WO2023054343A1 - 二相ステンレス鋼材 - Google Patents

二相ステンレス鋼材 Download PDF

Info

Publication number
WO2023054343A1
WO2023054343A1 PCT/JP2022/035897 JP2022035897W WO2023054343A1 WO 2023054343 A1 WO2023054343 A1 WO 2023054343A1 JP 2022035897 W JP2022035897 W JP 2022035897W WO 2023054343 A1 WO2023054343 A1 WO 2023054343A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel material
content
duplex stainless
stainless steel
less
Prior art date
Application number
PCT/JP2022/035897
Other languages
English (en)
French (fr)
Inventor
誠也 岡田
悠索 富尾
勇次 荒井
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2022579862A priority Critical patent/JP7256435B1/ja
Publication of WO2023054343A1 publication Critical patent/WO2023054343A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present disclosure relates to duplex stainless steel materials.
  • Oil wells and gas wells may be corrosive environments containing corrosive gases.
  • corrosive gas means carbon dioxide gas and/or hydrogen sulfide gas. That is, steel materials used in oil wells are required to have excellent corrosion resistance in corrosive environments.
  • a duplex stainless steel material with an increased Cr content may be used.
  • a duplex stainless steel material having a duplex structure of a ferrite phase and an austenite phase has corrosion resistance to pitting corrosion and/or crevice corrosion (hereinafter referred to as "pitting corrosion resistance"), which is a problem in an aqueous solution containing chlorides. ).
  • Patent Document 1 JP-A-5-132741
  • Patent Document 2 JP-A-9-195003
  • Patent Document 3 JP-A-2014-043616
  • Patent Document 4 JP-A-2016-003377
  • the duplex stainless steel disclosed in Patent Document 2 has C: 0.12% or less, Si: 1% or less, Mn: 2% or less, Ni: 3 to 12%, and Cr: 20 to 35% by weight. %, Mo: 0.5 to 10%, W: more than 3 to 8%, Co: 0.01 to 2%, Cu: 0.1 to 5%, N: 0.05 to 0.5%, The remainder consists of Fe and unavoidable impurities. Patent Document 2 describes that this duplex stainless steel has superior corrosion resistance without reducing strength.
  • 3(Mo+0.5W)+16N) has a chemical composition of 40 or more.
  • the structure of the steel is such that, in a cross section in the thickness direction parallel to the rolling direction, when a straight line parallel to the thickness direction is drawn from the surface layer to a depth of 1 mm, the number of boundaries between the ferrite phase and the austenite phase that intersects the straight line is 160. That's it.
  • Patent Document 3 describes that this duplex stainless steel can be made high in strength without impairing corrosion resistance, and exhibits excellent hydrogen embrittlement resistance by combining cold working with a high degree of workability.
  • the duplex stainless steel disclosed in Patent Document 4 has C: 0.03% or less, Si: 0.2 to 1%, Mn: 0.5 to 2.0%, and P: 0.03% by mass. 040% or less, S: 0.010% or less, Sol. Al: 0.040% or less, Ni: 4 to less than 6%, Cr: 20 to less than 25%, Mo: 2.0 to 4.0%, N: 0.1 to 0.35%, O: 0.
  • the metal structure is composed of a two-phase structure of a ferrite phase and an austenite phase, there is no sigma phase precipitation, and the ratio of the ferrite phase in the metal structure is 50% or less in terms of area ratio, and in 300 mm 2 fields of view
  • the number of oxides having a particle size of 30 ⁇ m or more is 15 or less.
  • Patent Document 4 describes that this duplex stainless steel is excellent in strength, pitting corrosion resistance and low temperature toughness.
  • duplex stainless steel materials are required to have not only high strength and excellent pitting corrosion resistance, but also excellent low-temperature toughness. Therefore, a duplex stainless steel material having a yield strength of 586 MPa or more, excellent low-temperature toughness, and excellent pitting corrosion resistance has been obtained by techniques other than the techniques disclosed in Patent Documents 1 to 4 above. good too.
  • An object of the present disclosure is to provide a duplex stainless steel material having a yield strength of 586 MPa or more, excellent low temperature toughness, and excellent pitting corrosion resistance.
  • a duplex stainless steel material comprises: in % by mass, C: 0.030% or less, Si: 0.20 to 1.00%, Mn: 0.50-7.00%, P: 0.040% or less, S: 0.020% or less, Al: 0.100% or less, Ni: 4.20 to 9.00%, Cr: 20.00 to 30.00%, Mo: 0.50-2.00%, Cu: 1.50-4.00%, N: 0.150 to 0.350%, V: 0.01 to 1.50%, Nb: 0 to 0.100%, Ta: 0 to 0.100%, Ti: 0 to 0.100%, Zr: 0 to 0.100%, Hf: 0 to 0.100%, W: 0 to 0.200%, Co: 0 to 0.500%, Sn: 0 to 0.100%, Sb: 0 to 0.100%, Ca: 0-0.020%, Mg: 0-0.020%, B: 0 to 0.020%, Rare earth element: 0 to 0.200%, and The balance consists of Fe and impurities and
  • the duplex stainless steel material according to the present disclosure has a high yield strength of 586 MPa or more, excellent low temperature toughness, and excellent pitting resistance.
  • FIG. 1 is a diagram showing the relationship between the number density (pieces/ ⁇ m 3 ) of fine Cu precipitates in austenite and the yield strength (MPa) of steel materials in this example.
  • FIG. 2 is a diagram showing the relationship between the number density (pieces/ ⁇ m 3 ) of fine Cu precipitates in austenite and the absorbed energy (J/cm 2 ), which is an index of low-temperature toughness of steel materials, in this example. be.
  • the present inventors examined a duplex stainless steel material having a yield strength of 586 MPa or more, excellent low-temperature toughness, and excellent pitting corrosion resistance from the viewpoint of chemical composition. As a result, the present inventors found that, in mass%, C: 0.030% or less, Si: 0.20 to 1.00%, Mn: 0.50 to 7.00%, P: 0.040% or less , S: 0.020% or less, Al: 0.100% or less, Ni: 4.20 to 9.00%, Cr: 20.00 to 30.00%, Mo: 0.50 to 2.00%, Cu: 1.50-4.00%, N: 0.150-0.350%, V: 0.01-1.50%, Nb: 0-0.100%, Ta: 0-0.100% , Ti: 0-0.100%, Zr: 0-0.100%, Hf: 0-0.100%, W: 0-0.200%, Co: 0-0.500%, Sn: 0- 0.100%, Sb: 0-0.100%, Ca: 0-0.020%, Mg:
  • the microstructure of the duplex stainless steel material having the chemical composition described above consists of ferrite and austenite.
  • the microstructure of the duplex stainless steel material having the chemical composition described above is composed of ferrite with a volume fraction of 30.0 to 70.0% and the balance of austenite.
  • "composed of ferrite and austenite” means that phases other than ferrite and austenite are negligibly small.
  • the present inventors have developed a technique for improving the pitting corrosion resistance of a duplex stainless steel material having the chemical composition described above and having a microstructure consisting of ferrite with a volume fraction of 30.0 to 70.0% and the balance being austenite. variously examined. As a result, the present inventors have found that if the chemical composition of the duplex stainless steel material further satisfies the following formula (1), the pitting corrosion resistance of the duplex stainless steel material can be enhanced. Cr+3.3(Mo+0.5W)+16N ⁇ 30.0 (1) Here, the content of the corresponding element is substituted for the symbol of the element in formula (1) in terms of % by mass. If the corresponding element is not contained, "0" is substituted for the element symbol.
  • Fn1 is an index relating to the pitting corrosion resistance of steel materials.
  • Fn1 is an index relating to the pitting corrosion resistance of steel materials.
  • the pitting corrosion resistance of the duplex stainless steel material can be increased. That is, if Fn1 is too low, the pitting corrosion resistance of the duplex stainless steel material is reduced. Therefore, the duplex stainless steel material according to this embodiment satisfies the chemical composition described above and has Fn1 of 30.0 or more.
  • the present inventors have found a duplex stainless steel material having the above chemical composition, Fn1 of 30.0 or more, and a microstructure composed of ferrite with a volume fraction of 30.0 to 70.0% and the balance being austenite.
  • Various methods of improving low-temperature toughness and yield strength while maintaining pitting corrosion resistance were investigated. As a result, the present inventors obtained the following findings.
  • the present inventors focused on the microstructure of a duplex stainless steel material that satisfies the chemical composition described above and has an Fn1 of 30.0 or more, and investigated a technique for increasing the yield strength. Specifically, in the microstructure of the duplex stainless steel material having the chemical composition described above, the strength of austenite tends to be lower than that of ferrite. Therefore, in a duplex stainless steel material having the chemical composition and microstructure described above and having an Fn1 of 30.0 or more, the yield strength of the entire steel material may easily decrease due to the characteristics of austenite.
  • duplex stainless steel materials intermetallic compounds typified by the ⁇ phase may precipitate.
  • a duplex stainless steel material in which the ⁇ phase is precipitated cannot obtain excellent pitting corrosion resistance. Therefore, when producing a duplex stainless steel material, a solution treatment is carried out as described in the preferred production method described later. As a result, precipitates in the conventional duplex stainless steel material have been greatly reduced.
  • precipitates in steel increase the yield strength of steel.
  • the low temperature toughness and pitting corrosion resistance of the steel may be lowered. Therefore, the inventors of the present invention have found that if it is possible to selectively precipitate precipitates that are unlikely to reduce the low-temperature toughness and pitting corrosion resistance in austenite, the yield strength and low-temperature I thought that the toughness could be improved.
  • the inventors focused on copper (Cu) among the precipitates.
  • Cu precipitates in the steel material as Cu precipitates and increases the yield strength of the steel material.
  • fine Cu precipitates a large number of fine Cu precipitates with a major axis of 50 nm or less (hereinafter also simply referred to as "fine Cu precipitates") precipitate in austenite, the yield strength is can be increased to 586 MPa or more.
  • the present inventors first found a duplex stainless steel having a microstructure that satisfies the above-described chemical composition, has an Fn1 of 30.0 or more, and has a volume fraction of 30.0 to 70.0% ferrite and the balance austenite.
  • the relationship between fine Cu precipitates in austenite and yield strength in steel materials was investigated and examined in detail. A specific description will be given with reference to the drawings.
  • FIG. 1 is a diagram showing the relationship between the number density (pieces/ ⁇ m 3 ) of fine Cu precipitates in austenite and the yield strength (MPa) of steel materials in this example.
  • FIG. 1 shows, among the examples to be described later, a microstructure that satisfies the chemical composition described above, has an Fn1 of 30.0 or more, has a volume fraction of ferrite of 30.0 to 70.0%, and a microstructure composed of the balance austenite.
  • a duplex stainless steel material was prepared using the number density (pieces/ ⁇ m 3 ) of fine Cu precipitates in austenite and the yield strength (MPa). The number density and yield strength of fine Cu precipitates were determined by the method described later. Moreover, all of the examples shown in FIG. 1 exhibited excellent pitting corrosion resistance.
  • the yield strength becomes 586 MPa or more when the number density of fine Cu precipitates in austenite is 150 pieces/ ⁇ m 3 or more.
  • the yield strength is less than 586 MPa.
  • duplex stainless steel material having the above chemical composition, Fn1 of 30.0 or more, and a microstructure composed of ferrite with a volume fraction of 30.0 to 70.0% and the balance being austenite.
  • Fn1 chemical composition
  • microstructure composed of ferrite with a volume fraction of 30.0 to 70.0% and the balance being austenite.
  • FIG. 2 is a diagram showing the relationship between the number density (pieces/ ⁇ m 3 ) of fine Cu precipitates in austenite and the absorbed energy (J/cm 2 ), which is an index of low-temperature toughness of steel materials, in this example. be.
  • FIG. 2 shows, among the examples to be described later, a microstructure that satisfies the chemical composition described above, has an Fn1 of 30.0 or more, and has a volume fraction of ferrite of 30.0 to 70.0% and a microstructure of the balance consisting of austenite.
  • a duplex stainless steel material was prepared using the number density (pieces/ ⁇ m 3 ) of fine Cu precipitates in austenite and the absorbed energy (J/cm 2 ). The number density and absorption energy of fine Cu precipitates were determined by the method described later. In addition, all of the steel materials shown in FIG. 2 exhibited excellent pitting corrosion resistance.
  • a duplex stainless steel material that satisfies the chemical composition described above, has an Fn1 of 30.0 or more, and has a microstructure composed of ferrite with a volume fraction of 30.0 to 70.0% and the balance of austenite, , it was found that when the number density of fine Cu precipitates in austenite is 1500/ ⁇ m 3 or less, the absorbed energy becomes 60.0 J/cm 2 or more, exhibiting excellent low-temperature toughness. On the other hand, in the duplex stainless steel material described above, when the number density of fine Cu precipitates in the austenite exceeds 1500/ ⁇ m 3 , the absorbed energy becomes less than 60.0 J/cm 2 and does not exhibit excellent low temperature toughness. can be confirmed.
  • the duplex stainless steel material when the number density of fine Cu precipitates in austenite is 150 to 1500/ ⁇ m 3 , excellent pitting corrosion resistance is maintained, and high yield strength of 586 MPa or more and excellent low temperature toughness are achieved. It became clear that Therefore, in this embodiment, the number density of fine Cu precipitates in austenite is set to 150 to 1500/ ⁇ m 3 . As a result, the duplex stainless steel material according to this embodiment has a high yield strength of 586 MPa or more, excellent low temperature toughness, and excellent pitting corrosion resistance.
  • the gist of the duplex stainless steel material according to this embodiment completed based on the above knowledge is as follows.
  • duplex stainless steel material according to [1], Nb: 0.001 to 0.100%, Ta: 0.001 to 0.100%, Ti: 0.001 to 0.100%, Zr: 0.001 to 0.100%, Hf: 0.001 to 0.100%, W: 0.001 to 0.200%, Co: 0.001 to 0.500%, Sn: 0.001 to 0.100%, Sb: 0.001 to 0.100%, Ca: 0.001-0.020%, Mg: 0.001-0.020%, B: 0.001 to 0.020%, and Rare earth elements: 0.001 to 0.200%, containing one or more elements selected from the group consisting of Duplex stainless steel material.
  • duplex stainless steel material according to [1] or [2], Nb: 0.001 to 0.100%, Ta: 0.001 to 0.100%, Ti: 0.001 to 0.100%, Zr: 0.001 to 0.100%, Hf: 0.001 to 0.100%, and W: 0.001 to 0.200%, containing one or more elements selected from the group consisting of Duplex stainless steel material.
  • duplex stainless steel material according to any one of [1] to [3], Co: 0.001 to 0.500%, Sn: 0.001 to 0.100%, and Sb: 0.001 to 0.100%, containing one or more elements selected from the group consisting of Duplex stainless steel material.
  • duplex stainless steel material according to any one of [1] to [4], Ca: 0.001-0.020%, Mg: 0.001-0.020%, B: 0.001 to 0.020%, and Rare earth elements: 0.001 to 0.200%, containing one or more elements selected from the group consisting of Duplex stainless steel material.
  • the shape of the duplex stainless steel material according to this embodiment is not particularly limited.
  • the duplex stainless steel material according to this embodiment may be a steel pipe, a round steel (solid material), or a steel plate.
  • the round steel means a bar having a circular cross section perpendicular to the axial direction.
  • the steel pipe may be a seamless steel pipe or a welded steel pipe.
  • duplex stainless steel material according to this embodiment will be described in detail below.
  • the duplex stainless steel material is also simply referred to as "steel material”.
  • the chemical composition of the duplex stainless steel material according to this embodiment contains the following elements. "%" for elements means % by weight unless otherwise specified.
  • C 0.030% or less Carbon (C) is inevitably contained. That is, the lower limit of the C content is over 0%. C forms Cr carbides at the grain boundaries and increases corrosion susceptibility at the grain boundaries. Therefore, if the C content is too high, the pitting corrosion resistance of the steel material is lowered even if the contents of other elements are within the range of the present embodiment. Therefore, the C content is 0.030% or less. A preferable upper limit of the C content is 0.028%, more preferably 0.025%. The C content is preferably as low as possible. However, a drastic reduction of the C content greatly increases manufacturing costs. Therefore, considering industrial production, the lower limit of the C content is preferably 0.001%, more preferably 0.005%.
  • Si 0.20-1.00% Silicon (Si) deoxidizes steel. If the Si content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Si content is too high, the low-temperature toughness and hot workability of the steel are lowered even if the content of other elements is within the range of the present embodiment. Therefore, the Si content is 0.20-1.00%. A preferred lower limit for the Si content is 0.25%, more preferably 0.30%. A preferable upper limit of the Si content is 0.80%, more preferably 0.60%.
  • Mn 0.50-7.00%
  • Manganese (Mn) deoxidizes steel and desulfurizes steel. Mn further enhances the hot workability of steel. If the Mn content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, Mn segregates at grain boundaries together with impurities such as P and S. Therefore, if the Mn content is too high, the pitting corrosion resistance of the steel material in a high-temperature environment is lowered even if the content of other elements is within the range of the present embodiment. Therefore, the Mn content is 0.50-7.00%. A preferred lower limit for the Mn content is 0.75%, more preferably 1.00%. A preferable upper limit of the Mn content is 6.50%, more preferably 6.20%.
  • P 0.040% or less Phosphorus (P) is inevitably contained. That is, the lower limit of the P content is over 0%. P segregates at grain boundaries. Therefore, if the P content is too high, the low-temperature toughness and pitting corrosion resistance of the steel material are lowered even if the content of other elements is within the range of the present embodiment. Therefore, the P content is 0.040% or less. A preferable upper limit of the P content is 0.035%, more preferably 0.030%. The lower the P content is, the better. However, an extreme reduction in the P content greatly increases manufacturing costs. Therefore, considering industrial production, the lower limit of the P content is preferably 0.001%, more preferably 0.003%.
  • S 0.020% or less Sulfur (S) is inevitably contained. That is, the lower limit of the S content is over 0%. S segregates at grain boundaries. Therefore, if the S content is too high, the low-temperature toughness and pitting corrosion resistance of the steel are lowered even if the contents of other elements are within the range of the present embodiment. Therefore, the S content is 0.020% or less. A preferable upper limit of the S content is 0.018%, more preferably 0.016%. It is preferable that the S content is as low as possible. However, an extreme reduction in the S content greatly increases manufacturing costs. Therefore, when considering industrial production, the preferred lower limit of the S content is 0.0001%, more preferably 0.0003%, still more preferably 0.001%, still more preferably 0.002% is.
  • Al 0.100% or less
  • Aluminum (Al) is inevitably contained. That is, the lower limit of the Al content is over 0%. Al deoxidizes steel. On the other hand, if the Al content is too high, even if the contents of other elements are within the range of the present embodiment, coarse oxide-based inclusions are formed and the low-temperature toughness of the steel is lowered. Therefore, the Al content is 0.100% or less.
  • a preferable lower limit of the Al content is 0.001%, more preferably 0.005%, and still more preferably 0.010%.
  • a preferable upper limit of the Al content is 0.090%, more preferably 0.085%.
  • the Al content referred to in this specification means "acid-soluble Al", that is, sol. It means the content of Al.
  • Ni 4.20-9.00%
  • Nickel (Ni) stabilizes the austenitic structure of steel. That is, Ni is an element necessary for obtaining a stable ferrite-austenite two-phase structure. Ni further enhances the pitting corrosion resistance of steel. If the Ni content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Ni content is too high, the volume fraction of austenite will be too high and the yield strength of the steel material will decrease even if the contents of other elements are within the ranges of the present embodiment. Therefore, the Ni content is 4.20-9.00%.
  • the preferred lower limit of the Ni content is 4.25%, more preferably 4.30%, still more preferably 4.35%, still more preferably 4.40%, still more preferably 4.50 %.
  • the upper limit of the Ni content is preferably 8.75%, more preferably 8.50%, still more preferably 8.25%, still more preferably 8.00%, still more preferably 7.75 %.
  • Chromium (Cr) increases the pitting resistance of steel. Specifically, Cr forms a passive film on the surface of the steel material as an oxide. As a result, the pitting corrosion resistance of the steel is enhanced. Cr further increases the volume fraction of the ferrite structure of the steel material. By obtaining a sufficient ferrite structure, the pitting corrosion resistance of the steel is stabilized. If the Cr content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Cr content is too high, the hot workability of the steel deteriorates even if the content of other elements is within the range of the present embodiment. Therefore, the Cr content is 20.00-30.00%. A preferable lower limit of the Cr content is 20.50%, more preferably 21.00%, and still more preferably 21.50%. A preferable upper limit of the Cr content is 29.50%, more preferably 29.00%, and still more preferably 28.00%.
  • Mo 0.50-2.00%
  • Molybdenum (Mo) increases the pitting resistance of steel. Mo further dissolves in steel to increase the yield strength of the steel material. Mo also forms fine carbides in the steel to increase the yield strength of the steel. If the Mo content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Mo content is too high, the hot workability of the steel deteriorates even if the content of other elements is within the range of the present embodiment. Therefore, the Mo content is 0.50-2.00%. A preferable lower limit of the Mo content is 0.60%, more preferably 0.70%, and still more preferably 0.80%. A preferable upper limit of the Mo content is less than 2.00%, more preferably 1.85%, still more preferably 1.50%.
  • Cu 1.50-4.00% Copper (Cu) precipitates as fine Cu precipitates in the austenite of the steel material and increases the yield strength of the steel material. If the Cu content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Cu content is too high, the hot workability of the steel deteriorates even if the contents of other elements are within the range of the present embodiment. Therefore, the Cu content is 1.50-4.00%.
  • the preferred lower limit of the Cu content is 1.60%, more preferably 1.80%, still more preferably 1.90%, still more preferably 2.00%, still more preferably 2.50 %.
  • a preferable upper limit of the Cu content is 3.90%, more preferably 3.75%, and still more preferably 3.50%.
  • N 0.150-0.350%
  • Nitrogen (N) stabilizes the austenitic structure of steel. That is, N is an element necessary for obtaining a stable ferrite-austenite two-phase structure. N further enhances the pitting corrosion resistance of steel. If the N content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the N content is too high, the low-temperature toughness and hot workability of the steel deteriorate even if the content of other elements is within the range of the present embodiment. Therefore, the N content is 0.150-0.350%. A preferable lower limit of the N content is 0.170%, more preferably 0.180%, and still more preferably 0.190%. A preferable upper limit of the N content is 0.340%, more preferably 0.330%.
  • V Vanadium (V) increases the yield strength of steel. If the V content is too low, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the V content is too high, the strength of the steel material becomes too high, and the low temperature toughness and hot workability of the steel material deteriorate even if the contents of other elements are within the ranges of the present embodiment. Therefore, the V content is 0.01-1.50%.
  • a preferable lower limit of the V content is 0.02%, more preferably 0.03%, and still more preferably 0.05%.
  • a preferable upper limit of the V content is 1.20%, more preferably 1.00%.
  • the remainder of the chemical composition of the duplex stainless steel material according to this embodiment consists of Fe and impurities.
  • the impurities in the chemical composition are those that are mixed from ore, scrap, or the manufacturing environment as raw materials when industrially producing the duplex stainless steel material. It means that it is permissible within a range that does not adversely affect the steel material.
  • the chemical composition of the above duplex stainless steel material may further contain one or more elements selected from the group consisting of Nb, Ta, Ti, Zr, Hf and W in place of part of Fe. All of these elements are optional elements and increase the strength of the steel material.
  • Niobium (Nb) is an optional element and may not be contained. That is, the Nb content may be 0%. When included, Nb forms carbonitrides and increases the strength of the steel material. If even a small amount of Nb is contained, the above effect can be obtained to some extent. However, if the Nb content is too high, the strength of the steel becomes too high and the low-temperature toughness of the steel deteriorates even if the contents of other elements are within the ranges of the present embodiment. Therefore, the Nb content is 0-0.100%. A preferable lower limit of the Nb content is more than 0%, more preferably 0.001%, more preferably 0.002%, still more preferably 0.003%, still more preferably 0.005% is. A preferable upper limit of the Nb content is 0.080%, more preferably 0.070%.
  • Ta 0-0.100% Tantalum (Ta) is an optional element and may not be contained. That is, the Ta content may be 0%. When contained, Ta forms carbonitrides and increases the strength of the steel material. If even a small amount of Ta is contained, the above effect can be obtained to some extent. However, if the Ta content is too high, the strength of the steel becomes too high and the low-temperature toughness of the steel deteriorates, even if the contents of other elements are within the ranges of the present embodiment. Therefore, the Ta content is 0-0.100%. A preferable lower limit of the Ta content is more than 0%, more preferably 0.001%, more preferably 0.002%, still more preferably 0.003%, still more preferably 0.005% is. A preferable upper limit of the Ta content is 0.080%, more preferably 0.070%.
  • Titanium (Ti) is an optional element and may not be contained. That is, the Ti content may be 0%. When included, Ti forms carbonitrides and increases the strength of the steel material. If even a small amount of Ti is contained, the above effect can be obtained to some extent. However, if the Ti content is too high, the strength of the steel becomes too high and the low-temperature toughness of the steel deteriorates, even if the contents of other elements are within the ranges of the present embodiment. Therefore, the Ti content is 0-0.100%. A preferable lower limit of the Ti content is more than 0%, more preferably 0.001%, more preferably 0.002%, still more preferably 0.003%, still more preferably 0.005% is. A preferable upper limit of the Ti content is 0.080%, more preferably 0.070%.
  • Zr Zirconium
  • Zr Zirconium
  • the Zr content may be 0%.
  • Zr forms carbonitrides and increases the strength of the steel. If even a small amount of Zr is contained, the above effect can be obtained to some extent. However, if the Zr content is too high, the strength of the steel material becomes too high and the low temperature toughness of the steel material decreases even if the contents of other elements are within the ranges of the present embodiment. Therefore, the Zr content is 0-0.100%.
  • a preferable lower limit of the Zr content is more than 0%, more preferably 0.001%, more preferably 0.002%, still more preferably 0.003%, still more preferably 0.005% is.
  • a preferred upper limit for the Zr content is 0.080%, more preferably 0.070%.
  • Hf 0-0.100%
  • Hafnium (Hf) is an optional element and may not be contained. That is, the Hf content may be 0%. When included, Hf forms carbonitrides and increases the strength of the steel. If even a small amount of Hf is contained, the above effect can be obtained to some extent. However, if the Hf content is too high, the strength of the steel becomes too high and the low-temperature toughness of the steel deteriorates, even if the contents of other elements are within the ranges of the present embodiment. Therefore, the Hf content is 0-0.100%.
  • a preferable lower limit of the Hf content is more than 0%, more preferably 0.001%, more preferably 0.002%, still more preferably 0.003%, still more preferably 0.005% is.
  • a preferred upper limit of the Hf content is 0.080%, more preferably 0.070%.
  • W 0-0.200% Tungsten (W) is an optional element and may not be contained. That is, the W content may be 0%. When included, W forms carbonitrides and increases the strength of the steel material. If even a small amount of W is contained, the above effect can be obtained to some extent. However, if the W content is too high, the strength of the steel becomes too high and the low-temperature toughness of the steel deteriorates even if the contents of other elements are within the ranges of the present embodiment. Therefore, the W content is 0-0.200%. A preferable lower limit of the W content is more than 0%, more preferably 0.001%, more preferably 0.002%, still more preferably 0.003%, still more preferably 0.005% is. A preferable upper limit of the W content is 0.180%, more preferably 0.150%.
  • the chemical composition of the duplex stainless steel material described above may further contain one or more elements selected from the group consisting of Co, Sn, and Sb instead of part of Fe. All of these elements are optional elements and enhance the corrosion resistance of the steel material.
  • Co is an optional element and may not be contained. That is, the Co content may be 0%. When contained, Co forms a film on the surface of the steel material to enhance the corrosion resistance of the steel material. Co further enhances the hardenability of the steel material and stabilizes the strength of the steel material. If even a small amount of Co is contained, the above effect can be obtained to some extent. However, if the Co content is too high, the manufacturing cost will be extremely high even if the contents of other elements are within the range of the present embodiment. Therefore, the Co content is 0-0.500%.
  • the lower limit of the Co content is preferably over 0%, more preferably 0.001%, still more preferably 0.010%, still more preferably 0.020%.
  • a preferable upper limit of the Co content is 0.480%, more preferably 0.460%, and still more preferably 0.450%.
  • Sn 0-0.100% Tin (Sn) is an optional element and may not be contained. That is, the Sn content may be 0%. When included, Sn enhances the corrosion resistance of steel. If even a small amount of Sn is contained, the above effect can be obtained to some extent. However, if the Sn content is too high, even if the content of other elements is within the range of the present embodiment, liquefaction embrittlement cracking occurs at the grain boundary, thereby deteriorating the hot workability of the steel material. Therefore, the Sn content is 0-0.100%.
  • the lower limit of the Sn content is preferably over 0%, more preferably 0.001%, still more preferably 0.002%, still more preferably 0.003%.
  • a preferable upper limit of the Sn content is 0.080%, more preferably 0.070%.
  • Sb 0-0.100%
  • Antimony (Sb) is an optional element and may not be contained. That is, the Sb content may be 0%. When included, Sb enhances the corrosion resistance of steel. If even a small amount of Sb is contained, the above effect can be obtained to some extent. However, if the Sb content is too high, even if the contents of other elements are within the ranges of the present embodiment, the ductility of the steel material at high temperatures is lowered, and the hot workability of the steel material is lowered. Therefore, the Sb content is 0-0.100%.
  • a preferable lower limit of the Sb content is more than 0%, more preferably 0.001%, still more preferably 0.002%, still more preferably 0.003%.
  • a preferable upper limit of the Sb content is 0.080%, more preferably 0.070%.
  • the chemical composition of the duplex stainless steel material described above may further contain one or more elements selected from the group consisting of Ca, Mg, B, and rare earth elements in place of part of Fe. All of these elements are optional elements and improve the hot workability of the steel material.
  • Ca 0-0.020%
  • Calcium (Ca) is an optional element and may not be contained. That is, the Ca content may be 0%.
  • Ca fixes S in the steel material as a sulfide to render it harmless and enhances the hot workability of the steel material. If even a little Ca is contained, the above effect can be obtained to some extent. However, if the Ca content is too high, even if the contents of other elements are within the ranges of the present embodiment, the oxides in the steel material will coarsen and the low temperature toughness of the steel material will decrease. Therefore, the Ca content is 0-0.020%.
  • a preferable lower limit of the Ca content is more than 0%, more preferably 0.001%, more preferably 0.002%, more preferably 0.003%, more preferably 0.005% is.
  • a preferable upper limit of the Ca content is 0.018%, more preferably 0.015%.
  • Mg 0-0.020%
  • Mg Magnesium
  • the Mg content may be 0%.
  • Mg it fixes S in the steel material as a sulfide to render it harmless and enhances the hot workability of the steel material. If even a small amount of Mg is contained, the above effect can be obtained to some extent. However, if the Mg content is too high, even if the contents of other elements are within the range of the present embodiment, the oxides in the steel material will coarsen and the low temperature toughness of the steel material will decrease. Therefore, the Mg content is 0-0.020%.
  • the preferred lower limit of the Mg content is more than 0%, more preferably 0.001%, more preferably 0.002%, still more preferably 0.003%, still more preferably 0.005% is.
  • a preferable upper limit of the Mg content is 0.018%, more preferably 0.015%.
  • B 0-0.020% Boron (B) is an optional element and may not be contained. That is, the B content may be 0%. When contained, B suppresses the segregation of S in the steel material to the grain boundary and enhances the hot workability of the steel material. If even a small amount of B is contained, the above effect can be obtained to some extent. However, if the B content is too high, boron nitride (BN) is formed even if the content of other elements is within the range of the present embodiment, which reduces the low temperature toughness of the steel material. Therefore, the B content is 0-0.020%.
  • BN boron nitride
  • a preferable lower limit of the B content is more than 0%, more preferably 0.001%, more preferably 0.002%, more preferably 0.003%, more preferably 0.005% is.
  • a preferable upper limit of the B content is 0.018%, more preferably 0.015%.
  • Rare earth elements 0 to 0.200%
  • a rare earth element (REM) is an optional element and may not be contained. That is, the REM content may be 0%. When contained, REM detoxifies S in the steel by fixing it as a sulfide, thereby enhancing the hot workability of the steel. The above effect can be obtained to some extent if REM is contained even in a small amount. However, if the REM content is too high, even if the contents of other elements are within the ranges of the present embodiment, the oxides in the steel material will coarsen and the low temperature toughness of the steel material will decrease. Therefore, the REM content is 0-0.200%.
  • a preferable lower limit of the REM content is more than 0%, more preferably 0.001%, more preferably 0.005%, more preferably 0.010%, more preferably 0.020% is.
  • a preferred upper limit for the REM content is 0.180%, more preferably 0.160%.
  • REM refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanoid (La) with atomic number 57 to atomic number 71. It means one or more elements selected from the group consisting of lutetium (Lu). Moreover, the REM content in this specification means the total content of these elements.
  • Fn1 Cr + 3.3 (Mo + 0.5 W) + 16 N
  • the pitting corrosion resistance of the duplex stainless steel material can be increased. That is, if Fn1 is too low, the pitting corrosion resistance of the duplex stainless steel material is reduced. Therefore, the duplex stainless steel material according to this embodiment satisfies the chemical composition described above and has Fn1 of 30.0 or more.
  • a preferable lower limit of Fn1 is 30.5, more preferably 31.0, and still more preferably 31.5.
  • a higher Fn1 is preferable.
  • the upper limit of Fn1 is substantially 42.5.
  • Fn1 is obtained by rounding off the obtained numerical value to the second decimal place.
  • the microstructure of the duplex stainless steel material according to this embodiment consists of 30.0 to 70.0% ferrite and the balance austenite in volume fraction.
  • "consisting of ferrite and austenite” means having negligible phases other than ferrite and austenite.
  • the volume fraction of precipitates and inclusions is negligibly small compared to the volume fractions of ferrite and austenite. That is, the microstructure of the duplex stainless steel according to the present embodiment may contain minute amounts of precipitates, inclusions, and the like in addition to ferrite and austenite.
  • the microstructure of the duplex stainless steel material according to this embodiment has a volume fraction of ferrite of 30.0 to 70.0%. If the volume fraction of ferrite is too low, the yield strength and/or pitting corrosion resistance of the steel may decrease. On the other hand, if the volume fraction of ferrite is too high, the low-temperature toughness and/or hot workability of the steel may deteriorate. Therefore, in the microstructure of the duplex stainless steel material according to this embodiment, the volume fraction of ferrite is 30.0-70.0%. A preferable lower limit of the volume fraction of ferrite is 31.0%, more preferably 32.0%. A preferable upper limit of the volume fraction of ferrite is 68.0%, more preferably 65.0%.
  • the volume fraction of ferrite in the duplex stainless steel material can be obtained by a method conforming to ASTM E562 (2019).
  • a test piece for microstructure observation is produced from the duplex stainless steel material according to the present embodiment.
  • the steel material is a steel plate
  • a test piece having an observation surface of 5 mm in the rolling direction and 5 mm in the thickness direction from the central portion of the plate thickness is prepared.
  • the steel material is a steel pipe
  • a test piece having an observation surface of 5 mm in the pipe axial direction and 5 mm in the pipe radial direction from the center of the wall thickness is prepared.
  • the steel material is round steel
  • a test piece having an observation surface of 5 mm in the axial direction and 5 mm in the radial direction from the R/2 position is produced.
  • the R/2 position of the round bar means the central position of the radius R in the cross section perpendicular to the axial direction of the round bar.
  • the size of the test piece is not particularly limited as long as the above observation surface is obtained.
  • the observation surface of the prepared test piece is mirror-polished.
  • the mirror-polished observation surface is electrolytically corroded in a 7% potassium hydroxide corrosive solution to expose the structure.
  • 10 fields of view of the observation surface where the tissue is exposed are observed using an optical microscope.
  • the field of view area is not particularly limited, it is, for example, 1.00 mm 2 (magnification of 100 times).
  • Ferrite is identified from the contrast in each field of view.
  • the area ratio of the specified ferrite is measured by the point counting method based on ASTM E562 (2019).
  • the arithmetic average value of the obtained ferrite area ratios in 10 fields of view is defined as the ferrite volume ratio (%).
  • the volume fraction (%) of ferrite is obtained by rounding off the obtained numerical value to the second decimal place.
  • the number density of Cu precipitates having a major diameter of 50 nm or less is 150 to 1500/ ⁇ m 3 in austenite.
  • Cu precipitates having a major axis of 50 nm or less are also referred to as "fine Cu precipitates”.
  • the Cu precipitate means a precipitate composed of Cu and impurities.
  • EDS Energy Dispersive X-ray Spectrometry
  • the precipitates in the steel material have been conventionally reduced for the purpose of increasing the pitting corrosion resistance of the steel material.
  • fine Cu precipitates in austenite increase the yield strength of steel materials. Fine Cu precipitates also have less effect on the low temperature toughness and pitting corrosion resistance of steel. Therefore, in the duplex stainless steel material according to the present embodiment, fine Cu precipitates, which have little effect on low-temperature toughness and pitting corrosion resistance, are actively precipitated in austenite. As a result, the duplex stainless steel material according to this embodiment can increase the yield strength of the steel material while maintaining pitting corrosion resistance.
  • the number density of fine Cu precipitates is set to 150 to 1500/ ⁇ m 3 in austenite.
  • the number density of fine Cu precipitates in the austenite is 150 to 1500 / ⁇ m 3 , excellent low temperature toughness and a high yield strength of 586 MPa or more can be obtained while maintaining excellent pitting corrosion resistance.
  • a preferable lower limit of the number density of fine Cu precipitates in the austenite of the duplex stainless steel material according to the present embodiment is 156/ ⁇ m 3 , more preferably 160/ ⁇ m 3 .
  • a preferable upper limit of the number density of fine Cu precipitates in the austenite of the duplex stainless steel material according to the present embodiment is 1200/ ⁇ m 3 , more preferably 900/ ⁇ m 3 , still more preferably 600/ ⁇ m 3 . is.
  • the number density of fine Cu precipitates in austenite can be obtained by the following method.
  • a thin film test piece for observing fine Cu precipitates is produced from the steel material according to the present embodiment.
  • the steel material is a steel plate
  • a thin film test piece is prepared from the central portion of the plate thickness.
  • the steel material is a steel pipe
  • a thin film test piece is prepared from the center of the wall thickness. If the steel material is a round bar, a thin film specimen is produced from the R/2 position.
  • the thin film test piece is produced by electrolytic polishing using the Twin Jet method.
  • the size of the thin film test piece is not particularly limited as long as the observation field described below can be obtained.
  • Austenite in the observation plane can be specified by identifying the crystal structure by electron beam diffraction.
  • a tissue observation is performed on the specified four fields of view using a transmission electron microscope (hereinafter also referred to as "TEM").
  • TEM transmission electron microscope
  • arbitrary four fields of view are specified as observation fields of view.
  • the area of each observation field is not particularly limited, it is, for example, 800 nm ⁇ 800 nm.
  • Deposits are identified from the contrast of the generated photographic image.
  • precipitates having a major axis of 50 nm or less are specified by comparing with the scale bar in the image.
  • a person skilled in the art can, of course, identify precipitates with a major axis of 50 nm or less in the observation field.
  • Elemental analysis by EDS is performed on the precipitates with a major axis of 50 nm or less in austenite specified as described above.
  • the target elements are quantified as Fe, Cr, Ni, Cu, Mn, Mo, and Si.
  • elemental analysis is performed on a range having a certain volume due to the characteristics of the device. In other words, even if precipitates are present on the observed surface, elemental analysis of the precipitates alone cannot be performed, and the elemental analysis of the base material is also performed at the same time. Therefore, when an elemental analysis by EDS is performed in a region where Cu precipitates are present on the observed surface, elements derived from the base material (such as Fe) are simultaneously detected in addition to Cu.
  • the Cu content in the base material is 1.50 to 4.00% as described above. Therefore, in elemental analysis by EDS, if the precipitate has a Cu concentration of 15.0% by mass or more, it can be determined to be a Cu precipitate.
  • the number of precipitates (fine Cu precipitates) having a major axis of 50 nm or less and a Cu concentration of 15.0% by mass or more is counted.
  • the volume ( ⁇ m 3 ) of each observation area is obtained from the area of each observation field and the thickness of the observation area. The thickness of the observation region can be obtained from the total integrated intensity of the electron energy loss intensity spectrum (EELS) and the integrated intensity of the zero-loss spectrum for the thin film test piece.
  • EELS electron energy loss intensity spectrum
  • the number density (pieces/ ⁇ m 3 ) of fine Cu precipitates in each observation field Ask for Let the arithmetic mean value of the number density of fine Cu precipitates obtained in the four fields of view be the number density of fine Cu precipitates in austenite (pieces/ ⁇ m 3 ). In the present embodiment, the number density (pieces/ ⁇ m 3 ) of fine Cu precipitates in austenite is obtained by rounding off the obtained numerical value to the first decimal place.
  • the yield strength of the duplex stainless steel material according to this embodiment is 586 MPa or more.
  • the duplex stainless steel material according to the present embodiment has the chemical composition described above, further satisfies the formula (1), and has a microstructure consisting of 30.0 to 70.0% ferrite in volume fraction and the balance austenite. Further, the number density of Cu precipitates having a major axis of 50 nm or less in austenite is 150 to 1500/ ⁇ m 3 . As a result, the duplex stainless steel material according to this embodiment has excellent low temperature toughness and excellent pitting corrosion resistance even when the yield strength is 586 MPa or more.
  • a preferable lower limit of the yield strength of the duplex stainless steel material according to the present embodiment is 590 MPa, more preferably 592 MPa, still more preferably 594 MPa.
  • the upper limit of the yield strength of the duplex stainless steel material according to the present embodiment is not particularly limited, it is, for example, 724 MPa.
  • the yield strength of the duplex stainless steel material according to this embodiment can be obtained by the following method. Specifically, a tensile test is performed by a method conforming to ASTM E8/E8M (2021). A test piece is produced from the steel material according to the present embodiment. When the steel material is a steel plate, a tensile test piece is prepared from the central portion of the plate thickness. In this case, the longitudinal direction of the tensile test piece is parallel to the rolling direction of the steel plate. When the steel material is a steel pipe, an arc-shaped test piece having a width of 25.4 mm and a gauge length of 50.8 mm is prepared which has the same thickness as the steel pipe.
  • the longitudinal direction of the arc-shaped test piece is parallel to the axial direction of the steel pipe.
  • a tensile test piece is produced from the R/2 position.
  • the longitudinal direction of the tensile test piece shall be parallel to the axial direction of the round bar.
  • the size of the tensile test piece is, for example, a parallel portion diameter of 6 mm and a gauge length of 24 mm.
  • a tensile test is performed at room temperature (25° C.) in the atmosphere.
  • the 0.2% offset yield strength obtained from the tensile test is defined as the yield strength (MPa).
  • the yield strength (MPa) is obtained by rounding off the obtained numerical value to the first decimal place.
  • the duplex stainless steel material according to the present embodiment has the chemical composition described above, further satisfies the formula (1), and has a microstructure consisting of 30.0 to 70.0% ferrite in volume fraction and the balance austenite. Further, the number density of Cu precipitates having a major axis of 50 nm or less in austenite is 150 to 1500/ ⁇ m 3 . As a result, the duplex stainless steel material according to this embodiment exhibits excellent low temperature toughness and excellent pitting corrosion resistance even when the yield strength is 586 MPa or more. In this embodiment, excellent low temperature toughness is defined as follows.
  • the low-temperature toughness of the duplex stainless steel material according to this embodiment can be evaluated by a Charpy impact test conforming to ASTM E23 (2016).
  • a V-notch test piece is produced from the steel material according to this embodiment in accordance with ASTM E23 (2016). Specifically, when the steel material is a steel plate, a V-notch test piece is produced from the central portion of the plate thickness. In this case, the notch surface of the V-notch test piece is parallel to the thickness direction and rolling direction of the steel plate, and the longitudinal direction is parallel to the rolling direction of the steel plate. When the steel material is a steel pipe, a V-notch test piece is produced from the thickness central portion.
  • the notch surface of the V-notch test piece is parallel to the thickness direction and axial direction of the steel pipe, and the longitudinal direction is parallel to the axial direction of the steel pipe. If the steel material is a round bar, prepare a V-notch specimen from the R/2 position. In this case, the notch surface of the V-notch test piece is parallel to the radial and axial directions of the round bar, and the longitudinal direction is parallel to the axial direction of the round bar.
  • a Charpy impact test in accordance with ASTM E23 (2016) is performed on the prepared V-notch test piece to determine the absorbed energy (J) at -10°C. Divide the obtained absorbed energy (J) by the cross-sectional area (cm 2 ) of the V-notch test piece to obtain the absorbed energy (J/cm 2 ) per unit area at -10°C.
  • the cross-sectional area of the V-notch test piece means the area of the cross-section perpendicular to the longitudinal direction of the V-notch test piece at the position of the V-notch bottom.
  • the obtained absorbed energy (J) is divided by the cross-sectional area of 0.8 cm 2 (width 0.8 cm ⁇ thickness 1.0 cm) of the V-notch test piece.
  • the absorbed energy (J/cm 2 ) per unit area can be obtained.
  • the absorbed energy per unit area (J/cm 2 ) at ⁇ 10° C. is obtained by rounding off the obtained numerical value to the second decimal place.
  • the absorbed energy per unit area at ⁇ 10° C. when the absorbed energy per unit area at ⁇ 10° C. is 60.0 J/cm 2 or more, it is judged to have excellent low temperature toughness.
  • the absorbed energy per unit area at ⁇ 10° C. is also simply referred to as “absorbed energy”.
  • the duplex stainless steel material according to the present embodiment has the chemical composition described above, further satisfies the formula (1), and has a microstructure consisting of 30.0 to 70.0% ferrite in volume fraction and the balance austenite. Further, the number density of Cu precipitates having a major axis of 50 nm or less in austenite is 150 to 1500/ ⁇ m 3 . As a result, the duplex stainless steel material according to this embodiment has excellent low temperature toughness and excellent pitting corrosion resistance even when the yield strength is 586 MPa or more. In this embodiment, excellent pitting corrosion resistance is defined as follows.
  • the pitting corrosion resistance of the duplex stainless steel material according to this embodiment can be evaluated by a corrosion test based on ASTM G48 (2011) Method E.
  • a test piece for a corrosion test is produced from the steel material according to this embodiment.
  • the size of the test piece is, for example, 3 mm thick, 25 mm wide and 50 mm long.
  • a test piece is produced from the central portion of the plate thickness.
  • the longitudinal direction of the test piece is parallel to the rolling direction of the steel plate.
  • the steel material is a steel pipe
  • a test piece is prepared from the center of the wall thickness.
  • the longitudinal direction of the test piece shall be parallel to the axial direction of the steel pipe.
  • the steel material is a round bar
  • a test piece is produced from the R/2 position.
  • the longitudinal direction of the test piece shall be parallel to the axial direction of the round bar.
  • the test solution is 6% FeCl 3 +1% HCl.
  • a test piece is immersed in a test solution having a specific liquid volume of 5 mL/cm 2 or more.
  • the test start temperature is 15°C, and the temperature of the test solution is raised by 5°C every 24 hours.
  • the temperature at which pitting corrosion occurs in the test piece is defined as the critical pitting temperature (CPT).
  • CPT critical pitting temperature
  • the shape of the duplex stainless steel material according to this embodiment is not particularly limited.
  • the duplex stainless steel material according to this embodiment is a seamless steel pipe.
  • the duplex stainless steel material according to this embodiment is a seamless steel pipe, it has a yield strength of 586 MPa or more, excellent low-temperature toughness, and excellent pitting corrosion resistance even when the wall thickness is 5 mm or more.
  • An example of the manufacturing method of the duplex stainless steel material according to the present embodiment having the above configuration will be described.
  • the manufacturing method of the duplex stainless steel material according to the present embodiment is not limited to the manufacturing method described below.
  • An example of the method for manufacturing the duplex stainless steel material of the present embodiment includes a material preparation step, a hot working step, and a solution heat treatment step. Each manufacturing process will be described in detail below.
  • a material having the chemical composition described above is prepared.
  • Materials may be prepared by manufacturing or may be prepared by purchasing from a third party. That is, the method of preparing the material is not particularly limited.
  • a molten steel having the above chemical composition is produced.
  • a cast piece (slab, bloom, or billet) is produced by continuous casting using molten steel.
  • a steel ingot (ingot) may be produced by an ingot casting method using molten steel. If desired, the slab, bloom or ingot may be bloomed to produce a billet.
  • the material is manufactured by the above steps.
  • the material prepared in the preparatory process is hot worked to manufacture an intermediate steel material.
  • intermediate steel material refers to a plate-shaped steel material when the final product is a steel plate, a blank pipe when the final product is a steel pipe, and a cross section perpendicular to the axial direction when the final product is a round steel. It is a circular rod-shaped steel material, and if the final product is a wire material, it is a linear steel material.
  • the hot working may be hot forging, hot extrusion, or hot rolling.
  • the method of hot working is not particularly limited, and a known method may be used.
  • the hot working process for example, the Eugene Sejournet method or the Erhardt pushbench method (that is, hot extrusion) may be performed.
  • Piercing rolling that is, hot rolling
  • the hot working may be performed only once, or may be performed multiple times.
  • the above-described hot extrusion may be performed after the above-described piercing-rolling is performed on the raw material.
  • the raw material may be stretch-rolled after being subjected to the above-described piercing-rolling. That is, in the hot working step, hot working is performed by a well-known method to produce an intermediate steel material having a desired shape.
  • Solution treatment step In the solution treatment process according to the present embodiment, the intermediate steel material produced in the hot working process is subjected to solution treatment to produce a duplex stainless steel material.
  • Solution treatment means a heat treatment that dissolves the compounds in the intermediate steel. That is, the solution treatment process includes a process of heat-treating the intermediate steel material at a desired temperature (heat treatment process) and a process of rapidly cooling the heat-treated intermediate steel material (quenching process).
  • the solution treatment process according to the present embodiment includes a process of maintaining the temperature of the intermediate steel material (maintenance process) between the heat treatment process and the quenching process. Each step will be described in detail below.
  • heat treatment process In the heat treatment process according to the present embodiment, heat treatment is performed on the intermediate steel material produced in the hot working process. Specifically, preferably, the intermediate steel material is heat treated at a heat treatment temperature of 960 to 1100° C. for a heat treatment time of 5 to 180 minutes.
  • the heat treatment temperature means the temperature (° C.) of the heat treatment furnace for carrying out the solution treatment.
  • the heat treatment time means the time from when the material is charged into the heat treatment furnace for carrying out the solution treatment until it is taken out.
  • the heat treatment temperature is preferably 960 to 1100.degree. A more preferable lower limit of the heat treatment temperature is 965°C. A more preferable upper limit of the heat treatment temperature is 1080°C.
  • the heat treatment time is preferably 5 to 180 minutes.
  • the intermediate steel material heat-treated in the heat treatment process is maintained.
  • the intermediate steel material is preferably maintained within the range of 900 to 950° C. for 20 to 180 seconds.
  • "maintaining the temperature of the intermediate steel material” is not limited to the case where the temperature is maintained at a constant temperature.
  • the intermediate steel material may be cooled at a cooling rate equal to or lower than natural cooling (such as natural cooling or slow cooling) so that the temperature of the intermediate steel material falls within the range of 900 to 950°C.
  • the intermediate steel material may be further heated using a reheating furnace or a high-frequency heating furnace so that the temperature of the intermediate steel material falls within the range of 900 to 950.degree. That is, in the maintaining step according to the present embodiment, the intermediate steel material may be kept at a constant temperature, the intermediate steel material may be allowed to cool or slowly cooled, or the intermediate steel material may be heated.
  • the maintaining temperature it is preferable to set the maintaining temperature to 900 to 950.degree.
  • the maintaining time it is preferable to set the maintaining time to 20 to 180 seconds.
  • quenching start temperature is the temperature of the intermediate steel material at the completion of the above-described maintaining step. If the quenching start temperature is too low, too many fine Cu precipitates may precipitate in the austenite. In this case, the low temperature toughness of the steel is lowered. Therefore, in the quenching step according to the present embodiment, it is preferable to perform quenching immediately after maintaining the intermediate steel material at 900 to 950° C. in the above-described maintaining step.
  • the quenching method is not particularly limited, and a well-known method may be used.
  • the intermediate steel material can be cooled by shower water cooling, mist water cooling, oil cooling, or the like.
  • the cooling rate in the quenching step is not particularly limited, but for example, the cooling rate from 900° C. to 400° C. is 3° C./second or more.
  • the duplex stainless steel material that has undergone solution treatment may be subjected to pickling treatment as necessary.
  • the pickling treatment may be performed by a well-known method, and is not particularly limited.
  • the strength of the steel material becomes too high, and the toughness of the steel material is extremely reduced. Therefore, it is preferable not to perform cold working on the duplex stainless steel material according to this embodiment.
  • the duplex stainless steel material according to this embodiment can be manufactured.
  • the above-described method of manufacturing the duplex stainless steel material is an example, and the duplex stainless steel material may be manufactured by other methods. The present invention will be described in more detail below with reference to examples.
  • Step 2 and 3 After heating the obtained ingots at the rolling temperature (°C) shown in Tables 2 and 3, hot rolling was performed to produce intermediate steel materials having shapes shown in Tables 2 and 3.
  • the rolling temperature (°C) was the temperature (°C) of the heating furnace used for heating.
  • the "Shape" columns in Tables 2 and 3 are as follows. “Steel pipe A” means a seamless steel pipe having an outer diameter of 177.8 mm and a wall thickness of 12.65 mm. “Steel pipe B” means a seamless steel pipe having an outer diameter of 139.7 mm and a wall thickness of 9.2 mm. “Steel pipe C” means a seamless steel pipe having an outer diameter of 114.3 mm and a wall thickness of 7.4 mm.
  • Step pipe D means a seamless steel pipe having an outer diameter of 198.2 mm and a wall thickness of 21.2 mm.
  • the “steel plate” means a steel plate having a thickness of 13 mm and a rectangular cross section of 15 mm ⁇ 60 mm on a side perpendicular to the thickness direction.
  • “Round steel” means a cylindrical shape with an axial length of 500 mm and a cross section perpendicular to the axial direction having a circular diameter of 50 mm.
  • the intermediate steel materials of each test number manufactured by hot rolling were subjected to solution treatment under the conditions shown in Tables 2 and 3 to manufacture the steel materials of each test number.
  • the intermediate steel materials of each test number were subjected to heat treatment at the heat treatment temperature (°C) and heat treatment time (minutes) shown in Tables 2 and 3.
  • the furnace temperature of the heat treatment furnace for performing the solution treatment was the heat treatment temperature (° C.).
  • the heat treatment time (minutes) was defined as the time from the introduction of the intermediate steel material into the heat treatment furnace for solution treatment until extraction.
  • Tables 2 and 3 show heat treatment temperatures (°C) and heat treatment times (minutes) for the heat treatments performed on the intermediate steel materials of each test number.
  • Tables 2 and 3 show the maintenance temperature (°C), maintenance time (seconds), and quenching start temperature (°C) for each test number.
  • the steel material of each test number was obtained.
  • the shape of the intermediate steel material of each test number and the shape of the steel material of the corresponding test number were the same.
  • microstructure observation was performed by the above-described method based on ASTM E562 (2019) to determine the ferrite volume fraction (%).
  • a test piece having a cross section perpendicular to the rolling direction of the steel material as an observation surface was produced from the steel material of each test number. Specifically, when the shape of the steel material was a steel pipe, a test piece was produced from the thickness central portion. When the shape of the steel material was a steel plate, a test piece was produced from the central portion of the plate thickness. Furthermore, when the shape of the steel material was a round bar, a test piece was produced from the R/2 position. Using the prepared test piece, the ferrite volume fraction was determined by the method described above. Tables 2 and 3 show the obtained ferrite volume fraction (%) for each test number.
  • Test test A tensile test was performed on the steel material of each test number by the above-described method based on ASTM E8/E8M (2021) to determine the yield strength (MPa).
  • a test piece for a tensile test was produced from the steel material of each test number. Specifically, when the shape of the steel material was a steel pipe, the thickness was the same as that of the steel pipe, and an arc-shaped test piece with a width of 25.4 mm and a gauge length of 50.8 mm was produced. When the shape of the steel material was a steel plate, a tensile test piece was prepared from the central portion of the plate thickness.
  • a tensile test piece was produced from the R/2 position.
  • the size of the tensile test piece was a parallel portion diameter of 6 mm and a gauge length of 24 mm.
  • the longitudinal direction of the tensile test piece and the arc-shaped test piece was parallel to the rolling direction of the steel material.
  • a tensile test was carried out in accordance with ASTM E8/E8M (2021) for the prepared test pieces of each test number.
  • the 0.2% offset yield strength obtained in the tensile test was defined as the yield strength.
  • the yield strength (MPa) obtained for each test number is shown in Tables 2 and 3 as "YS (MPa)".
  • a V-notch test piece for Charpy impact test was produced from the steel material of each test number in accordance with ASTM E23 (2016).
  • the shape of the steel material was a steel pipe
  • a V-notch test piece having a notch surface parallel to the thickness direction and the pipe axis direction was produced from the thickness central portion.
  • the shape of the steel material was a steel plate
  • a V-notch test piece having notched surfaces parallel to the plate thickness direction and the rolling direction was prepared from the plate thickness center.
  • V-notch test piece having notch surfaces parallel to the radial direction and the axial direction was produced from the R/2 position.
  • the longitudinal direction of the V-notch test piece was parallel to the rolling direction of the steel material.
  • the shape of the steel material was steel pipe A, steel pipe D, steel plate, and round steel, a full size (width 10 mm, thickness 10 mm, length 55 mm) V-notch test piece was produced.
  • a sub-sized V-notch test piece width 10 mm, thickness 7.5 mm, length 55 mm
  • the width of the V-notch test piece means the distance between the surface on which the V-notch is formed and the opposite surface of the V-notch test piece.
  • a Charpy impact test was carried out in accordance with ASTM E23 (2016) on the prepared V-notch test piece of each test number. Specifically, three test pieces of each test number prepared according to ASTM E23 (2016) were cooled to -10°C, and the absorbed energy (J) was determined. The obtained absorbed energy was divided by the cross-sectional area (cm 2 ) perpendicular to the longitudinal direction of the V-notch test piece used to obtain the absorbed energy per unit area (J/cm 2 ) at -10°C. The longitudinal cross-sectional area (cm 2 ) of the V-notch test piece was defined by the method described above. Tables 2 and 3 show the absorbed energy (J/cm 2 ) per unit area at ⁇ 10° C. for each test number obtained as “E ( ⁇ 10° C.) (J/cm 2 )”.
  • a corrosion test was performed on the steel material of each test number by the above-described method based on ASTM G48 (2011) Method E to evaluate the pitting corrosion resistance.
  • a test piece for corrosion test was produced from the steel material of each test number. Specifically, when the shape of the steel material was a steel pipe, a test piece was produced from the thickness central portion. When the shape of the steel material was a steel plate, a test piece was produced from the central portion of the plate thickness. When the shape of the steel material was a round steel, a test piece was produced from the R/2 position. The size of the test piece for the corrosion test was 3 mm in thickness, 25 mm in width, and 50 mm in length, and the longitudinal direction of the test piece was parallel to the rolling direction of the steel material.
  • the prepared test piece of each test number was immersed in a test solution (6% FeCl 3 +1% HCl) having a specific liquid volume of 5 mL/cm 2 or more and a temperature of 15°C. Every 24 hours after the test piece was immersed in the test solution, the temperature of the test solution was raised by 5° C., and the occurrence of pitting corrosion was visually confirmed. The temperature at which pitting corrosion occurred was defined as CPT (°C). Tables 2 and 3 show the obtained CPT (°C) of each test number.
  • the steel materials of test numbers 1 to 42 had appropriate chemical compositions and Fn1 of 30.0 or more. Furthermore, the manufacturing method was also the preferred manufacturing method described in the specification. As a result, the volume fraction of ferrite was 30.0 to 70.0%, and the number density of fine Cu precipitates in austenite was 150 to 1500/ ⁇ m 3 . As a result, the yield strength was 586 MPa or more, the CPT exceeded 15°C, and the absorbed energy per unit area at -10°C was 60.0 J/cm 2 or more. That is, the steel materials of test numbers 1 to 42 had a yield strength of 586 MPa or more, excellent low temperature toughness, and excellent pitting corrosion resistance.
  • the heat treatment temperature was too low.
  • the number density of fine Cu precipitates in austenite exceeded 1500 pieces/ ⁇ m 3 .
  • the absorbed energy per unit area at ⁇ 10° C. was less than 60.0 J/cm 2 . That is, the steel material of Test No. 43 did not have excellent low temperature toughness.
  • the maintenance temperature was too high.
  • the quenching start temperature was also too high.
  • the number density of fine Cu precipitates in austenite was less than 150/ ⁇ m 3 .
  • the yield strength was less than 586 MPa. That is, the steel material of test number 44 did not have a yield strength of 586 MPa or more.
  • the maintenance process was not performed for the steel material of test number 45.
  • the quenching start temperature was also too high.
  • the number density of fine Cu precipitates in austenite was less than 150/ ⁇ m 3 .
  • the yield strength was less than 586 MPa. That is, the steel material of test number 45 did not have a yield strength of 586 MPa or more.
  • the maintenance time was too short for steels of test numbers 46 and 47.
  • the number density of fine Cu precipitates in austenite was less than 150/ ⁇ m 3 .
  • the yield strength was less than 586 MPa. That is, the steel materials of test numbers 46 and 47 did not have a yield strength of 586 MPa or more.
  • the quenching start temperature was too low.
  • the number density of fine Cu precipitates in austenite exceeded 1500 pieces/ ⁇ m 3 .
  • the absorbed energy per unit area at ⁇ 10° C. was less than 60.0 J/cm 2 . That is, the steel material of Test No. 48 did not have excellent low temperature toughness.
  • the Cr content was too low.
  • the volume fraction of ferrite was less than 30.0%.
  • the yield strength was less than 586 MPa. That is, the steel material of test number 50 did not have a yield strength of 586 MPa or more.
  • the Cu content was too low.
  • the number density of fine Cu precipitates in austenite was less than 150/ ⁇ m 3 .
  • the yield strength was less than 586 MPa. That is, the steel material of test number 51 did not have a yield strength of 586 MPa or more.
  • the gist of the duplex stainless steel material according to this embodiment can also be described as follows.
  • the balance consists of Fe and impurities and satisfies the formula (1A),
  • the microstructure consists of 30.0 to 70.0% ferrite by volume and the balance is austenite, Yield strength is 586 MPa or more, In the austenite, the number density of Cu precipitates with a major axis of 50 nm or less is 150 to 1500 / ⁇ m 3 , Duplex stainless steel material. Cr+3.3Mo+16N ⁇ 30.0 (1A)
  • the content of the corresponding element is substituted for the symbol of the element in the formula (1A) in
  • duplex stainless steel material according to [2], Nb: 0.100% or less, Ta: 0.100% or less, Ti: 0.100% or less, Zr: 0.100% or less, Hf: 0.100% or less, and W: 0.200% or less, containing one or more elements selected from the group consisting of Duplex stainless steel material.
  • duplex stainless steel material according to [2] or [3], Co: 0.500% or less, Sn: 0.100% or less, and Sb: 0.100% or less, containing one or more elements selected from the group consisting of Duplex stainless steel material.
  • duplex stainless steel material according to any one of [2] to [4], Ca: 0.020% or less, Mg: 0.020% or less, B: 0.020% or less, and Rare earth element: 0.200% or less, containing one or more elements selected from the group consisting of Duplex stainless steel material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

586MPa以上の降伏強度と、優れた低温靭性と優れた耐孔食性とを有する二相ステンレス鋼材を提供する。本開示による二相ステンレス鋼材は、質量%で、C:0.030%以下、Si:0.20~1.00%、Mn:0.50~7.00%、P:0.040%以下、S:0.020%以下、Al:0.100%以下、Ni:4.20~9.00%、Cr:20.00~30.00%、Mo:0.50~2.00%、Cu:1.50~4.00%、N:0.150~0.350%、V:0.01~1.50%、及び、残部がFe及び不純物からなり、明細書に記載の式(1)を満たす。ミクロ組織が、体積率で30.0~70.0%のフェライト及び残部がオーステナイトからなり、降伏強度が586MPa以上であり、オーステナイト中において長径50nm以下のCu析出物の個数密度が150~1500個/μm3である。

Description

二相ステンレス鋼材
 本開示は、二相ステンレス鋼材に関する。
 油井やガス井(以下、油井及びガス井を総称して、単に「油井」という)は、腐食性ガスを含有した腐食環境となっている場合がある。ここで、腐食性ガスとは、炭酸ガス、及び/又は、硫化水素ガスを意味する。すなわち、油井で用いられる鋼材には、腐食環境における優れた耐食性が求められる。
 これまでに、鋼材の耐食性を高める手法として、クロム(Cr)含有量を高め、Cr酸化物を主体とする不働態被膜を、鋼材の表面に形成する手法が知られている。そのため、優れた耐食性が求められる環境下では、Cr含有量を高めた二相ステンレス鋼材が用いられる場合がある。一方、フェライト相とオーステナイト相との二相組織を有する二相ステンレス鋼材は、塩化物を含有する水溶液中で問題となる、孔食及び/又はすきま腐食に対する耐食性(以下、「耐孔食性」という)に優れる。
 近年さらに、海面下の深井戸についても、開発が活発になってきている。そのため、二相ステンレス鋼材の高強度化が求められてきている。すなわち、高強度と優れた耐孔食性とを両立する二相ステンレス鋼材が、求められてきている。
 特開平5-132741号公報(特許文献1)、特開平9-195003号公報(特許文献2)、特開2014-043616号公報(特許文献3)、及び、特開2016-003377号公報(特許文献4)は、高強度と優れた耐食性とを有する二相ステンレス鋼を提案する。
 特許文献1に開示されている二相ステンレス鋼は、重量%で、C:0.03%以下、Si:1.0%以下、Mn:1.5%以下、P:0.040%以下、S:0.008%以下、sol.Al:0.040%以下、Ni:5.0~9.0%、Cr:23.0~27.0%、Mo:2.0~4.0%、W:1.5超~5.0%、N:0.24~0.32%、残部がFe及び不可避不純物からなる化学組成を有し、PREW(=Cr+3.3(Mo+0.5W)+16N)が40以上である。この二相ステンレス鋼は、優れた耐食性と高強度とを発揮する、と特許文献1には記載されている。
 特許文献2に開示されている二相ステンレス鋼は、重量%で、C:0.12%以下、Si:1%以下、Mn:2%以下、Ni:3~12%、Cr:20~35%、Mo:0.5~10%、W:3超~8%、Co:0.01~2%、Cu:0.1~5%、N:0.05~0.5%を含み、残部がFe及び不可避不純物からなる。この二相ステンレス鋼は、強度を低下させることなく、さらに優れた耐食性を備える、と特許文献2には記載されている。
 特許文献3に開示されている二相ステンレス鋼は、質量%で、C:0.03%以下、Si:0.3%以下、Mn:3.0%以下、P:0.040%以下、S:0.008%以下、Cu:0.2~2.0%、Ni:5.0~6.5%、Cr:23.0~27.0%、Mo:2.5~3.5%、W:1.5~4.0%、N:0.24~0.40%、及び、Al:0.03%以下を含有し、残部はFe及び不純物からなり、σ相感受性指数X(=2.2Si+0.5Cu+2.0Ni+Cr+4.2Mo+0.2W)が52.0以下であり、強度指数Y(=Cr+1.5Mo+10N+3.5W)が40.5以上であり、耐孔食性指数PREW(=Cr+3.3(Mo+0.5W)+16N)が40以上である化学組成を有する。鋼の組織は、圧延方向に平行な厚さ方向断面において、表層から1mm深さまでの厚さ方向に平行な直線を引いた時、該直線に交わるフェライト相とオーステナイト相との境界の数が160以上である。この二相ステンレス鋼は、耐食性を損なうことなく高強度化でき、高加工度の冷間加工を組み合わせることで優れた耐水素脆化特性を発揮する、と特許文献3には記載されている。
 特許文献4に開示されている二相ステンレス鋼は、質量%で、C:0.03%以下、Si:0.2~1%、Mn:0.5~2.0%、P:0.040%以下、S:0.010%以下、Sol.Al:0.040%以下、Ni:4~6%未満、Cr:20~25%未満、Mo:2.0~4.0%、N:0.1~0.35%、O:0.003%以下、V:0.05~1.5%、Ca:0.0005~0.02%、B:0.0005~0.02%、残部がFeと不純物である化学組成を有し、金属組織が、フェライト相とオーステナイト相の二相組織にて構成され、シグマ相の析出がなく、かつ、面積率で、金属組織に占めるフェライト相の割合が50%以下であり、300mm視野中に存在する粒径30μm以上の酸化物個数が15個以下である。この二相ステンレス鋼は、強度、耐孔食性及び低温靭性に優れる、と特許文献4には記載されている。
特開平5-132741号公報 特開平9-195003号公報 特開2014-043616号公報 特開2016-003377号公報
 上述のとおり、近年、海面下の深井戸についても、開発が活発になってきている。海面下の深井戸は、水温が低い。すなわち、海面下の深井戸に用いられる場合、二相ステンレス鋼材には、高強度と、優れた耐孔食性とに加えて、優れた低温靭性も求められてきている。そこで、上記特許文献1~4に開示された技術以外の他の技術によって、586MPa以上の降伏強度と、優れた低温靭性と、優れた耐孔食性とを有する、二相ステンレス鋼材が得られてもよい。
 本開示の目的は、586MPa以上の降伏強度と、優れた低温靭性と、優れた耐孔食性とを有する、二相ステンレス鋼材を提供することである。
 本開示による二相ステンレス鋼材は、
 質量%で、
 C:0.030%以下、
 Si:0.20~1.00%、
 Mn:0.50~7.00%、
 P:0.040%以下、
 S:0.020%以下、
 Al:0.100%以下、
 Ni:4.20~9.00%、
 Cr:20.00~30.00%、
 Mo:0.50~2.00%、
 Cu:1.50~4.00%、
 N:0.150~0.350%、
 V:0.01~1.50%、
 Nb:0~0.100%、
 Ta:0~0.100%、
 Ti:0~0.100%、
 Zr:0~0.100%、
 Hf:0~0.100%、
 W:0~0.200%、
 Co:0~0.500%、
 Sn:0~0.100%、
 Sb:0~0.100%、
 Ca:0~0.020%、
 Mg:0~0.020%、
 B:0~0.020%、
 希土類元素:0~0.200%、及び、
 残部がFe及び不純物からなり、式(1)を満たし、
 ミクロ組織が、体積率で30.0~70.0%のフェライト、及び、残部がオーステナイトからなり、
 降伏強度が586MPa以上であり、
 前記オーステナイト中において、長径50nm以下のCu析出物の個数密度が150~1500個/μmである。
 Cr+3.3(Mo+0.5W)+16N≧30.0 (1)
 ここで、式(1)中の元素記号には、対応する元素の含有量が質量%で代入される。対応する元素が含有されていない場合、その元素記号には「0」が代入される。
 本開示による二相ステンレス鋼材は、586MPa以上の高い降伏強度と、優れた低温靭性と、優れた耐孔食性とを有する。
図1は、本実施例における、オーステナイト中の微細Cu析出物の個数密度(個/μm)と、鋼材の降伏強度(MPa)との関係を示す図である。 図2は、本実施例における、オーステナイト中の微細Cu析出物の個数密度(個/μm)と、鋼材の低温靭性の指標である吸収エネルギー(J/cm)との関係を示す図である。
 まず、本発明者らは、586MPa以上の降伏強度と、優れた低温靭性と、優れた耐孔食性とを有する二相ステンレス鋼材を、化学組成の観点から検討した。その結果、本発明者らは、質量%で、C:0.030%以下、Si:0.20~1.00%、Mn:0.50~7.00%、P:0.040%以下、S:0.020%以下、Al:0.100%以下、Ni:4.20~9.00%、Cr:20.00~30.00%、Mo:0.50~2.00%、Cu:1.50~4.00%、N:0.150~0.350%、V:0.01~1.50%、Nb:0~0.100%、Ta:0~0.100%、Ti:0~0.100%、Zr:0~0.100%、Hf:0~0.100%、W:0~0.200%、Co:0~0.500%、Sn:0~0.100%、Sb:0~0.100%、Ca:0~0.020%、Mg:0~0.020%、B:0~0.020%、希土類元素:0~0.200%、及び、残部がFe及び不純物からなる化学組成を有する二相ステンレス鋼材であれば、586MPa以上の降伏強度と、優れた低温靭性と、優れた耐孔食性とを得られる可能性があると考えた。
 ここで、上述の化学組成を有する二相ステンレス鋼材のミクロ組織は、フェライト及びオーステナイトからなる。具体的に、上述の化学組成を有する二相ステンレス鋼材のミクロ組織は、体積率が30.0~70.0%のフェライト、及び、残部がオーステナイトからなる。なお、本明細書において「フェライト及びオーステナイトからなる」とは、フェライト及びオーステナイト以外の相が、無視できるほど少ないことを意味する。
 次に本発明者らは、上述の化学組成を有し、体積率が30.0~70.0%のフェライト及び残部がオーステナイトからなるミクロ組織を有する二相ステンレス鋼材の耐孔食性を高める手法を種々検討した。その結果、本発明者らは、二相ステンレス鋼材の化学組成がさらに、次の式(1)を満たせば、二相ステンレス鋼材の耐孔食性が高められることを知見した。
 Cr+3.3(Mo+0.5W)+16N≧30.0 (1)
 ここで、式(1)中の元素記号には、対応する元素の含有量が質量%で代入される。対応する元素が含有されていない場合、その元素記号には「0」が代入される。
 Fn1=Cr+3.3(Mo+0.5W)+16Nと定義する。Fn1は鋼材の耐孔食性に関する指標である。Fn1を高めれば、二相ステンレス鋼材の耐孔食性を高めることができる。すなわち、Fn1が低すぎれば、二相ステンレス鋼材の耐孔食性が低下する。したがって、本実施形態による二相ステンレス鋼材では、上述の化学組成を満たし、かつ、Fn1を30.0以上とする。
 次に本発明者らは、上述の化学組成を満たし、Fn1を30.0以上とし、体積率が30.0~70.0%のフェライト及び残部がオーステナイトからなるミクロ組織を有する二相ステンレス鋼材について、耐孔食性を維持したまま、低温靭性と降伏強度とを高める手法を種々検討した。その結果、本発明者らは次の知見を得た。
 まず、本発明者らは、上述の化学組成を満たし、Fn1が30.0以上の二相ステンレス鋼材のミクロ組織に着目して、降伏強度を高める手法を検討した。具体的に、上述の化学組成を有する二相ステンレス鋼材のミクロ組織では、フェライトと比較して、オーステナイトの強度が低くなりやすい。そのため、上述の化学組成とミクロ組織とを有し、Fn1が30.0以上の二相ステンレス鋼材では、オーステナイトの特性により、鋼材全体の降伏強度が低下しやすい可能性がある。つまり、オーステナイトの強度を選択的に高めれば、上述の化学組成とミクロ組織とを有し、Fn1が30.0以上の二相ステンレス鋼材の降伏強度を高められる可能性がある。そこで本発明者らは、耐孔食性と低温靭性とを維持したまま、オーステナイトの強度を選択的に高める手法を検討した。
 ところで、二相ステンレス鋼材では、σ相に代表される金属間化合物が析出する場合がある。σ相が析出した二相ステンレス鋼材は、優れた耐孔食性が得られない。そこで二相ステンレス鋼材を製造する場合、後述する好ましい製造方法に記載のとおり、溶体化処理が実施される。その結果、従来の二相ステンレス鋼材においては、鋼材中の析出物が大幅に低減されてきた。
 一方、鋼材中の析出物は、鋼材の降伏強度を高める。すなわち、従来低減されてきた析出物をあえて増加させることにより、オーステナイトの強度を高め、二相ステンレス鋼材の降伏強度を高められる可能性がある。しかしながら、上述のとおり、析出物の種類によっては、鋼材の低温靭性及び耐孔食性を低下させる場合がある。そこで本発明者らは、オーステナイト中に、低温靭性及び耐孔食性を低下させにくい析出物を選択的に析出させることができれば、二相ステンレス鋼材の耐孔食性を維持したまま、降伏強度と低温靭性とを高められるのではないかと考えた。
 具体的に、本発明者らは、析出物のうち、銅(Cu)に着目した。Cuは、鋼材中にCu析出物として析出し、鋼材の降伏強度を高める。特に、オーステナイト中において、長径が50nm以下の微細なCu析出物(以下、単に「微細Cu析出物」ともいう)が多く析出すれば、鋼材の耐孔食性及び低温靭性を維持したまま、降伏強度を586MPa以上まで高められる可能性がある。
 そこで本発明者らは、まず、上述の化学組成を満たし、Fn1を30.0以上とし、体積率が30.0~70.0%のフェライト及び残部がオーステナイトからなるミクロ組織を有する二相ステンレス鋼材における、オーステナイト中の微細Cu析出物と降伏強度との関係について、詳細に調査及び検討を行った。具体的に図を用いて説明する。
 図1は、本実施例における、オーステナイト中の微細Cu析出物の個数密度(個/μm)と、鋼材の降伏強度(MPa)との関係を示す図である。図1は、後述する実施例のうち、上述の化学組成を満たし、Fn1を30.0以上とし、体積率が30.0~70.0%のフェライト及び残部がオーステナイトからなるミクロ組織とを有する二相ステンレス鋼材について、オーステナイト中の微細Cu析出物の個数密度(個/μm)と、降伏強度(MPa)とを用いて作成した。なお、微細Cu析出物の個数密度と降伏強度とは、後述する方法で求めた。また、図1に記載の実施例は、いずれも優れた耐孔食性を示した。
 図1を参照して、上述の化学組成を満たし、Fn1を30.0以上とし、体積率が30.0~70.0%のフェライト及び残部がオーステナイトからなるミクロ組織を有する二相ステンレス鋼材では、オーステナイト中の微細Cu析出物の個数密度が150個/μm以上であれば、降伏強度が586MPa以上となることが明らかになった。一方、上述の二相ステンレス鋼材においては、オーステナイト中の微細Cu析出物の個数密度が150個/μm未満であれば、降伏強度が586MPa未満となる。すなわち、上述の鋼材においては、オーステナイト中の微細Cu析出物の個数密度が150個/μm以上であれば、優れた耐孔食性を維持したまま、586MPa以上の降伏強度が得られることが明らかになった。
 次に本発明者らは、上述の化学組成を満たし、Fn1を30.0以上とし、体積率が30.0~70.0%のフェライト及び残部がオーステナイトからなるミクロ組織を有する二相ステンレス鋼材における、オーステナイト中の微細Cu析出物と低温靭性との関係について、詳細に調査及び検討を行った。具体的に図を用いて説明する。
 図2は、本実施例における、オーステナイト中の微細Cu析出物の個数密度(個/μm)と、鋼材の低温靭性の指標である吸収エネルギー(J/cm)との関係を示す図である。図2は、後述する実施例のうち、上述の化学組成を満たし、Fn1を30.0以上とし、体積率が30.0~70.0%のフェライト及び残部がオーステナイトからなるミクロ組織とを有する二相ステンレス鋼材について、オーステナイト中の微細Cu析出物の個数密度(個/μm)と、吸収エネルギー(J/cm)とを用いて作成した。なお、微細Cu析出物の個数密度と吸収エネルギーとは、後述する方法で求めた。なお、図2に記載の鋼材は、いずれも優れた耐孔食性を示した。
 図2を参照して、上述の化学組成を満たし、Fn1を30.0以上とし、体積率が30.0~70.0%のフェライト及び残部がオーステナイトからなるミクロ組織を有する二相ステンレス鋼材では、オーステナイト中の微細Cu析出物の個数密度が1500個/μm以下であれば、吸収エネルギーが60.0J/cm以上となり、優れた低温靭性を示すことが明らかになった。一方、上述の二相ステンレス鋼材においては、オーステナイト中の微細Cu析出物の個数密度が1500個/μmを超えると、吸収エネルギーが60.0J/cm未満となり、優れた低温靭性を示さないことが確認できる。
 すなわち、図1及び図2を参照して、上述の化学組成を満たし、Fn1を30.0以上とし、体積率が30.0~70.0%のフェライト及び残部がオーステナイトからなるミクロ組織を有する二相ステンレス鋼材では、オーステナイト中の微細Cu析出物の個数密度が150~1500個/μmであれば、優れた耐孔食性を維持しつつ、586MPa以上の高い降伏強度と、優れた低温靭性とを示すことが、明らかになった。したがって、本実施形態では、オーステナイト中の微細Cu析出物の個数密度を150~1500個/μmとする。その結果、本実施形態による二相ステンレス鋼材は、586MPa以上の高い降伏強度と、優れた低温靭性と、優れた耐孔食性とを有する。
 以上の知見に基づいて完成した本実施形態による二相ステンレス鋼材の要旨は、次のとおりである。
 [1]
 質量%で、
 C:0.030%以下、
 Si:0.20~1.00%、
 Mn:0.50~7.00%、
 P:0.040%以下、
 S:0.020%以下、
 Al:0.100%以下、
 Ni:4.20~9.00%、
 Cr:20.00~30.00%、
 Mo:0.50~2.00%、
 Cu:1.50~4.00%、
 N:0.150~0.350%、
 V:0.01~1.50%、
 Nb:0~0.100%、
 Ta:0~0.100%、
 Ti:0~0.100%、
 Zr:0~0.100%、
 Hf:0~0.100%、
 W:0~0.200%、
 Co:0~0.500%、
 Sn:0~0.100%、
 Sb:0~0.100%、
 Ca:0~0.020%、
 Mg:0~0.020%、
 B:0~0.020%、
 希土類元素:0~0.200%、及び、
 残部がFe及び不純物からなり、式(1)を満たし、
 ミクロ組織が、体積率で30.0~70.0%のフェライト、及び、残部がオーステナイトからなり、
 降伏強度が586MPa以上であり、
 前記オーステナイト中において、長径50nm以下のCu析出物の個数密度が150~1500個/μmである、
 二相ステンレス鋼材。
 Cr+3.3(Mo+0.5W)+16N≧30.0 (1)
 ここで、式(1)中の元素記号には、対応する元素の含有量が質量%で代入される。対応する元素が含有されていない場合、その元素記号には「0」が代入される。
 [2]
 [1]に記載の二相ステンレス鋼材であって、
 Nb:0.001~0.100%、
 Ta:0.001~0.100%、
 Ti:0.001~0.100%、
 Zr:0.001~0.100%、
 Hf:0.001~0.100%、
 W:0.001~0.200%、
 Co:0.001~0.500%、
 Sn:0.001~0.100%、
 Sb:0.001~0.100%、
 Ca:0.001~0.020%、
 Mg:0.001~0.020%、
 B:0.001~0.020%、及び、
 希土類元素:0.001~0.200%、からなる群から選択される1元素以上を含有する、
 二相ステンレス鋼材。
 [3]
 [1]又は[2]に記載の二相ステンレス鋼材であって、
 Nb:0.001~0.100%、
 Ta:0.001~0.100%、
 Ti:0.001~0.100%、
 Zr:0.001~0.100%、
 Hf:0.001~0.100%、及び、
 W:0.001~0.200%、からなる群から選択される1元素以上を含有する、
 二相ステンレス鋼材。
 [4]
 [1]~[3]のいずれか1項に記載の二相ステンレス鋼材であって、
 Co:0.001~0.500%、
 Sn:0.001~0.100%、及び、
 Sb:0.001~0.100%、からなる群から選択される1元素以上を含有する、
 二相ステンレス鋼材。
 [5]
 [1]~[4]のいずれか1項に記載の二相ステンレス鋼材であって、
 Ca:0.001~0.020%、
 Mg:0.001~0.020%、
 B:0.001~0.020%、及び、
 希土類元素:0.001~0.200%、からなる群から選択される1元素以上を含有する、
 二相ステンレス鋼材。
 本実施形態による二相ステンレス鋼材の形状は特に限定されない。本実施形態による二相ステンレス鋼材は、鋼管であってもよく、丸鋼(中実材)であってもよく、鋼板であってもよい。なお、丸鋼とは、軸方向に垂直な断面が円形状の棒鋼を意味する。また、鋼管は継目無鋼管であってもよく、溶接鋼管であってもよい。
 以下、本実施形態による二相ステンレス鋼材について詳述する。なお、以下の説明では、二相ステンレス鋼材を、単に「鋼材」ともいう。
 [化学組成]
 本実施形態による二相ステンレス鋼材の化学組成は、次の元素を含有する。元素に関する「%」は、特に断りがない限り、質量%を意味する。
 C:0.030%以下
 炭素(C)は不可避に含有される。すなわち、C含有量の下限は0%超である。Cは結晶粒界にCr炭化物を形成し、粒界での腐食感受性を高める。そのため、C含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の耐孔食性が低下する。したがって、C含有量は0.030%以下である。C含有量の好ましい上限は0.028%であり、さらに好ましくは0.025%である。C含有量はなるべく低い方が好ましい。しかしながら、C含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、C含有量の好ましい下限は0.001%であり、さらに好ましくは0.005%である。
 Si:0.20~1.00%
 ケイ素(Si)は鋼を脱酸する。Si含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Si含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の低温靱性及び熱間加工性が低下する。したがって、Si含有量は0.20~1.00%である。Si含有量の好ましい下限は0.25%であり、さらに好ましくは0.30%である。Si含有量の好ましい上限は0.80%であり、さらに好ましくは0.60%である。
 Mn:0.50~7.00%
 マンガン(Mn)は鋼を脱酸し、鋼を脱硫する。Mnはさらに、鋼材の熱間加工性を高める。Mn含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、MnはP及びS等の不純物とともに、粒界に偏析する。そのため、Mn含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、高温環境における鋼材の耐孔食性が低下する。したがって、Mn含有量は0.50~7.00%である。Mn含有量の好ましい下限は0.75%であり、さらに好ましくは1.00%である。Mn含有量の好ましい上限は6.50%であり、さらに好ましくは6.20%である。
 P:0.040%以下
 燐(P)は不可避に含有される。すなわち、P含有量の下限は0%超である。Pは粒界に偏析する。そのため、P含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の低温靱性及び耐孔食性が低下する。したがって、P含有量は0.040%以下である。P含有量の好ましい上限は0.035%であり、さらに好ましくは0.030%である。P含有量はなるべく低い方が好ましい。ただし、P含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、P含有量の好ましい下限は0.001%であり、さらに好ましくは0.003%である。
 S:0.020%以下
 硫黄(S)は不可避に含有される。すなわち、S含有量の下限は0%超である。Sは粒界に偏析する。そのため、S含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の低温靱性及び耐孔食性が低下する。したがって、S含有量は0.020%以下である。S含有量の好ましい上限は0.018%であり、さらに好ましくは0.016%である。S含有量はなるべく低い方が好ましい。ただし、S含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、S含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%である。
 Al:0.100%以下
 アルミニウム(Al)は不可避に含有される。すなわち、Al含有量の下限は0%超である。Alは鋼を脱酸する。一方、Al含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、粗大な酸化物系介在物が生成して、鋼材の低温靱性が低下する。したがって、Al含有量は0.100%以下である。Al含有量の好ましい下限は0.001%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%である。Al含有量の好ましい上限は0.090%であり、さらに好ましくは0.085%である。なお、本明細書にいうAl含有量は、「酸可溶Al」、つまり、sol.Alの含有量を意味する。
 Ni:4.20~9.00%
 ニッケル(Ni)は鋼材のオーステナイト組織を安定化する。すなわち、Niは安定したフェライト・オーステナイトの二相組織を得るために必要な元素である。Niはさらに、鋼材の耐孔食性を高める。Ni含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Ni含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、オーステナイトの体積率が高くなりすぎ、鋼材の降伏強度が低下する。したがって、Ni含有量は4.20~9.00%である。Ni含有量の好ましい下限は4.25%であり、さらに好ましくは4.30%であり、さらに好ましくは4.35%であり、さらに好ましくは4.40%であり、さらに好ましくは4.50%である。Ni含有量の好ましい上限は8.75%であり、さらに好ましくは8.50%であり、さらに好ましくは8.25%であり、さらに好ましくは8.00%であり、さらに好ましくは7.75%である。
 Cr:20.00~30.00%
 クロム(Cr)は鋼材の耐孔食性を高める。具体的に、Crは酸化物として鋼材の表面に不働態被膜を形成する。その結果、鋼材の耐孔食性が高まる。Crはさらに、鋼材のフェライト組織の体積率を高める。十分なフェライト組織を得ることで、鋼材の耐孔食性が安定化する。Cr含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Cr含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の熱間加工性が低下する。したがって、Cr含有量は20.00~30.00%である。Cr含有量の好ましい下限は20.50%であり、さらに好ましくは21.00%であり、さらに好ましくは21.50%である。Cr含有量の好ましい上限は29.50%であり、さらに好ましくは29.00%であり、さらに好ましくは28.00%である。
 Mo:0.50~2.00%
 モリブデン(Mo)は鋼材の耐孔食性を高める。Moはさらに、鋼に固溶して、鋼材の降伏強度を高める。Moはさらに、鋼中で微細な炭化物を形成して、鋼材の降伏強度を高める。Mo含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Mo含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の熱間加工性が低下する。したがって、Mo含有量は0.50~2.00%である。Mo含有量の好ましい下限は0.60%であり、さらに好ましくは0.70%であり、さらに好ましくは0.80%である。Mo含有量の好ましい上限は2.00%未満であり、さらに好ましくは1.85%であり、さらに好ましくは1.50%である。
 Cu:1.50~4.00%
 銅(Cu)は鋼材のオーステナイト中に微細Cu析出物として析出し、鋼材の降伏強度を高める。Cu含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Cu含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の熱間加工性が低下する。したがって、Cu含有量は1.50~4.00%である。Cu含有量の好ましい下限は1.60%であり、さらに好ましくは1.80%であり、さらに好ましくは1.90%であり、さらに好ましくは2.00%であり、さらに好ましくは2.50%である。Cu含有量の好ましい上限は3.90%であり、さらに好ましくは3.75%であり、さらに好ましくは3.50%である。
 N:0.150~0.350%
 窒素(N)は鋼材のオーステナイト組織を安定化させる。すなわち、Nは安定したフェライト・オーステナイトの二相組織を得るために必要な元素である。Nはさらに、鋼材の耐孔食性を高める。N含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、N含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の低温靭性及び熱間加工性が低下する。したがって、N含有量は0.150~0.350%である。N含有量の好ましい下限は0.170%であり、さらに好ましくは0.180%であり、さらに好ましくは0.190%である。N含有量の好ましい上限は、0.340%であり、さらに好ましくは0.330%である。
 V:0.01~1.50%
 バナジウム(V)は鋼材の降伏強度を高める。V含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、V含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の強度が高くなりすぎ、鋼材の低温靭性及び熱間加工性が低下する。したがって、V含有量は0.01~1.50%である。V含有量の好ましい下限は0.02%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。V含有量の好ましい上限は1.20%であり、さらに好ましくは1.00%である。
 本実施形態による二相ステンレス鋼材の化学組成の残部は、Fe及び不純物からなる。ここで、化学組成における不純物とは、二相ステンレス鋼材を工業的に製造する際に、原料としての鉱石、スクラップ、又は製造環境などから混入されるものであって、本実施形態による二相ステンレス鋼材に悪影響を与えない範囲で許容されるものを意味する。
 [任意元素]
 上述の二相ステンレス鋼材の化学組成はさらに、Feの一部に代えて、Nb、Ta、Ti、Zr、Hf、及び、Wからなる群から選択される1元素以上を含有してもよい。これらの元素はいずれも任意元素であり、鋼材の強度を高める。
 Nb:0~0.100%
 ニオブ(Nb)は任意元素であり、含有されなくてもよい。すなわち、Nb含有量は0%であってもよい。含有される場合、Nbは炭窒化物を形成し、鋼材の強度を高める。Nbが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Nb含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の強度が高くなりすぎ、鋼材の低温靭性が低下する。したがって、Nb含有量は0~0.100%である。Nb含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%であり、さらに好ましくは0.005%である。Nb含有量の好ましい上限は0.080%であり、さらに好ましくは0.070%である。
 Ta:0~0.100%
 タンタル(Ta)は任意元素であり、含有されなくてもよい。すなわち、Ta含有量は0%であってもよい。含有される場合、Taは炭窒化物を形成し、鋼材の強度を高める。Taが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Ta含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の強度が高くなりすぎ、鋼材の低温靭性が低下する。したがって、Ta含有量は0~0.100%である。Ta含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%であり、さらに好ましくは0.005%である。Ta含有量の好ましい上限は0.080%であり、さらに好ましくは0.070%である。
 Ti:0~0.100%
 チタン(Ti)は任意元素であり、含有されなくてもよい。すなわち、Ti含有量は0%であってもよい。含有される場合、Tiは炭窒化物を形成し、鋼材の強度を高める。Tiが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Ti含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の強度が高くなりすぎ、鋼材の低温靭性が低下する。したがって、Ti含有量は0~0.100%である。Ti含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%であり、さらに好ましくは0.005%である。Ti含有量の好ましい上限は0.080%であり、さらに好ましくは0.070%である。
 Zr:0~0.100%
 ジルコニウム(Zr)は任意元素であり、含有されなくてもよい。すなわち、Zr含有量は0%であってもよい。含有される場合、Zrは炭窒化物を形成し、鋼材の強度を高める。Zrが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Zr含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の強度が高くなりすぎ、鋼材の低温靭性が低下する。したがって、Zr含有量は0~0.100%である。Zr含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%であり、さらに好ましくは0.005%である。Zr含有量の好ましい上限は0.080%であり、さらに好ましくは0.070%である。
 Hf:0~0.100%
 ハフニウム(Hf)は任意元素であり、含有されなくてもよい。すなわち、Hf含有量は0%であってもよい。含有される場合、Hfは炭窒化物を形成し、鋼材の強度を高める。Hfが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Hf含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の強度が高くなりすぎ、鋼材の低温靭性が低下する。したがって、Hf含有量は0~0.100%である。Hf含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%であり、さらに好ましくは0.005%である。Hf含有量の好ましい上限は0.080%であり、さらに好ましくは0.070%である。
 W:0~0.200%
 タングステン(W)は任意元素であり、含有されなくてもよい。すなわち、W含有量は0%であってもよい。含有される場合、Wは炭窒化物を形成し、鋼材の強度を高める。Wが少しでも含有されれば、上記効果がある程度得られる。しかしながら、W含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の強度が高くなりすぎ、鋼材の低温靭性が低下する。したがって、W含有量は0~0.200%である。W含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%であり、さらに好ましくは0.005%である。W含有量の好ましい上限は0.180%であり、さらに好ましくは0.150%である。
 上述の二相ステンレス鋼材の化学組成はさらに、Feの一部に代えて、Co、Sn、及び、Sbからなる群から選択される1元素以上を含有してもよい。これらの元素はいずれも任意元素であり、鋼材の耐食性を高める。
 Co:0~0.500%
 コバルト(Co)は任意元素であり、含有されなくてもよい。すなわち、Co含有量は0%であってもよい。含有される場合、Coは鋼材の表面に被膜を形成して、鋼材の耐食性を高める。Coはさらに、鋼材の焼入性を高め、鋼材の強度を安定化する。Coが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Co含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、製造コストが極端に高まる。したがって、Co含有量は0~0.500%である。Co含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.010%であり、さらに好ましくは0.020%である。Co含有量の好ましい上限は0.480%であり、さらに好ましくは0.460%であり、さらに好ましくは0.450%である。
 Sn:0~0.100%
 スズ(Sn)は任意元素であり、含有されなくてもよい。すなわち、Sn含有量は0%であってもよい。含有される場合、Snは鋼材の耐食性を高める。Snが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Sn含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、粒界に液化脆化割れを生じることにより、鋼材の熱間加工性が低下する。したがって、Sn含有量は0~0.100%である。Sn含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。Sn含有量の好ましい上限は0.080%であり、さらに好ましくは0.070%である。
 Sb:0~0.100%
 アンチモン(Sb)は任意元素であり、含有されなくてもよい。すなわち、Sb含有量は0%であってもよい。含有される場合、Sbは鋼材の耐食性を高める。Sbが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Sb含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の高温での延性が低下して、鋼材の熱間加工性が低下する。したがって、Sb含有量は0~0.100%である。Sb含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。Sb含有量の好ましい上限は0.080%であり、さらに好ましくは0.070%である。
 上述の二相ステンレス鋼材の化学組成はさらに、Feの一部に代えて、Ca、Mg、B、及び、希土類元素からなる群から選択される1元素以上を含有してもよい。これらの元素はいずれも任意元素であり、鋼材の熱間加工性を高める。
 Ca:0~0.020%
 カルシウム(Ca)は任意元素であり、含有されなくてもよい。すなわち、Ca含有量は0%であってもよい。含有される場合、Caは鋼材中のSを硫化物として固定することで無害化し、鋼材の熱間加工性を高める。Caが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Ca含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中の酸化物が粗大化して、鋼材の低温靭性が低下する。したがって、Ca含有量は0~0.020%である。Ca含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%であり、さらに好ましくは0.005%である。Ca含有量の好ましい上限は0.018%であり、さらに好ましくは0.015%である。
 Mg:0~0.020%
 マグネシウム(Mg)は任意元素であり、含有されなくてもよい。すなわち、Mg含有量は0%であってもよい。含有される場合、Mgは鋼材中のSを硫化物として固定することで無害化し、鋼材の熱間加工性を高める。Mgが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Mg含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中の酸化物が粗大化して、鋼材の低温靭性が低下する。したがって、Mg含有量は0~0.020%である。Mg含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%であり、さらに好ましくは0.005%である。Mg含有量の好ましい上限は0.018%であり、さらに好ましくは0.015%である。
 B:0~0.020%
 ホウ素(B)は任意元素であり、含有されなくてもよい。すなわち、B含有量は0%であってもよい。含有される場合、Bは鋼材中のSの粒界への偏析を抑制し、鋼材の熱間加工性を高める。Bが少しでも含有されれば、上記効果がある程度得られる。しかしながら、B含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、ボロン窒化物(BN)が生成し、鋼材の低温靱性を低下させる。したがって、B含有量は0~0.020%である。B含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%であり、さらに好ましくは0.005%である。B含有量の好ましい上限は0.018%であり、さらに好ましくは0.015%である。
 希土類元素:0~0.200%
 希土類元素(REM)は任意元素であり、含有されなくてもよい。すなわち、REM含有量は0%であってもよい。含有される場合、REMは鋼材中のSを硫化物として固定することで無害化し、鋼材の熱間加工性を高める。REMが少しでも含有されれば上記効果がある程度得られる。しかしながら、REM含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中の酸化物が粗大化して、鋼材の低温靭性が低下する。したがって、REM含有量は0~0.200%である。REM含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%であり、さらに好ましくは0.020%である。REM含有量の好ましい上限は0.180%であり、さらに好ましくは0.160%である。
 なお、本明細書におけるREMとは、原子番号21番のスカンジウム(Sc)、原子番号39番のイットリウム(Y)、及び、ランタノイドである原子番号57番のランタン(La)~原子番号71番のルテチウム(Lu)からなる群から選択される1元素以上を意味する。また、本明細書におけるREM含有量とは、これらの元素の合計含有量を意味する。
 [式(1)について]
 本実施形態による二相ステンレス鋼材の化学組成はさらに、次の式(1)を満たす。
 Cr+3.3(Mo+0.5W)+16N≧30.0 (1)
 ここで、式(1)中の元素記号には、対応する元素の含有量が質量%で代入される。対応する元素が含有されていない場合、その元素記号には「0」が代入される。
 Fn1(=Cr+3.3(Mo+0.5W)+16N)は鋼材の耐孔食性に関する指標である。Fn1を高めれば、二相ステンレス鋼材の耐孔食性を高めることができる。すなわち、Fn1が低すぎれば、二相ステンレス鋼材の耐孔食性が低下する。したがって、本実施形態による二相ステンレス鋼材では、上述の化学組成を満たし、かつ、Fn1を30.0以上とする。
 Fn1の好ましい下限は30.5であり、さらに好ましくは31.0であり、さらに好ましくは31.5である。Fn1は高い方が好ましい。しかしながら、上述の化学組成を有する本実施形態による二相ステンレス鋼材においては、Fn1の上限は、実質的に42.5である。なお、本実施形態において、Fn1は、得られた数値の小数第二位を四捨五入して求める。
 [ミクロ組織]
 本実施形態による二相ステンレス鋼材のミクロ組織は、体積率で30.0~70.0%のフェライト及び残部がオーステナイトからなる。本明細書において、「フェライト及びオーステナイトからなる」とは、フェライト及びオーステナイト以外の相が無視できるほど少ないことを意味する。たとえば、本実施形態による二相ステンレス鋼材の化学組成においては、析出物や介在物の体積率は、フェライト及びオーステナイトの体積率と比較して、無視できるほど小さい。すなわち、本実施形態による二相ステンレスのミクロ組織には、フェライト及びオーステナイト以外に、析出物や介在物等を微小量含んでもよい。
 本実施形態による二相ステンレス鋼材のミクロ組織は、フェライトの体積率が30.0~70.0%である。フェライトの体積率が低すぎれば、鋼材の降伏強度、及び/又は、耐孔食性が低下する場合がある。一方、フェライトの体積率が高すぎれば、鋼材の低温靭性、及び/又は、熱間加工性が低下する場合がある。したがって、本実施形態による二相ステンレス鋼材のミクロ組織において、フェライトの体積率は30.0~70.0%である。フェライトの体積率の好ましい下限は31.0%であり、さらに好ましくは32.0%である。フェライトの体積率の好ましい上限は68.0%であり、さらに好ましくは65.0%である。
 本実施形態において、二相ステンレス鋼材のフェライトの体積率は、ASTM E562(2019)に準拠した方法で求めることができる。本実施形態による二相ステンレス鋼材から、ミクロ組織観察用の試験片を作製する。鋼材が鋼板の場合、板厚中央部から圧延方向5mm、板厚方向5mmの観察面を有する試験片を作製する。鋼材が鋼管の場合、肉厚中央部から管軸方向5mm、管径方向5mmの観察面を有する試験片を作製する。鋼材が丸鋼の場合、R/2位置から軸方向5mm、径方向5mmの観察面を有する試験片を作製する。本明細書において、丸鋼のR/2位置とは、丸鋼の軸方向に垂直な断面において、半径Rの中央位置を意味する。なお、上記観察面が得られれば、試験片の大きさは特に限定されない。
 作製した試験片の観察面を鏡面研磨する。鏡面研磨された観察面を7%水酸化カリウム腐食液中で電解腐食して、組織現出を行う。組織が現出された観察面を、光学顕微鏡を用いて10視野観察する。視野面積は特に限定されないが、たとえば、1.00mm(倍率100倍)である。各視野において、コントラストからフェライトを特定する。特定したフェライトの面積率をASTM E562(2019)に準拠した点算法で測定する。本実施形態では、得られたフェライトの面積率の10視野における算術平均値を、フェライトの体積率(%)と定義する。本実施形態において、フェライトの体積率(%)は、得られた数値の小数第二位を四捨五入して求める。
 [微細Cu析出物の個数密度]
 本実施形態による二相ステンレス鋼材は、オーステナイト中において、長径50nm以下のCu析出物の個数密度が150~1500個/μmである。上述のとおり、本明細書では、長径50nm以下のCu析出物を「微細Cu析出物」ともいう。なお、本明細書において、Cu析出物とは、Cu及び不純物からなる析出物を意味する。具体的に、本実施形態では、後述するエネルギー分散型X線分析法(Energy Dispersive X-ray Spectrometry:以下、「EDS」ともいう)による元素分析において、Fe、Cr、Ni、Cu、Mn、Mo、及び、Siのうち、Cuが15.0質量%以上検出される析出物を、「Cu析出物」と定義する。
 上述のとおり、二相ステンレス鋼材では、従来、鋼材の耐孔食性を高める目的で、鋼材中の析出物を低減していた。一方、オーステナイト中の微細Cu析出物は、鋼材の降伏強度を高める。微細Cu析出物はさらに、鋼材の低温靭性及び耐孔食性への影響が少ない。そのため、本実施形態による二相ステンレス鋼材では、低温靭性及び耐孔食性への影響が少ない微細Cu析出物を、オーステナイト中にあえて積極的に析出させる。その結果、本実施形態による二相ステンレス鋼材は、耐孔食性を維持しながら、鋼材の降伏強度を高めることができる。
 一方、オーステナイト中に微細Cu析出物が多数析出しすぎれば、鋼材の耐孔食性は維持されるものの、鋼材の低温靭性が低下する。したがって、本実施形態では、オーステナイト中において、微細Cu析出物の個数密度を150~1500個/μmとする。上述の化学組成とミクロ組織とを有し、式(1)を満たす二相ステンレス鋼材において、オーステナイト中の微細Cu析出物の個数密度を150~1500個/μmとすれば、優れた低温靭性と、優れた耐孔食性とを維持したまま、586MPa以上の高い降伏強度を得ることができる。
 本実施形態による二相ステンレス鋼材のオーステナイト中の微細Cu析出物の個数密度の好ましい下限は156個/μmであり、さらに好ましくは160個/μmである。本実施形態による二相ステンレス鋼材のオーステナイト中の微細Cu析出物の個数密度の好ましい上限は1200個/μmであり、さらに好ましくは900個/μmであり、さらに好ましくは600個/μmである。
 本実施形態による二相ステンレス鋼材において、オーステナイト中の微細Cu析出物の個数密度は、次の方法で求めることができる。本実施形態による鋼材から、微細Cu析出物観察用の薄膜試験片を作製する。鋼材が鋼板の場合、板厚中央部から薄膜試験片を作製する。鋼材が鋼管の場合、肉厚中央部から薄膜試験片を作製する。鋼材が丸鋼の場合、R/2位置から薄膜試験片を作製する。なお、薄膜試験片は、Twin jet法を用いた電解研磨によって作製する。また、薄膜試験片の大きさは、後述する観察視野が得られれば、特に限定されない。
 得られた薄膜試験片の観察面のうち、オーステナイトから任意の4視野を特定する。観察面中のオーステナイトは、電子線回折による結晶構造の同定により、特定することができる。特定した4視野に対して、透過電子顕微鏡(Transmission Electron Microscope:以下、「TEM」ともいう)による組織観察を実施する。具体的には、任意の4視野を観察視野として特定する。各観察視野の面積は特に限定されないが、たとえば、800nm×800nmとする。各観察視野に対する組織観察は、加速電圧を200kVとし、回折条件を析出物観察に適した条件(たとえば、011入射で回折ベクトルg=11-1)で実施する。さらに、適切な時間露光を行うことで、析出物を写真撮影する。生成した写真画像について、コントラストから析出物を特定する。特定した析出物のうち、長径が50nm以下の析出物を、画像中のスケールバーと比較することで特定する。なお、観察視野において、長径が50nm以下の析出物を特定することは、当業者であれば当然に可能である。
 以上のとおり特定した、オーステナイト中の長径50nm以下の析出物に対して、EDSによる元素分析を行う。なお、対象元素をFe、Cr、Ni、Cu、Mn、Mo、及び、Siとして定量する。ここで、EDSでは、装置の特性上、一定の体積を有する範囲について元素分析が実施される。すなわち、観察面に析出物が存在する場合でも、析出物のみの元素分析を実施することはできず、母材も同時に元素分析が実施される。したがって、観察面にCu析出物が存在する領域において、EDSによる元素分析を行った場合、Cu以外に母材由来の元素(Fe等)も同時に検出される。
 一方、本実施形態では、母材におけるCu含有量は、上述のとおり、1.50~4.00%である。そのため、EDSによる元素分析において、Cu濃度が15.0質量%以上の析出物であれば、Cu析出物であると判断できる。各観察視野において、長径50nm以下の析出物であってCu濃度が15.0質量%以上の析出物(微細Cu析出物)の個数を計数する。さらに、各観察視野の面積と、観察領域の厚さとから、各観察領域の体積(μm)を求める。なお、観察領域の厚さは、薄膜試験片に対する、電子エネルギー損失強度スペクトル(EELS)の全積分強度と、ゼロロススペクトルの積分強度とから求めることができる。
 得られた各観察視野における、長径50nm以下のCu析出物の数(個)と、各観察視野の体積(μm)とから、各観察視野における、微細Cu析出物の個数密度(個/μm)を求める。4視野において得られた微細Cu析出物の個数密度の算術平均値を、オーステナイト中の微細Cu析出物の個数密度(個/μm)とする。本実施形態において、オーステナイト中の微細Cu析出物の個数密度(個/μm)は、得られた数値の小数第一位を四捨五入して求める。
 [降伏強度]
 本実施形態による二相ステンレス鋼材の降伏強度は、586MPa以上である。本実施形態による二相ステンレス鋼材は、上述の化学組成を有し、さらに、式(1)を満たし、体積率で30.0~70.0%のフェライト及び残部がオーステナイトからなるミクロ組織を有し、かつ、オーステナイト中において、長径が50nm以下のCu析出物の個数密度が150~1500個/μmである。その結果、本実施形態による二相ステンレス鋼材は、降伏強度が586MPa以上であっても、優れた低温靭性と、優れた耐孔食性とを有する。
 本実施形態による二相ステンレス鋼材の降伏強度の好ましい下限は590MPaであり、さらに好ましくは592MPaであり、さらに好ましくは594MPaである。本実施形態による二相ステンレス鋼材の降伏強度の上限は特に限定されないが、たとえば、724MPaである。
 本実施形態による二相ステンレス鋼材の降伏強度は、次の方法で求めることができる。具体的に、ASTM E8/E8M(2021)に準拠した方法で引張試験を行う。本実施形態による鋼材から、試験片を作製する。鋼材が鋼板の場合、板厚中央部から引張試験片を作製する。この場合、引張試験片の長手方向は、鋼板の圧延方向と平行とする。鋼材が鋼管の場合、厚さが鋼管の肉厚と同じであって、幅25.4mm、標点距離50.8mmの円弧状試験片を作製する。この場合、円弧状試験片の長手方向は、鋼管の管軸方向と平行とする。鋼材が丸鋼の場合、R/2位置から引張試験片を作製する。この場合、引張試験片の長手方向は、丸鋼の軸方向と平行とする。引張試験片を作製する場合、引張試験片の大きさは、たとえば平行部直径6mm、標点距離24mmである。試験片を用いて、常温(25℃)、大気中で引張試験を実施する。本実施形態では、引張試験より得られた0.2%オフセット耐力を、降伏強度(MPa)と定義する。本実施形態において、降伏強度(MPa)は、得られた数値の小数第一位を四捨五入して求める。
 [低温靭性]
 本実施形態による二相ステンレス鋼材は、上述の化学組成を有し、さらに、式(1)を満たし、体積率で30.0~70.0%のフェライト及び残部がオーステナイトからなるミクロ組織を有し、かつ、オーステナイト中において、長径が50nm以下のCu析出物の個数密度が150~1500個/μmである。その結果、本実施形態による二相ステンレス鋼材は、降伏強度が586MPa以上であっても、優れた低温靭性と優れた耐孔食性とを示す。本実施形態において、優れた低温靭性とは、以下のとおりに定義される。
 本実施形態による二相ステンレス鋼材の低温靭性は、ASTM E23(2018)に準拠したシャルピー衝撃試験によって評価できる。本実施形態による鋼材から、ASTM E23(2018)に準拠してVノッチ試験片を作製する。具体的に、鋼材が鋼板の場合、板厚中央部からVノッチ試験片を作製する。この場合、Vノッチ試験片は、ノッチ面が鋼板の板厚方向及び圧延方向に平行とし、長手方向が鋼板の圧延方向と平行とする。鋼材が鋼管の場合、肉厚中央部からVノッチ試験片を作製する。この場合、Vノッチ試験片は、ノッチ面が鋼管の肉厚方向及び管軸方向に平行とし、長手方向が鋼管の管軸方向と平行とする。鋼材が丸鋼の場合、R/2位置からVノッチ試験片を作製する。この場合、Vノッチ試験片は、ノッチ面が丸鋼の径方向及び軸方向に平行とし、長手方向が丸鋼の軸方向に平行とする。
 作製したVノッチ試験片に対して、ASTM E23(2018)に準拠したシャルピー衝撃試験を実施して、-10℃における吸収エネルギー(J)を求める。求めた吸収エネルギー(J)をVノッチ試験片の断面積(cm)で除し、-10℃における単位面積あたりの吸収エネルギー(J/cm)を求める。なお、Vノッチ試験片の断面積とは、Vノッチ底の位置におけるVノッチ試験片の長手方向に垂直な断面の面積を意味する。具体的に、フルサイズの2mmVノッチ試験片を用いた場合、求めた吸収エネルギー(J)をVノッチ試験片の断面積0.8cm(幅0.8cm×厚さ1.0cm)で除することで、単位面積あたりの吸収エネルギー(J/cm)を求めることができる。本実施形態において、-10℃における単位面積あたりの吸収エネルギー(J/cm)は、得られた数値の小数第二位を四捨五入して求める。
 本実施形態では、-10℃における単位面積あたりの吸収エネルギーが60.0J/cm以上である場合、優れた低温靭性を有すると判断する。なお、本明細書では、-10℃における単位面積あたりの吸収エネルギーを、単に「吸収エネルギー」ともいう。
 [耐孔食性]
 本実施形態による二相ステンレス鋼材は、上述の化学組成を有し、さらに、式(1)を満たし、体積率で30.0~70.0%のフェライト及び残部がオーステナイトからなるミクロ組織を有し、かつ、オーステナイト中において、長径が50nm以下のCu析出物の個数密度が150~1500個/μmである。その結果、本実施形態による二相ステンレス鋼材は、降伏強度が586MPa以上であっても、優れた低温靭性と、優れた耐孔食性とを有する。本実施形態において、優れた耐孔食性とは、以下のとおりに定義される。
 本実施形態による二相ステンレス鋼材の耐孔食性は、ASTM G48(2011) Method Eに準拠した腐食試験によって評価できる。本実施形態による鋼材から、腐食試験用の試験片を作製する。試験片の大きさは、たとえば厚さ3mm、幅25mm、長さ50mmである。また、鋼材が鋼板の場合、板厚中央部から試験片を作製する。この場合、試験片の長手方向は、鋼板の圧延方向と平行とする。鋼材が鋼管の場合、肉厚中央部から試験片を作製する。この場合、試験片の長手方向は、鋼管の管軸方向と平行とする。鋼材が丸鋼の場合、R/2位置から試験片を作製する。この場合、試験片の長手方向は、丸鋼の軸方向に平行とする。
 試験溶液は6%FeCl+1%HClとする。試験片を比液量5mL/cm以上の試験溶液に浸漬させる。試験開始温度は15℃とし、24時間毎に試験溶液の温度を5℃ずつ上昇させる。試験片に孔食が発生したときの温度を臨界孔食温度(CPT:Critical Pitting Temperature)と定義する。本実施形態では、得られたCPTが15℃よりも高い場合、二相ステンレス鋼材は優れた耐孔食性を示すと判断する。
 [二相ステンレス鋼材の形状]
 上述のとおり、本実施形態による二相ステンレス鋼材の形状は、特に限定されない。好ましくは、本実施形態による二相ステンレス鋼材は、継目無鋼管である。本実施形態による二相ステンレス鋼材が継目無鋼管の場合、肉厚が5mm以上であっても、586MPa以上の降伏強度と、優れた低温靭性と、優れた耐孔食性とを有する。
 [製造方法]
 上述の構成を有する本実施形態による二相ステンレス鋼材の製造方法の一例を説明する。なお、本実施形態による二相ステンレス鋼材の製造方法は、以下に説明する製造方法に限定されない。本実施形態の二相ステンレス鋼材の製造方法の一例は、素材準備工程と、熱間加工工程と、溶体化処理工程とを含む。以下、各製造工程について詳述する。
 [素材準備工程]
 本実施形態による素材準備工程では、上述の化学組成を有する素材を準備する。素材は製造して準備してもよく、第三者から購入することにより準備してもよい。すなわち、素材を準備する方法は特に限定されない。
 素材を製造する場合、たとえば、次の方法で製造する。上述の化学組成を有する溶鋼を製造する。溶鋼を用いて連続鋳造法により鋳片(スラブ、ブルーム、又は、ビレット)を製造する。溶鋼を用いて造塊法により鋼塊(インゴット)を製造してもよい。必要に応じて、スラブ、ブルーム又はインゴットを分塊圧延して、ビレットを製造してもよい。以上の工程により素材を製造する。
 [熱間加工工程]
 本実施形態による熱間加工工程では、上記準備工程で準備された素材を熱間加工して、中間鋼材を製造する。本明細書において中間鋼材とは、最終製品が鋼板の場合は板状の鋼材であり、最終製品が鋼管の場合は素管であり、最終製品が丸鋼の場合は軸方向に垂直な断面が円形状の棒状の鋼材であり、最終製品が線材の場合は線状の鋼材である。熱間加工は、熱間鍛造であってもよく、熱間押出であってもよく、熱間圧延であってもよい。熱間加工の方法は、特に限定されず、周知の方法でよい。
 中間鋼材が素管(継目無鋼管)の場合、熱間加工工程において、たとえば、ユジーン・セジュルネ法、又は、エルハルトプッシュベンチ法(すなわち、熱間押出)を実施してもよく、マンネスマン法による穿孔圧延(すなわち、熱間圧延)を実施してもよい。なお、熱間加工は、1回のみ実施してもよく、複数回実施してもよい。たとえば、素材に対して上述の穿孔圧延を実施した後、上述の熱間押出を実施してもよい。たとえばさらに、素材に対して、上述の穿孔圧延を実施した後、延伸圧延を実施してもよい。すなわち、熱間加工工程では、周知の方法により熱間加工を実施して、所望の形状の中間鋼材を製造する。
 [溶体化処理工程]
 本実施形態による溶体化処理工程では、上記熱間加工工程で製造された中間鋼材に対して溶体化処理を実施して、二相ステンレス鋼材を製造する。溶体化処理とは、中間鋼材中の化合物を、固溶させる熱処理を意味する。すなわち、溶体化処理工程は、中間鋼材を所望の温度で熱処理する工程(熱処理工程)と、熱処理された中間鋼材を急冷する工程(急冷工程)とを含む。一方、本実施形態では、上述のとおり、微細Cu析出物をオーステナイト中に析出させることにより、鋼材の降伏強度を高める。そこで、本実施形態による溶体化処理工程では、熱処理工程と急冷工程との間に、中間鋼材の温度を維持する工程(維持工程)を含む。以下、各工程について詳述する。
 [熱処理工程]
 本実施形態による熱処理工程では、上記熱間加工工程で製造された中間鋼材に対して、熱処理を実施する。具体的に、好ましくは、中間鋼材に対して、熱処理温度を960~1100℃、熱処理時間を5~180分間とする、熱処理を実施する。本明細書において、熱処理温度とは、溶体化処理を実施するための熱処理炉の温度(℃)を意味する。本明細書において、熱処理時間とは、溶体化処理を実施するための熱処理炉内に素材が装入されてから、取り出されるまでの時間を意味する。
 熱処理工程において、熱処理温度が低すぎれば、溶体化処理工程後の二相ステンレス鋼材に、析出物が残存する場合がある。この場合、二相ステンレス鋼材の耐孔食性が低下する。一方、熱処理工程において、熱処理温度が高すぎれば、フェライトの体積率が70.0%を超えて高くなる場合がある。この場合、二相ステンレス鋼材の耐孔食性が低下する。したがって、本実施形態による熱処理工程において、熱処理温度は960~1100℃とするのが好ましい。熱処理温度のさらに好ましい下限は965℃である。熱処理温度のさらに好ましい上限は1080℃である。
 熱処理工程において、熱処理時間が短すぎれば、溶体化処理工程後の二相ステンレス鋼材に、耐孔食性を低下させる析出物が残存する場合がある。この場合、二相ステンレス鋼材の耐孔食性が低下する場合がある。一方、熱処理工程において、熱処理時間が長すぎれば、析出物を溶体化させる効果が飽和する。したがって、本実施形態による熱処理工程において、熱処理時間は5~180分とするのが好ましい。
 [維持工程]
 本実施形態による維持工程では、上記熱処理工程で熱処理された中間鋼材を維持する。具体的に、好ましくは、中間鋼材を900~950℃の範囲内で20~180秒間維持する。本明細書において「中間鋼材の温度を維持する」とは、一定の温度に保持される場合に限定されない。たとえば、放冷以下の冷却速度(放冷、徐冷等)で中間鋼材を冷却して、中間鋼材の温度を900~950℃の範囲内としてもよい。たとえばさらに、補熱炉や高周波加熱炉を用いて中間鋼材を加熱して、中間鋼材の温度を900~950℃の範囲内としてもよい。すなわち、本実施形態による維持工程では、中間鋼材を一定の温度に保持してもよく、中間鋼材を放冷又は徐冷してもよく、中間鋼材を加熱してもよい。
 中間鋼材を維持する温度(維持温度)が高すぎれば、オーステナイト中にCu析出物が十分に析出しない。その結果、オーステナイト中の微細Cu析出物の個数密度が低下して、鋼材の降伏強度が586MPa未満となる場合がある。一方、維持温度が低すぎれば、鋼材中にσ相が析出する場合がある。その結果、鋼材の耐孔食性が低下する。したがって、本実施形態による維持工程では、維持温度を900~950℃とするのが好ましい。
 中間鋼材を維持する時間(維持時間)が短すぎれば、オーステナイト中にCu析出物が十分に析出しない。その結果、オーステナイト中の微細Cu析出物の個数密度が低下して、鋼材の降伏強度が586MPa未満となる場合がある。一方、維持時間が長すぎれば、Cu析出物が粗大化する。その結果、鋼材の低温靭性が低下する場合がある。したがって、本実施形態による維持工程では、維持時間を20~180秒間とするのが好ましい。
 [急冷工程]
 本実施形態による急冷工程では、上記維持工程において温度が維持された中間鋼材を急冷し、二相ステンレス鋼材を製造する。急冷を開始する温度(急冷開始温度)は、上述の維持工程完了時の中間鋼材の温度である。急冷開始温度が低すぎれば、オーステナイト中に微細Cu析出物が多く析出しすぎる場合がある。この場合、鋼材の低温靭性が低下する。したがって、本実施形態による急冷工程では、上述の維持工程において中間鋼材を900~950℃で維持した後、速やかに急冷を実施するのが好ましい。
 本実施形態による急冷工程では、急冷の方法は特に限定されず、周知の方法でよい。たとえば、シャワー水冷、ミスト水冷、油冷等により中間鋼材を冷却することができる。なお、急冷工程における冷却速度は特に限定されないが、たとえば、900℃から400℃における冷却速度が3℃/秒以上である。
 なお、溶体化処理が実施された二相ステンレス鋼材に対して、必要に応じて、酸洗処理を実施してもよい。この場合、酸洗処理は、周知の方法で実施されればよく、特に限定されない。また、溶体化処理が実施された二相ステンレス鋼材に対して、冷間加工を実施した場合、鋼材の強度が高くなりすぎ、鋼材の靭性が極端に低下する。そのため、本実施形態による二相ステンレス鋼材に対しては、冷間加工は実施しない方が好ましい。
 以上の工程により、本実施形態による二相ステンレス鋼材が製造できる。なお、上述の二相ステンレス鋼材の製造方法は一例であり、他の方法によって二相ステンレス鋼材が製造されてもよい。以下、実施例によって本発明をさらに詳細に説明する。
 表1に示す化学組成を有する溶鋼を、50kgの真空溶解炉を用いて溶製し、造塊法により鋼塊(インゴット)を製造した。なお、表1中の「-」は、該当する元素の含有量が不純物レベルであったことを意味する。たとえば、試験番号1のNb含有量、Ta含有量、Ti含有量、Zr含有量、Hf含有量、W含有量、Co含有量、Sn含有量、Sb含有量、Ca含有量、Mg含有量、B含有量、及び、希土類元素(REM)含有量は、小数第四位を四捨五入して、0%であったことを意味する。また、表1に記載の化学組成と、上述の定義から求めたFn1を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 得られたインゴットに対して、表2及び表3に示す圧延温度(℃)で加熱した後、熱間圧延を実施して、表2及び表3に示す形状の中間鋼材を製造した。なお、本実施例において、圧延温度(℃)とは、加熱に用いた加熱炉の温度(℃)とした。表2及び表3の「形状」欄については、以下のとおりである。「鋼管A」とは、外径177.8mm、肉厚12.65mmの継目無鋼管形状を意味する。「鋼管B」とは、外径139.7mm、肉厚9.2mmの継目無鋼管形状を意味する。「鋼管C」とは、外径114.3mm、肉厚7.4mmの継目無鋼管形状を意味する。「鋼管D」とは、外径198.2mm、肉厚21.2mmの継目無鋼管形状を意味する。「鋼板」とは、板厚13mm、板厚方向に垂直な断面が一辺15mm×60mmの長方形である鋼板形状を意味する。「丸鋼」とは、軸方向に500mm、軸方向に垂直な断面が直径50mmの円形である円柱形状を意味する。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 熱間圧延によって製造された各試験番号の中間鋼材に対して、表2及び表3に記載の条件で溶体化処理を実施して、各試験番号の鋼材を製造した。具体的に、各試験番号の中間鋼材に対して、表2及び表3に記載の熱処理温度(℃)、熱処理時間(分)で熱処理を実施した。なお、本実施例では、溶体化処理を実施する熱処理炉の炉温を、熱処理温度(℃)とした。さらに、溶体化処理を実施する熱処理炉に中間鋼材を装入してから、抽出するまでの時間を、熱処理時間(分)とした。各試験番号の中間鋼材に実施した熱処理について、熱処理温度(℃)と熱処理時間(分)とを表2及び表3に示す。
 熱処理が実施された各試験番号の中間鋼材に対して、表2及び表3に記載の維持温度(℃)で、維持時間(秒)だけ維持した後、急冷開始温度(℃)から水冷して、各試験番号の鋼材を製造した。なお、表2及び表3の「維持温度」欄の「SC」(Slow Cooling)とは、鋼材の温度を一定に保持せず、緩冷却を実施することによって、950~900℃の間を表2及び表3に記載の維持時間(秒)だけ維持した後、急冷開始温度(℃)から水冷したことを意味する。さらに、表2の「維持温度」欄の「-」とは、維持工程を実施しなかったことを意味する。各試験番号について、維持温度(℃)と維持時間(秒)と急冷開始温度(℃)とを表2及び表3に示す。以上の工程により、各試験番号の鋼材を得た。なお、各試験番号の中間鋼材の形状と、対応する試験番号の鋼材の形状とは、同一であった。
 [評価試験]
 溶体化処理後の各試験番号の鋼材に対して、ミクロ組織観察と、微細Cu析出物個数密度測定試験と、引張試験と、シャルピー衝撃試験と、腐食試験とを実施した。
 [ミクロ組織観察]
 各試験番号の鋼材に対して、ASTM E562(2019)に準拠した上述の方法でミクロ組織観察を実施して、フェライト体積率(%)を求めた。まず、各試験番号の鋼材から、鋼材の圧延方向と垂直な断面を観察面として有する試験片を作製した。具体的には、鋼材の形状が鋼管の場合、肉厚中央部から試験片を作製した。鋼材の形状が鋼板の場合、板厚中央部から試験片を作製した。さらに、鋼材の形状が丸鋼の場合、R/2位置から試験片を作製した。作製された試験片を用いて、上述の方法でフェライト体積率を求めた。得られた各試験番号のフェライト体積率(%)を表2及び表3に示す。
 [微細Cu析出物個数密度測定試験]
 各試験番号の鋼材に対して、オーステナイト中の微細Cu析出物の個数密度を求めた。オーステナイト中の微細Cu析出物の個数密度は、上述の方法を用いて求めた。まず、各試験番号の鋼材から、試験片を作製した。具体的には、鋼材の形状が鋼管の場合、肉厚中央部から、管軸方向5mm、管径方向5mmの観察面を有する試験片を作製した。鋼材の形状が鋼板の場合、板厚中央部から、板厚方向5mm、板幅方向5mmの観察面を有する試験片を作製した。鋼材の形状が丸鋼の場合、R/2位置から、軸方向5mm、径方向5mmの観察面を有する試験片を作製した。作製された試験片を用いて、上述の方法でオーステナイト中の微細Cu析出物の個数密度を求めた。得られた各試験番号のオーステナイト中の微細Cu析出物の個数密度(個/μm)を「微細Cu析出物の個数密度(個/μm)」として表2及び表3に示す。
 [引張試験]
 各試験番号の鋼材に対して、ASTM E8/E8M(2021)に準拠した上述の方法で引張試験を実施して、降伏強度(MPa)を求めた。まず、各試験番号の鋼材から、引張試験用の試験片を作製した。具体的には、鋼材の形状が鋼管の場合、厚さは鋼管の肉厚と同じであって、幅25.4mm、標点距離50.8mmの円弧状試験片を作製した。鋼材の形状が鋼板の場合、板厚中央部から引張試験片を作製した。鋼材の形状が丸鋼の場合、R/2位置から引張試験片を作製した。引張試験片の大きさは、平行部直径6mm、標点距離24mmとした。なお、引張試験片及び円弧状試験片の長手方向は、鋼材の圧延方向と平行であった。作製された各試験番号の試験片に対して、ASTM E8/E8M(2021)に準拠して、引張試験を実施した。引張試験で得られた0.2%オフセット耐力を、降伏強度と定義した。得られた各試験番号の降伏強度(MPa)を「YS(MPa)」として表2及び表3に示す。
 [シャルピー衝撃試験]
 各試験番号の鋼材に対して、ASTM E23(2018)に準拠したシャルピー衝撃試験を実施して、低温靭性を評価した。まず、各試験番号の鋼材から、ASTM E23(2018)に準拠して、シャルピー衝撃試験用のVノッチ試験片を作製した。鋼材の形状が鋼管の場合、肉厚中央部から、肉厚方向及び管軸方向に平行なノッチ面を有するVノッチ試験片を作製した。鋼材の形状が鋼板の場合、板厚中央部から、板厚方向及び圧延方向に平行なノッチ面を有するVノッチ試験片を作製した。鋼材の形状が丸鋼の場合、R/2位置から、径方向及び軸方向に平行なノッチ面を有するVノッチ試験片を作製した。なお、Vノッチ試験片の長手方向は、鋼材の圧延方向と平行であった。
 なお、鋼材の形状が鋼管A、鋼管D、鋼板、及び、丸鋼の場合、フルサイズ(幅10mm、厚さ10mm、長さ55mm)のVノッチ試験片を作製した。鋼材の形状が鋼管Bの場合、サブサイズ(幅10mm、厚さ7.5mm、長さ55mm)のVノッチ試験片を作製した。鋼材の形状が鋼管Cの場合、サブサイズ(幅10mm、厚さ5mm、長さ55mm)のVノッチ試験片を作製した。ここで、Vノッチ試験片の幅とは、Vノッチ試験片のうち、Vノッチが形成されている面と、その反対面との間隔を意味する。
 作製された各試験番号のVノッチ試験片に対して、ASTM E23(2018)に準拠して、シャルピー衝撃試験を実施した。具体的には、ASTM E23(2018)に準拠して作製された各試験番号の3本の試験片を-10℃に冷却し、吸収エネルギー(J)を求めた。求めた吸収エネルギーを、用いたVノッチ試験片の長手方向に垂直な断面積(cm)で除し、-10℃における単位面積あたりの吸収エネルギー(J/cm)を求めた。なお、Vノッチ試験片の長手方向の断面積(cm)は、上述の方法で定義した。得られた各試験番号の-10℃における単位面積あたりの吸収エネルギー(J/cm)を「E(-10℃)(J/cm)」として、表2及び表3に示す。
 [腐食試験]
 各試験番号の鋼材に対して、ASTM G48(2011) Method Eに準拠した上述の方法で腐食試験を実施して、耐孔食性を評価した。まず、各試験番号の鋼材から、腐食試験用の試験片を作製した。具体的には、鋼材の形状が鋼管の場合、肉厚中央部から試験片を作製した。鋼材の形状が鋼板の場合、板厚中央部から試験片を作製した。鋼材の形状が丸鋼の場合、R/2位置から試験片を作製した。なお、腐食試験用の試験片の大きさは、厚さ3mm、幅25mm、長さ50mmであり、試験片の長手方向は、鋼材の圧延方向と平行であった。
 作製された各試験番号の試験片を、比液量5mL/cm以上であり、15℃の試験溶液(6%FeCl+1%HCl)に浸漬させた。試験片を試験溶液に浸漬してから24時間毎に、試験溶液の温度を5℃ずつ上昇させ、孔食の発生の有無を肉眼で確認した。孔食が発生したときの温度をCPT(℃)とした。得られた各試験番号のCPT(℃)を表2及び表3に示す。
 [評価結果]
 表1~表3を参照して、試験番号1~42の鋼材は、化学組成が適切であり、Fn1が30.0以上であった。さらに、製造方法も明細書に記載の好ましい製造方法であった。その結果、フェライトの体積率が30.0~70.0%となり、オーステナイト中の微細Cu析出物の個数密度が150~1500個/μmとなった。その結果、降伏強度が586MPa以上となり、CPTが15℃を超え、-10℃における単位面積あたりの吸収エネルギーが60.0J/cm以上となった。すなわち、試験番号1~42の鋼材は、586MPa以上の降伏強度と、優れた低温靭性と、優れた耐孔食性とを有していた。
 一方、試験番号43の鋼材では、熱処理温度が低すぎた。その結果、オーステナイト中の微細Cu析出物の個数密度が1500個/μmを超えた。その結果、-10℃における単位面積あたりの吸収エネルギーが60.0J/cm未満となった。すなわち、試験番号43の鋼材は、優れた低温靭性を有していなかった。
 試験番号44の鋼材では、維持温度が高すぎた。試験番号44の鋼材ではさらに、急冷開始温度が高すぎた。その結果、オーステナイト中の微細Cu析出物の個数密度が150個/μm未満となった。その結果、降伏強度が586MPa未満となった。すなわち、試験番号44の鋼材は、586MPa以上の降伏強度を有していなかった。
 試験番号45の鋼材では、維持工程を実施しなかった。試験番号45の鋼材ではさらに、急冷開始温度が高すぎた。その結果、オーステナイト中の微細Cu析出物の個数密度が150個/μm未満となった。その結果、降伏強度が586MPa未満となった。すなわち、試験番号45の鋼材は、586MPa以上の降伏強度を有していなかった。
 試験番号46及び47の鋼材では、維持時間が短すぎた。その結果、オーステナイト中の微細Cu析出物の個数密度が150個/μm未満となった。その結果、降伏強度が586MPa未満となった。すなわち、試験番号46及び47の鋼材は、586MPa以上の降伏強度を有していなかった。
 試験番号48の鋼材では、急冷開始温度が低すぎた。その結果、オーステナイト中の微細Cu析出物の個数密度が1500個/μmを超えた。その結果、-10℃における単位面積あたりの吸収エネルギーが60.0J/cm未満となった。すなわち、試験番号48の鋼材は、優れた低温靭性を有していなかった。
 試験番号49の鋼材では、Fn1が30.0未満であった。その結果、CPTが15℃となった。すなわち、試験番号49の鋼材は、優れた耐孔食性を有していなかった。
 試験番号50の鋼材では、Cr含有量が低すぎた。その結果、フェライトの体積率が30.0%未満となった。その結果、降伏強度が586MPa未満となった。すなわち、試験番号50の鋼材は、586MPa以上の降伏強度を有していなかった。
 試験番号51の鋼材では、Cu含有量が低すぎた。その結果、オーステナイト中の微細Cu析出物の個数密度が150個/μm未満となった。その結果、降伏強度が586MPa未満となった。すなわち、試験番号51の鋼材は、586MPa以上の降伏強度を有していなかった。
 以上、本開示の実施の形態を説明した。しかしながら、上述した実施の形態は本開示を実施するための例示に過ぎない。したがって、本開示は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。
 なお、本実施形態による二相ステンレス鋼材の要旨は、以下のとおりに記載することもできる。
 [1]
 質量%で、
 C:0.030%以下、
 Si:0.20~1.00%、
 Mn:0.50~7.00%、
 P:0.040%以下、
 S:0.020%以下、
 Al:0.100%以下、
 Ni:4.20~9.00%、
 Cr:20.00~30.00%、
 Mo:0.50~2.00%、
 Cu:1.50~4.00%、
 N:0.150~0.350%、
 V:0.01~1.50%、及び、
 残部がFe及び不純物からなり、式(1A)を満たし、
 ミクロ組織が、体積率で30.0~70.0%のフェライト、及び、残部がオーステナイトからなり、
 降伏強度が586MPa以上であり、
 前記オーステナイト中において、長径50nm以下のCu析出物の個数密度が150~1500個/μmである、
 二相ステンレス鋼材。
 Cr+3.3Mo+16N≧30.0 (1A)
 ここで、式(1A)中の元素記号には、対応する元素の含有量が質量%で代入される。
 [2]
 質量%で、
 C:0.030%以下、
 Si:0.20~1.00%、
 Mn:0.50~7.00%、
 P:0.040%以下、
 S:0.020%以下、
 Al:0.100%以下、
 Ni:4.20~9.00%、
 Cr:20.00~30.00%、
 Mo:0.50~2.00%、
 Cu:1.50~4.00%、
 N:0.150~0.350%、
 V:0.01~1.50%、を含有し、さらに、
 Nb:0.100%以下、
 Ta:0.100%以下、
 Ti:0.100%以下、
 Zr:0.100%以下、
 Hf:0.100%以下、
 W:0.200%以下、
 Co:0.500%以下、
 Sn:0.100%以下、
 Sb:0.100%以下、
 Ca:0.020%以下、
 Mg:0.020%以下、
 B:0.020%以下、及び、
 希土類元素:0.200%以下、からなる群から選択される1元素以上を含有し、
 残部がFe及び不純物からなり、式(1B)を満たし、
 ミクロ組織が、体積率で30.0~70.0%のフェライト、及び、残部がオーステナイトからなり、
 降伏強度が586MPa以上であり、
 前記オーステナイト中において、長径50nm以下のCu析出物の個数密度が150~1500個/μmである、
 二相ステンレス鋼材。
 Cr+3.3(Mo+0.5W)+16N≧30.0 (1B)
 ここで、式(1B)中の元素記号には、対応する元素の含有量が質量%で代入される。対応する元素が含有されていない場合、その元素記号には「0」が代入される。
 [3]
 [2]に記載の二相ステンレス鋼材であって、
 Nb:0.100%以下、
 Ta:0.100%以下、
 Ti:0.100%以下、
 Zr:0.100%以下、
 Hf:0.100%以下、及び、
 W:0.200%以下、からなる群から選択される1元素以上を含有する、
 二相ステンレス鋼材。
 [4]
 [2]又は[3]に記載の二相ステンレス鋼材であって、
 Co:0.500%以下、
 Sn:0.100%以下、及び、
 Sb:0.100%以下、からなる群から選択される1元素以上を含有する、
 二相ステンレス鋼材。
 [5]
 [2]~[4]のいずれか1項に記載の二相ステンレス鋼材であって、
 Ca:0.020%以下、
 Mg:0.020%以下、
 B:0.020%以下、及び、
 希土類元素:0.200%以下、からなる群から選択される1元素以上を含有する、
 二相ステンレス鋼材。

Claims (2)

  1.  質量%で、
     C:0.030%以下、
     Si:0.20~1.00%、
     Mn:0.50~7.00%、
     P:0.040%以下、
     S:0.020%以下、
     Al:0.100%以下、
     Ni:4.20~9.00%、
     Cr:20.00~30.00%、
     Mo:0.50~2.00%、
     Cu:1.50~4.00%、
     N:0.150~0.350%、
     V:0.01~1.50%、
     Nb:0~0.100%、
     Ta:0~0.100%、
     Ti:0~0.100%、
     Zr:0~0.100%、
     Hf:0~0.100%、
     W:0~0.200%、
     Co:0~0.500%、
     Sn:0~0.100%、
     Sb:0~0.100%、
     Ca:0~0.020%、
     Mg:0~0.020%、
     B:0~0.020%、
     希土類元素:0~0.200%、及び、
     残部がFe及び不純物からなり、式(1)を満たし、
     ミクロ組織が、体積率で30.0~70.0%のフェライト、及び、残部がオーステナイトからなり、
     降伏強度が586MPa以上であり、
     前記オーステナイト中において、長径50nm以下のCu析出物の個数密度が150~1500個/μmである、
     二相ステンレス鋼材。
     Cr+3.3(Mo+0.5W)+16N≧30.0 (1)
     ここで、式(1)中の元素記号には、対応する元素の含有量が質量%で代入される。対応する元素が含有されていない場合、その元素記号には「0」が代入される。
  2.  請求項1に記載の二相ステンレス鋼材であって、
     Nb:0.001~0.100%、
     Ta:0.001~0.100%、
     Ti:0.001~0.100%、
     Zr:0.001~0.100%、
     Hf:0.001~0.100%、
     W:0.001~0.200%、
     Co:0.001~0.500%、
     Sn:0.001~0.100%、
     Sb:0.001~0.100%、
     Ca:0.001~0.020%、
     Mg:0.001~0.020%、
     B:0.001~0.020%、及び、
     希土類元素:0.001~0.200%からなる群から選択される1元素以上を含有する、
     二相ステンレス鋼材。
PCT/JP2022/035897 2021-09-29 2022-09-27 二相ステンレス鋼材 WO2023054343A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022579862A JP7256435B1 (ja) 2021-09-29 2022-09-27 二相ステンレス鋼材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021160129 2021-09-29
JP2021-160129 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023054343A1 true WO2023054343A1 (ja) 2023-04-06

Family

ID=85782751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035897 WO2023054343A1 (ja) 2021-09-29 2022-09-27 二相ステンレス鋼材

Country Status (2)

Country Link
JP (1) JP7256435B1 (ja)
WO (1) WO2023054343A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132741A (ja) 1991-11-11 1993-05-28 Sumitomo Metal Ind Ltd 耐食性に優れた高強度二相ステンレス鋼
JPH09195003A (ja) 1996-01-08 1997-07-29 Sumitomo Metal Mining Co Ltd 二相ステンレス鋼
JP2014043616A (ja) 2012-08-27 2014-03-13 Nippon Steel & Sumitomo Metal 二相ステンレス鋼およびその製造方法
JP2016003377A (ja) 2014-06-18 2016-01-12 新日鐵住金株式会社 二相ステンレス鋼管
JP2018193591A (ja) * 2017-05-18 2018-12-06 新日鐵住金株式会社 二相ステンレス鋼材及びその製造方法
WO2020218426A1 (ja) * 2019-04-24 2020-10-29 日本製鉄株式会社 二相ステンレス継目無鋼管、及び、二相ステンレス継目無鋼管の製造方法
WO2021033672A1 (ja) * 2019-08-19 2021-02-25 日本製鉄株式会社 二相ステンレス鋼材
JP2021167445A (ja) * 2020-04-10 2021-10-21 日本製鉄株式会社 二相ステンレス鋼材
JP2021167446A (ja) * 2020-04-10 2021-10-21 日本製鉄株式会社 二相ステンレス鋼材

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132741A (ja) 1991-11-11 1993-05-28 Sumitomo Metal Ind Ltd 耐食性に優れた高強度二相ステンレス鋼
JPH09195003A (ja) 1996-01-08 1997-07-29 Sumitomo Metal Mining Co Ltd 二相ステンレス鋼
JP2014043616A (ja) 2012-08-27 2014-03-13 Nippon Steel & Sumitomo Metal 二相ステンレス鋼およびその製造方法
JP2016003377A (ja) 2014-06-18 2016-01-12 新日鐵住金株式会社 二相ステンレス鋼管
JP2018193591A (ja) * 2017-05-18 2018-12-06 新日鐵住金株式会社 二相ステンレス鋼材及びその製造方法
WO2020218426A1 (ja) * 2019-04-24 2020-10-29 日本製鉄株式会社 二相ステンレス継目無鋼管、及び、二相ステンレス継目無鋼管の製造方法
WO2021033672A1 (ja) * 2019-08-19 2021-02-25 日本製鉄株式会社 二相ステンレス鋼材
JP2021167445A (ja) * 2020-04-10 2021-10-21 日本製鉄株式会社 二相ステンレス鋼材
JP2021167446A (ja) * 2020-04-10 2021-10-21 日本製鉄株式会社 二相ステンレス鋼材

Also Published As

Publication number Publication date
JPWO2023054343A1 (ja) 2023-04-06
JP7256435B1 (ja) 2023-04-12

Similar Documents

Publication Publication Date Title
JP6787483B2 (ja) マルテンサイトステンレス鋼材
JP7173359B2 (ja) 二相ステンレス鋼材
KR102172891B1 (ko) 오스테나이트계 스테인리스 강재
WO2020067247A1 (ja) マルテンサイトステンレス鋼材
US20190284666A1 (en) NiCrFe Alloy
WO2018043565A1 (ja) オーステナイト系ステンレス鋼
JP6693561B2 (ja) 二相ステンレス鋼及び二相ステンレス鋼の製造方法
JP2021167445A (ja) 二相ステンレス鋼材
JP7425360B2 (ja) マルテンサイト系ステンレス鋼材、及び、マルテンサイト系ステンレス鋼材の製造方法
WO2018003823A1 (ja) オーステナイト系ステンレス鋼
JP7114998B2 (ja) オーステナイト系ステンレス鋼
CN117043378A (zh) 马氏体系不锈钢钢材
JP2021167446A (ja) 二相ステンレス鋼材
US20200332378A1 (en) Duplex stainless steel and method for producing duplex stainless steel
JP7477790B2 (ja) 二相ステンレス継目無鋼管
JP7256435B1 (ja) 二相ステンレス鋼材
JP7277731B2 (ja) 2相ステンレス鋼及び2相ステンレス鋼の製造方法
JP6627662B2 (ja) オーステナイト系ステンレス鋼
WO2023162817A1 (ja) 二相ステンレス鋼材
JP7323858B1 (ja) 二相ステンレス鋼材
JP7498420B1 (ja) 二相ステンレス鋼材
JP7428952B1 (ja) マルテンサイト系ステンレス鋼材
WO2024063108A1 (ja) マルテンサイト系ステンレス鋼材
JP7464817B2 (ja) オーステナイト系ステンレス鋼
WO2024058278A1 (ja) オーステナイト系合金材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022579862

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022876209

Country of ref document: EP

Effective date: 20240429