WO2023054336A1 - 硬化性樹脂組成物及びホットメルト接着剤 - Google Patents

硬化性樹脂組成物及びホットメルト接着剤 Download PDF

Info

Publication number
WO2023054336A1
WO2023054336A1 PCT/JP2022/035885 JP2022035885W WO2023054336A1 WO 2023054336 A1 WO2023054336 A1 WO 2023054336A1 JP 2022035885 W JP2022035885 W JP 2022035885W WO 2023054336 A1 WO2023054336 A1 WO 2023054336A1
Authority
WO
WIPO (PCT)
Prior art keywords
silane
curable resin
resin composition
group
polymer
Prior art date
Application number
PCT/JP2022/035885
Other languages
English (en)
French (fr)
Inventor
憲人 吉野
珠世 佐々井
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to CN202280066472.XA priority Critical patent/CN118043406A/zh
Publication of WO2023054336A1 publication Critical patent/WO2023054336A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/10Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/26Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers modified by chemical after-treatment

Definitions

  • the present invention relates to curable resin compositions and hot melt adhesives.
  • the hydrolyzable silyl groups are hydrolyzed and converted to silanol groups by reacting with moisture in the air or moisture contained in the adherend, and the silanol groups are converted to silanol groups. It is known that a dehydration condensation reaction between groups forms a crosslinked structure and cures.
  • Curable resin compositions are widely used as base polymers for sealants, adhesives, paints, etc. (see, for example, Patent Documents 1, 2, and 3).
  • Curing catalysts such as amine catalysts, organometallic catalysts, and Lewis acid catalysts are added to the curable resin compositions described in Patent Documents 1 and 2 in order to accelerate the curing reaction after adhesion.
  • the addition of a curing catalyst has the advantage of accelerating the cross-linking reaction and shortening the time required for the development of adhesive strength. There is a problem that the fluidity of the composition is lowered, and as a result, the time (working time or pot life) during which the composition can be applied to an adherend and the sheet can be laminated to the adherend is significantly shortened.
  • Patent Document 3 by adding an alcohol that is solid at room temperature to a polyolefin containing a hydrolyzable silyl group, the cross-linking reaction of the hydrolyzable silyl group in a molten state is suppressed, and the pot life is shortened. Improvements have been reported.
  • the amount of alcohol compounded is 1 to 40 parts by mass, which is relatively large, with respect to 100 parts by mass of polyolefin containing a hydrolyzable silyl group.
  • the alcohol liquefied by heating is compatible with or dispersed in the polyolefin to suppress the cross-linking reaction. Therefore, when the curable resin composition is stored at room temperature, it is difficult to exhibit the effect of suppressing the reaction because the alcohol is solid. Therefore, the curable resin composition of Patent Document 3 has a problem of low long-term storage stability.
  • the present invention has been made in view of the above, and provides a curable resin composition that is excellent in storage stability, pot life, curability, adhesive strength at room temperature and high temperature, and has sufficient heat creep resistance. intended to
  • Section 1 containing a silane-modified organic polymer, a curing catalyst and alcohol, A curable resin composition, wherein the relative energy difference (RED) between the silane-modified organic polymer and the alcohol represented by the following formula is 1.0 to 3.0.
  • R 0 is the interaction radius of the silane-modified organic polymer
  • Ra-b is the distance between the Hansen Solubility Parameter (HSP) value of the silane-modified organic polymer and the Hansen Solubility Parameter (HSP) value of the alcohol.
  • the curable resin composition according to item 1 wherein the content of the alcohol is 10 to 5000 ppm by mass with respect to the mass of the silane-modified organic polymer.
  • the alcohol consists of ethanol, t-butyl alcohol, 3,3-dimethyl-1,2-butanediol, 1-undecanol, 2-phenyl-2-propanol and 2,2-dimethyl-1,3-propanediol.
  • the curable resin composition according to Item 1 or 2 which is at least one selected from the group. Section 4.
  • Item 5. The curable resin composition according to any one of Items 1 to 4, wherein the silane-modified organic polymer is a silane-modified polyolefin polymer.
  • Item 6. The curable resin composition according to any one of Items 1 to 5, wherein the content of the alcohol is 15 to 1000 ppm by mass relative to the mass of the silane-modified organic polymer.
  • Item 11 The curable resin composition according to any one of Items 1 to 10, wherein the content of the curing catalyst is 0.0001 to 2.0 parts by mass with respect to 100 parts by mass of the silane-modified organic polymer. .
  • Item 12. A hot melt adhesive comprising the curable resin composition according to any one of Items 1 to 11.
  • the curable resin composition of the present invention is excellent in storage stability, pot life, curability, adhesive strength at room temperature and high temperature, and has sufficient heat resistant creep resistance.
  • FIG. 2 is a diagram showing an adhesive sample in a method for evaluating heat-resistant creep resistance.
  • FIG. 3 is a diagram showing the relationship between a measurement sample and a weight in the method for evaluating heat-resistant creep resistance.
  • the upper limit or lower limit of the numerical range at one stage can be arbitrarily combined with the upper limit or lower limit of the numerical range at another stage.
  • the upper or lower limit of the numerical range may be replaced with values shown in Examples or values that can be uniquely derived from Examples.
  • a numerical value connected by "-" means a numerical range including the numerical values before and after "-" as lower and upper limits.
  • a and/or B means “one of A and B” or “both of A and B", specifically, “A", "B”, or "A and B”.
  • room temperature means a temperature within the range of 20°C to 25°C.
  • high temperature means a temperature within the range of 80°C to 200°C.
  • (meth)acrylic acid means acrylic acid and/or methacrylic acid.
  • organic polymer means a compound having a structure with repeating units of an organic compound and consisting of two or more repeating units.
  • (co)polymer means to include both a single polymer (homopolymer) and a copolymer (copolymer).
  • n- means "normal”
  • i- means "iso”
  • sec- means "secondary
  • tert- means "tert-" or “t-” means " each means "tertiary”.
  • the curable resin composition of the present invention has the following configurations (i) and (ii).
  • (i) Contains a silane-modified organic polymer, a curing catalyst and an alcohol.
  • (ii) The relative energy difference (RED) between the silane-modified organic polymer and the alcohol represented by the following formula is 1.0 to 3.0.
  • R 0 indicates the interaction radius of the silane-modified organic polymer
  • Ra-b is the Hansen solubility parameter (HSP) value of the silane-modified organic polymer and the Hansen solubility parameter of the alcohol ( HSP) indicates the distance from the value.
  • the curable resin composition of the present invention has the above configurations (i) and (ii), so that it has excellent storage stability, pot life, curability, and adhesive strength at room temperature and high temperature, and has sufficient Has heat resistant creep resistance.
  • the present invention is a curable resin composition for hot melt adhesives.
  • the curable resin composition of the present invention may be simply referred to as “the present invention” or “the curable resin composition”.
  • the present invention contains a silane-modified organic polymer as an essential component.
  • the silane-modified organic polymer has at least one or more (preferably two or more) crosslinkable hydrolyzable silyl groups.
  • the hydrolyzable silyl group include -Si(OR 1 ) n R 2 3-n (wherein R 1 and R 2 are the same or different and are an alkyl group having 1 to 5 carbon atoms or an alkyl group having 6 to 20 carbon atoms). and n is an integer of 1 to 3).
  • the alkyl group having 1 to 5 carbon atoms means a linear or branched alkyl group having 1 to 5 carbon atoms, such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group. , isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group and the like.
  • Examples of the aryl group having 6 to 20 carbon atoms include phenyl group, naphthyl group, indenyl group and anthryl group. An alkoxysilyl group is preferred as the hydrolyzable silyl group.
  • Alkoxysilyl groups include monoalkoxysilyl, dialkoxysilyl, and trialkoxysilyl groups.
  • the monoalkoxysilyl group includes a dimethylmethoxysilyl group and a dimethylethoxysilyl group.
  • the dialkoxysilyl group includes a dimethoxysilyl group, a diethoxysilyl group, a methyldimethoxysilyl group and a methyldiethoxysilyl group.
  • the trialkoxysilyl group includes a trimethoxysilyl group, a triethoxysilyl group, a triisopropoxysilyl group and a triphenoxysilyl group.
  • the organic polymer has at least one or more (preferably two or more) crosslinkable hydrolyzable silyl groups.
  • the hydrolyzable silyl group may be at the end or side chain of the main chain backbone of the organic polymer or at both the end and the side chain of the main chain backbone of the organic polymer.
  • the details of the hydrolyzable silyl group are as described in ⁇ Hydrolyzable silyl group> above, unless otherwise specified.
  • Examples of the polymer constituting the main chain skeleton of the organic polymer having a hydrolyzable silyl group include polyolefin polymers; carbonization of hydrogenated polyolefin polymers obtained by hydrogenating the polyolefin polymers; Hydrogen-based polymer; polyoxyalkylene-based polymer; polyester-based polymer; vinyl-based polymer; (meth)acrylic acid ester-based polymer; Graft polymers to be obtained; polysulfide-based polymers; polyamide-based polymers; polycarbonate-based polymers; diallyl phthalate-based polymers, and the like.
  • polymers constituting the main chain skeleton may be contained singly in the organic polymer having a hydrolyzable silyl group, or two or more of them may be contained in blocks or at random.
  • polyolefin polymers and polyoxyalkylene polymers which are easy to obtain and produce, are preferred.
  • polyolefin polymers examples include ethylene, propylene, 1-butene, isobutene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, and 1-hexadecene. , 1-octadecene, and 1-eicosene homopolymers of ⁇ -olefins; ethylene-propylene copolymers, ethylene-propylene-butylene copolymers, ethylene-propylene-isobutylene copolymers, etc.
  • copolymers of ⁇ -olefins other than ethylene and ethylene ⁇ -olefins and other monomers copolymerizable with ⁇ -olefins (for example, butadiene, 1,4-hexadiene, 7-methyl-1, conjugated or non-conjugated dienes such as 6-octadiene, 1,8-nonadiene and 1,9-decadiene; cyclic olefins such as cyclopropene, cyclobutene, cyclopentene, cyclohexene, norbornene and dicyclopentadiene); copolymers with isoprene; polychloroprene; polyisoprene; copolymers of isoprene or butadiene with acrylonitrile and/or styrene; In the present invention, among the polyolefin polymers described above, propylene homopolymers, ethylene-propylene copolymers,
  • polyoxyalkylene polymers examples include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymers, polyoxypropylene-polyoxybutylene copolymers, and the like. is mentioned. In the present invention, polyoxypropylene-polyoxybutylene copolymers are preferred among the above-mentioned polyoxyalkylene-based polymers.
  • polyester-based polymers include polymers having an ester bond (polymers obtained by condensation of a dibasic acid such as adipic acid and glycol, polymers obtained by ring-opening polymerization of lactones, etc.). .
  • vinyl-based polymer examples include polymers obtained by radical polymerization of vinyl-based monomers such as vinyl acetate, acrylonitrile, and styrene.
  • Examples of (meth)acrylic acid ester polymers include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and stearyl (meth)acrylate. and polymers obtained by radical polymerization of (meth)acrylic acid ester monomers such as
  • graft polymers include polymers obtained by graft-polymerizing vinyl-based monomers to the various polymers described above.
  • the vinyl-based monomer includes vinyl acetate, acrylonitrile, styrene, and the like.
  • polysulfide-based polymers include polymers that form a main chain bond with a polysulfide bond and have a mercapto group at the end.
  • Polyamide polymers include, for example, nylon 6 obtained by ring-opening polymerization of ⁇ -caprolactam; nylon 6.6 obtained by condensation polymerization of hexamethylenediamine and adipic acid; and condensation polymerization of hexamethylenediamine and sebacic acid.
  • Nylon 6 and 10 obtained; Nylon 11 obtained by condensation polymerization of ⁇ -aminoundecanoic acid; Nylon 12 obtained by ring-opening polymerization of ⁇ -aminolaurolactam; Copolymerization having two or more components among the above nylons Nylon etc. are mentioned.
  • polycarbonate-based polymers examples include polymers obtained by condensation polymerization of bisphenol A and carbonyl chloride.
  • diallyl phthalate-based polymers examples include polymers containing diallyl orthophthalate, diallyl isophthalate, diallyl terephthalate, etc. as main components.
  • the polyolefin polymer is preferably an amorphous or low-crystalline polyolefin polymer.
  • Preferred amorphous or low-crystalline polyolefin polymers are propylene homopolymers, ethylene-propylene copolymers, ethylene-propylene-butylene copolymers and ethylene-propylene-isobutylene copolymers.
  • a propylene homopolymer is more preferable as the polyolefin polymer.
  • an amorphous or low-crystalline polyolefin polymer means a polymer having a crystallization energy (J/g) of 50 J/g or less according to differential scanning calorimetry.
  • the crystallization energy was obtained by heating the sample from 20° C. to 230° C. using a differential scanning calorimeter, cooling it to ⁇ 100° C., and then reheating the sample to 230° C. at 10° C./min. means the amount of heat absorbed.
  • the polyolefin polymer preferably has a number average molecular weight of 2,000 to 80,000, more preferably 4,000 to 70,000.
  • the number average molecular weight of the polyolefin polymer is 2000 or more, the heat-resistant creep resistance after curing and the adhesive strength after curing of the curable resin composition and the hot-melt adhesive using the curable resin composition are further enhanced. improves.
  • the number average molecular weight of the polyolefin polymer is 80,000 or less, the work of applying the curable resin composition and the hot-melt adhesive using the curable resin composition to an adherend can be further facilitated.
  • the number average molecular weight of a polyolefin polymer means a polystyrene equivalent value measured by GPC (gel permeation chromatography, based on DIN 55672).
  • the melt viscosity of the polyolefin polymer at 190°C is preferably 200 to 60,000 mPa ⁇ s, more preferably 400 to 50,000 mPa ⁇ s, and particularly preferably 600 to 40,000 mPa ⁇ s.
  • the melt viscosity of the polyolefin polymer at 190° C. is 200 mPa ⁇ s or more
  • the curable resin composition and the hot-melt adhesive using the curable resin composition exhibit heat resistant creep resistance after curing and adhesion after curing. Strength is further improved.
  • the melt viscosity of a polyolefin polymer at 190° C. means a value measured in accordance with the JIS K 6862 method for testing the melt viscosity of hot melt adhesives.
  • the softening point of the polyolefin polymer is preferably 70-180°C, more preferably 80-170°C, and particularly preferably 90-160°C.
  • the softening point of the polyolefin polymer is 70° C. or higher, the curing reaction of the curable resin composition and the hot-melt adhesive using the curable resin composition after cooling and solidification is further accelerated.
  • the softening point of the polyolefin polymer is 180° C. or lower, the work of applying the curable resin composition and the hot-melt adhesive using the curable resin composition to an adherend can be further facilitated.
  • the softening point of a polyolefin polymer means a value measured according to JIS K 6863 Hot Melt Adhesive Softening Point Test Method.
  • the method for producing the polyolefin polymer is not particularly limited, and a wide range of known methods can be employed, including solution polymerization, slurry polymerization, gas phase polymerization, and the like.
  • the conditions in each polymerization reaction are the state of the catalyst containing the zirconium compound used (homogeneous or heterogeneous (supported type)), the production method (solution polymerization method, slurry polymerization method, gas phase polymerization method), It can be appropriately set according to the characteristics of the desired polymer or the shape of the polymer.
  • the solution polymerization method is described, for example, in Japanese Patent Application Laid-Open No. 53-134889 and Japanese Patent No. 5064662. In Examples described later, polyolefin polymers were produced based on the solution polymerization method.
  • Organic solvents used in the above solution polymerization method or slurry polymerization method include aliphatic hydrocarbons such as propane, butane, isobutane, pentane, hexane, heptane, octane, decane, and dodecane; cyclopentane, methylcyclopentane, cyclohexane, and the like.
  • aromatic hydrocarbons such as benzene, toluene and xylene; and halogenated hydrocarbons such as dichloromethane, chloroethane, 1,2-dichloroethane and chlorobenzene.
  • organic solvents can be used alone or in combination of two or more.
  • aliphatic hydrocarbons such as propane, butane, isobutane, pentane, hexane, heptane, octane, decane and dodecane are preferred, and heptane is more preferred.
  • an impurity remover for increasing the productivity of polyolefin may be added to the polymerization reaction system together with the catalyst.
  • the impurity remover include triethylaluminum.
  • the amount of the catalyst is not particularly limited, but the central metal concentration of the catalyst in the reaction system used for polymerization is preferably 10 -8 to 10 mol/L, and 10 -7 to 10 -2. More preferably mol/L.
  • the polymerization temperature in olefin polymerization can be appropriately selected depending on the reactants, reaction conditions, and the like.
  • the polymerization temperature is preferably 0 to 250°C, more preferably 10 to 200°C.
  • the polymerization temperature is preferably 0 to 120°C, more preferably 20 to 110°C.
  • the polymerization pressure in the method for producing a polyolefin polymer is preferably normal pressure to 20 MPa, more preferably normal pressure to 10 MPa.
  • Polymerization of polyolefins can be carried out batchwise, semi-continuously or continuously.
  • the molecular weight and molecular weight distribution of the final polymer produced according to the above polymerization method can be adjusted by adjusting the polymerization temperature or by injecting hydrogen into the reactor.
  • the polyolefin polymer is preferably produced by polymerizing single or two or more olefin monomers using a solution polymerization method in the presence of a metallocene catalyst.
  • An activator and/or a scavenger (trapping agent) may be added during polymerization.
  • the olefin monomers include ethylene, propylene, 1-butene, isobutene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, ⁇ -olefins such as 1-octadecene and 1-eicosene; conjugated or non-conjugated dienes such as butadiene, 1,4-hexadiene, 7-methyl-1,6-octadiene, 1,8-nonadiene and 1,9-decadiene; Cyclic olefins such as cyclopropene, cyclobutene, cyclopentene, cyclohexene, norbornene, dicyclopentadiene and the like can be preferably used.
  • metallocene catalyst examples include bis(cyclopentadienyl)zirconium dichloride, bis(methylcyclopentadienyl)zirconium dichloride, bis(ethylcyclopentadienyl)zirconium dichloride, bis(iso-propylcyclopentadienyl) Zirconium dichloride, bis(n-propylcyclopentadienyl)zirconium dichloride, bis(n-butylcyclopentadienyl)zirconium dichloride, bis(t-butylcyclopentadienyl)zirconium dichloride, bis(thexylcyclopentadienyl) ) zirconium dichloride, bis(trimethylsilylcyclopentadienyl)zirconium dichloride, bis(trimethylsilylmethylcyclopentadienyl)zirconium dichloride, bis(cyclopentadienyl)zircon
  • the polyoxyalkylene polymer preferably has a number average molecular weight of 2,000 to 80,000, more preferably 4,000 to 60,000.
  • the number average molecular weight of the polyoxyalkylene polymer is 2000 or more, the heat-resistant creep resistance after curing and the adhesive strength after curing of the curable resin composition and the hot-melt adhesive using the curable resin composition are improved. Get even better.
  • the number average molecular weight of the polyoxyalkylene polymer is 80000 or less, the work of applying the curable resin composition and the hot-melt adhesive using the curable resin composition to an adherend can be further facilitated. can be done.
  • the number average molecular weight of polyoxyalkylene means a polystyrene equivalent value measured by GPC (gel permeation chromatography, based on DIN 55 672).
  • the melt viscosity of the polyoxyalkylene polymer at 190°C is preferably 200 to 60,000 mPa ⁇ s, more preferably 400 to 50,000 mPa ⁇ s, and particularly preferably 600 to 40,000 mPa ⁇ s.
  • the melt viscosity of the polyoxyalkylene polymer at 190 ° C. is 200 mPa s or more
  • the curable resin composition and the hot melt adhesive using the curable resin composition have excellent heat resistant creep resistance after curing and after curing The adhesive strength of is further improved.
  • the melt viscosity of a polyoxyalkylene polymer at 190° C. means a value measured in accordance with the JIS K6862 hot melt adhesive melt viscosity test method.
  • the method for producing a polyoxyalkylene-based polymer is not particularly limited, and a wide range of known methods can be employed.
  • a polymerization method using an alkali catalyst such as potassium hydroxide (KOH);
  • KOH potassium hydroxide
  • a polymerization method using a transition metal compound-porphyrin complex catalyst such as a complex obtained by reacting an organoaluminum compound with porphyrin disclosed in JP-A-61-215623; JP-B-46-27250; Japanese Patent Publication No. 59-15336, US Pat. No. 3278457, US Pat. No. 3278458, US Pat. No. 3278459, US Pat. No. 3427256, US Pat.
  • a polymerization method using a catalyst comprising a phosphazene compound as exemplified in Japanese Patent Application Laid-Open No. 2017-171708 and the like can be mentioned.
  • the polyoxyalkylene polymer is preferably produced by a polymerization method using a catalyst comprising the phosphazene compound.
  • the phosphazene compound include tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydroxide, tetrakis(1,1,3,3-tetramethylguanidino)phosphazenium hydrogen carbonate, Tetrakis[tris(dimethylamino)phosphoranylideneamino]phosphonium hydroxide, 1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino)phosphoranylideneamino] ⁇ 2 ⁇ 5 , 4 ⁇ 5 -catenadi (phosphazene) and the like.
  • the silane-modified organic polymer has at least one or more (preferably two or more) hydrolyzable silyl groups.
  • the hydrolyzable silyl groups may be at the main chain end, side chain, or both the main chain end and the side chain of the silane-modified organic polymer.
  • the details of the hydrolyzable silyl group are as described in ⁇ Hydrolyzable silyl group> above, unless otherwise specified.
  • Hydrolyzable silyl groups undergo a dehydration condensation reaction with a curing catalyst in the presence of moisture to form a crosslinked structure.
  • a wide range of known methods can be employed, including the following methods (i) to (iv).
  • method (iv) is preferred.
  • the method for producing the silane-modified polyoxyalkylene used in the examples described later corresponds to the above method (iii).
  • the method for producing the silane-modified polyolefin used in the examples described later is the above method (iv), in which "in the presence of an organic polymer, a silane-modified monomer having an ethylenically unsaturated group, and a radical initiator, the organic A method of obtaining a silane-modified organic polymer by graft-polymerizing a silane-modified monomer to a polymer”.
  • a method for synthesizing the unsaturated group-containing organic polymer for example, an organic polymer having a functional group such as a hydroxyl group in the molecule, an active group exhibiting reactivity and an unsaturated
  • a method of obtaining an unsaturated group-containing organic polymer by reacting an organic compound having an unsaturated group A method for obtaining a polymer and the like can be mentioned.
  • hydrosilane compounds include halogenated silane compounds such as trichlorosilane, methyldichlorosilane, dimethylchlorosilane and phenyldichlorosilane; trimethoxysilane, triethoxysilane, methyldiethoxysilane and methyldimethoxysilane.
  • Alkoxysilane compounds such as phenyldimethoxysilane; Acyloxysilane compounds such as methyldiacetoxysilane and phenyldiacetoxysilane; Ketoximate silane compounds such as bis(dimethylketoximate)methylsilane and bis(cyclohexylketoximate)methylsilane etc.
  • halogenated silane compounds and alkoxysilane compounds are preferred because of their easy availability and high hydrolytic reactivity.
  • Examples of the compound having a mercapto group and a reactive silicon group in method (ii) above include ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, ⁇ -mercaptopropyl Methyldiethoxysilane and the like can be mentioned.
  • the radical initiator includes dicumyl peroxide, t-butylperoxyisopropyl carbonate, di-t-butyl peroxide, t-butylperbenzoate, benzoyl peroxide, cumene hydroperoxide, t- Butyl peroctoate, methyl ethyl ketone peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, lauryl peroxide, t-butyl peracetate, t-butyl ⁇ -cumyl peroxide, di-t-butyl Peroxide, di-t-amyl peroxide, t-amyl peroxybenzoate, 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, ⁇ , ⁇ '-bis(t-butylperoxy)-1 ,3-diisopropylbenzen
  • Examples of the compound having an isocyanate group and a reactive silicon group in the above method (iii) include ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropylmethyldimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane (3-isocyanatopropyl triethoxysilane), ⁇ -isocyanatopropylmethyldiethoxysilane, and the like.
  • the silane-modified monomer having an ethylenically unsaturated group is, for example, the following formula (1) (X) n (R) 3-n -Si-Y Formula (1) is represented by (In formula (1) above, Y is an ethylenically unsaturated group, X is a hydrolyzable group, and R is an alkyl group. n represents an integer of 1 to 3.)
  • hydrolyzable groups in formula (1) above include halogens, alkoxy groups, alkenyloxy groups, acyloxy groups, amino groups, aminooxy groups, oxime groups, and amide groups.
  • a methoxy group is preferable as the alkoxy group.
  • the number of these hydrolyzable groups bonded to one silicon atom is selected from the range of 1, 2 and 3.
  • the number of hydrolyzable groups bonded to one silicon atom may be one or plural.
  • a hydrolyzable group and a non-hydrolyzable group may be attached to one silicon atom.
  • an alkoxy group (a monoalkoxy group, a dialkoxy group, a trialkoxy group, etc.) is preferable in terms of ease of handling.
  • n is preferably 3.
  • Examples of ethylenically unsaturated groups contained in the silane-modified monomers in method (iv) above include vinyl groups, aryl groups, acrylic groups, and methacrylic groups.
  • vinyltrimethoxysilane, vinyltriethoxysilane, phenyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane are preferred as the silane-modified monomer having an ethylenically unsaturated group.
  • the silane-modified organic polymer is preferably a silane-modified polyolefin polymer and/or a silane-modified polyoxyalkylene polymer, more preferably a silane-modified polyolefin polymer, from the viewpoint of reactivity and adhesiveness. .
  • silane-modified polyolefin-based polymer and the silane-modified polyoxyalkylene-based polymer will be described below.
  • the melt viscosity of the silane-modified polyolefin polymer at 190° C. is preferably 200 to 60,000 mPa ⁇ s, more preferably 400 to 50,000 mPa ⁇ s, and particularly preferably 600 to 40,000 mPa ⁇ s.
  • the melt viscosity of the silane-modified polyolefin polymer at 190° C. is 200 mPa s or more
  • the curable resin composition and the hot-melt adhesive using the curable resin composition exhibit excellent heat resistance and creep resistance after curing. The adhesive strength of is further improved.
  • the melt viscosity of the silane-modified polyolefin polymer at 190° C. means a value measured according to JIS K 6862, Melt viscosity test method for hot melt adhesives.
  • the number average molecular weight of the silane-modified polyolefin polymer is preferably 2,000 to 80,000, more preferably 4,000 to 70,000.
  • the number average molecular weight of the silane-modified polyolefin polymer is 2000 or more, the heat-resistant creep after curing and the adhesive strength after curing of the curable resin composition and the hot-melt adhesive using the curable resin composition are increased. further improve.
  • the number average molecular weight of the silane-modified polyolefin polymer is 80000 or less, the work of applying the curable resin composition and the hot-melt adhesive using the curable resin composition to an adherend can be further facilitated. can be done.
  • the number average molecular weight of the silane-modified polyolefin polymer means a polystyrene equivalent value measured by GPC (gel permeation chromatography, based on DIN 55672).
  • the softening point of the silane-modified polyolefin polymer is preferably 70 to 180°C, more preferably 80 to 170°C, and particularly preferably 90 to 160°C.
  • the softening point of the silane-modified polyolefin polymer is 70° C. or higher, the curing reaction after cooling and solidification of the curable resin composition and the hot melt adhesive using the curable resin composition is further accelerated.
  • the softening point of the silane-modified polyolefin polymer is 160° C. or less, the work of applying the curable resin composition and the hot-melt adhesive using the curable resin composition to an adherend can be performed more easily. can be done.
  • the softening point of the silane-modified polyolefin polymer means a value measured according to JIS K 6863 Hot Melt Adhesive Softening Point Test Method.
  • the silane-modified monomer having an ethylenically unsaturated group in the presence of a polyolefin polymer, a silane-modified monomer having an ethylenically unsaturated group, and a radical initiator, the silane-modified monomer having an ethylenically unsaturated group is graft-polymerized to the polyolefin polymer.
  • a method of producing a silane-modified polyolefin polymer is preferred.
  • radical initiator The details of the radical initiator are as described in ⁇ Silane-modified organic polymer> above unless otherwise specified. Dicumyl peroxide and t-butylperoxyisopropyl carbonate are preferred as the radical initiator used in producing the silane-modified polyolefin polymer.
  • silane-modified monomer having an ethylenically unsaturated group are as described in ⁇ Silane-modified organic polymer> above unless otherwise specified.
  • examples of the ethylenically unsaturated groups include vinyl groups, allyl groups, acryl groups, methacryl groups and the like.
  • the silane-modified polyolefin-based polymer is preferably a graft polymer of a polyolefin-based polymer and a silane-modified monomer having an ethylenically unsaturated group.
  • 3-methacryloxypropyltrimethoxysilane is preferable as the silane-modified monomer having an ethylenically unsaturated group used when producing the silane-modified polyolefin polymer.
  • the amount of the radical initiator used when producing the silane-modified polyolefin polymer is preferably 0.5 to 10 parts by mass, more preferably 0.75 to 8 parts by mass, with respect to 100 parts by mass of the polyolefin polymer. , 1 to 5 parts by weight are particularly preferred.
  • the amount of the radical initiator used is 0.5 parts by mass or more, the graft polymerization reaction proceeds sufficiently, and the heat resistance after curing of the curable resin composition and the hot melt adhesive using the curable resin composition. Creep property and adhesive strength after curing are further improved.
  • the amount of the radical initiator used is 10 parts by mass or less, side reactions such as homopolymerization of the silane-modified monomer or decomposition reaction of the polyolefin polymer are further suppressed.
  • the amount of the silane-modified monomer used when producing the silane-modified polyolefin polymer is preferably 0.5 to 10 parts by mass, more preferably 0.75 to 8 parts by mass, with respect to 100 parts by mass of the polyolefin polymer. , 1 to 5 parts by weight are particularly preferred.
  • the amount of the silane-modified monomer used is 0.5 parts by mass or more, the graft polymerization reaction proceeds sufficiently, and the heat resistance after curing of the curable resin composition and the hot melt adhesive using the curable resin composition. Creep property and adhesive strength after curing are further improved.
  • the amount of the silane-modified monomer used is 10 parts by mass or less, side reactions such as homopolymerization of the silane-modified monomer or decomposition reaction of the polyolefin polymer are further suppressed.
  • the mass ratio between the amount of radical initiator used and the amount of silane-modified monomer used when producing a silane-modified polyolefin polymer is preferably 1:0.2 to 1:10. , 1:0.4 to 1:5 is more preferred, and 1:0.6 to 1:2.5 is particularly preferred.
  • the mass ratio of the radical initiator to the silane-modified monomer is within the range of 1:0.2 to 1:10, side reactions such as homopolymerization of the silane-modified monomer and decomposition reaction of the polyolefin polymer are further suppressed. , the heat-resistant creep after curing and the adhesive strength after curing of the curable resin composition and the hot-melt adhesive using the curable resin composition are further improved.
  • the graft polymerization reaction can be performed in melt, solution, solid state, and swollen state.
  • a graft polymerization reaction using a silane-modified monomer to the main chain skeleton of a polyolefin polymer can be carried out using a wide variety of devices, such as twin-screw extruders, single-screw extruders, Brabender, batch-type reactors, and the like. can be done by using
  • ⁇ Silane-modified polyoxyalkylene polymer> As a method for synthesizing a silane-modified polyoxyalkylene-based polymer using a polyoxyalkylene-based polymer, for example, an isocyanate group-containing silane-modified monomer is added to a reactive functional group at the end of the main chain skeleton of the polyoxyalkylene-based polymer. and a method of reacting with a group.
  • the melt viscosity of the silane-modified polyoxyalkylene polymer at 190°C is preferably 200 to 60,000 mPa ⁇ s, more preferably 400 to 50,000 mPa ⁇ s, and particularly preferably 600 to 40,000 mPa ⁇ s.
  • the melt viscosity at 190° C. of the silane-modified polyoxyalkylene polymer is 200 mPa s or more
  • the curable resin composition and the hot melt adhesive using the curable resin composition exhibit heat resistant creep resistance after curing and Adhesive strength after curing is further improved.
  • the curable resin composition and the hot melt adhesive using the curable resin composition are applied to the adherend. can be done more easily.
  • the melt viscosity of the silane-modified polyoxyalkylene-based polymer at 190° C. means a value measured according to JIS K 6862, Melt viscosity test method for hot-melt adhesives.
  • the number average molecular weight of the silane-modified polyoxyalkylene polymer is preferably 2,000 to 80,000, more preferably 4,000 to 70,000.
  • the curable resin composition and the hot-melt adhesive using the curable resin composition exhibit heat-resistant creep after curing and adhesive strength after curing. is further improved.
  • the number average molecular weight of the silane-modified polyoxyalkylene polymer is 80000 or less, the operation of applying the curable resin composition and the hot-melt adhesive using the curable resin composition to an adherend is further facilitated. It can be carried out.
  • the number average molecular weight of the silane-modified polyoxyalkylene polymer means a polystyrene equivalent value measured by GPC (gel permeation chromatography, based on DIN 55672).
  • the silane-modified monomer having an isocyanate group is graft polymerized to the polyoxyalkylene polymer to form a silane-modified polyoxyalkylene polymer.
  • a method of making a polymer is preferred.
  • Other methods for producing silane-modified polyoxyalkylene polymers include, for example, Japanese Patent Publication No. 45-36319, Japanese Patent Publication No. 46-12154, and Japanese Patent Publication No. 50-156599.
  • JP-A-54-6096 JP-A-55-13767, JP-A-55-13468, JP-A-57-164123, Japanese Patent Publication No. 3-2450, US Pat. No. 3,632,557, US Pat. No. 4,345,053, US Pat. No. 4,366,307, US Pat. , JP-A-61-215622, JP-A-61-215623, JP-A-61-218632, JP-A-3-72527, Japan The manufacturing methods described in JP-A-3-47825, JP-A-8-231707, etc. can be mentioned.
  • the silane-modified polyoxyalkylene-based polymer is preferably a graft polymer of a polyoxyalkylene-based polymer and a silane-modified monomer having an isocyanate group.
  • silane-modified monomer having an isocyanate group examples include ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropylmethyldimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane (3-isocyanatopropyltriethoxysilane), ⁇ -isocyanatopropylmethyldimethoxysilane. ethoxysilane and the like.
  • HSP Hansen solubility Parameter
  • the component corresponding to the London dispersion force of HSP is a dispersion term (hereinafter also referred to as " ⁇ d”)
  • the component corresponding to the dipole force is a polar term (hereinafter also referred to as " ⁇ p")
  • hydrogen A component corresponding to the binding force is described as a hydrogen bond term (hereinafter also referred to as “ ⁇ h”).
  • HSP is a vector quantity, it is known that almost no pure substance has exactly the same value.
  • a database has been constructed for HSPs of commonly used substances. Therefore, a person skilled in the art can obtain the HSP value of the desired substance by referring to the database.
  • HSPiP Hansen Solubility Parameters in Practice
  • the HSP value can be determined by performing a dissolution test using multiple solvents with known HSP values for substances whose HSP values are not registered, and inputting the obtained solubilities into HSPiP. .
  • the HSP value of the mixture is calculated as the sum of the values obtained by multiplying the HSP value of each contained substance by the volume ratio of the substance to the entire mixture.
  • HSP for example, Hiroshi Yamamoto, S. Abbott, C.; M. Hansen, Chemical Industry, March 2010 issue.
  • HSP distance is described in, for example, Hiroshi Yamamoto, S.; Abbott, C.; M. Hansen, Chemical Industry, April 2010 issue.
  • HSP and the radius of interaction R 0 herein are those of S.M. Abbott, C.; M. Hansen, Kagaku Kogyo, March 2010 and Hiroshi Yamamoto, S.; Abbott, C.; M. It was determined using the dissolution test method described in Hansen, Kagaku Kogyo, April 2010. A detailed calculation method of the HSP value and the interaction radius R0 is as described in Examples below.
  • the distance Ra-b between the HSP value of the silane-modified organic polymer and the HSP value of alcohol can be determined by the following formula.
  • ⁇ d 1 , ⁇ p 1 and ⁇ h 1 represent the dispersion term, polarization term and hydrogen bond term of the HSP value of the silane-modified organic polymer, respectively.
  • ⁇ d 2 , ⁇ p 2 and ⁇ h 2 represent the dispersion term, polarization term and hydrogen bond term of the HSP value of alcohol, respectively.
  • the relative energy difference (RED) based on the Hansen Solubility Parameter (HSP) value between the silane-modified organic polymer and alcohol can be determined by the following formula.
  • R 0 represents the interaction radius of the silane-modified organic polymer
  • Ra-b represents the distance between the HSP value of the silane-modified organic polymer and the HSP value of alcohol.
  • the RED of the silane-modified organic polymer and alcohol is 1.0 to 3.0.
  • the RED of the silane-modified organic polymer and alcohol is preferably 1.01 to 2.75, more preferably 1.02 to 2.5.
  • the silane-modified organic polymer containing a hydrolyzable silyl group exhibits excellent compatibility with the alcohol. Even after the curable resin composition is solidified by cooling, the moisture curing reaction between the hydrolyzable silyl group and moisture in the atmosphere or moisture contained in the adherend is inhibited.
  • the RED of the silane-modified organic polymer and alcohol is greater than 3.0, the compatibility between the silane-modified organic polymer and alcohol is low and the moisture curing reaction cannot be sufficiently suppressed. Further, when the RED of the silane-modified organic polymer and the alcohol is more than 3.0, the alcohol bleeds out from the curable resin composition, resulting in deterioration of storage stability.
  • Alcohol means one containing at least one hydroxyl group (--OH) in its structure.
  • the melting point of alcohol is preferably 40°C or lower, more preferably 30°C or lower, and even more preferably 20°C or lower.
  • the melting point of the alcohol is 40° C. or lower, the moisture curing reaction of the silane-modified organic polymer in the air or due to moisture contained in the adherend can be further suppressed, and as a result, the storage stability is further improved.
  • the molecular weight of alcohol is preferably 10,000 or less, more preferably 8,000 or less, and particularly preferably 6,000 or less.
  • the molecular weight of the alcohol is 10,000 or less, the moisture curing reaction of the silane-modified organic polymer due to moisture contained in the air or adherend can be further suppressed, and as a result, the storage stability is further improved.
  • the alcohol is preferably a monohydric or higher alcohol, primary alcohol, secondary alcohol or tertiary alcohol.
  • the hydrocarbon group to which the hydroxyl group in the alcohol is bonded may have a chain structure or a cyclic structure. Further, the above hydrocarbon group may be bonded only by saturated bonds, or may contain one or more unsaturated bonds. Furthermore, the above hydrocarbon group may have one or more other substituents in its structure, for example, it has a substituent containing an atom other than a carbon atom and a hydrogen atom in its structure. good too. Atoms other than the above carbon atoms and hydrogen atoms include, for example, oxygen atoms and/or nitrogen atoms.
  • hydrocarbon groups to which hydroxyl groups in alcohol are bonded include alkyl groups, alkenyl groups, alkynyl groups, aryl groups, arylalkyl groups, arylalkenyl groups, and arylalkynyl groups.
  • the number of carbon atoms in the alkyl group, alkenyl group and alkynyl group is not particularly limited.
  • the number of carbon atoms in the alkyl group is preferably 1-25, more preferably 3-20.
  • the number of carbon atoms in the alkenyl group and alkynyl group is preferably 2-25, more preferably 3-20.
  • the number of carbon atoms is preferably 4 to 10, more preferably 5 to 8, and further Preferably 6-8.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group, hexyl group, heptyl group, octyl group, 2-ethylhexyl group and the like.
  • Examples of the cycloalkyl group examples include cyclopentyl group, cyclohexyl group, cycloheptyl group, 2-methylcyclohexyl group and the like.
  • alkenyl groups examples include vinyl groups, allyl groups, and isopropenyl groups.
  • Examples of the cycloalkenyl group examples include a cyclohexenyl group.
  • the number of carbon atoms in the aryl group, arylalkyl group, arylalkenyl group, and arylalkynyl group (hereinafter collectively referred to as "aryl groups, etc.") is not particularly limited.
  • the carbon number of the aryl group, etc. is preferably 6-15, more preferably 6-12, still more preferably 6-10.
  • the aryl group and the like may have one or more other substituents.
  • the aromatic ring contained in the aryl group or the like may have one or more other substituents.
  • the aryl group may be a substituted aryl group as well as an unsubstituted aryl group.
  • the position of the substituent on the aromatic ring may be o-, m- or p-.
  • the substituent include at least one selected from the group consisting of halogen atoms (F, Cl, Br, I, etc.), alkyl groups and alkoxy groups.
  • aryl group examples include a phenyl group, a tolyl group, an ethylphenyl group, a xylyl group, a cumenyl group, a mesityl group, a phenyl halide group (o-, m-, and p-), a methoxyphenyl group (o-, m-, and p-), ethoxyphenyl groups (o-, m-, and p-), 1-naphthyl groups, 2-naphthyl groups, and biphenyl groups.
  • arylalkyl groups include benzyl groups, methoxybenzyl groups (o-, m-, and p-), ethoxybenzyl groups (o-, m-, and p-), and phenethyl groups.
  • arylalkenyl group examples include a styryl group and a cinnamyl group.
  • Examples of the monohydric alcohols include monohydric alcohols represented by the following formula (2) or (3).
  • Ra is an aryl group.
  • m is an integer of 1 or more.
  • Rb to Rd are hydrogen atoms or monovalent hydrocarbon groups.
  • Rb to Rd may be the same group or atom, or may be different groups or atoms.
  • Rc and Rd may combine with each other to form a cyclic structure.
  • Ra may be an aryl group derived from a benzene-based aromatic compound or an aryl group derived from a non-benzene-based aromatic compound.
  • the aryl group derived from the benzene-based aromatic compound include, for example, a phenyl group, an aryl group derived from a condensed ring aromatic compound (naphthyl group, etc.), and an aryl derived from a heteroaromatic compound (furan, thiophene, pyrrole, imidazole, etc.) groups.
  • the aromatic ring contained in the aryl group may have one or more other substituents.
  • the phenyl group includes not only unsubstituted phenyl groups (C 6 H 5 —), but also substituted phenyl groups.
  • the position of the above substituent may be o-, m- or p-.
  • the above substituent is preferably a halogen atom (Cl, Br, I, etc.) or an electron-donating group.
  • the type and structure of the electron-donating group are not particularly limited. Examples of the electron-donating groups include alkyl groups and alkoxy groups.
  • m is an integer of 1 or more, preferably an integer of 1 to 5, more preferably an integer of 1 to 3, particularly preferably 1 or 2.
  • Rb to Rd there are no particular limitations on the types and structures of the monovalent hydrocarbon groups constituting Rb to Rd.
  • the description of Ra applies to the content of the above monovalent hydrocarbons. Specific combinations of Rb to Rd are not particularly limited. Rb and Rc can be the above monovalent hydrocarbon groups, and Rd can be a hydrogen atom. Moreover, Rb and Rc can be hydrogen atoms, and Rd can be the above monovalent hydrocarbon group. Furthermore, at least one of Rb to Rd is preferably an aryl group. The description of Ra applies to the content of the aryl group.
  • examples of alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, t-butyl alcohol, 1-pentanol, 2-pentanol, 3- Pentanol, 3-methyl-1-butanol, 2-methyl-1-butanol, 2,2-dimethyl-1-propanol, 3-methyl-2-butanol, 2-methyl-2-butanol, 1-hexanol, 3 ,3-dimethyl-1,2-butanediol, 1-heptanol, 1-octanol, 1-nonanol, 1-decanol, 1-undecanol, lauryl alcohol, cyclohexanol, 3-cyclohexyl-1-propanol, 2-phenyl- 2-propanol, 3-(4-chlorophenyl)propan-1-ol, 1,3-naphthalenediol, 2,
  • ethanol t-butyl alcohol, 3,3-dimethyl-1,2-butanediol, 1-undecanol, 2-phenyl-2-propanol and 2,2-dimethyl-1 , 3-propanediol is preferred.
  • These alcohols can be used alone or in combination of two or more.
  • the alcohol content is preferably 10 to 5000 ppm by mass, more preferably 15 to 1000 ppm by mass, even more preferably 18 to 500 ppm by mass, still more preferably 18 to 500 ppm by mass, based on the mass of the silane-modified organic polymer. is 20 to 300 ppm by weight, particularly preferably 25 to 200 ppm by weight.
  • the present invention contains a curing catalyst as an essential component.
  • the curing catalyst can promote the dehydration condensation reaction of the hydrolyzable silyl groups contained in the silane-modified organic polymer.
  • the details of the hydrolyzable silyl group are as described in ⁇ Hydrolyzable silyl group> above, unless otherwise specified.
  • curing catalysts examples include organic bases, organic acids, carboxylates of metals (tin, zinc, iron, lead, cobalt, etc.), organic titanates, and the like. These curing catalysts may be used alone or in combination of two or more.
  • organic bases examples include N-dimethylaniline, N,N-dimethyltoluidine, N,N-dimethyl-p-anisidine, P-halogeno-N,N-dimethylaniline, 2-N-dithylanilinoethanol, tertiary amines such as trilaubutylamine, pyridine, quinoline, N-methylmorpholine, triethanolamine, triethylenediamine, N,N-dimethylbenzylamine, N,N,N',N'-tetramethylbutanediamine; be done. These organic bases can be used alone or in combination of two or more.
  • organic acids examples include toluenesulfonic acid, dodecylbenzenesulfonic acid, acetic acid, stearic acid, and maleic acid. These organic acids can be used alone or in combination of two or more.
  • carboxylates of metals include dibutyltin dilaurate, dioctyltin dilaurate, dioctyltin maleate, dibutyltin diacetate, dibutyltin dioctate, stannous acetate, octanoic acid, stannous, lead naphthenate, zinc caprylate, cobalt naphthenate and the like.
  • carboxylates may be used alone or in combination of two or more.
  • organic titanates examples include tetrabutyl titanate, tetrapropoxytitanate, tetraethoxytitanate, tetraamyl titanate, titanium diisopropoxybisethylacetoacetate, diisopropoxybisacetylacetonate, and the like. These organic titanates may be used alone or in combination of two or more.
  • the curing catalyst includes dibutyltin dilaurate, dioctyltin dilaurate, dioctyltin maleate, dibutyltin diacetate, dibutyltin dioctate, stannous acetate, stannous octoate, lead naphthenate, zinc caprylate and naphthene. At least one selected from the group consisting of cobaltate is preferred, and dibutyltin dilaurate is more preferred.
  • the content of the curing catalyst in the curable resin composition of the present invention is preferably 0.0001 to 2.0 parts by mass, more preferably 0.0005 to 1.0 parts by mass with respect to 100 parts by mass of the silane-modified organic polymer. It is more preferably 0.001 to 0.5 parts by mass, and particularly preferably 0.025 to 0.1 parts by mass. Specific examples of the curing catalyst are as described above.
  • the curable resin composition of the present invention may contain various additives as necessary within a range that does not essentially hinder the purpose of the present invention.
  • Various additives include tackifiers, waxes, diluents, antioxidants, and the like.
  • the content of the tackifier in 100% by mass of the curable resin composition is usually 30% by mass or less, preferably 20% by mass or less, and more preferably 10% by mass or less.
  • the tackifying resin a wide range of known commercial products can be used, for example, Eastotac (registered trademark) H-100, H-115, H130 and H142 manufactured by Eastman Chemical; Escorez (registered trademark) 5300 manufactured by ExxonMobil Chemical. , 5637 and 5400 and Escorez® 5600; Wingtack® Extra, Hercolite® 2100 from Goodyear Chemical; Zonatac® 105 and 501 Lite from Arizona Chemical.
  • the content of wax in 100% by mass of the curable resin composition is usually 30% by mass or less, preferably 20% by mass or less, and more preferably 10% by mass or less.
  • the wax a wide range of known waxes can be used, for example, paraffin wax, microcrystalline wax, high-density/low-molecular-weight polyethylene wax, pyrolytic wax, by-product polyethylene wax, Fischer-Tropsch wax, Oxidized Fischer-Tropsch waxes, functionalized waxes (eg, hydroxystearamide waxes, fatty amide waxes, etc.).
  • the content of the diluent in 100% by mass of the curable resin composition is usually 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less.
  • a wide range of known diluents can be used, for example, white mineral oil (eg, Kaydol (registered trademark) oil manufactured by Witco), naphthenic oil (eg, Shellflex (registered trademark) 371 manufactured by Shell Oil) ), Calsol 5550 manufactured by Calumet Lubricants) and the like.
  • antioxidant When the present invention contains an antioxidant, the content of the antioxidant in 100% by mass of the curable resin composition is usually 0.5% by mass or less, preferably 0.2% by mass or less.
  • known antioxidants can be widely used, for example, hindered phenolic antioxidants (Ciba-Geigy Irganox (registered trademark) 565, 1010 and 1076); agents (Irgafos (registered trademark) 168 manufactured by Ciba-Geigy); Cyanox (registered trademark) LTDP manufactured by Cytec Industries; Ethanox (registered trademark) 1330 manufactured by Albemarle;
  • HSP Hansen solubility parameter
  • the HSP value was obtained by conducting a dissolution test using a solvent known for HSP. Calculated.
  • (Ra-b) 2 4( ⁇ d 2 - ⁇ d 1 ) 2 + ( ⁇ p 2 - ⁇ p 1 ) 2 + ( ⁇ h 2 - ⁇ h 1 ) 2
  • ⁇ d 1 is the dispersion term of the HSP of the silane-modified organic polymer
  • ⁇ p 1 is the polarization term of the HSP of the silane-modified organic polymer
  • ⁇ h 1 is the hydrogen bond term of the HSP of the silane-modified organic polymer
  • ⁇ d 2 is the dispersion term of the alcohol HSP
  • ⁇ p 2 is the polarization term of the alcohol HSP
  • ⁇ h2 is the hydrogen bonding term of the alcohol HSP
  • Ra-b is the HSP value distance between the silane-modified organic polymer and the alcohol in the HSP space.
  • the distance "Ra-b" between the HSP values of the silane-modified organic polymer and the alcohol was calculated.
  • the interaction radius (R 0 ) of the silane-modified organic polymer was calculated by inputting the dissolution test results into HSPiP.
  • Table 2 shows the HSP values ( ⁇ d 1 , ⁇ p 1 , and ⁇ h 1 ) and interaction radius (R 0 ) of the silane-modified organic polymer and the HSP values ( ⁇ d 2 , ⁇ p 2 , and ⁇ h 2 ) of the alcohol. .
  • Storage stability was evaluated based on the value of the difference between the gel fraction of the film-formed sample and the gel fraction of the stored sample. Evaluation of storage stability includes (i) preparation of membrane sample 1 and membrane sample 2, (ii) measurement of gel fraction of membrane sample 1, and (iii) static membrane sample 2 in a nitrogen-substituted environment. and (iv) measuring the gel fraction of the stored samples.
  • the film-forming sample 1 and the film-forming sample 2 are independent samples and have the same properties. (ii) and (iii) were performed concurrently. A method for evaluating storage stability will be described below.
  • the produced curable resin composition was subjected to pressure film formation under conditions of 10 MPa and 30 seconds in a 140° C. environment using a 200 ⁇ m spacer to prepare Film Formation Sample 1 and Film Formation Sample 2, respectively.
  • "SA-302 desk-top test press" manufactured by Tester Sangyo Co., Ltd. was used to prepare film sample 1 and film sample 2.
  • the prepared film sample 2 was allowed to stand for 1000 hours in a nitrogen-substituted environment at 23° C., 50% RH, and then a storage sample was prepared. After taking 0.25 g of film sample 1 or storage sample, it was added to 20 ml of xylene within 24 hours. The prepared xylene solution was heat-treated at 100° C. for 1 hour.
  • the xylene solution was filtered using a SUS mesh (30 ⁇ m).
  • the filtrate remaining on the SUS mesh was dried under reduced pressure in an environment of 75° C. for 12 hours or longer. After the drying process, the weight of the filtrate was measured.
  • the gel fraction of membrane sample 1 and the gel fraction of stored sample were calculated by dividing the weight of filtrate by the weight of membrane sample 1 or the weight of the stored sample. When the difference between the gel fraction of the film-formed sample 1 and the gel fraction of the stored sample was 10 wt% or less, it was evaluated as "O", and when it was greater than 10 wt%, it was evaluated as "X". Table 2 shows the evaluation results.
  • melt viscosity 1 and the melt viscosity 2 of the curable resin composition (melt viscosity 2 / melt viscosity 1) ⁇ 1.1 is indicated by “ ⁇ ”, 1.1 ⁇ (melt viscosity 2 / melt viscosity 1) ⁇ 1.2 is "O”, (melt viscosity 2 / melt viscosity 1) > 1.2 is "x”. Table 2 shows the evaluation results.
  • the prepared curable resin composition was pressurized into a film under conditions of 10 MPa and 30 seconds in a 140° C. environment using a 200 ⁇ m spacer to prepare a film-formed sample.
  • the prepared film sample was cured in hot water at 60° C. for 7 days, and then aged in an environment of 23° C. and 50% RH for 1 day to obtain a sample for measurement. After taking 0.25 g of a sample for measurement, it was added to 20 ml of xylene within 24 hours.
  • the prepared xylene solution was heat-treated at 100° C. for 1 hour. After the heat treatment, the xylene solution was filtered using a SUS mesh (30 ⁇ m).
  • the filtrate remaining on the SUS mesh was dried under reduced pressure in an environment of 75° C. for 12 hours or longer. After the drying process, the weight of the filtrate was measured.
  • the gel fraction of the measurement sample was calculated by dividing the weight of the filtrate by the weight of the collected measurement sample. The result that the gel fraction of the measurement sample was 60% by mass or more was evaluated as " ⁇ ", and the result that it was less than 60% by weight was evaluated as "X”. Table 2 shows the evaluation results.
  • "SA-302 desktop test press” manufactured by Tester Sangyo Co., Ltd. was used for the preparation of film samples and adhesive samples.
  • Adhesion strength (20°C) Using a spacer of 200 ⁇ m, the produced curable resin composition was pressure-formed under conditions of 10 MPa and 30 seconds in an environment of 140° C. to obtain a film-formed sample. The obtained film sample was cut into a width of 25 mm and a length of 50 mm. The cut sample was placed together with a 100 ⁇ m spacer between the adherend 1 and the adherend 2 described below, and pressurized at 1 MPa for 10 seconds in an environment of 140° C. to prepare an adhesive sample. . The prepared adhesive sample was cured in hot water at 60° C. for 7 days, and then aged in an environment of 23° C. and 50% RH for 1 day to obtain a sample for measurement.
  • the measurement sample was peeled off at 20° C. at a peel rate of 300 mm/min.
  • the 180° peel adhesive strength was measured under the conditions of , and taken as the adhesive strength (20°C).
  • the adhesive strength (20° C.) of 3.0 N/25 mm or more was evaluated as “ ⁇ ”, and the result of less than 3.0 N/25 mm was evaluated as “X”.
  • Table 2 shows the evaluation results.
  • "SA-302 desktop test press" manufactured by Tester Sangyo Co., Ltd. was used for the preparation of film samples and adhesive samples.
  • Adherend 1 PP plate (thickness: 2 mm)
  • Adherend 2 CPP film (thickness: 80 ⁇ m)
  • Adhesive strength (80°C) First, a sample for measurement was obtained in the same process as in "(7) Adhesive strength (20°C)" above. Next, the measurement sample was subjected to peeling speed of 300 mm/min. at 80°C. The 180° peel adhesive strength was measured under the conditions of , and was taken as the adhesive strength (80°C). The adhesive strength (80° C.) of 3.0 N/25 mm or more was evaluated as “ ⁇ ”, and the result of less than 3.0 N/25 mm was evaluated as “X”. Table 2 shows the evaluation results. In addition, for the preparation of the film formation sample and the adhesion sample, "SA-302 desktop test press" manufactured by Tester Sangyo Co., Ltd. was used as the adherend 1, and a PP plate (thickness: 2 mm) was used as the adherend 2. , CPP films (thickness: 80 ⁇ m) were used, respectively.
  • organic polymer A-1, organic polymer A-2 or organic polymer A-3 shown in Table 1 below was used.
  • Organic polymer A-1 and organic polymer A-2 were produced by a solution polymerization method using heptane as an organic solvent and bis(t-butylcyclopentadienyl)zirconium dichloride as a metallocene catalyst.
  • the polymers constituting the main chain skeleton of the organic polymer A-1 and the main chain skeleton of the organic polymer A-2 are propylene homopolymers.
  • Organic polymer A-3 is produced by a polymerization method using a catalyst comprising a phosphazene compound, and 1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris( Dimethylamino)phosphoranylideneamino]-2 ⁇ 5 ,4 ⁇ 5 -catenadi(phosphazene) was used.
  • a polymer constituting the main chain skeleton of the organic polymer A-3 is a polyoxypropylene-polyoxybutylene copolymer.
  • ⁇ Production of curable resin composition B-1> 100 parts by mass of the organic polymer A-1, 1.5 parts by mass of KBM-503 (3-methacryloxypropyltrimethoxysilane, manufactured by Shin-Etsu Polymer Co., Ltd.) as a silane-modified monomer and 1.5 parts by mass as a radical initiator Percumyl D (dicumyl peroxide, manufactured by NOF Corporation), a twin-screw extruder (manufactured by Technobell Co., Ltd., product name "KZW15TW-45/60MG-NH (-2200) (screw outer diameter ⁇ 15 mm, L / D 45)”) and reacted together to obtain a silane-modified polyolefin polymer.
  • KBM-503 3-methacryloxypropyltrimethoxysilane, manufactured by Shin-Etsu Polymer Co., Ltd.
  • a radical initiator Percumyl D dicumyl peroxide, manufactured by NOF
  • HSP values ( ⁇ d 1 , ⁇ p 1 , ⁇ h 1 ) and interaction radii (R 0 ) of the resulting silane-modified polyolefin polymer and HSP values ( ⁇ d 2 , ⁇ p 2 , ⁇ h 2 ) of 2-phenyl-2-propanol ) are shown in Table 2.
  • Table 2 the relative energy difference (RED) between the silane-modified polyolefin polymer and 2-phenyl-2-propanol calculated from these results was 1.02.
  • the operating conditions of the twin-screw extruder were set so that the amount of unreacted radical initiator in the terminal barrel portion was 20 mol % or less with respect to the amount of initial radical initiator added.
  • the barrel temperature was set to 175° C. and the throughput was set to 1.0 to 1.5 kg/h. Furthermore, during extrusion by the twin-screw extruder, unreacted silane-modified monomers and by-products in the reaction (decomposition products of radical initiators, homopolymers of silane-modified monomers, etc.) are removed toward the end of the extruder. was removed from a vacuum vent located in the barrel section located at .
  • silane-modified polyolefin polymer was cooled and solidified by natural cooling.
  • 2-Phenyl-2-propanol was added as an alcohol to the silane-modified polyolefin polymer after cooling and solidification so as to be 100 ppm by mass, and Neostan U-100 (dibutyltin dilaurate, Nitto Kasei Co., Ltd.) was added as a curing catalyst. company) was added to 100 parts by weight of the silane-modified polyolefin polymer in an amount of 0.005 parts by weight, and mixed using a universal stirrer to produce a curable resin composition B-1. .
  • Table 2 shows the HSP values ( ⁇ d 1 , ⁇ p 1 , ⁇ h 1 ) and interaction radius (R 0 ) of each silane-modified polyolefin polymer and the HSP values ( ⁇ d 2 , ⁇ p 2 , ⁇ h 2 ) of each alcohol.
  • Table 2 shows the relative energy difference (RED) between each silane-modified polyolefin polymer and each alcohol calculated from these results.
  • Example 4 ⁇ Production of curable resin composition B-4> 100 parts by mass of the organic polymer A-3 and 1.2 parts by mass of KBE-9007N (3-isocyanatepropyltriethoxysilane, manufactured by Shin-Etsu Polymer Co., Ltd.) as a silane-modified monomer were introduced into a synthetic kiln and heated at 100°C. and stirred for 2 hours to obtain a silane-modified polyoxyalkylene polymer. The obtained silane-modified polyoxyalkylene-based polymer was cooled and solidified by natural cooling.
  • KBE-9007N 3-isocyanatepropyltriethoxysilane, manufactured by Shin-Etsu Polymer Co., Ltd.
  • t-butyl alcohol is added as an alcohol to 100 mass ppm
  • Neostan U-100 dibutyltin dilaurate, Nitto Kasei Co., Ltd.
  • Table 2 shows the HSP values ( ⁇ d 1 , ⁇ p 1 , ⁇ h 1 ) and interaction radius (R 0 ) of the silane-modified polyoxyalkylene polymer and the HSP values ( ⁇ d 2 , ⁇ p 2 , ⁇ h 2 ) of t-butyl alcohol. shown in As shown in Table 2, the relative energy difference (RED) between the silane-modified polyoxyalkylene polymer and t-butyl alcohol calculated from these results was 1.13.
  • Example 7 ⁇ Production of curable resin composition B-7> A silane-modified polyoxyalkylene polymer was obtained in the same manner as in Example 4 using the organic polymer and silane-modified monomer shown in Table 2. The obtained silane-modified polyoxyalkylene polymer was cooled and solidified in the same manner as in Example 4, and ethanol was added to the silane-modified polyoxyalkylene polymer after cooling and solidification so that the concentration became 100 mass ppm. Furthermore, 0.005 parts by mass of a curing catalyst shown in Table 2 was added, and a curable resin composition was produced in the same manner as in Example 4.
  • Table 2 shows the HSP values ( ⁇ d 1 , ⁇ p 1 , ⁇ h 1 ) and interaction radii (R 0 ) of the silane-modified polyoxyalkylene polymers and the HSP values ( ⁇ d 2 , ⁇ p 2 , ⁇ h 2 ) of ethanol.
  • Table 2 shows the relative energy difference (RED) between the silane-modified polyoxyalkylene polymer and ethanol calculated from these results.
  • Table 2 shows the HSP values ( ⁇ d 1 , ⁇ p 1 , ⁇ h 1 ) and interaction radius (R 0 ) of the silane-modified polyolefin polymer and the HSP values ( ⁇ d 2 , ⁇ p 2 , ⁇ h 2 ) of stearyl alcohol.
  • the relative energy difference (RED) between the silane-modified polyolefin polymer and stearyl alcohol calculated from these results was 0.97.
  • (Comparative example 2) ⁇ Production of curable resin composition B-12> A silane-modified polyolefin polymer was obtained in the same manner as in Comparative Example 1. To the silane-modified polyolefin-based polymer after cooling and solidification, ethanol was added as an alcohol so as to be 100 ppm by mass, and 0.005 parts by mass of a curing catalyst shown in Table 2 was added. A curable resin composition B-12 was produced according to the steps.
  • Table 2 shows the HSP values ( ⁇ d 1 , ⁇ p 1 , ⁇ h 1 ) and interaction radii (R 0 ) of the silane-modified polyolefin polymers and the HSP values ( ⁇ d 2 , ⁇ p 2 , ⁇ h 2 ) of ethanol.
  • the relative energy difference (RED) between the silane-modified polyolefin polymer and ethanol calculated from these results was 3.45.
  • Table 2 shows the HSP values ( ⁇ d 1 , ⁇ p 1 , ⁇ h 1 ) and interaction radius (R 0 ) of the silane-modified polyoxyalkylene polymer and the HSP values ( ⁇ d 2 , ⁇ p 2 , ⁇ h 2 ) of stearyl alcohol. .
  • the relative energy difference (RED) between the silane-modified polyoxyalkylene polymer and stearyl alcohol calculated from these results was 0.81.
  • Table 2 shows the raw materials used in Examples 1 to 10 and Comparative Examples 1 to 4, and the evaluation results of the produced curable resin compositions B-1 to B-14.
  • the curable resin compositions obtained in Examples 1 to 10 had storage stability, pot life, curability, adhesive strength (20° C. and 80° C.) and heat creep resistance (100° C. ) was found to be superior.
  • the curable resin compositions obtained in Examples 1 to 3, 5 and 7 to 10 are excellent in terms of curability, heat creep resistance (100°C and 110°C) and adhesive strength (20°C and 80°C).
  • the results were comparable to those of Comparative Example 4 in which no alcohol was added, and it was found to be remarkably superior to Comparative Example 4 in terms of storage stability and pot life.
  • the curable resin compositions obtained in Examples 1 to 3, 5 and 7 to 10 have storage stability, pot life, curability, adhesive strength at room temperature (20 ° C.) and high temperature (80 ° C.), In addition, both 100°C and 110°C heat creep resistance were found to be excellent.
  • the curable resin composition of the present invention is excellent in storage stability, pot life, curability, adhesive strength at room temperature and high temperature, and has sufficient heat resistant creep resistance, so it is suitable for hot melt adhesives. It can be preferably used as.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、貯蔵安定性、ポットライフ性、硬化性並びに室温及び高温における接着強度に優れ、且つ、十分な耐熱クリープ性を有する硬化性樹脂組成物を提供する。本発明は、具体的には、シラン変性有機重合体、硬化触媒及びアルコールを含有し、下記数式で表される該シラン変性有機重合体と該アルコールとの相対エネルギー差(RED)が1.0~3.0である、硬化性樹脂組成物を提供する。 (上記式中、Rは、該シラン変性有機重合体の相互作用半径であり、Ra-bは、該シラン変性有機重合体のハンセン溶解度パラメータ(HSP)値と、該アルコールのハンセン溶解度パラメータ(HSP)値との距離である。)

Description

硬化性樹脂組成物及びホットメルト接着剤
 本発明は、硬化性樹脂組成物及びホットメルト接着剤に関する。
 シラン変性有機重合体を含有する硬化性樹脂組成物は、加水分解性シリル基が大気中の湿気又は被着体に含まれる水分と反応することによって加水分解されてシラノール基に変換され、このシラノール基同士が脱水縮合反応することによって架橋構造が形成されて硬化することが知られている。
 硬化性樹脂組成物は、シーリング剤、接着剤、塗料等のベースポリマーとして幅広く使用されている(例えば、特許文献1、2、3参照)。
日本国特許第5851367号明細書 日本国特許第4150220号明細書 日本国特許第6152236号明細書
 特許文献1及び特許文献2に記載の硬化性樹脂組成物には、接着後の硬化反応を促進させるために、アミン触媒、有機金属触媒、ルイス酸触媒等の硬化触媒が添加されている。
 硬化触媒を添加することにより、架橋反応が促進されて接着強度の発現までの時間が短縮されるというメリットがあるが、塗工時の溶融状態においても同様に架橋反応が進行して硬化性樹脂組成物の流動性が低下し、その結果、被着体への塗工及び該被着体へのシート張り合わせが可能な時間(可使時間又はポットライフ)が著しく短くなるという問題があった。
 上記問題に対して、特許文献3では、加水分解性シリル基を含有するポリオレフィンに常温で固体のアルコールを添加することで、溶融状態における加水分解性シリル基の架橋反応が抑制され、ポットライフを改善できることが報告されている。
 しかしながら、特許文献3の硬化性樹脂組成物では、アルコールの配合量が加水分解性シリル基を含有するポリオレフィン100質量部に対して1~40質量部と比較的多い。特許文献3に記載されている発明の反応抑制メカニズムでは、加熱によって液化したアルコールがポリオレフィンに相溶又は分散して架橋反応を抑制している。そのため、硬化性樹脂組成物を常温保管する際には、アルコールが固体であるが故に反応抑制効果が発揮されにくかった。よって、特許文献3の硬化性樹脂組成物は、長期の保管安定性が低いという問題があった。
 さらに、アルコールと、加水分解性シリル基を含有するポリオレフィンとの相溶性が低い場合、溶融時に相分離が発生することによって、架橋反応を抑制する効果が得られないだけでなく冷却固化時にアルコールが硬化性樹脂組成物からブリードアウトするという問題があった。
 本発明は、上記に鑑みてなされたものであり、貯蔵安定性、ポットライフ性、硬化性並びに室温及び高温における接着強度に優れ、且つ、十分な耐熱クリープ性を有する硬化性樹脂組成物を提供することを目的とする。
 本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、特定の物性値を有する硬化性樹脂組成物を開発することに成功し、該硬化性樹脂組成物を使用することにより上記課題を達成できることを見出した。本発明は、さらに研究を重ね、完成させたものである。
 即ち、本発明は、下記に掲げる態様の発明を提供する。
項1.
 シラン変性有機重合体、硬化触媒及びアルコールを含有し、
下記数式で表される前記シラン変性有機重合体と前記アルコールとの相対エネルギー差(RED)が1.0~3.0である、硬化性樹脂組成物。
Figure JPOXMLDOC01-appb-M000002
(上記式中、
 Rは、前記シラン変性有機重合体の相互作用半径であり、
 Ra-bは、前記シラン変性有機重合体のハンセン溶解度パラメータ(HSP)値と、前記アルコールのハンセン溶解度パラメータ(HSP)値との距離である。)
項2.
 前記アルコールの含有割合が、前記シラン変性有機重合体の質量に対して、10~5000質量ppmである、項1に記載の硬化性樹脂組成物。
項3.
 前記アルコールが、エタノール、t-ブチルアルコール、3,3-ジメチル-1,2-ブタンジオール、1-ウンデカノール、2-フェニル-2-プロパノール及び2,2-ジメチル-1,3-プロパンジオールからなる群より選択される少なくとも一種である、項1又は2に記載の硬化性樹脂組成物。
項4.
 前記シラン変性有機重合体が、シラン変性ポリオレフィン系重合体及び/又はシラン変性ポリオキシアルキレン系重合体である、項1~3のいずれか一項に記載の硬化性樹脂組成物。
項5.
 前記シラン変性有機重合体が、シラン変性ポリオレフィン系重合体である、項1~4のいずれか一項に記載の硬化性樹脂組成物。
項6.
 前記アルコールの含有割合が、前記シラン変性有機重合体の質量に対して、15~1000質量ppmである、項1~5のいずれか一項に記載の硬化性樹脂組成物。
項7.
 前記アルコールの含有割合が、前記シラン変性有機重合体の質量に対して、20~300質量ppmである、項1~6のいずれか一項に記載の硬化性樹脂組成物。
項8.
 前記アルコールの含有割合が、前記シラン変性有機重合体の質量に対して、25~200質量ppmである、項1~7のいずれか一項に記載の硬化性樹脂組成物。
項9.
 前記シラン変性有機重合体と前記アルコールとの相対エネルギー差(RED)が1.01~2.75である、項1~8のいずれか一項に記載の硬化性樹脂組成物。
項10.
 前記シラン変性有機重合体と前記アルコールとの相対エネルギー差(RED)が1.02~2.5である、項1~9のいずれか一項に記載の硬化性樹脂組成物。
項11.
 前記硬化触媒の含有量が、前記シラン変性有機重合体100質量部に対して、0.0001~2.0質量部である、項1~10のいずれか一項に記載の硬化性樹脂組成物。
項12.
 項1~11のいずれか一項に記載の硬化性樹脂組成物を含む、ホットメルト接着剤。
 本発明の硬化性樹脂組成物は、貯蔵安定性、ポットライフ性、硬化性並びに室温及び高温における接着強度に優れ、且つ、十分な耐熱クリープ性を有する。
耐熱クリープ性の評価方法における接着サンプルを示す図である。 耐熱クリープ性の評価方法における測定用サンプルと重りとの関係を示す図である。
 以下、本発明の好適な実施形態について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態及び具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。
 本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。また、本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値又は実施例から一義的に導き出せる値に置き換えてもよい。さらに、本明細書において、「~」で結ばれた数値は、「~」の前後の数値を下限値及び上限値として含む数値範囲を意味する。
 本明細書において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。
 本明細書において、「A及び/又はB」とは、「A及びBの一方」又は「A及びBの両方」を意味し、具体的には、「A」、「B」、又は「A及びB」を意味する。
 本明細書において、室温とは、20℃~25℃の範囲内の温度を意味する。
 本明細書において、高温とは、80℃~200℃の範囲内の温度を意味する。
 本明細書において、(メタ)アクリル酸とは、アクリル酸及び/又はメタクリル酸を意味する。
 本明細書において、有機重合体とは、有機化合物の繰り返し単位を伴う構造であり、且つ、2個以上の繰り返し単位からなる化合物を意味する。
 本明細書において、「(共)重合体」とは、単一重合体(ホモポリマー)及び共重合体(コポリマー)の双方を含むことを意味する。
 本明細書において、「n-」とは「ノルマル」を、「i-」とは「イソ」を、「sec-」とは「セカンダリー」を、「tert-」又は「t-」とは「ターシャリー」を各々意味する。
<硬化性樹脂組成物>
 本発明の硬化性樹脂組成物は、以下の構成(i)及び(ii)を備えている。
(i)シラン変性有機重合体、硬化触媒及びアルコールを含有する。
(ii)下記数式で表される上記シラン変性有機重合体と上記アルコールとの相対エネルギー差(RED)が1.0~3.0である。
Figure JPOXMLDOC01-appb-M000003
(上記式中、Rは、上記シラン変性有機重合体の相互作用半径を示し、Ra-bは、上記シラン変性有機重合体のハンセン溶解度パラメータ(HSP)値と、上記アルコールのハンセン溶解度パラメータ(HSP)値との距離を示す。)
 本発明の硬化性樹脂組成物は、上記構成(i)及び(ii)を備えていることにより、貯蔵安定性、ポットライフ性、硬化性並びに室温及び高温における接着強度に優れ、且つ、十分な耐熱クリープ性を有する。
 本発明は、ホットメルト接着剤用の硬化性樹脂組成物である。
 以下、本発明の硬化性樹脂組成物を、単に「本発明」又は「硬化性樹脂組成物」と記載することもある。
 本発明は、シラン変性有機重合体を必須成分として含有する。
<加水分解性シリル基>
 本発明において、シラン変性有機重合体は、少なくとも1個以上(好ましくは2個以上)の架橋可能な加水分解性シリル基を有する。該加水分解性シリル基としては、例えば、-Si(OR 3-n(R及びRは、同一又は異なって、炭素数1~5のアルキル基又は炭素数6~20のアリール基を示す。nは、1~3の整数である。)が挙げられる。炭素数1~5のアルキル基とは、炭素数1~5の直鎖状又は分岐状のアルキル基を意味し、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基等が挙げられる。炭素数6~20のアリール基としては、例えば、フェニル基、ナフチル基、インデニル基、アントリル基等が挙げられる。加水分解性シリル基としては、アルコキシシリル基が好ましい。アルコキシシリル基としては、モノアルコキシシリル、ジアルコキシシリル基、トリアルコキシシリル基が挙げられる。該モノアルコキシシリル基としては、ジメチルメトキシシリル基、ジメチルエトキシシリル基が挙げられる。該ジアルコキシシリル基としては、ジメトキシシリル基、ジエトキシシリル基、メチルジメトキシシリル基、メチルジエトキシシリル基が挙げられる。該トリアルコキシシリル基としては、トリメトキシシリル基、トリエトキシシリル基、トリイソプロポキシシリル基、トリフェノキシシリル基が挙げられる。
 まず、シラン変性有機重合体を製造するための原料として用いられる有機重合体について説明する。
<有機重合体>
 本発明において、有機重合体は、少なくとも1個以上(好ましくは2個以上)の架橋可能な加水分解性シリル基を有する。該加水分解性シリル基は、有機重合体の主鎖骨格の末端若しくは側鎖又は有機重合体の主鎖骨格の末端及び側鎖の両方にあってもよい。加水分解性シリル基の詳細は、特に言及がない限り、上記<加水分解性シリル基>に記載したとおりである。加水分解性シリル基を有する有機重合体の主鎖骨格を構成する重合体としては、例えば、ポリオレフィン系重合体;該ポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体等の炭化水素系重合体;ポリオキシアルキレン系重合体;ポリエステル系重合体;ビニル系重合体;(メタ)アクリル酸エステル系重合体;これらの有機重合体に、さらにビニル系単量体をグラフト重合して得られるグラフト重合体;ポリサルファイド系重合体;ポリアミド系重合体;ポリカーボネート系重合体;ジアリルフタレート系重合体等が挙げられる。これらの主鎖骨格を構成する重合体は、加水分解性シリル基を有する有機重合体の中に単独で含まれていても、2種類以上がブロック又はランダムに含まれていてもよい。これらの主鎖骨格を構成する重合体の中でも、入手や製造が容易であるポリオレフィン系重合体及びポリオキシアルキレン系重合体が好ましい。
 ポリオレフィン系重合体としては、例えば、エチレン、プロピレン、1-ブテン、イソブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等の単量体成分から重合されるα-オレフィンのホモポリマー;エチレン-プロピレン共重合体、エチレン-プロピレン-ブチレン共重合体、エチレン-プロピレン-イソブチレン共重合体等のエチレン以外のα-オレフィンとエチレンとの共重合体;α-オレフィンと、α-オレフィンと共重合可能な他の単量体(例えば、ブタジエン、1,4-ヘキサジエン、7-メチル-1,6-オクタジエン、1,8-ノナジエン、1,9-デカジエン等の共役又は非共役ジエン;シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、ノルボルネン、ジシクロペンタジエン等の環状オレフィン)との共重合体;イソブチレンとイソプレンとの共重合体;ポリクロロプレン;ポリイソプレン;イソプレン又はブタジエンと、アクリロニトリル及び/又はスチレンとの共重合体;ポリブタジエン等が挙げられる。本発明において、上述したポリオレフィン系重合体の中でも、プロピレンホモポリマー、エチレン-プロピレン共重合体、エチレン-プロピレン-ブチレン共重合体、エチレン-プロピレン-イソブチレン共重合体が好ましく、プロピレンホモポリマーがより好ましい。
 ポリオキシアルキレン系重合体としては、例えば、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体、ポリオキシプロピレン-ポリオキシブチレン共重合体等が挙げられる。本発明において、上述したポリオキシアルキレン系重合体の中でも、ポリオキシプロピレン-ポリオキシブチレン共重合体が好ましい。
 ポリエステル系重合体としては、例えば、エステル結合を有する重合体(アジピン酸等の2塩基酸とグリコールとの縮合で得られる重合体、ラクトンの開環重合で得られる重合体等)等が挙げられる。
 上記ビニル系重合体としては、例えば、酢酸ビニル、アクリロニトリル、スチレン等のビニル系単量体をラジカル重合して得られる重合体等が挙げられる。
 (メタ)アクリル酸エステル系重合体としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ステアリル等の(メタ)アクリル酸エステル単量体をラジカル重合して得られる重合体等が挙げられる。
 グラフト重合体としては、例えば、上記の各種重合体に、ビニル系単量体をグラフト重合して得られる重合体が挙げられる。ここで、該ビニル系単量体には、上記酢酸ビニル、アクリロニトリル、スチレン等が挙げられる。
 ポリサルファイド系重合体としては、例えば、ポリスルフィド結合により主鎖結合を形成し、末端にメルカプト基を有する重合体等が挙げられる。
 ポリアミド系重合体としては、例えば、ε-カプロラクタムの開環重合で得られるナイロン6;ヘキサメチレンジアミンとアジピン酸の縮重合で得られるナイロン6・6;ヘキサメチレンジアミンとセバシン酸との縮重合で得られるナイロン6・10;ε-アミノウンデカン酸の縮重合で得られるナイロン11;ε-アミノラウロラクタムの開環重合で得られるナイロン12;上記のナイロンのうち2成分以上の成分を有する共重合ナイロン等が挙げられる。
 ポリカーボネート系重合体としては、例えば、ビスフェノールAと塩化カルボニルとの縮重合で得られる重合体等が挙げられる。
 ジアリルフタレート系重合体としては、例えば、ジアリルオルソフタレート、ジアリルイソフタレート、ジアリルテレフタレート等を主成分とする重合体が挙げられる。
<ポリオレフィン系重合体>
 ポリオレフィン系重合体の具体例としては、上述の通りである。本発明において、ポリオレフィン系重合体としては、非晶性又は低結晶性ポリオレフィン系重合体が好ましい。該非晶性又は低結晶性ポリオレフィン系重合体としては、プロピレンホモポリマー、エチレン-プロピレン共重合体、エチレン-プロピレン-ブチレン共重合体及びエチレン-プロピレン-イソブチレン共重合体が好ましい。本発明において、ポリオレフィン系重合体としては、プロピレンホモポリマーがより好ましい。
 本明細書において、非晶性又は低結晶性ポリオレフィン系重合体とは、示差走査熱量分析法による結晶化エネルギー(J/g)が50J/g以下である重合体を意味する。なお、結晶化エネルギーは、示差走査熱量分析装置を用いて試料を20℃から230℃まで加熱した後に-100℃まで冷却させ、更に、試料を10℃/minで230℃まで再加熱したときの吸熱量を意味する。
 本発明において、ポリオレフィン系重合体の数平均分子量は、2000~80000が好ましく、4000~70000がより好ましい。ポリオレフィン系重合体の数平均分子量が2000以上であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープ性及び養生後の接着強度がより一層向上する。ポリオレフィン系重合体の数平均分子量が80000以下であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業を一段と容易に行うことができる。本明細書において、ポリオレフィン系重合体の数平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー、DIN 55 672に準拠)によって測定されたポリスチレン換算値を意味する。
 ポリオレフィン系重合体の190℃における溶融粘度は、200~60000mPa・sが好ましく、400~50000mPa・sがより好ましく、600~40000mPa・sが特に好ましい。ポリオレフィン系重合体の190℃における溶融粘度が200mPa・s以上であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープ性及び養生後の接着強度がより一層向上する。ポリオレフィン系重合体の190℃における溶融粘度が60000mPa・s以下であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業を一段と容易に行うことができる。本明細書において、ポリオレフィン系重合体の190℃における溶融粘度は、JIS K 6862のホットメルト接着剤の溶融粘度試験方法に準拠して測定された値を意味する。
 ポリオレフィン系重合体の軟化点は、70~180℃が好ましく、80~170℃がより好ましく、90~160℃が特に好ましい。ポリオレフィン系重合体の軟化点が70℃以上であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の冷却固化後の硬化反応がより一層促進される。ポリオレフィン系重合体の軟化点が180℃以下であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業を一段と容易に行うことができる。本明細書において、ポリオレフィン系重合体の軟化点は、JIS K 6863ホットメルト接着剤の軟化点試験方法に準拠して測定された値を意味する。
 ポリオレフィン系重合体の製造方法としては、特に限定されず、公知の方法を広く採用することができ、例えば、溶液重合法、スラリー重合法、気相重合法等が挙げられる。それぞれの重合反応における条件は、使用されるジルコニウム化合物等を含有する触媒の状態(均一状又は不均一状(担持形))、製造方法(溶液重合法、スラリー重合法、気相重合法)、目的する重合体の特徴又は重合体の形態に従って適宜設定することができる。溶液重合法は、例えば、日本国特開昭53-134889号公報、日本国特許第5064662号明細書等に記載されている。後述の実施例では、溶液重合法に基づき、ポリオレフィン系重合体を製造した。
 上記溶液重合法又はスラリー重合法の場合、有機溶媒又はオレフィン自体を媒質で使用できる。上記溶液重合法又はスラリー重合法に際して使用される有機溶媒としては、プロパン、ブタン、イソブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン等の脂肪族炭化水素;シクロペンタン、メチルシクロペンタン、シクロヘキサン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;ジクロロメタン、クロロエタン、1、2-ジクロロエタン、クロロベンゼン等のハロゲン化炭化水素等を好適に用いることができる。これらの有機溶媒は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。これらの有機溶媒の中でも、プロパン、ブタン、イソブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン等の脂肪族炭化水素が好ましく、ヘプタンがより好ましい。
 また、上記触媒と一緒に、ポリオレフィンの生産性を増加させるための不純物除去剤を重合反応系内に添加することができる。当該不純物除去剤としては、トリエチルアルミニウム等が例示できる。ポリオレフィンの重合にあたり、上記触媒の量は特に限定されないが、重合に使用される反応系内で触媒の中心金属濃度が10-8~10mol/Lであることが好ましく、10-7~10-2mol/Lであることがより好ましい。
 オレフィンの重合における重合温度は反応物質、反応条件等によって適宜選択することができる。例えば、溶液重合法の場合、重合温度は0~250℃が好ましく、10~200℃がより好ましい。スラリー重合法又は気相重合法の場合、重合温度は0~120℃が好ましく、20~110℃がより好ましい。
 ポリオレフィン系重合体の製造方法における重合圧力としては、常圧~20MPaが好ましく、常圧~10MPaがより好ましい。ポリオレフィンの重合はバッチ式、半連続式又は連続式で行うことができる。上記重合方法に従って製造される最終重合体の分子量と分子量分布とは、重合温度の調整又は反応器内に水素を注入する方法により調節できる。
 本発明において、ポリオレフィン系重合体は、メタロセン触媒の存在下、溶液重合法を用いて、単独又は2種以上のオレフィン単量体を重合させることによって製造することが好ましい。なお、重合時に、活性剤及び/又はスカベンジャー(捕捉剤)を添加してもよい。当該オレフィン単量体としては、エチレン、プロピレン、1-ブテン、イソブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等のα-オレフィン;ブタジエン、1,4-ヘキサジエン、7-メチル-1,6-オクタジエン、1,8-ノナジエン、1,9-デカジエン等の共役又は非共役ジエン;シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、ノルボルネン、ジシクロペンタジエン等の環状オレフィン等を好適に用いることができる。
 上記メタロセン触媒としては、例えば、ビス(シクロペンタジエニル)ジルコニウムジクロリド、ビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(エチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(iso-プロピルシクロペンタジエニル)ジルコニウムジクロリド、ビス(n-プロピルシクロペンタジエニル)ジルコニウムジクロリド、ビス(n-ブチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(t-ブチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(テキシルシクロペンタジエニル)ジルコニウムジクロリド、ビス(トリメチルシリルシクロペンタジエニル)ジルコニウムジクロリド、ビス(トリメチルシリルメチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(シクロペンタジエニル)ジルコニウムクロロヒドリド、ビス(シクロペンタジエニル)メチルジルコニウムクロリド、ビス(シクロペンタジエニル)エチルジルコニウムクロリド、ビス(シクロペンタジエニル)メトキシジルコニウムクロリド、ビス(シクロペンタジエニル)フェニルジルコニウムクロリド、ビス(シクロペンタジエニル)ジメチルジルコニウム、ビス(シクロペンタジエニル)ジフェニルジルコニウム、ビス(シクロペンタジエニル)ジネオペンチルジルコニウム、ビス(シクロペンタジエニル)ジヒドロジルコニウム、ビス(シクロペンタジエニル)ジメトキシジルコニウム、ビス(シクロペンタジエニル)ジルコニウムジクロリド、トリクロロ(インデニル)チタニウム(IV)、トリクロロ(シクロペンタジエニル)チタニウム(IV)、ビス(シクロペンタジエニル)ジルコニウムクロリドヒドリド、ハフノセンジクロリド、ビス(ブチルシクロペンタジエニル)ジルコニウム(IV)ジクロリド、ビス(プロピルシクロペンタジエニル)ハフニウム(IV)ジクロリド、トリクロロ(ペンタメチルシクロペンタジエニル)チタニウム(IV)、μ-クロロビス(η-シクロペンタジエニル)(ジメチルアルミニウム)-μ-メチレンチタン、ビス(ペンタメチルシクロペンタジエニル)ジルコニウム(IV)ジクロリド、ビス(シクロペンタジエニル)チタニウムジクロリド、ビス(シクロペンタジエニル)ジメチルチタニウム等が挙げられる。本発明において、これらのメタロセン触媒の中でも、ビス(t-ブチルシクロペンタジエニル)ジルコニウムジクロリドが好ましい。これらのメタロセン触媒は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。
<ポリオキシアルキレン系重合体>
 ポリオキシアルキレン系重合体の具体例としては、上述の通りである。本発明において、ポリオキシアルキレン系重合体の数平均分子量は、2000~80000が好ましく、4000~60000がより好ましい。ポリオキシアルキレン系重合体の数平均分子量が2000以上であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープ性及び養生後の接着強度がより一層向上する。ポリオキシアルキレン系重合体の数平均分子量が80000以下であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業を一段と容易に行うことができる。本明細書において、ポリオキシアルキレンの数平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー、DIN 55 672に準拠)によって測定されたポリスチレン換算値を意味する。
 ポリオキシアルキレン系重合体の190℃における溶融粘度は、200~60000mPa・sが好ましく、400~50000mPa・sがより好ましく、600~40000mPa・sが特に好ましい。ポリオキシアルキレン系重合体の190℃における溶融粘度が200mPa・s以上であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープ性及び養生後の接着強度がより一層向上する。ポリオキシアルキレン系重合体の190℃における溶融粘度が60000mPa・s以下であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業を一段と容易に行うことができる。本明細書において、ポリオキシアルキレン系重合体の190℃における溶融粘度は、JIS K6862のホットメルト接着剤の溶融粘度試験方法に準拠して測定された値を意味する。
 本発明において、ポリオキシアルキレン系重合体の製造方法としては、特に限定されず、公知の方法を広く採用することができ、例えば、水酸化カリウム(KOH)等のアルカリ触媒を使用した重合法;日本国特開昭61-215623号公報に示される有機アルミニウム化合物とポルフィリンとを反応させて得られる錯体のような遷移金属化合物-ポルフィリン錯体触媒による重合法;日本国特公昭46-27250号公報、日本国特公昭59-15336号公報、米国特許3278457号明細書、米国特許3278458号明細書、米国特許3278459号明細書、米国特許3427256号明細書、米国特許3427334号明細書、米国特許3427335号明細書等に示される複合金属シアン化物錯体触媒による重合法;日本国特開平10-273512号公報に例示されるポリホスファゼン塩からなる触媒を用いる重合法;日本国特開平11-060722号公報、日本国特開2017-171708号公報等に例示されるホスファゼン化合物からなる触媒を用いる重合法等が挙げられる。
 本発明において、ポリオキシアルキレン系重合体は、上記ホスファゼン化合物からなる触媒を用いる重合法によって製造することが好ましい。該ホスファゼン化合物としては、例えば、テトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシド、テトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムハイドロゲンカーボネート、テトラキス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]ホスホニウムヒドロキシド、1-tert-ブチル-4,4,4-トリス(ジメチルアミノ)-2,2-ビス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]-2λ,4λ-カテナジ(ホスファゼン)等が挙げられる。これらのホスファゼン化合物の中でも、1-tert-ブチル-4,4,4-トリス(ジメチルアミノ)-2,2-ビス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]-2λ,4λ-カテナジ(ホスファゼン)が好ましい。
<シラン変性有機重合体>
 本発明において、シラン変性有機重合体は、少なくとも1個以上(好ましくは2個以上)の加水分解性シリル基を有する。加水分解性シリル基は、シラン変性有機重合体の主鎖末端、側鎖、または主鎖末端と側鎖との両方にあってもよい。加水分解性シリル基の詳細は、特に言及がない限り、上記<加水分解性シリル基>に記載したとおりである。加水分解性シリル基は、湿気の存在下、硬化触媒によって脱水縮合反応を生じて架橋構造を形成する。
 シラン変性有機重合体の製造方法としては、公知の方法を広く採用することができ、例えば以下の方法(i)~(iv)が挙げられる。
(i)不飽和基含有有機重合体に反応性ケイ素基を有するヒドロシラン化合物を作用させてヒドロシリル化することでシラン変性有機重合体を得る方法;
(ii)不飽和基含有有機重合体に、ラジカル開始剤等の存在下で、又は電子線放射により、メルカプト基及び反応性ケイ素基を有する化合物を反応させることでシラン変性有機重合体を得る方法;
(iii)分子中に水酸基、エポキシ基、イソシアネート基等の官能基を有する有機重合体に、イソシアネート基及び反応性ケイ素基を有する化合物を反応させることでシラン変性有機重合体を得る方法;及び
(iv)有機重合体、エチレン性不飽和基を有するシラン変性モノマー及びラジカル開始剤の存在下で、又は電子線放射により、該有機重合体にシラン変性モノマーをグラフト重合させることでシラン変性有機重合体を得る方法。
 上記方法(i)~(iv)において、方法(iv)が好ましい。なお、後述の実施例で使用したシラン変性ポリオキシアルキレンの製造方法は、上記方法(iii)に該当する。さらに、後述の実施例で使用したシラン変性ポリオレフィンの製造方法は、上記方法(iv)において、「有機重合体、エチレン性不飽和基を有するシラン変性モノマー及びラジカル開始剤の存在下で、該有機重合体にシラン変性モノマーをグラフト重合させることでシラン変性有機重合体を得る方法」に該当する。
 上記方法(i)及び(ii)において、不飽和基含有有機重合体の合成方法としては、例えば、分子中に水酸基等の官能基を有する有機重合体に、反応性を示す活性基及び不飽和基を有する有機化合物を反応させ、不飽和基含有有機重合体を得る方法;分子中に水酸基等の官能基を有する有機重合体と不飽和基含有エポキシ化合物との共重合により不飽和基含有有機重合体を得る方法等が挙げられる。
 上記方法(i)において、ヒドロシラン化合物としては、例えば、トリクロロシラン、メチルジクロロシラン、ジメチルクロロシラン、フェニルジクロロシラン等のハロゲン化シラン化合物;トリメトキシシラン、トリエトキシシラン、メチルジエトキシシラン、メチルジメトキシシラン、フェニルジメトキシシラン等のアルコキシシラン化合物;メチルジアセトキシシラン、フェニルジアセトキシシラン等のアシロキシシラン化合物;ビス(ジメチルケトキシメート)メチルシラン、ビス(シクロヘキシルケトキシメート)メチルシラン等のケトキシメートシラン化合物等が挙げられる。これらの中でも、入手が容易であること及び加水分解反応性が高いことから、ハロゲン化シラン化合物及びアルコキシシラン化合物が好ましい。
 上記方法(ii)において、メルカプト基及び反応性ケイ素基を有する化合物としては、例えば、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン等が挙げられる。
 上記方法(ii)及び(iv)において、ラジカル開始剤としては、ジクミルペルオキシド、t-ブチルペルオキシイソプロピルカーボネート、ジ-t-ブチルペルオキシド、t-ブチルペルベンゾエート、ベンゾイルペルオキシド、クメンヒドロペルオキシド、t-ブチルペルオクトエート、メチルエチルケトンペルオキシド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、ラウリルペルオキシド、t-ブチルペルアセテート、t-ブチルα-クミルペルオキシド、ジ-t-ブチルペルオキシド、ジ-t-アミルペルオキシド、t-アミルペルオキシベンゾエート、1,1-ビス(t-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、α,α’-ビス(t-ブチルペルオキシ)-1,3-ジイソプロピルベンゼン、α,α’-ビス(t-ブチルペルオキシ)-1,4-ジイソプロピルベンゼン、2,5-ビス(t-ブチルペルオキシ)-2,5-ジメチルヘキサン、2,5-ビス(t-ブチルペルオキシ)-2,5-ジメチル-3-ヘキシン等が挙げられる。これらのラジカル開始剤は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。これらの中でも、ジクミルペルオキシド及びt-ブチルペルオキシイソプロピルカーボネートが好ましい。
 上記方法(iii)において、イソシアネート基及び反応性ケイ素基を有する化合物としては、例えば、γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン(3-イソシアネートプロピルトリエトキシシラン)、γ-イソシアネートプロピルメチルジエトキシシラン等が挙げられる。
 上記方法(iv)において、エチレン性不飽和基を有するシラン変性モノマーは、例えば、以下の式(1)
(X)(R)3-n-Si-Y・・・・式(1)
で表される。
(上記式(1)中、Yはエチレン性不飽和基であり、Xは加水分解性基であり、Rはアルキル基である。nは1~3の整数を表す。)
 上記式(1)における加水分解性基としては、例えば、ハロゲン、アルコキシ基、アルケニルオキシ基、アシロキシ基、アミノ基、アミノオキシ基、オキシム基、アミド基等が挙げられる。上記アルコキシ基としては、メトキシ基が好ましい。ここで、1つの珪素原子に結合したこれらの加水分解性基の数は1、2及び3の範囲から選択される。また、1つの珪素原子に結合した加水分解性基は1種であってもよく、複数種であってもよい。さらに、加水分解性基と非加水分解性基が1つの珪素原子に結合していてもよい。珪素基と結合した加水分解性基としては、取り扱いが容易である点で、アルコキシ基(モノアルコキシ基、ジアルコキシ基、トリアルコキシ基等)が好ましい。上記式(1)において、nは3であることが好ましい。
 上記方法(iv)におけるシラン変性モノマーに含まれるエチレン性不飽和基としては、例えば、ビニル基、アリール基、アクリル基、メタクリル基等が挙げられる。
 上記方法(iv)において、エチレン性不飽和基を有するシラン変性モノマーとしては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン及び3-メタクリルオキシプロピルトリメトキシシランが好ましい。
 本発明において、シラン変性有機重合体としては、反応性及び接着性の観点から、シラン変性ポリオレフィン系重合体及び/又はシラン変性ポリオキシアルキレン系重合体が好ましく、シラン変性ポリオレフィン系重合体がより好ましい。
 以下、シラン変性ポリオレフィン系重合体及びシラン変性ポリオキシアルキレン系重合体について説明する。
<シラン変性ポリオレフィン系重合体>
 本発明において、シラン変性ポリオレフィン系重合体の190℃における溶融粘度は、200~60000mPa・sが好ましく、400~50000mPa・sがより好ましく、600~40000mPa・sが特に好ましい。シラン変性ポリオレフィン系重合体の190℃における溶融粘度が200mPa・s以上であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープ性及び養生後の接着強度がより一層向上する。シラン変性ポリオレフィン系重合体の190℃における溶融粘度が60000mPa・s以下であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業を一段と容易に行うことができる。本明細書において、シラン変性ポリオレフィン系重合体の190℃における溶融粘度は、JIS K 6862のホットメルト接着剤の溶融粘度試験方法に準拠して測定された値を意味する。
 本発明において、シラン変性ポリオレフィン系重合体の数平均分子量は、2000~80000が好ましく、4000~70000がより好ましい。シラン変性ポリオレフィン系重合体の数平均分子量が2000以上であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープ及び養生後の接着強度がより一層向上する。シラン変性ポリオレフィン系重合体の数平均分子量が80000以下であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業を一段と容易に行うことができる。本明細書において、シラン変性ポリオレフィン系重合体の数平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー、DIN 55 672に準拠)によって測定されたポリスチレン換算値を意味する。
 シラン変性ポリオレフィン系重合体の軟化点は、70~180℃が好ましく、80~170℃がより好ましく、90~160℃が特に好ましい。シラン変性ポリオレフィン系重合体の軟化点が70℃以上であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の冷却固化後の硬化反応がより促進される。シラン変性ポリオレフィン系重合体の軟化点が160℃以下であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業をより容易に行うことができる。本明細書において、シラン変性ポリオレフィン系重合体の軟化点は、JIS K 6863ホットメルト接着剤の軟化点試験方法に準拠して測定された値を意味する。
 本発明において、ポリオレフィン系重合体、エチレン性不飽和基を有するシラン変性モノマー及びラジカル開始剤の存在下、該ポリオレフィン系重合体に該エチレン性不飽和基を有するシラン変性モノマーをグラフト重合させることによりシラン変性ポリオレフィン系重合体を製造する方法が好ましい。
 ポリオレフィン系重合体の詳細は、特に言及がない限り、上記<ポリオレフィン系重合体>に記載したとおりである
 ラジカル開始剤の詳細は、特に言及がない限り、上記<シラン変性有機重合体>に記載したとおりである。シラン変性ポリオレフィン系重合体を製造する際に使用するラジカル開始剤としては、ジクミルペルオキシド及びt-ブチルペルオキシイソプロピルカーボネートが好ましい。
 エチレン性不飽和基を有するシラン変性モノマーの詳細は、特に言及がない限り、上記<シラン変性有機重合体>に記載したとおりである。該エチレン性不飽和基としては、例えば、ビニル基、アリル基、アクリル基、メタクリル基等が挙げられる。
 本発明において、シラン変性ポリオレフィン系重合体は、ポリオレフィン系重合体とエチレン性不飽和基を有するシラン変性モノマーとのグラフト重合体であることが好ましい。
 シラン変性ポリオレフィン系重合体を製造する際に使用するエチレン性不飽和基を有するシラン変性モノマーとしては、3-メタクリルオキシプロピルトリメトキシシランが好ましい。
 シラン変性ポリオレフィン系重合体を製造する際のラジカル開始剤の使用量は、ポリオレフィン系重合体100質量部に対して、0.5~10質量部が好ましく、0.75~8質量部がより好ましく、1~5質量部が特に好ましい。ラジカル開始剤の使用量が0.5質量部以上であると、グラフト重合反応が十分に進行し、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープ性及び養生後の接着強度がより一層向上する。ラジカル開始剤の使用量が10質量部以下であると、シラン変性モノマーのホモ重合又はポリオレフィン系重合体の分解反応等の副反応が一段と抑制される。
 シラン変性ポリオレフィン系重合体を製造する際のシラン変性モノマーの使用量は、ポリオレフィン系重合体100質量部に対して、0.5~10質量部が好ましく、0.75~8質量部がより好ましく、1~5質量部が特に好ましい。シラン変性モノマーの使用量が0.5質量部以上であると、グラフト重合反応が十分に進行し、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープ性及び養生後の接着強度がより一層向上する。シラン変性モノマーの使用量が10質量部以下であると、シラン変性モノマーのホモ重合又はポリオレフィン系重合体の分解反応等の副反応が一段と抑制される。
 シラン変性ポリオレフィン系重合体を製造する際のラジカル開始剤の使用量とシラン変性モノマーの使用量との質量比(ラジカル開始剤:シラン変性モノマー)は、1:0.2~1:10が好ましく、1:0.4~1:5がより好ましく、1:0.6~1:2.5が特に好ましい。ラジカル開始剤:シラン変性モノマー質量比が、1:0.2~1:10の範囲内であると、シラン変性モノマーのホモ重合又はポリオレフィン系重合体の分解反応等の副反応がより一層抑制され、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープおよび養生後の接着強度が一段と向上する。
 グラフト重合反応は、メルト、溶液、固体状態、膨潤状態で行うことができる。本発明において、ポリオレフィン系重合体の主鎖骨格に対するシラン変性モノマーを用いたグラフト重合反応は、多種多様な装置、例えば、二軸スクリュー押出機、一軸スクリュー押出機、ブラベンダー、バッチ式反応装置等を使用することより行うことができる。
<シラン変性ポリオキシアルキレン系重合体>
 ポリオキシアルキレン系重合体を用いたシラン変性ポリオキシアルキレン系重合体の合成方法としては、例えば、イソシアネート基含有シラン変性モノマーを、該ポリオキシアルキレン系重合体の主鎖骨格の末端の反応性官能基に反応させる方法等が挙げられる。
 ポリオキシアルキレン系重合体の詳細は、特に言及がない限り、上記<ポリオキシアルキレン系重合体>に記載したとおりである。
 本発明において、シラン変性ポリオキシアルキレン系重合体の190℃における溶融粘度は、200~60000mPa・sが好ましく、400~50000mPa・sがより好ましく、600~40000mPa・sが特に好ましい。シラン変性ポリオキシアルキレン系重合体の190℃における溶融粘度が200mPa・s以上であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープ性及び養生後の接着強度がより一層向上する。シラン変性ポリオキシアルキレン系重合体の190℃における溶融粘度が60000mPa・s以下であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業を一段と容易に行うことができる。本明細書において、シラン変性ポリオキシアルキレン系重合体の190℃における溶融粘度は、JIS K 6862のホットメルト接着剤の溶融粘度試験方法に準拠して測定された値を意味する。
 本発明において、シラン変性ポリオキシアルキレン系重合体の数平均分子量は、2000~80000が好ましく、4000~70000がより好ましい。シラン変性ポリオキシアルキレン系重合体の数平均分子量が2000以上であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の養生後の耐熱クリープ及び養生後の接着強度がより一層向上する。シラン変性ポリオキシアルキレン系重合体の数平均分子量が80000以下であると、硬化性樹脂組成物及び該硬化性樹脂組成物を用いたホットメルト接着剤の被着体への塗布作業を一段と容易に行うことができる。本明細書において、シラン変性ポリオキシアルキレン系重合体の数平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー、DIN 55 672に準拠)によって測定されたポリスチレン換算値を意味する。
 本発明において、ポリオキシアルキレン系重合体及びイソシアネート基を有するシラン変性モノマーの存在下、該ポリオキシアルキレン系重合体に該イソシアネート基を有するシラン変性モノマーをグラフト重合させることによりシラン変性ポリオキシアルキレン系重合体を製造する方法が好ましい。シラン変性ポリオキシアルキレン系重合体のその他の製造方法としては、例えば、日本国特公昭45-36319号号公報、日本国特公昭46-12154号号公報、日本国特開昭50-156599号号公報、日本国特開昭54-6096号号公報、日本国特開昭55-13767号号公報、日本国特開昭55-13468号号公報、日本国特開昭57-164123号号公報、日本国特公平3-2450号号公報、米国特許3632557号明細書、米国特許4345053号明細書、米国特許4366307号明細書、米国特許4960844号明細書、日本国特開昭61-197631号号公報、日本国特開昭61-215622号号公報、日本国特開昭61-215623号号公報、日本国特開昭61-218632号号公報、日本国特開平3-72527号号公報、日本国特開平3-47825号号公報、日本国特開平8-231707号号公報等に記載されている製造方法が挙げられる。
 本発明において、シラン変性ポリオキシアルキレン系重合体は、ポリオキシアルキレン系重合体とイソシアネート基を有するシラン変性モノマーとのグラフト重合体であることが好ましい。
 上記イソシアネート基を有するシラン変性モノマーとしては、γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン(3-イソシアネートプロピルトリエトキシシラン)、γ-イソシアネートプロピルメチルジエトキシシラン等が挙げられる。
<ハンセン溶解度パラメータ(HSP)値及び相互作用半径>
 HSP(Hansen Solubility Parameter)は、物質の溶解性の予測に用いられる値である。HSPは、「分子間の相互作用が似ている2つの物質は、互いに溶解しやすい」との考えに基づいている。HSPは、ヒルデブランドの溶解度パラメータを、ロンドン分散力、双極子間力及び水素結合力の3個の凝集エネルギー成分に分割したベクトル量のパラメータを意味する。本発明において、HSPのロンドン分散力に対応する成分を分散項(以下、「δd」とも記載する)、双極子間力に対応する成分を極性項(以下、「δp」とも記載する)、水素結合力に対応する成分を水素結合項(以下、「δh」とも記載する)と記載する。これら3つのパラメータは、3次元空間(ハンセン空間)における座標とみなすことができる。2つの物質のHSPをハンセン空間内に置いたとき、2点間の距離が近ければ近いほど、互いに溶解しやすい。 
 HSPはベクトル量であるため、純粋な物質で全く同一の値を有するものは殆ど存在しないことが知られている。また、一般的に使用される物質のHSPに関しては、データベースが構築されている。このため、当業者であれば、当該データベースを参照することにより、所望の物質のHSP値を入手することができる。
 データベースにHSP値が登録されていない物質であっても、当業者であれば、Hansen Solubility Parameters in Practice(HSPiP)のようなコンピュータソフトウェアを用いることにより、その化学構造からHSP値を計算することができる。
 また、HSP値が登録されていない物質に対してHSP値が既知である複数の溶媒を用いて溶解試験を行い、得られた溶解性をHSPiPに入力することでHSP値を決定することができる。複数の物質からなる混合物の場合、該混合物のHSP値は、含有成分である各物質のHSP値に、該物質の混合物全体に対する体積比を乗じて得た値の和として算出される。
 HSPについては、例えば、山本博志,S.Abbott,C.M.Hansen,化学工業,2010年3月号を参照することができる。また、HSP距離については、例えば、山本博志,S.Abbott,C.M.Hansen,化学工業,2010年4月号を参照することができる。
 本明細書における、HSPの値および相互作用半径Rは、S.Abbott,C.M.Hansen,化学工業,2010年3月号及び山本博志,S.Abbott,C.M.Hansen,化学工業,2010年4月号に記載された溶解試験法を用いて決定した。HSPの値および相互作用半径Rの詳細な算出方法は、後記する実施例に記載の通りである。
 本発明において、シラン変性有機重合体のHSP値と、アルコールのHSP値との距離Ra-bは、以下の数式により求めることができる。以下の数式(I)中、δd、δp及びδhは、シラン変性有機重合体のHSP値の分散項、分極項、及び水素結合項をそれぞれ示す。また、δd、δp及びδhは、アルコールのHSP値の分散項、分極項、及び水素結合項をそれぞれ示す。
Figure JPOXMLDOC01-appb-M000004
 本発明において、シラン変性有機重合体とアルコールとのハンセン溶解度パラメータ(HSP)値に基づく相対エネルギー差(Relative Energy Difference:RED)は、以下の数式により求めることができる。以下の数式(II)中、Rは、シラン変性有機重合体の相互作用半径を示し、Ra-bは、シラン変性有機重合体のHSP値と、アルコールのHSP値との距離を示す。
Figure JPOXMLDOC01-appb-M000005
 本発明において、シラン変性有機重合体とアルコールとのREDは、1.0~3.0である。本発明において、シラン変性有機重合体とアルコールとのREDは、好ましくは1.01~2.75、より好ましくは1.02~2.5である。本発明において、シラン変性有機重合体とアルコールとのREDが1.0未満である場合には、加水分解性シリル基を含有するシラン変性有機重合体とアルコールとが優れた相溶性を示すため、硬化性樹脂組成物の冷却固化後においても該加水分解性シリル基と大気中の湿気又は被着体に含まれる水分との湿気硬化反応を阻害する。シラン変性有機重合体とアルコールとのREDが3.0より大きい場合、シラン変性有機重合体とアルコールとの相溶性が低く湿気硬化反応を十分に抑制することができない。また、シラン変性有機重合体とアルコールとのREDが3.0より大きい場合、硬化性樹脂組成物からアルコールがブリードアウトするため貯蔵安定性が低下するという問題がある。
<アルコール>
 本発明は、アルコールを必須成分として含有する。本明細書において、アルコールは、構造中に水酸基(-OH)を少なくとも1個以上含有しているものを意味する。
 本発明において、アルコールの融点は40℃以下であることが好ましく、30℃以下であることがより好ましく、20℃以下であることがより一層好ましい。アルコールの融点が40℃以下である場合、シラン変性有機重合体の空気中又は被着体に含まれる水分による湿気硬化反応をより一層抑制することができ、その結果貯蔵安定性が一段と向上する。
 本発明において、アルコールの分子量は10000以下であることが好ましく、8000以下であることより好ましく、6000以下であることが特に好ましい。アルコールの分子量が10000以下である場合、シラン変性有機重合体の空気中又は被着体に含まれる水分による湿気硬化反応をより一層抑制することができ、その結果貯蔵安定性が一段と向上する。
 本発明において、アルコールは、1価以上のアルコール、第一級アルコール、第二級アルコール又は第三級アルコールであることが好ましい。アルコールにおける水酸基が結合する炭化水素基は鎖状構造であってもよく、環状構造であってもよい。また、上記炭化水素基は飽和結合のみで結合されていてもよく、不飽和結合を1個以上含有していてもよい。さらに、上記炭化水素基は構造中に他の置換基を1種又は2種以上有していてもよく、例えば、構造中に炭素原子及び水素原子以外の原子を含む置換基を有していてもよい。上記炭素原子及び水素原子以外の原子としては、例えば、酸素原子及び/又は窒素原子が挙げられる。
 アルコールにおける水酸基が結合する炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基、アリール基、アリールアルキル基、アリールアルケニル基、アリールアルキニル基等が挙げられる。上記アルキル基、アルケニル基及びアルキニル基の炭素数には特に限定はない。上記アルキル基の炭素数は、1~25が好ましく、3~20がより好ましい。また、上記アルケニル基及びアルキニル基の炭素数は、2~25が好ましく、3~20がより好ましい。上記アルキル基、アルケニル基及びアルキニル基が環状構造の場合(例えば、シクロアルキル基、シクロアルケニル基、シクロアルキニル基等)、その炭素数は、好ましくは4~10、より好ましくは5~8、さらに好ましくは6~8である。
 上記アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基等が挙げられる。上記シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、2-メチルシクロヘキシル基等が挙げられる。上記アルケニル基としては、例えば、ビニル基、アリル基、イソプロペニル基等が挙げられる。上記シクロアルケニル基としては、例えば、シクロヘキセニル基が挙げられる。
 上記アリール基、アリールアルキル基、アリールアルケニル基及びアリールアルキニル基(以下、「アリール基等」と総称する。)の炭素数には特に限定はない。アリール基等の炭素数は、好ましくは6~15、より好ましくは6~12、更に好ましくは6~10である。上記アリール基等は、他の置換基を1種又は2種以上有していてもよい。例えば、上記アリール基等に含まれる芳香環は、他の置換基を1種又は2種以上有していてもよい。例えば、上記アリール基は、無置換のアリール基だけでなく、置換アリール基でもよい。芳香環に位置する置換基の位置は、o-、m-、及びp-のいずれでもよい。上記置換基としては、例えば、ハロゲン原子(F、Cl、Br及びI等)、アルキル基及びアルコキシ基からなる群より選択される少なくとも一種が挙げられる。
 上記アリール基としては、例えば、フェニル基、トリル基、エチルフェニル基、キシリル基、クメニル基、メシチル基、ハロゲン化フェニル基(o-、m-、及びp-)、メトキシフェニル基(o-、m-、及びp-)、エトキシフェニル基(o-、m-、及びp-)、1-ナフチル基、2-ナフチル基、並びにビフェニル基が挙げられる。
 上記アリールアルキル基として具体的には、ベンジル基、メトキシベンジル基(o-、m-、及びp-)、エトキシベンジル基(o-、m-、及びp-)、並びにフェネチル基が挙げられる。
 上記アリールアルケニル基としては、例えば、スチリル基、シンナミル基等が挙げられる。
 上記一価アルコールとしては、例えば、以下の式(2)又は(3)で表される一価アルコールが挙げられる。式(2)中、Raはアリール基である。mは1以上の整数である。式(3)中、Rb~Rdは水素原子又は一価の炭化水素基である。Rb~Rdは同一の基又は原子でもよく、異なる基又は原子でもよい。さらに、Rc及びRdは互いに結合して環状構造を形成していてもよい。
Figure JPOXMLDOC01-appb-C000006
 式(2)中、Raは、ベンゼン系芳香族化合物由来のアリール基でもよく、非ベンゼン系芳香族化合物由来のアリール基でもよい。上記ベンゼン系芳香族化合物由来のアリール基としては、例えば、フェニル基、縮合環芳香族化合物由来のアリール基(ナフチル基等)及び複素芳香族化合物(フラン、チオフェン、ピロール、イミダゾール等)由来のアリール基が挙げられる。
 上記アリール基に含まれる芳香環は、他の置換基を1種又は2種以上有していてもよい。例えば、上記フェニル基は、無置換のフェニル基(C-)を有する場合だけでなく、置換フェニル基も含む。上記置換基の位置は、o-、m-、及びp-のいずれでもよい。上記置換基として好ましくは、ハロゲン原子(Cl、Br、I等)又は電子供与性基である。該電子供与性基の種類及び構造には特に限定はない。該電子供与性基としては、例えば、アルキル基及びアルコキシ基が挙げられる。
 式(2)中、mは1以上の整数、好ましくは1~5の整数、更に好ましくは1~3の整数、特に好ましくは1又は2である。
 式(3)中、Rb~Rdを構成する上記一価の炭化水素基の種類及び構造には特に限定はない。上記一価の炭化水素の内容は、Raの説明が該当する。Rb~Rdの具体的な組み合わせには特に限定はない。Rb及びRcを上記一価の炭化水素基とし、Rdを水素原子とすることができる。また、Rb及びRcを水素原子とし、Rdを上記一価の炭化水素基とすることができる。さら、Rb~Rdのうち少なくとも1つはアリール基が好ましい。該アリール基の内容は、Raの説明が該当する。
 本発明において、アルコールとしては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、t-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、3-メチル-1-ブタノール、2-メチル-1-ブタノール、2,2-ジメチル-1-プロパノール、3-メチル-2-ブタノール、2-メチル-2-ブタノール、1-ヘキサノール、3,3-ジメチル-1,2-ブタンジオール、1-ヘプタノール、1-オクタノール、1-ノナノール、1-デカノール、1-ウンデカノール、ラウリルアルコール、シクロヘキサノール、3-シクロヘキシル-1-プロパノール、2-フェニル-2-プロパノール、3-(4-クロロフェニル)プロパン-1-オール、1,3-ナフタレンジオール、2,7-ナフタレンジオール、1-ブテン-3-オール、8-ノネン-1-オール、cis-3-ノネン-1-オール、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ネオペンチルグルコール(2,2-ジメチル-1,3-プロパンジオール)、トリメチロールプロパン、トリエタノールアミン、ソルビトール、ポリエーテルポリオール、ポリエステルポリオールなどが挙げられる。これらの中でも、保存安定性の点から、エタノール、t-ブチルアルコール、3,3-ジメチル-1,2-ブタンジオール、1-ウンデカノール、2-フェニル-2-プロパノール及び2,2-ジメチル-1,3-プロパンジオールが好ましい。これらのアルコールは、それぞれ単独で、又は2種以上を組み合わせて用いることができる。
 本発明において、アルコールの含有割合は、シラン変性有機重合体の質量に対して、好ましくは10~5000質量ppm、より好ましくは15~1000質量ppm、より一層好ましくは18~500質量ppm、更に好ましくは20~300質量ppm、特に好ましくは25~200質量ppmである。
<硬化触媒>
 本発明は、硬化触媒を必須成分として含有する。本発明において、硬化触媒は、シラン変性有機重合体に含まれる加水分解性シリル基の脱水縮合反応を促進させることができる。加水分解性シリル基の詳細は、特に言及がない限り、上記<加水分解性シリル基>に記載したとおりである。
 硬化触媒としては、例えば、有機塩基、有機酸、金属(錫、亜鉛、鉄、鉛、コバルト等)のカルボン酸塩、有機チタン酸塩等が挙げられる。これらの硬化触媒は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。
 有機塩基としては、例えば、N-ジメチルアニリン、N、N-ジメチルトルイジン、N、N-ジメチル-p-アニシジン、P-ハロゲノ-N、N-ジメチルアニリン、2-N-二チルアニリノエタノール、トリーローブチルアミン、ピリジン、キノリン、N-メチルモルホリン、トリエタノールアミン、トリエチレンジアミン、N、N-ジメチルベンジルアミン、N、N、N’、N’-テトラメチルブタンジアミン等の三級アミン等が挙げられる。これらの有機塩基は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。
 有機酸としては、例えば、トルエンスルホン酸、ドデシルベンゼンスルホン酸、酢酸、ステアリン酸、マレイン酸等が挙げられる。これらの有機酸は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。
 金属(錫、亜鉛、鉄、鉛、コバルト等)のカルボン酸塩としては、例えば、ジブチル錫ジラウレート、ジオクチル錫ジラウレート、ジオクチル錫マレエート、ジブチル錫ジアセテート、ジブチル錫ジオクテート、酢酸第一錫、オクタン酸第一錫、ナフテン酸鉛、カプリル酸亜鉛、ナフテン酸コバルト等が挙げられる。これらのカルボン酸塩は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。
 有機チタン酸塩としては、例えば、テトラブチルチタネート、テトラプロポキシチタネート、テトラエトキシチタネート、テトラアミルチタネート、チタンジイソプロポキシビスエチルアセトアセテート、ジイソプロポキシビスアセチルアセトネート等が挙げられる。これらの有機チタン酸塩は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。
 本発明において、硬化触媒としては、ジブチル錫ジラウレート、ジオクチル錫ジラウレート、ジオクチル錫マレエート、ジブチル錫ジアセテート、ジブチル錫ジオクテート、酢酸第一錫、オクタン酸第一錫、ナフテン酸鉛、カプリル酸亜鉛及びナフテン酸コバルトからなる群より選択される少なくとも一種が好ましく、ジブチル錫ジラウレートがより好ましい。
 本発明の硬化性樹脂組成物における硬化触媒の含有量は、シラン変性有機重合体100質量部に対して、0.0001~2.0質量部が好ましく、0.0005~1.0質量部がより好ましく、0.001~0.5質量部がより一層好ましく、0.025~0.1質量部が特に好ましい。硬化触媒の具体例としては、上述の通りである。
 本発明の硬化性樹脂組成物は、本発明の目的を本質的に妨げない範囲で、必要に応じて各種添加剤を含んでいてもよい。各種添加剤としては、粘着付与剤、ワックス、希釈材、酸化防止剤等が挙げられる。
<粘着付与剤>
 本発明が粘着付与剤を含む場合、硬化性樹脂組成物100質量%中の粘着付与剤の含有割合は、通常30質量%以下、好ましくは20質量%以下、更に好ましくは10質量%以下である。粘着付与樹脂としては、公知の市販品を広く使用でき、例えば、Eastman Chemical社製のEastotac(登録商標)H-100、H-115、H130及びH142;ExxonMobil Chemical社製のEscorez(登録商標)5300、5637及び5400並びにEscorez(登録商標)5600;Goodyear Chemical社製のWingtack(登録商標)Extra、Hercolite(登録商標)2100;Arizona Chemical社製のZonatac(登録商標)105及び501 Lite等が挙げられる。
<ワックス>
 本発明がワックスを含む場合、硬化性樹脂組成物100質量%中のワックスの含有割合は、通常30質量%以下、好ましくは20質量%以下、更に好ましくは10質量%以下である。ワックスとしては、公知のワックスを広く使用でき、例えば、パラフィン系ワックス、微結晶性ワックス、高密度・低分子量ポリエチレンワックス、熱分解ワックス、副産ポリエチレンワックス、フィッシャー・トロプシュ(Fischer-Tropsch)ワックス、酸化フィッシャー・トロプシュワックス、官能化ワックス(例えば、ヒドロキシステアラミドワックス、脂肪アミドワックス等)が挙げられる。
<希釈材>
 本発明が希釈材を含む場合、硬化性樹脂組成物100質量%中の希釈材の含有割合は、通常30質量%以下、好ましくは20質量%以下、更に好ましくは10質量%以下である。希釈材としては、公知の希釈材を広く使用でき、例えば、白色鉱油(例えば、Witco社製のKaydol(登録商標)油)、ナフテン系油(例えば、Shell Oil社製のShellflex(登録商標)371)、Calumet Lubricants社製のCalsol 5550)等が挙げられる。
<酸化防止剤>
 本発明が酸化防止剤を含む場合、硬化性樹脂組成物100質量%中の酸化防止剤の含有割合は、通常0.5質量%以下、好ましくは0.2質量%以下である。酸化防止剤としては、公知の酸化防止剤を広く使用でき、例えば、ヒンダードフェノール系酸化防止剤(Ciba-Geigy社製のIrganox(登録商標)565、1010及び1076);亜リン酸系酸化防止剤(Ciba-Geigy社製のIrgafos(登録商標)168);Cytec Industries社製のCyanox(登録商標)LTDP;Albemarle社製のEthanox(登録商標)1330等が挙げられる。
 以下に本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されない。
 <評価方法>
 実施例及び比較例における評価は以下の測定方法により実施した。
(1)ハンセン溶解度パラメータ(HSP)値及び相互作用半径
 実施例及び比較例で使用したアルコールのHSP値の分散項(δd)、分極項(δp)及び水素結合項(δh)は、それぞれ公知のデータベースに登録された定数を参照した。
 シラン変性有機重合体のHSP値の分散項(δd)、分極項(δp)及び水素結合項(δh)については、HSP既知の溶媒を用いて、溶解試験を行うことでHSP値を算出した。
 次いで、以下の式:
(Ra-b)=4(δd-δd)+(δp-δp)+(δh-δh)[上記式中、
δdは、シラン変性有機重合体のHSPの分散項であり、
δpは、シラン変性有機重合体のHSPの分極項であり、
δhは、シラン変性有機重合体のHSPの水素結合項であり、
δdは、アルコールのHSPの分散項であり、
δpは、アルコールのHSPの分極項であり、
δhは、アルコールのHSPの水素結合項であり、
Ra-bは、HSP空間における、シラン変性有機重合体と、アルコールとのHSP値の距離である。]
で表される、シラン変性有機重合体とアルコールとのHSP値の距離「Ra-b」を算出した。
 シラン変性有機重合体の相互作用半径(R)については、溶解試験の結果をHSPiPに入力することで算出した。
 なお、シラン変性有機重合体のHSP値(δd、δp、及びδh)及び相互作用半径(R)並びにアルコールのHSP値(δd、δp、及びδh)を表2に示す。
(2)溶融粘度
 JIS K 6862のホットメルト接着剤の溶融粘度試験方法に準拠して、有機重合体の190℃における溶融粘度(mPa・s)を測定した。測定結果を表1に示す。
(3)数平均分子量
 GPC(ゲル・パーミエーション・クロマトグラフィー、DIN 55 672に準拠)によって、有機重合体の数平均分子量を測定した。測定結果を表1に示す。
(4)貯蔵安定性
 貯蔵安定性は、製膜サンプルのゲル分率と、貯蔵サンプルのゲル分率との差の値に基づき評価した。貯蔵安定性の評価は、(i)製膜サンプル1及び製膜サンプル2の作成、(ii)製膜サンプル1のゲル分率の測定、(iii)製膜サンプル2を窒素置換環境下で静置することによる貯蔵サンプルの作成、及び(iv)貯蔵サンプルのゲル分率の測定、を行った。なお、製膜サンプル1及び製膜サンプル2はそれぞれ独立したサンプルであり、同一の性質を有する。(ii)及び(iii)は同時進行で行った。以下、貯蔵安定性の評価方法について説明する。
 まず、製造した硬化性樹脂組成物を200μmのスペーサーを用いて140℃環境下において10MPa、30秒の条件で加圧製膜し、製膜サンプル1及び製膜サンプル2をそれぞれ作成した。製膜サンプル1及び製膜サンプル2の作成には、テスター産業株式会社製の「SA-302 卓上型テストプレス」用いた。作成した製膜サンプル2を23℃、50%RH、窒素置換環境下で1000時間静置したのち貯蔵サンプルを作成した。製膜サンプル1又は貯蔵サンプルを0.25g分取したのち、24時間以内に20mlのキシレンに加えた。調製したキシレン溶液を100℃環境下で1時間加熱処理した。加熱処理後、SUSメッシュ(30μm)を用いてキシレン溶液をろ過した。SUSメッシュに残留したろ過物を75℃環境下で12時間以上減圧乾燥した。乾燥処理後、ろ過物の重量を測定した。ろ過物の重量を、分取した製膜サンプル1の重量又は貯蔵サンプルの重量で除算することで、製膜サンプル1のゲル分率及び貯蔵サンプルのゲル分率を算出した。製膜サンプル1のゲル分率と、貯蔵サンプルのゲル分率との差が10wt%以下であるものを「〇」、10wt%より大きいものを「×」とした。評価結果を表2に示す。
(5)ポットライフ性
 製造した硬化性樹脂組成物を任意量分取し、JIS K 6862のホットメルト接着剤の溶融粘度試験方法に準拠して、硬化性樹脂組成物の180℃における溶融粘度1(mPa・s)を測定した。また、製造した硬化性樹脂組成物を還流管が付随したフラスコに任意量導入し、180℃環境下、120rpmで24時間攪拌した。攪拌後の硬化性樹脂組成物を任意量分取し、JIS K 6862のホットメルト接着剤の溶融粘度試験方法に準拠して、硬化性樹脂組成物の180℃における溶融粘度2を測定した。硬化性樹脂組成物の溶融粘度1及び溶融粘度2について、(溶融粘度2/溶融粘度1)≦1.1を「◎」、1.1<(溶融粘度2/溶融粘度1)≦1.2を「〇」、(溶融粘度2/溶融粘度1)>1.2を「×」、とした。評価結果を表2に示す。
(6)硬化性
 製造した硬化性樹脂組成物を200μmのスペーサーを用いて140℃環境下において10MPa、30秒の条件で加圧製膜し、製膜サンプルを作成した。作成した製膜サンプルを60℃温水下で7日間硬化させた後、23℃、50%RH環境下で1日間エージングすることで測定用サンプルを得た。測定用サンプルを0.25g分取したのち、24時間以内に20mlのキシレンに加えた。調製したキシレン溶液を100℃環境下で1時間加熱処理した。加熱処理後、SUSメッシュ(30μm)を用いてキシレン溶液をろ過した。SUSメッシュに残留したろ過物を75℃環境下で12時間以上減圧乾燥した。乾燥処理後、ろ過物の重量を測定した。ろ過物の重量を、分取した測定用サンプル重量で除算することで、測定用サンプルのゲル分率を算出した。測定用サンプルのゲル分率が60質量%以上である結果を「○」、60質量%未満である結果を「×」とした。評価結果を表2に示す。なお、製膜サンプル及び接着サンプルの調製には、テスター産業株式会社製の「SA-302 卓上型テストプレス」を用いた。
(7)接着強度(20℃)
 製造した硬化性樹脂組成物を200μmのスペーサーを用いて140℃環境下において10MPa、30秒の条件で加圧製膜し、製膜サンプルを得た。得られた製膜サンプルを幅25mm、長さ50mmに切り出した。切り出したサンプルを、下記の被着体1と被着体2との間に、100μmのスペーサーと一緒に設置し、140℃環境下で1MPa、10秒の条件で加圧し、接着サンプルを調製した。調製した接着サンプルを60℃温水下で7日間硬化させた後、23℃、50%RH環境下で1日間エージングすることで測定用サンプルを得た。測定サンプルを20℃で剥離速度300mm/min.の条件で180°剥離接着力を測定し接着強度(20℃)とした。接着強度(20℃)が3.0N/25mm以上である結果を「○」、3.0N/25mm未満である結果を「×」とした。評価結果を表2に示す。なお、製膜サンプル及び接着サンプルの調製には、テスター産業株式会社製の「SA-302 卓上型テストプレス」を用いた。
被着体1:PP板(厚み:2mm)
被着体2:CPPフィルム(厚み:80μm)
(8)接着強度(80℃)
 まず、上記「(7)接着強度(20℃)」と同様の工程により測定用サンプルを得た。次いで、測定サンプルを80℃で剥離速度300mm/min.の条件で180°剥離接着力を測定し接着強度(80℃)とした。接着強度(80℃)が3.0N/25mm以上である結果を「○」、3.0N/25mm未満である結果を「×」とした。評価結果を表2に示す。なお、製膜サンプル及び接着サンプルの調製には、テスター産業株式会社製の「SA-302 卓上型テストプレス」を、被着体1として、PP板(厚み:2mm)を、被着体2として、CPPフィルム(厚み:80μm)をそれぞれ使用した。
(9)耐熱クリープ性(100℃)
 製造した硬化性樹脂組成物を200μmのスペーサーを用いて140℃環境下において10MPa、30秒の条件で加圧製膜し、製膜サンプルを得た。得られた製膜サンプルを、幅25mm、長さ25mmに切り出した。切り出したサンプルを、下記の被着体1と被着体2との間に、100μmのスペーサーと一緒に設置し、140℃環境下において1MPa、10秒の条件で加圧し、接着サンプルを調製した(図1)。調製した接着サンプルを60℃温水下で7日間硬化させた後、23℃、50%RH環境下で1日間エージングすることで測定用サンプルを得た。得られた測定用サンプルの接着面端部に対して100g荷重が垂直方向にかかるように重りを設置し(図2)、100℃環境下で24時間経過後に耐熱クリープ性(100℃)を測定した。具体的には、100℃環境下で24時間経過後、測定用サンプルの接着面における剥離長さが10mm未満の場合を「○」、10mm以上の場合を「×」とした。評価結果を表2に示す。なお、製膜サンプル及び接着サンプルの調製には、テスター産業株式会社製の「SA-302 卓上型テストプレス」を用いた。
被着体1:PP板(厚み:2mm)
被着体2:CPPフィルム(厚み:80μm)
(10)耐熱クリープ性(110℃)
 まず、上記「(9)耐熱クリープ性(100℃)」と同様の工程により測定用サンプルを得た。次いで、得られた測定用サンプルの接着面端部に対して100g荷重が垂直方向にかかるように重りを設置し、110℃環境下で24時間経過後に耐熱クリープ性(110℃)を測定した。具体的には、110℃環境下で24時間経過後、測定用サンプルの接着面における剥離長さが10mm未満の場合を「○」、10mm以上の場合を「×」とした。評価結果を表2に示す。なお、製膜サンプル及び接着サンプルの調製には、テスター産業株式会社製の「SA-302 卓上型テストプレス」を、被着体1として、PP板(厚み:2mm)を、被着体2として、CPPフィルム(厚み:80μm)をそれぞれ使用した。
 実施例及び比較例では、以下の表1に示す有機重合体A-1、有機重合体A-2又は有機重合体A-3を使用した。有機重合体A-1及び有機重合体A-2は、有機溶媒としてヘプタンを、メタロセン触媒としてビス(t-ブチルシクロペンタジエニル)ジルコニウムジクロリドを使用し、溶液重合法によって製造した。有機重合体A-1の主鎖骨格と、有機重合体A-2の主鎖骨格とを構成する重合体は、それぞれプロピレンホモポリマーである。有機重合体A-3は、ホスファゼン化合物からなる触媒を用いる重合法によって製造し、ホスファゼン化合物として1-tert-ブチル-4,4,4-トリス(ジメチルアミノ)-2,2-ビス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]-2λ,4λ-カテナジ(ホスファゼン)を使用した。有機重合体A-3の主鎖骨格を構成する重合体は、ポリオキシプロピレン-ポリオキシブチレン共重合体である。
Figure JPOXMLDOC01-appb-T000007
 (実施例1)
 <硬化性樹脂組成物B-1の製造>
 100質量部の有機重合体A-1、シラン変性モノマーとして1.5質量部のKBM-503(3-メタクリルオキシプロピルトリメトキシシラン、信越ポリマー株式会社製)及びラジカル開始剤として1.5質量部のPercumyl D(ジクミルペルオキシド、日油株式会社製)を、二軸スクリュー押出機(テクノベル株式会社製の製品名「KZW15TW-45/60MG-NH(-2200)(スクリュー外径Φ15mm,L/D=45)」)の供給口に同時に導入し反応させることでシラン変性ポリオレフィン系重合体を得た。得られたシラン変性ポリオレフィン系重合体のHSP値(δd、δp、δh)及び相互作用半径(R)並びに2-フェニル-2-プロパノールのHSP値(δd、δp、δh)を表2に示す。表2に示すように、これらの結果から算出されたシラン変性ポリオレフィン系重合体と2-フェニル-2-プロパノールとの相対エネルギー差(RED)は1.02であった。なお、二軸スクリュー押出機の運転条件は、末端バレル部において未反応のラジカル開始剤が初期のラジカル開始剤の添加量に対して20mol%以下になるように設定した。具体的には、バレル温度が175℃、押出量が1.0~1.5kg/hになるよう設定した。さらに、二軸スクリュー押出機による押出し中に、未反応のシラン変性モノマー及び反応における副生成物(ラジカル開始剤の分解物、シラン変性モノマーの単独重合体等)を、該押出機の末端の方に位置するバレル部に位置する真空ベントから除去した。
 得られたシラン変性ポリオレフィン系重合体を自然放冷により冷却固化した。冷却固化後のシラン変性ポリオレフィン系重合体に対して、アルコールとして2-フェニル-2-プロパノールを100質量ppmになるように添加し、さらに硬化触媒としてネオスタンU-100(ジブチル錫ジラウレート、日東化成株式会社製)をシラン変性ポリオレフィン系重合体100重量部に対して0.005質量部になるように添加し、万能撹拌機を用いて混合することにより、硬化性樹脂組成物B-1を製造した。
 (実施例2、3、5、6及び8~10)
 <硬化性樹脂組成物B-2、B-3、B-5、B-6、B-8、B-9及びB-10の製造>
 表2に示す有機重合体、ラジカル開始剤及びシラン変性モノマーを使用し、実施例1と同様の工程によりシラン変性ポリオレフィン系重合体を得た。得られたシラン変性ポリオレフィン系重合体を実施例1と同様にして冷却固化し、該シラン変性ポリオレフィン系重合体に対して、表2に示すアルコールを表2に示す質量ppmになるように添加し、さらに表2に示す硬化触媒を0.005質量部添加し、実施例1と同様の工程により硬化性樹脂組成物(B-2、B-3、B-5、B-6、B-8、B-9及びB-10)を製造した。各シラン変性ポリオレフィン系重合体のHSP値(δd、δp、δh)及び相互作用半径(R)並びに各アルコールのHSP値(δd、δp、δh)を表2に示す。これらの結果から算出された各シラン変性ポリオレフィン系重合体と各アルコールとの相対エネルギー差(RED)を表2に示す。
 (実施例4)
 <硬化性樹脂組成物B-4の製造>
 100質量部の有機重合体A-3及びシラン変性モノマーとして1.2質量部のKBE-9007N(3-イソシアネートプロピルトリエトキシシラン,信越ポリマー株式会社製)を合成窯に導入し、100℃環境下で2時間攪拌してシラン変性ポリオキシアルキレン系重合体を得た。得られたシラン変性ポリオキシアルキレン系重合体体を自然放冷により冷却固化した。冷却固化後のシラン変性ポリオキシアルキレン系重合体に対して、アルコールとしてt-ブチルアルコールを100質量ppmになるように添加し、更に硬化触媒としてネオスタンU-100(ジブチル錫ジラウレート、日東化成株式会社製)をシラン変性ポリオレフィン系重合体100重量部に対して0.005質量部になるように添加し、万能撹拌機を用いて混合することにより、硬化性樹脂組成物B-4を製造した。シラン変性ポリオキシアルキレン系重合体のHSP値(δd、δp、δh)及び相互作用半径(R)並びにt-ブチルアルコールのHSP値(δd、δp、δh)を表2に示す。表2に示すように、これらの結果から算出されたシラン変性ポリオキシアルキレン系重合体とt-ブチルアルコールとの相対エネルギー差(RED)は1.13であった。
 (実施例7)
 <硬化性樹脂組成物B-7の製造>
 表2に示す有機重合体及びシラン変性モノマーを使用し、実施例4と同様の工程によりシラン変性ポリオキシアルキレン系重合体を得た。得られたシラン変性ポリオキシアルキレン系重合体を実施例4と同様にして冷却固化し、冷却固化後のシラン変性ポリオキシアルキレン系重合体に対して、エタノールを100質量ppmになるように添加し、さらに表2に示す硬化触媒を0.005質量部添加し、実施例4と同様の工程により硬化性樹脂組成物を製造した。シラン変性ポリオキシアルキレン系重合体のHSP値(δd、δp、δh)及び相互作用半径(R)並びにエタノールのHSP値(δd、δp、δh)を表2に示す。これらの結果から算出されたシラン変性ポリオキシアルキレン系重合体とエタノールとの相対エネルギー差(RED)を表2に示す。
 (比較例1)
 <硬化性樹脂組成物B-11の製造>
 ラジカル開始剤として1.5質量部のPerbutyl I(t-ブチルペルオキシイソプロピルモノカーボネート、日油株式会社製)を使用したこと以外は、実施例1と同様の工程によりシラン変性ポリオレフィン系重合体を得て、実施例1と同様にして冷却固化した。冷却固化後のシラン変性ポリオレフィン系重合体に対して、アルコールとしてステアリルアルコールを100質量ppmになるように添加し、さらに表2に示す硬化触媒を0.005質量部添加し、実施例1と同様の工程により硬化性樹脂組成物B-11を製造した。シラン変性ポリオレフィン系重合体のHSP値(δd、δp、δh)及び相互作用半径(R)並びにステアリルアルコールのHSP値(δd、δp、δh)を表2に示す。表2に示すように、これらの結果から算出されたシラン変性ポリオレフィン系重合体とステアリルアルコールとの相対エネルギー差(RED)は0.97であった。
 (比較例2)
 <硬化性樹脂組成物B-12の製造>
 比較例1と同様の工程によりシラン変性ポリオレフィン系重合体を得た。冷却固化後のシラン変性ポリオレフィン系重合体に対して、アルコールとしてエタノールを100質量ppmになるように添加し、さらに表2に示す硬化触媒を0.005質量部添加し、実施例1と同様の工程により硬化性樹脂組成物B-12を製造した。シラン変性ポリオレフィン系重合体のHSP値(δd、δp、δh)及び相互作用半径(R)並びにエタノールのHSP値(δd、δp、δh)を表2に示す。表2に示すように、これらの結果から算出されたシラン変性ポリオレフィン系重合体とエタノールとの相対エネルギー差(RED)は3.45であった。
 (比較例3)
 <硬化性樹脂組成物B-13の製造>
 表2に示す有機重合体及びシラン変性モノマー系重合体を使用し、実施例4と同様の工程によりシラン変性ポリオキシアルキレン系重合体を得て、実施例4と同様にして冷却固化した。冷却固化後のシラン変性ポリオキシアルキレン系重合体に対して、アルコールとしてステアリルアルコールを100質量ppmになるように添加し、さらに表2に示す硬化触媒を0.005質量部添加し、実施例4と同様の工程により硬化性樹脂組成物B-13を製造した。シラン変性ポリオキシアルキレン系重合体のHSP値(δd、δp、δh)及び相互作用半径(R)並びにステアリルアルコールのHSP値(δd、δp、δh)を表2に示す。表2に示すように、これらの結果から算出されたシラン変性ポリオキシアルキレン系重合体とステアリルアルコールとの相対エネルギー差(RED)は0.81であった。
 (比較例4)
 <硬化性樹脂組成物B-14の製造>
 表2に示す有機重合体、ラジカル開始剤及びシラン変性モノマーを使用し、実施例1と同様の工程によりシラン変性ポリオレフィン系重合体を得て、実施例1と同様にして冷却固化した。冷却固化後のシラン変性ポリオレフィン系重合体に対して、表2に示す硬化触媒を0.005質量部添加し、実施例1と同様の工程により硬化性樹脂組成物B-14を製造した。比較例4ではシラン変性ポリオレフィン系重合体に対してアルコールを添加しなかった。
 実施例1~10及び比較例1~4で使用した各原料、製造した硬化性樹脂組成物B-1~B-14の評価結果等を表2に示す。
Figure JPOXMLDOC01-appb-T000008
 表2に示すように、実施例1~10で得られた硬化性樹脂組成物は、貯蔵安定性、ポットライフ性、硬化性、接着強度(20℃及び80℃)並びに耐熱クリープ性(100℃)に優れていることがわかった。特に、実施例1~3、5及び7~10で得られた硬化性樹脂組成物は、硬化性、耐熱クリープ性(100℃及び110℃)並びに接着強度(20℃及び80℃)の点において、アルコール未添加の比較例4と同程度の結果を示し、且つ、貯蔵安定性及びポットライフ性の点において、比較例4よりも格段に優れていることがわかった。即ち、実施例1~3、5及び7~10で得られた硬化性樹脂組成物は、貯蔵安定性、ポットライフ性、硬化性、室温(20℃)及び高温(80℃)における接着強度、並びに、100℃及び110℃の耐熱クリープ性のいずれも優れていることがわかった。
 以上の点から、本発明の硬化性樹脂組成物は、貯蔵安定性、ポットライフ性、硬化性並びに室温及び高温における接着強度に優れ、且つ、十分な耐熱クリープ性を有するため、ホットメルト接着剤として好適に用いることができる。
 1      被着体1
 2      硬化性樹脂組成物
 3      被着体2
 4      重り

Claims (5)

  1.  シラン変性有機重合体、硬化触媒及びアルコールを含有し、
    下記数式で表される前記シラン変性有機重合体と前記アルコールとの相対エネルギー差(RED)が1.0~3.0である、硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-M000001
    (上記式中、Rは、前記シラン変性有機重合体の相互作用半径であり、Ra-bは、前記シラン変性有機重合体のハンセン溶解度パラメータ(HSP)値と、前記アルコールのハンセン溶解度パラメータ(HSP)値との距離である。)
  2.  前記アルコールの含有割合が、前記シラン変性有機重合体の質量に対して10~5000質量ppmである、請求項1に記載の硬化性樹脂組成物。
  3.  前記アルコールが、エタノール、t-ブチルアルコール、3,3-ジメチル-1,2-ブタンジオール、1-ウンデカノール、2-フェニル-2-プロパノール及び2,2-ジメチル-1,3-プロパンジオールからなる群より選択される少なくとも一種である、請求項1又は2に記載の硬化性樹脂組成物。
  4.  前記シラン変性有機重合体が、シラン変性ポリオレフィン系重合体及び/又はシラン変性ポリオキシアルキレン系重合体である、請求項1~3のいずれか一項に記載の硬化性樹脂組成物。
  5.  請求項1~4のいずれか一項に記載の硬化性樹脂組成物を含む、ホットメルト接着剤。
PCT/JP2022/035885 2021-10-01 2022-09-27 硬化性樹脂組成物及びホットメルト接着剤 WO2023054336A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280066472.XA CN118043406A (zh) 2021-10-01 2022-09-27 固化性树脂组合物和热熔粘接剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021163002 2021-10-01
JP2021-163002 2021-10-01

Publications (1)

Publication Number Publication Date
WO2023054336A1 true WO2023054336A1 (ja) 2023-04-06

Family

ID=85782735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035885 WO2023054336A1 (ja) 2021-10-01 2022-09-27 硬化性樹脂組成物及びホットメルト接着剤

Country Status (2)

Country Link
CN (1) CN118043406A (ja)
WO (1) WO2023054336A1 (ja)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3278459A (en) 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3278458A (en) 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3278457A (en) 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3427334A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanides complexed with an alcohol aldehyde or ketone to increase catalytic activity
US3427335A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanides complexed with an acyclic aliphatic saturated monoether,an ester and a cyclic ether and methods for making the same
US3427256A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanide complex compounds
US3632557A (en) 1967-03-16 1972-01-04 Union Carbide Corp Vulcanizable silicon terminated polyurethane polymers
US4345053A (en) 1981-07-17 1982-08-17 Essex Chemical Corp. Silicon-terminated polyurethane polymer
US4366307A (en) 1980-12-04 1982-12-28 Products Research & Chemical Corp. Liquid polythioethers
JPS59170168A (ja) * 1983-03-18 1984-09-26 Kanegafuchi Chem Ind Co Ltd 感圧性接着剤組成物
US4960844A (en) 1988-08-03 1990-10-02 Products Research & Chemical Corporation Silane terminated liquid polymers
JPH08225738A (ja) * 1994-12-20 1996-09-03 Sekisui Chem Co Ltd 室温硬化性組成物
JP2001107018A (ja) * 1999-08-02 2001-04-17 Sekisui Chem Co Ltd 変成シリコーン系接着剤及び接着方法
JP5064662B2 (ja) 2005-06-15 2012-10-31 出光興産株式会社 α−オレフィン重合体変性物及びその架橋体の製造方法
WO2017047805A1 (ja) * 2015-09-16 2017-03-23 積水フーラー株式会社 硬化性樹脂組成物
JP2017171708A (ja) 2016-03-18 2017-09-28 東ソー株式会社 ポリオキシアルキレンポリオールの製造方法
JP2019006971A (ja) * 2017-06-23 2019-01-17 積水フーラー株式会社 硬化性組成物
JP2020158626A (ja) * 2019-03-26 2020-10-01 リンテック株式会社 粘着剤組成物及び粘着テープ

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3278459A (en) 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3278458A (en) 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3278457A (en) 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3427334A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanides complexed with an alcohol aldehyde or ketone to increase catalytic activity
US3427335A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanides complexed with an acyclic aliphatic saturated monoether,an ester and a cyclic ether and methods for making the same
US3427256A (en) 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanide complex compounds
US3632557A (en) 1967-03-16 1972-01-04 Union Carbide Corp Vulcanizable silicon terminated polyurethane polymers
US4366307A (en) 1980-12-04 1982-12-28 Products Research & Chemical Corp. Liquid polythioethers
US4345053A (en) 1981-07-17 1982-08-17 Essex Chemical Corp. Silicon-terminated polyurethane polymer
JPS59170168A (ja) * 1983-03-18 1984-09-26 Kanegafuchi Chem Ind Co Ltd 感圧性接着剤組成物
US4960844A (en) 1988-08-03 1990-10-02 Products Research & Chemical Corporation Silane terminated liquid polymers
JPH08225738A (ja) * 1994-12-20 1996-09-03 Sekisui Chem Co Ltd 室温硬化性組成物
JP2001107018A (ja) * 1999-08-02 2001-04-17 Sekisui Chem Co Ltd 変成シリコーン系接着剤及び接着方法
JP5064662B2 (ja) 2005-06-15 2012-10-31 出光興産株式会社 α−オレフィン重合体変性物及びその架橋体の製造方法
WO2017047805A1 (ja) * 2015-09-16 2017-03-23 積水フーラー株式会社 硬化性樹脂組成物
JP2017171708A (ja) 2016-03-18 2017-09-28 東ソー株式会社 ポリオキシアルキレンポリオールの製造方法
JP2019006971A (ja) * 2017-06-23 2019-01-17 積水フーラー株式会社 硬化性組成物
JP2020158626A (ja) * 2019-03-26 2020-10-01 リンテック株式会社 粘着剤組成物及び粘着テープ

Also Published As

Publication number Publication date
CN118043406A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
JP6788609B2 (ja) ポリマー組成物の製造方法
US8871855B2 (en) Terminally unsaturated polyolefin and method for producing the same
JP4758230B2 (ja) 末端にエポキシ基および/またはオキセタン基含有ケイ素基を有する有機重合体を含む光硬化性組成物、それから得られる硬化物、及び製造方法
US6248837B1 (en) Process for preparing polyolefin diblock copolymers involving borane chain transfer reaction in transition metal-mediated olefin polymerization
JP5826913B2 (ja) ビニル末端高級オレフィンポリマー及びその製造方法
TW201125902A (en) Process for producing crosslinked, melt-shaped articles
CN1668662A (zh) 高分子固体电解质
JPH04103606A (ja) 反応性ケイ素基を有するイソブチレン系重合体、その製造方法及びその硬化性組成物
JP5331900B2 (ja) エチレン−ビニルシランコポリマーの湿分硬化用触媒系
JP2008133320A (ja) 末端変性ポリα−オレフィン、その製造方法及びそれを含む組成物
US20230026134A1 (en) Polyacrylate-based graft copolymer
JP7221280B2 (ja) シラン官能化エチレン系ポリマーの湿気硬化のためのスズ系触媒および二酸化チタンを含む組成物
WO2023054336A1 (ja) 硬化性樹脂組成物及びホットメルト接着剤
CN1839165A (zh) 模塑组合物
JP4426318B2 (ja) 末端にエポキシ基および/またはオキセタン基含有ケイ素基を有する有機重合体およびその製造方法
JP2000328042A (ja) シール剤組成物
WO2012124345A1 (ja) 反応性ポリオレフィン、その製造方法、及びそれを含む組成物
JP2018104495A (ja) 三次元網状構造体用変性ポリエチレン、変性ポリエチレン組成物及びそれらからなる成形体
WO2023157979A1 (ja) 硬化性樹脂組成物及びホットメルト接着剤
WO2023127551A1 (ja) 硬化性樹脂組成物及びホットメルト接着剤
CN1249311A (zh) 与带有官能团的固体颗粒反应制备的用于烯烃聚合的无桥单环戊二烯基金属复合催化剂
WO2023157978A1 (ja) 硬化性樹脂組成物及びホットメルト接着剤
WO2023080226A1 (ja) 硬化性樹脂組成物
TW202024208A (zh) 樹脂組成物、樹脂薄膜及堆疊體
WO2023080227A1 (ja) 硬化性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023504004

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876202

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022876202

Country of ref document: EP

Effective date: 20240502