WO2023054882A1 - 신규한 아세토하이드록시산 신테아제 변이체 및 이를 이용한 l-이소류신 생산방법 - Google Patents

신규한 아세토하이드록시산 신테아제 변이체 및 이를 이용한 l-이소류신 생산방법 Download PDF

Info

Publication number
WO2023054882A1
WO2023054882A1 PCT/KR2022/011610 KR2022011610W WO2023054882A1 WO 2023054882 A1 WO2023054882 A1 WO 2023054882A1 KR 2022011610 W KR2022011610 W KR 2022011610W WO 2023054882 A1 WO2023054882 A1 WO 2023054882A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
isoleucine
variant
present application
amino acid
Prior art date
Application number
PCT/KR2022/011610
Other languages
English (en)
French (fr)
Inventor
김희영
김경림
최우성
정기용
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to AU2022355342A priority Critical patent/AU2022355342A1/en
Priority to CA3233425A priority patent/CA3233425A1/en
Publication of WO2023054882A1 publication Critical patent/WO2023054882A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01006Acetolactate synthase (2.2.1.6)

Definitions

  • the present application relates to a novel acetohydroxy acid synthase (AHAS) variant that improves L-isoleucine production ability, a microorganism containing the same, and a method for producing L-isoleucine using the microorganism .
  • AHAS acetohydroxy acid synthase
  • L-isoleucine is one of the branched-chain amino acids among a total of 20 amino acids, and is classified as an essential amino acid and is used in animal feed, food additives, and medicine. Since L-isoleucine performs functions such as post-metabolism energy production, hemoglobin production, blood sugar control, muscle production and repair, L-isoleucine is increasingly used in the field of animal feed as well as infusion solutions, nutritional supplements, and sports supplements.
  • the present inventors identified a variant of acetohydroxy acid synthase (AHAS), one of the proteins in the L-isoleucine production pathway, and confirmed that the variant improved the L-isoleucine-producing ability of the strain. By doing so, this application was completed.
  • AHAS acetohydroxy acid synthase
  • One object of the present application is an acetohydroxy acid synthase (Acetohydroxy acid synthase) in which the amino acid corresponding to the 42nd position in the amino acid sequence of SEQ ID NO: 1 is substituted with another amino acid and the amino acid corresponding to the 47th position is substituted with another amino acid.
  • synthase, AHAS acetohydroxy acid synthase
  • Another object of the present application is to provide a polynucleotide encoding the variant of the present application.
  • Another object of the present application is the variant of the present application; Or a polynucleotide encoding the variant; to provide a strain of the genus Corynebacterium comprising a.
  • Another object of the present application is the variant of the present application; Or a polynucleotide encoding the variant; to provide a method for producing L-isoleucine, comprising the step of culturing a strain of the genus Corynebacterium comprising the above in a medium.
  • L-isoleucine Since the microorganisms expressing acetohydroxy acid synthase mutations in the present application can significantly improve L-isoleucine production compared to strains that do not express them, L-isoleucine can be effectively produced using them. Accordingly, a wide range of industrial applications such as food, feed, and medicine using L-isoleucine can be expected.
  • One aspect of the present application is acetohydroxy acid synthase in which the amino acid corresponding to position 42 in the amino acid sequence of SEQ ID NO: 1 is substituted with another amino acid and the amino acid corresponding to position 47 is substituted with another amino acid.
  • synthase, AHAS acetohydroxy acid synthase
  • the amino acid corresponding to the 42nd position may be substituted with valine.
  • amino acid corresponding to the 47th position may be substituted with leucine.
  • the variant of the present application may be one in which the amino acid corresponding to position 42 is substituted with valine and the amino acid corresponding to position 47 is substituted with leucine based on the amino acid sequence set forth in SEQ ID NO: 1, which is the parent sequence. At least 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, 99.5% or more from the amino acid sequence described in 1 , or an amino acid sequence having greater than 99.7% and less than 100% homology or identity.
  • sequence additions or deletions naturally occurring mutations, silent mutations or conservations to the amino acid sequence N-terminus, C-terminus and/or within that do not alter the function of the variants of the present application. This is the case with redundant substitution.
  • the "conservative substitution” refers to the substitution of one amino acid with another amino acid having similar structural and/or chemical properties. Such amino acid substitutions can generally occur based on similarities in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or amphipathic nature of the residues. Typically, conservative substitutions may have little or no effect on the activity of the protein or polypeptide.
  • variant means that one or more amino acids have been subjected to conservative substitution and/or modification, which is different from the amino acid sequence before the mutation, but the functions or properties refers to a polypeptide that is maintained.
  • variants can generally be identified by modifying one or more amino acids in the amino acid sequence of the polypeptide and evaluating the properties of the modified polypeptide. That is, the ability of the variant may be increased, unchanged, or reduced compared to the polypeptide before the mutation.
  • some variants may include variants in which one or more portions such as an N-terminal leader sequence or a transmembrane domain are removed.
  • variants may include variants in which a portion is removed from the N- and/or C-terminus of the mature protein.
  • variant may be used interchangeably with terms such as variant, variant, variant polypeptide, mutated protein, mutation and variant (in English, modification, modified polypeptide, modified protein, mutant, mutein, divergent, etc.) And, if the term is used in a mutated sense, it is not limited thereto.
  • Variants may also include deletions or additions of amino acids that have minimal impact on the secondary structure and properties of the polypeptide.
  • a signal (or leader) sequence involved in protein translocation may be conjugated to the N-terminus of the variant, either co-translationally or post-translationally.
  • the variant may be conjugated with other sequences or linkers to enable identification, purification, or synthesis.
  • parent sequence means a reference sequence that becomes a variant polypeptide by introducing a modification (modification). That is, the parental sequence may be a target for introducing mutations such as substitution, insertion, and/or deletion as a starting sequence.
  • the parental sequence may be a naturally occurring or wild type, or a variant in which one or more substitutions, insertions or deletions have occurred in the natural or wild type, or may be an artificially synthesized sequence. there is.
  • the term 'homology' or 'identity' refers to the degree of similarity between two given amino acid sequences or base sequences and can be expressed as a percentage.
  • the terms homology and identity are often used interchangeably.
  • Sequence homology or identity of conserved polynucleotides or polypeptides can be determined by standard alignment algorithms, together with default gap penalties established by the program used.
  • Substantially homologous or identical sequences generally comprise at least about 50%, 60%, 70% or more of the entire or full-length sequence under moderate or high stringent conditions. , can hybridize to 80% or more or 90% or more. It is obvious that hybridization also includes hybridization with polynucleotides containing common codons or codons in consideration of codon degeneracy in polynucleotides.
  • GAP program can define the total number of symbols in the shorter of the two sequences divided by the number of similarly arranged symbols (i.e., nucleotides or amino acids).
  • the default parameters for the GAP program are (1) a binary comparison matrix (containing values of 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation , pp. 353-358 (1979), Gribskov et al (1986) Nucl. Acids Res. 14: weighted comparison matrix of 6745 (or EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix); (2) a penalty of 3.0 for each gap and an additional penalty of 0.10 for each symbol in each gap (or 10 gap opening penalty, 0.5 gap extension penalty); and (3) no penalty for end gaps.
  • the variant of the present application may have acetohydroxy acid synthase (AHAS) activity.
  • the variant of the present application may have an activity to increase the L- isoleucine production ability compared to the wild-type polypeptide having acetohydroxy acid synthase activity.
  • acetohydroxy acid synthase is the first enzyme in L-valine biosynthesis, and is also referred to as acetolactate acidase.
  • Acetohydroxy acid synthase catalyzes the decarboxylation of pyruvate and its condensation reaction with other pyruvic acid molecules to produce acetolactate, a precursor of valine, or decarboxylation of pyruvate and 2-ketobutyrate ( 2-ketobutyrate) to produce acetohydroxybutyrate, a precursor of isoleucine.
  • the acetohydroxy acid synthase is encoded by two genes, ilvB and ilvN .
  • the ilvB gene represents the large subunit of acetohydroxy acid synthase
  • the ilvN gene represents the small subunit of acetohydroxy acid synthase. Each small subunit is coded. Among them, the small subunit encoded by the ilvN gene is considered to be critically involved in feedback inhibition.
  • the "feedback inhibition" means that an end product of an enzyme system inhibits a reaction at an early stage of the enzyme system.
  • an acetohydroxy acid synthase may be an acetohydroxy acid synthase encoded by the ilvN gene.
  • sequence of the acetohydroxy acid synthase encoded by the ilvN gene can be obtained from NCBI's GenBank, a known database, and may specifically have the amino acid sequence of SEQ ID NO: 1, but is not limited thereto.
  • corresponding to refers to an amino acid residue at a recited position in a polypeptide, or an amino acid residue that is similar, identical, or homologous to a recited residue in a polypeptide. Identification of the amino acid at the corresponding position may be determining the specific amino acid in the sequence that references the specific sequence.
  • corresponding region generally refers to a similar or corresponding position in a related or reference protein.
  • any amino acid sequence can be aligned with SEQ ID NO: 1, and based on this, each amino acid residue of the amino acid sequence can be numbered with reference to the numerical position of the amino acid residue corresponding to the amino acid residue of SEQ ID NO: 1.
  • sequence alignment algorithms such as those described herein, can identify the location of amino acids, or locations where modifications such as substitutions, insertions, or deletions occur, compared to a query sequence (also referred to as a “reference sequence”).
  • Such alignments include, for example, the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453), the Needleman program in the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al. , 2000), Trends Genet. 16: 276-277) may be used, but it is not limited thereto, and a sequence alignment program known in the art, a pairwise sequence comparison algorithm, and the like may be appropriately used.
  • the variant of the present application may have, include, consist of, or consist essentially of the amino acid sequence set forth in SEQ ID NO: 5.
  • Another aspect of the present application is to provide a polynucleotide encoding a variant of the present application.
  • polynucleotide is a polymer of nucleotides in which nucleotide monomers are covalently linked in a long chain shape, and is a DNA or RNA strand of a certain length or more, more specifically, encoding the variant means a polynucleotide fragment.
  • the polynucleotide encoding the variant of the present application may include a nucleotide sequence encoding the amino acid sequence described in SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 5.
  • the polynucleotide of the present application may have or include the sequence of SEQ ID NO: 24.
  • the polynucleotide of the present application may consist of or essentially consist of the sequence of SEQ ID NO: 24.
  • the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application in consideration of codon degeneracy or preferred codons in organisms intended to express the variants of the present application. Transformations can be made. Specifically, the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more of the sequence of SEQ ID NO: 2.
  • the codon encoding the amino acid corresponding to the 42nd position of SEQ ID NO: 1 may be one of the codons encoding valine, and the codon encoding the amino acid corresponding to the 47th position. can be one of the codons encoding the acid.
  • polynucleotide of the present application is included without limitation as long as it is a probe that can be prepared from a known gene sequence, for example, a sequence that can hybridize under stringent conditions with a sequence complementary to all or part of the polynucleotide sequence of the present application.
  • stringent condition means a condition that allows specific hybridization between polynucleotides. These conditions are described in J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York, 9.50-9.51, 11.7-11.8).
  • polynucleotides with high homology or identity 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, Or a condition in which polynucleotides having 99% or more homology or identity hybridize and polynucleotides having lower homology or identity do not hybridize, or 60 ° C., which is a washing condition for normal southern hybridization, 1XSSC, 0.1% SDS, specifically 60 ° C, 0.1XSSC, 0.1% SDS, more specifically 68 ° C, 0.1XSSC, 0.1% SDS, at a salt concentration and temperature equivalent to 1 time, specifically 2 to 3 times washing conditions can be enumerated.
  • Hybridization requires that two nucleic acids have complementary sequences, although mismatches between bases are possible depending on the stringency of hybridization.
  • complementary is used to describe the relationship between nucleotide bases that are capable of hybridizing to each other. For example, with respect to DNA, adenine is complementary to thymine and cytosine is complementary to guanine.
  • the polynucleotides of the present application may also include substantially similar nucleic acid sequences as well as isolated nucleic acid fragments complementary to the entire sequence.
  • a polynucleotide having homology or identity to the polynucleotide of the present application can be detected using hybridization conditions including a hybridization step at a Tm value of 55°C and using the above-described conditions.
  • the Tm value may be 60 ° C, 63 ° C or 65 ° C, but is not limited thereto and may be appropriately adjusted by those skilled in the art according to the purpose.
  • Appropriate stringency for hybridizing the polynucleotides depends on the length of the polynucleotides and the degree of complementarity, parameters well known in the art (e.g., J. Sambrook et al., supra).
  • Another aspect of the present application is to provide a vector comprising the polynucleotide of the present application.
  • the vector may be an expression vector for expressing the polynucleotide in a host cell, but is not limited thereto.
  • the vector of the present application may include a DNA product containing the nucleotide sequence of a polynucleotide encoding the target polypeptide operably linked to a suitable expression control region (or expression control sequence) so as to express the target polypeptide in a suitable host.
  • the expression control region may include a promoter capable of initiating transcription, an arbitrary operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosome binding site, and a sequence regulating termination of transcription and translation.
  • the vector After transformation into a suitable host cell, the vector can replicate or function independently of the host genome and can integrate into the genome itself.
  • Vectors used in the present application are not particularly limited, and any vectors known in the art may be used.
  • Examples of commonly used vectors include natural or recombinant plasmids, cosmids, viruses and bacteriophages.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A can be used as phage vectors or cosmid vectors, and pDZ-based, pBR-based, and pUC-based plasmid vectors , pBluescriptII-based, pGEM-based, pTZ-based, pCL-based, pET-based, etc. can be used.
  • pDZ, pDC, pDCM2, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vectors and the like can be used.
  • a polynucleotide encoding a target polypeptide may be inserted into a chromosome through a vector for chromosomal insertion into a cell. Insertion of the polynucleotide into the chromosome may be performed by any method known in the art, for example, homologous recombination, but is not limited thereto.
  • a selection marker for determining whether the chromosome is inserted may be further included.
  • the selectable marker is used to select cells transformed with a vector, that is, to determine whether a target nucleic acid molecule has been inserted, and can exhibit selectable phenotypes such as drug resistance, auxotrophy, resistance to cytotoxic agents, or surface polypeptide expression. markers may be used. In an environment treated with a selective agent, only cells expressing the selectable marker survive or exhibit other expression traits, so transformed cells can be selected.
  • the term "transformation” means introducing a vector containing a polynucleotide encoding a target polypeptide into a host cell or microorganism so that the polypeptide encoded by the polynucleotide can be expressed in the host cell.
  • the transformed polynucleotide can be expressed in the host cell, it may be inserted into and located in the chromosome of the host cell or located outside the chromosome.
  • the polynucleotide includes DNA and/or RNA encoding a polypeptide of interest.
  • the polynucleotide may be introduced in any form as long as it can be introduced and expressed into a host cell.
  • the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a genetic construct containing all elements required for self-expression.
  • the expression cassette may include a promoter operably linked to the polynucleotide, a transcription termination signal, a ribosome binding site, and a translation termination signal.
  • the expression cassette may be in the form of an expression vector capable of self-replication.
  • the polynucleotide may be introduced into a host cell in its own form and operably linked to a sequence necessary for expression in the host cell, but is not limited thereto.
  • operably linked means that the polynucleotide sequence is functionally linked to a promoter sequence that initiates and mediates the transcription of the polynucleotide encoding the target variant of the present application.
  • Another aspect of the present application is to provide a strain of the genus Corynebacterium , including the variant of the present application or the polynucleotide of the present application.
  • the strain of the present application may include the variant polypeptide of the present application, a polynucleotide encoding the polypeptide, or a vector containing the polynucleotide of the present application.
  • strain or microorganism
  • strain includes both wild-type microorganisms and naturally or artificially genetically modified microorganisms, and causes such as insertion of foreign genes or enhancement or inactivation of endogenous gene activity.
  • a microorganism whose specific mechanism is attenuated or enhanced due to, it may be a microorganism containing genetic modification for the production of a desired polypeptide, protein or product.
  • the strains of the present application include strains containing any one or more of the variants of the present application, the polynucleotides of the present application, and vectors containing the polynucleotides of the present application; strains modified to express variants of the present application or polynucleotides of the present application; variants of the present application, or strains expressing the polynucleotides of the present application (eg, recombinant strains); Or it may be a strain (eg, a recombinant strain) having the mutant activity of the present application, but is not limited thereto.
  • the strain of the present application may be a strain having an L-isoleucine producing ability.
  • the strain of the present application is a microorganism naturally having the ability to produce acetohydroxy acid synthase or L-isoleucine, or a mutant of the present application or poly-encoding the same in a parent strain that does not have the ability to produce acetohydroxy acid synthase or L-isoleucine. It may be a microorganism into which a nucleotide (or a vector containing the polynucleotide) is introduced and/or endowed with L-isoleucine-producing ability, but is not limited thereto.
  • the strain of the present application is a cell or microorganism that is transformed with a vector containing a polynucleotide of the present application or a polynucleotide encoding a variant of the present application and expresses the variant of the present application, and for the purpose of the present application
  • the strains of the application may include all microorganisms capable of producing L-isoleucine, including the variants of the present application.
  • a polynucleotide encoding the variant of the present application is introduced into a natural wild-type microorganism or a microorganism that produces L-isoleucine, so that the acetohydroxy acid synthase variant is expressed, and the L-isoleucine-producing ability is increased. It may be an increased recombinant strain.
  • the recombinant strain with increased L-isoleucine-producing ability is a natural wild-type microorganism or an acetohydroxy acid synthase unmodified microorganism (ie, a microorganism expressing wild-type acetohydroxy acid synthase (SEQ ID NO: 1) or a mutant form (SEQ ID NO: 1)).
  • microorganisms that do not express the protein may be microorganisms with increased L-isoleucine-producing ability, but are not limited thereto.
  • the acetohydroxy acid synthase unmodified microorganism which is a target strain for comparing the increase in the L-isoleucine-producing ability, is Corynebacterium glutami, which introduces hom (R407H) and ilvA (T381A, F383A) mutations Coomb ATCC13032 strain (CA10-3101, KCCM12739P) or NTG (N-Methyl-N'-nitro-N-nitrosoguanidine) treated L-isoleucine producing strain KCJI-38 strain (KCCM11248P, Korean Patent No. 10-1335789) It may be, but is not limited thereto.
  • the recombinant strain having increased production capacity has an L-isoleucine production capacity of about 1% or more, specifically about 2% or more, about 5% or more, about 10% or more, about 15% or more, about 20% or more, about 25% or more, about 29% or more, about 30% or more, about 35% or more, about 39% or more, about 40% or more, about 41% or more, about 43% or more, about 45% or more, about 46% or more, about 50% or more, about 52% or more, about 55% or more, about 57% or more, about 58% or more, about 60% or more, or about 63% or more , e.g., about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 40% or less, about 30% or less, about 20% or less, or about 15% or less).
  • the recombinant strain having increased production capacity has an L-isoleucine production capacity of about 1.01 times or more, about 1.02 times or more, about 1.05 times or more, about 1.10 times or more, about 1.15 times or more, compared to the parental strain or non-modified microorganism before mutation.
  • the term "unmodified microorganism” does not exclude strains containing mutations that may occur naturally in microorganisms, and are wild-type strains or wild-type strains themselves, or are genetically modified by natural or artificial factors. It may mean a strain before change.
  • the non-modified microorganism may mean a strain before or without introduction of the acetohydroxy acid synthase variant described herein.
  • the "unmodified microorganism” may be used interchangeably with "strain before transformation", “microorganism before transformation”, “non-mutated strain”, “unmodified strain”, “non-mutated microorganism” or "reference microorganism".
  • the microorganisms of the present application are Corynebacterium genus ( Corynebacterium stationis ), Corynebacterium glutamicum ( Corynebacterium glutamicum ), Corynebacterium crudilactis ( Corynebacterium crudilactis ), Corynebacterium Leeum deserti ( Corynebacterium deserti ), Corynebacterium efficiens ( Corynebacterium efficiens ), Corynebacterium callunae ( Corynebacterium callunae ), Corynebacterium singulare ( Corynebacterium singulare ), Corynebacterium halotoleans ( Corynebacterium halotolerans ), Corynebacterium striatum ( Corynebacterium striatum ), Corynebacterium ammonia Genes ( Corynebacterium ammoniagenes ), Corynebacterium pollutis
  • the term "enhancement" of polypeptide activity means that the activity of the polypeptide is increased relative to the intrinsic activity.
  • the enhancement may be used interchangeably with terms such as activation, up-regulation, overexpression, and increase.
  • activation, enhancement, upregulation, overexpression, and increase may include those that exhibit an activity that was not originally possessed, or those that exhibit enhanced activity compared to intrinsic activity or activity before modification.
  • the "intrinsic activity” refers to the activity of a specific polypeptide originally possessed by a parent strain or unmodified microorganism before transformation when a character is changed due to genetic mutation caused by natural or artificial factors. This may be used interchangeably with “activation before transformation”.
  • “Enhancement”, “upregulation”, “overexpression” or “increase” of the activity of a polypeptide compared to the intrinsic activity means that the activity and/or concentration (expression amount) is improved.
  • the enhancement can be achieved by introducing a foreign polypeptide or by enhancing the activity and/or concentration (expression level) of an endogenous polypeptide. Whether or not the activity of the polypeptide is enhanced can be confirmed from an increase in the activity level, expression level, or amount of a product released from the corresponding polypeptide.
  • Enhancement of the activity of the polypeptide can be applied by various methods well known in the art, and is not limited as long as the activity of the target polypeptide can be enhanced compared to the microorganism before transformation. Specifically, it may be using genetic engineering and / or protein engineering, which is well known to those skilled in the art, which is a routine method of molecular biology, but is not limited thereto (e.g., Sitnicka et al. Functional Analysis of Genes. Advances in Cell Biology. 2010, Vol. 2. 1-16, Sambrook et al. Molecular Cloning 2012, etc.).
  • modification of the polynucleotide sequence encoding the polypeptide to enhance the activity of the polypeptide eg, modification of the polynucleotide sequence of the polypeptide gene to encode the modified polypeptide to enhance the activity of the polypeptide
  • It may be a combination of two or more selected from 1) to 8), but is not particularly limited thereto.
  • the increase in the intracellular copy number of the polynucleotide encoding the polypeptide is achieved by introducing into the host cell a vector capable of replicating and functioning independently of the host, to which the polynucleotide encoding the corresponding polypeptide is operably linked. it may be Alternatively, it may be achieved by introducing one copy or two or more copies of a polynucleotide encoding the corresponding polypeptide into the chromosome of the host cell.
  • the introduction into the chromosome may be performed by introducing a vector capable of inserting the polynucleotide into the chromosome of the host cell into the host cell, but is not limited thereto.
  • the vector is as described above.
  • the expression control region may include a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence regulating termination of transcription and translation.
  • the original promoter may be replaced with a strong promoter, but is not limited thereto.
  • Examples of known strong promoters include cj1 to cj7 promoter (US Patent US 7662943 B2), lac promoter, trp promoter, trc promoter, tac promoter, lambda phage PR promoter, PL promoter, tet promoter, gapA promoter, SPL7 promoter, SPL13 (sm3) promoter (US Patent US 10584338 B2), O2 promoter (US Patent US 10273491 B2), tkt promoter, yccA promoter, etc., but are not limited thereto.
  • Modification of the nucleotide sequence encoding the initiation codon or 5'-UTR region of the gene transcript encoding the polypeptide is, for example, a nucleotide sequence encoding another initiation codon with a higher polypeptide expression rate than the endogenous initiation codon. It may be substituted, but is not limited thereto.
  • Modification of the amino acid sequence or polynucleotide sequence of 4) and 5) above may include deletion, insertion, non-conservative or conservative substitution of the amino acid sequence of the polypeptide or the polynucleotide sequence encoding the polypeptide to enhance the activity of the polypeptide.
  • the combination thereof may be a sequence mutation, or replacement with an amino acid sequence or polynucleotide sequence improved to have stronger activity, or an amino acid sequence or polynucleotide sequence improved to increase activity, but is not limited thereto.
  • the replacement may be specifically performed by inserting the polynucleotide into a chromosome by homologous recombination, but is not limited thereto.
  • the vector used at this time may further include a selection marker for checking whether the chromosome is inserted.
  • the selectable marker is as described above.
  • Introduction of a foreign polynucleotide exhibiting the activity of the polypeptide may be introduction of a foreign polynucleotide encoding a polypeptide exhibiting the same/similar activity as the polypeptide into a host cell.
  • the foreign polynucleotide is not limited in origin or sequence as long as it exhibits the same/similar activity as the polypeptide.
  • the method used for the introduction can be performed by appropriately selecting a known transformation method by a person skilled in the art, and expression of the introduced polynucleotide in a host cell can generate a polypeptide and increase its activity.
  • the codon optimization of the polynucleotide encoding the polypeptide is codon optimization of the endogenous polynucleotide to increase transcription or translation in the host cell, or optimization of the transcription or translation of the foreign polynucleotide in the host cell. It may be that the codons of this have been optimized.
  • Analyzing the tertiary structure of the polypeptide to select and modify or chemically modify the exposed site for example, by comparing the sequence information of the polypeptide to be analyzed with a database in which sequence information of known proteins is stored, depending on the degree of sequence similarity. It may be to determine a template protein candidate according to the method, confirm the structure based on this, and modify or modify an exposed portion to be chemically modified to be modified or modified.
  • Such enhancement of polypeptide activity is an increase in the activity or concentration of the corresponding polypeptide based on the activity or concentration of the polypeptide expressed in the wild-type or unmodified microbial strain, or an increase in the amount of the product produced from the corresponding polypeptide. It may be, but is not limited thereto.
  • Modification of some or all of the polynucleotides in the microorganism of the present application is (a) genome editing using homologous recombination or genetic scissors (engineered nuclease, e.g., CRISPR-Cas9) using a vector for chromosomal insertion into the microorganism and / or (b) It may be induced by light and/or chemical treatment, such as ultraviolet light and radiation, but is not limited thereto.
  • a method of modifying part or all of the gene may include a method using DNA recombination technology.
  • a part or all of a gene may be deleted by injecting a nucleotide sequence or vector containing a nucleotide sequence homologous to a target gene into the microorganism to cause homologous recombination.
  • the injected nucleotide sequence or vector may include a dominant selection marker, but is not limited thereto.
  • Another aspect of the present application provides a method for producing L-isoleucine, comprising the step of culturing a strain of the genus Corynebacterium containing the variant of the present application or the polynucleotide of the present application in a medium.
  • the L-isoleucine production method of the present application may include culturing a strain of the genus Corynebacterium including the variant of the present application, the polynucleotide of the present application, or the vector of the present application in a medium.
  • the term "cultivation” means growing the Corynebacterium genus strain of the present application under appropriately controlled environmental conditions.
  • the culture process of the present application may be performed according to suitable media and culture conditions known in the art. This culturing process can be easily adjusted and used by those skilled in the art according to the selected strain. Specifically, the culture may be batch, continuous and/or fed-batch, but is not limited thereto.
  • the term "medium” refers to a material in which nutrients necessary for culturing the strain of the genus Corynebacterium of the present application are mixed as main components, including water indispensable for survival and growth, as well as nutrients and growth supplies, etc.
  • any medium and other culture conditions used for culturing the strain of the genus Corynebacterium of the present application can be used without particular limitation as long as it is a medium used for culturing common microorganisms.
  • the strain can be cultured while controlling temperature, pH, etc. under aerobic conditions in a conventional medium containing appropriate carbon sources, nitrogen sources, phosphorus, inorganic compounds, amino acids, and/or vitamins.
  • Examples of the carbon source in the present application include carbohydrates such as glucose, saccharose, lactose, fructose, sucrose, and maltose; sugar alcohols such as mannitol and sorbitol; organic acids such as pyruvic acid, lactic acid, citric acid and the like; Amino acids such as glutamic acid, methionine, lysine, and the like may be included.
  • natural organic nutrients such as starch hydrolysate, molasses, blackstrap molasses, rice winter, cassava, sorghum pomace and corn steep liquor can be used, specifically glucose and sterilized pretreated molasses (i.e. converted to reducing sugar).
  • Carbohydrates such as molasses
  • other carbon sources in an appropriate amount may be used in various ways without limitation. These carbon sources may be used alone or in combination of two or more, but are not limited thereto.
  • nitrogen source examples include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, ammonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine, etc., organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolysate, fish or degradation products thereof, defatted soybean cake or degradation products thereof, etc. can be used These nitrogen sources may be used alone or in combination of two or more, but are not limited thereto.
  • inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, ammonium carbonate, and ammonium nitrate
  • Amino acids such as glutamic acid, methionine, glutamine, etc.
  • organic nitrogen sources such as peptone, NZ-amine,
  • the number of persons may include monopotassium phosphate, dipotassium phosphate, or a sodium-containing salt corresponding thereto.
  • the inorganic compound sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, calcium carbonate, etc. may be used, and amino acids, vitamins, and/or appropriate precursors may be included. These components or precursors may be added to the medium either batchwise or continuously. However, it is not limited thereto.
  • the pH of the medium can be adjusted by adding compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, sulfuric acid, etc. to the medium in an appropriate manner during the cultivation of the strain of the genus Corynebacterium of the present application.
  • an antifoaming agent such as a fatty acid polyglycol ester.
  • oxygen or oxygen-containing gas may be injected into the medium, or nitrogen, hydrogen or carbon dioxide gas may be injected without gas injection or nitrogen, hydrogen or carbon dioxide gas may be injected to maintain the anaerobic and non-aerobic state. It is not.
  • the culture temperature may be maintained at 20 to 45 ° C, specifically 25 to 40 ° C, and may be cultured for about 10 to 160 hours, but is not limited thereto.
  • L-isoleucine produced by the culture of the present application may be secreted into the medium or remain in the cells.
  • the L-isoleucine production method of the present application includes preparing a strain of the genus Corynebacterium of the present application, preparing a medium for culturing the strain, or a combination thereof (regardless of order), for example , Prior to the culturing step, it may be further included.
  • the L-isoleucine production method of the present application may further include a step of recovering L-isoleucine from the cultured medium (cultured medium) or Corynebacterium genus strain.
  • the recovering step may be further included after the culturing step.
  • the recovery may be to collect the desired L-isoleucine using a suitable method known in the art according to the culture method of the microorganism of the present application, for example, batch, continuous or fed-batch culture method. .
  • a suitable method known in the art according to the culture method of the microorganism of the present application, for example, batch, continuous or fed-batch culture method.
  • the L-isoleucine production method of the present application may additionally include a purification step.
  • the purification may be performed using suitable methods known in the art.
  • the recovery step and the purification step are performed continuously or discontinuously regardless of order, or simultaneously or integrated into one step. It can be performed, but is not limited thereto.
  • variants, polynucleotides, vectors and strains, etc. are as described in the other aspects above.
  • Another aspect of the present application is a variant of the present application, a polynucleotide encoding the variant, a vector comprising the polynucleotide, or a strain of the genus Corynebacterium comprising the polynucleotide of the present application; medium in which it was cultured; Or to provide a composition for producing L- isoleucine comprising a combination of two or more of them.
  • composition of the present application may further include any suitable excipient commonly used in amino acid production compositions, and such an excipient may be, for example, a preservative, a wetting agent, a dispersing agent, a suspending agent, a buffer, a stabilizer, or an isotonic agent. However, it is not limited thereto.
  • composition of the present application variants, polynucleotides, vectors, strains, media, and L-isoleucine are as described in the other embodiments above.
  • Another aspect of the present application is a variant of the present application; a polynucleotide encoding the variant; Alternatively, to provide a use of a strain of the genus Corynebacterium containing the variant or a polynucleotide encoding the variant for producing L-isoleucine.
  • Wild-type Corynebacterium glutamicum has the ability to produce L-isoleucine, but does not overproduce it. Thus, in order to confirm the genetic trait that increases the L-isoleucine-producing ability, a strain with increased L-isoleucine-producing ability compared to the wild type was prepared.
  • primer pairs of SEQ ID NOs: 6 and 7 or SEQ ID NOs: 8 and PCR was performed using the primer pair of SEQ ID NO: 9, respectively.
  • the primer sequences are as shown in Table 1 below.
  • sequence number designation order 6 primer 1 TCGAGCTCGGTACCCCGCTTTTGCACTCATCGAGC 7 primer 2 CACGATCAGAGTGTGCATCATCAT 8 primer 3 ATGATGATGCACATCTGATCGTG 9 primer 4 CTCTAGAGGATCCCCGAGCATCTTCCAAAACCTTG
  • PfuUltra TM high-reliability DNA polymerase (Stratagene) was used as the polymerase for the PCR reaction, and the PCR conditions were denaturation at 95 ° C for 30 seconds; Annealing at 55° C. for 30 seconds; and polymerization reaction at 72 ° C. for 1 minute, and denaturation, annealing, and polymerization under these conditions were repeated 28 times to obtain a 1000 bp DNA fragment at the 5' upper part and 1000 bp at the 3' lower part centered on the mutation of the hom gene. DNA fragments of each were obtained.
  • PCR was performed using the primer pair of SEQ ID NO: 6 and SEQ ID NO: 9 using the two amplified DNA fragments as templates. After denaturation at 95°C for 5 minutes under PCR conditions, denaturation at 95°C for 30 seconds; Annealing at 55° C. for 30 seconds; And after repeating 28 times of polymerization at 72° C. for 2 minutes, polymerization was performed at 72° C. for 5 minutes.
  • a 2 kb DNA fragment (SEQ ID NO: 16) containing a mutation of the hom gene encoding a homoserine dehydrogenase variant in which the 407th arginine is substituted with histidine was amplified.
  • the amplification product was purified using a PCR Purification kit (QUIAGEN) and used as an insert DNA fragment for vector construction.
  • the molar concentration (M) ratio of the pDCM2 vector (Korean Patent Publication No. 10-2020-0136813) and the inserted DNA fragment, which is the amplification product, heat-treated at 65 ° C. for 20 minutes
  • the vector pDCM2-R407H for introducing the hom(R407H) mutation onto the chromosome was constructed by making it 1:2 and cloning using an Infusion Cloning Kit (TaKaRa) according to the provided manual.
  • the prepared vector was transformed into Corynebacterium glutamicum ATCC13032 by electroporation, and a strain containing the hom (R407H) mutation on the chromosome was obtained through a secondary crossing process, which was transformed into Corynebacterium glutamicum It was named ATCC13032 hom (R407H).
  • ilvA a gene encoding L-threonine dehydratase, was mutated, -Threonine, the 381st amino acid of threonine dehydratase, was substituted with alanine, and phenylalanine, the 383rd amino acid, was substituted with alanine.
  • the primer pair or sequence of SEQ ID NO: 10 and SEQ ID NO: 11 using the chromosome of wild-type Corynebacterium glutamicum ATCC13032 as a template PCR was performed using the primer pair of SEQ ID NO: 12 and SEQ ID NO: 13, respectively.
  • the primer sequences are as shown in Table 2 below.
  • sequence number designation order 10 primer 5 TCGAGCTCGGTACCCATGAGTGAAACATACGTGTC 11 primer 6 GCGCTTGAGGTACTCtgcCAGCGcGATGTCATCATCCGG 12 primer 7 CCGGATGATGACATCgCGCTGgcaGAGTACCTCAAGCGC 13 primer 8 CTCTAGAGGATCCCCCGTCACCGACACCTCCACA
  • PfuUltra TM high-reliability DNA polymerase (Stratagene) was used as the polymerase for the PCR reaction, and the PCR conditions were denaturation at 95 ° C for 30 seconds; Denaturation at 55° C. for 30 seconds; and 72 ° C. for 1 minute polymerization, and denaturation, annealing, and polymerization under these conditions were repeated 28 times to obtain a 1126 bp DNA fragment at the 5' upper part and a 286 bp DNA fragment at the 3' lower part centered on the mutation of the ilvA gene. Fragments were obtained respectively.
  • PCR was performed using the primer pair of SEQ ID NO: 10 and SEQ ID NO: 13 using the two amplified DNA fragments as templates. After denaturation at 95°C for 5 minutes under PCR conditions, denaturation at 95°C for 30 seconds; Annealing at 55° C. for 30 seconds; And after repeating 28 times of polymerization at 72° C. for 2 minutes, polymerization was performed at 72° C. for 5 minutes.
  • a 1.4 kb DNA fragment (SEQ ID NO: 17) containing a mutation in the ilvA gene encoding an L-threonine dehydratase variant in which the 381st threonine is substituted with alanine and the 383rd phenylalanine is substituted with alanine. ) was amplified.
  • the amplification product was purified using a PCR purification kit and used as an insert DNA fragment for vector construction. After treating the purified amplification product with restriction enzyme smaI, the molar concentration (M) ratio of the pDCM2 vector heat-treated at 65 ° C.
  • TaKaRa A vector pDCM2-ilvA (T381A, F383A) for introducing the ilvA (T381A, F383A) mutation onto the chromosome was constructed by cloning using an infusion cloning kit according to the provided manual.
  • the prepared vector was transformed into Corynebacterium glutamicum ATCC13032 hom (R407H) by electroporation, and a strain containing the ilvA (T381A, F383A) mutation on the chromosome was obtained through a secondary crossing process, which was It was named Nebacterium glutamicum CA10-3101.
  • the strain CA10-3101 was internationally deposited with the Korea Center for Microorganisms Conservation (KCCM), an international depository under the Budapest Treaty, on May 27, 2020, and was given an accession number as KCCM12739P.
  • KCCM Microorganisms Conservation
  • the ilvA (T381A, F383A) strain KCJI-38 (KCCM11248P, Republic of Korea Patent No. 10-1335789)
  • an L-isoleucine-producing strain treated with NTG N-Methyl-N'-nitro-N-nitrosoguanidine
  • KCCM11248P/pECCG117-ilvA (T381A, F383A) strains were prepared by introducing mutations using the electric pulse method. Then, the fermentation titer was evaluated in the following manner.
  • L-isoleucine was produced by shaking culture at 32° C. for 60 hours at 200 rpm.
  • the composition of the production medium is as follows.
  • Glucose 10% yeast extract 0.2%, ammonium sulfate 1.6%, potassium phosphate monobasic 0.1%, magnesium sulfate heptahydrate 0.1%, iron sulfate heptahydrate 10mg/l, manganese sulfate monohydrate 10mg/l, biotin 200 ⁇ g/l l, pH 7.2
  • a mutant library of the ilvN gene encoding the small subunit of acetohydroxy acid synthase (AHAS) was constructed.
  • the library was prepared using an error-prone PCR kit (clontech Diversify® PCR Random Mutagenesis Kit), using the chromosome of wild-type Corynebacterium glutamicum ATCC13032 as a template and using a pair of primers of SEQ ID NO: 14 and SEQ ID NO: 15.
  • a PCR reaction was performed.
  • the primer sequences are as shown in Table 4 below.
  • sequence number designation order 14 primer 9 CGAGCTCGGTACCCATGGCTAATTCTGACG 15 primer 10 TAGAGGATCCCCTTAGATCTTGGCCGGAGC
  • the process of pre-heating at 94 ° C for 30 seconds, 94 ° C for 30 seconds, and 68 ° C for 1 minute 30 seconds was repeated 25 times under the condition that three mutations occur at 0 per 1000 bl.
  • the obtained product was subjected to 25 repetitions of 95 ° C for 50 sec, 60 ° C for 50 sec, and 68 ° C for 12 min using megaprimer (500-125 ng), and then treated with DpnI to transform E. coli DH5 ⁇ .
  • About 20,000 transformed E. coli colonies were taken and plasmids were extracted, which was named pTOPO-ilvN-library.
  • the pTOPO-ilvN-library prepared in Example 2 was transformed into CA10-3101 (KCCM12739P), an L-isoleucine producing strain prepared in Example 1, by electroporation, followed by nutrition containing 25 mg/L of kanamycin.
  • the medium was plated to obtain 5,000 colonies of the strain into which the mutant gene was inserted, and each colony was named from CA10-3101/pTOPO-ilvNm5001 to CA10-3101/pTOPO-ilvNm10000.
  • the fermentation titer was evaluated for each colony in the following manner. Specifically, after inoculating the parent strain and the mutant strain in a 250 ml corner-bar pool flask containing 25 ml of isoleucine production medium, L-isoleucine was produced by shaking culture at 32° C. for 60 hours at 200 rpm.
  • the composition of the production medium is as follows.
  • Example 3 The ilvN (A42V) and ilvN (H47L) mutations identified in Example 3 were introduced into the Corynebacterium glutamicum CA10-3101 strain prepared in Example 1.
  • CA10-3101/pTOPO-ilvNm6289 ilvN A42V
  • CA10-3101/pTOPO-ilvNm9011 ilvN H47L
  • PCR was performed using the chromosome as a template and using the primer pair of SEQ ID NO: 14 and SEQ ID NO: 15, respectively.
  • PfuUltra TM high-reliability DNA polymerase (Stratagene) was used as the polymerase for the PCR reaction, and the PCR conditions were denaturation at 95 ° C for 30 seconds; Annealing 55° C.
  • the amplified product was purified using a QUIAGEN PCR purification kit and used as an insert DNA fragment for vector construction. After treating the purified amplification product with restriction enzyme SmaI, the molar concentration (M) ratio of the pDCM2 vector heat-treated at 65 ° C.
  • TaKaRa TaKaRa
  • vectors pDCM2-ilvN A42V
  • pDCM2-ilvN H47L
  • CA10-3101::ilvN A42V
  • CA10-3129 CA10-3101::ilvN (H47L)
  • CA10-3130 CA10-3130.
  • each strain was prepared by the following method. Fermentation titer was evaluated.
  • L-isoleucine was produced by shaking culture at 32° C. for 60 hours at 200 rpm.
  • the composition of the production medium is shown below.
  • Glucose 10% yeast extract 0.2%, ammonium sulfate 1.6%, potassium phosphate monobasic 0.1%, magnesium sulfate heptahydrate 0.1%, iron sulfate heptahydrate 10mg/l, manganese sulfate monohydrate 10mg/l, biotin 200 ⁇ g/l l, pH 7.2
  • PCR was performed using a primer pair of SEQ ID NO: 14 and SEQ ID NO: 20, and a primer pair of SEQ ID NO: 21 and SEQ ID NO: 15 using pDCM2-ilvN (A42V) as a template, and pDCM2-ilvN (H47L) as a template PCR was performed using the primer pair of SEQ ID NO: 14 and SEQ ID NO: 18 or the primer pair of SEQ ID NO: 19 and SEQ ID NO: 15.
  • the primer sequences are as shown in Table 7 below.
  • sequence number designation order 18 primer 11 TTCGGTCTTAACAGACACGAGGGACACGAG 19 primer 12 GTGTCCCTCGTGTCTGTTAAGACCGAAACA 20 primer 13 CGGTTGATGCCgagTGTTTCGGTCTTTGCA 21 primer 14 AAGACCGAAACactcGGCATCAACCGCATC
  • PfuUltra TM high-reliability DNA polymerase (Stratagene) was used as the polymerase for the PCR reaction, and the PCR conditions were denaturation at 95 ° C for 30 seconds; Annealing at 55° C. for 30 seconds; and 72° C. for 1 minute polymerization, these denaturation, annealing, and polymerization were repeated 28 times to obtain DNA fragments of 166 bp and 405 bp, respectively.
  • the amplified product was purified using a PCR purification kit from QUIAGEN, and used as an insert DNA fragment for vector construction. After treating the purified amplification product with restriction enzyme smaI, the molar concentration (M) ratio of the pDCM2 vector heat-treated at 65 ° C.
  • a vector pDCM2-ilvN (A42V, H47L) for introducing the mutant ilvN into the chromosome was constructed by cloning using an infusion cloning kit according to the provided manual.
  • Example 6 Construction of L-isoleucine-producing strain into which the combined variant ilvN was introduced
  • CA10-3101::ilvN (A42V, H47L) was named CA10-3132.
  • fermentation titer was evaluated in the following manner.
  • L-isoleucine was produced by shaking culture at 32° C. for 60 hours at 200 rpm.
  • the composition of the production medium is as follows.
  • Glucose 10% yeast extract 0.2%, ammonium sulfate 1.6%, potassium phosphate monobasic 0.1%, magnesium sulfate heptahydrate 0.1%, iron sulfate heptahydrate 10mg/l, manganese sulfate monohydrate 10mg/l, biotin 200 ⁇ g/l l, pH 7.2
  • ilvN alone mutations ilvN (A42V), ilvN (H47L)
  • ilvN combination mutations ilvN (A42V, It was confirmed that the L-isoleucine concentration increased in the mutant strain into which H47L)) was introduced, and it was confirmed that the ilvN combination mutant could increase the L-isoleucine-producing ability of the strain rather than the ilvN single mutant.
  • Example 7 Construction of a mutant ilvN-substituted strain in the L-isoleucine-producing strain Corynebacterium glutamicum KCCM11248P strain
  • KCJI-38 an L-isoleucine-producing strain, treated with NTG (N-Methyl-N'-nitro-N-nitrosoguanidine) two ilvN mutations and a combination mutation confirmed to be effective in increasing L-isoleucine production ability in Example 6 above.
  • NTG N-Methyl-N'-nitro-N-nitrosoguanidine
  • KCCM11248P Republic of Korea Patent No. 10-1335789
  • L-isoleucine was produced by shaking culture at 32° C. for 60 hours at 200 rpm.
  • the composition of the production medium is as follows.
  • Glucose 10% yeast extract 0.2%, ammonium sulfate 1.6%, potassium phosphate monobasic 0.1%, magnesium sulfate heptahydrate 0.1%, iron sulfate heptahydrate 10mg/l, manganese sulfate monohydrate 10mg/l, biotin 200 ⁇ g/l l, pH 7.2
  • the L-isoleucine-producing ability increased in the mutant strain introduced with two ilvN mutations and a combination mutation, ilvN (A42V).
  • the increase rate of L-isoleucine concentration of each strain into which ilvN(H47L) and ilvN(A42V, H47L) was introduced was about 40%, 29%, and 63% compared to the parent strain. It was confirmed that the L-isoleucine production ability could be increased.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 출원은 L-이소류신 생산능을 향상시키는 신규한 아세토하이드록시산 신타아제(Acetohydroxy acid synthase, AHAS) 변이체, 이를 포함하는 미생물, 및 상기 미생물을 이용하여 L-이소류신을 생산하는 방법에 관한 것으로, L-이소류신을 활용하는 식품, 사료, 및 의약 등 광범위한 산업적 활용에 이용하고자 한다.

Description

신규한 아세토하이드록시산 신테아제 변이체 및 이를 이용한 L-이소류신 생산방법
본 출원은 L-이소류신 생산능을 향상시키는 신규한 아세토하이드록시산 신테아제(Acetohydroxy acid synthase, AHAS) 변이체, 이를 포함하는 미생물, 및 상기 미생물을 이용하여 L-이소류신을 생산하는 방법에 관한 것이다.
L-이소류신은 총 20가지의 아미노산 중 분지쇄 아미노산(branched-chain amino acid)의 한 종류로서, 필수아미노산으로 분류되어 동물 사료, 식품 첨가물 및 의약 분야에 사용된다. L-이소류신은 대사 후 에너지 생성, 헤모글로빈 생성, 혈당 조절, 근육 생성 및 보수 등의 기능을 하기 때문에 수액제, 영양제, 스포츠 영양제뿐만 아니라 동물 사료 분야에서도 사용이 증가되고 있다.
이러한 경향에 기반하여, L-아미노산 생산을 위해 다양한 미생물 및 이의 변이체가 사용되는데(미국 등록특허 제10113190호), 이런 경우에도 L-이소류신을 제외한 부산물이 다수 생성되며, 이는 정제 단계에서 L-이소류신의 순도에 영향을 많이 미치는 물질이므로, 부산물을 제거할 수 있는 방법이 필요하다. 관련하여, L-이소류신의 순도를 높이기 위해 개발된 L-이소류신 정제방법 등은 별도의 추가적인 정제 과정 요구되는 단점이 있어(미국 등록특허 제6072083호), L-이소류신의 순도를 증가시키는 방법의 개발이 필요한 실정이다.
본 발명자들은 L-이소류신 생산 경로의 단백질 중 하나인 아세토하이드록시산 신테아제(Acetohydroxy acid synthase, AHAS)에 있어서, 이의 변이체를 규명하고, 상기 변이체로 인하여 균주의 L-이소류신 생산능이 향상됨을 확인함으로써 본 출원을 완성하였다.
본 출원의 하나의 목적은 서열번호 1의 아미노산 서열에서 42번째 위치에 상응하는 아미노산이 다른 아미노산으로 치환되고 47번째 위치에 상응하는 아미노산이 다른 아미노산으로 치환된, 아세토하이드록시산 신타아제(Acetohydroxy acid synthase, AHAS) 변이체를 제공하는 것이다.
본 출원의 다른 하나의 목적은 본 출원의 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.
본 출원의 또 다른 하나의 목적은 본 출원의 변이체; 또는 상기 변이체를 코딩하는 폴리뉴클레오티드;를 포함하는, 코리네박테리움 속 균주를 제공하는 것이다.
본 출원의 또 다른 하나의 목적은 본 출원의 변이체; 또는 상기 변이체를 코딩하는 폴리뉴클레오티드;를 포함하는 코리네박테리움 속 균주를 배지에서 배양하는 단계를 포함하는, L-이소류신 생산 방법을 제공하는 것이다.
본 출원에서 아세토하이드록시산 신타아제 변이를 발현하는 미생물은 이를 발현하지 않는 균주에 비해 L-이소류신 생산을 현저히 향상시킬 수 있으므로, 이를 이용하여 L-이소류신을 효과적으로 생산할 수 있다. 이에 L-이소류신을 활용하는 식품, 사료, 및 의약 등 광범위한 산업적 활용을 기대할 수 있다.
이를 구체적으로 설명하면 다음과 같다. 한편, 본 출원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다. 또한, 본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 출원이 속하는 기술 분야의 수준 및 본 출원의 내용이 보다 명확하게 설명된다.
본 출원의 하나의 양태는 서열번호 1의 아미노산 서열에서 42번째 위치에 상응하는 아미노산이 다른 아미노산으로 치환되고 47번째 위치에 상응하는 아미노산이 다른 아미노산으로 치환된, 아세토하이드록시산 신타아제(Acetohydroxy acid synthase, AHAS) 변이체를 제공한다.
일 구현예로, 상기 42번째 위치에 상응하는 아미노산은 발린으로 치환되는 것일 수 있다.
다른 일 구현예로, 상기 47번째 위치에 상응하는 아미노산은 류신으로 치환되는 것일 수 있다.
본 출원의 변이체는 상기 모서열인 서열번호 1로 기재된 아미노산 서열을 기준으로 42번째 위치에 상응하는 아미노산이 발린으로 치환되고 47번째 위치에 상응하는 아미노산이 류신으로 치환된 것일 수 있으며, 상기 서열번호 1로 기재된 아미노산 서열과 적어도 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 99% 이상, 99.5% 이상, 또는 99.7% 이상 및 100% 미만의 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 본 출원의 변이체에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 변이체도 본 출원의 범위 내에 포함됨은 자명하다.
예를 들어, 상기 아미노산 서열 N-말단, C-말단 그리고/또는 내부에 본 출원의 변이체의 기능을 변경하지 않는 서열 추가 또는 결실, 자연적으로 발생할 수 있는 돌연변이, 잠재성 돌연변이(silent mutation) 또는 보존적 치환을 가지는 경우이다.
상기 "보존적 치환(conservative substitution)"은 한 아미노산을 유사한 구조적 및/또는 화학적 성질을 갖는 또 다른 아미노산으로 치환시키는 것을 의미한다. 이러한 아미노산 치환은 일반적으로 잔기의 극성, 전하, 용해도, 소수성, 친수성 및/또는 양친매성(amphipathic nature)에서의 유사성에 근거하여 발생할 수 있다. 통상적으로, 보존적 치환은 단백질 또는 폴리펩티드의 활성에 거의 영향을 미치지 않거나 또는 영향을 미치지 않을 수 있다.
본 출원에서 용어, "변이체(variant)"는 하나 이상의 아미노산이 보존적 치환(conservative substitution) 및/또는 변형(modification)되어 상기 변이체의 변이 전 아미노산 서열과 상이하나 기능(functions) 또는 특성(properties)이 유지되는 폴리펩티드를 지칭한다. 이러한 변이체는 일반적으로 상기 폴리펩티드의 아미노산 서열 중 하나 이상의 아미노산을 변형하고, 상기 변형된 폴리펩티드의 특성을 평가하여 동정(identify)될 수 있다. 즉, 변이체의 능력은 변이 전 폴리펩티드에 비하여 증가되거나, 변하지 않거나, 또는 감소될 수 있다. 또한, 일부 변이체는 N-말단 리더 서열 또는 막전이 도메인(transmembrane domain)과 같은 하나 이상의 부분이 제거된 변이체를 포함할 수 있다. 다른 변이체는 성숙 단백질(mature protein)의 N- 및/또는 C-말단으로부터 일부분이 제거된 변이체를 포함할 수 있다. 상기 용어 "변이체"는 변이형, 변형, 변이형 폴리펩티드, 변이된 단백질, 변이 및 변이체 등의 용어(영문 표현으로는 modification, modified polypeptide, modified protein, mutant, mutein, divergent 등)가 혼용되어 사용될 수 있으며, 변이된 의미로 사용되는 용어라면 이에 제한되지 않는다.
또한, 변이체는 폴리펩티드의 특성과 2차 구조에 최소한의 영향을 갖는 아미노산들의 결실 또는 부가를 포함할 수 있다. 예를 들면 변이체의 N-말단에는 번역-동시에(co-translationally) 또는 번역-후에(post-translationally) 단백질의 이동(translocation)에 관여하는 시그널(또는 리더) 서열이 컨쥬게이트 될 수 있다. 또한 상기 변이체는 확인, 정제, 또는 합성할 수 있도록 다른 서열 또는 링커와 컨쥬게이트 될 수 있다.
본 출원에서, "모서열(parent sequence)"이란 변형(modification)를 도입하여 변이형 폴리펩티드가 되는 기준 서열을 의미한다. 즉, 모서열은 시작 서열(starting sequence)로서 치환, 삽입 및/또는 결실 등의 변이를 도입하는 대상일 수 있다. 상기 모서열은 천연형(naturally occurring) 혹은 야생형(wild type)일 수 있고, 또는 상기 천연형 또는 야생형에 하나 이상의 치환, 삽입 또는 결실이 발생한 변이체(variant)이거나, 또는 인위적으로 합성된 서열일 수 있다.
본 출원에서 용어, '상동성(homology)' 또는 '동일성(identity)'은 두 개의 주어진 아미노산 서열 또는 염기 서열 상호간 유사한 정도를 의미하며 백분율로 표시될 수 있다. 용어 상동성 및 동일성은 종종 상호교환적으로 이용될 수 있다.
보존된(conserved) 폴리뉴클레오티드 또는 폴리펩티드의 서열 상동성 또는 동일성은 표준 배열 알고리즘에 의해 결정되며, 사용되는 프로그램에 의해 확립된 디폴트 갭 페널티가 함께 이용될 수 있다. 실질적으로, 상동성을 갖거나(homologous) 또는 동일한(identical) 서열은 중간 또는 높은 엄격한 조건(stringent conditions)에서 일반적으로 서열 전체 또는 전체-길이의 적어도 약 50% 이상, 60% 이상, 70% 이상, 80% 이상 또는 90% 이상으로 하이브리드할 수 있다. 하이브리드화는 폴리뉴클레오티드에서 일반 코돈 또는 코돈 축퇴성을 고려한 코돈을 함유하는 폴리뉴클레오티드와의 하이브리드화 역시 포함됨이 자명하다.
임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는, 예를 들어, Pearson et al (1988) [Proc. Natl. Acad. Sci. USA 85]: 2444에서와 같은 디폴트 파라미터를 이용하여 "FASTA" 프로그램과 같은 공지의 컴퓨터 알고리즘을 이용하여 결정될 수 있다. 또는, EMBOSS 패키지의 니들만 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277)(버전 5.0.0 또는 이후 버전)에서 수행되는 바와 같은, 니들만-운치(Needleman-Wunsch) 알고리즘(Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453)이 사용되어 결정될 수 있다(GCG 프로그램 패키지 (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego,1994, 및 [CARILLO ET AL/.](1988) SIAM J Applied Math 48: 1073을 포함한다). 예를 들어, 국립 생물공학 정보 데이터베이스 센터의 BLAST, 또는 ClustalW를 이용하여 상동성, 유사성 또는 동일성을 결정할 수 있다.
폴리뉴클레오티드 또는 폴리펩티드의 상동성, 유사성 또는 동일성은, 예를 들어, Smith and Waterman, Adv. Appl. Math (1981) 2:482 에 공지된 대로, 예를 들면, Needleman et al. (1970), J Mol Biol. 48:443과 같은 GAP 컴퓨터 프로그램을 이용하여 서열 정보를 비교함으로써 결정될 수 있다. 요약하면, GAP 프로그램은 두 서열 중 더 짧은 것에서의 기호의 전체 수로, 유사한 배열된 기호(즉, 뉴클레오티드 또는 아미노산)의 수를 나눈 값으로 정의할 수 있다. GAP 프로그램을 위한 디폴트 파라미터는 (1) 이진법 비교 매트릭스(동일성을 위해 1 그리고 비-동일성을 위해 0의 값을 함유함) 및 Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979)에 의해 개시된 대로, Gribskov et al(1986) Nucl. Acids Res. 14: 6745의 가중된 비교 매트릭스 (또는 EDNAFULL (NCBI NUC4.4의 EMBOSS 버전) 치환 매트릭스); (2) 각 갭을 위한 3.0의 페널티 및 각 갭에서 각 기호를 위한 추가의 0.10 페널티 (또는 갭 개방 패널티 10, 갭 연장 패널티 0.5); 및 (3) 말단 갭을 위한 무 페널티를 포함할 수 있다.
본 출원의 변이체는 아세토하이드록시산 신타아제(Acetohydroxy acid synthase, AHAS) 활성을 가질 수 있다. 또한, 본 출원의 변이체는 아세토하이드록시산 신타아제 활성을 갖는 야생형 폴리펩티드에 비해 L-이소류신 생산능이 증가되도록 하는 활성을 가질 수 있다.
본 출원에서 용어, "아세토하이드록시산 신타아제(Acetohydroxy acid synthase, AHAS)"는 L-발린 생합성에서 첫 번째 효소로서, 아세토락테이트 산타아제로도 명명된다. 아세토하이드록시산 신타아제는 피루브산(pyruvate)의 디카르복실화(decarboyxlation)와 다른 피루브산 분자와의 축합 반응을 촉매하여 발린의 전구체인 아세토락테이트를 생산하거나 피루브산의 디카르복실화와 2-케토부티레이트(2-ketobutyrate)와의 축합 반응을 촉매하여 이소류신의 전구체인 아세토히드록시부티레이트를 생산할 수 있다.
상기 아세토하이드록시산 신타아제는 ilvBilvN, 두 유전자에 의하여 코딩되며, ilvB 유전자는 아세토하이드록시산 신타아제의 큰 소단위체(large subunit)를, ilvN 유전자는 아세토하이드록시산 신타아제의 작은 소단위체(small subunit)를 각각 코딩한다. 이 중 ilvN 유전자에 의해 코딩되는 작은 소단위체가 피드백 저해에 중요하게 관여한다고 여겨진다. 상기 "피드백 저해"는 효소계의 종산물이 그 효소계의 초기 단계에 있는 반응을 저해하는 것을 의미한다. 본 출원의 목적상, 아세토하이드록시산 신타아제는 ilvN 유전자에 의해 코딩되는 아세토하이드록시산 신타아제일 수 있다.
상기 ilvN 유전자에 의해 코딩되는 아세토하이드록시산 신타아제는 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있고, 구체적으로 서열번호 1의 아미노산 서열을 가질 수 있으나, 이에 제한되지 않는다.
본 출원에서, 용어 "상응하는(corresponding to)"은, 폴리펩티드에서 열거되는 위치의 아미노산 잔기이거나, 또는 폴리펩티드에서 열거되는 잔기와 유사하거나 동일하거나 상동한 아미노산 잔기를 지칭한다. 상응하는 위치의 아미노산을 확인하는 것은 특정 서열을 참조하는 서열의 특정 아미노산을 결정하는 것일 수 있다. 본 출원에 사용된 "상응 영역"은 일반적으로 관련 단백질 또는 참조 (reference) 단백질에서의 유사하거나 대응되는 위치를 지칭한다.
예를 들어, 임의의 아미노산 서열을 서열번호 1과 정렬(align)하고, 이를 토대로 상기 아미노산 서열의 각 아미노산 잔기는 서열번호 1의 아미노산 잔기와 상응하는 아미노산 잔기의 숫자 위치를 참조하여 넘버링 할 수 있다. 예를 들어, 본 출원에 기재된 것과 같은 서열 정렬 알고리즘은, 쿼리 시퀀스("참조 서열"이라고도 함)와 비교하여 아미노산의 위치, 또는 치환, 삽입 또는 결실 등의 변형이 발생하는 위치를 확인할 수 있다.
이러한 정렬에는 예를 들어 Needleman-Wunsch 알고리즘 (Needleman 및 Wunsch, 1970, J. Mol. Biol. 48: 443-453), EMBOSS 패키지의 Needleman 프로그램 (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000), Trends Genet. 16: 276-277) 등을 이용할 수 있으나, 이에 제한되지 않고 당업계에 알려진 서열 정렬 프로그램, 쌍 서열(pairwise sequence) 비교 알고리즘 등을 적절히 사용할 수 있다.
구체적으로, 본 출원의 변이체는 서열번호 5로 기재된 아미노산 서열을 가지거나, 포함하거나, 이루어지거나, 상기 아미노산 서열로 필수적으로 이루어질(essentially consisting of) 수 있다.
본 출원의 다른 하나의 양태는 본 출원의 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.
본 출원에서 용어, "폴리뉴클레오티드"는 뉴클레오티드 단위체(monomer)가 공유결합에 의해 길게 사슬모양으로 이어진 뉴클레오티드의 중합체(polymer)로 일정한 길이 이상의 DNA 또는 RNA 가닥으로서, 보다 구체적으로는 상기 변이체를 코딩하는 폴리뉴클레오티드 단편을 의미한다.
본 출원의 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 3 또는 서열번호 4 또는 서열번호 5로 기재된 아미노산 서열을 코딩하는 염기서열을 포함할 수 있다. 본 출원의 일 예로, 본 출원의 폴리뉴클레오티드는 서열번호 24의 서열을 가지거나 포함할 수 있다. 또한, 본 출원의 폴리뉴클레오티드는 서열번호 24의 서열로 이루어지거나, 필수적으로 구성될 수 있다.
본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy) 또는 본 출원의 변이체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 본 출원의 변이체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 본 출원의 폴리뉴클레오티드는 서열번호 2의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 또는 98% 이상 및 100% 미만인 염기서열을 가지거나 포함하거나, 또는 서열번호 2의 서열과 상동성 또는 동일성이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 또는 98% 이상 및 100% 미만인 염기서열로 이루어지거나 필수적으로 이루어질 수 있으나, 이에 제한되지 않는다. 이때, 상기 상동성 또는 동일성을 갖는 서열에서, 서열번호 1의 42번째 위치에 상응하는 아미노산을 코딩하는 코돈은 발린을 코딩하는 코돈 중 하나일 수 있고, 47번째 위치에 상응하는 아미노산을 코딩하는 코돈은 류산을 코딩하는 코돈 중 하나일 수 있다.
또한, 본 출원의 폴리뉴클레오티드는 공지의 유전자 서열로부터 제조될 수 있는 프로브, 예를 들면, 본 출원의 폴리뉴클레오티드 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이브리드화할 수 있는 서열이라면 제한없이 포함될 수 있다. 상기 "엄격한 조건(stringent condition)"이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 이러한 조건은 문헌(J. Sambrook et al.,Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al.,Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York, 9.50-9.51, 11.7-11.8 참조)에 구체적으로 기재되어 있다. 예를 들어, 상동성 또는 동일성이 높은 폴리뉴클레오티드끼리, 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 또는 99% 이상의 상동성 또는 동일성을 갖는 폴리뉴클레오티드끼리 하이브리드화하고, 그보다 상동성 또는 동일성이 낮은 폴리뉴클레오티드끼리 하이브리드화하지 않는 조건, 또는 통상의 써던 하이브리드화(southern hybridization)의 세척 조건인 60℃, 1XSSC, 0.1% SDS, 구체적으로 60℃, 0.1XSSC, 0.1% SDS, 보다 구체적으로 68℃, 0.1XSSC, 0.1% SDS에 상당하는 염 농도 및 온도에서, 1회, 구체적으로 2회 내지 3회 세정하는 조건을 열거할 수 있다.
혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치(mismatch)가 가능할지라도, 두 개의 핵산이 상보적 서열을 가질 것을 요구한다. 용어, "상보적"은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데닌은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본 출원의 폴리뉴클레오티드는 또한 실질적으로 유사한 핵산 서열뿐만 아니라 전체 서열에 상보적인 단리된 핵산 단편을 포함할 수 있다.
구체적으로, 본 출원의 폴리뉴클레오티드와 상동성 또는 동일성을 가지는 폴리뉴클레오티드는 55℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60℃, 63℃ 또는 65℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.
상기 폴리뉴클레오티드를 혼성화하는 적절한 엄격도는 폴리뉴클레오티드의 길이 및 상보성 정도에 의존하고 변수는 해당기술분야에 잘 알려져 있다(예컨대, J. Sambrook et al., 상동).
본 출원의 또 다른 하나의 양태는 본 출원의 폴리뉴클레오티드를 포함하는 벡터를 제공하는 것이다. 상기 벡터는 상기 폴리뉴클레오티드를 숙주세포에서 발현시키기 위한 발현 벡터일 수 있으나, 이에 제한되지 않는다.
본 출원의 벡터는 적합한 숙주 내에서 목적 폴리펩티드를 발현시킬 수 있도록 적합한 발현조절영역(또는 발현조절서열)에 작동 가능하게 연결된 상기 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드의 염기서열을 포함하는 DNA 제조물을 포함할 수 있다. 상기 발현조절영역은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.
본 출원에서 사용되는 벡터는 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pDZ계, pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pDC, pDCM2, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있다.
일례로 세포 내 염색체 삽입용 벡터를 통해 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드를 염색체 내로 삽입할 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합(homologous recombination)에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다. 상기 염색체 삽입 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함할 수 있다. 상기 선별 마커는 벡터로 형질전환된 세포를 선별, 즉 목적 핵산 분자의 삽입 여부를 확인하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 폴리펩티드의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나 다른 표현 형질을 나타내므로, 형질전환된 세포를 선별할 수 있다.
본 출원에서 용어 "형질전환"은 표적 폴리펩티드를 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 혹은 미생물 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 폴리펩티드가 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 목적 폴리펩티드를 코딩하는 DNA 및/또는 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로도 도입될 수 있다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트(expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터(promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 제한되지 않는다.
또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본 출원의 목적 변이체를 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 폴리뉴클레오티드 서열이 기능적으로 연결되어 있는 것을 의미한다.
본 출원의 또 다른 하나의 양태는 본 출원의 변이체 또는 본 출원의 폴리뉴클레오티드를 포함하는, 코리네박테리움 속 균주(the genus Corynebacterium) 균주를 제공하는 것이다.
본 출원의 균주는 본 출원의 변이형 폴리펩티드, 상기 폴리펩티드를 암호화하는 폴리뉴클레오티드, 또는 본 출원의 폴리뉴클레오티드를 포함하는 벡터를 포함할 수 있다.
본 출원에서 용어, "균주(또는, 미생물)"는 야생형 미생물이나 자연적 또는 인위적으로 유전적 변형이 일어난 미생물을 모두 포함하며, 외부 유전자가 삽입되거나 내재적 유전자의 활성이 강화되거나 불활성화되는 등의 원인으로 인해서 특정 기작이 약화되거나 강화된 미생물로서, 목적하는 폴리펩티드, 단백질 또는 산물의 생산을 위하여 유전적 변형(modification)을 포함하는 미생물일 수 있다.
본 출원의 균주는 본 출원의 변이체, 본 출원의 폴리뉴클레오티드 및 본 출원의 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는 균주; 본 출원의 변이체 또는 본 출원의 폴리뉴클레오티드를 발현하도록 변형된 균주; 본 출원의 변이체, 또는 본 출원의 폴리뉴클레오티드를 발현하는 균주 (예컨대, 재조합 균주); 또는 본 출원의 변이체 활성을 갖는 균주 (예컨대, 재조합 균주)일 수 있으나, 이에 제한되지 않는다.
본 출원의 균주는 L-이소류신 생산능을 가진 균주일 수 있다.
본 출원의 균주는 자연적으로 아세토하이드록시산 신타아제 또는 L-이소류신 생산능을 가지고 있는 미생물, 또는 아세토하이드록시산 신타아제 또는 L-이소류신 생산능이 없는 모균주에 본 출원의 변이체 또는 이를 코딩하는 폴리뉴클레오티드 (또는 상기 폴리뉴클레오티드를 포함하는 벡터)가 도입되거나 및/또는 L-이소류신 생산능이 부여된 미생물일 수 있으나 이에 제한되지 않는다.
일 예로, 본 출원의 균주는 본 출원의 폴리뉴클레오티드 또는 본 출원의 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 벡터로 형질전환되어, 본 출원의 변이체를 발현하는 세포 또는 미생물로서, 본 출원의 목적상 본 출원의 균주는 본 출원의 변이체를 포함하여 L-이소류신을 생산할 수 있는 미생물을 모두 포함할 수 있다. 예를 들어, 본 출원의 균주는 천연의 야생형 미생물 또는 L-이소류신을 생산하는 미생물에 본 출원의 변이체를 코딩하는 폴리뉴클레오티드가 도입됨으로써 아세토하이드록시산 신타아제 변이체가 발현되어, L-이소류신 생산능이 증가된 재조합 균주일 수 있다. 상기 L-이소류신 생산능이 증가된 재조합 균주는, 천연의 야생형 미생물 또는 아세토하이드록시산 신타아제 비변형 미생물 (즉, 야생형 아세토하이드록시산 신타아제(서열번호 1)를 발현하는 미생물 또는 변이형(서열번호 5) 단백질을 발현하지 않는 미생물)에 비하여 L-이소류신 생산능이 증가된 미생물일 수 있으나, 이에 제한되는 것은 아니다. 그 예로, 상기 L-이소류신 생산능의 증가 여부를 비교하는 대상 균주인, 아세토하이드록시산 신타아제 비변형 미생물은 hom(R407H) 및 ilvA(T381A, F383A) 변이를 도입한 코리네박테리움 글루타미쿰 ATCC13032 균주(CA10-3101, KCCM12739P) 또는 NTG(N-Methyl-N'-nitro-N-nitrosoguanidine) 처리된 L-이소류신 생산 균주인 KCJI-38 균주(KCCM11248P, 대한민국 등록특허 제10-1335789호)일 수 있으나, 이에 제한되지 않는다.
일 예로, 상기 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물의 L-이소류신 생산능에 비하여 약 1% 이상, 구체적으로는 약 2% 이상, 약 5% 이상, 약 10% 이상, 약 15% 이상, 약 20% 이상, 약 25% 이상, 약 29% 이상, 약 30% 이상, 약 35% 이상, 약 39% 이상, 약 40% 이상, 약 41% 이상, 약 43% 이상, 약 45% 이상, 약 46% 이상, 약 50% 이상, 약 52% 이상, 약 55% 이상, 약 57% 이상, 약 58% 이상, 약 60% 이상 또는 약 63% 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 200% 이하, 약 150% 이하, 약 100% 이하, 약 50% 이하, 약 40% 이하, 약 30% 이하, 약 20% 이하 또는 약 15% 이하일 수 있음) 증가된 것일 수 있으나, 변이 전 모균주 또는 비변형 미생물의 생산능에 비해 +값의 증가량을 갖는 한, 이에 제한되지 않는다. 다른 예에서, 상기 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, L-이소류신 생산능이 약 1.01배 이상, 약 1.02배 이상, 약 1.05배 이상, 약 1.10배 이상, 약 1.15배 이상, 약 1.20배 이상, 약 1.25배 이상, 약 1.29배 이상, 약 1.30배 이상, 약 1.35배 이상, 약 1.40배 이상, 약 1.41배 이상, 약 1.43배 이상, 약 1.45배 이상, 약 1.46배 이상, 약 1.50배 이상, 약 1.52배 이상, 약 1.55배 이상, 약 1.57배 이상, 약 1.60배 이상 또는 약 1.63배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 10배 이하, 약 5배 이하, 약 3배 이하, 또는 약 2배 이하일 수 있음) 증가된 것일 수 있으나, 이에 제한되지 않는다.
본 출원에서 용어, "비변형 미생물"은 미생물에 자연적으로 발생할 수 있는 돌연변이를 포함하는 균주를 제외하는 것이 아니며, 야생형 균주 또는 천연형 균주 자체이거나, 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화되기 전 균주를 의미할 수 있다. 예를 들어, 상기 비변형 미생물은 본 명세서에 기재된 아세토하이드록시산 신타아제 변이체가 도입되지 않거나 도입되기 전의 균주를 의미할 수 있다. 상기 "비변형 미생물"은 "변형 전 균주", "변형 전 미생물", "비변이 균주", "비변형 균주", "비변이 미생물" 또는 "기준 미생물"과 혼용될 수 있다.
본 출원의 또 다른 일 예로, 본 출원의 미생물은 코리네박테리움 속(Corynebacterium stationis), 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 코리네박테리움 크루디락티스(Corynebacterium crudilactis), 코리네박테리움 데세르티(Corynebacterium deserti), 코리네박테리움 이피시엔스(Corynebacterium efficiens), 코리네박테리움 칼루내(Corynebacterium callunae), 코리네박테리움 싱굴라레(Corynebacterium singulare), 코리네박테리움 할로톨레란스(Corynebacterium halotolerans), 코리네박테리움 스트리아툼(Corynebacterium striatum), 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes), 코리네박테리움 폴루티솔리(Corynebacterium pollutisoli), 코리네박테리움 이미탄스(Corynebacterium imitans), 코리네박테리움 테스투디노리스(Corynebacterium testudinoris) 또는 코리네박테리움 플라베스센스(Corynebacterium flavescens)일 수 있고, 구체적으로 코리네박테리움 글루타미쿰일 수 있으나, 이에 제한되지 않는다.
본 출원에서 용어, 폴리펩티드 활성의 "강화"는, 폴리펩티드의 활성이 내재적 활성에 비하여 증가되는 것을 의미한다. 상기 강화는 활성화(activation), 상향조절(up-regulation), 과발현(overexpression), 증가(increase) 등의 용어와 혼용될 수 있다. 여기서 활성화, 강화, 상향조절, 과발현, 증가는 본래 가지고 있지 않았던 활성을 나타내게 되는 것, 또는 내재적 활성 또는 변형 전 활성에 비하여 향상된 활성을 나타내게 되는 것을 모두 포함할 수 있다. 상기 "내재적 활성"은 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화하는 경우, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성을 의미한다. 이는 "변형 전 활성"과 혼용되어 사용될 수 있다. 폴리펩티드의 활성이 내재적 활성에 비하여 "강화", "상향조절", "과발현" 또는 "증가"한다는 것은, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성 및/또는 농도(발현량)에 비하여 향상된 것을 의미한다.
상기 강화는 외래의 폴리펩티드를 도입하거나, 내재적인 폴리펩티드의 활성 강화 및/또는 농도(발현량)를 통해 달성할 수 있다. 상기 폴리펩티드의 활성의 강화 여부는 해당 폴리펩티드의 활성 정도, 발현량 또는 해당 폴리펩티드로부터 배출되는 산물의 양의 증가로부터 확인할 수 있다.
상기 폴리펩티드의 활성의 강화는 당해 분야에 잘 알려진 다양한 방법의 적용이 가능하며, 목적 폴리펩티드의 활성을 변형전 미생물보다 강화시킬 수 있는 한, 제한되지 않는다. 구체적으로, 분자생물학의 일상적 방법인 당업계의 통상의 기술자에게 잘 알려진 유전자 공학 및/또는 단백질 공학을 이용한 것일 수 있으나, 이로 제한되지 않는다(예컨대, Sitnicka et al. Functional Analysis of Genes. Advances in Cell Biology. 2010, Vol. 2. 1-16, Sambrook et al. Molecular Cloning 2012 등).
구체적으로, 본 출원의 폴리펩티드의 강화는
1) 폴리펩티드를 코딩하는 폴리뉴클레오티드의 세포 내 카피수 증가;
2) 폴리펩티드를 코딩하는 염색체상의 유전자 발현조절영역을 활성이 강력한 서열로 교체;
3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열의 변형;
4) 폴리펩티드 활성이 강화되도록 상기 폴리펩티드의 아미노산 서열의 변형;
5) 폴리펩티드 활성이 강화도록 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열의 변형 (예를 들어, 폴리펩티드의 활성이 강화되도록 변형된 폴리펩티드를 코딩하도록 상기 폴리펩티드 유전자의 폴리뉴클레오티드 서열의 변형);
6) 폴리펩티드의 활성을 나타내는 외래 폴리펩티드 또는 이를 코딩하는 외래 폴리뉴클레오티드의 도입;
7) 폴리펩티드를 암호화하는 폴리뉴클레오티드의 코돈 최적화;
8) 폴리펩티드의 삼차구조를 분석하여 노출 부위를 선택하여 변형하거나 화학적으로 수식; 또는
9) 상기 1) 내지 8) 중 선택된 2 이상의 조합일 수 있으나, 이에, 특별히 제한되는 것은 아니다.
보다 구체적으로,
상기 1) 폴리펩티드를 코딩하는 폴리뉴클레오티드의 세포 내 카피수 증가는, 해당 폴리펩티드를 코딩하는 폴리뉴클레오티드가 작동가능하게 연결된, 숙주와 무관하게 복제되고 기능할 수 있는 벡터의 숙주세포 내로의 도입에 의해 달성되는 것일 수 있다. 또는, 해당 폴리펩티드를 코딩하는 폴리뉴클레오티드가 숙주세포 내의 염색체 내에 1 카피 또는 2 카피 이상 도입에 의해 달성되는 것일 수 있다. 상기 염색체 내에 도입은 숙주세포 내의 염색체 내로 상기 폴리뉴클레오티드를 삽입시킬 수 있는 벡터가 숙주세포 내에 도입됨으로써 수행될 수 있으나, 이에 제한되지 않는다. 상기 벡터는 전술한 바와 같다.
상기 2) 폴리펩티드를 코딩하는 염색체상의 유전자 발현조절영역(또는 발현조절서열)을 활성이 강력한 서열로 교체는, 예를 들면, 상기 발현조절영역의 활성을 더욱 강화하도록 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 강한 활성을 가지는 서열로의 교체일 수 있다. 상기 발현조절영역은, 특별히 이에 제한되지 않으나 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 그리고 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다. 일 예로, 본래의 프로모터를 강력한 프로모터로 교체시키는 것일 수 있으나, 이에 제한되지 않는다.
공지된 강력한 프로모터의 예에는 cj1 내지 cj7 프로모터(미국등록특허 US 7662943 B2), lac 프로모터, trp 프로모터, trc 프로모터, tac 프로모터, 람다 파아지 PR 프로모터, PL 프로모터, tet 프로모터, gapA 프로모터, SPL7 프로모터, SPL13(sm3) 프로모터(미국등록특허 US 10584338 B2), O2 프로모터(미국등록특허 US 10273491 B2), tkt 프로모터, yccA 프로모터 등이 있으나, 이에 제한되지 않는다.
상기 3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열 변형은, 예를 들면, 내재적 개시코돈에 비해 폴리펩티드 발현율이 더 높은 다른 개시코돈을 코딩하는 염기 서열로 치환하는 것일 수 있으나, 이에 제한되지 않는다.
상기 4) 및 5)의 아미노산 서열 또는 폴리뉴클레오티드 서열의 변형은, 폴리펩티드의 활성을 강화하도록 상기 폴리펩티드의 아미노산 서열 또는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열을 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 강한 활성을 갖도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열 또는 활성이 증가하도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열로의 교체일 수 있으나, 이에 한정되는 것은 아니다. 상기 교체는 구체적으로 상동재조합에 의하여 폴리뉴클레오티드를 염색체내로 삽입함으로써 수행될 수 있으나, 이에 제한되지 않는다. 이때 사용되는 벡터는 염색체 삽입 여부를 확인하기 위한 선별 마커 (selection marker)를 추가로 포함할 수 있다. 상기 선별 마커는 전술한 바와 같다.
상기 6) 폴리펩티드의 활성을 나타내는 외래 폴리뉴클레오티드의 도입은, 상기 폴리펩티드와 동일/유사한 활성을 나타내는 폴리펩티드를 코딩하는 외래 폴리뉴클레오티드의 숙주세포 내 도입일 수 있다. 상기 외래 폴리뉴클레오티드는 상기 폴리펩티드와 동일/유사한 활성을 나타내는 한 그 유래나 서열에 제한이 없다. 상기 도입에 이용되는 방법은 공지된 형질전환 방법을 당업자가 적절히 선택하여 수행될 수 있으며, 숙주 세포 내에서 상기 도입된 폴리뉴클레오티드가 발현됨으로써 폴리펩티드가 생성되어 그 활성이 증가될 수 있다.
상기 7) 폴리펩티드를 암호화하는 폴리뉴클레오티드의 코돈 최적화는, 내재 폴리뉴클레오티드가 숙주세포 내에서 전사 또는 번역이 증가하도록 코돈 최적화한 것이거나, 또는 외래 폴리뉴클레오티드가 숙주세포 내에서 최적화된 전사, 번역이 이루어지도록 이의 코돈을 최적화한 것일 수 있다.
상기 8) 폴리펩티드의 삼차구조를 분석하여 노출 부위를 선택하여 변형하거나 화학적으로 수식하는 것은, 예를 들어 분석하고자 하는 폴리펩티드의 서열정보를 기지 단백질들의 서열정보가 저장된 데이터베이스와 비교함으로써 서열의 유사성 정도에 따라 주형 단백질 후보를 결정하고 이를 토대로 구조를 확인하여, 변형하거나 화학적으로 수식할 노출 부위를 선택하여 변형 또는 수식하는 것일 수 있다.
이와 같은 폴리펩티드 활성의 강화는, 상응하는 폴리펩티드의 활성 또는 농도 발현량이 야생형이나 변형 전 미생물 균주에서 발현된 폴리펩티드의 활성 또는 농도를 기준으로 하여 증가되거나, 해당 폴리펩티드로부터 생산되는 산물의 양의 증가되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 출원의 미생물에서 폴리뉴클레오티드의 일부 또는 전체의 변형은 (a) 미생물 내 염색체 삽입용 벡터를 이용한 상동 재조합 또는 유전자가위 (engineered nuclease, e.g., CRISPR-Cas9)을 이용한 유전체 교정 및/또는 (b) 자외선 및 방사선 등과 같은 빛 및/또는 화학물질 처리에 의해 유도될 수 있으나 이에 제한되지 않는다. 상기 유전자 일부 또는 전체의 변형 방법에는 DNA 재조합 기술에 의한 방법이 포함될 수 있다. 예를 들면, 목적 유전자와 상동성이 있는 뉴클레오티드 서열을 포함하는 뉴클레오티드 서열 또는 벡터를 상기 미생물에 주입하여 상동 재조합(homologous recombination)이 일어나게 함으로써 유전자 일부 또는 전체의 결손이 이루어질 수 있다. 상기 주입되는 뉴클레오티드 서열 또는 벡터는 우성 선별 마커를 포함할 수 있으나, 이에 제한되는 것은 아니다.
본 출원의 미생물에서, 변이체, 폴리뉴클레오티드 및 L-이소류신 등은 상기 다른 양태에서 기재한 바와 같다.
본 출원의 또 다른 하나의 양태는 본 출원의 변이체 또는 본 출원의 폴리뉴클레오티드를 포함하는 코리네박테리움 속 균주를 배지에서 배양하는 단계를 포함하는, L-이소류신 생산방법을 제공한다.
본 출원의 L-이소류신 생산방법은 본 출원의 변이체 또는 본 출원의 폴리뉴클레오티드 또는 본 출원의 벡터를 포함하는 코리네박테리움 속 균주를 배지에서 배양하는 단계를 포함할 수 있다.
본 출원에서, 용어 "배양"은 본 출원의 코리네박테리움 속 균주를 적당히 조절된 환경 조건에서 생육시키는 것을 의미한다. 본 출원의 배양과정은 당업계에 알려진 적당한 배지와 배양조건에 따라 이루어질 수 있다. 이러한 배양 과정은 선택되는 균주에 따라 당업자가 용이하게 조정하여 사용할 수 있다. 구체적으로 상기 배양은 회분식, 연속식 및/또는 유가식일 수 있으나, 이에 제한되는 것은 아니다.
본 출원에서 용어, "배지"는 본 출원의 코리네박테리움 속 균주를 배양하기 위해 필요로 하는 영양물질을 주성분으로 혼합한 물질을 의미하며, 생존 및 발육에 불가결한 물을 비롯하여 영양물질 및 발육인자 등을 공급한다. 구체적으로, 본 출원의 코리네박테리움 속 균주의 배양에 사용되는 배지 및 기타 배양 조건은 통상의 미생물의 배양에 사용되는 배지라면 특별한 제한 없이 어느 것이나 사용할 수 있으나, 본 출원의 코리네박테리움 속 균주를 적당한 탄소원, 질소원, 인원, 무기화합물, 아미노산 및/또는 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 배양할 수 있다.
구체적으로, 코리네박테리움 속 균주에 대한 배양 배지는 문헌["Manual of Methods for General Bacteriology" by the American Society for Bacteriology (Washington D.C., USA, 1981)]에서 찾아 볼 수 있다.
본 출원에서 상기 탄소원으로는 글루코오스, 사카로오스, 락토오스, 프룩토오스, 수크로오스, 말토오스 등과 같은 탄수화물; 만니톨, 소르비톨 등과 같은 당 알코올, 피루브산, 락트산, 시트르산 등과 같은 유기산; 글루탐산, 메티오닌, 리신 등과 같은 아미노산 등이 포함될 수 있다. 또한, 전분 가수분해물, 당밀, 블랙스트랩 당밀, 쌀겨울, 카사버, 사탕수수 찌꺼기 및 옥수수 침지액 같은 천연의 유기 영양원을 사용할 수 있으며, 구체적으로는 글루코오스 및 살균된 전처리 당밀(즉, 환원당으로 전환된 당밀) 등과 같은 탄수화물이 사용될 수 있으며, 그 외의 적정량의 탄소원을 제한 없이 다양하게 이용할 수 있다. 이들 탄소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.
상기 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 질산암모늄 등과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민 등과 같은 아미노산, 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해 생성물 등과 같은 유기 질소원이 사용될 수 있다. 이들 질소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.
상기 인원으로는 인산 제1칼륨, 인산 제2칼륨, 또는 이에 대응되는 소디움-함유 염 등이 포함될 수 있다. 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간, 탄산칼슘 등이 사용될 수 있으며, 그 외에 아미노산, 비타민 및/또는 적절한 전구체 등이 포함될 수 있다. 이들 구성성분 또는 전구체는 배지에 회분식 또는 연속식으로 첨가될 수 있다. 그러나, 이에 한정되는 것은 아니다.
또한, 본 출원의 코리네박테리움 속 균주의 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산, 황산 등과 같은 화합물을 배지에 적절한 방식으로 첨가하여, 배지의 pH를 조정할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 또한, 배지의 호기 상태를 유지하기 위하여, 배지 내로 산소 또는 산소 함유 기체를 주입하거나 혐기 및 미호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있으며, 이에 한정되는 것은 아니다.
본 출원의 배양에서 배양온도는 20 내지 45℃, 구체적으로는 25 내지 40℃를 유지할 수 있고, 약 10 내지 160 시간 동안 배양할 수 있으나, 이에 한정되는 것은 아니다.
본 출원의 배양에 의하여 생산된 L-이소류신은 배지 중으로 분비되거나 세포 내에 잔류할 수 있다.
본 출원의 L-이소류신 생산 방법은, 본 출원의 코리네박테리움 속 균주를 준비하는 단계, 상기 균주를 배양하기 위한 배지를 준비하는 단계, 또는 이들의 조합(순서에 무관)을, 예를 들어, 상기 배양하는 단계 이전에, 추가로 포함할 수 있다.
본 출원의 L-이소류신 생산 방법은, 상기 배양에 따른 배지(배양이 수행된 배지) 또는 코리네박테리움 속 균주로부터 L-이소류신을 회수하는 단계를 추가로 포함할 수 있다. 상기 회수하는 단계는 상기 배양하는 단계 이후에 추가로 포함될 수 있다.
상기 회수는 본 출원의 미생물의 배양 방법, 예를 들어 회분식, 연속식 또는 유가식 배양 방법 등에 따라 당해 기술 분야에 공지된 적합한 방법을 이용하여 목적하는 L-이소류신을 수집(collect)하는 것일 수 있다. 예를 들어, 원심분리, 여과, 결정화 단백질 침전제에 의한 처리(염석법), 추출, 초음파 파쇄, 한외여과, 투석법, 분자체 크로마토그래피(겔여과), 흡착크로마토그래피, 이온교환 크로마토그래피, 친화도 크로마토그래피 등의 각종 크로마토그래피, HPLC 또는 이들의 방법을 조합하여 사용될 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 배지 또는 미생물로부터 목적하는 L-이소류신을 회수할 수 있다.
또한, 본 출원의 L-이소류신 생산 방법은, 추가적으로 정제 단계를 포함할 수 있다. 상기 정제는 당해 기술분야에 공지된 적합한 방법을 이용하여, 수행할 수 있다. 일 예에서, 본 출원의 L-이소류신 생산 방법이 회수 단계와 정제 단계를 모두 포함하는 경우, 상기 회수 단계와 정제 단계는 순서에 상관없이 연속적 또는 비연속적으로 수행되거나, 동시에 또는 하나의 단계로 통합되어 수행될 수 있으나, 이에 제한되는 것은 아니다.
본 출원의 방법에서, 변이체, 폴리뉴클레오티드, 벡터 및 균주 등은 상기 다른 양태에서 기재한 바와 같다.
본 출원의 또 다른 하나의 양태는 본 출원의 변이체, 상기 변이체를 코딩하는 폴리뉴클레오타이드, 상기 폴리뉴클레오타이드를 포함하는 벡터 또는 본 출원의 폴리뉴클레오티드를 포함하는 코리네박테리움 속 균주; 이를 배양한 배지; 또는 이들 중 2 이상의 조합을 포함하는 L-이소류신 생산용 조성물을 제공하는 것이다.
본 출원의 조성물은 아미노산 생산용 조성물에 통상 사용되는 임의의 적합한 부형제를 추가로 포함할 수 있으며, 이러한 부형제는, 예를 들어 보존제, 습윤제, 분산제, 현탁화제, 완충제, 안정화제 또는 등장화제 등일 수 있으나, 이에 한정되는 것은 아니다.
본 출원의 조성물에서, 변이체, 폴리뉴클레오티드, 벡터, 균주, 배지 및 L-이소류신 등은 상기 다른 양태에서 기재한 바와 같다.
본 출원의 또 다른 하나의 양태는 본 출원의 변이체; 상기 변이체를 코딩하는 폴리뉴클레오티드; 또는 상기 변이체 또는 상기 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 코리네박테리움 속 균주의 L-이소류신 생산 용도를 제공하는 것이다.
이하 본 출원을 실시예에 의해 보다 상세하게 설명한다. 그러나 하기 실시예는 본 출원을 예시하기 위한 바람직한 실시양태에 불과한 것이며 따라서, 본 출원의 권리범위를 이에 한정하는 것으로 의도되지는 않는다. 한편, 본 명세서에 기재되지 않은 기술적인 사항들은 본 출원의 기술 분야 또는 유사 기술 분야에서 숙련된 통상의 기술자이면 충분히 이해하고 용이하게 실시할 수 있다.
실시예 1: L-이소류신 생산 균주 제작
야생형의 코리네박테리움 글루타미쿰은 L-이소류신을 생산하는 능력은 있으나, 과량 생산하지는 않는다. 이에, L-이소류신 생산능을 증가시키는 유전 형질을 확인하기 위하여, L-이소류신 생산능이 야생형에 비해 증가된 균주를 제작하였다.
먼저, 야생형 코리네박테리움 글루타미쿰 ATCC13032의 L-이소류신 생합성 경로에서 이소류신의 전구체인 쓰레오닌의 피드백 저해 해소를 위해, 호모세린 디하이드로게나제(homoserine dehydrogenase)를 코딩하는 유전자 hom를 변이하여, 호모세린 디하이드로게나제의 407번째 아미노산인 아르기닌을 히스티딘으로 치환하였다(대한민국 등록특허 제10-1996769호).
구체적으로, hom(R407H) 변이를 염색체상에 도입하기 위한 벡터를 제작하기 위해 야생형 코리네박테리움 글루타미쿰 ATCC13032의 염색체를 주형으로 하여 서열번호 6 및 서열번호 7의 프라이머 쌍 또는 서열번호 8 및 서열번호 9의 프라이머 쌍을 이용하여 PCR을 각각 수행하였다. 상기 프라이머 서열은 하기 표 1에 나타낸 바와 같다.
서열번호 명칭 서열
6 primer 1 TCGAGCTCGGTACCCCGCTTTTGCACTCATCGAGC
7 primer 2 CACGATCAGATGTGCATCATCAT
8 primer 3 ATGATGATGCACATCTGATCGTG
9 primer 4 CTCTAGAGGATCCCCGAGCATCTTCCAAAACCTTG
PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 95℃ 30초 변성; 55℃ 30초 어닐링; 및 중합반응 72℃ 1분 중합반응이며, 이러한 조건의 변성, 어닐링, 및 중합반응을 28회 반복하여 hom 유전자의 변이를 중심으로 5' 상단 부위의 1000 bp DNA 단편과 3' 하단 부위의 1000 bp의 DNA 단편을 각각 수득하였다.
증폭된 두 가지의 DNA 절편을 주형으로 하여, 서열번호 6 및 서열번호 9의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 조건으로 95℃ 5분간 변성 이후, 95℃ 30초 변성; 55℃ 30초 어닐링; 및 72℃ 2분 중합을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다.
그 결과, 407번째 아르기닌이 히스티딘으로 치환된 호모세린 디하이드로게나제 변이체를 코딩하는 hom 유전자의 변이를 포함하는 2 kb의 DNA 단편(서열번호 16)이 증폭되었다. 증폭 산물을 PCR 정제 키트(PCR Purification kit, QUIAGEN)를 사용하여 정제하고 벡터 제작을 위한 삽입 DNA 단편으로 사용하였다.
정제한 증폭 산물을 제한효소 smaI으로 처리한 후, 65℃에서 20분간 열처리한 pDCM2 벡터(한국공개특허 제10-2020-0136813호)와 상기 증폭 산물인 삽입 DNA 단편의 몰농도(M) 비율이 1:2가 되도록 하고, 인퓨전 클로닝 키트(Infusion Cloning Kit, TaKaRa)를 사용하여 제공된 매뉴얼에 따라 클로닝함으로써 hom(R407H) 변이를 염색체상에 도입하기 위한 벡터 pDCM2-R407H를 제작하였다.
제작된 벡터를 전기천공법으로 코리네박테리움 글루타미쿰 ATCC13032에 형질전환하고, 2차 교차 과정을 거쳐 염색체 상에서 hom(R407H) 변이를 포함하는 균주를 얻었으며, 이를 코리네박테리움 글루타미쿰 ATCC13032 hom(R407H)로 명명하였다.
제작한 ATCC13032 hom(R407H) 균주에 L-이소류신에 대한 피드백 해제와 활성을 증가시키기 위해, L-쓰레오닌 디하이드라타아제(L-threonine dehydratase)를 코딩하는 유전자인 ilvA를 변이하여, L-쓰레오닌 디하이드라타아제의 381번째 아미노산인 쓰레오닌을 알라닌으로 치환 및 383번째 아미노산인 페닐알라닌을 알라닌으로 치환하였다.
구체적으로, 상기 ilvA(T381A, F383A) 변이를 염색체상에 도입하기 위한 벡터를 제작하기 위해 야생형 코리네박테리움 글루타미쿰 ATCC13032의 염색체를 주형으로 하여 서열번호 10 및 서열번호 11의 프라이머 쌍 또는 서열번호 12 및 서열번호 13의 프라이머 쌍을 이용하여 PCR을 각각 수행하였다. 상기 프라이머 서열은 하기 표 2에 나타낸 바와 같다.
서열번호 명칭 서열
10 primer 5 TCGAGCTCGGTACCCATGAGTGAAACATACGTGTC
11 primer 6 GCGCTTGAGGTACTCtgcCAGCGcGATGTCATCATCCGG
12 primer 7 CCGGATGATGACATCgCGCTGgcaGAGTACCTCAAGCGC
13 primer 8 CTCTAGAGGATCCCCCGTCACCGACACCTCCACA
PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 95℃ 30초 변성; 55℃ 30초 변성; 및 72℃ 1분 중합반응이며, 이러한 조건의 변성, 어닐링, 및 중합반응을 28회 반복하여 ilvA 유전자의 변이를 중심으로 5' 상단 부위의 1126 bp DNA 단편과 3' 하단 부위의 286 bp의 DNA 단편을 각각 수득하였다.
증폭된 두 가지의 DNA 절편을 주형으로 하여, 서열번호 10 및 서열번호 13의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR 조건으로 95℃에서 5분간 변성 이후, 95℃ 30초 변성; 55℃ 30초 어닐링; 및 72℃ 2분 중합을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다.
그 결과, 381번째 쓰레오닌이 알라닌으로 및 383번째 페닐알라닌이 알라닌으로 치환된 L-쓰레오닌 디하이드라타아제 변이체를 코딩하는 ilvA 유전자의 변이를 포함하는 1.4 kb의 DNA 단편(서열번호 17)이 증폭되었다. 증폭 산물을 PCR 정제 키트를 사용하여 정제하고, 벡터 제작을 위한 삽입 DNA 단편으로 사용하였다. 정제한 증폭 산물을 제한효소 smaI으로 처리한 후, 65℃에서 20분간 열처리한 pDCM2 벡터와 상기 증폭 산물인 삽입 DNA 단편의 몰농도(M) 비율이 1:2가 되도록 하고, 다카라(TaKaRa)의 인퓨전 클로닝 키트를 사용하여 제공된 매뉴얼에 따라 클로닝함으로써 ilvA(T381A, F383A) 변이를 염색체상에 도입하기 위한 벡터 pDCM2-ilvA(T381A, F383A)를 제작하였다.
제작된 벡터를 전기천공법으로 코리네박테리움 글루타미쿰 ATCC13032 hom(R407H)에 형질전환하고, 2차 교차 과정을 거쳐 염색체 상에서 ilvA(T381A, F383A) 변이를 포함하는 균주를 얻었으며, 이를 코리네박테리움 글루타미쿰 CA10-3101이라 명명하였다.
상기 균주 CA10-3101은 2020년 5월 27일자로 부다페스트 조약하의 국제기탁기관인 한국미생물보존센터(KCCM)에 국제기탁하여 KCCM12739P로 기탁번호를 부여받았다.
다음으로, 상기 ilvA(T381A, F383A) 변이를 L-이소류신 생산 균주에 도입하는 경우 L-이소류신에 대한 피드백 해제와 활성을 증가시켜 실제로 L-이소류신 생산능을 증가시키는지 확인하기 위해, 다음과 같은 실험을 수행하였다.
구체적으로, NTG(N-Methyl-N'-nitro-N-nitrosoguanidine) 처리된 L-이소류신 생산 균주인 KCJI-38 균주(KCCM11248P, 대한민국 등록특허 제10-1335789호)에 상기 ilvA(T381A, F383A) 변이를 전기펄스법으로 도입하여 KCCM11248P/pECCG117-ilvA(T381A, F383A) 균주를 제작하였다. 그 다음, 하기와 같은 방법으로 발효역가 평가를 진행하였다.
이소류신 생산배지 25 ㎖을 함유하는 250 ㎖ 코너-바풀 플라스크에 모균주 및 상기 변이주를 접종한 후, 32℃에서 60시간동안 200 rpm으로 진탕 배양하여 L-이소류신을 생산하였다. 상기 생산배지의 조성은 하기와 같다.
<생산배지>
포도당 10%, 효모추출물 0.2%, 황산암모늄 1.6%, 제1인산칼륨 0.1%, 황산마그네슘7수염 0.1%, 황산철7수염 10㎎/ℓ, 황산망간1수염 10㎎/ℓ, 비오틴 200 ㎍/ℓ, pH 7.2
배양 종료 후, 액체고속크로마토그래피(HPLC)를 이용하여 실험한 각 균주에 대한 배양액 중의 L-이소류신 농도 및 L-쓰레오닌 농도를 측정한 후 그 결과를 하기 표 3에 나타내었다.
균주명 L-이소류신(g/L) L-쓰레오닌(g/L)
KCCM11248P(모균주) 1.5 0.5
KCCM11248P/pECCG117-ilvA(T381A, F383A) 4.0 0.0
상기 표 3에 나타난 바와 같이, ilvA(T381A, F383A) 변이를 도입한 KCCM11248P/pECCG117-ilvA(T381A, F383A) 균주는 모균주인 KCCM11248P에 비해 L-이소류신 생산능이 현저히 증가하고, L-쓰레오닌 분해율이 높은 것을 확인하였다. 이에 따라, 상기 ilvA(T381A, F383A) 변이를 균주에 도입시 L-이소류신에 대한 피드백 해제와 활성이 증가됨을 확인하였다.
실시예 2: 변이형 ilvN 라이브러리 벡터 제작
아세토하이드록시산 신타아제(Acetohydroxy acid synthase, AHAS)의 작은 소단위체를 코딩하는 ilvN 유전자의 변이 라이브러리를 제작하였다. 라이브러리는 error-prone PCR kit(clontech Diversify® PCR Random Mutagenesis Kit)를 이용하여 제작하였으며, 야생형 코리네박테리움 글루타미쿰 ATCC13032의 염색체를 주형으로 하고 서열번호 14 및 서열번호 15의 프라이머 쌍을 이용하여 PCR 반응을 수행하였다. 상기 프라이머 서열은 하기 표 4에 나타낸 바와 같다.
서열번호 명칭 서열
14 primer 9 CGAGCTCGGTACCCATGGCTAATTCTGACG
15 primer 10 TAGAGGATCCCCTTAGATCTTGGCCGGAGC
구체적으로, 1000bl 당 0에서 3개의 변이가 발생하는 조건으로 94℃에서 30초 pre-heating 후, 94℃에서 30초, 68℃에서 1분 30초의 과정을 25회 반복 수행하였다. 이 때, 수득한 산물을 megaprimer(500~125ng)를 이용하여 95℃에서 50초, 60℃에서 50초, 68℃에서 12분의 과정을 25회 반복 수행한 후 DpnI 처리하여, 대장균 DH5α에 형질전환하고, 카나마이신(25mg/L)이 포함된 LB 고체배지에 도말하였다. 형질전환된 콜로니 20종을 선별한 후 플라스미드를 획득하여 폴리뉴클레오티드 서열을 분석한 결과 2mutations/kb 빈도로 서로 다른 위치에 변이가 도입된 것을 확인하였다. 약 20,000개의 형질전환된 대장균 콜로니를 취하여 플라스미드를 추출하였고, 이를 pTOPO-ilvN-library로 명명하였다.
실시예 3: ilvN 라이브러리가 도입된 L-이소류신 생산 균주 제작
상기 실시예 2에서 제작된 pTOPO-ilvN-library를 상기 실시예 1에서 제작한 L-이소류신 생산 균주인 CA10-3101(KCCM12739P)에 전기천공법으로 형질전환한 후, 카나마이신 25mg/L를 함유한 영양배지에 도말하여 변이 유전자가 삽입된 균주 5,000개의 콜로니를 확보하였으며, 각 콜로니를 CA10-3101/pTOPO-ilvNm5001부터 CA10-3101/pTOPO-ilvNm10000까지로 명명하였다.
확보된 5,000개의 콜로니 중 L-이소류신 생산능이 증가된 콜로니를 확인하기 위해 각각의 콜로니에 대해 하기와 같은 방법으로 발효역가 평가를 진행하였다. 구체적으로, 이소류신 생산배지 25 ㎖을 함유하는 250 ㎖ 코너-바풀 플라스크에 모균주 및 상기 변이주를 접종한 후, 32℃에서 60시간동안 200 rpm으로 진탕 배양하여 L-이소류신을 생산하였다. 상기 생산배지의 조성은 하기와 같다.
<생산배지>
포도당 10%, 효모추출물 0.2%, 황산암모늄 1.6%, 제1인산칼륨 0.1%, 황산마그네슘7수염 0.1%, 황산철7수염 10㎎/ℓ 황산망간1수염 10㎎/ℓ, 비오틴 200 ㎍/ℓ, pH 7.2
배양 종료 후, 액체고속크로마토그래피(HPLC)를 이용하여 실험한 각 균주에 대한 배양액 중의 L-이소류신 농도를 측정한 후 그 결과를 하기 표 5에 나타내었다.
균주명 L-이소류신 농도(g/L) L-이소류신 농도 증가율(%)
CA10-3101(모균주) 2.01 -
CA10-3101/pTOPO-ilvNm6289 2.91 45
CA10-3101/pTOPO-ilvNm9011 3.16 57
상기 표 5에 나타난 바와 같이, 변이 균주 3종은 ilvN WT을 갖는 모균주인 코리네박테리움 글루타미쿰 CA10-3101에 비해 L-이소류신 생산성이 증가됨을 확인하였다. 상기 변이 균주 2종에 대한 시퀀싱을 진행하여, 야생형 코리네박테리움 글루타미쿰 ATCC13032의 ilvN 유전자와 비교한 결과, 상기 변이 균주 2종은 유전자에 다음과 같은 변이를 포함하고 있음을 확인하였다: CA10-3101/pTOPO-ilvNm6289 균주는 ilvN의 아미노산 서열에서 42번째 아미노산인 알라닌이 발린으로 치환(A42V)된 변이, CA10-3101/pTOPO-ilvNm9011 균주는 ilvN의 아미노산 서열에서 47번째 히스티딘이 류신으로 치환(H47L)된 변이.
상기 결과를 바탕으로, 상기 변이 균주 2종(A42V, H47L)이 모균주에 비해 고수율로 L-이소류신을 생산할 수 있음을 확인하였으며, ilvN(A42V), ilvN(H47L)이 도입된 각 균주의 L-이소류신 농도 증가율은 모균주 대비 약 45%, 57%임을 확인하였다.
실시예 4: 변이형 ilvN이 도입된 L-이소류신 생산 균주 제작
상기 실시예 3에서 확인한 ilvN(A42V), ilvN(H47L) 변이를 상기 실시예 1에서 제작한 코리네박테리움 글루타미쿰 CA10-3101 균주에 도입하였다.
구체적으로, 상기 변이형 ilvN 유전자(A42V, H47L)를 염색체상에 도입하기 위한 벡터를 제작하기 위해, CA10-3101/pTOPO-ilvNm6289 ilvN(A42V), CA10-3101/pTOPO-ilvNm9011 ilvN(H47L)의 염색체를 주형으로 하고 서열번호 14 및 서열번호 15의 프라이머 쌍을 이용하여 PCR를 각각 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 95℃ 30초 변성; 어닐링 55℃ 30초 변성; 및 중합반응 72℃ 1분이며, 이러한 변성, 어닐링, 및 중합반응을 28회 반복하여, 변이형 ilvN 유전자(A42V, H47L)를 각각 포함하는 2종의 545bp DNA 단편을 각각 수득하였다. 증폭산물을 QUIAGEN사의 PCR 정제 키트를 사용하여 정제하여 벡터 제작을 위한 삽입 DNA 단편으로 사용하였다. 정제한 증폭 산물을 제한효소 SmaI으로 처리한 후, 65℃에서 20분간 열처리한 pDCM2 벡터와 상기 PCR을 통하여 증폭한 삽입 DNA 단편의 몰농도(M) 비율이 1:2가 되도록 하고, 타카라(TaKaRa)의 인퓨전 클로닝 키트를 사용하여 제공된 매뉴얼에 따라 클로닝함으로써 코리네박테리움 글루타미쿰의 변이형 ilvN 유전자를 염색체상에 도입하기 위한 벡터 pDCM2-ilvN(A42V), pDCM2-ilvN(H47L)을 제작하였다.
상기에서 제작된 벡터를 전기천공법으로 코리네박테리움 글루타미쿰 CA10-3101에 형질전환하고, 2차 교차 과정을 거쳐 염색체 상에서 변이형 ilvN으로 치환된 균주를 얻었으며, CA10-3101::ilvN(A42V)를 CA10-3129, CA10-3101::ilvN(H47L)를 CA10-3130로 명명하였다.
모균주(CA10-3101) 및 본 실시예에서 제작한 변이주 2종(CA10-3129, CA10-3130)에 대하여, L-이소류신 생산성이 증가된 효과를 확인하기 위해, 각각의 균주를 하기와 같은 방법으로 발효역가 평가를 수행하였다.
이소류신 생산배지를 25㎖ 함유하는 250㎖ 코너-바풀 플라스크에 모균주 및 상기 변이주 2종을 접종한 후, 32℃에서 60시간동안 200rpm으로 진탕 배양하여 L-이소류신을 생산하였다. 상기 생산배지의 조성은 하기에 나타내었다.
<생산배지>
포도당 10%, 효모추출물 0.2%, 황산암모늄 1.6%, 제1인산칼륨 0.1%, 황산마그네슘7수염 0.1%, 황산철7수염 10㎎/ℓ, 황산망간1수염 10㎎/ℓ, 비오틴 200 ㎍/ℓ, pH 7.2
배양 종료 후, 액체고속크로마토그래피(HPLC)를 이용하여 실험한 각 균주에 대한 배양액 중의 L-이소류신 농도를 측정한 후 그 결과를 하기 표 6에 나타내었다.
균주명 L-이소류신 농도(g/L) L-이소류신 농도 증가율(%)
CA10-3101 2.12 -
CA10-3129(A42V 도입 균주) 3.10 46
CA10-3130(H47L 도입 균주) 2.98 41
상기 표 6에 나타난 바와 같이, ilvN WT을 갖는 L-이소류신 생산 균주인 모균주(CA10-3101)에 비해 ilvN(A42V), ilvN(H47L)가 각각 도입된 CA10-3129, CA10-3130 균주에서 모두 L-이소류신의 농도가 증가함을 확인하였으며, ilvN(A42V), ilvN(H47L)이 도입된 각 균주의 L-이소류신 농도 증가율은 모균주 대비 약 46%, 41%임을 확인하였다.
실시예 5: 조합 변이형 ilvN 플라스미드 제작
상기 실시예 3에서 확인된 ilvN 변이형 2종을 조합하여 L-이소류신 균주에 도입하기 위해, 변이형 ilvN를 염색체상에 도입하기 위한 벡터를 제작하였다.
구체적으로, pDCM2-ilvN(A42V)를 주형으로 하여 서열번호 14 및 서열번호 20의 프라이머 쌍, 서열번호 21 및 서열번호 15의 프라이머 쌍을 이용하여 PCR을 수행하였으며, pDCM2-ilvN(H47L)를 주형으로 하여 서열번호 14 및 서열번호 18의 프라이머 쌍 또는 서열번호 19 및 서열번호 15의 프라이머 쌍을 이용하며 PCR을 수행하였다. 상기 프라이머 서열은 하기 표 7에 나타낸 바와 같다.
서열번호 명칭 서열
18 primer 11 TTCGGTCTTAACAGACACGAGGGACACGAG
19 primer 12 GTGTCCCTCGTGTCTGTTAAGACCGAAACA
20 primer 13 CGGTTGATGCCgagTGTTTCGGTCTTTGCA
21 primer 14 AAGACCGAAACActcGGCATCAACCGCATC
PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 95℃ 30초 변성; 55℃ 30초 어닐링; 및 72℃ 1분 중합반응을 조건으로 하여, 이러한 변성, 어닐링, 및 중합반응을 28회 반복하여 166bp, 405bp DNA 단편을 각각 수득하였다. 증폭 산물을 QUIAGEN사의 PCR 정제 키트를 사용하여 정제하고, 벡터 제작을 위한 삽입 DNA 단편으로 사용하였다. 정제한 증폭 산물을 제한효소 smaI으로 처리한 후, 65℃에서 20분간 열처리한 pDCM2 벡터와 상기 증폭 산물인 삽입 DNA 단편의 몰농도(M) 비율이 1:2가 되도록 하고, 다카라(TaKaRa)의 인퓨전 클로닝 키트를 사용하여 제공된 매뉴얼에 따라 클로닝함으로써 변이형 ilvN를 염색체상에 도입하기 위한 벡터 pDCM2-ilvN(A42V, H47L)를 제작하였다.
실시예 6: 조합 변이형 ilvN이 도입된 L-이소류신 생산 균주 제작
상기 실시예 5에서 제작된 벡터를 전기천공법으로 상기 실시예 1에서 제작한 코리네박테리움 글루타미쿰 CA10-3101 균주에 형질전환하고, 2차 교차 과정을 거쳐 염색체 상에서 변이형 ilvN으로 치환된 균주를 얻었다. CA10-3101::ilvN(A42V, H47L)를 CA10-3132로 명명하였다.
제작된 균주의 L-이소류신 생산성 증가 효과를 확인하기 위해 하기와 같은 방법으로 발효역가 평가를 진행하였다.
이소류신 생산배지 25 ㎖을 함유하는 250 ㎖ 코너-바풀 플라스크에 모균주 및 상기 변이주를 접종한 후, 32℃에서 60시간동안 200 rpm으로 진탕 배양하여 L-이소류신을 생산하였다. 상기 생산배지의 조성은 하기와 같다.
<생산배지>
포도당 10%, 효모추출물 0.2%, 황산암모늄 1.6%, 제1인산칼륨 0.1%, 황산마그네슘7수염 0.1%, 황산철7수염 10㎎/ℓ, 황산망간1수염 10㎎/ℓ, 비오틴 200 ㎍/ℓ, pH 7.2
배양 종료 후, 실험한 각 균주에 대한 배양액 중의 L-이소류신 농도를 측정한 후 그 결과를 하기 표 8에 나타내었다.
균주명 L-이소류신 농도(g/L) L-이소류신 농도 증가율(%)
CA10-3101(모균주) 2.03 -
CA10-3129(A42V) 3.08 52
CA10-3130(H47L) 2.90 43
CA10-3132(A42V, H47L) 3.21 58
상기 표 8에 나타난 바와 같이, ilvN WT을 갖는 L-이소류신 생산 균주인 모균주(CA10-3101)에 비해 ilvN 단독 변이(ilvN(A42V), ilvN(H47L)) 또는 ilvN 조합 변이(ilvN(A42V, H47L))가 도입된 변이주에서 L-이소류신 농도가 증가함을 확인하였으며, ilvN 단독 변이보다 ilvN 조합 변이가 균주의 L-이소류신 생산능을 증가시킬 수 있음을 확인하였다.
실시예 7: L-이소류신 생산 균주 코리네박테리움 글루타미쿰 KCCM11248P 균주에서 변이형 ilvN 치환 균주의 제작
상기 실시예 6에서 L-이소류신 생산능 증가에 효과적인 것으로 확인된 ilvN 변이 2종 및 조합 변이를 NTG(N-Methyl-N'-nitro-N-nitrosoguanidine) 처리된 L-이소류신 생산균주인 KCJI-38(KCCM11248P, 대한민국 등록특허 제10-1335789호) 균주에 전기펄스법으로 도입한 후 카나마이신 25㎎m/L를 함유한 선별배지에 도말하여 형질전환하고, 2차 교차 과정을 거쳐 염색체 상에서 치환된 변이형 ilvN 및 조합 변이형 ilvN 치환주를 획득하였다. 그 다음, 하기와 같은 방법으로 발효역가 평가를 진행하였다.
이소류신 생산배지 25 ㎖을 함유하는 250 ㎖ 코너-바풀 플라스크에 모균주 및 상기 변이주를 접종한 후, 32℃에서 60시간동안 200 rpm으로 진탕 배양하여 L-이소류신을 생산하였다. 상기 생산배지의 조성은 하기와 같다.
<생산배지>
포도당 10%, 효모추출물 0.2%, 황산암모늄 1.6%, 제1인산칼륨 0.1%, 황산마그네슘7수염 0.1%, 황산철7수염 10㎎/ℓ, 황산망간1수염 10㎎/ℓ, 비오틴 200 ㎍/ℓ, pH 7.2
배양 종료 후, 액체고속크로마토그래피(HPLC)를 이용하여 실험한 각 균주에 대한 배양액 중의 L-이소류신 농도를 측정한 후 그 결과를 하기 표 9에 나타내었다.
균주명 L-이소류신 농도(g/L) L-이소류신 농도 증가율(%)
KCCM11248P (모균주) 1.02 -
KCCM11248P△ilvN::ilvN(A42V) 1.43 40
KCCM11248P△ilvN::ilvN(H47L) 1.32 29
KCCM11248P△ilvN::ilvN(A42V, H47L) 1.66 63
상기 표 9에 나타난 바와 같이, ilvN WT을 갖는 L-이소류신 생산 균주인 모균주(KCCM11248P)에 비해 ilvN 변이 2종 및 조합 변이가 도입된 변이주에서 L-이소류신 생산능이 증가하였으며, ilvN(A42V), ilvN(H47L), ilvN(A42V, H47L)이 도입된 각 균주의 L-이소류신 농도 증가율은 모균주 대비 약 40%, 29%, 그리고 63%로 확인되어, ilvN 단독 변이보다 ilvN 조합 변이가 균주의 L-이소류신 생산능을 증가시킬 수 있음을 확인하였다.
이상의 설명으로부터, 본 출원이 속하는 기술분야의 당업자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 출원의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.
Figure WO-DOC-PAGE-1
[서열 1] ilvN
MANSDVTRHILSVLVQDVDGIISRVSGMFTRRAFNLVSLVSAKTETHGINRITVVVDADELNIEQITKQLNKLIPVLKVVRLDEETTIARAIMLVKVSADSTNRPQIVDAANIFRARVVDVAPDSVVIESTGTPGKLRALLDVMEPFGIRELIQSGQIALNRGPKTMAPAKI
[서열 2] ilvN
ATGGCTAATTCTGACGTCACCCGCCACATCCTGTCCGTACTCGTTCAGGACGTAGACGGAATCATTTCCCGCGTATCAGGTATGTTCACCCGACGCGCATTCAACCTCGTGTCCCTCGTGTCTGCAAAGACCGAAACACACGGCATCAACCGCATCACGGTTGTTGTCGACGCCGACGAGCTCAACATTGAGCAGATCACCAAGCAGCTCAACAAGCTGATCCCCGTGCTCAAAGTCGTGCGACTTGATGAAGAGACCACTATCGCCCGCGCAATCATGCTGGTTAAGGTCTCTGCGGACAGCACCAACCGTCCGCAGATCGTCGACGCCGCGAACATCTTCCGCGCCCGAGTCGTCGACGTGGCTCCAGACTCTGTGGTTATTGAATCCACAGGCACCCCAGGCAAGCTCCGCGCACTGCTTGACGTGATGGAACCATTCGGAATCCGCGAACTGATCCAATCCGGACAGATTGCACTCAACCGCGGTCCGAAGACCATGGCTCCGGCCAAGATCTAA
[서열 3] ilvN(A42V)
MANSDVTRHILSVLVQDVDGIISRVSGMFTRRAFNLVSLVSVKTETHGINRITVVVDADELNIEQITKQLNKLIPVLKVVRLDEETTIARAIMLVKVSADSTNRPQIVDAANIFRARVVDVAPDSVVIESTGTPGKLRALLDVMEPFGIRELIQSGQIALNRGPKTMAPAKI
[서열 4] ilvN(H47L)
MANSDVTRHILSVLVQDVDGIISRVSGMFTRRAFNLVSLVSAKTETLGINRITVVVDADELNIEQITKQLNKLIPVLKVVRLDEETTIARAIMLVKVSADSTNRPQIVDAANIFRARVVDVAPDSVVIESTGTPGKLRALLDVMEPFGIRELIQSGQIALNRGPKTMAPAKI
[서열 5] ilvN(A42V, H47L)
MANSDVTRHILSVLVQDVDGIISRVSGMFTRRAFNLVSLVSVKTETLGINRITVVVDADELNIEQITKQLNKLIPVLKVVRLDEETTIARAIMLVKVSADSTNRPQIVDAANIFRARVVDVAPDSVVIESTGTPGKLRALLDVMEPFGIRELIQSGQIALNRGPKTMAPAKI
[서열 6] primer 1
TCGAGCTCGGTACCCCGCTTTTGCACTCATCGAGC
[서열 7] primer 2
CACGATCAGATGTGCATCATCAT
[서열 8] primer 3
ATGATGATGCACATCTGATCGTG
[서열 9] primer 4
CTCTAGAGGATCCCCGAGCATCTTCCAAAACCTTG
[서열 10] primer 5
TCGAGCTCGGTACCCATGAGTGAAACATACGTGTC
[서열 11] primer 6
GCGCTTGAGGTACTCtgcCAGCGcGATGTCATCATCCGG
[서열 12] primer 7
CCGGATGATGACATCgCGCTGgcaGAGTACCTCAAGCGC
[서열 13] primer 8
CTCTAGAGGATCCCCCGTCACCGACACCTCCACA
[서열 14] primer 9
CGAGCTCGGTACCCATGGCTAATTCTGACG
[서열 15] primer 10
TAGAGGATCCCCTTAGATCTTGGCCGGAGC
[서열 16] hom(R407H)
TGCACGGTGGCCGTGCTCCAGGTGAGTCCACCTACGCTAACCTGCCGATCGCTGATTTCGGTGAGACCACCACTCGTTACCACCTCGACATGGATGTGGAAGATCGCGTGGGGGTTTTGGCTGAATTGGCTAGCCTGTTCTCTGAGCAAGGAATCTCCCTGCGTACAATCCGACAGGAAGAGCGCGATGATGATGCACATCTGATCGTGGTCACCCACTCTGCGCTGGAATCTGATCTTTCCCGCACCGTTGAACTGCTGAAGGCTAAGCCTGTTGTTAAGGCAATCAACAGTGTGATCCGCCTCGAAAGGGACTAA
[서열 17] ilvA(T381A, F383A)
TCGCTGAGCGCTCCTTGGTGCACCGCGGTTTGAAGCACTACTTCTTGGTGAACTTCCCGCAAAAGCCTGGTCAGTTGCGTCACTTCCTGGAAGATATCCTGGGACCGGATGATGACATCgCGCTGgcaGAGTACCTCAAGCGCAACAACCGTGAGACCGGTACTGCGTTGGTGGGTATTCACTTGAGTGAAGCATCAGGATTGGATTCTTTGCTGGAACGTATGGAGGAATCGGCAATTGATTCCCGTCGCCTCGAGCCGGGCACCCCTGAGTACGAATACTTGACCTAA
[서열 18] primer 11
TTCGGTCTTAACAGACACGAGGGACACGAG
[서열 19] primer 12
GTGTCCCTCGTGTCTGTTAAGACCGAAACA
[서열 20] primer 13
CGGTTGATGCCgagTGTTTCGGTCTTTGCA
[서열 21] primer 14
AAGACCGAAACActcGGCATCAACCGCATC
[서열 22] ilvN(A42V)
ATGGCTAATTCTGACGTCACCCGCCACATCCTGTCCGTACTCGTTCAGGACGTAGACGGAATCATTTCCCGCGTATCAGGTATGTTCACCCGACGCGCATTCAACCTCGTGTCCCTCGTGTCTGTTAAGACCGAAACACACGGCATCAACCGCATCACGGTTGTTGTCGACGCCGACGAGCTCAACATTGAGCAGATCACCAAGCAGCTCAACAAGCTGATCCCCGTGCTCAAAGTCGTGCGACTTGATGAAGAGACCACTATCGCCCGCGCAATCATGCTGGTTAAGGTCTCTGCGGACAGCACCAACCGTCCGCAGATCGTCGACGCCGCGAACATCTTCCGCGCCCGAGTCGTCGACGTGGCTCCAGACTCTGTGGTTATTGAATCCACAGGCACCCCAGGCAAGCTCCGCGCACTGCTTGACGTGATGGAACCATTCGGAATCCGCGAACTGATCCAATCCGGACAGATTGCACTCAACCGCGGTCCGAAGACCATGGCTCCGGCCAAGATCTAA
[서열 23] ilvN(H47L)
ATGGCTAATTCTGACGTCACCCGCCACATCCTGTCCGTACTCGTTCAGGACGTAGACGGAATCATTTCCCGCGTATCAGGTATGTTCACCCGACGCGCATTCAACCTCGTGTCCCTCGTGTCTGCAAAGACCGAAACACTCGGCATCAACCGCATCACGGTTGTTGTCGACGCCGACGAGCTCAACATTGAGCAGATCACCAAGCAGCTCAACAAGCTGATCCCCGTGCTCAAAGTCGTGCGACTTGATGAAGAGACCACTATCGCCCGCGCAATCATGCTGGTTAAGGTCTCTGCGGACAGCACCAACCGTCCGCAGATCGTCGACGCCGCGAACATCTTCCGCGCCCGAGTCGTCGACGTGGCTCCAGACTCTGTGGTTATTGAATCCACAGGCACCCCAGGCAAGCTCCGCGCACTGCTTGACGTGATGGAACCATTCGGAATCCGCGAACTGATCCAATCCGGACAGATTGCACTCAACCGCGGTCCGAAGACCATGGCTCCGGCCAAGATCTAA
[서열 24] ilvN(A42V, H47L)
ATGGCTAATTCTGACGTCACCCGCCACATCCTGTCCGTACTCGTTCAGGACGTAGACGGAATCATTTCCCGCGTATCAGGTATGTTCACCCGACGCGCATTCAACCTCGTGTCCCTCGTGTCTGTTAAGACCGAAACACTCGGCATCAACCGCATCACGGTTGTTGTCGACGCCGACGAGCTCAACATTGAGCAGATCACCAAGCAGCTCAACAAGCTGATCCCCGTGCTCAAAGTCGTGCGACTTGATGAAGAGACCACTATCGCCCGCGCAATCATGCTGGTTAAGGTCTCTGCGGACAGCACCAACCGTCCGCAGATCGTCGACGCCGCGAACATCTTCCGCGCCCGAGTCGTCGACGTGGCTCCAGACTCTGTGGTTATTGAATCCACAGGCACCCCAGGCAAGCTCCGCGCACTGCTTGACGTGATGGAACCATTCGGAATCCGCGAACTGATCCAATCCGGACAGATTGCACTCAACCGCGGTCCGAAGACCATGGCTCCGGCCAAGATCTAA

Claims (12)

  1. 서열번호 1의 아미노산 서열에서 42번째 위치에 상응하는 아미노산이 다른 아미노산으로 치환되고 47번째 위치에 상응하는 아미노산이 다른 아미노산으로 치환된, 아세토하이드록시산 신타아제(Acetohydroxy acid synthase) 변이체.
  2. 제1항에 있어서, 상기 42번째 위치에 상응하는 아미노산은 발린으로 치환되는 것인, 변이체.
  3. 제1항에 있어서, 상기 47번째 위치에 상응하는 아미노산은 류신으로 치환되는 것인, 변이체.
  4. 제1항에 있어서, 상기 42번째 위치에 상응하는 아미노산은 알라닌인 것인, 변이체.
  5. 제1항에 있어서, 상기 47번째 위치에 상응하는 아미노산은 히스티딘인 것인, 변이체.
  6. 제1항 내지 제5항 중 어느 한 항의 변이체를 코딩하는 폴리뉴클레오티드.
  7. 제1항 내지 제5항 중 어느 한 항의 변이체; 또는 상기 변이체를 코딩하는 폴리뉴클레오티드;를 포함하는, 코리네박테리움 속 균주.
  8. 제7항에 있어서, 상기 균주는 서열번호 1의 아미노산 서열을 가지는 야생형 아세토하이드록시산 신타아제 또는 이를 코딩하는 폴리뉴클레오티드를 포함하는 코리네박테리움 속 균주와 비교하여 L-이소류신 생산능이 증가된, 균주.
  9. 제7항에 있어서, 상기 균주는 코리네박테리움 글루타미쿰인 것인, 균주.
  10. 제1항 내지 제5항 중 어느 한 항의 변이체; 또는 상기 변이체를 코딩하는 폴리뉴클레오티드;를 포함하는 코리네박테리움 속 균주를 배지에서 배양하는 단계를 포함하는, L-이소류신 생산 방법.
  11. 제1항 내지 제5항 중 어느 한 항의 변이체, 상기 변이체를 코딩하는 폴리뉴클레오타이드, 상기 폴리뉴클레오타이드를 포함하는 벡터 또는 본 출원의 폴리뉴클레오티드를 포함하는 코리네박테리움 속 균주; 이를 배양한 배지; 또는 이들 중 2 이상의 조합을 포함하는, L-이소류신 생산용 조성물.
  12. 제1항 내지 제5항 중 어느 한 항의 변이체; 상기 변이체를 코딩하는 폴리뉴클레오티드; 또는 상기 변이체 또는 상기 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 코리네박테리움 속 균주의 L-이소류신 생산 용도.
PCT/KR2022/011610 2021-09-29 2022-08-05 신규한 아세토하이드록시산 신테아제 변이체 및 이를 이용한 l-이소류신 생산방법 WO2023054882A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2022355342A AU2022355342A1 (en) 2021-09-29 2022-08-05 Novel acetohydroxy acid synthase mutant and l-isoleucine production method using same
CA3233425A CA3233425A1 (en) 2021-09-29 2022-08-05 Novel acetohydroxy acid synthase mutant and l-isoleucine production method using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210128912A KR20230045990A (ko) 2021-09-29 2021-09-29 신규한 아세토하이드록시산 신테아제 변이체 및 이를 이용한 l-이소류신 생산방법
KR10-2021-0128912 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023054882A1 true WO2023054882A1 (ko) 2023-04-06

Family

ID=85783099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011610 WO2023054882A1 (ko) 2021-09-29 2022-08-05 신규한 아세토하이드록시산 신테아제 변이체 및 이를 이용한 l-이소류신 생산방법

Country Status (4)

Country Link
KR (1) KR20230045990A (ko)
AU (1) AU2022355342A1 (ko)
CA (1) CA3233425A1 (ko)
WO (1) WO2023054882A1 (ko)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA103101A (en) 1906-06-13 1907-01-15 Henry Cruse Valve casing
US6072083A (en) 1997-02-26 2000-06-06 Ajinomoto Co., Inc. Method for purifying branched chain amino acids
US20070292914A1 (en) * 2003-06-26 2007-12-20 Degussa Ag Feedback Resistant Acetohydroxy Acid Synthethase Mutants
US7662943B2 (en) 2004-12-16 2010-02-16 Cj Cheiljedang Corporation Promoter sequences from Corynebacterium ammoniagenes
KR101335789B1 (ko) 2012-01-13 2013-12-02 씨제이제일제당 (주) L-이소루신을 생산하는 미생물 및 이를 이용한 l-이소루신 제조방법
KR101720836B1 (ko) * 2014-08-05 2017-04-03 씨제이제일제당 (주) 피드백 저항성 아세토하이드록시산 신타아제 변이체 및 이를 이용한 l-발린의 생산방법
US10113190B2 (en) 2013-06-03 2018-10-30 Evonik Degussa Gmbh Method for producing L-leucine, L-valine, L-isoleucine, α-ketoisovalerate, α-keto-beta-methylvalerate, or α-ketoisocaproate using recombinant Corynebacteria that contain the ilvBN operon which can be induced by propionate
US10273491B2 (en) 2015-01-29 2019-04-30 Cj Cheiljedang Corporation Promoter and uses thereof
CN110229797A (zh) * 2019-06-05 2019-09-13 天津科技大学 一种乙酰羟酸合成酶及其应用
KR101996769B1 (ko) 2018-12-21 2019-10-01 씨제이제일제당 (주) 변이형 호모세린 디하이드로게나제 및 이를 이용한 호모세린 또는 호모세린 유래 l-아미노산의 생산 방법
US10584338B2 (en) 2016-08-31 2020-03-10 Cj Cheiljedang Corporation Promoter and use thereof
CN111154748A (zh) * 2020-02-06 2020-05-15 江南大学 一种提高l-异亮氨酸合成纯度的乙酰羟酸合酶突变体
KR20200136813A (ko) 2020-03-17 2020-12-08 씨제이제일제당 (주) 프리페네이트 디하이드라타아제 활성 강화를 통한 l-트립토판을 생산하는 방법

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA103101A (en) 1906-06-13 1907-01-15 Henry Cruse Valve casing
US6072083A (en) 1997-02-26 2000-06-06 Ajinomoto Co., Inc. Method for purifying branched chain amino acids
US20070292914A1 (en) * 2003-06-26 2007-12-20 Degussa Ag Feedback Resistant Acetohydroxy Acid Synthethase Mutants
US7662943B2 (en) 2004-12-16 2010-02-16 Cj Cheiljedang Corporation Promoter sequences from Corynebacterium ammoniagenes
KR101335789B1 (ko) 2012-01-13 2013-12-02 씨제이제일제당 (주) L-이소루신을 생산하는 미생물 및 이를 이용한 l-이소루신 제조방법
US10113190B2 (en) 2013-06-03 2018-10-30 Evonik Degussa Gmbh Method for producing L-leucine, L-valine, L-isoleucine, α-ketoisovalerate, α-keto-beta-methylvalerate, or α-ketoisocaproate using recombinant Corynebacteria that contain the ilvBN operon which can be induced by propionate
KR101720836B1 (ko) * 2014-08-05 2017-04-03 씨제이제일제당 (주) 피드백 저항성 아세토하이드록시산 신타아제 변이체 및 이를 이용한 l-발린의 생산방법
US10273491B2 (en) 2015-01-29 2019-04-30 Cj Cheiljedang Corporation Promoter and uses thereof
US10584338B2 (en) 2016-08-31 2020-03-10 Cj Cheiljedang Corporation Promoter and use thereof
KR101996769B1 (ko) 2018-12-21 2019-10-01 씨제이제일제당 (주) 변이형 호모세린 디하이드로게나제 및 이를 이용한 호모세린 또는 호모세린 유래 l-아미노산의 생산 방법
CN110229797A (zh) * 2019-06-05 2019-09-13 天津科技大学 一种乙酰羟酸合成酶及其应用
CN111154748A (zh) * 2020-02-06 2020-05-15 江南大学 一种提高l-异亮氨酸合成纯度的乙酰羟酸合酶突变体
KR20200136813A (ko) 2020-03-17 2020-12-08 씨제이제일제당 (주) 프리페네이트 디하이드라타아제 활성 강화를 통한 l-트립토판을 생산하는 방법

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
"Atlas Of Protein Sequence And Structure", 1979, NATIONAL BIOMEDICAL RESEARCH FOUNDATION, pages: 353 - 358
"Guide to Huge Computers", 1994, ACADEMIC PRESS
ATSCHUL, S. F. ET AL., J MOLEC BIOL, vol. 215, no. 403, pages 1990
CARILLO ET AL., SIAM J APPLIED MATH, vol. 48, 1988, pages 1073
COLD SPRING HARBOR, 1989
DEVEREUX, J. ET AL., NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 387
GRIBSKOV ET AL., NUCL. ACIDS RES., vol. 14, 1986, pages 6745
NEEDLEMAN ET AL., J MOL BIOL., vol. 48, 1970, pages 443
NEEDLEMANWUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453
PEARSON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 2444
RICE ET AL., TRENDS GENET., vol. 16, 2000, pages 276 - 277
RICE ET AL.: "EMBOSS: The European Molecular Biology Open Software Suite", TRENDS GENET., vol. 16, 2000, pages 276 - 277, XP004200114, DOI: 10.1016/S0168-9525(00)02024-2
SAMBROOK ET AL., MOLECULAR CLONING, 2012
SITNICKA ET AL.: "Functional Analysis of Genes", ADVANCES IN CELL BIOLOGY., vol. 2, 2010, pages 50 - 16

Also Published As

Publication number Publication date
CA3233425A1 (en) 2023-04-06
KR20230045990A (ko) 2023-04-05
AU2022355342A1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
WO2020204427A1 (ko) 신규 l-트립토판 배출 단백질 변이체 및 이를 이용한 l-트립토판을 생산하는 방법
WO2019164348A1 (ko) 신규 l-트립토판 배출 단백질 및 이를 이용한 l-트립토판을 생산하는 방법
WO2017069578A1 (ko) L-이소루신 생산능을 가지는 코리네박테리움 속 미생물 및 이를 이용하여 l-이소루신을 생산하는 방법
WO2017014532A1 (ko) 퓨트레신 또는 오르니틴 생산 미생물 및 이를 이용한 퓨트레신 또는 오르니틴 생산방법
WO2021049866A1 (ko) L-쓰레오닌 배출 단백질의 변이체 및 이를 이용한 l-쓰레오닌 생산 방법
WO2021125896A1 (ko) 내막 단백질의 변이체 및 이를 이용한 목적 산물 생산 방법
WO2021167414A1 (ko) 퓨린 뉴클레오티드를 생산하는 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
WO2021150029A1 (ko) Nadp 의존적 글리세르알데하이드-3-포스페이트 디하이드로지나제를 포함하는 미생물을 이용하여 l-아미노산을 생산하는 방법
WO2022163951A1 (ko) 신규한 단백질 변이체 및 이를 이용한 l-라이신 생산 방법
WO2021085999A1 (ko) 외래 metZ 유전자에 의해 코딩되는 단백질이 도입된 L-메티오닌 생산 미생물 및 이를 이용한 L-메티오닌 생산방법
WO2020226341A1 (ko) L-아미노산을 생산하는 미생물 및 이를 이용한 l-아미노산을 생산하는 방법
WO2021177731A1 (ko) 글루타민 신테타아제 변이형 폴리펩티드 및 이를 이용한 l-글루타민 생산 방법
WO2021060696A1 (ko) 디하이드로디피콜린산 리덕타제 변이형 폴리펩티드 및 이를 이용한 l-쓰레오닌 생산방법
WO2022164118A1 (ko) 프리페네이트 탈수 효소 변이체 및 이를 이용한 분지쇄 아미노산 생산 방법
WO2022124708A1 (ko) 신규한 분지 연쇄 아미노산 아미노트렌스퍼라아제 변이체 및 이를 이용한 이소류신 생산 방법
WO2021261733A1 (ko) L-쓰레오닌 디하이드라타아제의 신규 변이체 및 이를 이용한 l-이소류신 생산 방법
WO2022191630A1 (ko) 신규한 시트레이트 신타아제 변이체 및 이를 이용한 l-발린 생산 방법
WO2022163904A1 (ko) 신규한 단백질 변이체 및 이를 이용한 l-라이신 생산 방법
WO2021045472A1 (ko) 신규한 프로모터 및 이를 이용한 목적 물질 생산 방법
WO2022050671A1 (ko) L-발린 생산 미생물 및 이를 이용한 l-발린 생산 방법
WO2022231036A1 (ko) 신규한 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2022225075A1 (ko) 신규한 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2021060701A1 (ko) 메조 디아미노피멜레이트 디하이드로게네이즈 변이형 폴리펩타이드 및 이를 이용한 l-쓰레오닌 생산방법
WO2023054882A1 (ko) 신규한 아세토하이드록시산 신테아제 변이체 및 이를 이용한 l-이소류신 생산방법
WO2023054881A1 (ko) 신규한 아세토하이드록시산 신테아제 변이체 및 이를 이용한 l-이소류신 생산방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876657

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3233425

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022355342

Country of ref document: AU

Ref document number: AU2022355342

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2401002061

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024006313

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022355342

Country of ref document: AU

Date of ref document: 20220805

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022876657

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022876657

Country of ref document: EP

Effective date: 20240415

NENP Non-entry into the national phase

Ref country code: DE