (4).
- alcohols having 1 to 3 carbon atoms include methanol, ethanol, and n-propanol. Among these, methanol is preferred.
- the reaction temperature in step (4) is preferably -30 to 60°C, more preferably -20 to 30°C.
- the reaction pressure is preferably 0.08 to 0.12 MPa, more preferably normal pressure (0.1 MPa) to 0.115 MPa.
- the amount of alcohol introduced is preferably 2 per mole number (theoretical amount based on the number of moles of the raw material compound) of the reaction terminal contained in the fluorinated polyether produced in step (2) and/or step (3). ⁇ 10 equivalents, more preferably 3-5 equivalents.
- R 4 and R 5 are acyl groups in the starting compound represented by formula (X), the structure represented by —O—(R 1 —O) x — (R 4 and R 5 in formula (X) Among the carbon atoms contained in the structure except for ), the outermost carbon atom becomes a carbonyl carbon atom, and an acyl group perfluorinated by a fluorination reaction (Rf 4 and Rf in formula (Xf) 5 ) is eliminated to form an acid fluoride. Acid fluorides react with alcohols to form carboxylic acid esters.
- step (4) of reacting the fluorinated polyether produced in the step (2) and/or the step (3) with an alcohol having 1 to 3 carbon atoms for example, represented by the formula (Y) compounds can be produced.
- Rf 1 represents a divalent perfluorohydrocarbon group having 2 to 5 carbon atoms.
- Rf 1 in each structural unit represented by (Rf 1 —O) may be the same,
- Rf 2 and Rf 3 each independently represent a perfluorohydrocarbon group having 1 to 4 carbon atoms, and the structural unit located at the terminal in formula (X) may be partially or wholly different.
- R 6 and R 7 each independently represent an alkyl group having 1 to 3 carbon atoms
- y represents an average degree of polymerization, and is a real number of 0.7 to 13.
- formula (Y) the structure represented by -O-(Rf 1 -O) y - is attached to both ends of the structure represented by -O-(R 1 -O) x - in formula (X). It corresponds to a structure in which all hydrogen atoms of R 1 in the structure excluding the arranged structural units are substituted with fluorine atoms.
- formula (Y) the structure of Rf 1 in each structural unit represented by (Rf 1 -O) and the arrangement order of each structural unit represented by (Rf 1 -O) are the same as those of formula (X ) in the structure represented by —O—(R 1 —O) x —, excluding the structural units arranged at both ends.
- the hydroxyl group protected by the protecting groups represented by R 4 and R 5 in the raw material compound represented by formula (X) is a primary hydroxyl group (for example, the hydroxyl group of —CH 2 OH).
- the hydroxyl group of —CH 2 OH is not limited, and may be a secondary hydroxyl group (eg, -CH(CH 3 )OH hydroxyl group) or a tertiary hydroxyl group (eg, -C(CH 3 ) 2 OH hydroxyl group).
- the theoretical value of the number average molecular weight of the product of step (4) is preferably 350 or more and 4000 or less, more preferably 500 or more and 2600 or less.
- the measured value/theoretical value of the number average molecular weight of the product of step (4) is preferably 0.9 or more and 1.1 or less, more preferably 0.95 or more and 1.05 or less.
- step (2), step (3) or step (4) can be isolated as a residue after distilling off the solvent.
- alkaline water is not particularly limited, but sodium carbonate water or sodium bicarbonate water is preferable in terms of availability and ease of handling.
- a hydrogen fluoride scavenger and a drying agent are preferable in order to completely remove water and hydrogen fluoride.
- hydrogen fluoride scavengers examples include alkali metal fluorides such as sodium fluoride and potassium fluoride, and organic bases such as trialkylamine.
- the hydrogen fluoride scavenger is preferably a solid alkali metal fluoride, particularly preferably sodium fluoride, for ease of separation.
- sodium sulfate or magnesium sulfate is preferable.
- step (5) By filtering off the solids and then distilling off the solvent, the product of step (2), step (3) or step (4) can be isolated, and the recovered solvent can be easily reused, resulting in complete Loss of expensive solvents such as halogen-substituted compounds can be reduced.
- step (5) of reducing esters at both terminals of the compound obtained in step (4) may be performed.
- the compound represented by the formula (Y) is obtained by the step (4)
- the compound represented by the formula (Z) can be produced by performing the step (5).
- step (5) known methods for reducing esters can be used. For example, a method of mixing the compound obtained in step (4) with a reducing agent in a solvent can be used.
- the solvent used in step (5) is preferably an alcohol having 1 to 5 carbon atoms. Ethanol is particularly preferred as the alcohol, since the compound obtained in step (4) is highly soluble.
- Reducing agents used in step (5) include alkali metal salts of borohydride compounds such as sodium borohydride and lithium borohydride; alkaline earth metal salts of borohydride compounds such as magnesium borohydride and calcium borohydride. Salt; preferably at least one selected from the group consisting of aluminum hydride salts such as lithium aluminum hydride and sodium aluminum hydride.
- borohydride is particularly preferred because of its availability and ease of handling.
- step (5) when step (5) is performed on the final product of formula (i) shown in step (4), a compound represented by formula (ii) is produced.
- x in formula (ii) is the same as formula (i).
- NMR measurement> The number average molecular weight measured by NMR is a value measured by 1 H-NMR and 19 F-NMR using AVANCEIII400 manufactured by Bruker Biospin.
- NMR nuclear magnetic resonance
- the sample was diluted with d-chloroform and d-acetone solvents and used for the measurement.
- the standard for 1 H-NMR chemical shift was 0.0 ppm for the tetramethylsilane peak
- 19 F-NMR chemical shift was ⁇ 164.7 ppm for the hexafluorobenzene peak.
- the ratio of low molecular weight components (components with a degree of polymerization of 1 and 2) and the ratio of high molecular weight components (components with a degree of polymerization of (average degree of polymerization + 4) or more) contained in the raw material of step (2) are It was calculated from the results of GPC measurement.
- the total peak area of the raw material compound is the area of the entire peak excluding impurity peaks. The peak of each degree of polymerization was divided vertically at the minimum and inflection points.
- Proportion of low molecular weight components (%) (sum of peak areas of components with degrees of polymerization 1 and 2)/(total peak area of starting compound) *100
- Proportion (%) of high-molecular-weight components ((average degree of polymerization + 4) or higher total peak area of components with degree of polymerization)/(total peak area of raw material compound) *100
- Some of the peaks of high molecular weight components were difficult to separate, based on the ratio of components with a degree of polymerization of (average degree of polymerization + 3) or higher, or (average degree of polymerization + 2) or higher, (average The maximum value of the ratio of components with a degree of polymerization of +4) or more was calculated.
- Recovery rate (%) (mass of the product in step (4) (g)/theoretical value of the number average molecular weight of the product in step (4) (g/mol)) / (mass of the raw material in step (2) (g ) / number average molecular weight of raw material in step (2) (g / mol)) * 100 ⁇ Theoretical value of average degree of polymerization and number average molecular weight>
- the raw material (fluorinated raw material) in step (2) is CH 3 —(C ⁇ O)—O—(CH 2 CH 2 CH 2 O) n —(C ⁇ O)—CH 3
- its average degree of polymerization is n
- the number average molecular weight of the fluorinated raw material is 58.08n+102.09.
- the theoretical value of the average degree of polymerization of the product of step (4) is represented by "n-2"
- the theoretical value of the number average molecular weight of the product of step (4) is represented by
- the average degree of polymerization is n
- the number average molecular weight of the fluorinated raw material is 44.05n+102.09.
- the theoretical value of the average degree of polymerization of the product of step (4) is represented by "n-2”
- the theoretical value of the number average molecular weight of the product of step (4) is represented by 116.01n+2.08.
- a component having a degree of polymerization of 3 to 7 is fractionated, and CH 3 —(C ⁇ O)—O—(CH 2 CH 2 CH 2 O) n —(C ⁇ O) is used as a raw material compound with an adjusted molecular weight distribution.
- HFTCB tetrachlorohexafluorobutane
- the temperature inside the autoclave was adjusted to 25 to 30° C., and while circulating fluorine gas at 150 mL/min and nitrogen gas at 1350 mL/min, the C 6 F 6 solution was added at 0.83 g/min based on the mass of the solution.
- Step (3) After the introduction of C 6 F 6 in step (3), the flow of fluorine gas and nitrogen gas was continued for 10 minutes, then the flow of fluorine gas was stopped, and nitrogen gas was flowed at 1350 mL/min for 1 hour, followed by autoclaving. purged inside. 74 g of methanol was introduced while circulating nitrogen gas.
- FIG. 1 H-NMR spectrum of the fluorinated raw material of Example 1 is shown in FIG. 1
- 1 H-NMR spectrum of the product of step (4) of Example 1 is shown in FIG. 3 shows the 19 F-NMR spectrum
- FIG. 4 shows the GPC chart of the fluorinated raw material of Example 1
- FIG. 5 shows the GPC chart of the product of step (4) of Example 1.
- the numbers shown in the GPC charts of FIGS. 4 and 5 represent the degree of polymerization of the component corresponding to each peak.
- CH 3 —(C ⁇ O)—O—(CH 2 CH 2 CH 2 O) n —(C ⁇ O)—CH 3 (n represents the average degree of polymerization, n 4. 59,Mn 369) 46 g was dissolved in 17.5 mL HFTCB to prepare a stock solution.
- Fluorine gas was circulated at 588 mL/min and nitrogen gas at 4600 mL/min, and the raw material solution was introduced at a flow rate of 0.23 g/min based on the mass of the solution while cooling the inside temperature to 25°C. fluorination reaction was carried out.
- ⁇ Step (3)> A C6F6 solution was prepared by dissolving 1.87 g of C6F6 in 73 mL of HFTCB. The temperature inside the autoclave was adjusted to 25 to 30° C., and while circulating fluorine gas at 150 mL/min and nitrogen gas at 1350 mL/min, the C 6 F 6 solution was added at 0.83 g/min based on the mass of the solution.
- Step (3) After the introduction of C 6 F 6 in step (3), the flow of fluorine gas and nitrogen gas was continued for 10 minutes, then the flow of fluorine gas was stopped, and nitrogen gas was flowed at 1350 mL/min for 1 hour, followed by autoclaving. purged inside. 80 g of methanol was introduced while circulating nitrogen gas.
- the temperature inside the autoclave was adjusted to 25 to 30° C., and while circulating fluorine gas at 150 mL/min and nitrogen gas at 1350 mL/min, the C 6 F 6 solution was added at 0.83 g/min based on the mass of the solution. It was introduced into circulation at a flow rate of ⁇ Step (4)> After the introduction of C 6 F 6 in step (3), the flow of fluorine gas and nitrogen gas was continued for 10 minutes, then the flow of fluorine gas was stopped, and nitrogen gas was flowed at 1350 mL/min for 1 hour, followed by autoclaving. purged inside. 47 g of methanol was introduced while circulating nitrogen gas.
- the temperature inside the autoclave was adjusted to 25 to 30° C., and while circulating fluorine gas at 150 mL/min and nitrogen gas at 1350 mL/min, the C 6 F 6 solution was added at 0.83 g/min based on the mass of the solution. It was introduced into circulation at a flow rate of ⁇ Step (4)> After the introduction of C 6 F 6 in step (3), the flow of fluorine gas and nitrogen gas was continued for 10 minutes, then the flow of fluorine gas was stopped, and nitrogen gas was flowed at 1350 mL/min for 1 hour, followed by autoclaving. purged inside. 105 g of methanol was introduced while circulating nitrogen gas.
- ⁇ Step (3)> A C6F6 solution was prepared by dissolving 1.87 g of C6F6 in 73 mL of HFTCB. The temperature inside the autoclave was adjusted to 25 to 30° C., and while circulating fluorine gas at 150 mL/min and nitrogen gas at 1350 mL/min, the C 6 F 6 solution was added at 0.83 g/min based on the mass of the solution. It was introduced into circulation at a flow rate of ⁇ Step (4)> After the introduction of C 6 F 6 in step (3), the flow of fluorine gas and nitrogen gas was continued for 10 minutes, then the flow of fluorine gas was stopped, and nitrogen gas was flowed at 1350 mL/min for 1 hour, followed by autoclaving. purged inside. 73 g of methanol was introduced while circulating nitrogen gas.
- a component having a degree of polymerization of 5 to 9 is fractionated, and CH 3 —(C ⁇ O)—O—(CH 2 CH 2 CH 2 O) n —(C ⁇ O) is used as a raw material compound with an adjusted molecular weight distribution.
- ⁇ Step (2)> 3100 mL of HFTCB was introduced into a 5 L autoclave and sealed. An operation of introducing nitrogen gas into the autoclave until the internal pressure reached 0.3 MPa and slowly releasing the pressure to normal pressure was performed 10 times for purging. CH 3 —(C ⁇ O)—O—(CH 2 CH 2 CH 2 O) n —(C ⁇ O)—CH 3 (n represents the average degree of polymerization, n 6. 88, Mn 502) 25 g was dissolved in 9.7 mL of HFTCB to obtain a raw material solution.
- Fluorine gas was circulated at 588 mL/min and nitrogen gas at 4600 mL/min, and the raw material solution was introduced at a flow rate of 0.22 g/min based on the mass of the solution while cooling the inside temperature to 25°C. fluorination reaction was carried out.
- ⁇ Step (3)> A C6F6 solution was prepared by dissolving 1.87 g of C6F6 in 73 mL of HFTCB. The temperature inside the autoclave was adjusted to 25 to 30° C., and while circulating fluorine gas at 150 mL/min and nitrogen gas at 1350 mL/min, the C 6 F 6 solution was added at 0.83 g/min based on the mass of the solution.
- Step (3) After the introduction of C 6 F 6 in step (3), the flow of fluorine gas and nitrogen gas was continued for 10 minutes, then the flow of fluorine gas was stopped, and nitrogen gas was flowed at 1350 mL/min for 1 hour, followed by autoclaving. purged inside. 32 g of methanol was introduced while circulating nitrogen gas.
- CH 3 —(C ⁇ O)—O—(CH 2 CH 2 O) n —(C ⁇ O)—CH 3 (n represents the average degree of polymerization, n 6.46,
- a stock solution was prepared by dissolving 42 g of Mn 387) in 15.9 mL of HFTCB.
- Fluorine gas was circulated at 588 mL/min and nitrogen gas at 4600 mL/min, and the raw material solution was introduced at a flow rate of 0.25 g/min based on the mass of the solution while cooling the inside temperature to 25°C. fluorination reaction was carried out.
- ⁇ Step (3)> A C6F6 solution was prepared by dissolving 1.87 g of C6F6 in 73 mL of HFTCB. The temperature inside the autoclave was adjusted to 25 to 30° C., and while circulating fluorine gas at 150 mL/min and nitrogen gas at 1350 mL/min, the C 6 F 6 solution was added at 0.83 g/min based on the mass of the solution.
- Step (3) After the introduction of C 6 F 6 in step (3), the flow of fluorine gas and nitrogen gas was continued for 10 minutes, then the flow of fluorine gas was stopped, and nitrogen gas was flowed at 1350 mL/min for 1 hour, followed by autoclaving. purged inside. 69 g of methanol was introduced while circulating nitrogen gas.
- Step (3) A C6F6 solution was prepared by dissolving 1.87 g of C6F6 in 73 mL of HFTCB. The temperature inside the autoclave was adjusted to 25 to 30° C., and while circulating fluorine gas at 150 mL/min and nitrogen gas at 1350 mL/min, the C 6 F 6 solution was added at 0.83 g/min based on the mass of the solution.
- Step (3) After the introduction of C 6 F 6 in step (3), the flow of fluorine gas and nitrogen gas was continued for 10 minutes, then the flow of fluorine gas was stopped, and nitrogen gas was flowed at 1350 mL/min for 1 hour, followed by autoclaving. purged inside. 43 g of methanol was introduced while circulating nitrogen gas.
- the upper row is the measured value of the compound (HO—(CH 2 CH 2 CH 2 O) u —H) in which the hydroxyl group is not protected.
- the lower row shows measured values of a compound in which hydroxyl groups are protected (the number average molecular weight and average degree of polymerization are calculated values based on the degree of polymerization before hydroxyl groups are acetylated).
- the number average molecular weight (Mn), average degree of polymerization, Mw/Mn the range of the degree of polymerization, the ratio of low molecular weight components, and the ratio of high molecular weight components of the raw materials in step (2);
- the measured values of the number average molecular weight (Mn) and the average degree of polymerization of the product the theoretical values of the number average molecular weight (Mn) and the average degree of polymerization;
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Polyethers (AREA)
Abstract
Description
[1] 構造単位(R1-O)を有する重合体化合物の分子量分布を調整する操作を行い、式(X)で表される原料化合物を得る工程(1)、および
前記工程(1)の後に、式(X)で表される前記原料化合物、不活性ガス、フッ素ガス、および溶媒を反応器に導入して、前記原料化合物をフッ素化する工程(2)を含むことを特徴とする、フッ素化ポリエーテルの製造方法。
(R1は炭素原子数2~5の2価の炭化水素基を表す。(R1-O)で表される各構造単位中のR1は、すべて同じであってもよく、一部または全部が異なっていてもよい。R4およびR5はそれぞれ独立に、水酸基の保護基を表す。xは平均重合度を表し、2.7~15の実数である。)
[2] 前記工程(1)が、式(A)で表される化合物の分子量分布を調整する工程(1A)を含む、[1]に記載のフッ素化ポリエーテルの製造方法。
(R1は式(X)と同じである。R2およびR3はそれぞれ独立に、水酸基の保護基を表す。pは平均重合度を表し、1以上の実数である。)
[3] 前記工程(1)が、式(B)で表される化合物の分子量分布を調整する工程(1B)を含む、[1]に記載のフッ素化ポリエーテルの製造方法。
(R1は式(X)と同じである。qは平均重合度を表し、1以上の実数である。)
[4] 前記工程(1)が、前記工程(1B)の後に、前記工程(1B)により得た化合物の水酸基を保護する工程(1C)を含む、[3]に記載のフッ素化ポリエーテルの製造方法。
[5] 前記工程(1)が、前記工程(1C)の後に、前記工程(1C)により得た化合物の分子量分布を調整する工程(1D)を含む、[4]に記載のフッ素化ポリエーテルの製造方法。
[6] 前記工程(1)における分子量分布を調整する操作が、
式(X)と同じ構造単位を有する重合体化合物に対して、分子量分布が狭くなるように調整する操作、および、
式(X)と同じ構造単位を有する重合体化合物の単分散体を、2種類以上混合して分子量分布を調整する操作、
から選択される少なくとも1つの操作である、[1]~[5]のいずれか1項に記載のフッ素化ポリエーテルの製造方法。
[7] 前記工程(1)における分子量分布を調整する操作が、
式(X)と同じ構造単位を有する重合体化合物に対して、分子量分布が狭くなるように調整する操作である、[1]~[6]のいずれか1項に記載のフッ素化ポリエーテルの製造方法。
[8] 前記原料化合物の分子量分布を表すMw/Mnが1.30以下である、[1]~[7]のいずれか1項に記載のフッ素化ポリエーテルの製造方法。
[9] 前記原料化合物に含まれる、式(X-1)で表される化合物の合計割合が、GPC分析に基づくピーク面積比率で5%以下である、[1]~[8]のいずれか1項に記載のフッ素化ポリエーテルの製造方法。
(R1、R4、R5は式(X)と同じである。rは1または2を表す。)
[10] 前記原料化合物に含まれる、式(X-2)で表される化合物の合計割合が、GPC分析に基づくピーク面積比率で15%以下である、[1]~[9]のいずれか1項に記載のフッ素化ポリエーテルの製造方法。
(R1、R4、R5は式(X)と同じである。sは整数であり、s≧(式(X)の平均重合度x+4)を満たす。)
[11] 前記工程(2)の後に、前記反応器に不活性ガスおよびフッ素ガスを流通させながら、前記反応器にパーハロゲン不飽和炭化水素化合物を導入する工程(3)を含む、[1]~[10]のいずれか1項に記載のフッ素化ポリエーテルの製造方法。
[12] 前記原料化合物が、式(X)中のR4およびR5がアシル基である化合物である、[1]~[11]のいずれか1項に記載のフッ素化ポリエーテルの製造方法。
[13] [1]~[12]のいずれか1項に記載の製造方法により得たフッ素化ポリエーテルを、炭素原子数1~3のアルコールと反応させる工程(4)を含む、式(Y)で表される化合物の製造方法。
(Rf1は、炭素原子数2~5の2価のパーフルオロ炭化水素基を表す。(Rf1-O)で表される各構造単位中のRf1は、すべて同じであってもよく、一部または全部が異なっていてもよい。Rf2およびRf3は、それぞれ独立に炭素原子数1~4のパーフルオロ炭化水素基を表し、式(X)中の末端に配置された構造単位の構造に応じて決定される。R6およびR7は、それぞれ独立に炭素原子数1~3のアルキル基を表す。yは平均重合度を表し、0.7~13の実数である。)
[14] [13]に記載の製造方法により得た式(Y)で表される化合物の、両末端のエステルを還元する工程(5)を含む、式(Z)で表される化合物の製造方法。
(Rf1、Rf2、Rf3、およびyは式(Y)と同じである。)
(R1は炭素原子数2~5の2価の炭化水素基を表す。(R1-O)で表される各構造単位中のR1は、すべて同じであってもよく、一部または全部が異なっていてもよい。R4およびR5はそれぞれ独立に、水酸基の保護基を表す。xは平均重合度を表し、2.7~15の実数である。)
<工程(1)>
本実施態様の製造方法において、工程(1)では、構造単位(R1-O)を有する重合体化合物の分子量分布を調整する操作を行い、式(X)で表される原料化合物を得る。
[式(X)で表される原料化合物]
式(X)において、各構造単位中のR1はそれぞれ独立に、炭素原子数2~5の2価の炭化水素基を表す。炭化水素基は、直鎖の炭化水素基であってもよく、分岐を有する炭化水素基であってもよい。式(X)中のR1は、好ましくは炭素原子数2~4の炭化水素基であり、例えば、-CH2-CH2-、-CH2-CH2-CH2-、-CH2-CH(CH3)-、-CH(CH3)-CH2-、-CH2-CH2-CH2-CH2-、-CH(CH3)-CH2-CH2-、-CH2-CH(CH3)-CH2-、-CH2-CH2-CH(CH3)-が挙げられる。式(X)中のR1は、より好ましくは直鎖の炭化水素基、つまり-CH2-CH2-、-CH2-CH2-CH2-、-CH2-CH2-CH2-CH2-であり、更に好ましくは-CH2-CH2-CH2-である。
(R1aは炭素原子数2~5の2価の炭化水素基を表し、xa個のR1aはすべて同じである。R4およびR5はそれぞれ独立に、水酸基の保護基を表す。xaは平均重合度を表し、2.7~15の実数である。)
式(X)で表される原料化合物がコポリマーである場合、例えば、式(X-b)または式(X-c)で表される化合物が原料化合物として挙げられる。
(R1b、R1cはそれぞれ独立に、炭素原子数2~5の2価の炭化水素基を表し、R1bとR1cは異なる構造である。R4およびR5はそれぞれ独立に、水酸基の保護基を表す。xb、xcはそれぞれ平均重合度を表し、xbとxcの和が2.7~15の実数である。(R1b-O)、(R1c-O)で表される構造単位の配列の順序は、特に限定されない。)
R4-O-(R1d-O)xd-(R1e-O)xe-(R1f-O)xf-R5 (X-c)
(R1d、R1e、R1fはそれぞれ独立に、炭素原子数2~5の2価の炭化水素基を表し、R1dとR1eとR1fはそれぞれ異なる構造である。R4およびR5はそれぞれ独立に、水酸基の保護基を表す。xd、xe、xfはそれぞれ平均重合度を表し、xdとxeとxfの和が2.7~15の実数である。(R1d-O)、(R1e-O)、(R1f-O)で表される構造単位の配列の順序は、特に限定されない。)
式(X)で表される原料化合物がコポリマーである場合、具体的には、式(X-b)で表され、R1bとR1cの組み合わせが、-CH2-CH2-、-CH2-CH2-CH2-、-CH2-CH2-CH2-CH2-から選択される2種の組み合わせである化合物が好ましい。
[分子量分布を調整する操作]
工程(1)では、構造単位(R1-O)を有する重合体化合物(以下、「調整対象化合物」という場合がある。)の分子量分布を調整する操作を行う。
調整対象化合物は、式(X)と同じ構造単位を有する。すなわち、調整対象化合物は、構造単位が式(X)における(R1-O)の組み合わせと同じである。
例えば、工程(1)により、コポリマーである式(X-b)で表される原料化合物を得る場合、調整対象化合物は、構造単位が(R1b-O)、(R1c-O)で表される重合体化合物である。
(R1は式(X)と同じである。R2およびR3はそれぞれ独立に、水酸基の保護基を表す。pは平均重合度を表し、1以上の実数である。)
HO-(R1-O)q-H (B)
(R1は式(X)と同じである。qは平均重合度を表し、1以上の実数である。)
一実施態様では、工程(1)は、式(A)で表される化合物の分子量分布を調整する工程(1A)を含む。式(A)で表される化合物は、市販品を用いてもよく、合成品を用いてもよい。
工程(1)において、分子量分布を調整する工程を2回以上実施する場合、それぞれの工程における分子量分布を調整する操作は、同じであってもよく、異なっていてもよい。例えば、工程(1)が上記工程(1B)、(1C)、(1D)を含む場合、工程(1B)と工程(1D)における分子量分布を調整する操作は、同じであってもよく、異なっていてもよい。
R4-O-(R1-O)r-R5 (X-1)
(R1、R4、R5は式(X)と同じである。rは1または2を表す。)
式(X-1)で表される化合物は、式(X)とR1、R4、R5が同じであって、重合度を表すrが1または2であり、低分子量成分を表す。工程(1)では、分子量分布を調整する操作によって、低分子量成分を除去することが好ましい。工程(1)において、低分子量成分を低減することにより、工程(2)において、原料化合物の数平均分子量から算出される理論通りの数平均分子量のフッ素化ポリエーテルを、高収率で得られやすくなる。
工程(1)で得られる式(X)で表される原料化合物に含まれる、式(X-2)で表される化合物の合計割合が、GPC分析に基づくピーク面積比率で15%以下であることが好ましい。
(R1、R4、R5は式(X)と同じである。sは整数であり、s≧(式(X)の平均重合度x+4)を満たす。)
式(X-2)で表される化合物は、式(X)とR1、R4、R5が同じであって、重合度を表すsが、s≧(式(X)の平均重合度x+4)を満たす整数値であり、高分子量成分を表す。工程(1)では、分子量分布を調整する操作によって、高分子量成分を除去することが好ましい。工程(1)において、高分子量成分を低減することにより、工程(2)において、原料化合物の数平均分子量から算出される理論通りの数平均分子量のフッ素化ポリエーテルを、高収率で得られやすくなる。
<工程(2)>
本実施態様の製造方法において、工程(2)では、式(X)で表される原料化合物、不活性ガス、フッ素ガス、および溶媒を反応器に導入して、原料化合物をフッ素化する。
流通式の場合、反応器に供給する原料溶液の流量は特に制限されないが、原料化合物に対するフッ素ガスの当量、反応器の大きさ、反応器内の圧力などに応じて調整される。反応器に供給する原料溶液の流量は、原料化合物に含まれる水素原子のモル数基準で、好ましくは0.5~100mmol/min、より好ましくは2~30mmol/minである。
Rf4-O-(Rf1-O)x-Rf5 (Xf)
(Rf1は、式(X)中のR1のすべての水素原子がフッ素原子に置換された2価のパーフルオロ炭化水素基を表す。Rf4は、式(X)中のR4のすべての水素原子がフッ素原子に置換された基を表す。Rf5は、式(X)中のR5のすべての水素原子がフッ素原子に置換された基を表す。xは式(X)と同じである。)
<工程(3)>
本実施態様の製造方法において、工程(2)の後に、反応器に不活性ガスおよびフッ素ガスを流通させながら、反応器にパーハロゲン不飽和炭化水素化合物を導入する工程(3)を行ってもよい。
<工程(4)>
本実施態様の製造方法において、工程(2)または工程(3)の後に、フッ素化ポリエーテルを、炭素原子数1~3のアルコールと反応させる工程(4)を行ってもよい。
アルコールの導入量は、工程(2)および/または工程(3)で生成するフッ素化ポリエーテルに含まれる反応末端のモル数(原料化合物のモル数に基づく理論量)に対して、好ましくは2~10当量、より好ましくは3~5当量である。
(Rf1は、炭素原子数2~5の2価のパーフルオロ炭化水素基を表す。(Rf1-O)で表される各構造単位中のRf1は、すべて同じであってもよく、一部または全部が異なっていてもよい。Rf2およびRf3は、それぞれ独立に炭素原子数1~4のパーフルオロ炭化水素基を表し、式(X)中の末端に配置された構造単位の構造に応じて決定される。R6およびR7は、それぞれ独立に炭素原子数1~3のアルキル基を表す。yは平均重合度を表し、0.7~13の実数である。)
式(Y)において、-O-(Rf1-O)y-で表される構造は、式(X)における-O-(R1-O)x-で表される構造の、両末端に配置された構造単位を除いた構造中の、R1のすべての水素原子がフッ素原子に置換された構造に相当する。したがって、式(Y)において、(Rf1-O)で表される各構造単位中のRf1の構造、および(Rf1-O)で表される各構造単位の配列順序は、式(X)における-O-(R1-O)x-で表される構造の、両末端に配置された構造単位を除いた構造に応じて決定される。
<工程(5)>
本実施態様の製造方法において、工程(4)の後に、工程(4)により得た化合物の両末端のエステルを還元する工程(5)を行ってもよい。工程(4)により式(Y)で表される化合物を得た場合、工程(5)を行うことにより、式(Z)で表される化合物を製造することができる。
(Rf1、Rf2、Rf3、およびyは式(Y)と同じである。)
工程(5)では、エステルを還元するための公知の方法を用いることができる。例えば、工程(4)により得た化合物を、溶媒中で還元剤と混合する方法を用いることができる。
<NMR測定>
NMR測定による数平均分子量は、ブルカー・バイオスピン社製AVANCEIII400による1H-NMRおよび19F-NMRによって測定された値である。NMR(核磁気共鳴)の測定において、試料をd-クロロホルム、d-アセトン溶媒へ希釈し、測定に使用した。1H-NMRケミカルシフトの基準は、テトラメチルシランのピークを0.0ppmとし、19F-NMRケミカルシフトの基準は、ヘキサフルオロベンゼンのピークを-164.7ppmとした。
HO-(CH2CH2CH2O)u-H(uは平均重合度を表す。)
1H-NMR(CDCl3):δ[ppm]=3.7~3.9(4H),3.4~3.6(4(u-1)H),2.0~3.0(2H),1.7~1.9(2uH)
CH3-(C=O)-O-(CH2CH2CH2O)n-(C=O)-CH3(nは平均重合度を表す。)
1H-NMR(CDCl3):δ[ppm]=4.0~4.3(4H),3.2~3.3(4(n-1)H),2.0(6H),1.7~1.9(2nH)
CH3O-(C=O)-CF2CF2O-(CF2CF2CF2O)m-CF2CF2-(C=O)-OCH3(mは平均重合度を表す。)
1H-NMR(acetone-D6):δ[ppm]=4.07(6H)
19F-NMR(acetone-D6):δ[ppm]=-84.2~-84.3(4mF),-86.1~-86.4(4F),-122.5~-122.8(4F),-129.8~-130.2(2mF)
HO-CH2-CF2CF2O-(CF2CF2CF2O)m’-CF2CF2-CH2-OH(m’は平均重合度を表す。)
1H-NMR(acetone-D6):δ[ppm]=5.1~5.2(2H)、4.0~4.1(4H)
19F-NMR(acetone-D6):δ[ppm]=-84.2~-84.8(4m’F),-86.4~-87.3(4F),-126.3~-126.7(4F),-129.8~-130.2(2m’F)
CH3-(C=O)-O-(CH2CH2O)n-(C=O)-CH3(nは平均重合度を表す。)
1H-NMR(CDCl3):δ[ppm]=4.2~4.3(4H),3.6~3.7(4(n-1)H),2.0(6H)
CH3O-(C=O)-CF2O-(CF2CF2O)m-CF2-(C=O)-OCH3(mは平均重合度を表す。)
1H-NMR(acetone-D6):δ[ppm]=4.06(6H)
19F-NMR(acetone-D6):δ[ppm]=-78.5~-78.6(4F),-88.0~-89.8(4mF)
<GPC測定>
試料50mgをテトラヒドロフラン1mLに溶解し、測定サンプルとして用いた。GPC測定条件を以下に示す。標準物質としてはAgilent社製の「EasiVial PEG」を使用し、標準物質を用いて作成した検量線に基づき分子量分布データ(GPCチャート)を得た。
装置名: 株式会社島津製作所製 HPLC Prominence UFLC
カラム:昭和電工株式会社製Shodex(登録商標) KF-402HQ(1本)およびKF-401HQ(3本)を直列に接続して使用
カラム温度:30℃
移動相:テトラヒドロフラン
注入量:1μL
流速:0.2mL/min
検出器:RI
工程(1)の調整対象化合物のMw/Mnと、工程(2)の原料のMw/Mnは、上記のGPC測定結果から求めた。Mw/MnにおけるMnは、NMRではなくGPC測定によって得られた値である。
高分子量成分の割合(%)=((平均重合度+4)以上の重合度の成分のピーク面積の合計)/(原料化合物の全ピーク面積) *100
一部、高分子量成分のピークの分離が困難であったものは、(平均重合度+3)以上の重合度、または(平均重合度+2)以上の重合度の成分の割合に基づいて、(平均重合度+4)以上の重合度の成分の割合の最大値を算出した。
<工程(2)~(4)における回収率の計算>
回収率(%) = (工程(4)の生成物の質量(g)/工程(4)の生成物の数平均分子量の理論値(g/mol)) / (工程(2)の原料の質量(g)/工程(2)の原料の数平均分子量(g/mol)) *100
<平均重合度および数平均分子量の理論値>
工程(2)の原料(フッ素化原料)がCH3-(C=O)-O-(CH2CH2CH2O)n-(C=O)-CH3である場合、その平均重合度をnとするとフッ素化原料の数平均分子量は58.08n+102.09である。工程(4)の生成物の平均重合度の理論値は「n-2」で表され、工程(4)の生成物の数平均分子量の理論値は166.02n+2.08で表される。
[実施例1]
<工程(1)>
逐次重合で合成したHO-(CH2CH2CH2O)u-H(uは平均重合度を表す。)を塩化アセチルと反応させて、両端の水酸基をアセチル化した。得られたCH3-(C=O)-O-(CH2CH2CH2O)w-(C=O)-CH3(wは平均重合度を表す。w=4.51)を工程(1)における調整対象化合物として用いた。調整対象化合物118gに対して減圧蒸留(200~240℃、22~27Pa)を行った。重合度が3~7の成分を分取して、分子量分布が調整された原料化合物としてCH3-(C=O)-O-(CH2CH2CH2O)n-(C=O)-CH3(nは平均重合度を表す。n=4.06,Mn 338)を得た(回収率(質量比) 33%)。
<工程(2)>
5Lオートクレーブにテトラクロロヘキサフルオロブタン(以下、「HFTCB」と記載することもある。)3100mLを導入して密閉した。オートクレーブ内に窒素ガスを内圧が0.3MPa(ゲージ圧)になるまで導入しゆっくりと常圧へと開放する操作を、10回行いパージした。工程(1)で得たCH3-(C=O)-O-(CH2CH2CH2O)n-(C=O)-CH3(nは平均重合度を表す。n=4.06,Mn 338)39gをHFTCB 14.9mLに溶解して、原料溶液を準備した。フッ素ガスを588mL/min、窒素ガスを4600mL/minで流通し、内温が25℃になるように冷却しながら、原料溶液を、溶液の質量基準で0.23g/minの流量で流通導入してフッ素化反応を行った。
<工程(3)>
ヘキサフルオロベンゼン(C6F6)1.87gをHFTCB 73mLに溶解して、C6F6溶液を準備した。オートクレーブ内温度が25~30℃になるように調整し、フッ素ガスを150mL/min、窒素ガスを1350mL/minで流通しながら、C6F6溶液を、溶液の質量基準で0.83g/minの流量で流通導入した。
<工程(4)>
工程(3)においてC6F6を導入終了後、10分間フッ素ガスと窒素ガスの流通を継続し、その後フッ素ガスの流通を停止して、窒素ガスを1350mL/minで1時間流通してオートクレーブ内をパージした。窒素ガスの流通をしながらメタノール74gを導入した。
[実施例2]
<工程(1)>
逐次重合で合成したHO-(CH2CH2CH2O)u-H(uは平均重合度を表す。)を塩化アセチルと反応させて、両端の水酸基をアセチル化した。得られたCH3-(C=O)-O-(CH2CH2CH2O)w-(C=O)-CH3(wは平均重合度を表す。w=4.70)を工程(1)における調整対象化合物として用いた。調整対象化合物99gを2回に分けて分取クロマトグラフィー(シリカ500g、ノルマルヘキサン/酢酸エチル=90/10~0/100(体積比))により分画した。重合度が3~7の成分を分取して、分子量分布が調整された原料化合物としてCH3-(C=O)-O-(CH2CH2CH2O)n-(C=O)-CH3(nは平均重合度を表す。n=4.59,Mn 369)を得た(回収率(質量比) 49%)。
<工程(2)>
5LオートクレーブにHFTCB 3100mLを導入して密閉した。オートクレーブ内に窒素ガスを内圧が0.3MPaになるまで導入しゆっくりと常圧へと開放する操作を、10回行いパージした。工程(1)で得たCH3-(C=O)-O-(CH2CH2CH2O)n-(C=O)-CH3(nは平均重合度を表す。n=4.59,Mn 369)46gをHFTCB 17.5mLに溶解して、原料溶液を準備した。フッ素ガスを588mL/min、窒素ガスを4600mL/minで流通し、内温が25℃になるように冷却しながら、原料溶液を、溶液の質量基準で0.23g/minの流量で流通導入してフッ素化反応を行った。
<工程(3)>
C6F6 1.87gをHFTCB 73mLに溶解して、C6F6溶液を準備した。オートクレーブ内温度が25~30℃になるように調整し、フッ素ガスを150mL/min、窒素ガスを1350mL/minで流通しながら、C6F6溶液を、溶液の質量基準で0.83g/minの流量で流通導入した。
<工程(4)>
工程(3)においてC6F6を導入終了後、10分間フッ素ガスと窒素ガスの流通を継続し、その後フッ素ガスの流通を停止して、窒素ガスを1350mL/minで1時間流通してオートクレーブ内をパージした。窒素ガスの流通をしながらメタノール80gを導入した。
<工程(5)>
工程(4)で得られたCH3O-(C=O)-CF2CF2O-(CF2CF2CF2O)m-CF2CF2-(C=O)-OCH3の還元反応を、以下の方法により行った。
[実施例3]
<工程(1)>
逐次重合で合成したHO-(CH2CH2CH2O)u-H(uは平均重合度を表す。)を塩化アセチルと反応させて、両端の水酸基をアセチル化した。得られたCH3-(C=O)-O-(CH2CH2CH2O)w-(C=O)-CH3(wは平均重合度を表す。w=3.13)を工程(1)における調整対象化合物として用いた。調整対象化合物105gに対して減圧蒸留(110~160℃、106~200Pa、充填剤DIXON PACKING(日本メッシュ工業株式会社製) 外径6mm使用)を行った。重合度が1と2の成分を留去して、分子量分布が調整された原料化合物としてCH3-(C=O)-O-(CH2CH2CH2O)n-(C=O)-CH3(nは平均重合度を表す。n=4.72,Mn 376)を得た(回収率(質量比) 66%)。
<工程(2)>
5LオートクレーブにHFTCB 3100mLを導入して密閉した。オートクレーブ内に窒素ガスを内圧が0.3MPaになるまで導入しゆっくりと常圧へと開放する操作を、10回行いパージした。工程(1)で得たCH3-(C=O)-O-(CH2CH2CH2O)n-(C=O)-CH3(nは平均重合度を表す。n=4.72,Mn 376)34gをHFTCB 12.9mLに溶解して、原料溶液を準備した。フッ素ガスを588mL/min、窒素ガスを4600mL/minで流通し、内温が25℃になるように冷却しながら、原料溶液を、溶液の質量基準で0.23g/minの流量で流通導入してフッ素化反応を行った。
<工程(3)>
C6F6 1.87gをHFTCB 73mLに溶解して、C6F6溶液を準備した。オートクレーブ内温度が25~30℃になるように調整し、フッ素ガスを150mL/min、窒素ガスを1350mL/minで流通しながら、C6F6溶液を、溶液の質量基準で0.83g/minの流量で流通導入した。
<工程(4)>
工程(3)においてC6F6を導入終了後、10分間フッ素ガスと窒素ガスの流通を継続し、その後フッ素ガスの流通を停止して、窒素ガスを1350mL/minで1時間流通してオートクレーブ内をパージした。窒素ガスの流通をしながらメタノール47gを導入した。
[実施例4]
<工程(1)>
逐次重合で合成した、HO-(CH2CH2CH2O)u-H(uは平均重合度を表す。u=4.47,Mn 278)を工程(1)における1回目の調整対象化合物として用いた。調整対象化合物175gと水175gを室温で混合し、5℃に冷却することで固体を析出させた。析出した固体をろ別することで高分子量の成分を除去し、ろ液から水を留去させることで残渣を得た(回収率(質量比) 71%)。残渣として得たHO-(CH2CH2CH2O)v-H(vは平均重合度を表す。v=3.90,Mn 245)のMw/Mnは1.26であった。
<工程(2)>
5LオートクレーブにHFTCB 3100mLを導入して密閉した。オートクレーブ内に窒素ガスを内圧が0.3MPaになるまで導入しゆっくりと常圧へと開放する操作を、10回行いパージした。工程(1)で得たCH3-(C=O)-O-(CH2CH2CH2O)n-(C=O)-CH3(nは平均重合度を表す。n=4.87,Mn 385)63gをHFTCB 24.0mLに溶解して、原料溶液を準備した。フッ素ガスを588mL/min、窒素ガスを4600mL/minで流通し、内温が25℃になるように冷却しながら、原料溶液を、溶液の質量基準で0.23g/minの流量で流通導入してフッ素化反応を行った。
<工程(3)>
C6F6 1.87gをHFTCB 73mLに溶解して、C6F6溶液を準備した。オートクレーブ内温度が25~30℃になるように調整し、フッ素ガスを150mL/min、窒素ガスを1350mL/minで流通しながら、C6F6溶液を、溶液の質量基準で0.83g/minの流量で流通導入した。
<工程(4)>
工程(3)においてC6F6を導入終了後、10分間フッ素ガスと窒素ガスの流通を継続し、その後フッ素ガスの流通を停止して、窒素ガスを1350mL/minで1時間流通してオートクレーブ内をパージした。窒素ガスの流通をしながらメタノール105gを導入した。
[実施例5]
<工程(1)>
逐次重合で合成したHO-(CH2CH2CH2O)u-H(uは平均重合度を表す。)を塩化アセチルと反応させて、両端の水酸基をアセチル化した。得られたCH3-(C=O)-O-(CH2CH2CH2O)w-(C=O)-CH3(wは平均重合度を表す。w=5.39)を工程(1)における調整対象化合物として用いた。調整対象化合物100gを2回に分けて分取クロマトグラフィー(シリカ500g、ノルマルヘキサン/酢酸エチル=90/10~0/100(体積比))により分画した。重合度が4~8の成分を分取して、分子量分布が調整された原料化合物としてCH3-(C=O)-O-(CH2CH2CH2O)n-(C=O)-CH3(nは平均重合度を表す。n=5.66,Mn 431)を得た(回収率(質量比) 51%)。
<工程(2)>
5LオートクレーブにHFTCB 3100mLを導入して密閉した。オートクレーブ内に窒素ガスを内圧が0.3MPaになるまで導入しゆっくりと常圧へと解放する操作を、10回行いパージした。工程(1)で得たCH3-(C=O)-O-(CH2CH2CH2O)n-(C=O)-CH3(nは平均重合度を表す。n=5.66,Mn 431)49gをHFTCB 18.8mLに溶解して、原料溶液を得た。フッ素ガスを588mL/min、窒素ガスを4600mL/minで流通し、内温が25℃になるように冷却しながら、原料溶液を、溶液の質量基準で0.22g/minの流量で流通導入してフッ素化反応を行った。
<工程(3)>
C6F6 1.87gをHFTCB 73mLに溶解して、C6F6溶液を準備した。オートクレーブ内温度が25~30℃になるように調整し、フッ素ガスを150mL/min、窒素ガスを1350mL/minで流通しながら、C6F6溶液を、溶液の質量基準で0.83g/minの流量で流通導入した。
<工程(4)>
工程(3)においてC6F6を導入終了後、10分間フッ素ガスと窒素ガスの流通を継続し、その後フッ素ガスの流通を停止して、窒素ガスを1350mL/minで1時間流通してオートクレーブ内をパージした。窒素ガスの流通をしながらメタノール73gを導入した。
[実施例6]
<工程(1)>
逐次重合で合成したHO-(CH2CH2CH2O)u-H(uは平均重合度を表す。)を塩化アセチルと反応させて、両端の水酸基をアセチル化した。得られたCH3-(C=O)-O-(CH2CH2CH2O)w-(C=O)CH3(wは平均重合度を表す。w=7.35)を工程(1)における調整対象化合物として用いた。調整対象化合物117gを2回に分けて分取クロマトグラフィー(シリカ500g、ノルマルヘキサン/酢酸エチル=90/10~0/100(体積比))により分画した。重合度が5~9の成分を分取して、分子量分布が調整された原料化合物としてCH3-(C=O)-O-(CH2CH2CH2O)n-(C=O)-CH3(nは平均重合度を表す。n=6.88,Mn 502)を得た(回収率(質量比) 22%)。
<工程(2)>
5LオートクレーブにHFTCB 3100mLを導入して密閉した。オートクレーブ内に窒素ガスを内圧が0.3MPaになるまで導入しゆっくりと常圧へと解放する操作を、10回行いパージした。工程(1)で得たCH3-(C=O)-O-(CH2CH2CH2O)n-(C=O)-CH3(nは平均重合度を表す。n=6.88,Mn 502)25gをHFTCB 9.7mLに溶解して、原料溶液を得た。フッ素ガスを588mL/min、窒素ガスを4600mL/minで流通し、内温が25℃になるように冷却しながら、原料溶液を、溶液の質量基準で0.22g/minの流量で流通導入してフッ素化反応を行った。
<工程(3)>
C6F6 1.87gをHFTCB 73mLに溶解して、C6F6溶液を準備した。オートクレーブ内温度が25~30℃になるように調整し、フッ素ガスを150mL/min、窒素ガスを1350mL/minで流通しながら、C6F6溶液を、溶液の質量基準で0.83g/minの流量で流通導入した。
<工程(4)>
工程(3)においてC6F6を導入終了後、10分間フッ素ガスと窒素ガスの流通を継続し、その後フッ素ガスの流通を停止して、窒素ガスを1350mL/minで1時間流通してオートクレーブ内をパージした。窒素ガスの流通をしながらメタノール32gを導入した。
[実施例7]
<工程(1)>
市販品のHO-(CH2CH2O)u-H(uは平均重合度を表す。)を塩化アセチルと反応させて、両端の水酸基をアセチル化した。得られたCH3-(C=O)-O-(CH2CH2O)w-(C=O)-CH3(wは平均重合度を表す。)を工程(1)における調整対象化合物として用いた。調整対象化合物62gを分取クロマトグラフィー(シリカ400g、ノルマルヘキサン/酢酸エチル/イソプロピルアルコール=80/20/0~0/100/0~0/80/20(体積比))により分画した。重合度が5~8の成分を分取して、分子量分布が調整された原料化合物としてCH3-(C=O)-O-(CH2CH2O)n-(C=O)-CH3(nは平均重合度を表す。n=6.46,Mn 387)を得た(回収率(質量比) 49%)。
<工程(2)>
5LオートクレーブにHFTCB 3100mLを導入して密閉した。オートクレーブ内に窒素ガスを内圧が0.3MPaになるまで導入しゆっくりと常圧へと開放する操作を、10回行いパージした。工程(1)で得たCH3-(C=O)-O-(CH2CH2O)n-(C=O)-CH3(nは平均重合度を表す。n=6.46,Mn 387)42gをHFTCB 15.9mLに溶解して、原料溶液を準備した。フッ素ガスを588mL/min、窒素ガスを4600mL/minで流通し、内温が25℃になるように冷却しながら、原料溶液を、溶液の質量基準で0.25g/minの流量で流通導入してフッ素化反応を行った。
<工程(3)>
C6F6 1.87gをHFTCB 73mLに溶解して、C6F6溶液を準備した。オートクレーブ内温度が25~30℃になるように調整し、フッ素ガスを150mL/min、窒素ガスを1350mL/minで流通しながら、C6F6溶液を、溶液の質量基準で0.83g/minの流量で流通導入した。
<工程(4)>
工程(3)においてC6F6を導入終了後、10分間フッ素ガスと窒素ガスの流通を継続し、その後フッ素ガスの流通を停止して、窒素ガスを1350mL/minで1時間流通してオートクレーブ内をパージした。窒素ガスの流通をしながらメタノール69gを導入した。
[実施例8]
<工程(1)>
市販品のHO-(CH2CH2O)u-H(uは平均重合度を表す。)を塩化アセチルと反応させて、両端の水酸基をアセチル化した。得られたCH3-(C=O)-O-(CH2CH2O)w-(C=O)-CH3(wは平均重合度を表す。w=7.65,Mn 439)を工程(1)における調整対象化合物として用いた。調整対象化合物62gを分取クロマトグラフィー(シリカ500g、ノルマルヘキサン/酢酸エチル=90/10~0/100(体積比))により分画した。重合度が6~9の成分を分取して、分子量分布が調整された原料化合物としてCH3-(C=O)-O-(CH2CH2O)n-(C=O)-CH3(nは平均重合度を表す。n=7.50,Mn 433)を得た(回収率(質量比) 48%)。
<工程(2)>
5LオートクレーブにHFTCB 3100mLを導入して密閉した。オートクレーブ内に窒素ガスを内圧が0.3MPaになるまで導入しゆっくりと常圧へと開放する操作を、10回行いパージした。工程(1)で得たCH3-(C=O)-O-(CH2CH2O)n-(C=O)-CH3(nは平均重合度を表す。n=7.50,Mn 433)29gをHFTCB 149.6mLに溶解して、原料溶液を準備した。フッ素ガスを588mL/min、窒素ガスを4600mL/minで流通し、内温が25℃になるように冷却しながら、原料溶液を、溶液の質量基準で1.45g/minの流量で流通導入してフッ素化反応を行った。
<工程(3)>
C6F6 1.87gをHFTCB 73mLに溶解して、C6F6溶液を準備した。オートクレーブ内温度が25~30℃になるように調整し、フッ素ガスを150mL/min、窒素ガスを1350mL/minで流通しながら、C6F6溶液を、溶液の質量基準で0.83g/minの流量で流通導入した。
<工程(4)>
工程(3)においてC6F6を導入終了後、10分間フッ素ガスと窒素ガスの流通を継続し、その後フッ素ガスの流通を停止して、窒素ガスを1350mL/minで1時間流通してオートクレーブ内をパージした。窒素ガスの流通をしながらメタノール43gを導入した。
[比較例1]
逐次重合で合成したHO-(CH2CH2CH2O)u-H(uは平均重合度を表す。)を塩化アセチルと反応させて、両端の水酸基をアセチル化した。得られたCH3-(C=O)-O-(CH2CH2CH2O)n-(C=O)-CH3(nは平均重合度を表す。n=4.68,Mn 374)48gを、分子量分布を調整せずにそのままフッ素化原料として工程(2)に供した以外は、実施例1の工程(2)~(4)と同様にして反応を行い、工程(4)の生成物87g(回収率88%)を得た。得られた生成物を19F-NMRで分析した結果、CH3O-(C=O)-CF2CF2O-(CF2CF2CF2O)m-CF2CF2-(C=O)-OCH3(mは平均重合度を表す。m=3.94,Mn 988)であることを確認した。
[比較例2]
逐次重合で合成したHO-(CH2CH2CH2O)u-H(uは平均重合度を表す。)を塩化アセチルと反応させて、両端の水酸基をアセチル化した。得られたCH3-(C=O)-O-(CH2CH2CH2O)n-(C=O)-CH3(nは平均重合度を表す。n=7.83,Mn 557)42gを、分子量分布を調整せずにそのままフッ素化原料として工程(2)に供した以外は、実施例1の工程(2)~(4)と同様にして反応を行い、工程(4)の生成物63g(回収率64%)を得た。得られた生成物を19F-NMRで分析した結果、CH3O-(C=O)-CF2CF2O-(CF2CF2CF2O)m-CF2CF2-(C=O)-OCH3(mは平均重合度を表す。m=4.57,Mn 1093)であることを確認した。
[比較例3]
逐次重合で合成したHO-(CH2CH2CH2O)u-H(uは平均重合度を表す。)を塩化アセチルと反応させて、両端の水酸基をアセチル化した。得られたCH3-(C=O)-O-(CH2CH2CH2O)n-(C=O)-CH3(nは平均重合度を表す。n=8.58,Mn 600)40gを、分子量分布を調整せずにそのままフッ素化原料として工程(2)に供した以外は、実施例1の工程(2)~(4)と同様にして反応を行い、工程(4)の生成物82g(回収率86%)を得た。得られた生成物を19F-NMRで分析した結果、CH3O-(C=O)-CF2CF2O-(CF2CF2CF2O)m-CF2CF2-(C=O)-OCH3(mは平均重合度を表す。m=5.75,Mn 1289)であることを確認した。
Claims (14)
- 構造単位(R1-O)を有する重合体化合物の分子量分布を調整する操作を行い、式(X)で表される原料化合物を得る工程(1)、および
前記工程(1)の後に、式(X)で表される前記原料化合物、不活性ガス、フッ素ガス、および溶媒を反応器に導入して、前記原料化合物をフッ素化する工程(2)を含むことを特徴とする、フッ素化ポリエーテルの製造方法。
R4-O-(R1-O)x-R5 (X)
(R1は炭素原子数2~5の2価の炭化水素基を表す。(R1-O)で表される各構造単位中のR1は、すべて同じであってもよく、一部または全部が異なっていてもよい。R4およびR5はそれぞれ独立に、水酸基の保護基を表す。xは平均重合度を表し、2.7~15の実数である。) - 前記工程(1)が、式(A)で表される化合物の分子量分布を調整する工程(1A)を含む、請求項1に記載のフッ素化ポリエーテルの製造方法。
R2-O-(R1-O)p-R3 (A)
(R1は式(X)と同じである。R2およびR3はそれぞれ独立に、水酸基の保護基を表す。pは平均重合度を表し、1以上の実数である。) - 前記工程(1)が、式(B)で表される化合物の分子量分布を調整する工程(1B)を含む、請求項1に記載のフッ素化ポリエーテルの製造方法。
HO-(R1-O)q-H (B)
(R1は式(X)と同じである。qは平均重合度を表し、1以上の実数である。) - 前記工程(1)が、前記工程(1B)の後に、前記工程(1B)により得た化合物の水酸基を保護する工程(1C)を含む、請求項3に記載のフッ素化ポリエーテルの製造方法。
- 前記工程(1)が、前記工程(1C)の後に、前記工程(1C)により得た化合物の分子量分布を調整する工程(1D)を含む、請求項4に記載のフッ素化ポリエーテルの製造方法。
- 前記工程(1)における分子量分布を調整する操作が、
式(X)と同じ構造単位を有する重合体化合物に対して、分子量分布が狭くなるように調整する操作、および、
式(X)と同じ構造単位を有する重合体化合物の単分散体を、2種類以上混合して分子量分布を調整する操作、
から選択される少なくとも1つの操作である、請求項1~3のいずれか1項に記載のフッ素化ポリエーテルの製造方法。 - 前記工程(1)における分子量分布を調整する操作が、
式(X)と同じ構造単位を有する重合体化合物に対して、分子量分布が狭くなるように調整する操作である、請求項1~3のいずれか1項に記載のフッ素化ポリエーテルの製造方法。 - 前記原料化合物の分子量分布を表すMw/Mnが1.30以下である、請求項1~3のいずれか1項に記載のフッ素化ポリエーテルの製造方法。
- 前記原料化合物に含まれる、式(X-1)で表される化合物の合計割合が、GPC分析に基づくピーク面積比率で5%以下である、請求項1~3のいずれか1項に記載のフッ素化ポリエーテルの製造方法。
R4-O-(R1-O)r-R5 (X-1)
(R1、R4、R5は式(X)と同じである。rは1または2を表す。) - 前記原料化合物に含まれる、式(X-2)で表される化合物の合計割合が、GPC分析に基づくピーク面積比率で15%以下である、請求項1~3のいずれか1項に記載のフッ素化ポリエーテルの製造方法。
R4-O-(R1-O)s-R5 (X-2)
(R1、R4、R5は式(X)と同じである。sは整数であり、s≧(式(X)の平均重合度x+4)を満たす。) - 前記工程(2)の後に、前記反応器に不活性ガスおよびフッ素ガスを流通させながら、前記反応器にパーハロゲン不飽和炭化水素化合物を導入する工程(3)を含む、請求項1~3のいずれか1項に記載のフッ素化ポリエーテルの製造方法。
- 前記原料化合物が、式(X)中のR4およびR5がアシル基である化合物である、請求項1~3のいずれか1項に記載のフッ素化ポリエーテルの製造方法。
- 請求項1~3のいずれか1項に記載の製造方法により得たフッ素化ポリエーテルを、炭素原子数1~3のアルコールと反応させる工程(4)を含む、式(Y)で表される化合物の製造方法。
R6O-(C=O)-Rf2-O-(Rf1-O)y-Rf3-(C=O)-OR7 (Y)
(Rf1は、炭素原子数2~5の2価のパーフルオロ炭化水素基を表す。(Rf1-O)で表される各構造単位中のRf1は、すべて同じであってもよく、一部または全部が異なっていてもよい。Rf2およびRf3は、それぞれ独立に炭素原子数1~4のパーフルオロ炭化水素基を表し、式(X)中の末端に配置された構造単位の構造に応じて決定される。R6およびR7は、それぞれ独立に炭素原子数1~3のアルキル基を表す。yは平均重合度を表し、0.7~13の実数である。) - 請求項13に記載の製造方法により得た式(Y)で表される化合物の、両末端のエステルを還元する工程(5)を含む、式(Z)で表される化合物の製造方法。
HO-CH2-Rf2-O-(Rf1-O)y-Rf3-CH2-OH (Z)
(Rf1、Rf2、Rf3、およびyは式(Y)と同じである。)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280066918.9A CN118139839A (zh) | 2021-10-08 | 2022-10-07 | 氟化聚醚的制造方法 |
JP2023552964A JPWO2023058753A1 (ja) | 2021-10-08 | 2022-10-07 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-166426 | 2021-10-08 | ||
JP2021166426 | 2021-10-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023058753A1 true WO2023058753A1 (ja) | 2023-04-13 |
Family
ID=85804362
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/037645 WO2023058754A1 (ja) | 2021-10-08 | 2022-10-07 | フッ素化ポリエーテルの製造方法 |
PCT/JP2022/037644 WO2023058753A1 (ja) | 2021-10-08 | 2022-10-07 | フッ素化ポリエーテルの製造方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/037645 WO2023058754A1 (ja) | 2021-10-08 | 2022-10-07 | フッ素化ポリエーテルの製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (2) | JPWO2023058753A1 (ja) |
CN (2) | CN118055920A (ja) |
WO (2) | WO2023058754A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60202122A (ja) * | 1984-03-26 | 1985-10-12 | Daikin Ind Ltd | 新規含フツ素ポリエ−テルおよびその製法と用途 |
JPH04500520A (ja) * | 1988-09-28 | 1992-01-30 | エクスフルアー・リサーチ・コーポレーシヨン | 液相フツ素置換 |
JPH04500827A (ja) * | 1988-09-28 | 1992-02-13 | エクスフルアー・リサーチ・コーポレーシヨン | アセタール、ケタールおよびオルトエステルのフツ素化 |
JP2018090492A (ja) * | 2016-11-30 | 2018-06-14 | 昭和電工株式会社 | フッ素化方法およびパーフルオロポリエーテル系化合物の製造方法 |
-
2022
- 2022-10-07 JP JP2023552964A patent/JPWO2023058753A1/ja active Pending
- 2022-10-07 CN CN202280066885.8A patent/CN118055920A/zh active Pending
- 2022-10-07 WO PCT/JP2022/037645 patent/WO2023058754A1/ja active Application Filing
- 2022-10-07 CN CN202280066918.9A patent/CN118139839A/zh active Pending
- 2022-10-07 WO PCT/JP2022/037644 patent/WO2023058753A1/ja active Application Filing
- 2022-10-07 JP JP2023552965A patent/JPWO2023058754A1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60202122A (ja) * | 1984-03-26 | 1985-10-12 | Daikin Ind Ltd | 新規含フツ素ポリエ−テルおよびその製法と用途 |
JPH04500520A (ja) * | 1988-09-28 | 1992-01-30 | エクスフルアー・リサーチ・コーポレーシヨン | 液相フツ素置換 |
JPH04500827A (ja) * | 1988-09-28 | 1992-02-13 | エクスフルアー・リサーチ・コーポレーシヨン | アセタール、ケタールおよびオルトエステルのフツ素化 |
JP2018090492A (ja) * | 2016-11-30 | 2018-06-14 | 昭和電工株式会社 | フッ素化方法およびパーフルオロポリエーテル系化合物の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023058753A1 (ja) | 2023-04-13 |
WO2023058754A1 (ja) | 2023-04-13 |
JPWO2023058754A1 (ja) | 2023-04-13 |
CN118139839A (zh) | 2024-06-04 |
CN118055920A (zh) | 2024-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5149885B2 (ja) | ヘキサフルオロイソブチレンおよびそのより高い同族体およびそれらの誘導体のフルオロスルファート | |
JP2945693B2 (ja) | 液相フツ素置換 | |
JPH0582409B2 (ja) | ||
JP6850595B2 (ja) | フッ素化方法およびパーフルオロポリエーテル系化合物の製造方法 | |
JP5381273B2 (ja) | 含フッ素ポリエーテルカルボン酸アミドの製造法 | |
EP3611195A1 (en) | Partially fluorinated sulfinic acid monomers and their salts | |
US7132574B2 (en) | Preparation of perfluoropolyethers having at least one —CH2OH or —CH(CF3)OH end group | |
WO2023058753A1 (ja) | フッ素化ポリエーテルの製造方法 | |
JPS602291B2 (ja) | ペルフルオルアルコキシプロピオン酸フルオリドの製法 | |
US5506309A (en) | Perfluorinates polyethers | |
EP0590031B1 (en) | Perfluoro cyclic polyethers useful as lubricants and heat transfer fluids | |
EP0436628A1 (en) | Fluorination of epoxides | |
JP5851027B2 (ja) | 新規なフッ化不飽和化合物及び該化合物から得られるポリマー | |
EP2714655B1 (en) | Allyl ether-terminated fluoroalkanesulfinic acids, salts thereof, and a method of making the same | |
JP4742358B2 (ja) | 含フッ素エーテル化合物の製造方法 | |
JP2004231657A (ja) | フルオロハロゲンエーテルの製造方法 | |
JPWO2002088218A1 (ja) | フッ素化されたポリオキシアルキレン化合物の製造方法 | |
Chambers et al. | Free-radical chemistry: Part XII: Radical reactions of trifluoroethene | |
JPS5945664B2 (ja) | エステル基含有フルオロ酸フツ化物の製造方法 | |
JP2001526261A (ja) | フッ素化スルフィネートの作製方法 | |
WO2003106409A1 (ja) | 水溶性含フッ素ビニルエーテル製造方法 | |
WO2024111489A1 (ja) | 含フッ素化合物の製造方法 | |
WO2023233774A1 (ja) | 新規ジアリル含フッ素ポリエーテル化合物およびその製造法 | |
KR102425264B1 (ko) | 높은 전환율을 갖는 헥사플루오로프로필렌 옥사이드 이량체의 제조방법 | |
WO2024111488A1 (ja) | 含フッ素エステル化合物の製造方法及び組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22878620 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023552964 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280066918.9 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22878620 Country of ref document: EP Kind code of ref document: A1 |