WO2023054116A1 - 感光性組成物、硬化物、表示装置、電子部品、及び硬化物の製造方法 - Google Patents

感光性組成物、硬化物、表示装置、電子部品、及び硬化物の製造方法 Download PDF

Info

Publication number
WO2023054116A1
WO2023054116A1 PCT/JP2022/035169 JP2022035169W WO2023054116A1 WO 2023054116 A1 WO2023054116 A1 WO 2023054116A1 JP 2022035169 W JP2022035169 W JP 2022035169W WO 2023054116 A1 WO2023054116 A1 WO 2023054116A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin
compound
photosensitive composition
carbon atoms
Prior art date
Application number
PCT/JP2022/035169
Other languages
English (en)
French (fr)
Inventor
谷垣勇剛
佐伯昭典
日比野千香
小山祐太朗
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202280063717.3A priority Critical patent/CN117999515A/zh
Priority to JP2022558070A priority patent/JPWO2023054116A1/ja
Priority to EP22875983.3A priority patent/EP4411478A1/en
Priority to KR1020247002530A priority patent/KR20240063855A/ko
Publication of WO2023054116A1 publication Critical patent/WO2023054116A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/105Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the present invention relates to a photosensitive composition, a cured product, a display device, an electronic component, and a method for producing a cured product.
  • EL organic electroluminescence
  • the pixel division layer of the organic EL display In order to improve the light emission characteristics and reliability of the organic EL display, the pixel division layer of the organic EL display, the thin film transistor (hereinafter referred to as "TFT") flattening layer, the TFT protective layer, or the interlayer in the formation of the TFT array
  • TFT thin film transistor
  • a highly heat-resistant photosensitive composition is used for the insulating layer or the gate insulating layer.
  • photosensitive compositions are required to have improved sensitivity during exposure.
  • a film of a light-emitting material by vapor deposition through a vapor deposition mask it is common to form a film of the second electrode by vapor deposition. It is also common to form a thick region (hereinafter referred to as a “thick film portion”) in a portion of the pixel dividing layer as a support for a vapor deposition mask when depositing a light-emitting material by vapor deposition.
  • a thick film portion in a part of the pixel division layer can be formed by a two-layer film formation process in which the pixel division layer is formed, and then the photosensitive composition is formed again on the upper layer and patterned. be.
  • the organic EL display since the organic EL display has self-luminous elements, visibility and contrast decrease due to reflection of external light such as sunlight outdoors. Therefore, as a technique for blocking external light and reducing external light reflection, it is common to incorporate a colorant into the photosensitive composition forming the pixel dividing layer to improve light blocking properties.
  • the photosensitive composition examples include a negative photosensitive composition containing a first resin such as polyimide and a second resin such as a cardo-based resin (see Patent Document 1), and an epoxy acrylate resin and a novolac resin. and a negative photosensitive composition (see Patent Document 2).
  • the above-mentioned improvement in the sensitivity of the photosensitive composition during exposure may become a problem if the content of the coloring agent is increased in order to improve the light-shielding property of the photosensitive composition.
  • a black pigment or the like having a high light shielding property is contained, ultraviolet rays and the like are blocked during pattern exposure, which causes a decrease in sensitivity during exposure.
  • the pixel division layer and the thick film portion may be collectively formed by pattern exposure through a halftone photomask.
  • the properties to be formed (hereinafter referred to as "halftone properties") may be insufficient.
  • halftone properties may be insufficient.
  • a halftone photomask even if a halftone photomask is used, there are cases where a film thickness difference between the pixel division layer and the thick film portion cannot be formed, or where the pixel division layer region disappears during development. It is considered that the dominant factor for this is the sensitivity of the photosensitive composition to light with a relatively small amount of exposure through the halftone portion of the halftone photomask.
  • the opening dimension error from the pattern dimension of the photomask (hereinafter referred to as "mask bias”) is large, design error of the light emitting pixel region on the anode , which adversely affects the light emission characteristics of the organic EL display.
  • mask bias there is a method of adjusting the pattern size of the photomask according to the characteristics of the photosensitive composition, but there is another problem that the design of the pattern arrangement and resolution of the photomask is limited. Occur. Further, if the mask bias property is excessively large, it becomes difficult to improve the photomask pattern dimension adjustment.
  • the mask bias characteristics include the characteristic that the opening dimension becomes narrower than the pattern dimension of the photomask (hereinafter referred to as “narrow mask bias”) and the characteristic that the opening dimension becomes wider compared to the pattern dimension of the photomask (hereinafter referred to as “narrow mask bias”). “wide mask bias”).
  • Such mask bias properties are considered to be due to the influence of diffracted light during pattern exposure, but are also influenced by material properties. In the case of a positive photosensitive composition, the mask bias property differs depending on how much the diffracted light affects the improvement in the alkali solubility of the exposed area.
  • the mask bias tends to be narrow, and when the alkali solubility of the exposed portion is excessive, the mask bias tends to be wide.
  • the mask bias property differs depending on how much the diffracted light affects the decrease in alkali solubility due to photocuring of the exposed area.
  • the influence of photocuring due to radicals generated by diffracted light tends to be dominant, and narrow mask bias often occurs. Further, when the photo-curing of the exposed portion is insufficient, the mask bias tends to be wide.
  • the photosensitive composition is required to have improved sensitivity during exposure, suppression of narrow mask bias in opening pattern dimensions after development, and excellent halftone characteristics.
  • a material capable of providing a cured film capable of improving the reliability of light-emitting elements in display devices there is also a demand for a material capable of providing a cured film capable of improving the reliability of light-emitting elements in display devices.
  • conventional compositions have a problem in providing a cured product having migration resistance.
  • the photosensitive compositions described in Patent Literatures 1 and 2 are both insufficient in any of the above properties.
  • the present invention has the following configurations. i.e. [1] A photosensitive composition that satisfies the following condition ( ⁇ ) or condition ( ⁇ ), A photosensitive composition having a double bond equivalent of 600 to 6,000 g/mol in total solid content.
  • a cyclic amide compound represented by the general formula (20), an amide compound represented by the general formula (21), a cyclic urea compound represented by the general formula (22), and a general formula (23) The photosensitive composition according to [1] or [2] above, which contains one or more selected from the group consisting of the urea compounds represented and satisfies the following condition (4).
  • a cyclic amide compound represented by the general formula (20), an amide compound represented by the general formula (21), and a cyclic urea represented by the general formula (22) occupying the total solid content of the photosensitive composition
  • the total content of the compound and the urea compound represented by the general formula (23) is 0.010 to 5.0% by mass
  • R 46 to R 54 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, represents an aryl group of 15, an alkenyl group of 2 to 6 carbon atoms, or a hydroxyalkyl group of 1 to 6 carbon atoms, wherein R 130 is a hydrogen atom, an alkyl group of 1 to 6 carbon atoms, or an alkoxy group of 1 to 6 carbon atoms; a hydroxyalkyl group having 1 to 6 carbon atoms, a hydroxyalkoxy group having 1 to 6 carbon atoms, a hydroxy group, an amino group, a monoalkylamino group having 1 to 6 carbon atoms, or a dialkylamino group having 2 to 12 carbon atoms.
  • R 131 to R 138 each independently represent an alkyl group having 1 to 6 carbon atoms, a, b and c each independently represent an integer of 0 to 6.
  • d is 1 or represents 2.
  • e, f, g, h, and i each independently represents an integer of 0 to 2.
  • b is 0, d is 1.
  • the group consisting of a component containing sodium, a component containing potassium, a component containing magnesium, a component containing calcium, a component containing iron, a component containing copper, and a component containing chromium.
  • the total content of sodium element, potassium element, magnesium element, calcium element, iron element, copper element and chromium element in the total solid content of the photosensitive composition is 0.010 to 500 ppm by mass.
  • (A) contains an alkali-soluble resin, The (A) alkali-soluble resin has the (WA) weakly acidic group, The phenol equivalent in total solid content is 400 to 6,000 g / mol,
  • the photosensitive composition according to any one of [1] to [4] above, wherein (A) the alkali-soluble resin has a phenolic hydroxyl group.
  • the (A) alkali-soluble resin is one selected from the group consisting of the following (A3-1) resin, (A3-2) resin, (A3-3) resin, and (A3-4) resin
  • the above (A3- 1) A group in which resin, (A3-2) resin, (A3-3) resin, and (A3-4) resin consist of the following (3x) structural unit, (3y) structural unit, and (3z) structural unit Having one or more types selected from The aromatic group in the (3y) structural unit is an aromatic group different from the aromatic ring to which the phenolic hydroxyl group is bonded,
  • (3x) structural unit a structural unit containing at least two phenolic hydroxyl groups
  • (3y) structural unit a structural unit containing a phenolic hydroxyl group and an aromatic group
  • (3z) structural unit a structural unit containing a phenolic hydroxyl group
  • Structural unit containing two aromatic groups [8]
  • (A) an alkali-soluble resin contains a resin having a radically polymerizable group and a resin having no radically polymerizable group
  • the photosensitive composition according to any one of [2] to [7] above, wherein the (C) photosensitive agent contains (C1) a photopolymerization initiator.
  • the weakly acidic group equivalent in the total solid content is 400 to 1,500 g / mol
  • (I) containing inorganic particles The photosensitive composition according to any one of [1] to [9] above, wherein the (I) inorganic particles contain (I1) silica particles.
  • the content of the halogen element in the photosensitive composition is 0.01 to 100 ppm by mass; (2) the sulfur element content in the photosensitive composition is 0.01 to 100 mass ppm; (3) the content of phosphorus element in the photosensitive composition is 0.01 to 100 ppm by mass; [12]
  • (A) contains an alkali-soluble resin, Any one of the above [1] to [11], wherein the (A) alkali-soluble resin contains one or more selected from the group consisting of the following (A1) resin, (A2) resin, and (A3) resin The photosensitive composition according to .
  • (A1) resin having the (WA) weakly acidic group, further having a structural unit containing one or more types selected from the group consisting of an imide structure, an amide structure, an oxazole structure, and a siloxane structure, and being radically polymerizable Resin having no group
  • the (A) alkali-soluble resin is the (A1) resin and/or (A3 ) resin, and the photosensitive composition according to [12] above, which further contains the (A2) resin.
  • (A2) resin a resin having a radically polymerizable group [14] further containing (D1a-1) an organic black pigment and/or (D1a-3) a mixture of two or more colored pigments
  • the (D1a-1) organic black pigment is at least one selected from the group consisting of (D1a-1a) a benzofuranone-based black pigment, (D1a-1b) a perylene-based black pigment, and (D1a-1c) an azo-based black pigment.
  • the (D1a-3) two or more color pigment mixture contains two or more color pigments selected from the group consisting of red, orange, yellow, green, blue and violet pigments.
  • the photosensitive composition according to any one of .
  • (B) contains a radically polymerizable compound
  • the photosensitive composition according to any one of [1] to [14] above, which further satisfies at least one of the following conditions ( ⁇ ), conditions ( ⁇ ), and conditions ( ⁇ ).
  • Condition ( ⁇ ): the (B) radically polymerizable compound is the condition ( ⁇ ) containing the following (B6) sixth polymerizable compound and (B7) seventh polymerizable compound: the (B) radically polymerizable compound is the following (B4) fourth polymerizable compound or (B5) contains a fifth polymerizable compound, and further contains the following (B6) sixth polymerizable compound or (B7) seventh polymerizable compound (B4) fourth polymerizable compound: (I-b4 ) structure and further having at least two radically polymerizable groups (I-b4) structure: structure containing an alicyclic
  • a display device comprising the cured product according to [16] above.
  • An electronic component comprising the cured product according to [16] above.
  • the photomask includes a light-transmitting portion and a light-shielding portion, wherein the transmittance between the light-transmitting portion and the light-shielding portion is lower than the value of the light-transmitting portion and the transmittance is higher than the value of the light-shielding portion.
  • a method for producing a cured product which is a halftone photomask having a transparent portion.
  • [20] having at least a substrate, a first electrode, a second electrode, and a pixel division layer; Furthermore, a display device having an organic EL layer containing a light-emitting layer and/or a light extraction layer containing a light-emitting layer, The pixel division layer is formed to partially overlap the first electrode, an organic EL layer containing the light emitting layer and/or a light extraction layer containing the light emitting layer is formed on the first electrode and between the first electrode and the second electrode;
  • the pixel division layer contains a (D-DL) colorant, and the optical density of the pixel division layer per 1 ⁇ m of thickness at the wavelength of visible light is 0.5 to 5.0,
  • the pixel dividing layer contains the following (WA) resin having a weakly acidic group,
  • the (WA) resin having a weakly acidic group is one selected from the group consisting of the following (XA3
  • (WA) weakly acidic group one or more groups selected from the group consisting of phenolic hydroxyl group, hydroxyimide group, hydroxyamide group, silanol group, 1,1-bis(trifluoromethyl)methylol group, and mercapto group
  • ( XA3-1) resin phenolic resin (XA3-2) resin: polyhydroxystyrene (XA3-3) resin: phenolic group-containing epoxy resin (XA3-4) resin: phenolic group-containing acrylic resin (1x) steps of pixel division layer
  • Ra HT/max be the maximum surface roughness on the surface of the thin film portion in the shape
  • (Ra FT/max ) be the maximum value of surface roughness on the surface of the thick film portion in the stepped shape of the pixel division layer.
  • between (Ra HT/max ) and (Ra FT/max ) is 1.0 to 50.0 nm (2x)
  • (Ra DL/max ) be the maximum value of the surface roughness of the surface of the pixel division layer
  • (Ra SP/max ) be the maximum value of the surface roughness of the surface of the spacer layer on the pixel division layer.
  • between (Ra DL/max ) and ( Ra SP/max ) is 1.0 to 50.0 nm.
  • the photosensitive composition of the present invention has improved sensitivity during exposure, suppression of narrow mask bias in opening pattern dimensions after development, and excellent halftone characteristics.
  • the display device of the present invention it is possible to improve the reliability of the light emitting element.
  • the electronic component of the present invention it is possible to improve the migration resistance of the element.
  • FIG. 2 is a schematic cross-sectional view showing an enlarged cross-section of a pad portion of an example of a semiconductor device having bumps;
  • FIG. FIG. 2 is a schematic cross-sectional view illustrating the manufacturing process of Steps 1 to 7 in an organic EL display using a cured product of the photosensitive composition of the present invention.
  • FIG. 4 is a schematic diagram illustrating the arrangement and dimensions of a light-transmitting portion, a light-shielding portion, and a semi-light-transmitting portion in a halftone photomask used for evaluation of halftone characteristics;
  • FIG. 4 is a schematic plan view illustrating the manufacturing process of Steps 1 to 4 for the substrate of the organic EL display used for evaluation of light emission characteristics.
  • the photosensitive composition of the present invention is described below.
  • the photosensitive composition of the present invention is a photosensitive composition that satisfies the following condition ( ⁇ ) or condition ( ⁇ ),
  • the double bond equivalent weight in total solids is 600-6,000 g/mol.
  • a photosensitive composition that satisfies the above condition ( ⁇ ) and has a double bond equivalent in the total solid content within the above range may be referred to as the first embodiment of the photosensitive composition of the present invention.
  • a photosensitive composition that satisfies the above condition ( ⁇ ) and has a double bond equivalent in the total solid content within the above range may be referred to as a second embodiment of the photosensitive composition of the present invention.
  • “(I) (WA) a compound having a weakly acidic group and a radically polymerizable group” may be simply referred to as "(I) compound".
  • the term "radical polymerizable group” refers to a group to which a methyl radical can be added at room temperature and which generates another radical when the methyl radical is added.
  • a method of generating methyl radicals at room temperature includes a method of irradiating a photopolymerization initiator having an acetyloxime ester structure with actinic rays (radiation). Another method for detecting radicals generated when methyl radicals are added is electron spin resonance analysis.
  • a composition in which a compound having a radically polymerizable group and a photopolymerization initiator having an acetyloxime ester structure are dissolved in a solvent is irradiated with actinic rays, and the presence or absence of changes in appearance such as increase in viscosity or gelation or film formation before and after irradiation with actinic rays is mentioned.
  • Actinic rays include, for example, visible light, ultraviolet rays, electron beams, and X-rays.
  • another radical generated when the methyl radical is added to the radically polymerizable group is preferably capable of being added to another radically polymerizable group. Moreover, when it is added to still another radically polymerizable group, it is preferable to similarly generate another radical.
  • Another radical generated when a methyl radical is added to a radically polymerizable group is preferably a carbon radical, an oxygen radical, a nitrogen radical, or a sulfur radical, more preferably a carbon radical.
  • the photosensitive composition of the present invention has a double bond equivalent of 600 to 6,000 g/mol in total solid content.
  • the double bond equivalent of the total solid content of the photosensitive composition is 600 to 6,000 g/mol, the effect of improving the sensitivity during exposure becomes remarkable.
  • the effect of improving the reliability of the light-emitting element in the display device becomes remarkable.
  • the mask bias tends to be narrow.
  • the double bond equivalent in the total solid content of the photosensitive composition to a specific range
  • the double bond group possessed by the resin etc. in the photosensitive composition and the aromatic ring possessed by the (C) photosensitive agent described later It is presumed that the narrow mask bias is suppressed by the interaction, which improves the alkali solubility in the exposed area.
  • the improvement in alkali solubility caused by the (C) photosensitive agent described later does not occur, so the double bond group possessed by the resin etc. in the photosensitive composition and the (C) photosensitive agent described below have It is presumed that the ⁇ -bond stacking due to interaction with the aromatic ring becomes dominant, and the halftone-exposed area gradually loses the developed film, thereby improving the halftone workability.
  • narrow mask bias is likely to occur due to photocuring caused by radicals generated by diffracted light.
  • the double bond equivalent in the total solid content of the photosensitive composition within a specific range, the effect of photocuring due to radicals generated by diffracted light during pattern exposure can be minimized, and narrow mask bias can be suppressed. be done.
  • the gradient of the degree of photocuring with respect to the amount of exposure can be moderated, which is presumed to improve the halftone workability.
  • the double bond equivalent in the total solid content of the photosensitive composition is preferably 650 g/mol or more, more preferably 700 g/mol, from the viewpoint of suppressing narrow mask bias after development and improving halftone characteristics.
  • mol or more is more preferable, 750 g/mol or more is still more preferable, 800 g/mol or more is even more preferable, and 850 g/mol or more is particularly preferable.
  • it is preferably 900 g/mol or more, more preferably 1,000 g/mol or more.
  • the double bond equivalent in the total solid content of the photosensitive composition is preferably 3,000 g/mol or less from the viewpoint of improving the sensitivity during exposure and improving the reliability of the light-emitting element in the display device. , 500 g/mol or less, more preferably 2,000 g/mol or less, even more preferably 1,700 g/mol or less, and particularly preferably 1,500 g/mol or less.
  • the double bond equivalent is calculated from the mass of the total solid content in the photosensitive composition and the iodine value of each component having a double bond group in the photosensitive composition.
  • the iodine value is a value obtained by converting the amount of halogen that reacts with 100 g of the photosensitive composition into the mass of iodine and converting the mass of iodine into the solid content of 100 g of the photosensitive composition.
  • the unit of iodine value is gI/100g.
  • the group consisting of (A) an alkali-soluble resin, (B) a radically polymerizable compound, (C) a photosensitive agent, (E) a dispersant, (F) a compound, and (G) a cross-linking agent It is preferable that only one or more selected from have an ethylenically unsaturated double bond group, and one selected from the group consisting of (A) an alkali-soluble resin, (B) a radically polymerizable compound, and (G) a cross-linking agent.
  • At least one type has an ethylenically unsaturated double bond group
  • the photosensitive composition of the invention contains a compound having a radically polymerizable group.
  • the radically polymerizable group is preferably an ethylenically unsaturated double bond group.
  • the radically polymerizable group includes a photoreactive group, an alkenyl group having 2 to 5 carbon atoms, and More preferably, it is one or more selected from the group consisting of alkynyl groups having 2 to 5 carbon atoms.
  • the photoreactive group is preferably a styryl group, a cinnamoyl group, a maleimide group, or a (meth)acryloyl group, more preferably a (meth)acryloyl group.
  • an alkenyl group having 2 to 5 carbon atoms or an alkynyl group having 2 to 5 carbon atoms is a vinyl group, allyl group, 2-methyl-2-propenyl group, crotonyl group, 2-methyl-2-butenyl group, 3- A methyl-2-butenyl group, a 2,3-dimethyl-2-butenyl group, an ethynyl group, or a 2-propargyl group is preferable, and a vinyl group or an allyl group is more preferable.
  • an alkali-soluble resin is , preferably contains (A2) resin described later.
  • A2) Resin A resin having a radically polymerizable group.
  • the photosensitive composition of the present invention comprises (A) an alkali-soluble resin, (B) a radically polymerizable compound, (C) a photosensitive agent, (E) a dispersant, (F) a compound, and (G) a cross-linking agent, which will be described later.
  • At least one selected from the group has a radically polymerizable group, and (D) the colorant and (H) the dissolution accelerator described later preferably do not have a radically polymerizable group, (A) an alkali-soluble resin, (B) a radically polymerizable compound, and (G) one or more selected from the group consisting of a cross-linking agent having a radically polymerizable group, (C) a photosensitive agent, and (D) coloring
  • the agent, (E) the dispersant, (F) the compound, and (H) the dissolution accelerator more preferably do not have a radically polymerizable group, (A) an alkali-soluble resin and/or (B) a radically polymerizable compound has a radically polymerizable group, (C) a photosensitive agent, (D) a colorant, (E) a dispersant, (F) a compound, ( It is more preferable that G) the cross-linking agent and (H) the dissolution
  • the compound (I) is one selected from the group consisting of (A) an alkali-soluble resin, (B) a radically polymerizable compound, and (G) a cross-linking agent, which will be described later. It preferably contains more than one type, and more preferably contains (A) an alkali-soluble resin and/or (G) a cross-linking agent.
  • the (IIa) compound preferably contains one or more selected from the group consisting of (A) an alkali-soluble resin, (B) a radically polymerizable compound, (G) a cross-linking agent, and (H) a dissolution accelerator, which will be described later.
  • the (IIb) compound is selected from the group consisting of (A) an alkali-soluble resin, (B) a radically polymerizable compound, (C) a photosensitizer, (E) a dispersant, (F) a compound, and (G) a cross-linking agent, which will be described later. It preferably contains one or more selected types, and more preferably contains one or more types selected from the group consisting of (A) an alkali-soluble resin, (B) a radically polymerizable compound, and (G) a cross-linking agent.
  • a first preferred embodiment of the photosensitive composition of the present invention is a photosensitive composition that satisfies the above condition ( ⁇ ), and has a weakly acidic group equivalent in the total solid content of 400 to 6,000 g/mol. .
  • a second preferred embodiment of the photosensitive composition of the present invention is a photosensitive composition that satisfies the above condition ( ⁇ ), and has a weakly acidic group equivalent in the total solid content of 400 to 6,000 g/mol is.
  • the weakly acidic group equivalent in the total solid content of the photosensitive composition is 400 to 6,000 g/mol, the effects of suppressing narrow mask bias after development and improving halftone characteristics are obtained. become conspicuous.
  • the weakly acidic group in the weakly acidic group equivalent is the above-mentioned (WA) weakly acidic group.
  • the mask bias tends to be narrow.
  • the weakly acidic group equivalent in the total solid content of the photosensitive composition to a specific range, the exposed area is suppressed by an appropriate amount of weakly acidic groups, and at the time of pattern exposure, It is presumed that the narrow mask bias is suppressed by improving the alkali solubility of the diffracted light.
  • the mild acidity of the weakly acidic group causes gradual reduction of the developed film in the halftone exposed area, presumably improving the halftone workability.
  • a narrow mask bias is generally likely to occur due to photocuring caused by radicals generated by diffracted light.
  • the weakly acidic group equivalent in the total solid content of the photosensitive composition to a specific range, the unexposed area is suppressed by an appropriate amount of weakly acidic groups, and the exposed area It is presumed that narrow mask bias is suppressed by suppressing side etching in the deep portion of the film during alkali development.
  • the mild acidity of the weakly acidic group causes gradual reduction of the developed film in the halftone-exposed area, which is presumed to improve the halftone workability.
  • the phenolic hydroxyl group can stabilize the radicals generated by , and the phenolic hydroxyl group controls excessive photocuring in the exposed area. and from the viewpoint of improving halftone characteristics.
  • the weakly acidic group equivalent in the total solid content of the photosensitive composition is 450 g/mol from the viewpoint of improving sensitivity during exposure and improving the reliability of light-emitting elements in display devices.
  • 500 g/mol or more is more preferable, 550 g/mol or more is still more preferable, 600 g/mol or more is even more preferable, and 700 g/mol or more is particularly preferable.
  • it is preferably 750 g/mol or more, more preferably 800 g/mol or more.
  • the weakly acidic group equivalent in the total solid content of the photosensitive composition is preferably 3,000 g/mol or less from the viewpoint of suppressing residue after development, suppressing narrow mask bias after development, and improving halftone characteristics. , 500 g/mol or less, more preferably 2,000 g/mol or less, even more preferably 1,700 g/mol or less, and particularly preferably 1,500 g/mol or less.
  • the total amount of the photosensitive composition is preferably 400 to 6,000 g/mol, and the phenol equivalent or silanol equivalent is preferably 400 to 6,000 g/mol. More preferably, the phenol equivalent is 400 to 6,000 g/mol.
  • a more preferred range of the phenol equivalent, hydroxyimide equivalent, hydroxyamide equivalent, or silanol equivalent is the same as the above-mentioned preferred range of the weakly acidic group equivalent.
  • the weakly acidic group equivalent can be obtained by measuring the following weakly acidic group value.
  • Weakly acidic group value sum of phenol value, hydroxyimide value, hydroxyamide value, silanol value, 1,1-bis(trifluoromethyl)methylol value, and mercapto value.
  • the weakly acidic group equivalent is the weakly acidic group equivalent calculated from the weakly acidic group value in the total solid content of the photosensitive composition. That is, it is the weak acid group equivalent calculated from the mass of the total solid content in the photosensitive composition and the weak acid group value of each component having a weak acid group in the photosensitive composition.
  • the weakly acidic group value is a value obtained by converting the mass of potassium hydroxide that reacts with 1 g of the photosensitive composition to 1 g of the solid content of the photosensitive composition.
  • the unit of weakly acidic group value is mgKOH/g.
  • only one or more selected from the group consisting of (A) an alkali-soluble resin, (B) a radically polymerizable compound, (G) a cross-linking agent, and (H) a dissolution accelerator (WA ) preferably has a weakly acidic group, (A) only the alkali-soluble resin and / or (G) the cross-linking agent more preferably has (WA) a weakly acidic group, and (A) only the alkali-soluble resin (WA) It is more preferable to have a weakly acidic group.
  • the photosensitive composition of the present invention is a photosensitive composition from the viewpoint of improving sensitivity during exposure, suppressing narrow mask bias after development, improving halftone characteristics, and improving reliability of light-emitting elements in display devices. is preferably 400 to 1,500 g/mol, and the total solid content of the photosensitive composition is preferably 750 to 6,000 g/mol.
  • the photosensitive composition contains a plurality of resins such as (WA) a resin having a weakly acidic group and a resin having other acidic groups, centrifugation, liquid separation extraction, column chromatography, etc. It is preferable to remove the separable components in the composition by a method and then separate the respective resins by preparative GPC. It is then preferred to measure the weak acid group equivalents and other acid equivalents of each resin.
  • the photosensitive composition contains a resin having (WA) weakly acidic groups and other acidic groups, and the photosensitive composition contains two or more types of (WA) weakly acidic groups.
  • the (WA) weakly acidic group preferably contains a phenolic hydroxyl group, a hydroxyimide group, a hydroxyamide group, or a silanol group, more preferably a phenolic hydroxyl group or a silanol group. , more preferably contains a phenolic hydroxyl group.
  • the photosensitive composition of the present invention contains at least one selected from the group consisting of (A) an alkali-soluble resin, (B) a radically polymerizable compound, (G) a cross-linking agent, and (H) a dissolution accelerator, which will be described later. It preferably has a phenolic hydroxyl group, and more preferably (A) the alkali-soluble resin and/or (G) the cross-linking agent has a phenolic hydroxyl group.
  • the first aspect of the photosensitive composition of the present invention preferably contains (A) an alkali-soluble resin.
  • the (I) compound and/or (IIa) compound preferably contains (A) an alkali-soluble resin
  • the (IIa) compound contains (A) an alkali-soluble More preferably, it contains a resin.
  • the compound (I) and the compound (IIa) contain (A) an alkali-soluble resin.
  • the second aspect of the photosensitive composition of the present invention contains (A) an alkali-soluble resin.
  • the photosensitive composition of the present invention contains (A) an alkali-soluble resin, and (A) an alkali-soluble resin contains (WA) a weakly acidic group, from the viewpoint of suppressing a narrow mask bias after development and improving halftone characteristics. It is preferable to have (WA) The weakly acidic group more preferably contains a phenolic hydroxyl group.
  • the photosensitive composition of the present invention contains (A) an alkali-soluble resin, and the (A) alkali-soluble resin has (WA) a weakly acidic group
  • the photosensitive composition of the present invention is a narrow mask after development.
  • the phenol equivalent in the total solid content is 400 to 6,000 g/mol
  • the alkali-soluble resin has a phenolic hydroxyl group.
  • (A) When the alkali-soluble resin has a phenolic hydroxyl group, (C) a photosensitive agent, (D) a colorant, (E) a dispersant, and (F) a compound described later may not have a phenolic hydroxyl group.
  • the radically polymerizable compound and (H) the dissolution accelerator, which will be described later do not have a phenolic hydroxyl group.
  • the photosensitive composition of the present invention preferably contains (A) an alkali-soluble resin, and (A) the alkali-soluble resin preferably has a radically polymerizable group.
  • (A) the radically polymerizable group in the alkali-soluble resin is , a photoreactive group, an alkenyl group having 2 to 5 carbon atoms, and an alkynyl group having 2 to 5 carbon atoms.
  • the photoreactive group is more preferably a (meth)acryloyl group.
  • the alkenyl group having 2 to 5 carbon atoms or the alkynyl group having 2 to 5 carbon atoms is more preferably a vinyl group or an allyl group.
  • the photosensitive composition of the present invention provides improved sensitivity during exposure, suppression of narrow mask bias after development, improved halftone characteristics, improved reliability of light-emitting elements in display devices, improved mechanical properties when heated at low temperatures, and migration resistance.
  • an alkali-soluble resin and (B) a radically polymerizable compound described later are included, and (A) the alkali-soluble resin contains a resin having a radically polymerizable group and a resin having no radically polymerizable group. preferably.
  • the resin having no radically polymerizable group suppresses residue after development due to the alkali-soluble group or organic solvent-soluble structure, and migration suppression due to the ability to capture metal impurities and ion impurities.
  • the resin having a radically polymerizable group is considered to improve sensitivity during exposure and promote radical polymerization during heating at low temperatures. It is presumed that such functional separation in the resin will significantly improve the effect of improving a plurality of properties.
  • the photosensitive composition of the present invention when the weakly acidic group equivalent in the total solid content of the photosensitive composition is 400 to 6,000 g / mol,
  • the photosensitive composition of the present invention comprises (A) an alkali-soluble resin, (B) a radically polymerizable compound to be described later, and (C) a photosensitive agent to be described later, and (A) the alkali-soluble resin contains a radically polymerizable group. and a resin having no radically polymerizable group, and (C) the photosensitive agent preferably contains (C1) a photopolymerization initiator, which will be described later.
  • the radically polymerizable group possessed by (A) the alkali-soluble resin and (B) the radically polymerizable compound is preferably an ethylenically unsaturated double bond group.
  • the radically polymerizable group in (A) an alkali-soluble resin and (B) a radically polymerizable compound described later is a photoreactive group, an alkenyl group having 2 to 5 carbon atoms, and an alkenyl group having 2 to 5 carbon atoms. It is preferably one or more selected from the group consisting of 1 to 5 alkynyl groups.
  • the photoreactive group is more preferably a (meth)acryloyl group.
  • the alkenyl group having 2 to 5 carbon atoms or the alkynyl group having 2 to 5 carbon atoms is more preferably a vinyl group or an allyl group.
  • an alkali-soluble resin and (B) a radically polymerizable compound described later have a (meth)acryloyl group, a vinyl group, or an allyl group
  • the (D) colorant and (H) dissolution accelerator described later are It is preferable not to have a (meth) acryloyl group, a vinyl group, or an allyl group
  • the (C) photosensitive agent, (E) dispersant, and (F) compound described later contain a (meth) acryloyl group and a vinyl group. , or more preferably no allyl group.
  • the photosensitive composition of the present invention contains (A) an alkali-soluble resin from the viewpoint of suppressing narrow mask bias after development, improving halftone characteristics, and improving the reliability of light-emitting elements in display devices,
  • A) the alkali-soluble resin preferably contains one or more selected from the group consisting of the following (A1) resin, (A2) resin, and (A3) resin, and (A1) resin and/or (A3) It is more preferable to contain a resin.
  • (A1) resin (WA) having a weakly acidic group, further having a structural unit containing one or more types selected from the group consisting of an imide structure, an amide structure, an oxazole structure, and a siloxane structure, and a radically polymerizable group
  • A2 Resin Resin having a radically polymerizable group
  • A3 Resin Resin having a phenolic hydroxyl group.
  • the resin preferably contains a resin having a phenolic hydroxyl group and a radically polymerizable group.
  • the resin preferably has one or more types selected from the group consisting of an imide structure, an amide structure, an oxazole structure, and a siloxane structure in the structural units in the main chain of the resin.
  • the resin preferably has (WA) a weakly acidic group in at least one of the main chain of the resin, the side chain of the resin, and the end of the resin.
  • the resin preferably has a phenolic hydroxyl group in at least one of the main chain of the resin, the side chain of the resin and the end of the resin, and may have a phenolic hydroxyl group in a structural unit in the main chain of the resin. more preferred.
  • the (A1) resin, the (A3) resin, and the following (A2) resin are different resins.
  • (A1) resin, (A2) resin, and (A3) resin are classified into any one of them according to the following rules when each has a structure or group that constitutes a different resin. and If a certain resin can correspond to two or more of (A1) resin, (A2) resin, and (A3) resin, which resin it corresponds to is determined as follows. That is, it has a structural unit containing one or more types selected from the group consisting of an imide structure, an amide structure, an oxazole structure, and a siloxane structure (hereinafter simply referred to as a "structural unit such as an imide structure"), and a radically polymerizable group.
  • the resin corresponds to the (A1) resin. Further, when a resin having a structural unit such as an imide structure has a radically polymerizable group and does not have a phenolic hydroxyl group, the resin corresponds to (A2) resin. On the other hand, when a resin having a radical polymerizable group without a structural unit such as an imide structure has a phenolic hydroxyl group, the resin corresponds to (A3) resin. Further, when a resin having a structural unit such as an imide structure has a radically polymerizable group and further has a phenolic hydroxyl group, the resin corresponds to (A2) resin.
  • the mask bias tends to be narrow.
  • the resin (A3) having a phenolic hydroxyl group promotes alkali dissolution in the exposed area, thereby suppressing residues and improving the alkali solubility of the diffracted light during pattern exposure. It is considered that mask bias is suppressed.
  • halftone processability is improved because the unexposed area has a mild acidity of the phenolic hydroxyl group and the halftone exposed area is gradually reduced in the developed film.
  • alkali-soluble resin preferably contains (A1) resin and/or (A3) resin, and more preferably (A1) resin has a phenolic hydroxyl group.
  • narrow mask bias is likely to occur due to photocuring caused by radicals generated by diffracted light.
  • the resin (A3) having phenolic hydroxyl groups residues are suppressed in the unexposed areas due to the alkaline dissolution promoting action of the phenolic hydroxyl groups, and the phenolic hydroxyl groups remove radicals generated by diffracted light during pattern exposure.
  • the narrow mask bias is suppressed by the stabilization.
  • the phenolic hydroxyl group controls excessive photocuring in the exposed area, thereby making the gradient of the degree of photocuring relative to the amount of exposure gentle.
  • the mild acidity of the phenolic hydroxyl group causes gradual reduction of the developed film in the halftone-exposed area, which is presumed to improve the halftone workability.
  • a resin (A1) having a structural unit containing one or more types selected from the group consisting of an imide structure, an amide structure, an oxazole structure, and a siloxane structure, which are rigid skeletons, a steric Excessive photocuring in exposed areas is controlled by obstacles and inhibition of molecular motion.
  • alkali-soluble resin preferably contains (A1) resin and/or (A3) resin, and more preferably (A1) resin has a phenolic hydroxyl group.
  • the photosensitive composition of the present invention contains (A) an alkali-soluble resin, and (A) the alkali-soluble resin contains (A1) resin and/or (A3) resin
  • the photosensitive composition of the present invention is , From the viewpoint of suppressing narrow mask bias after development, improving halftone characteristics, improving reliability of light-emitting elements in display devices, improving mechanical properties when heated at low temperatures, and improving migration resistance, (A) an alkali-soluble resin ( A1) contains resin
  • (A1) resin is the following (A1-1) resin, (A1-2) resin, (A1-3) resin, (A1-4) resin, (A1-5) resin, ( It is preferable to contain one or more selected from the group consisting of A1-6) resin and (A1-7) resin.
  • (A1) resin is the following (A1-1) resin, (A1-2) resin, (A1-3) resin, (A1-4) resin, (A1-5) resin, and (A1-6) resin It is more preferable to contain one or more kinds selected from the group consisting of, and it is further preferable to contain (A1-1) resin and/or (A1-5) resin.
  • the resin may be either a single resin or a copolymer thereof.
  • the above (A1) resin has a structural unit containing an imide structure, an amide structure, an oxazole structure, or a siloxane structure, so that the effect of improving mechanical properties can be obtained.
  • these structures trap metal impurities and ion impurities that adversely affect electrical insulation, thereby suppressing ion migration and electromigration and improving migration resistance.
  • the photosensitive composition of the present invention when the phenol equivalent in the total solid content is 400 to 6,000 g/mol and (A) the alkali-soluble resin has a phenolic hydroxyl group, the photosensitive composition of the present invention (A) alkali-soluble resin preferably contains (A1) resin and/or (A3) resin, more preferably contains (A1) resin, (A1) resin and (A3) resin Containing is more preferable.
  • the photosensitive composition of the present invention when the phenol equivalent in the total solid content is 400 to 6,000 g/mol and (A) the alkali-soluble resin has a phenolic hydroxyl group, the photosensitive composition of the present invention From the viewpoint of suppressing narrow mask bias after development, improving halftone characteristics, improving reliability of light-emitting elements in display devices, improving mechanical properties when heated at low temperatures, and improving migration resistance, (A) an alkali-soluble resin is (A3) resin, wherein (A3) resin is one selected from the group consisting of the following (A3-1) resin, (A3-2) resin, (A3-3) resin, and (A3-4) resin It is preferable to contain more than one type.
  • (A3) resin more preferably contains (A3-1) resin and/or (A3-3) resin, and more preferably contains (A3-1) resin.
  • the resin may be either a single resin or a copolymer thereof.
  • the photosensitive composition of the present invention contains (A) an alkali-soluble resin from the viewpoints of improving sensitivity during exposure, improving halftone characteristics, and improving the reliability of light-emitting elements in display devices, and (A)
  • the alkali-soluble resin preferably contains (A2) resin.
  • the photosensitive composition of the present invention contains (A) an alkali-soluble resin, and (A) the alkali-soluble resin contains (A1) resin and/or (A3) resin
  • the photosensitive composition of the present invention is , From the viewpoint of improving sensitivity during exposure, suppressing narrow mask bias after development, improving halftone characteristics, improving reliability of light-emitting elements in display devices, improving mechanical properties in heating at low temperatures, and improving migration resistance, (A) It is preferable that the alkali-soluble resin further contains (A2) resin.
  • Alkali-soluble resin more preferably contains (A1) resin and (A2) resin, and more preferably contains (A1) resin, (A3) resin and (A2) resin.
  • the radically polymerizable group possessed by the resin is selected from the group consisting of a photoreactive group, an alkenyl group having 2 to 5 carbon atoms, and an alkynyl group having 2 to 5 carbon atoms, from the viewpoint of improving sensitivity during exposure.
  • a photoreactive group is preferably a styryl group, a cinnamoyl group, a maleimide group, or a (meth)acryloyl group, more preferably a (meth)acryloyl group.
  • an alkenyl group having 2 to 5 carbon atoms or an alkynyl group having 2 to 5 carbon atoms is a vinyl group, allyl group, 2-methyl-2-propenyl group, crotonyl group, 2-methyl-2-butenyl group, 3- A methyl-2-butenyl group, a 2,3-dimethyl-2-butenyl group, an ethynyl group, or a 2-propargyl group is preferable, and a vinyl group or an allyl group is more preferable.
  • (A2) resins are selected from the following (A2-a) resins and (A2-b) from the viewpoint of suppressing narrow mask bias after development, improving halftone characteristics, and improving the reliability of light-emitting elements in display devices. ) resin, (A2-c) resin, (A2-d) resin, (A2-e) resin, (A2-f) resin, (A2-g) resin, (A2-1) resin, (A2-2) It preferably contains one or more selected from the group consisting of resins and (A2-3) resins.
  • (A2) resin includes (A2-a) resin, (A2-b) resin, (A2-c) resin, (A2-d) resin, (A2-e) resin, (A2-f) resin, and ( A2-g) more preferably contains one or more selected from the group consisting of resins, (A2-a) resin, (A2-b) resin, (A2-c) resin, (A2-d) resin, It is more preferable to contain one or more selected from the group consisting of (A2-e) resin and (A2-f) resin, and containing (A2-a) resin and/or (A2-e) resin is particularly preferred.
  • the (A2) resin is selected from the group consisting of (A2-1) resin, (A2-2) resin, and (A2-3) resin from the viewpoint of improving sensitivity during exposure and improving halftone characteristics. It is more preferable to contain one or more types, and it is further preferable to contain (A2-1) resin and/or (A2-2) resin. In addition, from the viewpoint of improving sensitivity during exposure, suppressing narrow mask bias after development, improving halftone characteristics, and improving the reliability of light-emitting elements in display devices, (A2) resin is (A2-a).
  • the resin may be either a single resin or a copolymer thereof.
  • A2-a resin unsaturated group-containing polyimide
  • A2-b resin unsaturated group-containing polyimide precursor
  • A2-c resin unsaturated group-containing polybenzoxazole
  • A2-d resin unsaturated group Containing polybenzoxazole precursor
  • A2-e resin unsaturated group-containing polyamideimide
  • A2-f resin unsaturated group-containing polyamideimide precursor
  • A2-g resin unsaturated group-containing polysiloxane
  • A2- 1 Resin: polycyclic side chain-containing resin
  • A2-2 Resin: acid-modified epoxy resin
  • A2-3) Resin acrylic resin.
  • the alkali-soluble resin preferably contains the following (A3b) resin from the viewpoint of improving the sensitivity during exposure and improving the halftone properties.
  • (A3b) Resin Among (A3) resins, a resin having a phenolic hydroxyl group and a radically polymerizable group.
  • the resin has a phenolic hydroxyl group in at least one of a resin main chain, a resin side chain and a resin terminal, and radical polymerization is performed on at least one of the resin side chain and the resin terminal. It is preferable to have a functional group.
  • the (A3b) resin is a resin different from the (A1) resin and the (A2) resin.
  • the radically polymerizable group possessed by the resin is selected from the group consisting of a photoreactive group, an alkenyl group having 2 to 5 carbon atoms, and an alkynyl group having 2 to 5 carbon atoms, from the viewpoint of improving sensitivity during exposure.
  • a photoreactive group is preferably a styryl group, a cinnamoyl group, a maleimide group, or a (meth)acryloyl group, more preferably a (meth)acryloyl group.
  • an alkenyl group having 2 to 5 carbon atoms or an alkynyl group having 2 to 5 carbon atoms is a vinyl group, allyl group, 2-methyl-2-propenyl group, crotonyl group, 2-methyl-2-butenyl group, 3- A methyl-2-butenyl group, a 2,3-dimethyl-2-butenyl group, an ethynyl group, or a 2-propargyl group is preferable, and a vinyl group or an allyl group is more preferable.
  • the double bond equivalent of the resin is preferably 500 g/mol or more, more preferably 700 g/mol or more, and more preferably 1,000 g/mol or more, from the viewpoint of suppressing narrow mask bias after development and improving halftone characteristics. More preferred.
  • the double bond equivalent is preferably 3,000 g/mol or less, more preferably 2,000 g/mol or less, from the viewpoint of improving the sensitivity during exposure and improving the reliability of the light-emitting element in the display device. 1,500 g/mol or less is more preferable.
  • the (A) alkali-soluble resin preferably contains the following (A3a) resin from the viewpoint of suppressing narrow mask bias after development and improving halftone characteristics.
  • (A3a) Resin Among (A3) resins, a resin having a phenolic hydroxyl group and not having a radically polymerizable group.
  • the resin preferably has a phenolic hydroxyl group in at least one of the main chain of the resin, the side chain of the resin and the end of the resin.
  • the (A3a) resin is a resin different from the (A1) resin and the (A2) resin.
  • the photosensitive composition of the present invention has (A) an alkali It is preferable that the soluble resin contains (A3b) resin and the (A) alkali-soluble resin further contains (A3a) resin.
  • the (A1) resin and (A2) resin have an acidic group as an alkali-soluble group in at least one of the main chain of the resin, the side chain of the resin and the end of the resin.
  • the resin has (WA) weakly acidic groups as acidic groups.
  • the (A2) resin having a structural unit such as the imide structure has (WA) a weakly acidic group as an acidic group from the viewpoint of suppressing a narrow mask bias after development and improving halftone characteristics. is preferred.
  • (A1) resin and (A2) resin preferably have a carboxy group, a carboxylic anhydride group, or a sulfonic acid group as an acidic group from the viewpoint of suppressing residue after development. It is more preferable to have a physical group.
  • the (A1) resin and (A2) resin preferably have a (WA) weakly acidic group as an acidic group, and further have a carboxy group, a carboxylic anhydride group, or a sulfonic acid group.
  • the (A1) resin and the (A2) resin are an alkali-soluble resin and an organic solvent-soluble resin.
  • Alkali-soluble resin refers to a resin that is soluble in an alkaline developer.
  • An organic solvent-soluble resin is a resin that is soluble in an organic solvent developer.
  • the acid equivalent of the resin is preferably 200 g/mol or more, more preferably 250 g/mol or more, and 300 g/mol, from the viewpoint of improving the sensitivity during exposure and improving the reliability of the light-emitting element in the display device.
  • the above is more preferable.
  • the acid equivalent is preferably 600 g/mol or less, more preferably 500 g/mol or less, and even more preferably 450 g/mol or less, from the viewpoints of suppressing residue after development, suppressing narrow mask bias after development, and improving halftone characteristics. preferable.
  • the weakly acidic group equivalent of (A1) resin is preferably within a specific range, and the phenol equivalent, hydroxyimide equivalent, hydroxyamide equivalent, or silanol equivalent of (A1) resin is more preferably within a specific range, ( A1) It is more preferable that the phenol equivalent or silanol equivalent of the resin is within a specific range, and it is particularly preferable that the phenol equivalent of (A1) the resin is within a specific range.
  • the specific ranges of the weakly acidic group equivalent, phenol equivalent, hydroxyimide equivalent, hydroxyamide equivalent, and silanol equivalent are the same as the preferred ranges of the acid equivalent described above.
  • the acid equivalent of the resin is preferably 300 g/mol or more, more preferably 350 g/mol or more, and 400 g/mol, from the viewpoint of improving the sensitivity during exposure and improving the reliability of the light-emitting element in the display device.
  • the above is more preferable.
  • the acid equivalent is preferably 700 g/mol or less, more preferably 600 g/mol or less, and even more preferably 550 g/mol or less, from the viewpoints of suppressing residue after development, suppressing narrow mask bias after development, and improving halftone characteristics. preferable.
  • the weakly acidic group equivalent of the resin is preferably within a specific range, and the phenol equivalent, hydroxyimide equivalent, hydroxyamide equivalent, or silanol equivalent of the (A2) resin is more preferably within a specific range, ( A2) It is more preferable that the phenol equivalent or silanol equivalent of the resin is within a specific range, and it is particularly preferable that the phenol equivalent of (A2) the resin is within a specific range.
  • the specific ranges of the weakly acidic group equivalent, phenol equivalent, hydroxyimide equivalent, hydroxyamide equivalent, and silanol equivalent are the same as the preferred ranges of the acid equivalent described above.
  • the resin has a phenolic hydroxyl group.
  • the resin preferably has at least one of a structural unit having a phenolic hydroxyl group and a terminal structure having a phenolic hydroxyl group.
  • the (A3) resin further includes a hydroxyimide group, a hydroxyamide group, a silanol group, a 1,1-bis(trifluoromethyl)methylol group, or a It is also preferred to have a mercapto group.
  • the resin (A3) preferably has a carboxy group, a carboxylic anhydride group, or a sulfonic acid group from the viewpoint of suppressing residue after development, and more preferably has a carboxy group or a carboxylic anhydride group. preferable.
  • the acid equivalent of the resin is preferably 70 g/mol or more, more preferably 80 g/mol or more, and 90 g/mol, from the viewpoint of improving the sensitivity during exposure and improving the reliability of the light-emitting element in the display device.
  • the above is more preferable.
  • the acid equivalent is preferably 450 g/mol or less, more preferably 350 g/mol or less, and even more preferably 300 g/mol or less, from the viewpoints of suppressing residue after development, suppressing narrow mask bias after development, and improving halftone characteristics.
  • the weakly acidic group equivalent of (A3) resin is preferably within a specific range, and the phenol equivalent of (A2) resin is more preferably within a specific range. Preferred specific ranges for the weakly acidic group equivalent weight or phenol equivalent weight are the same as the preferred ranges for the acid equivalent weight described above.
  • polyimide and polyimide precursor The (A1-1) resin and (A2-a) resin, which are polyimides, will be collectively described below. Similarly, (A1-2) resin and (A2-b) resin, which are polyimide precursors, will be collectively described.
  • polyimide precursors include resins obtained by reacting a tetracarboxylic acid or a corresponding tetracarboxylic dianhydride with a diamine or diisocyanate compound.
  • polyimide precursors include polyamic acid, polyamic acid ester, polyamic acid amide, and polyisoimide.
  • Polyimides include, for example, resins obtained by dehydrating and ring-closing a polyimide precursor by heating or reacting with a catalyst.
  • Polyimides and polyimide precursors may be resins that are copolymers with polyamides, which are obtained by further using dicarboxylic acids or corresponding dicarboxylic acid activated diesters in reactions for synthesizing resins.
  • the polyimide preferably has a structural unit represented by the general formula (1) from the viewpoint of narrow mask bias suppression after development and improvement of halftone characteristics.
  • the content ratio of the structural unit represented by general formula (1) to the total structural units in the polyimide is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and even more preferably 70 to 100 mol%.
  • the polyimide precursor preferably has a structural unit represented by the general formula (3) from the viewpoint of narrow mask bias suppression after development and improvement of halftone characteristics.
  • the content ratio of the structural unit represented by general formula (3) in the total structural units in the polyimide precursor is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and even more preferably 70 to 100 mol%.
  • R 1 and R 9 each independently represent a tetravalent to decavalent organic group.
  • R 2 and R 10 each independently represent a divalent to decavalent organic group.
  • R 3 , R 4 and R 13 each independently represent a phenolic hydroxyl group, a sulfonic acid group, a mercapto group, or a substituent represented by general formula (7) or general formula (8).
  • R 11 represents a substituent represented by general formula (7) or general formula (8).
  • R12 represents a phenolic hydroxyl group, a sulfonic acid group, or a mercapto group.
  • R 3 or R 4 represents a phenolic hydroxyl group
  • the structure in R 1 or the structure in R 2 that bonds to the phenolic hydroxyl group represents an aromatic structure.
  • R 12 or R 13 represents a phenolic hydroxyl group
  • the structure in R 9 or the structure in R 10 that bonds to the phenolic hydroxyl group represents an aromatic structure.
  • R 1 , R 9 , R 2 and R 10 each independently represent an aliphatic structure having 2 to 20 carbon atoms, an alicyclic structure having 4 to 20 carbon atoms, It preferably has a formula structure or an aromatic structure with 6 to 30 carbon atoms.
  • q is preferably an integer of 1-8.
  • v is preferably an integer of 1-8.
  • R 1 and R 9 each independently represent an acid monomer residue.
  • R 2 and R 10 each independently represent an amine monomer residue.
  • the aliphatic structures, alicyclic structures, and aromatic structures described above may have heteroatoms, and may be unsubstituted or substituted.
  • R 28 to R 30 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an acyl group having 2 to 6 carbon atoms, or 6 carbon atoms. represents an aryl group of -15.
  • R 28 to R 30 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 4 carbon atoms, or 6 carbon atoms. ⁇ 10 aryl groups are preferred.
  • the alkyl groups, acyl groups, and aryl groups described above may have heteroatoms and may be unsubstituted or substituted.
  • R 11 in the structural unit represented by general formula (3) is a substituent represented by general formula (7)
  • the structural unit in which R 28 is a hydrogen atom is amic acid called a structural unit.
  • R 28 is an alkyl group having 1 to 10 carbon atoms
  • a structural unit that is an acyl group or an aryl group having 6 to 15 carbon atoms is referred to as an amic acid ester structural unit.
  • a structural unit represented by general formula (3) in which R 11 is a substituent represented by general formula (8) is referred to as an amic acid amide structural unit.
  • the polyimide precursor preferably has an amic acid ester structural unit and/or an amic acid amide structural unit from the viewpoint of suppressing narrow mask bias after development and improving halftone characteristics.
  • a polyimide precursor having an amic acid ester structural unit and/or an amic acid amide structural unit part of the carboxy groups, which are tetracarboxylic acid residues and/or tetracarboxylic acid derivative residues, are esterified and/or amide Examples include resins obtained by converting
  • the polyimide precursor may have an imide ring-closed structural unit in which a part of the amic acid structural unit, the amic acid ester structural unit, or the amic acid amide structural unit is imide ring-closed.
  • the total content ratio of the amic acid ester structural unit and the amic acid amide structural unit in the total content ratio of the amic acid structural unit, the amic acid ester structural unit, the amic acid amide structural unit, and the imide ring-closing structural unit is From the viewpoint of suppressing a narrow mask bias and improving halftone characteristics, the content is preferably 10 mol % or more, more preferably 30 mol % or more, and even more preferably 50 mol % or more.
  • the total content ratio of the amic acid ester structural unit and the amic acid amide structural unit is preferably 100 mol % or less, more preferably 90 mol % or more, and even more preferably 80 mol % or more, from the viewpoint of suppressing residue after development.
  • polybenzoxazole precursor ⁇ (A) Alkali-soluble resin; polybenzoxazole precursor, and polybenzoxazole>
  • the (A1-3) resin and (A2-c) resin, which are polybenzoxazoles, will be collectively described below.
  • (A1-4) resin and (A2-d) resin, which are polybenzoxazole precursors will be collectively described.
  • Examples of polybenzoxazole precursors include resins obtained by reacting a dicarboxylic acid or a corresponding dicarboxylic acid activated diester with a diamine such as a bisaminophenol compound.
  • Other examples of polybenzoxazole precursors include, for example, polyhydroxyamides.
  • polybenzoxazole examples include resins obtained by dehydrating and ring-closing a polybenzoxazole precursor by heating or reacting with a catalyst.
  • Polybenzoxazole and polybenzoxazole precursors may be resins that are copolymers with polyamide, which are obtained by further using diamine or diisocyanate compounds in the reaction for synthesizing resins.
  • the polybenzoxazole preferably has a structural unit represented by general formula (2) from the viewpoint of narrow mask bias suppression after development and improvement of halftone characteristics.
  • the content ratio of the structural unit represented by general formula (2) in the total structural units in the polybenzoxazole is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, even more preferably 70 to 100 mol%.
  • the polybenzoxazole precursor preferably has a structural unit represented by general formula (4) from the viewpoint of narrow mask bias suppression after development and improvement of halftone characteristics.
  • the content ratio of the structural unit represented by the general formula (4) in the total structural units in the polybenzoxazole precursor is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and further 70 to 100 mol%. preferable.
  • R 5 and R 14 each independently represent a divalent to decavalent organic group.
  • R 6 and R 15 each independently represent a tetravalent to decavalent organic group having an aromatic structure.
  • R 7 , R 8 and R 16 each independently represent a phenolic hydroxyl group, a sulfonic acid group, a mercapto group, or a substituent represented by the general formula (7) or general formula (8) described above.
  • R 17 represents a phenolic hydroxyl group.
  • R 18 represents a sulfonic acid group, a mercapto group, or a substituent represented by general formula (7) or general formula (8) described above.
  • R7 or R8 represents a phenolic hydroxyl group
  • the structure in R5 or the structure in R6 that bonds to the phenolic hydroxyl group represents an aromatic structure.
  • R 16 represents a phenolic hydroxyl group
  • the structure in R 14 that bonds to the phenolic hydroxyl group represents an aromatic structure.
  • the structure in R15 that bonds to R17 represents an aromatic structure.
  • R 5 , R 14 , R 6 and R 15 each independently represent an aliphatic structure having 2 to 20 carbon atoms, an alicyclic structure having 4 to 20 carbon atoms, It preferably has a formula structure or an aromatic structure with 6 to 30 carbon atoms. s is preferably an integer of 1-6.
  • R5 and R14 each independently represent an acid monomer residue.
  • R6 and R15 each independently represent an amine monomer residue.
  • the aliphatic structures, alicyclic structures, and aromatic structures described above may have heteroatoms, and may be unsubstituted or substituted.
  • polyamideimide and polyamideimide precursor The (A1-5) resin, (A1-6) resin, (A2-e) resin, and (A2-f) resin, which are polyamideimides or polyamideimide precursors, are collectively described below.
  • Polyamideimide precursors include, for example, resins obtained by reacting tricarboxylic acids or corresponding tricarboxylic acid anhydrides with diamines or diisocyanate compounds.
  • Polyamideimides include, for example, resins obtained by dehydrating and ring-closing a polyamideimide precursor by heating or reacting with a catalyst.
  • the polyamideimide and the polyamideimide precursor may be a resin that is a copolymer with a polyamide obtained by further using a dicarboxylic acid or a corresponding dicarboxylic acid activated diester in the reaction for synthesizing the resin.
  • the polyamideimide preferably has a structural unit represented by general formula (5).
  • the content ratio of the structural unit represented by general formula (5) to the total structural units in the polyamideimide is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and even more preferably 70 to 100 mol%.
  • the polyamideimide precursor preferably has a structural unit represented by general formula (6) from the viewpoint of suppressing narrow mask bias after development and improving halftone characteristics.
  • the content ratio of the structural unit represented by general formula (6) in the total structural units in the polyamideimide precursor is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and even more preferably 70 to 100 mol%. .
  • R 19 and R 23 each independently represent a trivalent to decavalent organic group.
  • R 20 and R 24 each independently represent a divalent to decavalent organic group.
  • R 21 , R 22 and R 27 each independently represent a phenolic hydroxyl group, a sulfonic acid group, a mercapto group, or a substituent represented by the general formula (7) or general formula (8) described above.
  • R 25 represents a substituent represented by general formula (7) or general formula (8).
  • R26 represents a phenolic hydroxyl group, a sulfonic acid group, or a mercapto group.
  • R 21 or R 22 represents a phenolic hydroxyl group
  • the structure in R 19 or R 20 that bonds to the phenolic hydroxyl group represents an aromatic structure.
  • R 26 or R 27 represents a phenolic hydroxyl group
  • the structure in R 23 or R 24 that bonds to the phenolic hydroxyl group represents an aromatic structure.
  • R 19 , R 23 , R 20 and R 24 each independently represent an aliphatic structure having 2 to 20 carbon atoms, an alicyclic structure having 4 to 20 carbon atoms, It preferably has a formula structure or an aromatic structure with 6 to 30 carbon atoms.
  • n is preferably an integer of 1-8.
  • b is preferably an integer of 1-8.
  • R 19 and R 23 each independently represent an acid monomer residue.
  • R 20 and R 24 each independently represent an amine monomer residue.
  • the aliphatic structures, alicyclic structures, and aromatic structures described above may have heteroatoms, and may be unsubstituted or substituted.
  • Polyimides, polyimide precursors, polybenzoxazoles, polybenzoxazole precursors, polyamideimides, and polyamideimide precursors improve sensitivity during exposure, suppress narrow mask bias after development, And from the viewpoint of improving halftone characteristics, it is preferable to have a structural unit having a fluorine atom.
  • exposure means irradiation with actinic rays (radiation), and examples thereof include irradiation with visible light, ultraviolet rays, electron beams, X-rays, and the like.
  • exposure refers to irradiation with actinic rays (radiation).
  • a structural unit derived from a carboxylic acid or a structural unit derived from a carboxylic acid derivative has a fluorine atom
  • a structural unit derived from an amine or an amine derivative has a fluorine atom
  • the total content ratio of the structural unit having a fluorine atom in all structural units of each resin is preferably 10 to 100 mol%, more preferably 30 to 100 mol%, and 50 ⁇ 100 mol% is more preferred.
  • the structural unit derived from a carboxylic acid or a structural unit derived from a carboxylic acid derivative means a structural unit derived from a tetracarboxylic acid or a corresponding tetracarboxylic dianhydride, a dicarboxylic acid or a corresponding dicarboxylic acid active diester. or a structural unit derived from a tricarboxylic acid or a corresponding tricarboxylic acid anhydride.
  • structural units derived from amines or structural units derived from amine derivatives include structural units derived from diamines, structural units derived from diisocyanate compounds, structural units derived from bisaminophenol compounds, and the like.
  • each resin when only structural units derived from carboxylic acids or structural units derived from carboxylic acid derivatives have fluorine atoms, all structural units derived from carboxylic acids and all carboxylic acid derivatives
  • the total content ratio of structural units having a fluorine atom in the total structural units derived is preferably 10 to 100 mol%, more preferably 30 to 100 mol%, and even more preferably 50 to 100 mol%.
  • the total content ratio of structural units having a fluorine atom in the total of is preferably 10 to 100 mol%, more preferably 30 to 100 mol%, and even more preferably 50 to 100 mol%.
  • the polyimide resin has an acidic group as an alkali-soluble group in at least one of the main chain of the resin, the side chain of the resin and the end of the resin.
  • These resins preferably have a structural unit having an acidic group, such as a structural unit derived from a carboxylic acid having an acidic group or a structural unit derived from a diamine having an acidic group, or a terminal structure having an acidic group.
  • a resin obtained by reacting a part of the hydroxy group or the like of each resin with a polyfunctional carboxylic acid dianhydride is also preferable.
  • a resin in which an acidic group is introduced into at least one by a reaction using a catalyst is also preferable.
  • (A2) resin (A2-a) resin, (A2-b) resin, (A2-c) resin, (A2-d) resin, (A2-e) resin, and (A2-f) resin (hereinafter , “polyimide-based (A2) resin”) has a radically polymerizable group.
  • These (A2) resins are (A1-1) resin, (A1-2) resin, (A1-3) resin, (A1-4) resin, (A1-5) resin, and (A1-6) resin
  • polyimide-based (A1) resin a resin obtained by reacting a part of the acidic group of each resin with a compound having a radically polymerizable group is preferable.
  • a resin in which a radically polymerizable group is introduced into at least one of the side chains of each resin and the end of the resin by a reaction using a catalyst.
  • the compound having a radically polymerizable group is preferably an electrophilic compound having a radically polymerizable group.
  • Compounds having a radically polymerizable group are isocyanate compounds, epoxy compounds, aldehyde compounds, ketone compounds, acetate compounds, carboxylic acid compounds, carboxylic acid derivatives, halogenated alkyl compounds, azide compounds, from the viewpoint of reactivity and compound usability.
  • Alkyl compounds, sulfonate alkyl compounds, cyanated alkyl compounds, or alcohol compounds are preferred. These compounds also preferably have a urea bond or a urethane bond.
  • alcohol compounds having a radically polymerizable group examples include 2-hydroxyethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 4-hydroxyhexyl (meth)acrylate, glycerol di(meth)acrylate, trimethylolpropane di(meth)acrylate, ditrimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol penta(meth)acrylate, or trispentaerythritol hepta(meth)acrylate.
  • the radical polymerizable group is one selected from the group consisting of groups represented by any of general formulas (51), (52), (53), (54) and (55). More than one type is preferred.
  • X 21 to X 24 each independently represent an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 4 to 10 carbon atoms, or an arylene group having 6 to 15 carbon atoms. represents a group.
  • X 25 represents a divalent to hexavalent organic group.
  • X 26 represents a direct bond or a divalent to hexavalent organic group.
  • R 231 to R 252 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • a, b, c, d, and e each independently represent 0 or 1;
  • f and g each independently represent an integer of 1 to 5;
  • X 25 is preferably a divalent to hexavalent aliphatic group, more preferably a divalent to hexavalent alkylene group having 1 to 10 carbon atoms.
  • X 26 is preferably a direct bond or a divalent to hexavalent aliphatic group, more preferably a divalent to hexavalent alkylene group having 1 to 10 carbon atoms.
  • the alkyl group, aryl group, alkylene group, cycloalkylene group, and arylene group described above may have a heteroatom and may be unsubstituted or substituted.
  • the double bond equivalent of the polyimide-based (A2) resin described above is preferably 200 g/mol or more, more preferably 400 g/mol or more, more preferably 500 g/mol, from the viewpoint of suppressing narrow mask bias after development and improving halftone characteristics. mol or more is more preferable, 700 g/mol or more is even more preferable, and 1,000 g/mol or more is particularly preferable.
  • the double bond equivalent is preferably 3,000 g/mol or less, more preferably 2,000 g/mol or less, from the viewpoint of improving the sensitivity during exposure and improving the reliability of the light-emitting element in the display device. 1,500 g/mol or less is more preferable.
  • the structural unit possessed by the polyimide-based resin is a structural unit having an aromatic group, such as a structural unit derived from an aromatic carboxylic acid or a structural unit derived from an aromatic diamine, from the viewpoint of improving the reliability of a light-emitting element in a display device. is also preferred.
  • a structural unit having a silyl group or a siloxane bond such as a structural unit derived from siliconediamine, or a structural unit having an oxyalkylene skeleton, such as a structural unit derived from oxyalkylenediamine.
  • the weight average molecular weight (hereinafter, "Mw") of the polyimide resin is measured by gel permeation chromatography (hereinafter, "GPC") from the viewpoint of improving the reliability of the light-emitting element in the display device, and is converted to polystyrene.
  • Mw is preferably 100,000 or less, more preferably 50,000 or less, even more preferably 30,000 or less, and 20,000 or less from the viewpoint of suppressing residue after development and reducing the taper of the pattern shape.
  • a polyimide resin can be synthesized by a known method.
  • Tetracarboxylic acids, tricarboxylic acids, dicarboxylic acids, and derivatives thereof, and diamines, bisaminophenol compounds, monoamines, and derivatives thereof used for synthesizing each resin include, for example, International Publication No. WO 2017/057281 Or a compound described in International Publication No. 2017/159876.
  • polysiloxane ⁇ (A) Alkali-soluble resin; polysiloxane>
  • the (A1-7) resin and (A2-g) resin, which are polysiloxanes, will be collectively described below.
  • Examples of polysiloxane include resins obtained by hydrolyzing at least one selected from the group consisting of trifunctional organosilane, tetrafunctional organosilane, difunctional organosilane, and monofunctional organosilane, followed by dehydration condensation. be done.
  • Polysiloxane is a trifunctional organosilane unit represented by the general formula (9) from the viewpoint of narrow mask bias suppression after development, improvement of halftone characteristics, and improvement of reliability of light-emitting elements in display devices. / Or it preferably has a tetrafunctional organosilane unit represented by the general formula (10).
  • R 41 represents a hydrogen atom or a monovalent organic group.
  • * 1 to * 3 each independently represent a bonding point in the resin.
  • R 41 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a halogenated group having 1 to 10 carbon atoms.
  • An alkyl group, a halogenated cycloalkyl group having 4 to 10 carbon atoms, or a halogenated aryl group having 6 to 15 carbon atoms is preferred.
  • alkyl group, cycloalkyl group, aryl group, halogenated alkyl group, halogenated cycloalkyl group, and halogenated aryl group described above may have a heteroatom and may be unsubstituted or substituted. I don't mind.
  • the content ratio of the trifunctional organosilane unit represented by the general formula (9) in the polysiloxane is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, more preferably 70 to 100 mol% in terms of Si atom mol. preferable.
  • the trifunctional organosilane unit is preferably an organosilane unit having an epoxy group.
  • the content ratio of the tetrafunctional organosilane unit represented by the general formula (10) in the polysiloxane is preferably 1 mol % or more, more preferably 5 mol % or more in terms of Si atomic mol ratio, from the viewpoint of suppressing residue after development. , more preferably 10 mol % or more.
  • the content ratio of the tetrafunctional organosilane unit represented by the general formula (10) is preferably 40 mol % or less, more preferably 30 mol % or less, and 20 mol in Si atomic mol ratio from the viewpoint of reducing the taper of the pattern shape. % or less is more preferable.
  • Polysiloxane has an acidic group as an alkali-soluble group in at least one of the main chain of the resin, the side chain of the resin and the terminal of the resin.
  • Polysiloxane is preferably a resin having an organosilane unit having an acidic group.
  • a resin obtained by reacting a part of the hydroxy group or the like of the resin with a polyfunctional carboxylic acid dianhydride is also preferable, and at least one of the main chain of the resin, the side chain of the resin and the end of the resin
  • resins into which acidic groups have been introduced by reaction using a catalyst are also preferred.
  • Resin (A2-g) resin has a radically polymerizable group.
  • the resin (A2-g) is preferably a resin having an organosilane unit having a radically polymerizable group.
  • a resin obtained by reacting a part of the acidic group of the resin with a compound having a radically polymerizable group is also preferable, and at least one of the side chain of the resin and the terminal of the resin uses a catalyst. Resins into which radically polymerizable groups have been introduced by reaction are also preferred.
  • the double bond equivalent of the resin is preferably 500 g/mol or more, more preferably 700 g/mol or more, and 1,000 g/mol, from the viewpoints of suppressing narrow mask bias after development and improving halftone characteristics. The above is more preferable.
  • the double bond equivalent is preferably 3,000 g/mol or less, more preferably 2,000 g/mol or less, from the viewpoint of improving the sensitivity during exposure and improving the reliability of the light-emitting element in the display device. 1,500 g/mol or less is more preferable.
  • the structural unit possessed by the polysiloxane is preferably a bifunctional organosilane unit or a monofunctional organosilane unit from the viewpoint of reducing the taper of the pattern shape.
  • an organosilane unit having an aromatic group is also preferable from the viewpoint of improving the reliability of a light-emitting element in a display device.
  • Each organosilane unit can be in either regular or random arrangement. Regular arrangements include, for example, alternating copolymerization, periodic copolymerization, block copolymerization, or graft copolymerization. Irregular sequences include, for example, random copolymerization.
  • each organosilane unit may be arranged two-dimensionally or three-dimensionally. A two-dimensional arrangement includes, for example, a linear arrangement. Examples of the three-dimensional array include a ladder-like, cage-like, or mesh-like arrangement.
  • Mw of polysiloxane is preferably 500 or more, more preferably 1,000 or more, in terms of polystyrene measured by GPC.
  • Mw is preferably 50,000 or less, more preferably 10,000 or less, from the viewpoint of suppressing residue after development and reducing the taper of the pattern shape.
  • Polysiloxane can be synthesized by a known method. Examples of organosilanes include compounds described in International Publication No. 2017/057281 or International Publication No. 2017/159876.
  • polycyclic side chain-containing resin (A2-1) is described below.
  • polycyclic side chain-containing resins include resins obtained by the following (1-a2-1) to (6-a2-1). If necessary, the polyfunctional alcohol compound may be further reacted in any reaction step.
  • (1-a2-1) A resin obtained by reacting a compound obtained by reacting a polyfunctional phenol compound and a polyfunctional carboxylic acid dianhydride with an epoxy compound.
  • (2-a2-1) A resin obtained by reacting a polyfunctional carboxylic acid dianhydride with a compound obtained by reacting a polyfunctional phenol compound and an epoxy compound.
  • (3-a2-1) A resin obtained by reacting a compound obtained by reacting a polyfunctional alcohol compound containing a cyclic skeleton and a polyfunctional carboxylic acid dianhydride with an epoxy compound.
  • (4-a2-1) A resin obtained by reacting a polyfunctional carboxylic acid dianhydride with a compound obtained by reacting a polyfunctional alcohol compound containing a cyclic skeleton with an epoxy compound.
  • (5-a2-1) A resin obtained by reacting a compound obtained by reacting a polyfunctional epoxy compound and a polyfunctional carboxylic acid compound with an epoxy compound.
  • (6-a2-1) A resin obtained by reacting a compound obtained by reacting a polyfunctional epoxy compound and a carboxylic acid compound with a polyfunctional carboxylic acid dianhydride.
  • a polycyclic side chain-containing resin has a structure in which a main chain and a bulky side chain having a cyclic skeleton are connected by one atom in the structural unit of the resin. From the viewpoint of suppressing narrow mask bias after development and improving halftone characteristics, it is preferable to have a structural unit represented by general formula (41).
  • X 41 and X 42 each independently represent a direct bond or a substituent represented by general formula (42) or (43).
  • Y 41 represents a trivalent to tetravalent organic group which is a carboxylic acid residue or a carboxylic acid derivative residue.
  • W1 represents an organic group having at least two aromatic groups.
  • R 101 and R 102 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 103 and R 104 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or represents an organic group having a radically polymerizable group.
  • R 105 and R 106 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an organic group having a radically polymerizable group.
  • * 1 and * 2 each independently represent a bonding point with W1 in general formula (41) or a bonding point with a carbon atom.
  • * 3 and * 4 each independently represent a bonding point with an oxygen atom in general formula (41).
  • Y 41 is a tri- to tetravalent organic having an aliphatic structure having 2 to 20 carbon atoms, an alicyclic structure having 4 to 20 carbon atoms, or an aromatic structure having 6 to 30 carbon atoms. groups are preferred.
  • W 1 is represented by any one of the general formulas (44) to (49) from the viewpoint of suppressing the narrow mask bias after development, improving the halftone characteristics, and improving the reliability of the light-emitting element in the display device. is preferred.
  • R 103 and R 104 are each independently preferably a hydrogen atom or an organic group having a radically polymerizable group.
  • the organic group having a radically polymerizable group in R 103 to R 106 is preferably a (meth)acryloyl group or a substituent represented by general formula (50).
  • the alkyl groups, aliphatic structures, alicyclic structures, and aromatic structures described above may have heteroatoms and may be unsubstituted or substituted.
  • X 43 to X 52 each independently represent a monocyclic or condensed polycyclic hydrocarbon ring.
  • Y 43 and Y 53 each independently represent a direct bond, a carbon atom, a nitrogen atom, an oxygen atom, or a sulfur atom.
  • R 107 to R 117 each independently represent a halogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 118 to R 124 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • a, b, c, and d each independently represent an integer of 0 to 4; e and f each independently represent an integer of 0 to 5; g, h, and i each independently represent an integer of 0 to 4; j and k each independently represents an integer of 0 to 3; l is 0 when Y 43 is a direct bond, an oxygen atom, or a sulfur atom. l is 1 when Y 43 is a nitrogen atom. l is 2 when Y 43 is a carbon atom. m is 0 when Y 53 is a direct bond, an oxygen atom, or a sulfur atom. m is 1 when Y 53 is a nitrogen atom; m is 2 when Y 53 is a carbon atom.
  • * 1 to * 6 each independently represent a bonding point with X 41 in the general formula (47) or a bonding point with an oxygen atom.
  • * 7 to * 12 each independently represent a bonding point with X42 in the general formula (47) or a bonding point with an oxygen atom.
  • X 43 to X 52 are each independently preferably a monocyclic or condensed polycyclic hydrocarbon ring having 6 to 15 carbon atoms.
  • Y 43 and Y 53 are each independently preferably a direct bond or an oxygen atom.
  • the alkyl groups, cycloalkyl groups, aryl groups, and monocyclic or condensed polycyclic aromatic hydrocarbon rings described above may have heteroatoms and may be unsubstituted or substituted. I do not care.
  • X 54 represents a direct bond, an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 4 to 10 carbon atoms, or an arylene group having 6 to 15 carbon atoms.
  • R 125 represents a vinyl group, an allyl group, a crotonyl group, a styryl group, a cinnamoyl group, a maleimide group, or a (meth)acryloyl group.
  • R 126 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a carboxylic acid derivative residue having a carboxy group.
  • the alkylene group, cycloalkylene group, and arylene group described above may have a heteroatom and may be unsubstituted or substituted.
  • the polycyclic side chain-containing resin is a structural unit having a condensed polycyclic structure or a condensed It preferably has a structural unit having a polycyclic heterocyclic structure.
  • the condensed polycyclic structure or condensed polycyclic heterocyclic structure is preferably a fluorene skeleton, a xanthene skeleton, or an isoindolinone skeleton.
  • Y 43 is a direct bond or an oxygen atom
  • a structural unit having a fluorene skeleton or a structure having a xanthene skeleton have units.
  • W 1 is the general formula (48)
  • it has a structural unit having an isoindolinone skeleton.
  • the polycyclic side chain-containing resin has an acidic group as an alkali-soluble group in at least one of the main chain of the resin, the side chain of the resin and the end of the resin.
  • the polycyclic side chain-containing resin preferably has at least one of a structural unit derived from a polyfunctional carboxylic acid compound, a structural unit derived from a polyfunctional carboxylic acid dianhydride, and a terminal structure having an acidic group.
  • a resin obtained by reacting a part of the hydroxy group or the like of the resin with a polyfunctional carboxylic acid dianhydride is also preferable, and at least one of the main chain of the resin, the side chain of the resin and the end of the resin Also preferred are resins into which acidic groups have been introduced by reaction using a catalyst.
  • Resin (A2-1) has a radically polymerizable group.
  • the resin comprises at least one structural unit derived from an epoxy compound having a radically polymerizable group, a structural unit derived from a carboxylic acid compound having a radically polymerizable group, and a terminal structure having a radically polymerizable group. preferably have one.
  • a resin obtained by reacting a part of the acidic group of the resin with a compound having a radically polymerizable group is also preferable, and at least one of the side chain of the resin and the terminal of the resin uses a catalyst. Resins into which radically polymerizable groups have been introduced by reaction are also preferred.
  • the double bond equivalent of the resin is preferably 300 g/mol or more, more preferably 400 g/mol or more, and more preferably 500 g/mol or more, from the viewpoint of suppressing narrow mask bias after development and improving halftone characteristics. More preferred.
  • the double bond equivalent is preferably 1,500 g/mol or less, more preferably 1,000 g/mol or less, from the viewpoint of improving sensitivity during exposure and improving reliability of light-emitting elements in display devices. 700 g/mol or less is more preferable.
  • the structural unit possessed by the polycyclic side chain-containing resin is derived from a structural unit derived from an aromatic polyfunctional carboxylic acid compound or from an aromatic polyfunctional carboxylic acid dianhydride, from the viewpoint of improving the reliability of a light-emitting element in a display device.
  • Structural units having aromatic groups, such as structural units are also preferred.
  • the Mw of the polycyclic side chain-containing resin is preferably 500 or more, more preferably 1,000 or more in terms of polystyrene measured by GPC, from the viewpoint of improving the reliability of light-emitting elements in display devices. On the other hand, Mw is preferably 50,000 or less, more preferably 10,000 or less, from the viewpoint of suppressing residue after development and reducing the taper of the pattern shape.
  • a polycyclic side chain-containing resin can be synthesized by a known method. Examples of phenol compounds, alcohol compounds, epoxy compounds, carboxylic anhydrides, and carboxylic acid compounds include compounds described in International Publication No. 2017/057281 or International Publication No. 2017/159876.
  • polycyclic side chain-containing resins examples include "ADEKA ARKLS” (registered trademark) WR-101 or WR-301 (both of which are manufactured by ADEKA), or "OGSOL” (registered trademark) CR-1030 (Osaka Gas Chemical Co., Ltd.).
  • the resin (A2-2), which is an acid-modified epoxy resin, is described below.
  • Acid-modified epoxy resins include, for example, resins obtained in the following (1-a2-2) to (2-a2-2). If necessary, the polyfunctional alcohol compound may be further reacted in any reaction step.
  • (1-a2-2) A resin obtained by reacting a compound obtained by reacting a polyfunctional epoxy compound and a polyfunctional carboxylic acid compound with an epoxy compound.
  • (2-a2-2) A resin obtained by reacting a compound obtained by reacting a polyfunctional epoxy compound and a carboxylic acid compound with a polyfunctional carboxylic acid dianhydride.
  • Acid-modified epoxy resin has a cyclic skeleton in the structural unit of the resin.
  • at least one type selected from the group consisting of structural units represented by any of general formulas (61), (62) and (63) It is preferred to have
  • X 61 and X 62 each independently represent an aliphatic structure having 1 to 6 carbon atoms.
  • X 63 represents an alkylene group having 1 to 6 carbon atoms.
  • W2 represents an organic group having at least one aromatic group.
  • R 141 and R 142 each independently represent a halogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • R 143 represents a halogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 144 to R 146 each independently represent a halogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, or general formula (69) represents the substituents represented.
  • R 147 represents a hydrogen atom or a substituent represented by general formula (70).
  • R 148 and R 149 each independently represent an organic group having a radically polymerizable group.
  • a and b each independently represents an integer of 0 to 10;
  • c represents an integer of 0 to 14;
  • d represents an integer of 0 to 3;
  • e and f each independently represent an integer of 0 to 4;
  • W 2 is represented by general formulas (64) to (68). ) is preferred.
  • the organic group having a radically polymerizable group in R 148 and R 149 is a (meth)acryloyl group, or a substituted group represented by general formula (72) or general formula (73) groups are preferred.
  • the above-described aliphatic structures, alkylene groups, alkyl groups, cycloalkyl groups, and aryl groups may have heteroatoms and may be unsubstituted or substituted.
  • X 64 represents an aliphatic structure having 1 to 6 carbon atoms.
  • X 65 and X 66 each independently represent a monocyclic or condensed polycyclic hydrocarbon ring.
  • Y65 represents a direct bond, a carbon atom, a nitrogen atom, an oxygen atom, or a sulfur atom.
  • R 150 represents a halogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • R 151 to R 159 each independently represents a halogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, or general formula (69) represents the substituents represented.
  • R 160 to R 162 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • R 163 to R 169 each independently represent an organic group having a radically polymerizable group.
  • i and j each independently represent an integer of 0 to 3; k is 0 when Y 65 is a direct bond, an oxygen atom, or a sulfur atom. k is 1 when Y 65 is a nitrogen atom. k is 2 when Y 65 is a carbon atom.
  • * 1 to * 5 each independently represent a bonding point with X 61 in the general formula (61) described above.
  • * 6 to * 10 each independently represent a bonding point in general formula (61) described above.
  • X 65 and X 66 are each independently preferably a monocyclic or condensed polycyclic hydrocarbon ring having 6 to 15 carbon atoms.
  • Y 65 is preferably a direct bond or an oxygen atom.
  • the organic group having a radically polymerizable group in R 163 to R 169 is preferably a (meth)acryloyl group or a substituent represented by general formula (72) or general formula (73).
  • the above-described aliphatic structures, alkyl groups, cycloalkyl groups, aryl groups, and monocyclic or condensed polycyclic aromatic hydrocarbon rings may have heteroatoms, and may be unsubstituted or substituted. It doesn't matter if it is.
  • R170 and R172 each independently represent a substituent represented by general formula (72) or general formula (73).
  • R 171 is a halogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, or represented by general formula (69) or general formula (71) represents a substituent.
  • a represents an integer of 0 to 4;
  • R 173 and R 174 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms.
  • R 175 represents a halogen atom, an alkyl group having 1 to 10 carbon atoms, or a substituent represented by general formula (69).
  • b represents an integer of 0 to 5;
  • X 67 and X 68 are each independently a direct bond, an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 4 to 10 carbon atoms, or a cycloalkylene group having 4 to 10 carbon atoms. Represents 6-15 arylene groups.
  • R 176 and R 177 each independently represent a vinyl group, allyl group, crotonyl group, styryl group, cinnamoyl group, maleimide group or (meth)acryloyl group.
  • R 178 and R 179 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a substituent represented by general formula (74).
  • X 69 is an alkylene group having 1 to 6 carbon atoms, an alkenylene group having 2 to 6 carbon atoms, a cycloalkylene group having 4 to 10 carbon atoms, a cycloalkenylene group having 4 to 10 carbon atoms, or It represents an arylene group having 6 to 15 carbon atoms.
  • X 69 is preferably a carboxylic anhydride residue.
  • the alkyl group, cycloalkyl group, aryl group, alkylene group, alkenylene group, cycloalkylene group, cycloalkenylene group, and arylene group described above may have a heteroatom and may be unsubstituted or substituted. I don't mind.
  • the acid-modified epoxy resin has a condensed polycyclic structure.
  • a structural unit having a heterocyclic structure a structural unit having a structure in which an aromatic ring skeleton and an alicyclic skeleton are directly connected, or a structural unit having a structure in which at least two aromatic ring skeletons are directly connected is preferred.
  • the condensed polycyclic structure or condensed polycyclic heterocyclic structure is preferably a naphthalene skeleton, a fluorene skeleton, or a xanthene skeleton.
  • the alicyclic skeleton is preferably a tricyclo[5.2.1.0 2,6 ]decane skeleton.
  • a structure in which at least two aromatic ring skeletons are directly linked is preferably a biphenyl skeleton.
  • W 2 is a substituent represented by any one of general formulas (65) to (67) and Y 65 is a direct bond or an oxygen atom, a structure having a naphthalene skeleton unit, a structural unit having a biphenyl skeleton, a structural unit having a fluorene skeleton, or a structural unit having a xanthene skeleton.
  • the general formula (62) described above has a structural unit having a structure in which an aromatic ring skeleton and a tricyclo[5.2.1.0 2,6 ]decane skeleton are directly linked.
  • the acid-modified epoxy resin has an acidic group as an alkali-soluble group in at least one of the main chain of the resin, the side chain of the resin and the end of the resin.
  • the acid-modified epoxy resin preferably has at least one of a structural unit derived from a polyfunctional carboxylic acid compound, a structural unit derived from a polyfunctional carboxylic acid dianhydride, and a terminal structure having an acidic group.
  • a method for producing an acid-modified epoxy resin for example, a method of obtaining a resin having a carboxy group in the resin by reacting a polyfunctional epoxy compound and a polyfunctional carboxylic acid compound, or a method of obtaining a resin having a carboxyl group in the resin, or and then reacting some hydroxy groups in the resin with the polyfunctional carboxylic acid dianhydride.
  • Another method for producing an acid-modified epoxy resin is, for example, a method of introducing an acidic group into a resin having no acidic group.
  • a method of reacting a portion of the hydroxy group of the resin with a polyfunctional carboxylic acid dianhydride, a resin main chain having no carboxy group, a resin side chain and the resin and a method of introducing an acidic group to at least one of the terminals of by a reaction using a catalyst More specifically, for example, a method of reacting a portion of the hydroxy group of the resin with a polyfunctional carboxylic acid dianhydride, a resin main chain having no carboxy group, a resin side chain and the resin and a method of introducing an acidic group to at least one of the terminals of by a reaction using a catalyst.
  • the resin comprises at least one structural unit derived from an epoxy compound having a radically polymerizable group, a structural unit derived from a carboxylic acid compound having a radically polymerizable group, and a terminal structure having a radically polymerizable group. preferably have one.
  • a resin obtained by reacting a part of the acidic group of the resin with a compound having a radically polymerizable group is also preferable, and a catalyst is used for at least one of the side chain of the resin and the end of the resin.
  • the double bond equivalent of the resin is preferably 300 g/mol or more, more preferably 400 g/mol or more, and more preferably 500 g/mol or more, from the viewpoint of suppressing narrow mask bias after development and improving halftone characteristics. More preferred.
  • the double bond equivalent is preferably 1,500 g/mol or less, more preferably 1,000 g/mol or less, from the viewpoint of improving the sensitivity during exposure and improving the reliability of the light-emitting element in the display device. 700 g/mol or less is more preferable.
  • the structural unit possessed by the acid-modified epoxy resin is a structural unit derived from an aromatic polyfunctional carboxylic acid compound or a structural unit derived from an aromatic polyfunctional carboxylic acid dianhydride, from the viewpoint of improving the reliability of a light-emitting element in a display device.
  • a structural unit having an aromatic group such as is also preferred.
  • the Mw of the acid-modified epoxy resin is preferably 500 or more, more preferably 1,000 or more in terms of polystyrene measured by GPC, from the viewpoint of improving the reliability of the light-emitting element in the display device. On the other hand, Mw is preferably 50,000 or less, more preferably 20,000 or less, from the viewpoint of suppressing residue after development and reducing the taper of the pattern shape.
  • An acid-modified epoxy resin can be synthesized by a known method. Examples of epoxy compounds, carboxylic acid anhydrides, and carboxylic acid compounds include compounds described in International Publication No. 2017/057281 or International Publication No. 2017/159876.
  • Acid-modified epoxy resins include, for example, "KAYARAD” (registered trademark) PCR-1222H, CCR-1171H, TCR-1348H, ZAR-1494H, ZFR-1401H, ZCR-1798H, ZXR-1807H, The same ZCR-6002H or the same ZCR-8001H (both manufactured by Nippon Kayaku Co., Ltd.) can be mentioned.
  • KAYARAD registered trademark
  • PCR-1222H CCR-1171H, TCR-1348H, ZAR-1494H, ZFR-1401H, ZCR-1798H, ZXR-1807H
  • ZXR-1807H The same ZCR-6002H or the same ZCR-8001H (both manufactured by Nippon Kayaku Co., Ltd.) can be mentioned.
  • the (A2-3) resin which is an acrylic resin
  • acrylic resins include resins obtained by radical copolymerization of one or more selected from the group consisting of (meth)acrylic acid derivatives, (meth)acrylic acid ester derivatives, styrene derivatives, and other copolymerization components. mentioned.
  • the acrylic resin may have a structural unit represented by general formula (81) and/or a structural unit represented by general formula (82) from the viewpoint of narrow mask bias suppression after development and improvement of halftone characteristics. preferable.
  • X 81 represents a direct bond or an alkylene group having 1 to 10 carbon atoms.
  • X 82 represents a direct bond, an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 4 to 10 carbon atoms, or an arylene group having 6 to 15 carbon atoms.
  • R 201 to R 206 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 207 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, or 4 to 4 carbon atoms. It represents a halogenated cycloalkyl group of 10 or a halogenated aryl group of 6 to 15 carbon atoms.
  • R 208 represents a vinyl group, an allyl group, a crotonyl group, a styryl group, a cinnamoyl group, a maleimide group, or a (meth)acryloyl group.
  • R 209 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a substituent represented by general formula (83).
  • X 83 is an alkylene group having 1 to 6 carbon atoms, an alkenylene group having 2 to 6 carbon atoms, a cycloalkylene group having 4 to 10 carbon atoms, a cycloalkenylene group having 4 to 10 carbon atoms, or It represents an arylene group having 6 to 15 carbon atoms.
  • X 83 is preferably a carboxylic anhydride residue.
  • it is preferred that X 81 is a direct bond and R 207 is a hydrogen atom.
  • alkyl groups, cycloalkyl groups, aryl groups, halogenated alkyl groups, halogenated cycloalkyl groups, halogenated aryl groups, alkylene groups, alkenylene groups, cycloalkylene groups, cycloalkenylene groups, and arylene groups described above have heteroatoms. It may have, and it may be either unsubstituted or substituted.
  • the acrylic resin has an acidic group as an alkali-soluble group in at least one of the main chain of the resin, the side chain of the resin and the end of the resin.
  • the acrylic resin preferably has a structural unit derived from a (meth)acrylic acid derivative or a terminal structure having an acidic group.
  • a resin obtained by reacting a part of the hydroxy group or the like of the resin with a polyfunctional carboxylic acid dianhydride is also preferable, and at least one of the main chain of the resin, the side chain of the resin and the end of the resin
  • resins into which acidic groups have been introduced by reaction using a catalyst are also preferred.
  • the resin (A2-3) which is the resin (A2), has a radically polymerizable group.
  • the resin is preferably a resin obtained by reacting a part of the acidic group of the resin with an epoxy compound having a radically polymerizable group.
  • a resin obtained by reacting an epoxy group or the like of the resin with a carboxylic acid compound or the like having a radically polymerizable group is also preferable.
  • a resin obtained by introducing a radically polymerizable group into at least one of the side chain of the resin and the end of the resin by a reaction using a catalyst is also preferable.
  • the double bond equivalent of the resin is preferably 500 g/mol or more, more preferably 700 g/mol or more, and 1,000 g/mol, from the viewpoints of suppressing narrow mask bias after development and improving halftone characteristics. The above is more preferable.
  • the double bond equivalent is preferably 4,000 g/mol or less, more preferably 3,000 g/mol or less, from the viewpoint of improving the sensitivity during exposure and improving the reliability of the light-emitting element in the display device. 2,000 g/mol or less is more preferable, and 1,500 g/mol or less is particularly preferable.
  • the structural unit of the acrylic resin has an aromatic group such as a structural unit derived from an aromatic (meth)acrylic acid ester derivative or a structural unit derived from a styrene derivative from the viewpoint of improving the reliability of a light-emitting element in a display device.
  • a structural unit is also preferred, and a structural unit having an alicyclic group such as a structural unit derived from an alicyclic (meth)acrylic acid ester derivative is also preferred.
  • the Mw of the acrylic resin is preferably 1,000 or more, more preferably 3,000 or more, in terms of polystyrene measured by GPC, from the viewpoint of improving the reliability of light-emitting elements in display devices. On the other hand, Mw is preferably 50,000 or less, more preferably 20,000 or less, from the viewpoint of suppressing residue after development and reducing the taper of the pattern shape.
  • An acrylic resin can be synthesized by a known method. Examples of (meth)acrylic acid derivatives, (meth)acrylic acid ester derivatives, styrene derivatives, and other copolymerization components include compounds described in International Publication No. 2017/057281 or International Publication No. 2017/159876. be done.
  • (A) alkali-soluble resin contains (A3) resin
  • (A3 ) resin contains one or more selected from the group consisting of (A3-1) resin, (A3-2) resin, (A3-3) resin, and (A3-4) resin
  • (A3-1) resin, (A3-2) resin, (A3-3) resin, and (A3-4) resin are the following (3x) structural units, (3y) structural units, and (3z) structural units Having one or more types selected from the group consisting of (3y) the aromatic group in the structural
  • (3x) structural unit a structural unit containing at least two phenolic hydroxyl groups
  • (3y) structural unit a structural unit containing a phenolic hydroxyl group and an aromatic group
  • (3z) structural unit a structural unit containing a phenolic hydroxyl group, and Structural unit containing two aromatic groups.
  • the aromatic group in the (3y) structural unit is an aromatic group different from the aromatic ring to which the phenolic hydroxyl group is bonded.
  • the second aromatic group in the (3z) structural unit is an aromatic group excluding the aromatic ring to which the phenolic hydroxyl group is bonded.
  • the second aromatic group is a term used to distinguish it from the aromatic group (an aromatic group other than the aromatic ring to which the phenolic hydroxyl group is bonded) in the (3y) structural unit.
  • At least one selected from the group consisting of (A3-1) resin, (A3-2) resin, (A3-3) resin, and (A3-4) resin is the above ( 3x) Structural unit, (3y) Structural unit, and (3z) It is preferable to have one or more types selected from the group consisting of structural units, (A3-1) resin, (A3-2) resin, (A3-3 ) resin and (A3-4) resin more preferably have at least one type selected from the group consisting of the above (3x) structural unit, (3y) structural unit, and (3z) structural unit.
  • the (A3) resin preferably contains one or more selected from the group consisting of the following (A3x) resin, (A3y) resin, and (A3z) resin.
  • (A3) resin more preferably contains (A3x) resin and/or (A3y) resin, and more preferably contains (A3x) resin.
  • (A3) resin preferably contains (A3x) resin and further contains (A3y) resin and/or (A3z) resin.
  • the resin may be either a single resin or a copolymer thereof.
  • A3y) resin resin having (3y) structural units
  • (A3z) resin resin having (3z) structural units.
  • the (A3x) resin is a resin containing at least two phenolic hydroxyl groups in one structural unit of the resin.
  • the (A3y) resin is a resin containing a phenolic hydroxyl group and an aromatic group in one structural unit of the resin.
  • the aromatic group is an aromatic group different from the aromatic ring to which the phenolic hydroxyl group is bonded.
  • the (A3z) resin is a resin containing a phenolic hydroxyl group in one structural unit of the resin and a second aromatic group in another structural unit of the resin.
  • the second aromatic group is an aromatic group excluding the aromatic ring to which the phenolic hydroxyl group is bonded.
  • a resin having (3x) structural units and also having (3y) structural units and/or (3z) structural units is included in (A3x) resins.
  • Resins having (3y) structural units and (3z) structural units are also included in (A3y) resins.
  • At least two phenolic hydroxyl groups in the structural unit are preferably at least two phenolic hydroxyl groups bonded to the same aromatic ring, or at least two phenolic hydroxyl groups bonded to different aromatic rings, and preferably to different aromatic rings. More preferred are at least two phenolic hydroxyl groups.
  • the aromatic group in the structural unit and the second aromatic group in the (3z) structural unit are a benzene skeleton, an isocyanuric acid skeleton, a triazine skeleton, a skeleton derived from bisphenol A, a skeleton derived from bisphenol F, or a bisphenol Skeletons derived from F are preferred.
  • the aromatic group in the structural unit (3y) and the second aromatic group in the structural unit (3z) have a condensed polycyclic structure, a condensed polycyclic heterocyclic structure, an aromatic ring skeleton, and an alicyclic skeleton. It preferably has a linked structure or a structure in which at least two aromatic ring skeletons are directly linked, and more preferably has a condensed polycyclic structure or a condensed polycyclic heterocyclic structure.
  • the condensed polycyclic structure includes naphthalene skeleton, anthracene skeleton, indane skeleton, indene skeleton, fluorene skeleton, benzoindane skeleton, benzoindene skeleton, benzofluorene skeleton, dibenzofluorene skeleton, dihydronaphthalene skeleton, tetrahydronaphthalene skeleton, dihydroanthracene skeleton, Alternatively, a dihydrophenanthrene skeleton is preferred, and a naphthalene skeleton, anthracene skeleton, fluorene skeleton, benzofluorene skeleton, and dihydroanthracene skeleton are more preferred.
  • the condensed polycyclic heterocyclic structure includes a carbazole skeleton, a dibenzofuran skeleton, a dibenzothiophene skeleton, a benzocarbazole skeleton, a naphthobenzofuran skeleton, a naphthobenzothiophene skeleton, an indole skeleton, a benzofuran skeleton, a benzothiophene skeleton, an indoline skeleton, an indolinone skeleton, and an isoindoline skeleton.
  • a linone skeleton, an acridine skeleton, a xanthene skeleton, or a thioxanthene skeleton is preferred, and a carbazole skeleton, a dibenzofuran skeleton, a benzocarbazole skeleton, an indolinone skeleton, an isoindolinone skeleton, an acridine skeleton, or a xanthene skeleton is more preferred.
  • the aromatic ring skeleton in the structure in which the aromatic ring skeleton and the alicyclic skeleton are directly linked is preferably the above aromatic group or condensed polycyclic structure.
  • the alicyclic skeleton in the structure in which the aromatic ring skeleton and the alicyclic skeleton are directly linked is a cyclopentane skeleton, a cyclohexane skeleton, a cycloheptane skeleton, a bicyclo[4.3.0]nonane skeleton, a bicyclo[5.4.0 ]undecane skeleton, bicyclo[2.2.2]octane skeleton, tricyclo[5.2.1.0 2,6 ]decane skeleton, pentacyclopentadecane skeleton, or adamantane skeleton is preferred.
  • the structure in which at least two aromatic ring skeletons are directly linked is preferably a biphenyl skeleton, a terphenyl skeleton, or a structure in which the above aromatic groups or condensed polycyclic structures are directly linked.
  • the (A3x) resin, (A3y) resin, and (A3z) resin are the above-described (A3-1) resin, (A3-2) resin, (A3-3) resin, and (A3-4) It is also preferable to use at least one selected from the group consisting of resins.
  • the resin (A3-1), which is a phenolic resin, is described below.
  • phenol resins include resins obtained by reacting a phenol compound or the like with one or more selected from the group consisting of aldehyde compounds, ketone compounds, alkoxymethyl compounds, and methylol compounds.
  • the phenolic resin preferably contains a novolac resin and/or a resole resin.
  • a novolac resin is a resin obtained by reacting in the presence of an acid catalyst.
  • a resole resin is a resin obtained by reacting in the presence of a base catalyst.
  • a structural unit in a phenolic resin refers to a repeating unit containing (I) a structure derived from a phenol compound and (II) a structure derived from an aldehyde compound, ketone compound, alkoxymethyl compound, or methylol compound.
  • the structural unit in the phenolic resin may further have (III) a structure derived from another compound.
  • phenolic resin from the viewpoint of narrow mask bias suppression after development, improvement of halftone characteristics, and improvement of reliability of light-emitting elements in display devices, general formulas (31), (32), (33), It is preferable to contain one or more selected from the group consisting of resins having a structural unit represented by any one of (34), (35), (38), (39) and (40).
  • X 31 to X 37 each independently represent an aliphatic structure having 1 to 2 carbon atoms.
  • Y 33 represents an alkylene group having 1 to 10 carbon atoms.
  • Y 35 is a direct bond, an alkylene group having 1 to 6 carbon atoms, an alkylidene group having 1 to 6 carbon atoms, a halogenated alkylene group having 1 to 6 carbon atoms, a halogenated alkylidene group having 1 to 6 carbon atoms, an aromatic group , a condensed polycyclic structure, a condensed polycyclic heterocyclic structure, a structure in which an aromatic ring skeleton and an alicyclic skeleton are directly linked, or a structure in which at least two aromatic ring skeletons are directly linked.
  • R 71 to R 82 each independently represent a halogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms. , an alkenyloxy group having 2 to 10 carbon atoms, an acyl group having 1 to 10 carbon atoms, a carboxy group, an amino group, or a group forming a ring.
  • the rings connected by a ring-forming group represent monocyclic or condensed polycyclic hydrocarbon rings.
  • R 83 to R 88 each independently represent an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a hydroxy group.
  • a represents an integer of 1 to 4;
  • b represents an integer of 1 to 5;
  • m represents an integer of 0 to 3;
  • n represents an integer of 0 to 4;
  • c represents an integer of 1 to 4;
  • o and p each independently represent an integer of 0 to 3;
  • q represents an integer of 0 to 4;
  • d represents an integer of 1 to 4;
  • r and s each independently represent an integer of 0 to 3;
  • t represents an integer of 0 to 4;
  • e represents an integer of 1 to 4;
  • f, g, v, and w each independently represents an integer of 0-4.
  • * 1 and * 2 each independently represent a bonding point in the resin.
  • Y 35 is an aromatic group, a condensed polycyclic structure, a condensed polycyclic heterocyclic structure, a structure in which an aromatic ring skeleton and an alicyclic skeleton are directly linked, or at least A structure in which two aromatic ring skeletons are directly linked is preferable, and a condensed polycyclic structure or a condensed polycyclic heterocyclic structure is more preferable.
  • the aliphatic structure, alkyl group, cycloalkyl group, aryl group, alkenyl group, alkoxy group, alkenyloxy group, acyl group, ring-forming group, alkylene group, alkylidene group, aromatic group, condensed polycyclic structure described above , condensed polycyclic heterocyclic structures, aromatic ring skeletons, and alicyclic skeletons may have heteroatoms, and may be unsubstituted or substituted.
  • a condensed polycyclic hydrocarbon ring formed by a ring-forming group is naphthalene ring, anthracene ring, pyrene ring, indane ring, indene ring, tetrahydronaphthalene ring, fluorene ring, xanthene ring, or isoindolinone ring. preferable.
  • Z 31 to Z 34 each independently represent an aliphatic structure having 1 to 2 carbon atoms.
  • W32 is an aromatic group, a condensed polycyclic structure, a condensed polycyclic heterocyclic structure, a structure in which an aromatic ring skeleton and an alicyclic skeleton are directly linked, or a structure in which at least two aromatic ring skeletons are directly linked represents
  • W 34 is a direct bond, an alkylene group having 1 to 6 carbon atoms, an alkylidene group having 1 to 6 carbon atoms, a halogenated alkylene group having 1 to 6 carbon atoms, a halogenated alkylidene group having 1 to 6 carbon atoms, an aromatic group.
  • R 91 to R 96 each independently represents a halogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms.
  • an alkenyloxy group having 2 to 10 carbon atoms an acyl group having 1 to 10 carbon atoms, a carboxy group, an amino group, or a group forming a ring.
  • the rings connected by a ring-forming group represent monocyclic or condensed polycyclic hydrocarbon rings.
  • R 97 to R 99 each independently represent an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a hydroxy group.
  • W 32 preferably has a condensed polycyclic structure or a condensed polycyclic heterocyclic structure.
  • W34 is an aromatic group, a condensed polycyclic structure, a condensed polycyclic heterocyclic structure, a structure in which an aromatic ring skeleton and an alicyclic skeleton are directly linked, or a structure in which at least two aromatic ring skeletons are directly linked is preferred, and a condensed polycyclic structure or a condensed polycyclic heterocyclic structure is more preferred.
  • W 32 and W 34 each independently represent an aromatic group, condensed polycyclic A structure, a condensed polycyclic heterocyclic structure, a structure in which an aromatic ring skeleton and an alicyclic skeleton are directly linked, or a structure in which at least two aromatic ring skeletons are directly linked is preferred.
  • the aliphatic structure, alkyl group, cycloalkyl group, aryl group, alkenyl group, alkoxy group, alkenyloxy group, acyl group, ring-forming group, alkylene group, alkylidene group, aromatic group, condensed polycyclic structure described above , condensed polycyclic heterocyclic structures, aromatic ring skeletons, and alicyclic skeletons may have heteroatoms, and may be unsubstituted or substituted.
  • a condensed polycyclic hydrocarbon ring formed by a ring-forming group is naphthalene ring, anthracene ring, pyrene ring, indane ring, indene ring, tetrahydronaphthalene ring, fluorene ring, xanthene ring, or isoindolinone ring. preferable.
  • the phenol resin has one or more types selected from the group consisting of structural units represented by any of the general formulas (31), (32), (33), (35) and (40), (A3x ) contained in the resin.
  • the phenolic resin has a structural unit represented by the general formula (34), and in the general formula (34), f and g each independently represent an integer of 1 to 4, the (A3x) resin included.
  • the phenol resin has a structural unit represented by the general formula (34) and f and g are 0 in the general formula (34), it is included in the (A3y) resin.
  • the phenol resin has a structural unit represented by general formula (38) and/or a structural unit represented by general formula (39), it is included in the (A3y) resin.
  • the content ratio of the structural unit represented by the above general formula (31) in the total structural units of the phenol resin is preferably 50 mol% or more, more preferably 60 mol% or more, and even more preferably 70 mol% or more.
  • the content ratio of the structural unit represented by the general formula (31) is preferably 100 mol % or less, more preferably 90 mol % or less.
  • the content ratio of the structural unit represented by the above general formula (32) in the total structural units of the phenol resin is preferably 50 to 100 mol%, more preferably 60 to 100 mol% or more, and even more preferably 70 to 100 mol%. .
  • the content ratio of the structural unit represented by the above general formula (33) in the total structural units of the phenol resin is preferably 5 mol% or more, more preferably 10 mol% or more, further preferably 15 mol% or more, and 20 mol% or more. is particularly preferred. On the other hand, the content ratio of the structural unit represented by the general formula (33) is preferably 60 mol % or less, more preferably 45 mol % or less.
  • the content ratio of the structural unit represented by the above general formula (34) in the total structural units of the phenol resin is preferably 50 mol% or more, more preferably 60 mol% or more, and even more preferably 70 mol% or more.
  • the content ratio of the structural unit represented by the general formula (34) is preferably 100 mol % or less, more preferably 90 mol % or less.
  • the content ratio of the structural unit represented by the above general formula (35) in the total structural units of the phenol resin is preferably 50 to 100 mol%, more preferably 60 to 100 mol% or more, and even more preferably 70 to 100 mol%.
  • the content ratio of the structural unit represented by the above general formula (38) in the total structural units of the phenol resin is preferably 50 mol% or more, more preferably 60 mol% or more, and even more preferably 70 mol% or more.
  • the content ratio of the structural unit represented by the general formula (38) is preferably 100 mol % or less, more preferably 90 mol % or less.
  • the content ratio of the structural unit represented by the above general formula (39) in the total structural units of the phenol resin is preferably 5 mol% or more, more preferably 10 mol% or more, further preferably 15 mol% or more, and 20 mol% or more. is particularly preferred.
  • the content ratio of the structural unit represented by the general formula (39) is preferably 70 mol % or less, more preferably 60 mol % or less, and even more preferably 50 mol % or less.
  • the content ratio of the structural unit represented by the above general formula (40) in the total structural units of the phenol resin is preferably 5 mol% or more, more preferably 10 mol% or more, further preferably 15 mol% or more, and 20 mol% or more. is particularly preferred.
  • the content ratio of the structural unit represented by the general formula (40) is preferably 70 mol % or less, more preferably 60 mol % or less, and even more preferably 50 mol % or less.
  • the phenolic resin preferably has a structural unit represented by general formula (36) from the viewpoint of suppressing narrow mask bias after development and improving halftone characteristics.
  • the content ratio of the structural unit represented by general formula (36) in the total structural units of the phenol resin is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and even more preferably 70 to 100 mol%.
  • X 38 represents an aliphatic structure having 1 to 6 carbon atoms.
  • R 89 is a halogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms. It represents an oxy group, an acyl group having 1 to 10 carbon atoms, a carboxy group, an amino group, or a group forming a ring.
  • the rings connected by a ring-forming group represent monocyclic or condensed polycyclic hydrocarbon rings.
  • R 90 represents an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • a represents an integer of 1 to 4;
  • b represents an integer of 0 to 3;
  • represents an integer of 0 to 4;
  • the above-described aliphatic structures, alkyl groups, aryl groups, alkenyl groups, alkoxy groups, acyl groups, ring-forming groups, and alkylene groups may have heteroatoms and may be unsubstituted or substituted. It doesn't matter if there is.
  • a condensed polycyclic hydrocarbon ring formed by a ring-forming group is naphthalene ring, anthracene ring, pyrene ring, indane ring, indene ring, tetrahydronaphthalene ring, fluorene ring, xanthene ring, or isoindolinone ring. preferable.
  • the phenolic resin has a phenolic hydroxyl group as an alkali-soluble group in at least one of the main chain of the resin, the side chain of the resin and the terminal of the resin.
  • the phenolic resin is preferably a resin obtained by reacting a phenolic compound with one or more selected from the group consisting of aldehyde compounds, alkoxymethyl compounds, and methylol compounds.
  • a resin in which a phenolic hydroxyl group is introduced into at least one of the main chain of the resin, the side chain of the resin and the end of the resin by a reaction using a catalyst.
  • it may have a carboxy group and/or a carboxylic acid anhydride group.
  • a resin obtained by reacting a phenolic hydroxyl group of a resin with a carboxylic anhydride or a resin obtained by reacting a phenolic compound having a carboxyl group and/or a carboxylic anhydride group as a phenolic compound.
  • the phenol resin preferably contains the following (A3b-1) resin.
  • (A3b-1) resin is a (A3b) resin having at least one radically polymerizable group.
  • the resin is preferably a resin obtained by reacting a part of the acidic group of the resin with an epoxy compound having a radically polymerizable group.
  • a resin obtained by introducing a radically polymerizable group into at least one of the side chain of the resin and the end of the resin by a reaction using a catalyst is also preferable.
  • the (A) alkali-soluble resin contains the (A3b-1) resin, it is preferable that the (A) alkali-soluble resin further contains the following (A3a-1) resin.
  • the unsaturated group is preferably an ethylenically unsaturated double bond group.
  • (A3a-1) resin is (A3a) resin having no radically polymerizable group.
  • Structural units possessed by phenolic resins include structural units having an aromatic group, such as structural units derived from aromatic aldehyde compounds or structural units derived from aromatic ketone compounds, from the viewpoint of improving the reliability of light-emitting elements in display devices.
  • Structural units with cyclic groups are also preferred.
  • the Mw of the phenolic resin is preferably 500 or more, more preferably 1,000 or more in terms of polystyrene measured by GPC, from the viewpoint of improving the reliability of the light-emitting element in the display device.
  • Mw is preferably 50,000 or less, more preferably 30,000 or less, even more preferably 10,000 or less, and 5,000 or less from the viewpoint of suppressing residue after development and reducing the taper of the pattern shape. Even more preferably, 3,000 or less is particularly preferable.
  • a phenol resin can be synthesized by a known method. Examples of phenol compounds, aldehyde compounds, ketone compounds, alkoxymethyl compounds, and methylol compounds include compounds described in International Publication No. 2017/159876.
  • polyhydroxystyrene The (A3-2) resin, which is polyhydroxystyrene, is described below.
  • Examples of polyhydroxystyrene include resins obtained by radical copolymerization of hydroxystyrene derivatives and the like with styrene derivatives and/or other copolymerization components.
  • Other copolymerization components include (meth)acrylic acid derivatives and (meth)acrylic acid ester derivatives.
  • Polyhydroxystyrene has a structural unit represented by general formula (91) and/or a structural unit represented by general formula (92) from the viewpoint of suppressing narrow mask bias after development and improving halftone characteristics. is preferred.
  • the content ratio of the structural unit represented by the general formula (91) and the structural unit represented by the general formula (92) in the total structural units of the polyhydroxystyrene is preferably 50 to 100 mol%, and 60 to 100 mol%. More preferably, 70 to 100 mol % is even more preferable.
  • X 121 represents an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 4 to 10 carbon atoms, or an arylene group having 6 to 15 carbon atoms.
  • R 221 to R 226 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 227 and R 228 are each independently a halogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms.
  • the rings connected by a ring-forming group represent monocyclic or condensed polycyclic hydrocarbon rings.
  • a and b each independently represent an integer of 1 to 5;
  • c and d each independently represent an integer of 0 to 4;
  • the alkyl group, aryl group, alkenyl group, alkoxy group, acyl group, ring-forming group, alkylene group, cycloalkylene group, and arylene group described above may have heteroatoms, and may be unsubstituted or substituted. It does not matter which one.
  • a condensed polycyclic hydrocarbon ring formed by a ring-forming group is naphthalene ring, anthracene ring, pyrene ring, indane ring, indene ring, tetrahydronaphthalene ring, fluorene ring, xanthene ring, or isoindolinone ring. preferable.
  • Polyhydroxystyrene has a phenolic hydroxyl group as an alkali-soluble group in at least one of the main chain of the resin, the side chain of the resin and the end of the resin.
  • Polyhydroxystyrene is preferably a resin obtained by radical copolymerization of a copolymer component containing at least a hydroxystyrene derivative. Further, in a resin obtained by radical copolymerization of a copolymer component containing a (meth)acrylic acid ester having a reactive group such as an epoxy group, the epoxy group possessed by the resin and a phenol compound having a carboxy group, etc.
  • a resin obtained by reacting with is also preferable, and a resin obtained by introducing a phenolic hydroxyl group into at least one of the main chain of the resin, the side chain of the resin and the end of the resin by reaction using a catalyst is also preferable.
  • it may have a carboxy group and/or a carboxylic acid anhydride group.
  • Polyhydroxystyrene preferably contains the following (A3b-2) resin.
  • (A3b-2) resin is a (A3b) resin having at least one radically polymerizable group.
  • the resin is preferably a resin obtained by reacting a part of the acidic group of the resin with an epoxy compound having a radically polymerizable group.
  • a resin obtained by reacting an epoxy group or the like of the resin with a carboxylic acid compound or the like having a radically polymerizable group is also preferable.
  • the (A) alkali-soluble resin contains the (A3b-2) resin, it is preferable that the (A) alkali-soluble resin further contains the following (A3a-2) resin.
  • the unsaturated group is preferably an ethylenically unsaturated double bond group.
  • (A3a-2) resin is (A3a) resin having no radically polymerizable group.
  • the structural unit of polyhydroxystyrene is preferably a structural unit having an aromatic group, such as a structural unit derived from an aromatic (meth)acrylic acid ester derivative.
  • Structural units having an alicyclic group such as structural units derived from formula (meth)acrylate derivatives, are also preferred.
  • the Mw of polyhydroxystyrene is preferably 500 or more, more preferably 1,000 or more, in terms of polystyrene measured by GPC, from the viewpoint of improving the reliability of light-emitting elements in display devices. On the other hand, Mw is preferably 50,000 or less, more preferably 20,000 or less, from the viewpoint of suppressing residue after development and reducing the taper of the pattern shape.
  • Polyhydroxystyrene can be synthesized by a known method. Hydroxystyrene derivatives, styrene derivatives, and other copolymerization components include, for example, compounds described in International Publication No. 2017/159876.
  • the resin (A3-3), which is a phenol group-containing epoxy resin, is described below.
  • phenol group-containing epoxy resins include resins obtained in the following (1-a3-3) to (2-a3-3). If necessary, the polyfunctional alcohol compound may be further reacted in any of the reaction steps.
  • a phenol group-containing epoxy resin has a cyclic skeleton in the structural unit of the resin.
  • (1-a3-3) A resin obtained by reacting a polyfunctional epoxy compound with a phenol compound having an epoxy-reactive group.
  • (2-a3-3) A resin obtained by further reacting the above resin (1-a3-3) with a polyfunctional carboxylic acid dianhydride or a polyfunctional carboxylic acid compound.
  • the phenolic group-containing epoxy resin has a phenolic hydroxyl group as an alkali-soluble group in at least one of the main chain of the resin, the side chain of the resin and the terminal of the resin.
  • the phenol group-containing epoxy resin is preferably a resin obtained by reacting a polyfunctional epoxy compound or the like with a phenol compound having a carboxy group.
  • it may have a carboxy group and/or a carboxylic acid anhydride group. Examples thereof include resins obtained by reacting hydroxy groups of resins with carboxylic anhydrides.
  • the phenol group-containing epoxy resin preferably contains the following (A3b-3) resin.
  • the (A3b-3) resin is a (A3b) resin having at least one radically polymerizable group.
  • (A3b-3) Resin epoxy resin containing unsaturated group-containing phenol group.
  • the resin is preferably a resin obtained by reacting a part of the acidic group of the resin with an epoxy compound having a radically polymerizable group.
  • a resin obtained by reacting an epoxy group or the like of the resin with a carboxylic acid compound or the like having a radically polymerizable group is also preferable.
  • the (A) alkali-soluble resin contains the (A3b-3) resin, it is preferable that the (A) alkali-soluble resin further contains the following (A3a-3) resin.
  • the unsaturated group is preferably an ethylenically unsaturated double bond group.
  • (A3a-3) resin is (A3a) resin having no radically polymerizable group.
  • the structural unit possessed by the phenol group-containing epoxy resin is a structural unit derived from an aromatic polyfunctional carboxylic acid compound or a structure derived from an aromatic polyfunctional carboxylic acid dianhydride, from the viewpoint of improving the reliability of light-emitting elements in display devices.
  • Structural units having aromatic groups such as units are also preferred.
  • the Mw of the phenol group-containing epoxy resin is preferably 500 or more, more preferably 1,000 or more in terms of polystyrene measured by GPC, from the viewpoint of improving the reliability of the light-emitting element in the display device. On the other hand, Mw is preferably 50,000 or less, more preferably 20,000 or less, from the viewpoint of suppressing residue after development and reducing the taper of the pattern shape.
  • a phenol group-containing epoxy resin can be synthesized by a known method.
  • the resin (A3-4), which is a phenol group-containing acrylic resin, is described below.
  • phenol group-containing acrylic resins include resins obtained in the following (1-a3-4) to (5-a3-4).
  • (1-a3-4) a resin obtained by radical copolymerization of one or more selected from the group consisting of (meth)acrylic acid derivatives, (meth)acrylate derivatives, styrene derivatives, and other copolymerization components; , a resin obtained by further reacting a phenol compound having an addition-reactive group.
  • (2-a3-4) A resin obtained by further reacting the above resin (1-a3-4) with a polyfunctional carboxylic acid dianhydride or a polyfunctional carboxylic acid compound.
  • (3-a3-4) one selected from the group consisting of a copolymerization component having a phenolic hydroxyl group, and (meth)acrylic acid derivatives, (meth)acrylic acid ester derivatives, styrene derivatives, and other copolymerization components
  • the copolymerization component having a phenolic hydroxyl group is a copolymerization component different from the hydroxystyrene derivative.
  • (4-a3-4) A resin obtained by further reacting the above resin (3-a3-4) with a phenol compound having an addition-reactive group.
  • (5-a3-4) A resin obtained by further reacting the above resin (4-a3-4) with a polyfunctional carboxylic acid dianhydride or a polyfunctional carboxylic acid compound.
  • the phenolic group-containing acrylic resin has a phenolic hydroxyl group as an alkali-soluble group in at least one of the main chain of the resin, the side chain of the resin and the end of the resin.
  • Phenolic group-containing acrylic resin is a resin obtained by radical copolymerization of a copolymer component containing a (meth)acrylic acid ester having a reactive group such as an epoxy group. A resin obtained by reacting with a phenol compound having such a compound is preferable.
  • a resin in which a phenolic hydroxyl group is introduced into at least one of the main chain of the resin, the side chain of the resin and the end of the resin by a reaction using a catalyst.
  • it may have a carboxy group and/or a carboxylic acid anhydride group. Examples thereof include resins obtained by reacting hydroxy groups of resins with carboxylic anhydrides.
  • the phenol group-containing acrylic resin preferably contains the following (A3b-4) resin.
  • (A3b-4) resins are (A3b) resins having at least one radically polymerizable group.
  • the resin is preferably a resin obtained by reacting a part of the acidic group of the resin with an epoxy compound having a radically polymerizable group.
  • a resin obtained by reacting an epoxy group or the like of the resin with a carboxylic acid compound or the like having a radically polymerizable group is also preferable.
  • the (A) alkali-soluble resin contains the (A3b-4) resin, it is preferable that the (A) alkali-soluble resin further contains the following (A3a-4) resin.
  • the unsaturated group is preferably an ethylenically unsaturated double bond group.
  • (A3a-4) resin is (A3a) resin having no radically polymerizable group.
  • the structural unit possessed by the phenol group-containing acrylic resin is an aromatic unit such as a structural unit derived from an aromatic (meth)acrylic acid ester derivative or a structural unit derived from a styrene derivative.
  • a structural unit having a group is also preferred, and a structural unit having an alicyclic group such as a structural unit derived from an alicyclic (meth)acrylic acid ester derivative is also preferred.
  • the Mw of the phenol group-containing acrylic resin is preferably 1,000 or more, more preferably 3,000 or more, in terms of polystyrene measured by GPC, from the viewpoint of improving the reliability of light-emitting elements in display devices. On the other hand, Mw is preferably 50,000 or less, more preferably 20,000 or less, from the viewpoint of suppressing residue after development and reducing the taper of the pattern shape.
  • a phenol group-containing acrylic resin can be synthesized by a known method.
  • the total content ratio of (A1) resin in the total 100% by mass of (A) alkali-soluble resin is the following: suppression of narrow mask bias after development, improvement of halftone characteristics, From the viewpoint of improving the reliability of the light-emitting element, improving mechanical properties in heating at low temperature, and improving migration resistance, it is preferably 5% by mass or more, more preferably 10% by mass or more, further preferably 20% by mass or more, and 30% by mass. The above is even more preferable, and 35% by mass or more is particularly preferable.
  • the total content of the (A1) resin is preferably 100% by mass or less, more preferably 90% by mass or less, even more preferably 80% by mass or less, and 75% by mass or less, from the viewpoint of reducing the taper of the pattern shape. is even more preferable, and 70% by mass or less is particularly more preferable.
  • the total content ratio of (A2) resin in the total 100% by mass of (A) alkali-soluble resin is improved sensitivity during exposure, improved halftone characteristics, and heating at low temperature
  • it is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 15% by mass or more, even more preferably 20% by mass or more, and particularly preferably 25% by mass or more.
  • the total content of the (A2) resin is preferably 95% by mass or less, more preferably 85% by mass or less, from the viewpoints of suppressing the narrow mask bias after development, improving the halftone characteristics, and reducing the taper of the pattern shape. It is preferably 75% by mass or less, more preferably 70% by mass or less, and particularly preferably 65% by mass or less.
  • the total content of (A3) resin in the total 100% by mass of (A) alkali-soluble resin is to suppress narrow mask bias after development, improve halftone characteristics, and From the viewpoint of improving mechanical properties in heating, it is preferably 5% by mass or more, more preferably 7% by mass or more, still more preferably 10% by mass or more, even more preferably 15% by mass or more, and particularly preferably 20% by mass or more.
  • the total content of the (A3) resin is preferably 90% by mass or less, and 80% by mass, from the viewpoints of suppressing residue after development, improving sensitivity during exposure, suppressing narrow mask bias after development, and improving halftone characteristics. It is more preferably 70% by mass or less, even more preferably 65% by mass or less, and particularly preferably 60% by mass or less.
  • the content ratio of (A) the alkali-soluble resin in the total solid content of the photosensitive composition of the present invention excluding the solvent, suppresses the narrow mask bias after development, improves the halftone characteristics, and increases the reliability of the light-emitting element in the display device.
  • the content is preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 25% by mass or more.
  • the content ratio of (A) the alkali-soluble resin is preferably 75% by mass or less, more preferably 65% by mass or less, and further preferably 55% by mass or less, from the viewpoint of improving sensitivity during exposure and suppressing residue after development. preferable.
  • the photosensitive composition of the present invention contains (A) an alkali-soluble resin and (B) a radically polymerizable compound
  • the content of (A) the alkali-soluble resin in the photosensitive composition of the present invention is
  • the total of (A) the alkali-soluble resin and (B) the radically polymerizable compound is 100 parts by mass, it is preferably 25 parts by mass or more, more preferably 35 parts by mass or more, and even more preferably 45 parts by mass or more.
  • the content of (A) the alkali-soluble resin is preferably 85 parts by mass or less, more preferably 80 parts by mass or less, and even more preferably 75 parts by mass or less.
  • the first aspect of the photosensitive composition of the present invention preferably contains (B) a radically polymerizable compound (hereinafter referred to as "(B) compound").
  • (B) compound and/or (IIb) compound preferably contains (B) compound, and (IIb) compound more preferably contains (B) compound.
  • the second aspect of the photosensitive composition of the present invention contains the (B) compound.
  • a compound means a compound having at least two radically polymerizable groups.
  • radical polymerization of the compound (B) proceeds by radicals generated from the photopolymerization initiator (C1), which will be described later, to form a film of the composition.
  • a negative pattern can be formed by insolubilizing the exposed portion of the layer in an alkaline developer.
  • photocuring at the time of exposure is accelerated, and the effect of improving the sensitivity at the time of exposure becomes remarkable.
  • the photosensitive composition of the present invention has positive photosensitivity
  • radical polymerization of the compound (B) proceeds during exposure or heat curing after development in the unexposed area during pattern exposure, and the composition By improving the degree of cross-linking of the film, the effect of pattern shape control after heat curing becomes remarkable.
  • the radically polymerizable group of the compound (B) preferably has a (meth)acryloyl group from the viewpoint of facilitating radical polymerization.
  • the (B) compound is one selected from the group consisting of (B1) a radically polymerizable compound containing a hydrophobic skeleton, (B2) a radically polymerizable compound containing a flexible skeleton, and (B3) a radically polymerizable compound containing a cyclic skeleton, which will be described later. It is preferable to contain the above.
  • the compound (B) contains (B1) a radically polymerizable compound containing a hydrophobic skeleton and/or (B3) a radically polymerizable compound containing a cyclic skeleton, and further contains (B2) a radically polymerizable compound containing a flexible skeleton. is more preferred.
  • the compound (B) preferably has a phenolic hydroxyl group from the viewpoint of suppressing narrow mask bias after development and improving halftone characteristics.
  • the compound (B) when the alkali-soluble resin (A) mentioned above has a phenolic hydroxyl group, the compound (B) preferably does not have a phenolic hydroxyl group.
  • the compound (B) preferably has a (meth)acryloyl group, a vinyl group, or an allyl group from the viewpoint of improving sensitivity during exposure and improving the reliability of light-emitting elements in display devices. It is more preferable that (A) the alkali-soluble resin and (B) compound described above have a (meth)acryloyl group, a vinyl group, or an allyl group.
  • the (A) alkali-soluble resin preferably does not have a (meth)acryloyl group, a vinyl group, or an allyl group.
  • the double bond equivalent of the compound (B) is preferably 80 g/mol or more, more preferably 90 g/mol or more, from the viewpoint of suppressing narrow mask bias after development and improving halftone characteristics.
  • the double bond equivalent is preferably 800 g/mol or less, more preferably 600 g/mol or less, from the viewpoint of improving sensitivity during exposure.
  • the content of the (B) compound in the photosensitive composition of the present invention is determined by (A) the alkali-soluble resin and
  • the total amount of the compounds (B) is 100 parts by mass, it is preferably 15 parts by mass or more, more preferably 20 parts by mass or more, and 25 parts by mass or more from the viewpoint of improving sensitivity during exposure and suppressing residues after development. is more preferred.
  • the content of the compound (B) is preferably 75 parts by mass or less from the viewpoints of narrow mask bias suppression after development, improvement of halftone characteristics, and improvement of reliability of light-emitting elements in display devices. It is more preferably 55 parts by mass or less, more preferably 55 parts by mass or less.
  • the photosensitive composition of the present invention contains a compound (B), the compound (B) contains a radically polymerizable compound containing a hydrophobic skeleton (B1) (hereinafter, "(B1) compound"), and (B1)
  • the compound has the following (I-b1) structure and (II-b1) structure, and preferably has at least two (II-b1) structures.
  • (I-b1) structure structure containing one or more selected from the group consisting of fluorene structure, indane structure, condensed polycyclic alicyclic structure, indolinone structure, and isoindolinone structure
  • II-b1) structure radical polymerization an organic group having a functional group.
  • the radically polymerizable group preferably has a (meth)acryloyl group.
  • the (B1) compound is a structure represented by any of the general formulas (141) to (147), from the viewpoint of suppressing a narrow mask bias after development and improving halftone characteristics. is preferably
  • X 201 to X 208 each independently represent a monocyclic or condensed polycyclic hydrocarbon ring.
  • X 210 to X 214 each independently represent an aliphatic structure having 1 to 6 carbon atoms.
  • Y 201 and Y 209 each independently represent a direct bond, a carbon atom, a nitrogen atom, an oxygen atom, or a sulfur atom.
  • R 301 to R 309 each independently represent a halogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 310 to R 316 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • R 317 and R 318 each independently represent a halogen atom or an alkyl group having 1 to 10 carbon atoms.
  • a, b, c, d, e, f, and g each independently represents an integer of 0 to 4;
  • h and i each independently represent an integer of 0 to 3;
  • j is 0 when Y 201 is a direct bond, an oxygen atom, or a sulfur atom.
  • j is 1 when Y 201 is a nitrogen atom; j is 2 when Y 201 is a carbon atom; k is 0 when Y 209 is a direct bond, an oxygen atom, or a sulfur atom. k is 1 when Y 209 is a nitrogen atom. k is 2 when Y 209 is a carbon atom. l and m each independently represent an integer of 0 to 14; n represents an integer of 0 to 2; * 1 to * 15 each independently represent a point of attachment to the structure (II-b1) described above.
  • X 201 to X 208 are each independently preferably a monocyclic or condensed polycyclic hydrocarbon ring having 6 to 15 carbon atoms.
  • Y 201 and Y 209 are each independently preferably a direct bond or an oxygen atom.
  • the above-mentioned aliphatic structures, alkyl groups, cycloalkyl groups, aryl groups, and monocyclic or condensed polycyclic aromatic hydrocarbon rings may have heteroatoms, and may be unsubstituted or substituted. It doesn't matter if it is.
  • the (B1) compound has the (I-b1) structure, the (II-b1) structure, and the following (III- It is more preferred to have the b1) structure or the (IV-b1) structure.
  • (III-b1) Structure an alkylenecarbonyl group, an oxyalkylenecarbonyl group, or an aminoalkylenecarbonyl group.
  • (IV-b1) structure an alkylene group containing a hydroxy group, or an oxyalkylene group containing a hydroxy group.
  • the total number of (III-b1) structures or (IV-b1) structures possessed by the (B1) compound is preferably 2 or more, more preferably 3 or more, and even more preferably 4 or more. On the other hand, the total number of (III-b1) structures or (IV-b1) structures is preferably 10 or less, more preferably 8 or less, and even more preferably 6 or less.
  • the (B1) compound preferably has the (III-b1) structure.
  • (III-b1) structure is preferably a structure derived from a lactone compound or a structure derived from a lactam compound.
  • * 1 to * 15 are each independently the above ( It represents a point of attachment to the II-b1) structure, a point of attachment to the (III-b1) structure described above, or a point of attachment to the (IV-b1) structure described above.
  • the compound (B1) has a structure represented by general formula (157) described later, it has the structure (III-b1) described above.
  • the (B1) compound has a structure represented by the general formula (156) described later, and X 231 represents an alkylene group having 1 to 10 carbon atoms containing a hydroxy group
  • the above (IV-b1) structure have
  • * 1 and * 2 each independently represent a point of attachment to structure (I-b1) described above.
  • * 3 and * 4 each independently represent a point of attachment to the (II-b1) structure described above.
  • * 1 and * 2 are each independently preferably a bonding point with the oxygen atom in general formulas (141) to (147) described above.
  • the double bond equivalent of the (B1) compound is preferably 150 g/mol or more, more preferably 190 g/mol or more, from the viewpoint of suppressing narrow mask bias after development and improving halftone characteristics.
  • the double bond equivalent is preferably 600 g/mol or less, more preferably 400 g/mol or less, from the viewpoint of suppressing residue after development.
  • the content of the (B1) compound in the photosensitive composition of the present invention is (A) an alkali-soluble resin and
  • the total amount of the compound (B) is 100 parts by mass, it is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, from the viewpoint of suppressing narrow mask bias after development and improving halftone characteristics.
  • the content of the (B1) compound is preferably 25 parts by mass or less, more preferably 20 parts by mass or less, from the viewpoint of suppressing residue after development.
  • the photosensitive composition of the present invention contains a compound (B), the compound (B) contains a flexible skeleton-containing radically polymerizable compound (hereinafter referred to as "(B2) compound"), and the compound (B2) has the following (I-b2) structure, (II-b2) structure, and (III-b2) structure, and preferably has at least two (II-b2) structures.
  • (I-b2) structure structure derived from a compound having at least two hydroxy groups
  • (II-b2) structure organic group having a radically polymerizable group
  • III-b2) structure alkylene group, oxyalkylene group, hydroxy group an alkylene group containing, an oxyalkylene group containing a hydroxy group, an alkylenecarbonyl group, an oxyalkylenecarbonyl group, or an aminoalkylenecarbonyl group.
  • the radically polymerizable group preferably has a (meth)acryloyl group.
  • the (I-b2) structure is more preferably the following (I-b2x) structure from the viewpoints of improving sensitivity during exposure, suppressing residue after development, and improving halftone properties.
  • (I-b2x) structure a structure containing one or more selected from the group consisting of a structure derived from an aliphatic polyfunctional alcohol, an alicyclic structure, and a heteroalicyclic structure.
  • the (B2) compound has the above-described (I-b2x) structure represented by any one of the general formulas (151) to (154) from the viewpoint of improving sensitivity during exposure, suppressing residues after development, and improving halftone properties.
  • the structure shown is preferred.
  • X 221 to X 228 each independently represent an aliphatic structure having 1 to 6 carbon atoms.
  • R 321 to R 325 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 4 to 10 carbon atoms.
  • a and b each independently represents an integer of 0 to 5;
  • * 1 to * 16 each independently represent a bonding point with the above-described (II-b2) structure or a bonding point with the above-described (III-b2) structure.
  • the above-described aliphatic structures, alkyl groups and cycloalkyl groups may have heteroatoms and may be unsubstituted or substituted.
  • the compound (B2) contains a compound having the structure (I-b2x) described above, from the viewpoint of suppressing narrow mask bias after development, improving halftone characteristics, and reducing the taper of the pattern shape, the compound (B2) is Furthermore, it is preferable to contain a compound having a structure represented by general formula (155) as the structure (I-b2) described above.
  • X 229 and X 230 each independently represent an aliphatic structure having 1 to 6 carbon atoms.
  • Y 229 represents a direct bond, a nitrogen atom, or an oxygen atom.
  • R 326 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 4 to 10 carbon atoms.
  • a is 0 when Y 229 is a direct bond or an oxygen atom.
  • a is 1 when Y 229 is a nitrogen atom; * 1 and * 2 each independently represent a point of attachment to the (III-b2) structure described above.
  • the aliphatic structures described above may have heteroatoms and may be unsubstituted or substituted.
  • the (B2) compound more preferably has the following (III-b2x) structure from the viewpoints of improving sensitivity during exposure, suppressing residue after development, suppressing narrow mask bias after development, and improving halftone characteristics.
  • (III-b2x) structure an alkylenecarbonyl group, an oxyalkylenecarbonyl group, or an aminoalkylenecarbonyl group.
  • the total number of (III-b2) structures and (III-b2x) structures possessed by the (B2) compound is preferably 2 or more, more preferably 3 or more, and even more preferably 4 or more.
  • the total number of (III-b2) structures and (III-b2x) structures is preferably 12 or less, more preferably 10 or less, and even more preferably 8 or less.
  • An alkylene group, an oxyalkylene group, an alkylene group containing a hydroxy group, and an oxyalkylene group containing a hydroxy group preferably have a structure derived from an epoxy compound or a structure derived from an alkylene glycol.
  • the (B2) compound preferably has the (III-b2x) structure.
  • the (III-b2x) structure is preferably a structure derived from a lactone compound or a structure derived from a lactam compound.
  • the (B2) compound has the above-mentioned (III-b2) structure from the viewpoint of improving sensitivity during exposure, suppressing residue after development, and improving halftone properties. It is preferably one or more selected from the group consisting of the structures represented by the following.
  • X 231 and X 232 each independently represent an alkylene group having 1 to 10 carbon atoms or an alkylene group having 1 to 10 carbon atoms including a hydroxy group.
  • Y 231 and Y 232 each independently represent a direct bond, a nitrogen atom, or an oxygen atom.
  • R 327 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 4 to 10 carbon atoms.
  • a and b each independently represent an integer of 1 to 4; c is 0 when Y 232 is a direct bond or an oxygen atom. c is 1 when Y 232 is a nitrogen atom.
  • * 1 and * 2 each independently represent a point of attachment to the (I-b2) structure described above.
  • * 3 and * 4 each independently represent a point of attachment to the (II-b2) structure described above.
  • * 1 and * 2 are each independently preferably a bonding point with an oxygen atom in general formulas (151) to (154).
  • the alkylene group, alkyl group and cycloalkyl group described above may have a heteroatom and may be unsubstituted or substituted.
  • the compound (B2) has the structure represented by the general formula (157), it has the structure (III-b2x) described above.
  • the number of radically polymerizable groups possessed by the compound (B2) is preferably 2 or more, more preferably 3 or more, and 4 or more, from the viewpoints of improving sensitivity during exposure, suppressing residue after development, and improving halftone properties. More preferred.
  • the number of radically polymerizable groups is preferably 12 or less, more preferably 10 or less, and even more preferably 8 or less, from the viewpoint of improving halftone characteristics and reducing the taper of the pattern shape.
  • the double bond equivalent of the compound (B2) is preferably 100 g/mol or more, more preferably 120 g/mol or more, from the viewpoint of improving the halftone characteristics and reducing the taper of the pattern shape.
  • the double bond equivalent is preferably 600 g/mol or less, more preferably 400 g/mol or less, from the viewpoints of improving sensitivity during exposure, suppressing residue after development, and improving halftone properties.
  • the (B2) compound is a compound having at least three (II-b2) structures from the viewpoint of improving sensitivity during exposure, suppressing residue after development, suppressing narrow mask bias after development, and improving halftone characteristics, and 2 It is more preferred to contain compounds with two (II-b2) structures.
  • the content of the (B2) compound in the photosensitive composition of the present invention is (A) an alkali-soluble resin and
  • the total amount of the compound (B) is 100 parts by mass, it is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, from the viewpoints of improving sensitivity during exposure, suppressing residue after development, and improving halftone properties.
  • the content of the (B2) compound is preferably 40 parts by mass or less, more preferably 35 parts by mass or less, from the viewpoint of improving the halftone characteristics and reducing the taper of the pattern shape.
  • the photosensitive composition of the present invention contains a compound (B), the compound (B) contains a cyclic skeleton-containing radically polymerizable compound (hereinafter referred to as "(B3) compound"), and the compound (B3) has the following (I-b3) structure and (II-b3) structure, and preferably has at least two (II-b3) structures.
  • (I-b3) structure structure containing an alicyclic structure and/or heteroalicyclic structure
  • II-b3) structure an organic group having a radically polymerizable group.
  • the (B3) compound is a compound different from the (B1) compound and the (B2) compound.
  • a compound corresponding to both the (B1) compound and the (B2) compound is included in the (B1) compound.
  • the radically polymerizable group preferably has a (meth)acryloyl group.
  • the (B3) compound contains a cyclic structure in which the above (I-b3) structure has at least two nitrogen atoms, from the viewpoints of suppressing residue after development, suppressing narrow mask bias after development, and improving halftone characteristics.
  • a structure is preferred.
  • a cyclic structure having at least two nitrogen atoms is preferably an isocyanuric acid structure and/or a triazine structure.
  • the double bond equivalent of the (B3) compound is preferably 150 g/mol or more, more preferably 190 g/mol or more, from the viewpoint of suppressing narrow mask bias after development and improving halftone characteristics.
  • the double bond equivalent is preferably 600 g/mol or less, more preferably 400 g/mol or less, from the viewpoint of suppressing residue after development.
  • the content of the (B3) compound in the photosensitive composition of the present invention is (A) an alkali-soluble resin and
  • the total amount of the compound (B) is 100 parts by mass, it is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, from the viewpoint of suppressing narrow mask bias after development and improving halftone characteristics.
  • the content of the (B3) compound is preferably 25 parts by mass or less, more preferably 20 parts by mass or less, from the viewpoint of suppressing residue after development.
  • the total content of the (B1) compound, (B2) compound, and (B3) compound is preferably 15 parts by mass or more, more preferably 20 parts by mass or more, and even more preferably 25 parts by mass or more.
  • the total content of the (B1) compound, (B2) compound, and (B3) compound is preferably 75 parts by mass or less, more preferably 65 parts by mass or less, and even more preferably 55 parts by mass or less.
  • the photosensitive composition of the present invention contains (B) a compound from the viewpoint of improving sensitivity during exposure and improving mechanical properties in heating at low temperatures, Furthermore, it is preferable to satisfy at least one of the following conditions ( ⁇ ), conditions ( ⁇ ), and conditions ( ⁇ ).
  • Condition ( ⁇ ): (B) compound is the following (B4) fourth polymerizable compound (hereinafter “(B4) compound”) and (B5) fifth polymerizable compound (hereinafter “(B5) compound”)
  • Condition ( ⁇ ) containing: (B) radically polymerizable compound is the following (B6) sixth polymerizable compound (hereinafter, “(B6) compound”) and (B7) seventh polymerizable compound (hereinafter, “ (B7) compound”)
  • condition ( ⁇ ): (B) the radically polymerizable compound contains the following (B4) compound or (B5) compound, and further the following (B6) compound or (B7) (B4) compound containing a compound: a compound having the following (I-b4) structure and further having at least two radically polymerizable groups (I-b4) structure: a structure containing an alicyclic structure and / or a heteroaliphatic Structure (B5) compound containing a cyclic structure: compound having the following (I-b5) structure and (II-b5) structure and further
  • the (B) compound contains the (B4) compound, the (B5) compound, the (B6) compound, or the (B7) compound
  • the (B) compound includes the (B1) compound, the (B2) compound, and ( B3) Contains no compounds.
  • the alicyclic structure in the above structure (I-b4) is preferably a condensed polycyclic alicyclic structure from the viewpoint of improving mechanical properties when heated at low temperatures, and tricyclo[5.2.1. 0 2,6 ]decane structure is more preferred.
  • the heteroalicyclic structure in the structure (I-b4) above is preferably a nitrogen-containing cyclic structure, more preferably a cyclic structure having at least two nitrogen atoms, and an isocyanuric acid structure and/or a triazine structure. More preferred.
  • the number of nitrogen atoms in the heteroalicyclic structure in the structure (I-b4) is preferably 1 or more, more preferably 2 or more, and even more preferably 3 or more. On the other hand, the number of nitrogen atoms is preferably 6 or less, more preferably 4 or less.
  • the (B4) compound preferably further has the following (II-b4) structure.
  • (II-b4) structure structure containing an aliphatic structure
  • the aliphatic structure in the above (II-b4) structure is an alkylene group, an oxyalkylene group, from the viewpoint of improving sensitivity during exposure and improving migration resistance. , an alkylene group containing a hydroxy group, an oxyalkylene group containing a hydroxy group, an alkylenecarbonyl group, an oxyalkylenecarbonyl group, or an aminoalkylenecarbonyl group.
  • the aromatic structure in the structure (I-b5) above is preferably a benzene structure or a biphenyl structure from the viewpoint of improving mechanical properties when heated at low temperatures.
  • the aromatic structure in structure (I-b5) above is preferably a condensed polycyclic structure, more preferably a fluorene structure, an indane structure, or a naphthalene structure.
  • the aromatic structure in structure (I-b5) above is preferably a condensed polycyclic heterocyclic structure, more preferably a xanthene structure, an indolinone structure, or an isoindolinone structure.
  • the aliphatic structure in the (II-b5) structure contains an alkylene group, an oxyalkylene group, an alkylene group containing a hydroxy group, and a hydroxy group, from the viewpoint of improving sensitivity during exposure and improving migration resistance.
  • An oxyalkylene group, an alkylenecarbonyl group, an oxyalkylenecarbonyl group, or an aminoalkylenecarbonyl group is preferred.
  • the minimum number of atoms in the above (I-b6) structure or (I-b7) structure is two (meth)acryloyl groups
  • the minimum number of atoms, including carbon atoms and heteroatoms, between the carbonyl carbons of Atoms bonded to carbon atoms and heteroatoms between carbonyl carbon atoms are not included in the calculation of the minimum number of atoms.
  • an oxygen atom, a propylene group and an oxygen atom are present between carbonyl carbons, the minimum number of atoms is 5.
  • the minimum number of atoms refers to the carbon atoms and heteroatoms connecting the carbonyl carbons of all (meth)acryloyl groups. It means the minimum number of atoms contained. Similarly, carbon atoms connecting carbonyl carbons and atoms bonded to heteroatoms are not included in the calculation of the minimum number of atoms.
  • the (B6) compound can further reduce the low molecular weight derived from the (B) compound in the cured product, and the effect of improving migration resistance is remarkable. becomes.
  • the minimum number of atoms in the structure (I-b6) is preferably 5 or more, more preferably 6 or more.
  • the minimum number of atoms in the structure (I-b6) is preferably 9 or less, more preferably 8 or less.
  • the (B7) compound by setting the minimum number of atoms in the above (I-b7) structure to a specific range, improves the molecular mobility of (meth)acryloyl groups, and (meth)acryloyl groups and other radicals. The probability of collision with the polymerizable group is improved, and the effect of improving the sensitivity during exposure becomes remarkable.
  • the minimum number of atoms in the structure (I-b7) is preferably 13 or more, more preferably 15 or more, even more preferably 17 or more, and particularly preferably 20 or more.
  • the minimum number of atoms in the structure (I-b7) is preferably 40 or less, more preferably 35 or less, even more preferably 30 or less, and particularly preferably 25 or less.
  • the aliphatic structure in the structure (I-b6) and the structure (I-b7) is an alkylene group, an oxyalkylene group, from the viewpoint of improving sensitivity during exposure and improving migration resistance. , an alkylene group containing a hydroxy group, an oxyalkylene group containing a hydroxy group, an alkylenecarbonyl group, an oxyalkylenecarbonyl group, or an aminoalkylenecarbonyl group.
  • the aliphatic structure in the structures (I-b6) and (I-b7) is preferably a structure derived from an aliphatic polyfunctional alcohol.
  • the (B6) compound and (B7) compound are different compounds from the above (B4) compound and (B5) compound, and include a structure containing an alicyclic structure, a structure containing a heteroalicyclic structure, and an aromatic It does not have a structure that contains structure.
  • the compound (B) as described above has the effect of improving the degree of cross-linking of the cured product by generating radicals during exposure or by heating at a low temperature. Since the effect of improving the degree of cross-linking is obtained by the reaction with the group, it is presumed that the mechanical properties are improved when heated at a low temperature. Further, the (B) compound having an aliphatic structure in the above (II-b4) structure, (II-b5) structure, (I-b6) structure, or (I-b7) structure is (B) in the cured product It is presumed that ion migration and electromigration are suppressed by reducing the low-molecular-weight components derived from the compound, and migration resistance is improved.
  • the compound (B) preferably further contains the following compound (B8).
  • the (B8) compound is a compound different from the above (B5) compound and does not have the above (II-b5) structure.
  • (B8) compound a compound having a structure containing a condensed polycyclic structure and/or a structure containing a condensed polycyclic heterocyclic structure, and further having at least two radically polymerizable groups.
  • the cyclic structure is preferably a fluorene structure, an indane structure, or a naphthalene structure.
  • the condensed polycyclic heterocyclic structure is preferably a xanthene structure, an indolinone structure, or an isoindolinone structure.
  • the (B) compound preferably contains one or more selected from the group consisting of the above (B4) compound, (B5) compound, (B6) compound, (B7) compound, and (B8) compound.
  • the (B) compound preferably contains two or more selected from the group consisting of the above (B4) compound, (B5) compound, (B6) compound, and (B7) compound, and further above (B8) Containing a compound is also more preferred.
  • the content of (B4) compound is 100 parts by mass of the total of (A) alkali-soluble resin and (B) compound
  • the content of (B4) compound is preferably 50 parts by mass or less, more preferably 45 parts by mass or less, and even more preferably 40 parts by mass or less, from the viewpoint of improving mechanical properties and improving migration resistance in heating at low temperatures.
  • the total content of the (B4) compound, (B5) compound, (B6) compound, (B7) compound, and (B8) compound is preferably 15 parts by mass or more, more preferably 20 parts by mass or more, and 25 parts by mass. Part or more is more preferable.
  • the total content of the (B4) compound, (B5) compound, (B6) compound, (B7) compound, and (B8) compound is preferably 75 parts by mass or less, more preferably 65 parts by mass or less, and 55 Part by mass or less is more preferable.
  • the first aspect of the photosensitive composition of the present invention preferably further contains (C) a photosensitive agent.
  • a second aspect of the photosensitive composition of the present invention contains (C) a photosensitive agent.
  • Photosensitizer refers to a compound that imparts positive or negative photosensitivity to a composition by bond cleavage, reaction, or structural change upon exposure to generate another compound.
  • the photosensitizer includes (C1) a photopolymerization initiator (hereinafter “(C1) compound”), (C2) a photoacid generator, and (C3) a naphthoquinone diazide compound (hereinafter “(C3) compound”). It is preferable to contain one or more selected from the group consisting of.
  • the composition When imparting negative photosensitivity to the composition, it preferably contains a (C1) compound, and more preferably contains a (C2) photoacid generator and/or a (C3) compound.
  • it When imparting positive photosensitivity to the composition, it preferably contains a (C3) compound, and more preferably contains a (C1) compound and/or a (C2) photoacid generator.
  • the (C) photosensitive agent preferably has a (meth)acryloyl group, a vinyl group, or an allyl group from the viewpoint of improving sensitivity during exposure and improving the reliability of light-emitting elements in display devices.
  • the (A) alkali-soluble resin described above has a (meth)acryloyl group, a vinyl group, or an allyl group
  • the (C) photosensitive agent does not have a (meth)acryloyl group, a vinyl group, or an allyl group. is preferred.
  • the content ratio of the (C) photosensitive agent in the total solid content of the photosensitive composition of the present invention excluding the solvent is preferably 0.3% by mass or more, and 1.0% by mass, from the viewpoint of improving sensitivity during exposure. % or more is more preferable, and 2.0% by mass or more is even more preferable.
  • the content ratio of (C) the photosensitive agent is preferably 25% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less, from the viewpoint of suppressing residue after development.
  • the photosensitive composition of the present invention preferably contains (C) a photosensitive agent, and (C) the photosensitive agent contains (C1) a photopolymerization initiator.
  • the photosensitive composition of the present invention when the weakly acidic group equivalent in the total solid content of the photosensitive composition is 400 to 6,000 g/mol, the photosensitive composition of the present invention contains (C) a photosensitive agent.
  • the photosensitive agent preferably contains (C1) a photopolymerization initiator.
  • the compound (C1) refers to a compound that cleaves bonds and/or reacts with exposure to generate radicals. Containing the (C1) compound is suitable for negative pattern formation.
  • radicals generated from the compound (C1) is very small, radical polymerization of the compound (B) and the like proceeds in a chain reaction, so negative pattern formation is possible with a low exposure amount of light. , and the effect of improving the sensitivity at the time of exposure becomes remarkable.
  • (C1) compounds include benzyl ketal-based compounds, ⁇ -hydroxyketone-based compounds, ⁇ -aminoketone-based compounds, acylphosphine oxide-based compounds, biimidazole-based compounds, oxime ester-based compounds, acridine-based compounds, titanocene-based compounds, and benzophenone-based compounds. compounds, acetophenone-based compounds, aromatic ketoester-based compounds, or benzoic acid ester-based compounds are preferred.
  • ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, acylphosphine oxide compounds, biimidazole compounds, or oxime ester compounds are more preferable, and improve sensitivity during exposure and halftone.
  • Oxime ester compounds are more preferred from the viewpoint of improving properties and suppressing residues after development.
  • the content ratio of the (C1) compound in the total solid content of the photosensitive composition of the present invention, excluding the solvent, is preferably 0.3% by mass or more, more preferably 1.0% by mass, from the viewpoint of improving sensitivity during exposure.
  • the above is more preferable, and 2.0% by mass or more is even more preferable.
  • the content of the compound (C1) is preferably 25% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less, from the viewpoint of suppressing residue after development.
  • the content of the (C1) compound in the photosensitive composition of the present invention is (A) an alkali-soluble
  • the total amount of the resin and the compound (B) is 100 parts by mass, it is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and even more preferably 5 parts by mass or more.
  • the content of the compound (C1) is preferably 30 parts by mass or less, more preferably 25 parts by mass or less, and even more preferably 20 parts by mass or less.
  • the (C1) compound preferably contains a (C1-1) oxime ester compound (hereinafter, “(C1-1) compound”).
  • the (C1-1) compound refers to a compound having an oxime ester structure as a skeleton that cleaves bonds and/or reacts with exposure to generate radicals.
  • the (C1) compound contains the (C1-1) compound from the viewpoint of improving sensitivity during exposure, improving halftone characteristics, and suppressing residues after development, and (B) It is preferable to contain a compound. Since the compound (C1-1) has a high absorbance to light during exposure, it is suitable for highly efficient radical generation, and the reaction rate of the radical polymerization of the compound (B) is significantly improved.
  • the (C1-1) compound preferably has a condensed polycyclic structure, a condensed polycyclic heterocyclic structure, or a diphenylsulfide structure.
  • the compound has a structure in which at least one oxime ester structure is bonded to a condensed polycyclic structure, a condensed polycyclic heterocyclic structure, or a diphenyl sulfide structure ( ⁇ -oxime structure), or at least one It preferably has a structure in which an oxime ester carbonyl structure is bonded (that is, a structure in which an oxime ester structure is bonded via a carbonyl structure; a ⁇ -oxime structure), and more preferably has a structure in which at least one oxime ester structure is bonded.
  • the condensed polycyclic structure is preferably a fluorene structure, a benzofluorene structure, a dibenzofluorene structure, an indene structure, an indane structure, a benzoindene structure, or a benzoindane structure, and more preferably a fluorene structure, a benzofluorene structure, or a dibenzofluorene structure.
  • the condensed polycyclic heterocyclic structure is preferably a carbazole structure, a dibenzofuran structure, a dibenzothiophene structure, a benzocarbazole structure, an indole structure, an indoline structure, a benzoindole structure, a benzoindoline structure, a phenothiazine structure, or a phenothiazine oxide structure, and a carbazole structure, A benzocarbazole structure, an indole structure, or a benzoindole structure is more preferred.
  • the (C1-1) compound has a fluorene structure, a benzofluorene structure, a dibenzofluorene structure, a benzocarbazole structure, an indole structure, and a benzoin structure. It preferably has a dol structure, a phenothiazine structure, or a phenothiazine oxide structure.
  • the photosensitive composition of the present invention comprises (C) a photosensitive agent, (C) the photosensitive agent contains a (C1) compound, the (C1) compound contains a (C1-1) compound, and (C1- 1) the compound has one or more selected from the group consisting of a nitro group, a naphthylcarbonyl structure, a trimethylbenzoyl structure, a thiophenylcarbonyl structure, a furylcarbonyl structure, at least two oxime ester structures, and at least two oxime ester carbonyl structures; It is preferable to have
  • the compound is one selected from the group consisting of a nitro group, a naphthylcarbonyl structure, a trimethylbenzoyl structure, a thiophenylcarbonyl structure, a furylcarbonyl structure, at least two oxime ester structures, and at least two oxime ester carbonyl structures;
  • a structure in which these structures are bonded to a condensed polycyclic structure, a condensed polycyclic heterocyclic structure, or a diphenylsulfide structure.
  • the compound (C1-1) has a nitro group, a naphthylcarbonyl structure, a trimethylbenzoyl structure, a thiophenylcarbonyl structure, a furylcarbonyl structure, at least two oxime ester structures, and at least two oxime esters.
  • the (C1-1) compound preferably further has one or more selected from the group consisting of a fluorene skeleton, a benzofluorene skeleton, and a dibenzofluorene skeleton. .
  • the (C1-1) compound has one or more selected from the group consisting of a fluorene skeleton, a benzofluorene skeleton, and a dibenzofluorene skeleton, the compound (C1-1) has photobleaching properties, The effects of improving sensitivity, suppressing narrow mask bias after development, and improving halftone characteristics are remarkable.
  • Photobleaching means that bond cleavage and/or reaction due to exposure reduces absorbance at wavelengths in the ultraviolet region (for example, 400 nm or less) and/or absorbance at visible light wavelengths (380 to 780 nm). say.
  • the compound (C1-1) preferably has a diphenylsulfide structure, an indole structure, a benzoindole structure, a phenothiazine structure, or a phenothiazine oxide structure, and a condensed polycyclic structure or It is also preferred to have a structure in which at least one oxime ester carbonyl structure is bonded to a condensed polycyclic heterocyclic structure.
  • the compound (C1-1) preferably has a group substituted with a halogen atom from the viewpoint of improving sensitivity during exposure, suppressing a narrow mask bias after development, and improving halftone characteristics. It is more preferable to have a group. It is speculated that when the above-mentioned (A) alkali-soluble resin has a structural unit having a halogen atom, the compatibility between the resin and the photopolymerization initiator is improved, thereby promoting photocuring from the surface of the film to the deep part of the film.
  • the polyimide-based resin described above preferably has the structural unit having the fluorine atom described above.
  • a group substituted with a halogen atom includes a trifluoromethyl group, a trifluoropropyl group, a trichloropropyl group, a tetrafluoropropyl group, a fluorocyclopentyl group, a fluorophenyl group, a pentafluorophenyl group, a trifluoropropoxy group, and a tetrafluoropropoxy group. , or a pentafluorophenoxy group.
  • the compound (C1-1) preferably has a radically polymerizable group from the viewpoint of improving sensitivity during exposure, suppressing narrow mask bias after development, and improving halftone characteristics.
  • 5 alkenyl groups and alkynyl groups having 2 to 5 carbon atoms preferably has a structure in which at least one alkenyl group having 2 to 5 carbon atoms is bonded to a condensed polycyclic structure, a condensed polycyclic heterocyclic structure, or a diphenylsulfide structure.
  • the photoreactive group is preferably a styryl group, a cinnamoyl group, a maleimide group, or a (meth)acryloyl group, more preferably a (meth)acryloyl group.
  • an alkenyl group having 2 to 5 carbon atoms or an alkynyl group having 2 to 5 carbon atoms is a vinyl group, allyl group, 2-methyl-2-propenyl group, crotonyl group, 2-methyl-2-butenyl group, 3- A methyl-2-butenyl group, a 2,3-dimethyl-2-butenyl group, an ethynyl group, or a 2-propargyl group is preferable, and a vinyl group or an allyl group is more preferable.
  • the (C1-1) compound having a condensed polycyclic structure, a condensed polycyclic heterocyclic structure, or a diphenyl sulfide structure is generally used from the viewpoint of improving sensitivity during exposure, improving halftone characteristics, and suppressing residue after development. It preferably contains one or more selected from the group consisting of compounds represented by any one of formulas (17), (18) and (19), and contains a compound represented by general formula (18). is more preferred.
  • Y 1 and Y 2 are each independently a carbon atom in general formulas (17) and (18).
  • Y 1 and Y 2 each independently represent a nitrogen atom, an oxygen atom, or a sulfur atom in general formulas (17) and (18).
  • X 1 , X 2 , X 4 , X 5 and X 6 are each independently a direct bond, an alkylene group having 1 to 10 carbon atoms, an alkylene group having 4 to 10 carbon atoms, or an arylene group having 6 to 15 carbon atoms.
  • Y 1 and Y 2 each independently represent a carbon atom, a nitrogen atom, an oxygen atom, or a sulfur atom.
  • R 451 to R 456 are each independently an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or It represents a hydroxyalkyl group having 1 to 10 carbon atoms.
  • R 457 to R 459 each independently represent a substituent represented by any one of general formulas (57) to (60) or a nitro group.
  • R 460 to R 467 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, or 4 to 10 carbon atoms represents a group forming a ring of R 468 and R 469 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms group, an alkoxy group having 1 to 10 carbon atoms, a haloalkyl group having 1 to 10 carbon atoms, a haloalkoxy group having 1 to 10 carbon atoms, or an acyl group having 2 to 15 carbon atoms.
  • R 471 to R 473 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms.
  • R 474 to R 476 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • a represents an integer of 0 to 3;
  • c represents an integer of 0 to 5;
  • b and d each independently represent 0 or 1;
  • e and f each independently represent an integer of 0 to 2;
  • g and h are each independently 2 when Y 1 and Y 2 are each independently a carbon atom;
  • g and h are each independently 1 when Y 1 and Y 2 are each independently a nitrogen atom;
  • g and h are each independently 0 when Y 1 and Y 2 are each independently an oxygen atom or a sulfur atom;
  • j, k, and l each independently represent 0 or 1;
  • m, n, and o each independently represent an integer of 1 to 10;
  • R 477 to R 480 each independently represent an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms. , represents an alkoxy group having 1 to 10 carbon atoms, a hydroxyalkyl group having 1 to 10 carbon atoms, or a group forming a ring.
  • Examples of the ring formed by a plurality of R 477 to R 480 include benzene ring, naphthalene ring, anthracene ring, cyclopentane ring and cyclohexane ring.
  • a benzene ring or a naphthalene ring is preferable as the ring formed by a plurality of R 477 to R 480 .
  • the content ratio of the (C1-1) compound in the total solid content of the photosensitive composition of the present invention, excluding the solvent, is 0.3% by mass or more from the viewpoint of improving sensitivity during exposure and improving halftone characteristics. is preferred, 1.0% by mass or more is more preferred, and 2.0% by mass or more is even more preferred.
  • the content of the (C1-1) compound is preferably 25% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less, from the viewpoint of suppressing residue after development.
  • the content of (C1-1) compound in the photosensitive composition of the present invention is (A) When the total amount of the alkali-soluble resin and the compound (B) is 100 parts by mass, it is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and even more preferably 5 parts by mass or more.
  • the content of the (C1-1) compound is preferably 30 parts by mass or less, more preferably 25 parts by mass or less, and even more preferably 20 parts by mass or less.
  • the photosensitive composition of the present invention preferably contains (C) a photosensitive agent, and (C) the photosensitive agent contains (C2) a photoacid generator.
  • C2) Photoacid generator refers to a compound that cleaves bonds and/or reacts with exposure to generate an acid. At the time of exposure, even if the amount of acid generated from the photoacid generator (C2) is small, the cationic polymerization of the cationically polymerizable compound and/or the crosslinking of the resin with the (G) crosslinking agent, which will be described later, will form a chain.
  • the photosensitive agent preferably contains the above-described (C1) compound and (C2) photoacid generator.
  • the (C) photosensitive agent contains a (C3) compound and (C2) a photoacid generator, which will be described later, an acid can be generated from the (C2) photoacid generator during exposure after alkali development and before thermal curing. .
  • the generated acid can promote crosslinking between the resin and the (C) crosslinking agent, etc., described later during the subsequent heat curing, so that the effect of improving the heat resistance of the cured film and improving the chemical resistance of the cured film is remarkable. .
  • Photoacid generators include, for example, ionic compounds and nonionic compounds.
  • the ionic compound is preferably a triorganosulfonium salt compound.
  • the nonionic compound is preferably a halogen-containing compound, a diazomethane compound, a sulfone compound, a sulfonate ester compound, a carboxylate ester compound, a sulfonimide compound, a phosphate ester compound, or a sulfonebenzotriazole compound.
  • the photosensitive composition of the present invention contains (C) a photosensitive agent, (C)
  • the photosensitive agent preferably contains (C3) a naphthoquinonediazide compound.
  • the (C3) compound is a compound that undergoes a structural change upon exposure to generate indenecarboxylic acid and/or sulfoindenecarboxylic acid.
  • the exposed portion of the film of the composition is made soluble in an alkaline developer by the acidic compound in which the (C3) compound is structurally changed, so that a positive pattern can be formed.
  • the solubility of the exposed portion in an alkaline developer is selectively improved, and the effect of improving the resolution after development becomes remarkable.
  • the (C) photosensitive agent contains the above-described (C1) compound and (C3) compound to suppress the narrow mask bias after development. , the effects of improving the halftone characteristics, suppressing pattern shape change during development, and reducing the taper of the pattern shape become remarkable.
  • the compound (C3) is preferably a 5-naphthoquinonediazidesulfonic acid ester or a 4-naphthoquinonediazidesulfonic acid ester of a compound having a phenolic hydroxyl group.
  • a method for producing the compound (C3) for example, a method of esterifying a compound having a phenolic hydroxyl group and naphthoquinonediazide sulfonic acid, or a method of esterifying a compound having a phenolic hydroxyl group and naphthoquinonediazide sulfonic acid chloride. and the like.
  • the naphthoquinonediazide sulfonyl chloride is preferably 5-naphthoquinonediazide sulfonyl chloride or 4-naphthoquinonediazide sulfonyl chloride.
  • the photosensitive composition of the present invention preferably further contains (D) a colorant.
  • the colorant preferably contains (Da) a black agent.
  • the coloring agent refers to a compound that absorbs visible light wavelengths (380 to 780 nm) to give color.
  • a coloring agent By including (D) a coloring agent, the light transmitted through the film of the composition or the light reflected from the film of the composition can be colored in a desired color. In addition, it is possible to impart a light-shielding property to the film of the composition.
  • Colorant is preferably (D1) pigment or (D2) dye.
  • a black agent is preferable when light shielding properties against visible light are required.
  • the blackening agent refers to a compound that blackens by absorbing light of visible light wavelengths.
  • the effect of improving the light-shielding property of the film of the composition and improving the reliability of the light-emitting element in the display device becomes remarkable.
  • a film of a composition containing a black agent is suitable for applications requiring high contrast due to suppression of external light reflection, prevention of light leakage from adjacent pixels, or prevention of TFT malfunction.
  • a pixel dividing layer it is particularly preferred as a pixel dividing layer, a TFT planarizing layer, a TFT protective layer, an interlayer insulating layer, or a gate insulating layer of a display. It is also preferred as a black matrix or black column spacer.
  • the photosensitive composition of the present invention contains (Da) a black agent, the weakly acidic group equivalent in the total solid content of the photosensitive composition is 400 to 6,000 g / mol, and the total solid content of the photosensitive composition is When the double bond equivalent per minute is 600 to 6,000 g/mol, the effects of improving sensitivity during exposure, suppressing narrow mask bias after development, and improving halftone characteristics become remarkable. In addition, the effect of improving the reliability of the light-emitting element in the display device becomes remarkable.
  • (Da) a black agent is contained, ultraviolet rays and the like are blocked during pattern exposure, which causes a decrease in sensitivity during exposure. It is presumed that by setting the double bond equivalent to a specific range, it is possible to control the alkali solubility in both the exposed area and the unexposed area at a high level.
  • a black agent may be contained, and (Db) a colorant other than black may be contained.
  • a coloring agent other than black By including a coloring agent other than black, the film of the composition can be colored to desired color coordinates.
  • (D2) Dye refers to a compound that chemically adsorbs to the surface structure of an object to color it, and is generally soluble in solvents.
  • D2 Dyes include, for example, anthraquinone dyes, azo dyes, azine dyes, phthalocyanine dyes, methine dyes, oxazine dyes, quinoline dyes, indigo dyes, indigoid dyes, carbonium dyes, threne dyes, perinone dyes, perylene dyes, triarylmethane dyes, or xanthene dyes.
  • Black in colorants refers to those that include "BLACK” in the Color Index Generic Name (hereinafter "C.I. number”).
  • C.I. number When it contains a material that is not numbered, it means that the cured film is black.
  • Black in the case of a cured film means that in the transmission spectrum of the cured film of the composition containing the (D) coloring agent, the transmittance per 1.0 ⁇ m film thickness at a wavelength of 550 nm is calculated based on the Lambert-Beer formula, When the film thickness is converted within the range of 0.1 to 1.5 ⁇ m so that the transmittance at a wavelength of 550 nm is 10%, the transmittance at a wavelength of 450 to 650 nm in the converted transmission spectrum is 25% or less.
  • the transmission spectrum of the cured film can be obtained based on the method described in paragraph [0285] of WO2019/087985.
  • the average primary particle size of the pigment is preferably 20-150 nm.
  • the average primary particle size of the pigment is preferably 20 nm or more, more preferably 30 nm or more, even more preferably 40 nm or more, even more preferably 50 nm or more, and particularly preferably 60 nm or more, from the viewpoint of improving the reliability of the light emitting device.
  • the average primary particle diameter of the pigment is preferably 150 nm or less, more preferably 120 nm or less, even more preferably 100 nm or less, even more preferably 90 nm or less, and 80 nm or less, from the viewpoint of improving the light shielding properties and improving the reliability of the light emitting device. is particularly preferred.
  • the primary particle size of the pigment refers to the long axis diameter of the primary particles of the pigment.
  • the preferred range of the average primary particle size of the pigment in the pigment dispersion is as described above for the preferred range of the average primary particle size of the pigment.
  • the primary particle diameter of the pigment is measured by thinly cutting the cured film as a measurement sample.
  • Image analysis type particle size distribution measurement software (Mac-View; manufactured by MOUNTECH Co., Ltd.) is used to observe an image of a point located in the range of 0.2 to 0.8 ⁇ m in the depth direction from the surface of the surface at a magnification of 50,000 times. can be measured using
  • the average primary particle diameter of the pigment can be calculated as an average value obtained by imaging and analyzing the cross section of the measurement sample and measuring 30 primary particles of the pigment.
  • the elements constituting the particles can be identified by observation with a transmission electron microscope-energy dispersive X-ray spectroscopy (hereinafter referred to as "TEM-EDX").
  • the average primary particle size of the pigment in the pigment dispersion can be obtained by measuring the particle size distribution by a dynamic light scattering method.
  • the content ratio of the (D) colorant in the total solid content of the photosensitive composition of the present invention, excluding the solvent, is 5 from the viewpoint of improving the light-shielding property and improving the reliability of the light-emitting element in the display device. % by mass or more is preferable, 20% by mass or more is more preferable, and 30% by mass or more is even more preferable.
  • the content ratio of (D) the colorant is preferably 70% by mass or less, more preferably 50% by mass or less, from the viewpoint of improving the sensitivity during exposure and improving the reliability of the light-emitting element in the display device.
  • the preferred content ratio of (Da) the black agent is the same as the preferred content ratio of (D) the colorant described above.
  • a black agent preferably contains (D1a) a black pigment.
  • D1a A black pigment refers to a pigment that turns black by absorbing light of a visible light wavelength.
  • a pigment is a compound that physically adsorbs or interacts with the surface of an object to color it, and is generally insoluble in solvents and the like.
  • D1a By containing a black pigment, the effect of improving the light-shielding property of the film of the composition and improving the reliability of the light-emitting element in the display device becomes remarkable.
  • a black pigment is (D1a-1) an organic black pigment and/or (D1a-2) an inorganic black pigment, which will be described later
  • (D1b) a pigment other than black may be contained.
  • the film of the composition can be colored to desired color coordinates.
  • Pigments other than black are preferably one or more selected from the group consisting of blue pigments, red pigments, yellow pigments, purple pigments, orange pigments, and green pigments, which will be described later.
  • the preferred content ratio of (D1a) the black pigment is the same as the preferred content ratio of the (D) colorant described above.
  • (D1a) a black pigment includes (D1a-1) an organic black pigment (hereinafter referred to as "(D1a-1) compound”), (D1a-2) an inorganic black pigment (hereinafter referred to as "( D1a-2) compound”), and (D1a-3) a mixture of two or more color pigments (hereinafter, “(D1a-3) compound”).
  • the (D1a-1) compound and/or the (D1a-3) compound are more preferable, and the (D1a-1) compound is even more preferable, from the viewpoint of improving the reliability of the light-emitting element in the display device.
  • Examples of (D1a-1) compounds include (D1a-1a) benzofuranone black pigment, (D1a-1b) perylene black pigment, (D1a-1c) azo black pigment, anthraquinone black pigment, and aniline black pigment. , or carbon black.
  • (D1a-2) Compounds include, for example, graphite or silver-tin alloys, or fine particles, oxides, composites of metals such as titanium, copper, iron, manganese, cobalt, chromium, nickel, zinc, calcium, or silver oxides, sulfides, sulfates, nitrates, carbonates, nitrides, carbides, or oxynitrides.
  • the (D1a-3) compound refers to a pigment mixture that gives a pseudo-black color by combining two or more pigments. Due to the mixing of two or more pigments, the film of the composition can be toned to the desired color coordinates.
  • the photosensitive composition of the present invention further contains (D1a-1) compound and/or (D1a-3) compound, (D1a-1) compound contains one or more selected from the group consisting of (D1a-1a) benzofuranone-based black pigment, (D1a-1b) perylene-based black pigment, and (D1a-1c) azo-based black pigment, (D1a-3)
  • the compound preferably contains two or more pigments selected from the group consisting of red, orange, yellow, green, blue and purple pigments.
  • the weakly acidic group equivalent in the total solid content of the photosensitive composition is 400 to 6,000 g / mol
  • the double bond equivalent in the total solid content of the photosensitive composition is more preferably 600 to 6,000 g/mol.
  • the (D1a-3) compound preferably contains two or more pigments selected from the group consisting of red, orange, yellow, green, blue, and violet pigments.
  • the compound is (I-d1) from the viewpoint of improving sensitivity during exposure, suppressing narrow mask bias after development, improving halftone characteristics, and improving reliability of light-emitting elements in display devices.
  • a colored pigment mixture containing a blue pigment, a red pigment, and a yellow pigment (II-d1) a colored pigment mixture containing a blue pigment, a red pigment, and an orange pigment, (III-d1) a blue pigment, a purple pigment, and an orange pigment or (IV-d1) a colored pigment mixture containing a purple pigment and a yellow pigment.
  • the blue pigment is C.I. I. Pigment Blue 15:4, C.I. I. Pigment Blue 15:6, or C.I. I. Pigment Blue 60 is preferred and the red pigment is C.I. I. Pigment Red 123, C.I. I. Pigment Red 149, C.I. I. Pigment Red 177, C.I. I. Pigment Red 179, or C.I. I. Pigment Red 190 is preferred and the yellow pigment is C.I. I. Pigment Yellow 120, C.I. I. Pigment Yellow 151, C.I. I. Pigment Yellow 175, C.I. I. Pigment Yellow 180, C.I. I. Pigment Yellow 181, C.I. I.
  • Pigment Yellow 192 or C.I. I. Pigment Yellow 194 is preferred and the violet pigment is C.I. I. Pigment Violet 19, C.I. I. Pigment Violet 29, or C.I. I. Pigment Violet 37 is preferred and the orange pigment is C.I. I. Pigment Orange 43, C.I. I. Pigment Orange 64, or C.I. I. Pigment Orange 72 is preferred (all values are C.I. numbers).
  • the total content ratio of (D1a-1) compound, (D1a-2) compound, and (D1a-3) compound is the preferred content ratio of (D) colorant described above. is.
  • the (D1a-1) compound is a group consisting of (D1a-1a) a benzofuranone-based black pigment, (D1a-1b) a perylene-based black pigment, and (D1a-1c) an azo-based black pigment. It preferably contains one or more kinds selected from the above (hereinafter, “specific (D1a-1) organic black pigment”), and more preferably contains (D1a-1a) benzofuranone-based black pigment.
  • the specific (D1a-1) organic black pigment has excellent light-shielding properties per unit content ratio of the pigment in the composition compared to general organic pigments, and transmits wavelengths in the ultraviolet region (e.g., 400 nm or less). Since the ratio is high, the effects of improving sensitivity during exposure, suppressing residue after development, suppressing narrow mask bias after development, and improving halftone characteristics are remarkable. In addition, since it is excellent in insulating properties and low dielectric properties compared to general organic pigments and inorganic pigments, the effect of improving the reliability of light-emitting elements in display devices is remarkable.
  • the weakly acidic group equivalent and the double bond equivalent in the total solid content of the photosensitive composition are set to specific ranges, and the (D1a-1) compound suitable for combination is the pigment.
  • the (D1a-1a) Benzofuranone-based black pigments are particularly preferable from the viewpoint of high light-shielding properties at wavelengths of visible light and high transmittance of pigments at wavelengths in the ultraviolet region.
  • the photosensitive composition of the present invention preferably contains a (D1a-1) compound, and the (D1a-1) compound preferably contains (D1a-1a) a benzofuranone-based black pigment.
  • the benzofuranone-based black pigment preferably has at least two benzofuran-2(3H)-one structures or at least two benzofuran-3(2H)-one structures, and has general formula (161) and general formula Compounds represented by any one of (162), geometric isomers thereof, salts thereof, or salts of geometric isomers thereof are more preferred.
  • R 341 to R 344 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms.
  • R 353 and R 354 are each independently an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, a cycloalkenyl group having 4 to 10 carbon atoms, or represents an alkynyl group having 2 to 10 carbon atoms.
  • a plurality of R 345 to R 348 may be directly bonded to each other or may form a ring with an oxygen atom bridge, a sulfur atom bridge, an NH bridge, or an NR 353 bridge.
  • R 349 to R 352 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • a, b, c, and d each independently represent an integer of 0 to 4;
  • the alkyl group, cycloalkyl group, alkenyl group, cycloalkenyl group, alkynyl group, and aryl group described above may have a heteroatom and may be unsubstituted or substituted.
  • (D1a-1b) perylene-based black pigment preferably has a perylene structure, more preferably a compound represented by any one of general formulas (164) to (166), or a salt thereof; ,10-perylenetetracarboxylic acid bisbenzimidazole structure, geometric isomers thereof, salts thereof, or salts of geometric isomers thereof.
  • X 241 and X 242 each independently represent a direct bond or an alkylene group having 1 to 10 carbon atoms.
  • Y 241 and Y 242 each independently represent a direct bond or an arylene group having 6 to 15 carbon atoms.
  • R 361 and R 362 each independently represent a hydrogen atom, a hydroxy group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an acyl group having 2 to 6 carbon atoms.
  • a plurality of R 367 to R 369 may be directly bonded to each other or may form a ring with oxygen atom bridge, sulfur atom bridge, NH bridge or NR 370 bridge.
  • a and b each independently represents an integer of 0 to 5;
  • c, d, e and f each independently represents an integer of 0 to 4;
  • g, h, and i each independently represent an integer of 0 to 8;
  • R 361 and R 362 are each independently preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, a and b are 1.
  • R 361 and R 362 are preferably hydroxy groups, and a and b are 1.
  • R 361 and R 362 are each independently a hydroxy group, An alkoxy group having 1 to 6 carbon atoms or an acyl group having 2 to 6 carbon atoms is preferable, and a and b each independently represent an integer of 0 to 5.
  • the alkylene group, arylene group, alkyl group, alkoxy group, and acyl group described above may have a heteroatom and may be unsubstituted or substituted.
  • the azo black pigment preferably has an azo group in the molecule, more preferably contains a compound having an azomethine structure and a carbazole structure or a salt thereof, and is represented by the general formula (168). or a salt thereof is more preferred.
  • X 251 represents an arylene group having 6 to 15 carbon atoms.
  • Y 251 represents an arylene group having 6 to 15 carbon atoms.
  • R 390 and R 391 are each independently an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, a cycloalkenyl group having 4 to 10 carbon atoms, or represents an alkynyl group having 2 to 10 carbon atoms.
  • a plurality of R 381 to R 383 may be directly bonded to each other or may form a ring with an oxygen atom bridge, a sulfur atom bridge, an NH bridge, or an NR 390 bridge.
  • R 384 represents a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a nitro group.
  • R 385 represents a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an acylamino group having 2 to 10 carbon atoms, or a nitro group.
  • R 386 to R 389 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the arylene group, alkyl group, alkoxy group, and acylamino group described above may have a heteroatom and may be unsubstituted or substituted.
  • (D1a-1a) Benzofuranone-based black pigments include, for example, "IRGAPHOR” (registered trademark) BLACK S0100CF (manufactured by BASF), the black pigment described in International Publication No. 2010/081624, or the black pigment described in International Publication No. 2010/081756. of black pigments.
  • Examples of (D1a-1b) perylene-based black pigments include C.I. I. Pigment Black 31 or C.I. I. Pigment Black 32 (all numerical values are C.I. numbers).
  • PALIOGEN registered trademark
  • BLACK S0084, K0084, L0086, K0086, K0087, K0088, EH0788, FK4280, or FK4281 all manufactured by BASF
  • (D1a-1c) azo black pigments include, for example, "CHROMOFINE” (registered trademark) BLACK A1103 (manufactured by Dainichiseika Kogyo Co., Ltd.), black pigments described in JP-A-01-170601, or Examples thereof include black pigments described in JP-A-02-034664.
  • the total content ratio of the specific (D1a-1) organic black pigment is the same as the preferred content ratio of the (D) colorant described above.
  • the (D1a-1) compound preferably further has a (DC) coating layer.
  • the (DC) coating layer is, for example, a layer that covers the pigment surface formed by a treatment such as surface treatment with a silane coupling agent, surface treatment with a silicate, surface treatment with a metal alkoxide, or coating treatment with a resin. say.
  • the above-mentioned (D1a-1) compound contains (D1a-1a) a benzofuranone-based black pigment
  • having a (DC) coating layer suppresses residue after development caused by the pigment, narrows after development
  • the effects of suppressing the mask bias and improving the halftone characteristics become remarkable.
  • the effect of improving the reliability of the light-emitting element in the display device becomes remarkable.
  • the average coverage of the (DC) coating layer with respect to the (D1a-1) compound is preferably 50 to 100%, from the viewpoint of suppressing residues after development and improving the reliability of light-emitting elements in display devices, and 70%. ⁇ 100% is more preferred, and 90-100% is even more preferred.
  • the average coverage of the (DC) coating layer with respect to the (D1a-1) compound can be determined based on the method described in paragraph [0349] of WO 2019/087985.
  • the (DC) coating layer is a (DC-1) silica coating layer (hereinafter referred to as "(DC-1) coating layer") from the viewpoint of suppressing residue after development and improving the reliability of light-emitting elements in display devices. ), (DC-2) metal oxide coating layer (hereinafter, “(DC-2) coating layer”), and (DC-3) metal hydroxide coating layer (hereinafter, “(DC-3) coating layer” ), and more preferably (DC-1) coating layer.
  • (DC-1) Silica in the coating layer includes, for example, silicon dioxide or a hydrous product thereof.
  • the metal oxide in the coating layer includes not only the metal oxide itself but also, for example, a hydrate of the metal oxide.
  • metal oxides include alumina (Al 2 O 3 ) and alumina hydrate (Al 2 O 3.nH 2 O).
  • DC-3) Examples of the metal hydroxide in the coating layer include aluminum hydroxide (Al(OH) 3 ).
  • the content of the (DC-1) coating layer is, when the (D1a-1) compound is 100 parts by mass, from the viewpoint of suppressing residue after development, and light emission in the display device From the viewpoint of improving the reliability of the device, it is preferably 1 part by mass or more, more preferably 5 parts by mass or more.
  • the content of the (DC-1) coating layer is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, from the viewpoint of suppressing residue after development.
  • the total content of the (DC-2) coating layer and (DC-3) coating layer is, when the (D1a-1) compound is 100 parts by mass, after development and from the viewpoint of improving the reliability of light-emitting elements in display devices, the amount is preferably 0.1 parts by mass or more, and more preferably 0.5 parts by mass or more.
  • the total content of the (DC-2) coating layer and (DC-3) coating layer is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, from the viewpoint of suppressing residue after development.
  • the photosensitive composition of the present invention preferably further contains (E) a dispersant.
  • the dispersant refers to a compound having a surface affinity group that interacts with the surface of the pigment (D1) described above and a dispersion stabilizing structure that improves dispersion stability. Examples of the dispersion stabilizing structure include ionic substituents and polar substituents that stabilize dispersion by electrostatic repulsion, and polymer chains that stabilize dispersion by steric hindrance.
  • D1 When the number average particle size of the pigment is 500 nm or less, the increase in the surface area reduces the dispersion stability and tends to cause aggregation of the particles.
  • the dispersant preferably has a (meth)acryloyl group, a vinyl group, or an allyl group from the viewpoint of improving sensitivity during exposure and improving the reliability of light-emitting elements in display devices.
  • the (A) alkali-soluble resin described above has a (meth)acryloyl group, a vinyl group, or an allyl group
  • the (E) dispersant may not have a (meth)acryloyl group, a vinyl group, or an allyl group. more preferred.
  • the dispersant preferably has one or more selected from the group consisting of a basic group, an acidic group, a salt structure of a basic group, and a salt structure of an acidic group, from the viewpoint of suppressing residue after development. , a basic group, and/or a salt structure of a basic group.
  • the dispersing agent is a dispersing agent having only a basic group, a dispersing agent having a basic group and an acidic group, or a dispersing agent having a structure in which a basic group is salted with an acid, from the viewpoint of suppressing residue after development.
  • a dispersant having a structure in which an acidic group is salted with a base is preferable, and a dispersant having only a basic group or a dispersant having both a basic group and an acidic group is more preferable.
  • a dispersant having only acidic groups or a dispersant having neither basic groups nor acidic groups may be contained.
  • the basic group possessed by the dispersant is preferably a tertiary amino group or a nitrogen-containing ring skeleton such as a pyrrolidine skeleton, a pyrrole skeleton, an imidazole skeleton, or a piperidine skeleton.
  • the acidic group possessed by the dispersant is preferably a carboxy group, a sulfonic acid group, a phosphoric acid group, or a phenolic hydroxyl group.
  • the structure in which the basic group of the dispersant is salt-formed with an acid is preferably a quaternary ammonium salt structure or a structure in which the nitrogen-containing ring skeleton described above is salt-formed.
  • the counter anion in the salt structure of the basic group is preferably a carboxylate anion, a sulfonate anion, a phenoxy anion, a sulfate anion, a nitrate anion, a phosphate anion, or a halogen anion, more preferably a carboxylate anion.
  • (E) dispersant having a polymer chain is an acrylic resin-based dispersant, a polyoxyalkylene ether-based dispersant, a polyester-based dispersant, a polyurethane-based dispersant, a polyol-based dispersant, a polyalkyleneamine-based dispersant, a polyethyleneimine-based A dispersant or a polyallylamine-based dispersant is preferred.
  • the dispersant preferably contains (E1) a pigment dispersant having a basic group (hereinafter, "(E1) compound"), and the (E1) compound is represented by general formulas (26) and (27) , (28) and (29), and a polyoxyalkylene structure.
  • the (E1) compound has a structure represented by the general formula (26) and a polyoxyalkylene structure from the viewpoint of suppressing the increase in viscosity of the pigment dispersion during storage, improving the flatness of the cured film, and suppressing the residue after development. It is further preferred to have
  • (E1) a pigment dispersant having a basic group has a structure represented by the general formula (29), and Having a polyoxyalkylene structure is also more preferred.
  • R 56 to R 59 each independently represent an alkyl group having 1 to 6 carbon atoms.
  • n represents an integer of 1-9.
  • * 1 to * 6 each independently represent a bonding point with a polyoxyalkylene structure.
  • X 56 and X 57 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Y 56 to Y 59 each independently represent an alkylene group having 1 to 6 carbon atoms.
  • a and b each independently represents an integer of 1 to 100;
  • c and d each independently represent an integer of 0 to 100; * 7 represents a point of attachment with a carbon atom or a nitrogen atom.
  • a and b are each independently preferably an integer of 5-60, more preferably an integer of 10-40.
  • c and d are each independently preferably an integer of 0-20, more preferably an integer of 0-10.
  • the amine value of (E) the dispersant (including the (E1) compound) is preferably 5 mgKOH/g or more, more preferably 10 mgKOH/g or more, from the viewpoint of suppressing residue after development. On the other hand, the amine value is preferably 100 mgKOH/g or less, more preferably 70 mgKOH/g or less, from the viewpoint of suppressing residue after development.
  • the amine value referred to herein is the mass of potassium hydroxide equivalent to the acid reacting with 1 g of (E) dispersant or (E1) compound per 1 g, and the unit is mgKOH/g.
  • the acid value of (E) the dispersant and (E1) compound is preferably 10 mgKOH/g or more, more preferably 20 mgKOH/g or more, from the viewpoint of suppressing residue after development. On the other hand, the acid value is preferably 100 mgKOH/g or less, more preferably 70 mgKOH/g or less, from the viewpoint of suppressing residue after development.
  • the acid value herein refers to the mass of potassium hydroxide that reacts with 1 g of (E) dispersant or (E1) compound per 1 g, and the unit is mgKOH/g.
  • the total content of (E) dispersant and (E1) compound in the photosensitive composition of the present invention is 100 mass of (D1) pigment In terms of parts, it is preferably 5 parts by mass or more, more preferably 15 parts by mass or more, from the viewpoint of suppressing residue after development.
  • the total content of (E) dispersant and (E1) compound is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, from the viewpoint of suppressing residue after development.
  • the photosensitive composition of the invention preferably further contains the following (F0) compound and/or (FB) compound.
  • (F0) compound a compound having an acidic group containing a phosphorus atom and/or a salt of an acidic group containing a phosphorus atom (hereinafter, "(F0) compound”).
  • (FB) compound a compound having a betaine structure containing a phosphorus atom (hereinafter, "(FB) compound”).
  • the (F0) compound, the (FB) compound, the (FC1) compound described later, and the (FT) compound described later may be collectively referred to as the "(F) compound" hereinafter.
  • the (F) compound preferably has a (meth)acryloyl group, a vinyl group, or an allyl group from the viewpoint of improving sensitivity during exposure and improving the reliability of light-emitting elements in display devices.
  • the compound (F) preferably does not have a (meth)acryloyl group, a vinyl group, or an allyl group. preferable.
  • the (F0) compound preferably has the following (I-f0) structure.
  • (I-f0) Structure A group consisting of a monovalent to divalent aliphatic group having 4 to 30 carbon atoms, an alkylaryl group having 10 to 30 carbon atoms, and an oxyalkylene group bonded to an aryl group having 6 to 15 carbon atoms. one or more groups selected from
  • the (FB) compound preferably has the following (I-fb) structure.
  • (I-fb) structure a monovalent to divalent aliphatic group having 1 to 6 carbon atoms and having an ammonium cation structure.
  • (F0) compounds and/or (FB) compounds preferably contain two or more types of compounds, and preferably contain two or more types of (F0) compounds and two or more types of (FB) compounds. It is particularly preferred to contain the (F0) compound and the (FB) compound.
  • the photosensitive composition of the present invention contains the (F0) compound and/or the (FB) compound, the (F0) compound includes the following (F1) compound, and the (FB) compound includes the following (FB1) It preferably contains a compound.
  • (F1) compound one or more selected from the group consisting of phosphoric acid compounds, phosphonic acid compounds, phosphinic acid compounds, and salts thereof (hereinafter, "(F1) compound”).
  • (FB1) compound one or more selected from the group consisting of betaine phosphate compounds, betaine phosphonate compounds, and betaine phosphinate compounds (hereinafter, "(FB1) compound”).
  • the (F1) compound preferably has the following (I-f1) structure and/or (II-f1) structure.
  • (I-f1) structure one selected from the group consisting of a monovalent aliphatic group having 4 to 30 carbon atoms, a divalent aliphatic group having 6 to 30 carbon atoms, and an alkylaryl group having 10 to 30 carbon atoms A group of more than one type.
  • (II-f1) structure an oxyalkylene group to which a monovalent aliphatic group having 4 to 30 carbon atoms is bonded, an oxyalkylene group to which an alkylaryl group having 10 to 30 carbon atoms is bonded, and an aryl having 6 to 15 carbon atoms
  • the (FB1) compound preferably has the following (I-fb1) structure.
  • (I-fb1) structure a monovalent to divalent aliphatic group having 1 to 6 carbon atoms and having an ammonium cation structure.
  • the (F1) compound and/or the (FB1) compound preferably contain two or more types of compounds, and preferably contain two or more types of (F1) compounds and two or more types of (FB1) compounds. It is particularly preferred to contain the (F1) compound and the (FB1) compound.
  • the compound has a substituent bonded to the phosphorus atom and/or a substituent bonded to the oxygen atom on the PO bond, and the substituent is (I-f1) structure and/or (II- f1) structure is preferred.
  • the (I-f1) structure is preferably the following (I-f1x) structure.
  • (I-f1x) structure one selected from the group consisting of a monovalent aliphatic group having 6 to 12 carbon atoms, a divalent aliphatic group having 6 to 12 carbon atoms, and an alkylaryl group having 14 to 26 carbon atoms A group of more than one type.
  • the monovalent aliphatic group is preferably an alkyl group, an alkenyl group, or an alkynyl group.
  • the divalent aliphatic group is preferably an alkylene group, an alkenylene group, or an alkynylene group.
  • the (I-f1) structure is preferably a linear structure and/or a branched structure.
  • the (II-f1) structure is preferably the following (II-f1x) structure.
  • (II-f1x) structure an oxyalkylene group to which a monovalent aliphatic group having 6 to 12 carbon atoms is bonded, an oxyalkylene group to which an alkylaryl group having 14 to 26 carbon atoms is bonded, and an aryl having 6 to 10 carbon atoms
  • the monovalent aliphatic group is preferably an alkyl group, an alkenyl group, or an alkynyl group.
  • the (II-f1) structure is preferably a linear structure and/or a branched structure.
  • the salt of an acidic group containing a phosphorus atom in the compound includes a salt of an acidic group containing a phosphorus atom and a compound having a cationic structure.
  • the salt of a phosphoric acid compound, the salt of a phosphonic acid compound, or the salt of a phosphinic acid compound in the compound (F1) is a salt of a phosphoric acid compound, a phosphonic acid compound, or a phosphinic acid compound and a compound having a cationic structure. are mentioned.
  • Compounds having a cationic structure include compounds having one or more selected from the group consisting of metal atom cations, ammonium cations, phosphonium cations, and sulfonium cations, and compounds having ammonium cations are preferred.
  • the ammonium cation is preferably a primary ammonium cation, a secondary ammonium cation, a tertiary ammonium cation, or a quaternary ammonium cation, more preferably a quaternary ammonium cation.
  • the ammonium cation preferably has at least one aliphatic group having 1 to 30 carbon atoms, more preferably has an aliphatic group having 1 to 15 carbon atoms, and has an aliphatic group having 1 to 10 carbon atoms. is more preferred, and having an aliphatic group having 1 to 6 carbon atoms is particularly preferred.
  • the aliphatic group is preferably a monovalent to divalent linear and/or branched aliphatic group, preferably a group selected from the group consisting of a linear alkyl group, an alkenyl group, and an alkynyl group. Alkyl groups with a chain structure are more preferred.
  • the (F1) compound preferably contains one or more selected from the group consisting of compounds represented by any of general formulas (11), (12) and (13) and salts thereof. It is also preferable to contain two or more compounds selected from the group consisting of compounds represented by any of formulas (11), (12) and (13) and salts thereof.
  • the compound is at least a compound represented by general formula (12) and/or The inclusion of salt is particularly preferred.
  • Z 11 to Z 13 are each independently a direct bond, a divalent aliphatic group having 6 to 30 carbon atoms, or a group represented by general formula (14).
  • represents Z 14 to Z 16 each independently represent a direct bond, a divalent aliphatic group having 6 to 30 carbon atoms, or a group represented by general formula (15).
  • the corresponding R 31 represents a monovalent aliphatic group having 4 to 30 carbon atoms or an alkylaryl group having 10 to 30 carbon atoms.
  • Z 12 and corresponding R 32 , and Z 13 and corresponding R 33 have the same relationship as Z 11 and corresponding R 31 in general formula (11).
  • Z 14 in general formula (11) is a direct bond
  • the corresponding R 34 is a hydrogen atom, a monovalent aliphatic group having 4 to 30 carbon atoms, an alkylaryl group having 10 to 30 carbon atoms, or a photoreactive group.
  • Z 15 and corresponding R 35 , and Z 16 and corresponding R 36 have the same relationship as Z 14 and corresponding R 34 in general formula (11). be.
  • Z 11 and Z 14 in general formula (11) is a divalent aliphatic group having 6 to 30 carbon atoms
  • the corresponding R 31 and/or R 34 are each independently a hydrogen atom , a hydroxy group, or a monovalent organic group having 1 to 15 carbon atoms.
  • Z 12 and Z 15 and corresponding R 32 and R 35 , Z 13 and Z 16 and corresponding R 33 and R 36 in general formula (11) Similar to the relationship between Z 11 and Z 14 and corresponding R 31 and R 34 .
  • Z 11 in general formula (11) is a group represented by general formula (14)
  • the corresponding R 31 is a monovalent aliphatic group having 4 to 30 carbon atoms, alkylaryl having 10 to 30 carbon atoms, group, or an aryl group having 6 to 15 carbon atoms.
  • Z 12 and corresponding R 32 , and Z 13 and corresponding R 33 have the same relationship as Z 11 and corresponding R 31 in general formula (11). be.
  • Z 14 in general formula (11) is a group represented by general formula (15)
  • the corresponding R 34 is a hydrogen atom, a monovalent aliphatic group having 4 to 30 carbon atoms, or 10 to 30 carbon atoms.
  • Z 15 and corresponding R 35 , and Z 16 and corresponding R 36 have the same relationship as Z 14 and corresponding R 34 in general formula (11). be.
  • the photoreactive group, the alkenyl group having 2 to 5 carbon atoms, and the alkynyl group having 2 to 5 carbon atoms are preferably radically polymerizable groups.
  • the heat-reactive group is preferably an alkoxymethyl group, a methylol group, an epoxy group, an oxetanyl group, or a blocked isocyanate group.
  • Y 11 and Y 12 each independently represent an alkylene group having 1 to 15 carbon atoms.
  • R 37 and R 38 each independently represent an alkyl group having 1 to 6 carbon atoms.
  • m and n each independently represent an integer of 1 to 15;
  • p and q each independently represent an integer of 0 to 4;
  • * 1 represents a bonding point with an oxygen atom in general formula (11), a bonding point with a phosphorus atom in general formula (12), or a bonding point with a phosphorus atom in general formula (13).
  • * 2 represents the point of bonding with R 31 in general formula (11), the point of bonding with R 32 in general formula (12), or the point of bonding with R 33 in general formula (13).
  • * 3 represents a bonding point with an oxygen atom in general formula (11), a bonding point with an oxygen atom in general formula (12), or a bonding point with a phosphorus atom in general formula (13).
  • * 4 represents the bonding point with R 34 in general formula (11), the bonding point with R 35 in general formula (12), or the bonding point with R 36 in general formula (13).
  • the photosensitive composition of the present invention contains propylene glycol monoalkyl ether acetate as a solvent having an acetate bond, which will be described later, and the compound (F1) is represented by Z 11 to When Z 13 is a direct bond or a group represented by the general formula (14), each of the monovalent aliphatic groups having 4 to 30 carbon atoms in R 31 to R 33 is independently 1 having 6 to 12 carbon atoms. is a valent aliphatic group, and in the above general formulas (11) to (13), when Z 14 to Z 16 are direct bonds, R 34 to R 36 are preferably hydrogen atoms.
  • Such (F1) compounds are hereinafter referred to as "specific (F1) compounds".
  • the (F1) compound is a monovalent aliphatic group having 6 to 12 carbon atoms as the structure (I-f1) described above, and/or a monovalent aliphatic group having 6 to 12 carbon atoms as the structure (II-f1).
  • specific (F1) compounds when having an oxyalkylene group to which a monovalent aliphatic group is attached, such compounds are hereinafter referred to as "specific (F1) compounds”.
  • Propylene glycol monoalkyl ether acetate is preferably propylene glycol monomethyl ether acetate or propylene glycol monoethyl ether acetate, more preferably propylene glycol monomethyl ether acetate.
  • the (F1) compound preferably further has the following (III-f1) structure.
  • (III-f1) structure one or more selected from the group consisting of a photoreactive group, an alkenyl group having 2 to 5 carbon atoms, and an alkynyl group having 2 to 5 carbon atoms.
  • (F1) the compound has a substituent bonded to the phosphorus atom and/or two or more substituents bonded to the oxygen atom on the PO bond,
  • the substituents are preferably (I-f1) structure and/or (II-f1) structure and (III-f1) structure.
  • the photoreactive group is preferably a radically polymerizable group, more preferably a styryl group, a cinnamoyl group, a maleimide group, or a (meth)acryloyl group, and still more preferably a (meth)acryloyl group.
  • the alkenyl group having 2 to 5 carbon atoms or the alkynyl group having 2 to 5 carbon atoms is preferably a radical polymerizable group, vinyl group, allyl group, 2-methyl-2-propenyl group, crotonyl group, 2-methyl- A 2-butenyl group, a 3-methyl-2-butenyl group, a 2,3-dimethyl-2-butenyl group, an ethynyl group, or a 2-propargyl group is more preferred, and a vinyl group or an allyl group is even more preferred.
  • the photosensitive composition of the present invention contains the above-described (F1) compound and / or (FB1) compound, and is different from the (F1) compound, the above-described photoreactive group, an alkenyl group having 2 to 5 carbon atoms , and one or more selected from the group consisting of alkynyl groups having 2 to 5 carbon atoms, and containing one or more selected from the group consisting of phosphoric acid compounds, phosphonic acid compounds, and phosphinic acid compounds.
  • the (FB1) compound preferably has a substituent that binds to the phosphorus atom and/or a substituent that binds to the oxygen atom on the PO bond, and the substituent has the (I-fb1) structure.
  • the mono- to divalent aliphatic group having 1 to 6 carbon atoms is preferably a divalent aliphatic group having 1 to 4 carbon atoms.
  • a monovalent aliphatic group is preferably an alkyl group, an alkenyl group, or an alkynyl group.
  • the divalent aliphatic group is preferably an alkylene group, an alkenylene group, or an alkynylene group.
  • the monovalent to divalent aliphatic group having 1 to 6 carbon atoms preferably has a linear structure and/or a branched structure.
  • a monovalent to divalent aliphatic group having 1 to 6 carbon atoms may have an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a carboxy group, or a hydroxy group as a substituent. do not have.
  • the ammonium cation structure is preferably an ammonium cation, a monoalkylammonium cation, a dialkylammonium cation, or a trialkylquaternary ammonium cation, more preferably a trialkylquaternary ammonium cation.
  • the (I-fb1) structure is more preferably a structure derived from a nitrogen-containing aliphatic alcohol compound having 1 to 6 carbon atoms and having at least one hydroxy group and at least one ammonium group or amino group.
  • Such compounds are preferably ethanolamine, propanolamine, butanolamine, pentanolamine, serine, threonine, thiocine or choline, more preferably ethanolamine, serine or choline.
  • the photosensitive composition of the present invention contains at least propylene glycol monoalkyl ether acetate as a solvent having an acetate bond as described below, and diethylene glycol dialkyl ether as a solvent having at least three ether bonds as described below, and/or
  • the (FB1) compound When containing one or more selected from the group consisting of propylene glycol monoalkyl ether, alkyl lactate, alkyl hydroxyacetate, and hydroxyalkyl acetate as a solvent having an alcoholic hydroxyl group (hereinafter, "when containing a specific solvent") , the (FB1) compound preferably has a trialkyl quaternary ammonium cation structure in the (I-fb1) structure described above.
  • the trialkyl quaternary ammonium cation structure preferably has three alkyl groups of 1 to 6 carbon atoms, more preferably three alkyl groups of 1 to 4 carbon atoms.
  • Such (FB1) compounds are hereinafter referred to as "specific (FB1) compounds”.
  • Propylene glycol monoalkyl ether acetate is preferably propylene glycol monomethyl ether acetate or propylene glycol monoethyl ether acetate, more preferably propylene glycol monomethyl ether acetate.
  • Diethylene glycol dialkyl ether is preferably diethylene glycol dimethyl ether, diethylene glycol diethyl ether, or diethylene glycol ethyl methyl ether, more preferably diethylene glycol ethyl methyl ether.
  • Propylene glycol monoalkyl ether, alkyl lactate, alkyl hydroxyacetate, or hydroxyalkyl acetate is propylene glycol monomethyl ether, propylene glycol monoethyl ether, methyl lactate, ethyl lactate, methyl hydroxyacetate, ethyl hydroxyacetate, 2-hydroxy acetate.
  • Methyl and 2-hydroxyethyl acetate are preferred, and propylene glycol monomethyl ether, ethyl lactate, ethyl hydroxyacetate, or 2-hydroxyethyl acetate are more preferred.
  • the (FB1) compound preferably further has the following (II-fb1) structure from the viewpoints of suppressing residues after development, improving halftone characteristics, and improving the reliability of light-emitting elements in display devices.
  • (II-fb1) structure a fatty acid ester structure derived from a fatty acid compound having 6 to 30 carbon atoms and/or an aliphatic ether structure derived from an aliphatic alcohol having 6 to 30 carbon atoms.
  • the (FB1) compound has a substituent bonded to the phosphorus atom and/or two or more types of substituents bonded to the oxygen atom on the PO bond, and the substituents have the (I-fb1) structure, and ( II-fb1) structure is preferred.
  • the (II-fb1) structure preferably has a mono- to divalent aliphatic group with 6 to 30 carbon atoms, more preferably a mono- to divalent aliphatic group with 10 to 20 carbon atoms.
  • a monovalent aliphatic group is preferably an alkyl group, an alkenyl group, or an alkynyl group.
  • the divalent aliphatic group is preferably an alkylene group, an alkenylene group, or an alkynylene group.
  • the monovalent to divalent aliphatic group having 6 to 30 carbon atoms preferably has a linear structure and/or a branched structure.
  • the (FB1) compound has the above-mentioned (II-fb1) structure, so that the solubility of the (FB1) compound in the solvent is further specifically improved. can.
  • the (FB1) compound has the (I-fb1) structure from the viewpoint of suppressing residue after development, improving halftone characteristics, and improving the reliability of light-emitting elements in display devices, and further has the following (IV -fb1) structure or (V-fb1) structure (hereinafter referred to as "betaine-type phospholipid (FB1) compound").
  • (IV-fb1) structure an ester structure derived from an aliphatic polyfunctional alcohol compound having 2 to 6 carbon atoms and having at least 3 hydroxy groups.
  • (V-fb1) structure an ester structure derived from a nitrogen-containing aliphatic alcohol compound having 15 to 20 carbon atoms and having at least two hydroxy groups and at least one amino group or at least one alkylamide group.
  • the (FB1) compound contains a betaine-type phospholipid (FB1) compound, so that the solubility of the (FB1) compound in the solvent is further specifically enhanced. can be improved to
  • the (FB1) compound particularly preferably contains a glycerophospholipid and/or a sphingolipid as a betaine-type phospholipid (FB1) compound.
  • (FB1) compounds of betaine-type phospholipids include phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, sphingomyelin, hydrogenated phosphatidylcholine, hydrogenated phosphatidylethanolamine, hydrogenated phosphatidylserine, hydrogenated sphingomyelin, lysophosphatidylcholine, and lysophosphatidylethanolamine.
  • lysophosphatidylserine lysosphingomyelin
  • lecithin hydrogenated lecithin, lysolecithin
  • cephalin hydrogenated cephalin
  • lysocephalin plasmalogen
  • platelet-activating factor and (trimethylammonio) ethylphosphonic acid ceramide. It is particularly preferable to contain more than one type.
  • the (FB1) compound preferably further has the following (III-fb1) structure from the viewpoint of improving halftone characteristics.
  • (III-fb1) structure one or more selected from the group consisting of a photoreactive group, an alkenyl group having 2 to 5 carbon atoms, and an alkynyl group having 2 to 5 carbon atoms.
  • the (FB1) compound has a substituent bonded to the phosphorus atom and/or two or more types of substituents bonded to the oxygen atom on the PO bond, and the substituents have the (I-fb1) structure, and ( III-fb1) structure is preferred.
  • the (FB1) compound contains two or more types of (FB1) compounds, and from the group consisting of the above-described (II-fb1) structure, the above-described (IV-fb1) structure, and the above-described (V-fb1) structure It is also preferable to include a compound having one or more selected types and further include a compound having the (III-fb1) structure.
  • the photoreactive group is preferably a radically polymerizable group, more preferably a styryl group, a cinnamoyl group, a maleimide group, or a (meth)acryloyl group, and still more preferably a (meth)acryloyl group.
  • the alkenyl group having 2 to 5 carbon atoms or the alkynyl group having 2 to 5 carbon atoms is preferably a radical polymerizable group, vinyl group, allyl group, 2-methyl-2-propenyl group, crotonyl group, 2-methyl- A 2-butenyl group, a 3-methyl-2-butenyl group, a 2,3-dimethyl-2-butenyl group, an ethynyl group, or a 2-propargyl group is more preferred, and a vinyl group or an allyl group is even more preferred.
  • the total content ratio of the (F1) compound and (FB1) compound in the total solid content of the photosensitive composition of the present invention, excluding the solvent, is from the viewpoint of suppressing residue after development, and from the viewpoint of the light emitting element in the display device. From the viewpoint of improving reliability, it is preferably 0.02% by mass or more, more preferably 0.05% by mass or more, even more preferably 0.15% by mass or more, and particularly preferably 0.25% by mass or more. On the other hand, the total content ratio of the (F1) compound and the (FB1) compound is preferably 1.8% by mass or less from the viewpoint of suppressing residue after development and improving the reliability of the light-emitting element in the display device.
  • the total content of the (F1) compound and (FB1) compound in the photosensitive composition of the present invention is preferably 0.05 parts by mass or more, more preferably 0.10 parts by mass or more, when the total of (A) the alkali-soluble resin and (B) the compound is 100 parts by mass, and 0.30 parts by mass or more More preferably, 0.50 parts by mass or more is particularly preferable.
  • the total content of the (F1) compound and the (FB1) compound is preferably 3.0 parts by mass or less, more preferably 2.5 parts by mass or less, further preferably 2.0 parts by mass or less, and 1.5 Part by mass or less is particularly preferred.
  • the photosensitive composition of the present invention preferably further contains (FC1) a non-betaine phospholipid (hereinafter referred to as "(FC1) compound").
  • (FC1) compound a non-betaine phospholipid
  • the (FC1) compound preferably contains two or more kinds of compounds, including the (F1) compound and/or the (FB1) compound, and particularly preferably containing the (FC1) compound.
  • the (FC1) compound has at least the following (I-fc1) structure and (II-fc1) structure.
  • (I-fc1) structure one or more selected from the group consisting of an acid group containing a phosphorus atom, an anion structure containing a phosphorus atom, and a salt of an acid group containing a phosphorus atom.
  • (II-fc1) structure a fatty acid ester structure derived from a fatty acid compound having 6 to 30 carbon atoms and/or an aliphatic ether structure derived from an aliphatic alcohol having 6 to 30 carbon atoms.
  • the (FC1) compound When the (I-fc1) structure is an acidic group containing a phosphorus atom and/or an anion structure containing a phosphorus atom, the (FC1) compound preferably does not have an ammonium cation structure.
  • the above-mentioned anion structure containing a phosphorus atom is preferably an anion structure derived from an acidic group containing a phosphorus atom.
  • the (FC1) compound has a substituent bonded to the phosphorus atom and/or two or more types of substituents bonded to the oxygen atom on the PO bond, and the substituent has the (I-fc1) structure, and ( II-fc1) structure is preferred.
  • the (I-fc1) structure is preferably a phosphate group, a phosphonate group, or a phosphinate group, and/or a phosphate anion, a phosphonate anion, or a phosphinate anion.
  • the (II-fc1) structure preferably has a mono- to divalent aliphatic group with 6 to 30 carbon atoms, more preferably a mono- to divalent aliphatic group with 10 to 20 carbon atoms.
  • a monovalent aliphatic group is preferably an alkyl group, an alkenyl group, or an alkynyl group.
  • the divalent aliphatic group is preferably an alkylene group, an alkenylene group, or an alkynylene group.
  • the monovalent to divalent aliphatic group having 6 to 30 carbon atoms preferably has a linear structure and/or a branched structure.
  • FC1 compounds are the group consisting of phosphatidic acid, phosphatidylglycerol, lysophosphatidic acid, lysophosphatidylglycerol, phosphatidylinositol, lysophosphatidylinositol, diphosphatidylglycerol, cardiolipin, sphingosine-1-phosphate, and phosphatidyl-cytidine monophosphate It is particularly preferable to contain one or more selected types.
  • the total content ratio of the (F1) compound, the (FB1) compound, and the (FC1) compound is the preferred content ratio of the (F1) compound and the (FB1) compound described above.
  • the photosensitive composition of the present invention contains (A) an alkali-soluble resin and (B) a compound, the total content of the (F1) compound, (FB1) compound, and (FC1) compound is The preferred contents of the (F1) compound and (FB1) compound are as follows.
  • the photosensitive composition of the present invention preferably further contains an ester compound of an acidic group containing a phosphorus atom (hereinafter referred to as "(FT) compound") having a (FT) reactive group.
  • (FT) compound preferably contains two or more kinds of compounds, and particularly preferably contains the (F1) compound and/or the (FB1) compound, and further contains the (FT) compound.
  • the (FT) compound preferably has a radically polymerizable group, and has one or more selected from the group consisting of a photoreactive group, an alkenyl group having 2 to 5 carbon atoms, and an alkynyl group having 2 to 5 carbon atoms. is more preferable.
  • FT The number of one or more types selected from the group consisting of a photoreactive group, an alkenyl group having 2 to 5 carbon atoms, and an alkynyl group having 2 to 5 carbon atoms, which the compound has (X), and (FT)
  • One or more selected from the group consisting of a monovalent to divalent aliphatic group, a monovalent to divalent alicyclic group, a monovalent to divalent aromatic group, and a substituent-bonded oxyalkylene group possessed by the compound (X) and (Y) preferably satisfy the formulas (FT- ⁇ ) to (FT- ⁇ ).
  • X+Y 3 (FT- ⁇ ) 1 ⁇ X ⁇ 3 (FT- ⁇ ) 0 ⁇ Y ⁇ 2 (FT ⁇ ).
  • X is preferably an integer of 1 to 3, more preferably 2 or 3, even more preferably 3.
  • Y is preferably an integer of 0 to 2, more preferably 0 or 1.
  • the substituent preferably has a radically polymerizable group, photoreactive It is more preferable to have one or more selected from the group consisting of groups, alkenyl groups having 2 to 5 carbon atoms, and alkynyl groups having 2 to 5 carbon atoms. Further, the substituent is one type selected from the group consisting of a monovalent to divalent aliphatic group, a monovalent to divalent alicyclic group, a monovalent to divalent aromatic group, and an oxyalkylene group to which a substituent is bonded. It is also preferred to have at least
  • the photosensitive composition of the present invention further includes the following (FT1) compound, the compound having the (III-fb1) structure described above as the (F1) compound, and the (FB1) compound having the (III-fb1) structure described above. It is preferable to contain one or more selected from the group consisting of compounds.
  • (FT1) compound an acidic group containing a phosphorus atom, having at least three groups selected from the group consisting of a photoreactive group, an alkenyl group having 2 to 5 carbon atoms, and an alkynyl group having 2 to 5 carbon atoms. ester compound.
  • the photoreactive group is preferably a radically polymerizable group, more preferably a styryl group, a cinnamoyl group, a maleimide group, or a (meth)acryloyl group, and still more preferably a (meth)acryloyl group.
  • the alkenyl group having 2 to 5 carbon atoms or the alkynyl group having 2 to 5 carbon atoms is preferably a radical polymerizable group, a vinyl group, an allyl group, a 2-methyl-2-propenyl group, a crotonyl group, a 2-methyl- A 2-butenyl group, a 3-methyl-2-butenyl group, a 2,3-dimethyl-2-butenyl group, an ethynyl group, or a 2-propargyl group is more preferred, and a vinyl group or an allyl group is even more preferred.
  • the (FT) compound has one or more selected from the group consisting of the photoreactive group described above, an alkenyl group having 2 to 5 carbon atoms, and an alkynyl group having 2 to 5 carbon atoms. It preferably contains one or more selected from the group consisting of phosphate triester compounds, phosphonate diester compounds, hypophosphite diester compounds, and phosphinic acid monoester compounds.
  • the total content of the (F1) compound, the (FB1) compound, and the (FT) compound is the preferred content of the (F1) compound and the (FB1) compound described above.
  • the photosensitive composition of the present invention contains (A) an alkali-soluble resin and (B) a compound
  • the total content of the (F1) compound, (FB1) compound, and (FT) compound is
  • the preferred contents of the (F1) compound and (FB1) compound are as follows.
  • the photosensitive composition of the present invention preferably further contains (G) a cross-linking agent.
  • G) A cross-linking agent refers to a compound having a cross-linkable group capable of bonding to a resin or the like or a compound having a cationic polymerizable group.
  • the cross-linking reaction with a resin or the like by the cross-linkable group and the cationic polymerization by the cationic polymerizable group can be promoted by acid and/or heat, and are suitable for improving the heat resistance of the cured film and improving the chemical resistance of the cured film. is.
  • the cross-linking agent is preferably a compound having at least two groups selected from the group consisting of alkoxyalkyl groups, hydroxyalkyl groups, epoxy groups, oxetanyl groups, vinyl groups, and allyl groups (however, the above-mentioned except for (B) compound).
  • the alkoxyalkyl group is preferably an alkoxymethyl group, more preferably a methoxymethyl group.
  • a hydroxyalkyl group is preferably a methylol group.
  • the cross-linking agent preferably has a phenolic hydroxyl group from the viewpoint of suppressing narrow mask bias after development and improving halftone characteristics. It is more preferable that (A) the alkali-soluble resin and (G) the cross-linking agent described above have a phenolic hydroxyl group.
  • the cross-linking agent preferably has a (meth)acryloyl group, a vinyl group, or an allyl group from the viewpoint of improving sensitivity during exposure and improving the reliability of light-emitting elements in display devices.
  • the (A) alkali-soluble resin and (G) the cross-linking agent described above have a (meth)acryloyl group, a vinyl group, or an allyl group
  • the cross-linking agent more preferably has a (meth)acryloyl group, a vinyl group, or an allyl group.
  • the compound and/or (G) the cross-linking agent has a (meth)acryloyl group, a vinyl group, or an allyl group
  • the (A) alkali-soluble resin has a (meth)acryloyl group, a vinyl group, or an allyl group. It is also preferred not to have
  • the photosensitive composition of the present invention preferably further contains (G1) a hydrophobic skeleton-containing epoxy cross-linking agent (hereinafter referred to as "(G1) compound").
  • (G1) compound means a compound having the following (I-g1) structure and (II-g1) structure and having at least two (II-g1) structures.
  • (I-g1) structure a condensed polycyclic structure, a condensed polycyclic heterocyclic structure, a structure in which an aromatic ring skeleton and an alicyclic skeleton are directly linked, and a structure in which at least two aromatic ring skeletons are directly linked
  • the (G1) compound has the above-described (I-g1) structure having a fluorene structure, an indane structure, an indolinone structure, an isoindolinone structure, a xanthene structure, A structure containing one or more selected from the group consisting of a tricyclo[5.2.1.0 2,6 ]decane structure and a binaphthyl structure is preferred.
  • the epoxy group equivalent of the (G1) compound is preferably 150 g/mol or more, more preferably 170 g/mol or more, and even more preferably 190 g/mol or more, from the viewpoint of suppressing residue after development.
  • the epoxy group equivalent is preferably 800 g/mol or less, more preferably 600 g/mol or less, and even more preferably 500 g/mol or less, from the viewpoints of suppressing narrow mask bias after development and improving halftone characteristics.
  • the content ratio of the (G1) compound in the total solid content of the photosensitive composition of the present invention, excluding the solvent, is 0.3% by mass or more from the viewpoint of suppressing narrow mask bias after development and improving halftone characteristics. is preferred, 1.0% by mass or more is more preferred, and 2.0% by mass or more is even more preferred.
  • the content of the (G1) compound is preferably 25% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less, from the viewpoint of suppressing residue after development.
  • the content of the (G1) compound in the photosensitive composition of the present invention is (A) an alkali-soluble
  • the total amount of the resin and the compound (B) is 100 parts by mass, it is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and even more preferably 5 parts by mass or more.
  • the content of the (G1) compound is preferably 30 parts by mass or less, more preferably 25 parts by mass or less, and even more preferably 20 parts by mass or less.
  • the photosensitive composition of the present invention further contains the following (G2) compound and/or (G3) compound, wherein the crosslinkable group is an alkoxyalkyl group, a hydroxyalkyl group, an epoxy group, an oxetanyl group, a vinyl group, and an allyl group.
  • the alkoxyalkyl group is preferably an alkoxymethyl group, more preferably a methoxymethyl group.
  • a hydroxyalkyl group is preferably a methylol group.
  • (G2) compound a compound having at least two phenolic hydroxyl groups and at least two crosslinkable groups.
  • (G3) Compound a compound having a cyclic structure having at least two nitrogen atoms and at least two crosslinkable groups.
  • the number of crosslinkable groups possessed by the compound (G2) or the compound (G3) is preferably 2 or more, more preferably 3 or more, and even more preferably 4 or more.
  • the number of crosslinkable groups is preferably 8 or less, more preferably 7 or less, and even more preferably 6 or less.
  • the (G2) compound preferably has at least two of the following (I-g2) structures.
  • the (G2) compound more preferably has at least two (I-g2x) structures below.
  • (I-g2) Structure A structure in which a phenolic hydroxyl group and a crosslinkable group are bonded to one aromatic structure.
  • (I-g2x) structure A structure in which a phenolic hydroxyl group and at least two crosslinkable groups are bonded to one aromatic structure.
  • the total number of (I-g2) structures and (I-g2x) structures possessed by the (G2) compound is preferably 2 or more, more preferably 3 or more, and even more preferably 4 or more.
  • the total number of (I-g2) structures and (I-g2x) structures is preferably 8 or less, more preferably 7 or less, and even more preferably 6 or less.
  • the (G2) compound preferably has a hydrophobic skeleton such as an aromatic structure.
  • the hydrophobic skeleton consists of a fluorene structure, an indane structure, a condensed polycyclic alicyclic structure, a structure in which at least two aromatic ring skeletons are linked by an aliphatic group, and a structure in which at least two aromatic ring skeletons are directly linked. Structures containing one or more selected from the group are preferred.
  • the number of phenolic hydroxyl groups in the (G2) compound is preferably 2 or more, 3 or more, from the viewpoints of suppressing residue after development, suppressing narrow mask bias after development, and improving halftone characteristics. is more preferred, and 4 or more is even more preferred. On the other hand, the number of phenolic hydroxyl groups is preferably 8 or less, more preferably 7 or less, and even more preferably 6 or less.
  • the (G3) compound preferably has the following (I-g3) structure. Further, the (G3) compound more preferably has the following (I-g3x) structure.
  • (I-g3) Structure A structure in which a crosslinkable group is bonded to a cyclic skeleton having at least two nitrogen atoms.
  • (I-g3x) structure A structure in which at least two crosslinkable groups are bonded to a cyclic skeleton having at least two nitrogen atoms.
  • the number of crosslinkable groups in the (I-g3x) structure of the (G3) compound is preferably 2 or more, more preferably 3 or more, and even more preferably 4 or more.
  • the number of crosslinkable groups is preferably 8 or less, more preferably 7 or less, and even more preferably 6 or less.
  • the compound (G3) has a cyclic skeleton having at least two nitrogen atoms, which has an isocyanuric acid structure,
  • an isocyanuric acid structure One or more selected from the group consisting of a triazine structure, a glycoluril structure, an imidazolidone structure, a pyrazole structure, an imidazole structure, a triazole structure, a tetrazole structure, and a purine structure are preferable, and consist of an isocyanuric acid structure, a triazine structure, and a glycoluril structure.
  • an isocyanuric acid structure and/or a triazine structure are even more preferable.
  • the (G2) compound preferably contains one or more selected from the group consisting of compounds represented by any of general formulas (181), (182), (183) and (184).
  • Y 311 represents a direct bond, a carbon atom, a nitrogen atom, an oxygen atom, or a sulfur atom.
  • R 411 to R 423 each independently represent a halogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 424 to R 430 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • R 431 to R 440 each independently represents an alkoxyalkyl group having 2 to 10 carbon atoms, a hydroxyalkyl group having 1 to 6 carbon atoms, an alkyl group having 1 to 6 carbon atoms having an epoxy group, or a carbon having an epoxy group. It represents an alkoxyalkyl group having 2 to 10 carbon atoms, an oxetanyl group-containing alkyl group having 1 to 8 carbon atoms, an oxetanyl group-containing alkoxyalkyl group having 2 to 12 carbon atoms, a vinyl group, or an allyl group.
  • a and b each independently represent an integer of 0 to 4; c and d each independently represent an integer of 0 to 2; e, f, g, h, i, j, k, and l each independently represent an integer of 0 to 3; m represents an integer of 0 to 4; n is 0 when Y 311 is a direct bond, an oxygen atom, or a sulfur atom. When Y 311 is nitrogen, n is 1. n is 2 when Y 311 is a carbon atom. o, p, ⁇ , and ⁇ each independently represent an integer of 1 to 3, 2 ⁇ o+ ⁇ 4, and 2 ⁇ p+ ⁇ 4.
  • q, r, ⁇ , and ⁇ each independently represent an integer of 1 to 4, 2 ⁇ q+ ⁇ 5, and 2 ⁇ r+ ⁇ 5.
  • s, t, u, ⁇ , ⁇ , and ⁇ each independently represents an integer of 1 to 4, 2 ⁇ s+ ⁇ 5, 2 ⁇ t+ ⁇ 5, and 2 ⁇ u+ ⁇ 5 .
  • v, w, x, ⁇ , ⁇ , and ⁇ each independently represent an integer of 1 to 4, 2 ⁇ v+ ⁇ 5, 2 ⁇ w+ ⁇ 5, and 2 ⁇ x+ ⁇ 5 .
  • Y 311 is preferably a direct bond or an oxygen atom.
  • the alkyl groups, cycloalkyl groups, aryl groups, alkoxyalkyl groups, and hydroxyalkyl groups described above may have heteroatoms and may be unsubstituted or substituted.
  • the (G3) compound preferably contains one or more selected from the group consisting of compounds represented by any of general formulas (171), (172) and (173).
  • Y 264 to Y 266 each independently represent a direct bond, an oxygen atom or a nitrogen atom.
  • R 261 to R 270 are each independently a group represented by any one of general formulas (174) to (178), a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 4 to 10 carbon atoms group, an aryl group having 6 to 15 carbon atoms, or a hydroxy group.
  • X 271 represents an alkylene group having 1 to 6 carbon atoms.
  • X 272 to X 274 and X 276 each independently represent a direct bond or an alkylene group having 1 to 10 carbon atoms.
  • X 275 represents a direct bond, an alkylene group having 1 to 6 carbon atoms, or an arylene group having 6 to 15 carbon atoms.
  • Y 272 represents a direct bond or an alkylene group having 1 to 10 carbon atoms.
  • Z 272 and Z 273 each represent a direct bond, an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 4 to 10 carbon atoms, or an arylene group having 6 to 15 carbon atoms.
  • R 271 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 272 and R 273 each independently represent a group represented by general formula (179) or general formula (180).
  • R 274 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 275 and R 276 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a hydroxy group.
  • a, b, and c are 1 when Y 264 to Y 266 are each independently a direct bond or an oxygen atom; a, b, and c are 2 when Y 264 to Y 266 are each independently a nitrogen atom;
  • d represents 0 or 1;
  • e represents 0 or 1;
  • f represents an integer of 1 to 4;
  • e 1, d is 1 and Y 272 represents an alkylene group having 1 to 10 carbon atoms.
  • the alkyl group, cycloalkyl group, aryl group, alkylene group, cycloalkylene group, and arylene group described above may have a heteroatom and may be unsubstituted or substituted.
  • the total content ratio of the (G2) compound and (G3) compound in the total solid content of the photosensitive composition of the present invention, excluding the solvent, is the following: residue suppression after development, narrow mask bias suppression after development, and half From the viewpoint of improving tone characteristics, it is preferably 0.3% by mass or more, more preferably 1.0% by mass or more, and even more preferably 2.0% by mass or more.
  • the total content of the (G2) compound and the (G3) compound is preferably 25% by mass or less, more preferably 20% by mass or less, from the viewpoint of suppressing residue after development and improving sensitivity during exposure. % or less by mass is more preferable.
  • the total content of the (G2) compound and (G3) compound in the photosensitive composition of the present invention is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and even more preferably 5 parts by mass or more, when the total of (A) the alkali-soluble resin and (B) compound is 100 parts by mass.
  • the total content of the (G2) compound and the (G3) compound is preferably 30 parts by mass or less, more preferably 25 parts by mass or less, and even more preferably 20 parts by mass or less.
  • the photosensitive composition of the present invention preferably further contains (H) a dissolution accelerator (hereinafter referred to as "(H) compound").
  • (H) A compound means a compound having an acidic group and/or a hydrophilic group that is soluble in an alkaline developer. By containing the compound (H), the effect of suppressing residues after development becomes remarkable.
  • the compound (H) preferably contains one or more selected from the group consisting of polyfunctional carboxylic acid compounds, polyfunctional phenol compounds, hydroxyimide compounds, and compounds having a hydroxy group and an oxyalkylene group.
  • the (H) compound preferably has a phenolic hydroxyl group from the viewpoint of suppressing narrow mask bias after development and improving halftone characteristics.
  • the (A) alkali-soluble resin described above has a phenolic hydroxyl group
  • the (H) compound preferably does not have a phenolic hydroxyl group.
  • the oxyalkylene group possessed by the compound (H) is a monovalent to divalent aliphatic group having 1 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, an arylalkyl group having 7 to 25 carbon atoms, and an arylalkyl group having 7 to 25 carbon atoms. and an aryl group having 6 to 15 carbon atoms to which at least two arylalkyl groups having 7 to 25 carbon atoms are bonded.
  • the arylalkyl group having 7 to 25 carbon atoms is preferably an alkenyl group having 2 to 5 carbon atoms and an aryl group having 6 to 15 carbon atoms.
  • the oxyalkylene group possessed by the compound (H) is preferably an oxyalkylene group having 1 to 6 carbon atoms, more preferably an oxyethylene group or an oxypropylene group, and still more preferably an oxyethylene group.
  • the number of oxyalkylene groups that the compound (H) has is preferably 2 or more, more preferably 3 or more, and even more preferably 4 or more.
  • the number of oxyalkylene groups is preferably 20 or less, more preferably 15 or less, even more preferably 10 or less.
  • the content ratio of the (H) compound in the total solid content of the photosensitive composition of the present invention excluding the solvent is preferably 0.2% by mass or more, more preferably 0.3% by mass, from the viewpoint of suppressing residue after development.
  • the above is more preferable, and 1.0% by mass or more is even more preferable.
  • the content of the (H) compound is preferably 20% by mass or less, more preferably 15% by mass or less, and even more preferably 10% by mass or less, from the viewpoint of suppressing pattern peeling after development.
  • the content of the (H) compound in the photosensitive composition of the present invention is (A) an alkali-soluble
  • the total of the resin and the compound (B) is 100 parts by mass, it is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and even more preferably 3 parts by mass or more.
  • the content of the (H) compound is preferably 25 parts by mass or less, more preferably 20 parts by mass or less, and even more preferably 15 parts by mass or less.
  • the photosensitive composition of the present invention preferably further contains (I) inorganic particles from the viewpoint of improving the halftone characteristics, improving the reliability of the light-emitting device, and improving the migration resistance.
  • I) Inorganic particles refer to particles containing, as a main component, an element selected from the group consisting of metal elements, metalloid elements, and semiconductor elements. In addition, a main component means the component contained most on the basis of mass in a structural component.
  • Inorganic particles include, for example, halides, oxides, nitrides, hydroxides, carbonates, sulfates, nitrates, and metasilicates of the above elements.
  • the cured film of the photosensitive composition has (I) a robust structure of the inorganic particles, which significantly improves the heat resistance and prevents outgassing from the pixel dividing layer and the like. Suppressed. As a result, deterioration of the light-emitting element is suppressed, so that the effect of improving the reliability of the light-emitting element becomes remarkable.
  • the inorganic particles preferably have hydroxyl groups and/or silanol groups on the particle surface.
  • Inorganic particles are thought to trap metal impurities, ion impurities, and the like that adversely affect electrical insulation due to the acidity and negative charge of hydroxyl groups and/or silanol groups on the particle surface. In addition, it is presumed that migration resistance is improved because trapped impurities continue to be retained even after heat treatment or voltage application due to the robust structure of the particles.
  • the inorganic particles are silica particles, alumina particles, titania particles, vanadium oxide particles, chromium oxide particles, iron oxide particles, cobalt oxide particles, zinc oxide particles, zirconium oxide particles, niobium oxide particles, tin oxide particles, or oxide particles. Cerium particles are preferred, silica particles are preferred.
  • (I) inorganic particles contain (I1) silica particles from the viewpoint of improving halftone characteristics, improving reliability of light-emitting elements, improving migration resistance, and suppressing external light reflection. is preferred. Reflection and scattering of incident external light are reduced by the silica particles unevenly distributed on the surface of the cured product, so that the effect of suppressing external light reflection becomes remarkable.
  • (I1) Silica particles refer to inorganic particles containing silicon as the main component element.
  • (I1) Silica particles include, for example, particles having a pure silicon dioxide content of 90% by mass or more in the mass excluding water, particles made of silicon dioxide (silicic anhydride), silicon dioxide hydrate (hydrous silicic acid or white carbon), particles of quartz glass, or particles of orthosilicic acid, metasilicic acid, and metadisilicic acid.
  • the structure of these particles is not particularly limited, and they may have internal voids.
  • the silicon dioxide contained in the surface treatment agent or coating layer of the organic pigment and inorganic pigment is not included in (I1) silica particles regardless of the primary particle diameter or aspect ratio.
  • the silica particles preferably have functional groups on their surfaces from the viewpoint of improving migration resistance.
  • the functional group that the silica particles have on the surface is a radically polymerizable group, a thermally reactive group, a hydroxyl group, a silanol group, an alkoxysilyl group, an alkylsilyl group, a dialkylsilyl group, a trialkylsilyl group, a phenylsilyl group, or a diphenylsilyl group. groups are preferred.
  • the radically polymerizable group or thermally reactive group is also preferably a reactive residue of a surface modifying group containing a radically polymerizable group or a reactive residue of a surface modifying group containing a thermally reactive group.
  • the silica particles more preferably have radically polymerizable groups and/or thermally reactive groups on their surfaces.
  • the radically polymerizable group is preferably an ethylenically unsaturated double bond group. More preferably, the radically polymerizable group is one or more selected from the group consisting of a photoreactive group, an alkenyl group having 2 to 5 carbon atoms, and an alkynyl group having 2 to 5 carbon atoms.
  • the photoreactive group is preferably a styryl group, a cinnamoyl group, a maleimide group, or a (meth)acryloyl group, more preferably a (meth)acryloyl group.
  • an alkenyl group having 2 to 5 carbon atoms or an alkynyl group having 2 to 5 carbon atoms is a vinyl group, allyl group, 2-methyl-2-propenyl group, crotonyl group, 2-methyl-2-butenyl group, 3- A methyl-2-butenyl group, a 2,3-dimethyl-2-butenyl group, an ethynyl group, or a 2-propargyl group is preferable, and a vinyl group or an allyl group is more preferable.
  • the heat-reactive group is preferably an alkoxymethyl group, a methylol group, an epoxy group, an oxetanyl group, or a blocked isocyanate group.
  • the average primary particle diameter of the silica particles is preferably 5.0 nm or more, more preferably 7.0 nm or more, and 10 nm or more, from the viewpoints of improving halftone characteristics, improving reliability of the light-emitting element, and improving migration resistance. More preferred.
  • the average primary particle diameter of the silica particles is preferably 200 nm or less, more preferably 100 nm or less, and 70 nm or less, from the viewpoint of suppressing residue after development, suppressing reflection of external light, and improving the reliability of the light-emitting element. More preferred.
  • it is preferably 50 nm or less, more preferably 40 nm or less, still more preferably 30 nm or less, even more preferably 25 nm or less, particularly preferably 20 nm or less, and most preferably 15 nm or less.
  • the average primary particle size of the silica particles is preferably more than 0.20 ⁇ m, more preferably 0.30 ⁇ m or more, and even more preferably 0.50 ⁇ m or more, from the viewpoint of achieving a high elastic modulus and a low coefficient of thermal expansion.
  • the average primary particle size of the silica particles is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, even more preferably 30 ⁇ m or less, even more preferably 10 ⁇ m or less, and 5.0 ⁇ m or less, from the viewpoint of suppressing residue after development. is particularly preferred, and 3.0 ⁇ m or less is most preferred.
  • the primary particle diameter of silica particles refers to the major axis diameter of the primary particles of (I1) silica particles.
  • the average primary particle size of the silica particles in the film can be calculated as the average value of 30 primary silica particles measured by imaging and analyzing the cross section of the film using a TEM.
  • the average primary particle size of the silica particles in the silica particle dispersion is obtained by measuring the particle size distribution by a dynamic light scattering method or a laser diffraction/scattering method. Examples of measuring instruments include SZ-100 manufactured by Horiba Ltd. for the dynamic light scattering method, and SLD3100 manufactured by Shimadzu Corporation or LA-920 manufactured by Horiba Ltd. or the equivalent for the laser diffraction/scattering method. is mentioned.
  • Silica particles preferably contain (I1) silica particles containing sodium element from the viewpoint of improving the reliability and migration resistance of the light-emitting device.
  • Existence forms of elemental sodium include, for example, ions (Na + ) and salts with silanol groups (Si—ONa).
  • the content of sodium element in the silica particles is preferably 1.0 mass ppm or more, more preferably 5.0 mass ppm or more, still more preferably 10 mass ppm or more, and even more preferably 50 mass ppm or more, 100 mass ppm or more is particularly preferred.
  • the content of sodium element in the silica particles is preferably 10,000 mass ppm or less, more preferably 5,000 mass ppm or less, and even more preferably 1,000 mass ppm or less.
  • the sodium element contained in the silica particles can be detected by imaging and analyzing the cross section of the film using TEM-EDX.
  • I1 It is believed that the intentional inclusion of a trace amount of sodium element in the silica particles controls the polarization structure and charge balance in the cured product. As a result, it is presumed that migration resistance is improved because metal impurities and ion impurities that adversely affect electrical insulation are efficiently captured.
  • the content ratio of the inorganic particles (I) in the total solid content of the photosensitive composition of the present invention is 5.0% by mass from the viewpoint of improving the halftone characteristics, improving the reliability of the light emitting device, and improving the migration resistance. 10% by mass or more is more preferable, 15% by mass or more is even more preferable, and 20% by mass or more is particularly preferable.
  • the content ratio of (I) the inorganic particles is preferably 90% by mass or less, more preferably 70% by mass or less, and even more preferably 50% by mass or less, from the viewpoint of suppressing residue after development and improving the reliability of the light-emitting device. .
  • the photosensitive composition of the present invention further contains a component containing a halogen element, a component containing a sulfur element, and a phosphorus element from the viewpoint of improving the reliability of a light-emitting element in a display device and driving the light-emitting element at a low voltage. It preferably contains one or more selected from the group consisting of components, more preferably contains a component containing a halogen element and/or a component containing a sulfur element, and further preferably contains a component containing a sulfur element. .
  • the photosensitive composition of the present invention preferably contains two or more selected from the group consisting of a component containing a halogen element, a component containing a sulfur element, and a component containing a phosphorus element. and a component containing elemental sulfur, more preferably containing a component containing a halogen element, a component containing a sulfur element, and a component containing a phosphorus element.
  • the halogen element includes chlorine element, bromine element, iodine element, or fluorine element.
  • the halogen element preferably contains one or more selected from the group consisting of chlorine, bromine, and iodine, more preferably chlorine and/or bromine, even more preferably chlorine. .
  • the content of the halogen element in the photosensitive composition is preferably 0.01 mass ppm or more, more preferably 0.03 mass ppm or more, still more preferably 0.05 mass ppm or more, and 0.07 mass ppm or more. Even more preferably, 0.1 mass ppm or more is particularly preferable.
  • the halogen element content is preferably 700 mass ppm or less, more preferably 500 mass ppm or less, and even more preferably 300 mass ppm or less.
  • it is preferably 100 mass ppm or less, more preferably 70 mass ppm or less, even more preferably 50 mass ppm or less, even more preferably 30 mass ppm or less, and particularly preferably 10 mass ppm or less. Furthermore, from the viewpoint of low-voltage driving of the light-emitting element, it is preferably 7 mass ppm or less, more preferably 5 mass ppm or less, even more preferably 3 mass ppm or less, and particularly preferably 1 mass ppm or less.
  • the content of sulfur element in the photosensitive composition is preferably 0.01 mass ppm or more, more preferably 0.03 mass ppm or more, further preferably 0.05 mass ppm or more, and 0.07 mass ppm or more. Even more preferably, 0.1 mass ppm or more is particularly preferable.
  • the sulfur element content is preferably 700 mass ppm or less, more preferably 500 mass ppm or less, and even more preferably 300 mass ppm or less.
  • it is preferably 100 mass ppm or less, more preferably 70 mass ppm or less, even more preferably 50 mass ppm or less, even more preferably 30 mass ppm or less, and particularly preferably 10 mass ppm or less.
  • the light-emitting element it is preferably 7 mass ppm or less, more preferably 5 mass ppm or less, even more preferably 3 mass ppm or less, and particularly preferably 1 mass ppm or less.
  • the content of the phosphorus element in the photosensitive composition is preferably 0.01 mass ppm or more, more preferably 0.03 mass ppm or more, still more preferably 0.05 mass ppm or more, and 0.07 mass ppm or more. Even more preferably, 0.1 mass ppm or more is particularly preferable.
  • the phosphorus element content is preferably 700 mass ppm or less, more preferably 500 mass ppm or less, and even more preferably 300 mass ppm or less.
  • it is preferably 100 mass ppm or less, more preferably 70 mass ppm or less, even more preferably 50 mass ppm or less, even more preferably 30 mass ppm or less, and particularly preferably 10 mass ppm or less. Furthermore, from the viewpoint of low-voltage driving of the light-emitting element, it is preferably 7 mass ppm or less, more preferably 5 mass ppm or less, even more preferably 3 mass ppm or less, and particularly preferably 1 mass ppm or less.
  • the photosensitive composition of the present invention contains one or more selected from the group consisting of a component containing a halogen element, a component containing a sulfur element, and a component containing a phosphorus element, and the following conditions (1) to (3) are satisfied: preferably satisfies one or more of (1)
  • the content of halogen elements in the photosensitive composition is 0.01 to 100 mass ppm (2)
  • the content of sulfur element in the photosensitive composition is 0.01 to 100 mass ppm (3)
  • the content of phosphorus element in the photosensitive composition is 0.01 to 100 mass ppm
  • the photosensitive composition of the present invention more preferably satisfies the condition (1) and/or the condition (2), and more preferably the condition (2).
  • the photosensitive composition of the present invention preferably satisfies two or more conditions selected from the group consisting of conditions (1) to (3), and satisfies conditions (1) and (2). is more preferable, and it is even more preferable to satisfy all the conditions (1) to (3).
  • the photosensitive composition of the present invention contains one or more selected from the group consisting of a component containing a halogen element, a component containing a sulfur element, and a component containing a phosphorus element,
  • the content of the halogen element in the photosensitive composition is 0.01 to 100 mass ppm
  • the content of sulfur element in the photosensitive composition is 0.01 to 100 mass ppm
  • the content of elemental phosphorus in the photosensitive composition is more preferably 0.01 to 100 mass ppm.
  • the photosensitive composition contains one or more selected from the group consisting of a component containing a halogen element, a component containing a sulfur element, and a component containing a phosphorus element, and the halogen element, sulfur element,
  • a component containing a halogen element a component containing a sulfur element
  • a component containing a phosphorus element a component containing a phosphorus element
  • the halogen element, sulfur element By setting the content of one or more elements selected from the group consisting of elements and phosphorus within a specific range, the effects of improving the reliability of the light-emitting element in the display device and driving the light-emitting element at a low voltage become remarkable. This is because by including a small amount of components containing these elements in the photosensitive composition, the surface of the first electrode is modified by these elements in the process of forming a pixel dividing layer in an organic EL display, for example.
  • the halogen element since the halogen element has more lone pairs of electrons, it functions as a dopant that donates electrons and forms a donor level, thereby adjusting the work function difference of the first electrode and driving the light emitting element at a low voltage. It is assumed that the effect of In addition, since the sulfur element has a relatively large number of unshared electron pairs, in addition to functioning as a dopant in the same way, the 3d orbital, which is an empty atomic orbital, can be used to more efficiently donate electrons. It is considered that it is easy to form a level. In addition, it is considered that an acceptor level can also be formed by functioning as a dopant that accepts electrons by 3d orbitals, which are empty atomic orbitals.
  • the component containing a halogen element, the component containing a sulfur element, and the component containing a phosphorus element contained in the photosensitive composition are preferably simple substances, ions, compounds, or compound ions. That is, the photosensitive composition contains elemental halogen, ion of halogen, compound containing halogen, compound ion containing halogen, elemental sulfur, ion of sulfur, compound containing sulfur, and elemental sulfur. It is preferable to include a compound ion containing elemental phosphorus, an elemental phosphorus element, an ion of elemental phosphorus, a compound containing elemental phosphorus, or a compound ion containing elemental phosphorus.
  • the content of halogen elements in the photosensitive composition is the total amount of halogen elements that are simple substances, ions, compounds, or compound ions.
  • the content of elemental sulfur in the photosensitive composition is the total amount of elemental sulfur, ions, compounds, or compound ions.
  • the content of elemental phosphorus in the photosensitive composition is the total amount of elemental elemental phosphorus, ion, compound, or compound ion.
  • a simple substance of a halogen element includes chlorine, bromine, iodine, or fluorine, preferably chlorine or bromine, and more preferably chlorine.
  • halogen element ions include chloride ions, bromide ions, iodide ions, and fluoride ions, with chloride ions or bromide ions being preferred, and chloride ions being more preferred.
  • Compounds containing a halogen element include halogenated aliphatic compounds, halogenated alicyclic compounds, halogenated aromatic compounds, hydrogen halides, halogen dioxides, or halogen oxoacids, and chlorine atom-bonded aliphatic compounds, Chlorine-bonded alicyclic compounds, chlorine-bonded aromatic compounds, hydrogen chloride, chlorine dioxide, bromine-bonded aliphatic compounds, bromine-bonded alicyclic compounds, bromine-bonded aromatics A group compound, hydrogen bromide, or bromine dioxide is preferred, and a chlorine atom-bonded aliphatic compound, a chlorine atom-bonded alicyclic compound, or a chlorine atom-bonded aromatic compound is preferred.
  • Compound ions containing a halogen element include hypohalogen oxoacid ions, halo oxoacid ions, halogen oxoacid ions, or perhalogen oxoacid ions, including hypochlorite ions, chlorite ions, and chlorate ions. , or perchlorate ions are preferred. These may be unsubstituted or substituted.
  • Chlorine-bonded aliphatic compounds, chlorine-bonded alicyclic compounds, and chlorine-bonded aromatic compounds include dichloromethane, dichloroethane, tetrachloroethane, chloroform, carbon tetrachloride, chlorocyclopropane, and epichlorohyd. phosphorus, chlorobenzene, or benzyl chloride.
  • Bromine-bonded aliphatic compounds, bromine-bonded alicyclic compounds, or bromine-bonded aromatic compounds are dibromomethane, dibromoethane, tetrabromoethane, bromoform, carbon tetrabromide, bromocyclopropane , epibromohydrin, bromobenzene, or benzyl bromide.
  • the elemental element of sulfur is sulfur.
  • Sulfur may be an allotrope such as monoclinic sulfur, orthorhombic sulfur, or rubbery sulfur.
  • the ions of elemental sulfur are sulfide ions.
  • Compounds containing a sulfur element include thiol compounds, sulfide compounds, disulfide compounds, sulfoxide compounds, sulfone compounds, sultone compounds, carbon disulfide, thiophene compounds, thiocarbonyl compounds, dithiocarbonyl compounds, trithiocarbonyl compounds, hydrogen sulfide, monoxide.
  • thiol compounds sulfur, sulfur dioxide, sulfur trioxide, sulfinic acid, sulfonic acid, sulfurous acid, sulfuric acid, or thiosulfuric acid, thiol compounds, sulfide compounds, disulfide compounds, sulfoxide compounds, sulfone compounds, sultone compounds, carbon disulfide, or thiophenes;
  • a compound is preferred, and a thiol compound, a sulfide compound, or a sulfoxide compound is more preferred. These may be unsubstituted or substituted.
  • Compound ions containing elemental sulfur include thiolate ions, sulfinate ions, sulfonate ions, sulfite ions, sulfate ions, thiosulfate ions, and sulfonium ions, with thiolate ions being preferred. These may be unsubstituted or substituted.
  • Thiol compounds include butanethiol, octanethiol, dodecanethiol, octadecanethiol, ethanedithiol, octanedithiol, cyclopropanethiol, thiophenol, toluenethiol, mercaptopropyltrimethoxysilane, mercaptooctyltrimethoxysilane, or mercaptododecyltrimethoxysilane. is mentioned.
  • Sulfide compounds include dimethylsulfide, dibutylsulfide, dioctylsulfide, didodecylsulfide, dicyclopropylsulfide, diphenylsulfide, or dibenzylsulfide.
  • Sulfoxide compounds include dimethylsulfoxide, dibutylsulfoxide, dioctylsulfoxide, didodecylsulfoxide, dicyclopropylsulfoxide, diphenylsulfoxide, or dibenzylsulfoxide.
  • the elemental element of the phosphorus element is phosphorus.
  • Phosphorus may be an allotrope such as yellow phosphorus, red phosphorus, black phosphorus, or purple phosphorus.
  • the ions of elemental phosphorus are phosphide ions.
  • Phosphine compounds, phosphine oxides, phosphinate monoesters, phosphonate diesters, hypophosphite diesters, phosphite triesters, phosphoric acid triesters, phosphorus trioxide, or phosphorus pentoxide are examples of compounds containing a phosphorus element. and phosphine compounds or phosphine oxide compounds are preferred. These may be unsubstituted or substituted.
  • Compound ions containing elemental phosphorus include hypophosphite ions, phosphite ions, phosphate ions, polyphosphate ions, and phosphonium ions. These may be unsubstituted or substituted.
  • Phosphine compounds include tributylphosphine, trioctylphosphine, tridodecylphosphine, tricyclohexylphosphine, triphenylphosphine, or tribenzylphosphine.
  • Phosphine oxide compounds include tributylphosphine oxide, trioctylphosphine oxide, tridodecylphosphine oxide, tricyclohexylphosphine oxide, triphenylphosphine oxide, or tribenzylphosphine oxide.
  • the photosensitive composition contains chloride ion, bromide ion, iodide ion, fluoride ion, hypohalogenous oxoacid ion, halogenous oxoacid ion, halogen oxoacid ion, perhalogenous oxoacid ion, sulfide ion, thiolate ions, sulfinate ions, sulfonate ions, sulfite ions, sulfate ions, thiosulfate ions, hypophosphite ions, phosphite ions, phosphate ions, or polyphosphate ions, contain counter cations I don't mind.
  • the counter cation includes metal element ions, ammonium ions, primary ammonium ions, secondary ammonium ions, tertiary ammonium ions, or quaternary ammonium ions, with quaternary ammonium ions being preferred.
  • metal element ions include alkali metal ions, alkaline earth metal ions, typical element metal ions, and transition metal ions.
  • the metal element is preferably Li, Be, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, or Zn.
  • Primary ammonium ions, secondary ammonium ions, tertiary ammonium ions, and quaternary ammonium ions each have 1 to 4 aliphatic, alicyclic, or aromatic groups.
  • the photosensitive composition may contain a counter anion.
  • Counter anions include hydroxide ions, carboxylate ions, hyponitrite ions, nitrite ions, nitrate ions, or phenoxy ions.
  • the photosensitive composition of the present invention further includes a cyclic amide compound represented by the general formula (20), an amide compound represented by the general formula (21), and a cyclic amide compound represented by the general formula (22). and one or more selected from the group consisting of the cyclic urea compound represented by the general formula (23), and preferably satisfies the following condition (4).
  • the cyclic amide compound represented by the general formula (20), the amide compound represented by the general formula (21), and the cyclic urea compound represented by the general formula (22) occupying the total solid content of the photosensitive composition , and the urea compound represented by the general formula (23) (hereinafter referred to as the “specific nitrogen-containing compound”) content is 0.010 to 5.0% by mass.
  • R 46 to R 54 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or a cycloalkyl group having 4 to 10 carbon atoms. represents an aryl group, an alkenyl group having 2 to 6 carbon atoms, or a hydroxyalkyl group having 1 to 6 carbon atoms.
  • R 130 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a hydroxyalkyl group having 1 to 6 carbon atoms, a hydroxyalkoxy group having 1 to 6 carbon atoms, a hydroxy group, or an amino group.
  • R 131 to R 138 each independently represent an alkyl group having 1 to 6 carbon atoms.
  • a, b, and c each independently represents an integer of 0 to 6; d represents 1 or 2; e, f, g, h, and i each independently represent an integer of 0 to 2; If b is 0, d is 1.
  • nitrogen-containing compounds include, for example, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, N,N'-dimethylformamide, N,N'-diethylformamide, N,N'-dimethylacetamide, N,N'-dimethylpropionamide, N,N'-dimethylisobutyramide, N,N'-dimethyl-3 -methoxypropionamide, N,N'-dimethyl-3-butoxypropionamide, 1,3-dimethyl-2-imidazolidinone, 1,3-diethyl-2-imidazolidinone, N,N'-dimethylpropylene urea , 1,1,3,3-tetramethylurea, or 1,1,3,3-tetraethylurea.
  • the total content of the specific nitrogen-containing compound in the total solid content of the photosensitive composition is more preferably 0.030% by mass or more, further preferably 0.050% by mass or more, and particularly 0.070% by mass or more. Preferably, 0.10% by mass or more is most preferable.
  • the total content of the specific nitrogen-containing compounds is more preferably 4.0% by mass or less, still more preferably 3.5% by mass or less, and particularly preferably 3.0% by mass or less.
  • it is preferably 2.5% by mass or less, more preferably 2.0% by mass or less, even more preferably 1.5% by mass or less, even more preferably 1.0% by mass or less, and 0.5% by mass or less. 70% by mass or less is particularly preferred, and 0.50% by mass or less is most preferred.
  • materials used for interlayer insulation layers in multi-layer metal rewiring are required to have high mechanical properties to withstand the stress associated with multi-layering.
  • the reliability of electrical insulation is also required, so high migration resistance is also required.
  • memory used in recent years and mold resins used in the manufacture of semiconductor packages have low heat resistance, and there is a limitation that high-temperature processes cannot be applied. Therefore, materials used for surface protective layers and interlayer insulating layers of semiconductor devices are required to be curable by heating at a low temperature of 250° C. or less, more preferably 220° C. or less, and to have high mechanical properties. .
  • the photosensitive composition of the present invention exhibits excellent mechanical properties even when heated at low temperatures by including the above-mentioned specific nitrogen-containing compound to improve the degree of cross-linking of the resin and promote the ring closure reaction.
  • the effect of improving migration resistance becomes remarkable.
  • the nitrogen-containing structure of the above-mentioned specific nitrogen-containing compound traps metal impurities and ion impurities that adversely affect electrical insulation properties, so ion migration and electromigration are suppressed and migration resistance is improved. estimated to improve.
  • the photosensitive composition of the present invention contains one or more selected from the group consisting of specific nitrogen-containing compounds and satisfies the above condition (4)
  • the photosensitive composition of the present invention further includes a component containing sodium element, a component containing potassium element, a component containing magnesium element, and a component containing calcium element from the viewpoint of improving mechanical properties and improving migration resistance when heated at a low temperature.
  • a component containing an iron element, a component containing a copper element, and a component containing a chromium element and preferably satisfies the following condition (5).
  • the total content of sodium element, potassium element, magnesium element, calcium element, iron element, copper element, and chromium element (hereinafter referred to as "specific metal element") in the total solid content of the photosensitive composition 0.010 to 500 mass ppm.
  • Components containing specific metal elements include halides, oxides, nitrides, hydroxides, sulfides, carbides, oxynitrides, carboxylates, phosphates, carbonates, sulfates, and Nitrates or metasilicates are preferred.
  • the total content of the specific metal elements in the total solid content of the photosensitive composition is preferably 0.030 mass ppm or more, more preferably 0.050 mass ppm or more, further preferably 0.070 mass ppm or more, 0.10 mass ppm or more is particularly preferred.
  • the total content of specific metal elements is preferably 300 mass ppm or less, more preferably 200 mass ppm or less, and even more preferably 100 mass ppm or less.
  • it is preferably 50 mass ppm or less, more preferably 30 mass ppm or less, further preferably 10 mass ppm or less, and even more preferably 5 mass ppm or less. 3 mass ppm or less is particularly preferred, and 1 mass ppm or less is most preferred.
  • the above-mentioned specific metal elements trap metal impurities and ion impurities that adversely affect electrical insulation due to the positive charge of the metal elements, so it is presumed that ion migration and electromigration are suppressed and migration resistance is improved.
  • a metal complex is formed by intentionally including a trace amount of a specific metal element in the presence of a specific nitrogen-containing compound.
  • the formed metal complex is a cross-linking reaction on the aromatic ring, a ring closure reaction of the resin, and a resin having a silanol group such as polysiloxane in resins having aromatic rings such as polyimide, polybenzoxazole, and their precursors.
  • the cross-linking reaction and the ring-closing reaction proceed efficiently, so that excellent mechanical properties can be achieved even when heated at a low temperature.
  • the formed metal complex efficiently traps metal impurities and ionic impurities that adversely affect electrical insulation due to the positive charge of the metal element and the nitrogen-containing structure, thereby improving the migration resistance.
  • the photosensitive composition of the present invention further contains an ink-repellent agent.
  • An ink-repellent agent refers to a compound having a water-repellent structure and/or an oil-repellent structure. Since the liquid repellency of the film can be improved by containing the ink repellent agent, the contact angle of the film to pure water and/or the contact angle of the film to organic solvent can be increased.
  • the ink repellent agent is selected from the group consisting of at least two photoreactive groups, at least two alkenyl groups having 2 to 5 carbon atoms, at least two alkynyl groups having 2 to 5 carbon atoms, and at least two thermally reactive groups.
  • the photoreactive group is preferably a radically polymerizable group, more preferably a styryl group, a cinnamoyl group, a maleimide group, or a (meth)acryloyl group, and still more preferably a (meth)acryloyl group.
  • the alkenyl group having 2 to 5 carbon atoms or the alkynyl group having 2 to 5 carbon atoms is preferably a radical polymerizable group, vinyl group, allyl group, 2-methyl-2-propenyl group, crotonyl group, 2-methyl- A 2-butenyl group, a 3-methyl-2-butenyl group, a 2,3-dimethyl-2-butenyl group, an ethynyl group, or a 2-propargyl group is more preferred, and a vinyl group or an allyl group is even more preferred.
  • the heat-reactive group is preferably an alkoxymethyl group, a methylol group, an epoxy group, an oxetanyl group, or a blocked isocyanate group.
  • the ink repellent agent also preferably has a polymer chain, and the side chain of the repeating unit of the polymer chain has a water-repellent structure, an oil-repellent structure, at least two photoreactive groups, and at least two alkenyl groups having 2 to 5 carbon atoms. It is also preferred to have one or more selected from the group consisting of groups, at least two alkynyl groups having 2 to 5 carbon atoms, and at least two thermally reactive groups.
  • ink repellent agents having polymer chains examples include acrylic resin ink repellent agents, polyoxyalkylene ether ink repellent agents, polyester ink repellent agents, polyurethane ink repellent agents, polyol ink repellent agents, and polyethyleneimine ink repellent agents.
  • An ink agent or a polyallylamine-based ink repellent agent may be used.
  • the photosensitive composition of the present invention preferably further contains one or more selected from the group consisting of sensitizers, chain transfer agents, polymerization inhibitors, silane coupling agents, and surfactants.
  • sensitizers By containing a sensitizer, the effect of improving the sensitivity at the time of exposure becomes remarkable.
  • the sensitizer is preferably a compound having a fluorene skeleton, benzofluorene skeleton, fluorenone skeleton, or thioxanthone skeleton.
  • a chain transfer agent the effect of improving the sensitivity at the time of exposure becomes remarkable.
  • a compound having at least two mercapto groups is preferred as the chain transfer agent.
  • polymerization inhibitor By containing a polymerization inhibitor, the effect of improving the resolution after development becomes remarkable.
  • the polymerization inhibitor is preferably a hindered phenol compound, a hindered amine compound, or a benzimidazole compound.
  • the silane coupling agent is preferably trifunctional organosilane, tetrafunctional organosilane, or silicate compound.
  • a surfactant is preferably a fluororesin-based surfactant, a silicone-based surfactant, a polyoxyalkylene ether-based surfactant, or an acrylic resin-based surfactant.
  • the content ratio of the surfactant in the photosensitive composition of the present invention is preferably 0.001% by mass or more, more preferably 0.005% by mass or more, of the entire photosensitive composition.
  • the surfactant content is preferably 1% by mass or less, more preferably 0.5% by mass or less.
  • the photosensitive composition of the present invention further contains a solvent.
  • a solvent By containing the solvent, a film of the composition can be formed on the substrate with a desired film thickness, and the effect of improving the film thickness uniformity of the coating film becomes remarkable.
  • the solvent is preferably a compound having an alcoholic hydroxyl group, a compound having a carbonyl group, a compound having an ester bond, or a compound having at least three ether bonds.
  • the solvent is preferably a compound having a boiling point of 110° C. or higher under atmospheric pressure from the viewpoint of improving the uniformity of the film thickness of the coating film.
  • the content ratio of the solvent in the photosensitive composition of the present invention can be appropriately adjusted according to the coating method and the like. For example, when a coating film is formed by spin coating, it is generally 50 to 95 mass % of the total photosensitive composition.
  • the photosensitive composition of the present invention contains (D) a pigment (D1) as a colorant, a solvent having a carbonyl group or an ester bond is contained as a solvent to disperse (D1) the pigment. Due to the improved stability, the effect of suppressing residues after development becomes remarkable.
  • a carbonyl group is preferably an alkylcarbonyl group, a dialkylcarbonyl group, a formyl group, a carboxyl group, an amide group, an imide group, a urea bond, or a urethane bond.
  • the ester bond is preferably a carboxylate bond, a carbonate bond, or a formate bond, more preferably a carboxylate bond.
  • the total content ratio of the solvent having a carbonyl group or the solvent having an ester bond in the solvent is 30 to 100 mass from the viewpoint of suppressing residue after development and improving resolution after development. %, more preferably 50 to 100% by mass, even more preferably 70 to 100% by mass.
  • the content ratio of propylene glycol monoalkyl ether acetate in the solvent is 30 to 100% by mass. Preferably, 50 to 100% by mass, and even more preferably 70 to 100% by mass.
  • the content ratio of propylene glycol monoalkyl ether acetate in the solvent is preferably 30% by mass or more, and 40% by mass. % by mass or more is more preferable, and 50% by mass or more is even more preferable.
  • the content of propylene glycol monoalkyl ether acetate is preferably 90% by mass or less, more preferably 80% by mass or less, and even more preferably 70% by mass or less.
  • the content ratio of the diethylene glycol dialkyl ether and/or the solvent having an alcoholic hydroxyl group in the solvent is preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more.
  • the total content of these solvents is preferably 50% by mass or less, more preferably 40% by mass or less.
  • a solvent having an alcoholic hydroxyl group is preferably a solvent having an alcoholic hydroxyl group and an ether bond and/or an ester bond.
  • the ester bond is preferably a carboxylate bond, a carbonate bond, or a formate bond, more preferably a carboxylate bond.
  • the solvent having an alcoholic hydroxyl group and an ether bond and/or a carboxylic acid ester bond is preferably one or more selected from the group consisting of propylene glycol monoalkyl ether, alkyl lactate, alkyl hydroxyacetate, and hydroxyalkyl acetate.
  • ⁇ Method for producing the photosensitive composition of the present invention A representative method for producing the photosensitive composition of the present invention will be described.
  • (D) When the colorant contains (Da) a black agent and (Da) the black agent contains (D1a) a black pigment,
  • (A) the solution of the alkali-soluble resin is optionally added with (E) a dispersant.
  • a dispersing machine is used to disperse (D1a) a black pigment in the resulting mixed solution to prepare a pigment dispersion.
  • the disperser is preferably a bead mill from the viewpoint of suppressing residue after development. Beads include, for example, titania beads, zirconia beads, or zircon beads. The bead diameter is preferably 0.01 to 6 mm, more preferably 0.015 to 5 mm, even more preferably 0.03 to 3 mm.
  • the photosensitive film is a film in a semi-cured state (B stage) obtained by forming a film of the photosensitive composition of the present invention.
  • the term "semi-cured state” refers to a state in which no crosslinked structure is formed or a crosslinked structure is partially formed by reaction but the film has fluidity.
  • the coating film is dried under reduced pressure to distill off the solvent, or the coating film is heated at 40 to 150 ° C. and dried, and an alkaline solution or an organic solvent. refers to the state of being soluble in
  • a photosensitive film is a film having positive or negative photosensitivity and capable of forming a self-supporting film as a single film.
  • the photosensitive film preferably has adhesiveness, and preferably joins a plurality of members.
  • the ability to form a self-standing film as a single film means that a film having a width of 1.5 cm or more, a length of 5.0 cm or more, and a thickness of 5.0 ⁇ m or more can be formed without a support.
  • the photosensitive film in the present invention has positive or negative photosensitivity, a positive or negative pattern can be formed by developing with an alkaline developer or an organic solvent after patterning exposure.
  • the photosensitive film in the present invention is suitable for pattern formation on a substrate having an uneven structure, hollow structure formation, or dry film resist.
  • the photosensitive film in the invention is preferably a laminate arranged on a support. In the present invention, the laminate has a support and the photosensitive film of the present invention. Such a configuration is preferable from the viewpoint of handling.
  • the support is preferably a flexible substrate from the viewpoints of improving adhesion to the photosensitive film of the invention, flexibility, and handling.
  • the flexible substrate is preferably a polyimide substrate, a polyphenylene sulfide substrate, a silicone substrate, an acrylic resin substrate, an epoxy resin substrate, a polyethylene terephthalate substrate, a polybutylene terephthalate substrate, a polyethylene naphthalate substrate, or a polycarbonate substrate.
  • the support may be a rigid substrate. Examples of rigid substrates include glass substrates, quartz substrates, crystal substrates, and sapphire substrates.
  • the surface of the support on the side of the photosensitive film of the present invention may be surface-treated with a silane coupling agent or the like from the viewpoint of improving adhesion to the film and improving releasability.
  • the thickness of the support is preferably 10 to 200 ⁇ m from the viewpoint of handleability.
  • the cured product of the present invention is obtained by curing the photosensitive composition of the present invention.
  • Curing means that a crosslinked structure is formed by a reaction and the fluidity of the film is lost, or the state thereof.
  • the reaction is not particularly limited and may be heating, energy beam irradiation or the like, but is preferably by heating.
  • a state in which a crosslinked structure is formed by heating and the fluidity of the film is lost is called thermosetting. Heating conditions include, for example, heating at 150 to 500° C. for 5 to 300 minutes.
  • Examples of the heating method include a method of heating using an oven, a hot plate, infrared rays, a flash annealing device, or a laser annealing device.
  • the treatment atmosphere is, for example, an air, oxygen, nitrogen, helium, neon, argon, krypton or xenon atmosphere, a gas atmosphere containing 1 to 10,000 ppm by mass (0.0001 to 1% by mass) of oxygen, or , under vacuum.
  • the optical density at the wavelength of visible light (380 to 780 nm) per 1 ⁇ m of film thickness is preferably 0.5 to 5.0.
  • the optical density is preferably 0.5 or more, more preferably 0.7 or more, and even more preferably 1.0 or more, from the viewpoints of suppressing reflection of external light, preventing light leakage from adjacent pixels, and improving the reliability of the light-emitting element.
  • 1.2 or more is even more preferable, and 1.5 or more is particularly preferable.
  • the optical density is preferably 5.0 or less, more preferably 4.0 or less, even more preferably 3.0 or less, and further preferably 2.5 or less, from the viewpoint of improving the luminance of emitted light and improving the reliability of the light-emitting element. More preferably, 2.0 or less is particularly preferable.
  • the optical density per 1 ⁇ m film thickness can be adjusted by adjusting the composition and content ratio of the colorant (D) described above.
  • the optical density refers to the optical density of a cured product obtained by heating the photosensitive composition of the present invention at 250° C. for 60 minutes.
  • thermosetting conditions are a nitrogen atmosphere with an oxygen concentration of 20 mass ppm or less, a temperature increase rate of 3.5 ° C./min to 250 ° C., a heat treatment at 250 ° C. for 60 minutes, and then cooling to 50 ° C. That's what it means.
  • the thermosetting conditions are a nitrogen atmosphere with an oxygen concentration of 20 mass ppm or less, a temperature increase rate of 3.5. The temperature was raised to 200°C at a rate of °C/min, heat treatment was performed at 200°C for 60 minutes, and then cooling was performed to 50°C. This thermosetting condition is common throughout the present specification unless otherwise specified.
  • the tapered angle of the inclined side in the cross section of the cured pattern contained in the cured film obtained by curing the photosensitive composition of the present invention is 20 to 45° from the viewpoint of preventing electrode disconnection and improving the reliability of the light emitting element in the display device. preferable.
  • FIG. 1 shows an example of a cross section of a cured pattern having a stepped shape included in a cured film obtained by curing the photosensitive composition of the present invention.
  • the thick film portion 34 in the stepped shape corresponds to the cured portion at the time of exposure, and has the maximum film thickness of the cured pattern.
  • the thin film portions 35 a , 35 b , 35 c in the step shape correspond to halftone exposure portions during exposure, and have a film thickness smaller than that of the thick film portion 34 .
  • the taper angles ⁇ a , ⁇ b , ⁇ c , ⁇ d , and ⁇ e of the inclined sides 36 a , 36 b , 36 c , 36 d , and 36 e in the cross section of the curing pattern having a step shape are preferably low tapers. .
  • the taper angles ⁇ a , ⁇ b , ⁇ c , ⁇ d , and ⁇ e referred to herein are, as shown in FIG.
  • the term “forward taper” as used herein means that the taper angle is within a range of greater than 0° and less than 90°, and the term “reverse taper” means that the taper angle is within a range of greater than 90° and less than 180°.
  • a rectangular shape means that the taper angle is 90°, and a low taper means that the taper angle is greater than 0° and within the range of 60°.
  • the taper angle of the inclined side in the cross section of the stepped cured pattern, which is included in the cured film obtained by curing the photosensitive composition of the present invention, is the same as the preferable taper angle of the low tapered cured pattern described above.
  • the cured film obtained by curing the photosensitive composition of the present invention is the largest.
  • a region having a thickness is referred to as a thick film portion 34, and regions having a thickness smaller than the thickness of the thick film portion 34 are referred to as thin film portions 35a, 35b, and 35c.
  • the film thickness of the thick film portion 34 is (T FT ) ⁇ m
  • the film thickness of the thin film portions 35a, 35b, and 35c arranged in the thick film portion 34 via at least one step shape is (T HT ) ⁇ m.
  • the film thickness difference ( ⁇ T FT-HT ) ⁇ m between (T FT ) and (T HT ) is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, further preferably 1.5 ⁇ m or more, 2.0 ⁇ m or more is even more preferred, 2.5 ⁇ m or more is particularly preferred, and 3.0 ⁇ m or more is most preferred. In addition, all of the Most preferred.
  • the film thickness difference ( ⁇ T FT ⁇ HT ) ⁇ m between (T FT ) and the film thickness (T HT ) of the thin film portion 35a or 35b is more preferably within the above range, and (T FT ) and the thin film portion 35a It is more preferable that the film thickness difference ( ⁇ T FT-HT ) ⁇ m from the film thickness (T HT ) of the film is within the above range.
  • the film thickness difference is 0.5 ⁇ m or more, the effect of improving the reliability of the light emitting element in the display device becomes remarkable.
  • the film thickness difference ( ⁇ T FT-HT ) ⁇ m is preferably 10.0 ⁇ m or less, more preferably 9.5 ⁇ m or less, even more preferably 9.0 ⁇ m or less, even more preferably 8.5 ⁇ m or less, and 8.0 ⁇ m or less. is particularly preferred.
  • the film thickness difference is 10.0 ⁇ m or less, the amount of exposure light when forming a cured pattern having a stepped shape can be reduced, so that the effects of process time reduction and productivity improvement become remarkable.
  • the cured product of the present invention is obtained by curing a photosensitive composition, the cured product has a cured pattern having a stepped shape, and the thickness of the thick film portion 34 in the stepped shape of the cured pattern is (T FT ) ⁇ m, and the film thickness of the thin film portions 35a, 35b, and 35c is (T HT ) ⁇ m, the film thickness of the thick film portion 34 (T FT ) ⁇ m and the film thickness of the thin film portions 35a, 35b, or 35c ( T HT ) ⁇ m preferably satisfies all the relationships represented by the formulas ( ⁇ ) to ( ⁇ ), and (T FT ) ⁇ m and the film thickness (T HT ) ⁇ m of the thin film portion 35a or 35b satisfy the formula ( ⁇ ) to ( ⁇ ), and (T FT ) ⁇ m and the film thickness (T HT ) ⁇ m of the thin film portion 35a satisfy the relationships represented by the expressions ( ⁇ ) to ( ⁇ ).
  • (T FT ) ⁇ m and all film thicknesses (T HT ) ⁇ m of the thin film portions 35a, 35b, and 35c satisfy all the relationships represented by the formulas ( ⁇ ) to ( ⁇ ). 2.0 ⁇ (T FT ) ⁇ 10.0 ( ⁇ ) 0.20 ⁇ ( THT ) ⁇ 7.5 ( ⁇ ) 0.10 ⁇ (T FT ) ⁇ (T HT ) ⁇ 0.75 ⁇ (T FT )( ⁇ ).
  • the film thickness (T FT ) ⁇ m of the thick film portion 34 and the film thickness (T HT ) ⁇ m of the thin film portions 35a, 35b, or 35c can further satisfy all of the relationships represented by the formulas ( ⁇ ) to ( ⁇ ).
  • the film thickness (T FT ) ⁇ m of the thick film portion 34 and the film thickness (T HT ) ⁇ m of the thin film portion 35a or 35b further satisfy all of the relationships represented by the formulas ( ⁇ ) to ( ⁇ ). More preferably, the film thickness (T FT ) ⁇ m of the thick film portion 34 and the film thickness (T HT ) ⁇ m of the thin film portion 35a satisfy all of the relationships represented by the formulas ( ⁇ ) to ( ⁇ ).
  • (T FT ) ⁇ m and all film thicknesses (T HT ) ⁇ m of the thin film portions 35a, 35b, and 35c further satisfy the relationships represented by the formulas ( ⁇ ) to ( ⁇ ). . 2.0 ⁇ (T FT ) ⁇ 10.0 ( ⁇ ) 0.30 ⁇ ( THT ) ⁇ 7.0 ( ⁇ ) 0.15 ⁇ (T FT ) ⁇ (T HT ) ⁇ 0.70 ⁇ (T FT )( ⁇ ).
  • the film thickness (T FT ) ⁇ m of the thick film portion 34 and the film thickness (T HT ) ⁇ m of the thin film portions 35a, 35b, and 35c are within the ranges described above, it is possible to suppress the decrease in panel yield and reduce the number of light emitting elements in the display device. The effect of improving reliability becomes remarkable. In addition, the effect of process time reduction and productivity improvement becomes remarkable.
  • the contact angle of the thick film portion with respect to pure water in the cured film including the pattern having the stepped shape described above is ( CAw FT )° and the contact angle of the thin film portion with respect to pure water is (CAw HT )°, the contact angle difference between (CAw FT )° and (CAw HT )° ( ⁇ CAw FT-HT )
  • the angle is preferably 20° or more, more preferably 40° or more, from the viewpoint of suppressing color mixing between inks when forming an organic EL layer by inkjet coating.
  • the contact angle difference ( ⁇ CAw FT-HT )° with respect to pure water is preferably 90° or less, more preferably 70° or less.
  • the contact angle difference ( ⁇ CAw FT- HT )° between (CAw FT )° and the contact angle ( CAw HT )° of the thin film portion 35a, 35b, or 35c with respect to pure water is preferably within the above range, ( More preferably, the contact angle difference ( ⁇ CAw FT -HT )° between CAw FT )° and the contact angle (CAw HT )° of the thin film portion 35a or 35c with respect to pure water is within the above range, and (CAw FT )° It is more preferable that the contact angle difference ( ⁇ CAw FT ⁇ HT )° between the contact angle (CAw HT )° of the thin film portion 35a and pure water falls within the above range.
  • all the contact angle differences ( ⁇ CAw FT -HT )° between (CAw FT )° and the contact angle (CAw HT )° of the thin film portions 35a, 35b, and 35c with respect to pure water are preferably within the above range. .
  • the thick film portion of the cured film containing the above-described pattern having a stepped shape comes into contact with propylene glycol monomethyl ether acetate.
  • the angle is (CAp FT )° and the contact angle of the thin film portion with respect to propylene glycol monomethyl ether acetate is (CAp HT )°
  • the contact angle difference ( ⁇ CAp FT-HT )° with respect to propylene glycol monomethyl ether acetate is preferably 70° or less, more preferably 50° or less.
  • the device comprises the cured product of the present invention.
  • the article comprises the cured product of the present invention.
  • Articles include, for example, electronic components, electronic devices, moving bodies, buildings, windows, and the like.
  • electronic components include semiconductor devices, antennas, display devices, metal-clad laminates, wiring boards, semiconductor packages, and active or passive components including semiconductor devices.
  • Semiconductor devices include, for example, transistors, diodes, integrated circuits, processors, or memories.
  • Passive components include, for example, resistors, capacitors, or inductors.
  • Electronic devices include, for example, industrial devices, medical devices, or architectural devices. Examples of mobile objects include vehicles, railroads, airplanes, and heavy machinery. Buildings include, for example, residences, shops, offices, buildings, and factories.
  • Windows include, for example, electronic device windows, mobile windows, or building windows.
  • the photosensitive composition of the present invention is preferably used for forming electronic parts.
  • the photosensitive composition of the present invention is also preferably used for forming one or more types selected from the group consisting of semiconductor devices, antennas, display devices, and metal-clad laminates.
  • Semiconductor devices include, for example, semiconductor devices having a fan-out wafer-level package structure, a fan-out panel-level package structure, or an antenna-in-package structure.
  • antennas include microstrip line antennas, strip line antennas, coplanar line antennas, grounded coplanar line (Conductor Back Coplanar; CBC) antennas, substrate integrated waveguide (SIW) antennas, post wall waveguides ( Post Wall Waveguide (PWW) antennas, parallel bilinear line (Coplanar Strip; CPS) antennas, or slotline antennas.
  • Display devices include, for example, organic EL displays, quantum dot displays, micro light emitting diode (hereinafter, “micro LED”) displays, mini LED displays, or liquid crystal displays.
  • micro LED micro light emitting diode
  • mini LED displays mini LED displays
  • liquid crystal displays Examples of metal-clad laminates include printed circuit boards.
  • the electronic component of the present invention comprises the cured product of the present invention.
  • the cured product of the present invention can have both excellent mechanical properties and high migration resistance even when heated at a low temperature. Therefore, the photosensitive composition of the present invention is preferably used for forming an insulating layer for metal wiring, a protective layer for metal wiring, or an interlayer insulating layer for metal wiring in electronic parts.
  • the photosensitive composition of the present invention is also preferably used for forming an interlayer insulating layer for rewiring in a semiconductor device, such as an insulating layer for metal wiring in an antenna, a protective layer for metal wiring, or a metal wiring layer. It is also preferably used to form an interlayer insulating layer between wiring and ground wiring, such as a pixel division layer, TFT flattening layer, TFT protective layer, and TFT interlayer insulation in an organic EL display, a quantum dot display, or a micro LED display.
  • It is also preferably used for forming a layer or a gate insulating layer, and is also preferably used for forming an insulating layer for metal wiring, a protective layer for metal wiring, or a solder resist layer for metal wiring in a metal-clad laminate.
  • FIG. 2 is a schematic cross-sectional view showing an enlarged cross-section of a pad portion of a semiconductor device having bumps.
  • a passivation layer 23 is formed on an input/output Al pad 22 on a Si wafer 21, and a via hole is formed in the passivation layer 23.
  • an insulating layer 24, which is a patterned cured product of the present invention, is formed, and a metal layer 25 such as Cr or Ti is formed so as to be connected to the Al pad 22,
  • a metal wiring 26 made of Al, Cu, or the like is formed by electrolytic plating or the like.
  • the metal layer 25 is etched around the solder bumps 30 to provide insulation between each pad.
  • a barrier metal layer 28 and a solder bump 30 are formed on the insulated pad.
  • the insulating layer 27 is a cured product of a patterned photosensitive composition, preferably the cured product of the present invention.
  • the photosensitive composition forming the insulating layer 27 can be patterned in a thick film in forming the scribe lines 29 .
  • the hollow structure comprises the cured product of the present invention.
  • the electronic component of the present invention preferably has the hollow structure of the present invention.
  • the hollow structure in the present invention has a hollow structure supporting material and a hollow structure roofing material.
  • the hollow structure supporting material and the hollow structure roofing material are preferably the cured product of the present invention.
  • the hollow structure supporting material and the hollow structure roofing material preferably contain the above polyimide-based resin.
  • the thickness of the hollow structural support material is preferably 5 to 20 ⁇ m.
  • the film thickness of the hollow structure roofing material is preferably 10 to 50 ⁇ m.
  • the photosensitive composition of the present invention is preferably used for forming a hollow structure, and more preferably for forming a hollow structure supporting material and/or a hollow structure roofing material.
  • the photosensitive film of the present invention is more suitable for forming a hollow structure, more suitable for forming a hollow structure support material and/or a hollow structure roofing material, and particularly suitable for forming a hollow structure roofing material.
  • Electronic components having hollow structures include, for example, MEMS (Micro Electro Mechanical Systems). Examples of MEMS include sensors, noise filters, SAW (Surface Acoustic Wave) filters, and BAW (Bulk Acoustic Wave) filters.
  • a display device comprising the cured product of the present invention will be described below.
  • Examples of the display device of the present invention include organic EL displays, quantum dot displays, micro LED displays, LED displays, liquid crystal displays, plasma displays, and field emission displays.
  • the display device of the present invention is preferably an organic EL display, a quantum dot display, or a micro LED display, more preferably an organic EL display.
  • the photosensitive composition of the present invention is capable of improving sensitivity during exposure, suppressing narrow mask bias in opening pattern dimensions after development, and having excellent halftone characteristics. In addition, it is possible to improve the reliability of the light-emitting element in the display device. Therefore, the cured film obtained by curing the photosensitive composition of the present invention under the curing conditions described above is particularly preferable as a pixel dividing layer, a TFT flattening layer, a TFT protective layer, an interlayer insulating layer, or a gate insulating layer of an organic EL display. . It is also preferred as a black matrix or black column spacer. A cured film can be provided particularly preferably in an organic EL display.
  • the durability of the organic EL display can be improved due to the high reliability of the light emitting element.
  • the photosensitive composition of the present invention is particularly suitable for use in forming pixel dividing layers in organic EL displays. Furthermore, since it has a narrow mask bias suppression of the opening pattern size after development and excellent halftone characteristics, it is particularly suitable for use in collectively forming the stepped shape of the pixel division layer in an organic EL display.
  • the photosensitive composition of the present invention is preferably used for collectively forming the stepped shape of the pixel dividing layer in the organic EL display.
  • a display device having a cured film obtained by curing the photosensitive composition of the present invention does not have a polarizing film such as a linear polarizing plate, a quarter-wave plate, or a circular polarizing plate on the light extraction side of the light-emitting element.
  • a polarizing film such as a linear polarizing plate, a quarter-wave plate, or a circular polarizing plate on the light extraction side of the light-emitting element.
  • external light reflection can be suppressed. Therefore, it is particularly suitable for flexible display devices having a structure in which a cured film is laminated on a flexible substrate and which does not have a polarizing film.
  • the flexible substrate is preferably a polyimide substrate, a polyethylene terephthalate substrate, a cycloolefin polymer substrate, a polycarbonate substrate, or a cellulose triacetate substrate.
  • the flexible display device preferably has a curved display portion, an outwardly bendable display portion, or an inwardly bendable display portion.
  • a first aspect of the display device of the present invention comprises the cured product of the present invention.
  • a first aspect of the display device of the present invention has at least a substrate, a first electrode, a second electrode, and a pixel division layer, and furthermore, an organic EL layer containing a light emitting layer and/or a light extraction layer containing a light emitting layer.
  • the pixel division layer is formed to partially overlap the first electrode, and the organic EL layer including the light emitting layer and/or the light extraction layer including the light emitting layer is formed on the first electrode , and a laminated structure formed between the first electrode and the second electrode.
  • the pixel division layer is preferably the cured product of the present invention.
  • the first aspect of the display device of the present invention is preferably an organic EL display.
  • a second aspect of the display device of the present invention has at least a substrate, a first electrode, a second electrode, and a pixel division layer, Furthermore, a display device having an organic EL layer containing a light-emitting layer and/or a light extraction layer containing a light-emitting layer, The pixel division layer is formed to partially overlap the first electrode, an organic EL layer containing the light emitting layer and/or a light extraction layer containing the light emitting layer is formed on the first electrode and between the first electrode and the second electrode;
  • the pixel division layer contains a (D-DL) colorant, and the optical density of the pixel division layer per 1 ⁇ m of thickness at the wavelength of visible light is 0.5 to 5.0,
  • the pixel dividing layer contains the following (WA) resin having a weakly acidic group,
  • the (WA) resin having a weakly acidic group is one selected from the group consisting of the following (XA3-1) resin
  • (WA) weakly acidic group one or more groups selected from the group consisting of phenolic hydroxyl group, hydroxyimide group, hydroxyamide group, silanol group, 1,1-bis(trifluoromethyl)methylol group, and mercapto group
  • ( XA3-1) resin phenolic resin (XA3-2) resin: polyhydroxystyrene (XA3-3) resin: phenolic group-containing epoxy resin (XA3-4) resin: phenolic group-containing acrylic resin (1x) steps of pixel division layer
  • Ra HT/max be the maximum surface roughness on the surface of the thin film portion in the shape
  • (Ra FT/max ) be the maximum value of surface roughness on the surface of the thick film portion in the stepped shape of the pixel division layer.
  • between (Ra HT/max ) and (Ra FT/max ) is 1.0 to 50.0 nm (2x)
  • (Ra DL/max ) be the maximum value of the surface roughness of the surface of the pixel division layer
  • (Ra SP/max ) be the maximum value of the surface roughness of the surface of the spacer layer on the pixel division layer.
  • between (Ra DL/max ) and (Ra SP/max ) is 1.0 to 50.0 nm.
  • the present invention can improve the reliability of the light-emitting element.
  • the pixel division layer contains a resin having a specific (WA) weakly acidic group and a specific resin having a phenolic hydroxyl group, thereby reducing the roughness of the film surface during pattern formation of the pixel division layer.
  • the pixel division layer contains a (D-DL) colorant and has a specific range of optical density at the wavelength of visible light in order to impart a light-shielding property to the pixel division layer, pigments in the pixel division layer The roughness of the film surface may be remarkably deteriorated.
  • deterioration of roughness on the surface of the pixel division layer may cause electric field concentration in the cathode (cathode) formed on the pixel division layer, cause deterioration of reliability due to defect occurrence in the sealing process, or cause electrode disconnection or electrode short circuit. In some cases, it becomes a factor of non-lighting of the pixel.
  • the pixel division layer contains the (D-DL) colorant and the optical density at the wavelength of visible light is within a specific range, the pixel division layer contains the above-mentioned specific resin. be effective.
  • the mild acidity of the specific (WA) weakly acidic group-containing resin suppresses film reduction in the exposed areas. It is thought that in addition, a specific resin with phenolic hydroxyl groups stabilizes excessive radicals generated during pattern exposure, and the phenolic hydroxyl groups control excessive photocuring in the exposed areas, so reflow during heat curing is suppressed. presumed to improve performance.
  • the mild acidity of the resin having the specific (WA) weakly acidic group suppresses film loss in the unexposed areas. is considered to be
  • the ⁇ -bond stacking of a specific resin having a phenolic hydroxyl group suppresses excessive cross-linking reaction during heat curing, thereby improving the reflow property during heat curing.
  • the first aspect of the display device of the present invention preferably has a substrate.
  • a second aspect of the display device of the present invention has a substrate.
  • the substrate is preferably a glass substrate from the viewpoint of improving impact resistance.
  • a substrate for example, an oxide or metal (molybdenum, silver, copper, aluminum, chromium, or titanium) having one or more selected from indium, tin, zinc, aluminum, and gallium is used as an electrode or wiring on glass. etc.), or a substrate on which CNTs (Carbon Nano Tubes) are formed.
  • the substrate is preferably a flexible substrate such as a polyimide substrate from the viewpoint of improving bendability.
  • the first aspect of the display device of the present invention preferably has a first electrode and a second electrode.
  • a second aspect of the display device of the present invention has a first electrode and a second electrode.
  • the display device of the present invention has a transparent conductive oxide film layer containing at least one selected from the group consisting of indium, tin, zinc, aluminum, and gallium as the outermost layer of the first electrode on the light emitting layer side. It is preferable to have a transparent conductive oxide film layer containing at least indium, more preferably to have an amorphous transparent conductive oxide film layer containing at least indium.
  • the transparent conductive oxide film layer containing at least indium is preferably indium tin oxide (ITO) or indium zinc oxide (IZO), more preferably ITO, from the viewpoint of low-voltage driving of light emission characteristics by adjusting the work function difference. .
  • the first electrode has a single-layer structure or a multi-layer structure.
  • the first electrode is a transparent electrode, preferably a transparent conductive oxide film layer containing indium.
  • the first electrode is a transparent electrode or a non-transparent electrode, and preferably has a transparent conductive oxide film layer containing at least indium as the outermost layer on the light emitting layer side of the first electrode.
  • the second electrode is a single-layer transparent electrode, a multi-layer transparent electrode, a single-layer non-transparent electrode, or a multi-layer non-transparent electrode.
  • the first electrode described above is a transparent electrode
  • the second electrode is a non-transparent electrode.
  • the second electrode is a transparent electrode.
  • the above-described first electrode has a multilayer structure including at least a transparent conductive oxide film layer and a non-transparent conductive metal layer, and at least an indium ⁇ pixel division layer> preferably has an amorphous conductive oxide film layer containing
  • the first aspect of the display device of the present invention preferably has a pixel dividing layer. It is preferable that the pixel division layer is formed so as to partially overlap the above-described first electrode.
  • a second aspect of the display device of the present invention has a pixel division layer, and the pixel division layer is formed so as to partially overlap the first electrode.
  • the pixel division layer is preferably a cured film obtained by curing the photosensitive composition described above.
  • the first electrode of an arbitrary pixel can be insulated from a second electrode of the pixel, which will be described later. Pixel non-lighting due to short-circuiting with the second electrode can be suppressed.
  • the first electrode of an arbitrary pixel can be insulated from the first electrode of a pixel adjacent to that pixel, thereby suppressing non-lighting of the pixel due to a short circuit between the first electrodes.
  • the above-mentioned pixel division layer is selected from the group consisting of (XA1) an imide structure, an amide structure, an oxazole structure, and a siloxane structure. It is preferable to contain a resin having a structural unit containing one or more selected types (hereinafter referred to as "(XA1) resin").
  • the (XA1) resin preferably has one or more types selected from the group consisting of an imide structure, an amide structure, an oxazole structure, and a siloxane structure in the structural units in the main chain of the resin. These resins are preferably resins having a structure derived from the above-described (A1) resin and/or a structure derived from the above-described (A2) resin.
  • the pixel division layer is composed of structural units represented by any of the above general formulas (1), (2), (3), (4), (5), (6), (9) and (10) It is preferable to have one or more kinds selected from the group consisting of, and it is more preferable to have a structural unit represented by general formula (1) and/or a structural unit represented by general formula (5).
  • the pixel division layer described above includes (XA3) a resin having a structural unit containing a phenolic hydroxyl group (hereinafter referred to as "(XA3) resin"). It is preferable to contain These resins are resins having one or more types selected from the group consisting of the structure derived from the above-described (A3) resin, the structure derived from the above-described (A1) resin, and the structure derived from the above-described (A2) resin.
  • the pixel division layer preferably has one or more types selected from the group consisting of the structural units represented by any of the general formulas (36), (91) and (92) described above, and the general formula (36) It is more preferable to have the represented structural unit.
  • These resins preferably have a phenolic hydroxyl group as an alkali-soluble group in at least one of the main chain of the resin, the side chain of the resin and the end of the resin, and contain an aromatic ring skeleton in the structural unit of the resin. It is more preferable to have a phenolic hydroxyl group as an alkali-soluble group in a structural unit in the main chain of the resin and to contain an aromatic ring skeleton. It is also preferable that part of the phenolic hydroxyl groups contained in the resin react with other resins or compounds to form a crosslinked structure.
  • the above-described pixel division layer contains (XA2) a resin having a reactive residue of a radically polymerizable group (hereinafter referred to as "(XA2) resin” ) is preferably contained.
  • These resins are preferably resins having a structure derived from the above-described (A2) resin and/or a structure derived from the above-described (A3) resin.
  • the pixel division layer is (1), (2), (3), (4), (5), (6), (9), (10), (41), (61), (62) described above. , (63), (81) and (82).
  • the pixel division layer contains the above-mentioned (XA1) resin and/or the above-mentioned (XA3) resin, and further contains the above-mentioned (XA2) resin.
  • XA1 resin and/or the above-mentioned (XA3) resin and further contains the above-mentioned (XA2) resin.
  • the above-described pixel division layer further contains phosphoric acid.
  • ester structure-containing compound phosphonic acid structure-containing compound, phosphonate structure-containing compound, phosphite structure-containing compound, phosphinic acid structure-containing compound, phosphinate structure-containing compound, hypophosphite structure-containing compound, phosphoric acid betaine ester structure-containing compound, betaine phosphonate structure-containing compound, betaine phosphonic acid ester structure-containing compound, betaine phosphite ester structure-containing compound, betaine phosphinate structure-containing compound, betaine phosphinate structure-containing compound, and betaine hypophosphite It is preferable to contain one or more compounds selected from the group consisting of ester structure-containing compounds (hereinafter referred to as "compounds having a phosphoric acid structure").
  • the compound having a phosphoric acid structure more preferably contains one or more selected from the group consisting of a phosphonic acid structure-containing compound, a phosphonic acid ester structure-containing compound, and a phosphite structure-containing compound, and contains a phosphonic acid structure. It is more preferable to contain a compound and/or a compound containing a phosphonate ester structure.
  • the compound having a phosphate-based structure is preferably a compound having a structure derived from the (F0) compound and/or a compound having a structure derived from the (FB) compound described above, derived from the (F1) compound described above. and/or a compound having a structure derived from the (FB1) compound.
  • the pixel division layer described above preferably further contains (D) a colorant.
  • the pixel dividing layer contains a (D-DL) colorant.
  • the (D-DL) colorant contained in the pixel division layer is more preferably a (Da) black agent.
  • the pixel division layer described above preferably further contains (D1a) a black pigment.
  • the (D1a) black pigment more preferably contains the above-described specific (D1a-1) organic black pigment, and more preferably (D1a-1a) a benzofuranone-based black pigment.
  • the pixel division layer described above is a compound having a structure represented by either general formula (161) or general formula (162), geometric isomers thereof, salts thereof, salts of geometric isomers thereof; (164), (165) and (166) compounds having a structure represented by any of, salts thereof; compounds having a structure represented by the general formula (168), and salts thereof, selected from the group consisting of It is also preferable to contain one or more types of More preferably, the pixel division layer described above contains a compound having a structure represented by either general formula (161) or general formula (162).
  • the pixel division layer has an optical density of 0.5 to 5.0 at a wavelength of visible light per 1 ⁇ m of film thickness.
  • the optical density at the wavelength of visible light per 1 ⁇ m of film thickness of the pixel dividing layer is 0.5 to 5.0.
  • the optical density is preferably 0.5 or more, more preferably 0.7 or more, and even more preferably 1.0 or more, from the viewpoints of suppressing reflection of external light, preventing light leakage from adjacent pixels, and improving the reliability of the light-emitting element.
  • 1.2 or more is even more preferable, and 1.5 or more is particularly preferable.
  • the optical density is preferably 5.0 or less, more preferably 4.0 or less, even more preferably 3.0 or less, and further preferably 2.5 or less, from the viewpoint of improving the luminance of emitted light and improving the reliability of the light-emitting element. More preferably, 2.0 or less is particularly preferable.
  • the optical density of the pixel dividing layer is as described above regarding the optical density of the cured film obtained by curing the photosensitive composition of the present invention.
  • the above pixel division layer preferably further contains inorganic particles from the viewpoint of improving the reliability of the light emitting element and improving the migration resistance.
  • the inorganic particles in the pixel division layer include silica particles, alumina particles, titania particles, vanadium oxide particles, chromium oxide particles, iron oxide particles, cobalt oxide particles, copper oxide particles, zinc oxide particles, zirconium oxide particles, niobium oxide particles, Tin oxide particles or cerium oxide particles are preferred, and silica particles are more preferred.
  • the inorganic particles in the pixel division layer are preferably the inorganic particles (I) described above, and the silica particles in the pixel division layer are preferably the silica particles (I1) described above.
  • the average primary particle size of the silica particles in the pixel dividing layer is preferably 5.0 nm or more, more preferably 7.0 nm or more, and even more preferably 10 nm or more, from the viewpoint of improving the reliability of the light emitting element and improving migration resistance.
  • the average primary particle diameter of the silica particles in the pixel dividing layer is preferably 200 nm or less, more preferably 100 nm or less, and even more preferably 70 nm or less, from the viewpoint of suppressing external light reflection and improving the reliability of the light emitting device.
  • it is preferably 50 nm or less, more preferably 40 nm or less, still more preferably 30 nm or less, even more preferably 25 nm or less, particularly preferably 20 nm or less, and most preferably 15 nm or less.
  • the average primary particle size of the silica particles in the pixel dividing layer is preferably greater than 0.20 ⁇ m, more preferably 0.30 ⁇ m or more, and even more preferably 0.50 ⁇ m or more, from the viewpoint of achieving a high elastic modulus and a low coefficient of thermal expansion. .
  • the average primary particle size of the silica particles in the pixel dividing layer is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, even more preferably 30 ⁇ m or less, even more preferably 10 ⁇ m or less, and 5.0 ⁇ m or less. is particularly preferred, and 3.0 ⁇ m or less is most preferred.
  • the primary particle diameter of the silica particles in the pixel division layer refers to the major axis diameter of the primary particles of the silica particles in the pixel division layer.
  • the pixel division layer contains the following (WA) resin having a weakly acidic group.
  • WA Weakly acidic group: one or more groups selected from the group consisting of phenolic hydroxyl group, hydroxyimide group, hydroxyamide group, silanol group, 1,1-bis(trifluoromethyl)methylol group, and mercapto group.
  • These resins are resins having one or more types selected from the group consisting of the structure derived from the above-described (A1) resin, the structure derived from the above-described (A2) resin, and the structure derived from the above-described (A3) resin. is preferably Examples and preferred descriptions of the (WA) weakly acidic group-containing resin in the pixel dividing layer are the same as the examples and preferred descriptions of the (XA1) resin, (XA2) resin, and (XA3) resin.
  • the (WA) resin having a weakly acidic group in the pixel dividing layer is the following (XA3-1) resin, (XA3-2) resin, (XA3-3) resin , and (XA3-4) one or more selected from the group consisting of resins.
  • XA3-4) resin phenolic group-containing acrylic resin.
  • These resins are preferably resins having a structure derived from the (A3) resin described above.
  • the examples and preferred descriptions of the (XA3-1) resin, (XA3-2) resin, (XA3-3) resin, and (XA3-4) resin in the pixel division layer refer to the examples and preferred descriptions of the (XA3) resin. As described.
  • the pixel division layer has a cured pattern, a spacer layer is partially formed on the pixel division layer, and the film thickness (T SP ) of the spacer layer is 0.5 to 10 ⁇ m. 0 ⁇ m is preferred.
  • T SP film thickness
  • a spacer layer having a sufficient height can be formed by photolithography. Since the spacer layer is included, damage to the pixel division layer is suppressed, and the effect of suppressing the yield reduction of the panel and improving the reliability of the light-emitting element becomes remarkable.
  • the thickness (T sp ) ⁇ m of the spacer layer is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, still more preferably 1.5 ⁇ m or more, and even more preferably 2.0 ⁇ m or more. 2.5 ⁇ m or more is particularly preferred, and 3.0 ⁇ m or more is most preferred.
  • the film thickness (T SP ) ⁇ m of the spacer layer is preferably 10.0 ⁇ m or less, more preferably 9.0 ⁇ m or less, and even more preferably 8.0 ⁇ m or less.
  • the pixel division layer includes a cured pattern having a stepped shape, and in the stepped shape of the cured pattern of the pixel division layer, the thick film portion has a thickness of (T FT ) ⁇ m, and the thin portion has a thickness of (T FT ) ⁇ m.
  • the film thickness difference ( ⁇ T FT -HT ) ⁇ m between (T FT ) ⁇ m and (T HT ) ⁇ m is 0.5 to 10.0 ⁇ m, and the pixel dividing layer
  • a spacer layer is provided on a part of the upper portion and the film thickness (T SP ) ⁇ m of the spacer layer is 0.5 to 10.0 ⁇ m.
  • Examples and preferred descriptions of the resin, compound, colorant, and inorganic particles possessed by the spacer layer are the same as the examples and preferred description of the resin, compound, colorant, and inorganic particles possessed by the pixel division layer described above.
  • a second aspect of the display device of the present invention satisfies the following conditions (1x) and/or (2x).
  • (1x) Let (Ra HT/max ) be the maximum value of the surface roughness of the surface of the thin film portion in the step shape of the pixel division layer, and the maximum value of the surface roughness of the surface of the thick film portion in the step shape of the pixel division layer.
  • between (Ra HT /max ) and (Ra FT/max ) is 1.0 to 50.0 nm.
  • the display device of the present invention by setting the maximum value of the surface roughness of the surface of the pixel division layer within the range described above, it is possible to improve the reliability of the light-emitting element and achieve a remarkable effect of suppressing reflection of external light. Become. It is presumed that this is because by increasing the amount of diffusely reflected light on the surface of the pixel division layer, it is possible to reduce the amount of specularly reflected light that greatly contributes to glare and glare in visibility.
  • the display device of the present invention preferably satisfies the above condition (1x) when the pixel division layer includes a cured pattern having a stepped shape.
  • is preferably 1.0 nm or more, more preferably 3.0 nm or more, and 5.0 nm from the viewpoint of improving the reliability of the light-emitting element and suppressing reflection of external light. 7.0 nm or more is particularly preferable, and 10.0 nm or more is most preferable.
  • is preferably 50.0 nm or less, more preferably 40.0 nm or less, and 30 0 nm or less is more preferable, and 20.0 nm or less is particularly preferable.
  • the display device of the present invention preferably satisfies the above condition (2x) when the pixel division layer has a cured pattern and a spacer layer partially on the pixel division layer.
  • are the same as those of
  • the maximum surface roughness of the surface of the pixel dividing layer is preferably 0.1 nm or more, more preferably 0.3 nm or more, and even more preferably 0.5 nm or more, from the viewpoint of improving the reliability of the light-emitting element and suppressing the reflection of external light. It is preferably 0.7 nm or more, even more preferably 1.0 nm or more. Furthermore, it is preferably 3.0 nm or more, more preferably 5.0 nm or more, still more preferably 7.0 nm or more, and particularly preferably 10.0 nm or more.
  • the maximum surface roughness of the surface of the pixel dividing layer is preferably 50.0 nm or less, more preferably 40.0 nm or less, and 30.0 nm or less from the viewpoint of improving the reliability of the light-emitting element and suppressing reflection of external light. is more preferable, and 20.0 nm or less is particularly preferable.
  • Examples and preferred descriptions of the maximum surface roughness of the surface of the thin film portion of the pixel division layer, the maximum surface roughness of the thick film portion of the pixel division layer, and the maximum surface roughness of the spacer layer are the examples and preferred descriptions regarding the maximum value of surface roughness on the surface of the pixel division layer.
  • the maximum value of surface roughness can be measured with an atomic force microscope (hereinafter "AFM").
  • AFM measurement is performed from vertically above a surface such as a pixel division layer of a display placed on a horizontal plane.
  • the maximum value of surface roughness refers to a value measured on a surface of the pixel dividing layer or the like that can be measured by AFM, that is, on a surface that is substantially parallel to the substrate.
  • the display device of the present invention further has an organic EL layer containing a light-emitting layer and/or a light extraction layer containing a light-emitting layer.
  • the organic EL layer including the light-emitting layer and/or the light extraction layer including the light-emitting layer preferably have a laminated structure formed on the above-described first electrode and between the above-described first electrode and second electrode.
  • a second aspect of the display device of the present invention further has an organic EL layer containing a light emitting layer and / or a light extraction layer containing a light emitting layer, and an organic EL layer containing a light emitting layer and / or a light containing light emitting layer
  • the extraction layer is formed on the first electrode and between the first electrode and the second electrode.
  • the organic EL layer preferably further has a hole-transporting layer and/or an electron-transporting layer, and is preferably formed so as to have a laminated structure with the light-emitting layer.
  • Examples of the structure of the organic EL layer include (1) hole transport layer/light emitting layer, (2) hole transport layer/light emitting layer/electron transport layer, or (3) light emitting layer/electron transport layer. be done.
  • Various studies have been made on the structure of the organic EL layer in order to comprehensively improve the injection and transport of holes and electrons, the luminous efficiency in the light-emitting layer, and the like.
  • the hole-transport layer is histriphenyl represented by a specific general formula.
  • An organic thin film EL element characterized by containing an amine styryl derivative and the like can be mentioned.
  • the display device of the present invention can be manufactured as an organic EL display, which is a display device, by having a laminated structure using an organic EL layer including a light-emitting layer.
  • the display device of the present invention can be manufactured as a quantum dot display or a micro LED display, which is a display device, by forming a laminate structure using a light extraction layer including a light emitting layer.
  • the display device of the present invention is also preferably a quantum dot display in which the light extraction layer containing the light emitting layer contains quantum dots.
  • a quantum dot display is a display device having, on a substrate, a light extraction layer comprising a first electrode, a second electrode, a pixel dividing layer, and a light emitting layer, wherein the pixel dividing layer is part of the first electrode.
  • a light-outcoupling layer formed to overlap and including a light-emitting layer has a structure formed on the first electrode and between the first electrode and the second electrode, and the light-outcoupling layer including the light-emitting layer has quantum dots. It is a display device having a configuration including:
  • the display device of the present invention is also preferably a micro LED display in which the light extraction layer containing the light emitting layer contains an inorganic semiconductor.
  • a micro LED display is a display device having, on a substrate, a light extraction layer comprising a first electrode, a second electrode, a pixel dividing layer, and a light emitting layer, wherein the pixel dividing layer is part of the first electrode.
  • a light-outcoupling layer formed to overlap and including a light-emitting layer has a structure formed on the first electrode and between the first electrode and the second electrode, and the light-outcoupling layer including the light-emitting layer includes an inorganic semiconductor. It is a display device having a configuration including:
  • the display device of the present invention preferably further has a color filter containing quantum dots from the viewpoint of improving the luminance of emitted light and the purity of emitted light.
  • the light emitting element overlapping the color filter containing quantum dots and positioned below the color filter containing quantum dots is an organic EL light emitting element that emits blue light.
  • an organic EL light-emitting element that emits white light, an LED element that emits blue light, or an LED element that emits white light is preferable.
  • the display device of the present invention preferably has a plurality of pixel portions.
  • the pixel portion is a portion of the opening of the pixel dividing layer, on which the organic EL layer including the light-emitting layer and/or the light extraction layer including the light-emitting layer is formed. preferably.
  • the region corresponding to the pixel portion corresponds to the region where the organic EL layer including the light-emitting layer and/or the light extraction layer including the light-emitting layer is in contact with the above-described first electrode portion.
  • the pixel portion preferably overlaps with the openings of the color filter layer and the black matrix layer.
  • the display device of the present invention comprises, on the same substrate, a first electrode, a second electrode, a pixel division layer, an organic EL layer including a light emitting layer and/or a light extraction layer including a light emitting layer, a sealing layer, and a color filter layer. , and a black matrix layer.
  • step 1 a thin film transistor (hereinafter referred to as "TFT") 2 is formed on a glass substrate 1, a film of a photosensitive material for a TFT flattening film is formed, patterned by photolithography, and then thermally cured. to form a cured film 3 for flattening the TFT.
  • TFT thin film transistor
  • step 2 a film of silver-palladium-copper alloy (hereinafter referred to as "APC”) is formed by sputtering, patterned by etching using a photoresist to form an APC layer, and furthermore, an upper layer of the APC layer.
  • a film of indium tin oxide (hereinafter referred to as "ITO”) is formed by sputtering, patterned by etching using a photoresist, and a reflective electrode 4 is formed as a first electrode.
  • Step 3 the photosensitive composition of the present invention is applied and prebaked to form a prebaked film 5a.
  • Step 4 actinic rays 7 are irradiated through a mask 6 having a desired pattern.
  • Step 5 after developing and patterning, bleaching exposure and middle baking are performed as necessary. Furthermore, by thermal curing, a cured pattern 5b having a desired pattern is formed as a pixel division layer having a light shielding property.
  • step 6 an EL light-emitting material is deposited by vapor deposition through a mask to form an organic EL layer 8, a magnesium-silver alloy (hereinafter referred to as "MgAg”) is deposited by vapor deposition, and a photoresist is formed.
  • a transparent electrode 9 is formed as a second electrode by patterning by etching.
  • step 7 a film of a photosensitive material for flattening film is formed, patterned by photolithography, thermally cured to form a cured film 10 for flattening, and then a cover glass 11 is bonded.
  • a film of a photosensitive material for flattening film is formed, patterned by photolithography, thermally cured to form a cured film 10 for flattening, and then a cover glass 11 is bonded.
  • an organic EL display having a cured film of the photosensitive composition of the present invention as a light-shielding pixel dividing layer is obtained.
  • the method for producing a cured product of the present invention preferably comprises the following steps (1) to (4). (1) forming a coating film of the photosensitive composition of the present invention on a substrate; (2) a step of irradiating the coating film of the photosensitive composition with actinic radiation through a photomask; (3) developing with an alkaline solution to form a pattern of the photosensitive composition; (4) A step of heating the pattern to obtain a cured pattern of the photosensitive composition.
  • the photomask includes a light-transmitting portion and a light-shielding portion, the transmittance between the light-transmitting portion and the light-shielding portion is lower than the value of the light-transmitting portion, and the transmittance is the light-shielding portion.
  • a halftone photomask having a semi-transparent portion higher than the value of the portion is preferred.
  • the method for producing a cured product of the present invention comprises (1) the step of forming a coating film of the photosensitive composition of the present invention on a substrate.
  • the method of forming a film of the photosensitive composition include a method of coating the photosensitive composition on the substrate and a method of coating the photosensitive composition in a pattern on the substrate.
  • the substrate for example, on glass, as electrodes or wiring, oxides containing one or more selected from indium, tin, zinc, aluminum, and gallium, metals (molybdenum, silver, copper, aluminum, chromium, or titanium etc.), or a substrate on which CNTs (Carbon Nano Tubes) are formed.
  • oxides containing one or more selected from indium, tin, zinc, aluminum, and gallium include indium tin oxide (ITO).
  • Methods of applying the photosensitive composition onto the substrate include, for example, spin coating, curtain flow coating, spray coating, or slit coating.
  • the coating film thickness varies depending on the coating method, solid content concentration and viscosity of the photosensitive composition, etc., but the film thickness after coating and pre-baking is usually 0.1 to 30 ⁇ m.
  • After coating the photosensitive composition on the substrate it is preferably pre-baked to form a film.
  • An oven, a hot plate, an infrared ray, a flash annealing device, a laser annealing device, or the like can be used for prebaking.
  • the prebake temperature is preferably 50 to 150°C.
  • the prebake time is preferably 30 seconds to 10 minutes. Alternatively, prebaking may be performed in two or more stages, such as prebaking at 80° C. for 2 minutes and then prebaking at 120° C. for 2 minutes.
  • Method of patterning a coating film formed on a substrate examples include a method of direct patterning by photolithography and a method of patterning by etching. From the viewpoint of reducing the number of steps and shortening the process time, a method of directly patterning by photolithography is preferable.
  • the method for producing a cured product of the present invention includes (2) the step of irradiating the coating film of the photosensitive composition described above with actinic rays through a photomask.
  • Examples of the method of irradiating actinic radiation through a photomask include a method of patterning exposure using an exposure machine such as a stepper, scanner, mirror projection mask aligner (MPA), or parallel light mask aligner (PLA). be done.
  • the photomask is a photomask having a pattern including a light-transmitting portion and a light-shielding portion. It is preferable to use a halftone photomask with a higher translucent portion. By exposing using a halftone photomask, a pattern having a step shape can be formed after development.
  • a pattern having a step shape By exposing using a halftone photomask, a pattern having a step shape can be formed after development.
  • a portion formed from an exposed portion irradiated with actinic rays through a light-transmitting portion corresponds to a thick film portion, and a semi-light-transmitting portion.
  • the portion formed from the halftone portion irradiated with actinic rays through the film corresponds to the thin film portion.
  • the exposure wavelength of actinic rays is preferably 150 nm or longer, more preferably 300 nm or longer. On the other hand, the exposure wavelength is preferably 450 nm or less, more preferably 420 nm or less.
  • the actinic radiation is the j-line (wavelength 313 nm), i-line (wavelength 365 nm), h-line (wavelength 405 nm), or g-line (wavelength 436 nm) of a mercury lamp, or a mixed line of i-line, h-line and g-line. Especially preferred.
  • a XeF (wavelength: 351 nm) laser, a XeCl (wavelength: 308 nm) laser, a KrF (wavelength: 248 nm) laser, an ArF (wavelength: 193 nm) laser, or the like may be used as the actinic radiation.
  • the exposure dose of actinic rays is preferably 100 J/m 2 (10 mJ/cm 2 ) to 30,000 J/m 2 (3,000 mJ/cm 2 ) or less in terms of i-line illuminance.
  • post-exposure baking may be performed. By performing post-exposure baking, it is possible to improve the resolution after development or expand the allowable range of development conditions.
  • the method for producing a cured product of the present invention has (3) a step of developing with an alkaline solution to form a pattern of the photosensitive composition described above.
  • Examples of the method of developing with an alkaline solution after irradiating with actinic rays through a photomask include a method of developing with an automatic developing machine.
  • Examples of the developing method include puddle development, spray development, and dip development. In the case of negative photosensitivity, a pattern can be formed by removing the unexposed areas with a developer, and in the case of positive photosensitivity, a pattern can be formed by removing the exposed areas with a developer.
  • the developer is preferably an alkaline solution, preferably an organic alkaline solution or an aqueous solution of a compound exhibiting alkalinity.
  • Alkaline solutions include, for example, diethanolamine, trimethylamine, triethylamine, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, tetramethylammonium hydroxide, or tetraethylammonium hydroxide.
  • An organic solvent may be used as the developer.
  • the developer may be a mixed solution containing both an organic solvent and a poor solvent for the photosensitive composition.
  • the alkali concentration of the alkali solution is preferably 0.01 to 5% by mass.
  • the development time is preferably 30 seconds to 10 minutes.
  • the rinse liquid is preferably water when an alkaline aqueous solution is used as the developer.
  • the rinse liquid may be an alcohol aqueous solution, an ester aqueous solution, an acidic compound aqueous solution, or an organic solvent.
  • post-development exposure may be performed. By performing exposure after development, it is possible to improve the resolution after heat curing, control the pattern shape after heat curing, and form a pattern having a stepped shape after heat curing.
  • middle baking may be performed after development. By performing middle baking, it is possible to improve the resolution after heat curing and to control the pattern shape after heat curing.
  • the method for producing a cured product of the present invention includes (4) a step of heating the pattern of the photosensitive composition described above to obtain a cured pattern of the photosensitive composition described above (hereinafter, “(4) step”). .
  • the pattern is preferably heated to be thermally cured.
  • the heat curing method includes, for example, a method of heating using an oven, a hot plate, infrared rays, a flash annealing device, or a laser annealing device. By thermally curing, the heat resistance of the cured film can be improved, and a low tapered pattern can be formed.
  • the thermosetting temperature is preferably 150 to 500°C.
  • the heat curing time is preferably 5 to 300 minutes.
  • the resin may be thermally cured in two or more stages such as thermally curing at 150° C. for 30 minutes and then thermally curing at 250° C. for 30 minutes.
  • the treatment atmosphere is, for example, an atmosphere of air, oxygen, nitrogen, helium, neon, argon, krypton or xenon, a gas atmosphere containing 1 to 10,000 ppm by mass (0.0001 to 1% by mass) of oxygen, or , under vacuum.
  • Table 1 collectively shows the names corresponding to the abbreviations of the compounds using abbreviations among the compounds used in the following explanations and tables.
  • the polyimide precursor (PIP-1) of Synthesis Example 4 is the method described in Synthesis Example 15 of paragraph [0548] of WO 2017/057281.
  • the polyimide precursors (PIP-2) to (PIP-3) of Synthesis Examples 5 and 6 are the methods described in Synthesis Example 6 of paragraph [0114] of JP-A-2018-165819.
  • - Polybenzoxazole (PB-1) of Synthesis Example 7 is the method described in Synthesis Example 12 of paragraph [0546] of WO 2017/057281.
  • - Polysiloxane (PS-1) of Synthesis Example 11 is the method described in Synthesis Example 30 of paragraph [0553] of WO 2017/057281.
  • - Polycyclic side chain-containing resin (CR-1) of Synthesis Example 12 is the method described in Synthesis Example 45 of paragraph [0563] of WO 2017/057281.
  • the phenol group-containing acrylic resins (PAC-1) to (PAC-2) of Synthesis Examples 31 and 32 are the methods described in Synthesis Example 46 of paragraph [0564] of WO 2017/057281.
  • the polyimide (PI-3) of Synthesis Example 3 is the method described in Synthesis Example 6 of paragraph [0726] of WO 2017/159876.
  • the acid-modified epoxy resin (AE-2) of Synthesis Example 13 is the method described in Synthesis Example 25 of paragraph [0744] of WO 2017/159876.
  • the acrylic resin (AC-1) of Synthesis Example 14 is the method described in Synthesis Example 20 of paragraph [0739] of WO 2017/159876.
  • ⁇ Phenolic resins (PR-1), (PR-5) to (PR-7), and (PR-9) to (PR-14) of Synthesis Examples 15, 19 to 21, and 23 to 28 are published internationally.
  • Polyhydroxystyrene (PHS-1) of Synthesis Example 29 is the method described in Synthesis Example 23 of paragraph [0742] of WO 2017/159876.
  • the polybenzoxazole precursor (PBP-1) of Synthesis Example 8 is the method described in Synthesis Example 9 of paragraph [0161] of WO 2017/057143.
  • Polyamideimides (PAI-1) to (PAI-2) of Synthesis Examples 9 and 10 are the methods described in Synthesis Example 9 of paragraph [0160] of WO 2018/159384.
  • the phenol resin (PR-2) of Synthesis Example 16 is the method described in Synthesis Example 5 of paragraph [0120] of WO 2012/141165.
  • the phenolic resin (PR-3) of Synthesis Example 17 is the method described in Synthesis Example 2 of paragraph [0119] of WO 2016/103850.
  • the phenolic resins (PR-4) and (PR-8) of Synthesis Examples 18 and 22 are the methods described in Synthesis Example 12 of paragraph [0188] of WO 2014/046062.
  • the phenol group-containing epoxy resin (PE-1) of Synthesis Example 30 is the method described in Production Example 1 of paragraph [0171] of JP-A-2020-042150.
  • Synthesis Examples 3 and 10 a radically polymerizable group was introduced based on the method described in Synthesis Example 6 of paragraph [0726] of WO2017/159876.
  • Synthesis Examples 14, 21, and 32 a radically polymerizable group was introduced based on the method described in Synthesis Example 20 of paragraph [0739] of WO2017/159876.
  • Synthesis Example 13 NC-3500 having an epoxy group was reacted with an unsaturated carboxylic acid, and all epoxy groups derived from NC-3500 were subjected to ring-opening addition.
  • Synthesis Examples 14, 21, and 32 GMA having an epoxy group was reacted, and all the epoxy groups of GMA were subjected to ring-opening addition.
  • Synthesis Example 30 the structural unit derived from NC-3000-H having an epoxy group is reacted with a phenolic compound containing a carboxy group, and the epoxy groups derived from NC-3000-H are all subjected to ring-opening addition. rice field.
  • Synthesis Example 31 the GMA-derived structural unit having an epoxy group was reacted with a carboxyl group-containing phenol compound, and all of the GMA-derived epoxy groups were subjected to ring-opening addition.
  • ZCR-1569H which is a commercially available resin, was used as the acid-modified epoxy resin (AE-1).
  • (HA), which is a hydroxy group-containing diamine having the following structure used in Synthesis Example 4 is based on the synthesis method described in Synthesis Example 1 in paragraphs [0374] to [0376] of WO 2016/056451, Synthesized by a known method.
  • the resin obtained in Synthesis Example 4 using (HA), which is a hydroxy group-containing diamine having the following structure, is a polyimide precursor having an amic acid ester structural unit, an amic acid structural unit, and a closed imide structure.
  • Table 3 summarizes the structural units and structures of the resins obtained in each synthesis example and the resins used in the examples, reference examples, and comparative examples.
  • Table 4 summarizes the list and description of the (D) colorant and (E) dispersant used in each example, reference example, and comparative example.
  • Bk-CBF1 is a benzofuranone-based black pigment having a coating layer described in WO 2019/087985, paragraphs [0503] to [0505], Coating Example 1.
  • Bk-CBF2 is a perylene-based black pigment having a coating layer obtained by the synthesis method described in Example 18, paragraphs [0186] to [0188] and paragraph [0191] of WO2018/038083.
  • each pigment dispersion was prepared by a known method based on the method described in paragraph [0506] of WO 2019/087985.
  • the polyalkyleneamine-based-polyoxyalkylene ether-based dispersant (ADP) used in Preparation Examples 1 to 7 is described in Synthesis Example 2 in paragraphs [0138] to [0141] of JP-A-2020-070352. Based on the described method, it was synthesized by a known method.
  • Synthesis Example 33 Synthesis of silica particle (SP-1) dispersion In a three-necked flask, 104.5 g of MEK as a solvent, 142.5 g of MEK-ST-40 as a silica particle dispersion containing elemental sodium, and a polymerization inhibitor 0.01 g of MOP was weighed, added and mixed, and after stirring for 10 minutes, the liquid temperature was raised to 50°C. Then, as a surface modifier, a solution of 3.0 g of KBM-503 dissolved in 50.0 g of MEK was added dropwise over 10 minutes. After completion of dropping, the mixture was stirred at 50° C. for 2 hours to dehydrate and condense the surface modifier.
  • silica particle (SP-1) After the reaction, the reaction solution was cooled to room temperature to obtain a silica particle (SP-1) dispersion.
  • the obtained silica particles (SP-1) have a surface modification group containing a methacryloyl group as a radically polymerizable group.
  • Table 5-2 summarizes the compositions of the silica particle dispersion obtained in Synthesis Example 33 and the commercially available silica particle dispersion.
  • silica particle (SP-2) dispersion MEK-ST-40, which is a commercially available silica particle dispersion, was used.
  • silica particle (SP-3) dispersion MEK-ST-L, which is a commercially available silica particle dispersion, was used.
  • the phenol value (unit: mgKOH/g) or carboxylic acid value (unit: mgKOH/g) was determined by potentiometric titration.
  • a phenol equivalent (unit: g/mol) or a carboxylic acid equivalent (unit: g/mol) was calculated from the measured phenol value or carboxylic acid value.
  • the silanol equivalent was obtained by potentiometric titration in the same manner in the reaction of acetylating silanol groups using acetic anhydride as an acetylation reagent, imidazole and N,N'-dimethylaminopyridine as catalysts, and N,N-dimethylformamide as a solvent.
  • a silanol equivalent (unit: g/mol) was calculated from the silanol value measured by the method.
  • the hydroxyimide equivalent, hydroxyamide equivalent, 1,1-bis(trifluoromethyl)methylol equivalent, and mercapto equivalent are the respective acidic groups (hydroxyimide group, hydroxyamide group, 1,1-bis(trifluoro (methyl)methylol group, and mercapto group) were prepared, and the equivalent weight (unit: g/mol) of each acidic group was calculated from the acid value of each acidic group similarly measured by potentiometric titration. bottom.
  • the weakly acidic group equivalent is the weakly acidic A base equivalent was calculated.
  • the composition contains multiple resins having phenolic hydroxyl groups, silanol groups, or carboxy groups, remove separable components in the composition by methods such as centrifugation, liquid separation extraction, and column chromatography. and then separate the respective resins by GPC preparative. After that, the carboxylic acid equivalent (unit: g/mol) was calculated based on the method for measuring the carboxylic acid equivalent described above. Similarly, the silanol equivalent (unit: g/mol) was calculated based on the method for measuring the silanol equivalent described above.
  • the resin has a plurality of acidic groups among phenolic hydroxyl groups, silanol groups, and carboxy groups
  • tert-butyldimethylsilyl chloride as a silylation reagent
  • imidazole as a catalyst
  • N,N-dimethylformamide as a solvent.
  • carboxylic acid equivalent (unit: g/mol) was calculated based on the method for measuring the carboxylic acid equivalent described above.
  • the carboxyl group was tert- Protected by a butyl ester group. Thereafter, the phenolic hydroxyl group and the silanol group were deprotected using tetrabutylammonium fluoride as a desilylation reagent and N,N-dimethylformamide as a solvent. Then, using chloromethyl methyl ether as a methoxymethylation reagent, sodium hydride as a catalyst, and N,N-dimethylformamide as a titration solvent, the phenolic hydroxyl group was protected with a methoxymethyl ether group.
  • the silanol equivalent (unit: g/mol) was calculated based on the method for measuring the silanol equivalent described above. Separately, the carboxy group was protected with a tert-butyl ester group and the phenolic hydroxyl group was protected with a methoxymethyl group in the same manner. The silanol groups were then protected with silyl ether groups using tert-butyldimethylsilyl chloride as a silylation reagent, imidazole as a catalyst, and N,N-dimethylformamide as a solvent.
  • the phenolic hydroxyl group was deprotected using 1 mol/L hydrochloric acid as a demethoxymethylation reagent and methanol as a solvent. After that, the phenol equivalent (unit: g/mol) was calculated based on the method for measuring the phenol equivalent described above.
  • a cured film of the composition was prepared by the method described in Example 1 below. A cross section of the cured film was photographed and analyzed using a transmission electron microscope to measure the primary particle size of the pigment. The average value obtained by measuring 30 primary particles of the pigment was obtained as the average primary particle diameter of the pigment in the cured film.
  • a glass substrate manufactured by Geomatec; hereinafter referred to as "ITO/Ag substrate"
  • ITO/Ag substrate A glass substrate on which a 10 nm film of ITO was formed by sputtering was treated with a desktop optical surface treatment apparatus (PL16-110; manufactured by Sen Special Light Source Co., Ltd.) for 100 seconds. Used after UV-O 3 cleaning treatment.
  • a Tempax glass substrate manufactured by AGC Techno Glass was used without pretreatment. Other substrates were dehydrated and baked by heating at 130° C. for 2 minutes using a hot plate (HP-1SA; manufactured by AS ONE).
  • Sensitivity A film after development of the composition was prepared by the method described in Example 1 below. Using an FPD/LSI inspection microscope (OPTIPHOT-300; manufactured by Nikon Corporation), the resolution pattern of the developed film was observed. As an index of sensitivity, the sensitivity was defined as the amount of exposure (i-line illuminometer value) at which a space pattern corresponding to an opening can be formed with a width of 18 ⁇ m in a line and space pattern of 20 ⁇ m.
  • a +, A, B +, B, C + and C with a sensitivity of 90 mJ / cm 2 or less are passed, and A +, A, B +, and B with a sensitivity of 60 mJ / cm 2 or less was evaluated as good, and A+ and A, which had a sensitivity of 40 mJ/cm 2 or less, were evaluated as excellent.
  • Sensitivity is 30 mJ/cm 2 or less
  • the opening dimension (CD DEV ) ⁇ m is less than 20 ⁇ m
  • the development residual film rate (( The minimum exposure amount was set so that T DEV )/(T PB ) ⁇ 100) was 70% or more.
  • the aperture dimension difference ((CD DEV ) ⁇ 20) ⁇ m from the mask dimension of 20 ⁇ m was calculated.
  • A+, A, B+, B, C+, and C with an aperture size difference of 3.0 ⁇ m or less were accepted, and A+, A, B+, and A with an aperture size difference of 2.0 ⁇ m or less.
  • B was evaluated as good, and A+ and A, which had an opening size difference of 1.0 ⁇ m or less, were evaluated as excellent.
  • Opening dimensional difference is 0.5 ⁇ m or less
  • a photomask having a light-transmitting portion, a light-shielding portion, and a semi-light-transmitting portion between the light-transmitting portion and the light-shielding portion was used.
  • the transmissivity (% T HT ) of the translucent portion is 20%, 25%, 30%, 35%, 40%, or 50% of the transmissivity (% T FT ) of the translucent portion. .
  • the translucent part and the semi-translucent part are adjacent to each other, and the semi-translucent part and the light-shielding part are adjacent to each other.
  • FIG. 4 shows an example of the arrangement and dimensions of the light-transmitting portion 41, the light-shielding portion 42, and the semi-light-transmitting portion 43. As shown in FIG.
  • the film thickness (T FT ) ⁇ m after development of the thick film portion formed from the light-transmitting portion was measured.
  • the film thickness (T HT ) ⁇ m after development at locations with different transmittances is measured, and the minimum film thickness ( T HT/min ) ⁇ m was determined.
  • the maximum step thickness ((T FT ) ⁇ (T HT/min )) ⁇ m was calculated.
  • A+, A, B+, B, C+, and C with a maximum step thickness of 0.4 ⁇ m or more were judged as follows, and A+, A, and C with a maximum step thickness of 1.0 ⁇ m or more.
  • B+ and B were evaluated as good, and A+ and A with a maximum step thickness of 2.0 ⁇ m or more were evaluated as excellent.
  • FIG. 5 shows a schematic diagram of the substrate used.
  • pattern processing was performed by etching to form an APC layer.
  • an amorphous ITO film having a thickness of 10 nm was formed as a transparent conductive oxide film layer on the APC layer by sputtering, and a reflective electrode was formed as a first electrode 48 by etching.
  • an auxiliary electrode 49 was also formed to extract the second electrode (FIG. 5 (step 1)).
  • the obtained substrate was ultrasonically cleaned for 10 minutes with "Semicoclean" (registered trademark) 56 (manufactured by Furuuchi Chemical Co., Ltd.) and then cleaned with ultrapure water.
  • the composition is coated and prebaked on this substrate by the method described in Example 1, patterned by exposure through a photomask having a predetermined pattern, developed and rinsed, and then heated to thermally cure.
  • the pixel division layer 50 having a width of 70 ⁇ m and a length of 260 ⁇ m is arranged at a pitch of 155 ⁇ m in the width direction and a pitch of 465 ⁇ m in the length direction, and each opening exposes the first electrode. , was formed only in the effective area of the substrate (FIG. 5 (step 2)). It should be noted that this opening will eventually become the light-emitting pixel of the organic EL display.
  • the effective area of the substrate is 16 mm square, and the thickness of the pixel division layer 50 is about 1.0 ⁇ m.
  • an organic EL display was produced using the substrate on which the first electrode 48, the auxiliary electrode 49 and the pixel dividing layer 50 were formed.
  • an organic EL layer 51 including a light-emitting layer was formed by a vacuum deposition method (FIG. 5 (step 3)).
  • the degree of vacuum during vapor deposition was 1 ⁇ 10 ⁇ 3 Pa or less, and the substrate was rotated with respect to the vapor deposition source during vapor deposition.
  • 10 nm of compound (HT-1) was deposited as a hole injection layer
  • 50 nm of compound (HT-2) was deposited as a hole transport layer.
  • the compound (GH-1) as a host material and the compound (GD-1) as a dopant material were deposited on the light-emitting layer to a thickness of 40 nm so that the doping concentration was 10%.
  • the compound (ET-1) and the compound (LiQ) as electron transport materials were laminated at a volume ratio of 1:1 to a thickness of 40 nm.
  • the compounds used in the organic EL layer used the same compound as described in paragraphs [0599] to [0600] of WO 2017/057281.
  • a compound (LiQ) LiQ
  • a second electrode 52 forming a transparent electrode
  • a cap-shaped glass plate was adhered using an epoxy resin adhesive for sealing, and four 5 mm square top emission type organic EL displays were produced on one substrate.
  • the film thickness referred to herein is a value displayed by a crystal oscillation type film thickness monitor.
  • the organic EL display manufactured by the above-described method was driven to emit light by changing the voltage sequentially from the low voltage side until the current density reached 30 mA/cm 2 .
  • the voltage value and current density were plotted when the voltage value was changed sequentially from the low voltage side, and as an index of the current density-voltage characteristics, the driving voltage at which the current density was 10 mA/cm 2 was obtained. Determined as follows, A +, A, B +, B, C + and C with a drive voltage of 4.5 V or less are passed, and A +, A, B + and B with a drive voltage of 4.0 V or less are passed. A+ and A with a drive voltage of 3.5 V or less were evaluated as excellent.
  • the organic EL display manufactured by the method described above was made to emit light by direct-current driving at 10 mA/cm 2 , and was observed for light emission defects such as non-light-emitting areas and luminance unevenness. Moreover, as a durability test, it was held at 80° C. for 500 hours. After the durability test, the organic EL display was driven to emit light at 10 mA/cm 2 by direct-current driving to observe whether there was any change in the light emission characteristics. The light-emitting region area after the test was measured.
  • a +, A, B +, B, C + and C with a light emitting region area of 80% or more are accepted, and A +, A, B + and B with a light emitting region area of 90% or more are passed.
  • Emission region area is 100%
  • a cured film of the composition was formed to a film thickness of about 5 ⁇ m on a 6-inch diameter SiO 2 /Si wafer by the method described in Example 1 below.
  • the cured film was stripped from the SiO2 /Si wafer using dilute hydrofluoric acid.
  • the peeled cured film was cut into strips having a width of 1.5 cm and a length of 9.0 cm.
  • Tensilon (RTM-100; manufactured by Orientec) was used to perform a tensile test at a tensile speed of 50 mm/min under conditions of room temperature of 23.0° C. and humidity of 45.0% RH to measure the elongation at break.
  • 10 strips were measured for each sample.
  • the average value of the top five points was calculated from the obtained results. Determined as follows, A +, A, B +, B, C +, and C with an elongation at break of 5.0% or more are accepted, and A +, A with an elongation at break of 10% or more , B+, and B were evaluated as good, and A+ and A, which had an elongation at break of 20% or more, were evaluated as excellent.
  • a cured film of the composition was prepared to a thickness of about 1.5 ⁇ m on a migration evaluation substrate (WALTS-TEG ME0102JY; manufactured by Waltz) by the method described in Example 1 below.
  • WALTS-TEG ME0102JY a migration evaluation substrate
  • conductive wires were soldered to measurement terminals with a line of 15 ⁇ m and a space of 10 ⁇ m to prepare an evaluation element.
  • the insulation reliability of the fabricated evaluation element under high temperature and high humidity conditions was evaluated using an insulation deterioration characteristic evaluation system (ETAC SIR13; manufactured by Kusumoto Kasei Co., Ltd.).
  • the element for evaluation was placed in a high-temperature and high-humidity chamber set to a temperature of 85° C. and a humidity of 85% RH, a voltage of 5.0 V was applied, and changes in resistance over time were measured at intervals of 5 minutes. When the resistance value reached 1.0 ⁇ 10 6 ⁇ or less, it was determined that the insulation was defective, and the test time at that time was measured as an index of migration resistance. Judging as follows, A+, A, B+, B, C+, and C with a test time of 200 hours or more are passed, and A+, A, B+, and B with a test time of 400 hours or more are passed. A+ and A were evaluated as good, and A+ and A with a test time of 800 hours or more were evaluated as excellent.
  • test time of 1,000 hours or more A: test time of 800 hours or more and less than 1,000 hours B+: test time of 600 hours or more and less than 800 hours B: test time of 400 hours or more and 600 hours Less than C+: test time 300 hours or more and less than 400 hours
  • C test time 200 hours or more and less than 300 hours
  • D test time 50 hours or more and less than 200 hours
  • E test time less than 50 hours or measurement Impossible.
  • Table 6 summarizes the names corresponding to the abbreviations in each example, reference example, and comparative example.
  • Compounds containing elemental chlorine, bromine, sulfur, or phosphorus hereinafter referred to as "compounds containing specific elements" used in Examples, Reference Examples, and Comparative Examples; specific nitrogen-containing compounds; specific Table 6 also collectively shows the compounds containing the metal elements of and the compounds corresponding to each.
  • (h-1) is a dissolution accelerator, a hydrophobic structure (a phenyl group having 6 carbon atoms, in which two ethylene groups having 2 carbon atoms and a phenyl group having 6 carbon atoms are bonded), a hydrophilic structure (12 oxyethylene group having 2 carbon atoms) and a hydrophilic group (hydroxy group bonded to the oxyethylene group).
  • (j-1) is a fluorenone compound as a sensitizer.
  • (k-1) is an organosilane compound of a silane coupling agent, which is an adhesion improver, and has an epoxy group.
  • (bx-1) and (bx-2) correspond to the above (B-4) compound
  • (bx-3) and (bx-4) correspond to the above (B-5) compound
  • (bx-5) corresponds to the above (B-6) compound
  • the minimum number of atoms in the above (I-b6) structure is 4.
  • (bx-6), (bx-7), (bx-8), and (bx-9) correspond to the above (B-7) compound, and the minimum number of atoms in the above (I-b7) structure is , (bx-6) is 13, (bx-7) is 23, (bx-8) is 31, and (bx-9) is 17.
  • ⁇ Preparation of cured film of composition> After applying the prepared composition 1 on the ITO / Ag substrate by spin coating at an arbitrary rotation speed using a spin coater (MS-A100; manufactured by Mikasa), a buzzer hot plate (HPD-3000BZN; manufactured by AS ONE) ) at 120° C. for 120 seconds to prepare a pre-baked film having a film thickness of about 1.8 ⁇ m.
  • the prepared pre-baked film is developed by spraying with a 2.38% by mass TMAH aqueous solution or cyclopentanone using a small developing device for photolithography (AD-1200; manufactured by Takizawa Sangyo Co., Ltd.), and the pre-baked film (unexposed area) is completely completed.
  • the time (Breaking Point; hereinafter referred to as "BP") was measured.
  • a pre-baked film was prepared in the same manner as described above, and the prepared pre-baked film was subjected to a sensitivity measurement gray scale mask (MDRM MODEL 4000 -5-FS (manufactured by Opto-Line International), patterning exposure was performed with i-line (wavelength: 365 nm), h-line (wavelength: 405 nm), and g-line (wavelength: 436 nm) of an extra-high pressure mercury lamp.
  • the exposure amount was set to the exposure amount (i-line illuminometer value) capable of forming a space pattern corresponding to an opening with a dimension width of 18 ⁇ m in a 20 ⁇ m line-and-space pattern.
  • the film After exposure, using a compact developing device for photolithography (AD-1200; manufactured by Takizawa Sangyo Co., Ltd.), the film was developed with a 2.38% by mass TMAH aqueous solution and rinsed with water for 30 seconds to prepare a post-development film of Composition 1. .
  • the development time was BP+20 seconds. If a pattern could not be formed after development with a 2.38% by mass TMAH aqueous solution, an exposed film was prepared in the same manner as described above. was developed with cyclopentanone and rinsed with water for 30 seconds to prepare a post-development film of Composition 1. The development time was BP+20 seconds.
  • thermosetting conditions were as follows: in a nitrogen atmosphere with an oxygen concentration of 20 mass ppm or less, the temperature was raised to 250 ° C. at a temperature increase rate of 3.5 ° C./min, heat treatment was performed at 250 ° C. for 60 minutes, and then cooled to 50 ° C. .
  • the cured film was analyzed by methods such as nuclear magnetic resonance spectroscopy, infrared spectroscopy, and time-of-flight secondary ion mass spectroscopy to analyze the structural units of the resin and the structure of the compound contained in the cured film. It was confirmed that the cured film obtained by curing composition 1 by the method described above contained the following resins and compounds. That is, a cured film obtained by curing composition 1 contains a compound having a structure derived from each component contained in composition 1 .
  • A1 Structure derived from resin Resin having a structural unit represented by general formula (1).
  • A2 Structure derived from resin Resin having a structural unit represented by general formula (61).
  • A3) Structure derived from resin Resin having a structural unit represented by general formula (36).
  • compositions 2 to 188 were prepared in the same manner as in Example 1 with the compositions shown in Tables 7-1 to 18. Numerical values in parentheses in Tables 7-1 to 18 indicate parts by mass of the solid content of each component.
  • the amount of the compound containing the specific metal element added was adjusted so that the content of the specific metal element in the total solid content of the composition would be the composition shown in Table 17, respectively.
  • the amount of the specific nitrogen-containing compound added was adjusted so that the content in the total solid content of the composition would be the composition shown in Table 17, respectively.
  • Tables 7-1 to 18 show the compositions and evaluation results of Examples 1 and 2
  • Tables 8 and 9 show the compositions and evaluation results of Examples 1 and 41
  • Table 10, Tables 11, 12-1, and 13 show the composition and evaluation results of Example 1
  • Table 14 shows the compositions and evaluation results of Examples 1 and 41, respectively.
  • Tables 16 and 17 show the composition and evaluation results of Example 125, respectively.
  • (A) as an alkali-soluble resin at least one selected from the group consisting of (A1) resin, (A2) resin, and (A3) resin is changed.
  • Various characteristics were evaluated.
  • Table 8 in compositions with different content ratios of (A) alkali-soluble resin and (B) compound, and different ratios of combined use in (B) compound, various properties are obtained by changing weakly acidic group equivalents and double bond equivalents. was evaluated.
  • Table 9 in a composition in which one or more selected from the group consisting of (B) compound, (C) photosensitizer, and (C1-1) compound is changed, the weakly acidic group equivalent and double bond equivalent are changed.
  • Various characteristics were evaluated.
  • compositions in which one or more selected from the group consisting of (F) compound, (H) compound, and (G) cross-linking agent were changed.
  • (D1a) compositions with different types of black pigments were evaluated for various properties.
  • Example 99 in Table 12-1 various properties were evaluated using a composition containing no (D) colorant and (E) dispersant.
  • Examples 100 and 101 in Table 12-1 have positive photosensitivity, and the compositions containing (D) a colorant and (E) a dispersant with different contents were evaluated for various properties. bottom.
  • Table 12-1 shows Example 1, Examples 65 and 67 in Table 9, and Example 80 in Table 10 ((C1-1) compound, (C) photosensitive agent, or (F) compound changed composition) , And, for Examples 97 to 101 in Table 12-1 ((D1a) compositions with different types and presence or absence of black pigments, or compositions with positive photosensitivity), chlorine element, bromine element, sulfur element, Or, after describing the phosphorus element content, the evaluation results of the reliability and the current density-voltage characteristic emission characteristics were summarized. In Table 12-2, various properties were evaluated for compositions with different additives containing chlorine element, bromine element, sulfur element, or phosphorus element.
  • Table 12-2 lists the contents of chlorine element, bromine element, sulfur element, or phosphorus element for Examples 102 to 121, and evaluates reliability and current density-voltage characteristics with respect to light emission characteristics. Summarize the results.
  • Table 13 (I) compositions with different inorganic particles were evaluated for various properties.
  • Table 14 in Comparative Examples 1 to 8, various properties were evaluated using compositions in which the weakly acidic group equivalent and/or the double bond equivalent were not within specific ranges.
  • sensitivity, mechanical properties, and migration resistance were evaluated for compositions in which (A) resin (A1), (A2), or (A3) was changed as the alkali-soluble resin.
  • sensitivity, mechanical properties, and migration resistance were evaluated for compositions in which (B4) compound to (B7) compound, (G) cross-linking agent, or (I) inorganic particles were changed.
  • sensitivity, mechanical properties, and migration resistance were evaluated for compositions in which the content of a specific nitrogen-containing compound or the content of a specific metal element was changed.
  • Comparative Examples 9 to 16 evaluated the sensitivity, mechanical properties, and migration resistance of compositions in which the weakly acidic group equivalent and/or the double bond equivalent were not within specific ranges.
  • the development time is 60 seconds, 90 seconds, or 120 seconds, and a gray scale mask (MDRM MODEL 4000-5-FS; Opto-Line International Co., Ltd.) for sensitivity measurement. ) was used to determine the optimum exposure dose (i-line illuminometer value) for forming a space pattern corresponding to an opening with a width of 18 ⁇ m in a line and space pattern of 20 ⁇ m.
  • the heat curing conditions are as follows: in a nitrogen atmosphere with an oxygen concentration of 20 mass ppm or less, the temperature is raised to 200 ° C. at a temperature increase rate of 3.5 ° C./min, and After performing heat treatment for 60 minutes at , it was cooled to 50°C.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials For Photolithography (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本発明は、露光時の感度向上、現像後における開口パターン寸法の狭マスクバイアス抑制、及び優れたハーフトーン特性を兼ね備える感光性組成物、加えて、表示装置における発光素子の信頼性向上、電子部品におけるマイグレーション耐性向上が可能な硬化膜を提供することを目的とする。 上記目的を達するため、本発明の感光性組成物は、以下の条件(α)又は条件(β)を満たす、感光性組成物であって、 全固形分における二重結合当量が、600~6,000g/molである。 条件(α):下記(I)の化合物及び/又は下記(II)の化合物を含有する (I)特定の(WA)弱酸性基及びラジカル重合性基を有する化合物 (II)特定の(WA)弱酸性基を有する化合物及びラジカル重合性基を有する化合物 条件(β):(A)アルカリ可溶性樹脂、(B)ラジカル重合性化合物、及び(C)感光剤を含有する

Description

感光性組成物、硬化物、表示装置、電子部品、及び硬化物の製造方法
 本発明は、感光性組成物、硬化物、表示装置、電子部品、及び硬化物の製造方法に関する。
 近年、スマートフォン、タブレットPC、及びテレビなど、薄型ディスプレイを有する表示装置において、有機エレクトロルミネッセンス(以下、「EL」)ディスプレイを用いた製品が多く開発されている。
 有機ELディスプレイの発光特性向上、及び信頼性向上のために、有機ELディスプレイの画素分割層、薄層トランジスタ(以下、「TFT」)平坦化層、若しくはTFT保護層、又は、TFTアレイ形成における層間絶縁層若しくはゲート絶縁層には高耐熱性の感光性組成物が用いられる。例えば、第1電極上に形成される画素分割層を形成する感光性組成物では、フォトリソグラフィーによってアノード(陽極)となる第1電極を露出させる必要がある。そこで、有機ELディスプレイの製造におけるプロセスタイム削減・生産性向上のため、感光性組成物には露光時の感度向上が求められる。一方で、有機ELディスプレイの発光特性向上としては、発光素子の信頼性向上も求められる。発光素子の信頼性を向上させることにより、有機ELディスプレイの耐久性向上を実現できる。
 また、画素分割層を形成した後、蒸着マスクを介して発光材料を蒸着によって成膜し、その後、第2電極を蒸着によって成膜するのが一般的である。なお、発光材料を蒸着によって成膜する際の蒸着マスクの支持台として、画素分割層の一部に膜厚の厚い領域(以下、「厚膜部」)を形成することも一般的である。このような画素分割層の一部における膜厚の厚い領域は、画素分割層を形成した後、その上層に感光性組成物を再度成膜してパターン加工する二層成膜プロセスで形成可能である。一方で、このような二層成膜プロセスでは、工程数増加による生産性低下・歩留まり低下が懸念される。そのため、画素分割層をフォトリソグラフィーによって形成する際、ハーフトーンフォトマスクを用いることで、画素分割層における段差形状として、画素分割層と厚膜部とを一括形成するプロセスが適用されている。
 一方、有機ELディスプレイは自発光素子を有するため、屋外における太陽光などの外光が入射すると、その外光反射によって視認性及びコントラストが低下する。そのため、外光を遮断して外光反射を低減する技術として、画素分割層を形成する感光性組成物中に着色剤を含有させて遮光性を向上させることが一般的である。
 また、近年、電子端末機器の高機能化、小型化、薄型化、及び軽量化が進んでいる。これらの電子端末機器には半導体装置が具備されており、例えば、プロセッサやメモリなどが挙げられる。半導体の用途拡大や性能向上に伴い、製造工程の効率化によるコスト削減及び高集積化の取り組みがされており、多層の金属再配線を形成する半導体装置が注目されている。半導体装置の高集積化に伴う配線微細化により、このような多層の金属再配線における層間絶縁層に用いられる材料には、電気絶縁性に関する信頼性も求められるため、高いマイグレーション耐性も要求される。
 感光性組成物としては、ポリイミドなどの第1の樹脂と、カルド系樹脂などの第2の樹脂とを含有するネガ型感光性組成物(特許文献1参照)、及びエポキシアクリレート樹脂とノボラック樹脂とを含有するネガ型感光性組成物(特許文献2参照)などが挙げられる。
国際公開第2017/159876号 特開2009-003442号公報
 上述した感光性組成物における露光時の感度向上は、感光性組成物の遮光性を向上させるために、着色剤の含有量を増加させると問題となる場合がある。特に、遮光性の高い黒色顔料などを含有させる場合、パターン露光時の紫外線等も遮断されるため、露光時の感度低下の要因となる。
 また、上述した画素分割層層の一部に厚膜部を形成するプロセスにおいて、感光性組成物の特性によっては、ハーフトーンフォトマスクを介したパターン露光により画素分割層と厚膜部とを一括形成する特性(以下、「ハーフトーン特性」)が不十分な場合がある。具体的には、ハーフトーンフォトマスクを用いても、画素分割層と厚膜部との膜厚差を形成できない場合や、画素分割層の領域が現像時に消失する場合がある。これはハーフトーンフォトマスクのハーフトーン部を介した比較的露光量の小さな光に対する、感光性組成物の感度が支配的な要因であると考えられる。すなわち、ポジ型の感光性組成物の場合、ハーフトーン部を介した光に対する感度が過剰であると、画素分割層の領域が現像時に消失しやすい。一方、ネガ型の感光性組成物の場合、ハーフトーン部を介した光に対する感度が過剰であると、画素分割層と厚膜部との膜厚差が形成困難となりやすい。特に、ネガ型の感光性組成物の場合、比較的露光量が小さい領域では不十分な光硬化となりやすく、画素分割層の領域が現像時に消失することも多いため、安定的なパターン加工が困難である。
 一方、感光性組成物を用いたフォトリソグラフィーによる開口部の形成において、フォトマスクのパターン寸法からの開口寸法誤差(以下、「マスクバイアス性」)が大きい場合、アノード上の発光画素領域の設計誤差に繋がるため、有機ELディスプレイの発光特性に悪影響を及ぼす。マスクバイアス性の抑制のため、感光性組成物の特性に応じてフォトマスクのパターン寸法を調整する方法が挙げられるが、フォトマスクのパターン配列・解像度などの設計が制限されるという別の課題も発生する。また、マスクバイアス性が過度に大きい場合、フォトマスクのパターン寸法調整での改善が困難となってしまう。マスクバイアス性には、フォトマスクのパターン寸法と比較して開口寸法が狭くなる特性(以下、「狭マスクバイアス」)、及びフォトマスクのパターン寸法と比較して開口寸法が広くなる特性(以下、「広マスクバイアス」)とがある。このようなマスクバイアス性は、パターン露光時の回折光の影響によるものと考えられるが、材料特性によっても左右される。ポジ型の感光性組成物の場合、露光部のアルカリ溶解性向上が、回折光によってどの程度影響を受けるかによってマスクバイアス性が異なる。一般に、露光部のアルカリ溶解性向上が不十分な場合に、狭マスクバイアスとなりやすく、露光部のアルカリ溶解性が過剰な場合に、広マスクバイアスとなりやすい。一方、ネガ型の感光性組成物の場合、露光部の光硬化によるアルカリ溶解性低下が、回折光によってどの程度影響を受けるかによってマスクバイアス性が異なる。特に、ネガ型の感光性組成物の場合、回折光によって発生したラジカルによる光硬化の影響が支配的となりやすく、狭マスクバイアスが発生することが多い。また、露光部の光硬化が不十分な場合に広マスクバイアスとなりやすい。
 このようなマスクバイアス性を抑制するため、画素分割層形成のプロセス変更、又は感光性組成物の組成変更を施すと、感光性組成物のパターン加工性に悪影響を及ぼすことがある。そのため、プロセスタイム削減・生産性向上の観点から求められる露光時の感度向上、及び生産性向上・歩留まり向上の観点から求められる優れたハーフトーン特性などの各種特性との両立が困難となる。従って、感光性組成物としては、露光時の感度向上、現像後における開口パターン寸法の狭マスクバイアス抑制、及び優れたハーフトーン特性を兼ね備える材料が要求される。加えて、表示装置における発光素子の信頼性向上が可能な硬化膜を提供できる材料も要求される。また従来の組成物は、マイグレーション耐性を有する硬化物を提供するには課題があった。しかしながら、上記の特許文献1、2に記載の感光性組成物はいずれも、上記いずれかの特性が不十分であった。
 上述した課題を解決するために、本発明は、以下の構成を有する。すなわち、
[1]以下の条件(α)又は条件(β)を満たす、感光性組成物であって、
 全固形分における二重結合当量が、600~6,000g/molである、感光性組成物。
条件(α):下記(I)の化合物及び/又は下記(II)の化合物を含有する
(I)以下の(WA)弱酸性基及びラジカル重合性基を有する化合物
(II)以下の(WA)弱酸性基を有する化合物及びラジカル重合性基を有する化合物
条件(β):(A)アルカリ可溶性樹脂、(B)ラジカル重合性化合物、及び(C)感光剤を含有する
(WA)弱酸性基:フェノール性水酸基、ヒドロキシイミド基、ヒドロキシアミド基、シラノール基、1,1-ビス(トリフルオロメチル)メチロール基、及びメルカプト基からなる群より選ばれる一種類以上の基
[2]全固形分における弱酸性基当量が、400~6,000g/molである、上記[1]に記載の感光性組成物。
[3]さらに、一般式(20)で表される環状アミド化合物、一般式(21)で表されるアミド化合物、一般式(22)で表される環状ウレア化合物、及び一般式(23)で表されるウレア化合物からなる群より選ばれる一種類以上を含有し、下記(4)の条件を満たす、上記[1]又は[2]に記載の感光性組成物。
(4)該感光性組成物の全固形分に占める一般式(20)で表される環状アミド化合物、一般式(21)で表されるアミド化合物、一般式(22)で表される環状ウレア化合物、及び一般式(23)で表されるウレア化合物の含有量の合計が0.010~5.0質量%
Figure JPOXMLDOC01-appb-C000002
(一般式(20)~(23)において、R46~R54は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、炭素数2~6のアルケニル基、又は炭素数1~6のヒドロキシアルキル基を表す。R130は、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のヒドロキシアルキル基、炭素数1~6のヒドロキシアルコキシ基、ヒドロキシ基、アミノ基、炭素数1~6のモノアルキルアミノ基、又は炭素数2~12のジアルキルアミノ基を表す。R131~R138は、それぞれ独立して、炭素数1~6のアルキル基を表す。a、b、及びcは、それぞれ独立して、0~6の整数を表す。dは1又は2を表す。e、f、g、h、及びiは、それぞれ独立して、0~2の整数を表す。bが0の場合、dは1である。)
[4]さらに、ナトリウム元素を含む成分、カリウム元素を含む成分、マグネシウム元素を含む成分、カルシウム元素を含む成分、鉄元素を含む成分、銅元素を含む成分、及びクロム元素を含む成分からなる群より選ばれる一種類以上を含有し、下記(5)の条件を満たす、上記[3]に記載の感光性組成物。
(5)該感光性組成物の全固形分に占めるナトリウム元素、カリウム元素、マグネシウム元素、カルシウム元素、鉄元素、銅元素、及びクロム元素の含有量の合計が0.010~500質量ppm
[5](A)アルカリ可溶性樹脂を含み、
 該(A)アルカリ可溶性樹脂が、前記(WA)弱酸性基を有し、
 全固形分におけるフェノール当量が、400~6,000g/molであって、
 前記(A)アルカリ可溶性樹脂が、フェノール性水酸基を有する、上記[1]~[4]のいずれかに記載の感光性組成物。
[6]前記(A)アルカリ可溶性樹脂が、以下の(A3-1)樹脂、(A3-2)樹脂、(A3-3)樹脂、及び(A3-4)樹脂からなる群より選ばれる一種類以上を含有する、上記[5]に記載の感光性組成物。
(A3-1)樹脂:フェノール樹脂
(A3-2)樹脂:ポリヒドロキシスチレン
(A3-3)樹脂:フェノール基含有エポキシ樹脂
(A3-4)樹脂:フェノール基含有アクリル樹脂
[7]前記(A3-1)樹脂、(A3-2)樹脂、(A3-3)樹脂、及び(A3-4)樹脂が、以下の(3x)構造単位、(3y)構造単位、及び(3z)構造単位からなる群より選ばれる一種類以上を有し、
 該(3y)構造単位における芳香族基が、フェノール性水酸基が結合する芳香環とは別の芳香族基であって、
 該(3z)構造単位における第二の芳香族基が、フェノール性水酸基が結合する芳香環を除く芳香族基である、上記[6]に記載の感光性組成物。
(3x)構造単位:フェノール性水酸基を少なくとも2つ含む構造単位
(3y)構造単位:フェノール性水酸基、及び芳香族基を含む構造単位
(3z)構造単位:フェノール性水酸基を含む構造単位、及び第二の芳香族基を含む構造単位
[8](A)アルカリ可溶性樹脂、(B)ラジカル重合性化合物、及び(C)感光剤を含み、
 該(A)アルカリ可溶性樹脂が、ラジカル重合性基を有する樹脂及びラジカル重合性基を有しない樹脂を含有し、
 該(C)感光剤が、(C1)光重合開始剤を含有する、上記[2]~[7]のいずれかに記載の感光性組成物。
[9]全固形分における弱酸性基当量が、400~1,500g/molであって、
 前記二重結合当量が、750~6,000g/molである、上記[1]~[8]のいずれかに記載の感光性組成物。
[10]さらに、(I)無機粒子を含有し、
 該(I)無機粒子が、(I1)シリカ粒子を含有する、上記[1]~[9]のいずれかに記載の感光性組成物。
[11]さらに、ハロゲン元素を含む成分、硫黄元素を含む成分、及びリン元素を含む成分からなる群より選ばれる一種類以上を含有し、下記(1)~(3)の条件を1つ以上満たす、上記[1]~[10]のいずれかに記載の感光性組成物。
(1)該感光性組成物中に占めるハロゲン元素の含有量が0.01~100質量ppm
(2)該感光性組成物中に占める硫黄元素の含有量が0.01~100質量ppm
(3)該感光性組成物中に占めるリン元素の含有量が0.01~100質量ppm
[12](A)アルカリ可溶性樹脂を含み、
 該(A)アルカリ可溶性樹脂が、以下の(A1)樹脂、(A2)樹脂、及び(A3)樹脂からなる群より選ばれる一種類以上を含有する、上記[1]~[11]のいずれかに記載の感光性組成物。
(A1)樹脂:前記(WA)弱酸性基を有し、さらにイミド構造、アミド構造、オキサゾール構造、及びシロキサン構造からなる群より選ばれる一種類以上を含む構造単位を有し、かつラジカル重合性基を有しない樹脂
(A2)樹脂:ラジカル重合性基を有する樹脂
(A3)樹脂:フェノール性水酸基を有する樹脂
[13]前記(A)アルカリ可溶性樹脂が、前記(A1)樹脂及び/又は(A3)樹脂を含有し、さらに前記(A2)樹脂を含有する、上記[12]に記載の感光性組成物。
(A2)樹脂:ラジカル重合性基を有する樹脂
[14]さらに、(D1a-1)有機黒色顔料及び/又は(D1a-3)二色以上の着色顔料混合物を含有し、
 該(D1a-1)有機黒色顔料が、(D1a-1a)ベンゾフラノン系黒色顔料、(D1a-1b)ペリレン系黒色顔料、及び(D1a-1c)アゾ系黒色顔料からなる群より選ばれる一種類以上を含み、
 該(D1a-3)二色以上の着色顔料混合物が、赤、橙、黄、緑、青及び紫色の顔料からなる群より選ばれる二色以上の顔料を含む、上記[1]~[13]のいずれかに記載の感光性組成物。
[15](B)ラジカル重合性化合物を含み、
 さらに、以下の条件(γ)、条件(δ)、及び条件(ε)のうち少なくとも1つを満たす、上記[1]~[14]のいずれかに記載の感光性組成物。
条件(γ):該(B)ラジカル重合性化合物が、以下の(B4)第4重合性化合物及び(B5)第5重合性化合物を含有する
条件(δ):該(B)ラジカル重合性化合物が、以下の(B6)第6重合性化合物及び(B7)第7重合性化合物を含有する
条件(ε):該(B)ラジカル重合性化合物が、以下の(B4)第4重合性化合物又は(B5)第5重合性化合物を含有し、さらに、以下の(B6)第6重合性化合物又は(B7)第7重合性化合物を含有する
(B4)第4重合性化合物:下記(I-b4)構造を有し、さらに少なくとも2つのラジカル重合性基を有する化合物
(I-b4)構造:脂環式構造を含む構造及び/又はヘテロ脂環式構造を含む構造
(B5)第5重合性化合物:下記(I-b5)構造及び(II-b5)構造を有し、さらに少なくとも2つのラジカル重合性基を有する化合物
(I-b5)構造:芳香族構造を含む構造
(II-b5)構造:脂肪族構造を含む構造
(B6)第6重合性化合物:少なくとも2つの(メタ)アクリロイル基を有し、さらに下記(I-b6)構造を有する化合物
(I-b6)構造:少なくとも2つの(メタ)アクリロイル基間を最小原子数4~10個で連結し、かつ、脂肪族構造を含む構造
(B7)第7重合性化合物:少なくとも2つの(メタ)アクリロイル基を有し、さらに下記(I-b7)構造を有する化合物
(I-b7)構造:少なくとも2つの(メタ)アクリロイル基間を最小原子数11~45個で連結し、かつ、脂肪族構造を含む構造
[16]上記[1]~[15]のいずれかに記載の感光性組成物を硬化した硬化物。
[17]上記[16]に記載の硬化物を具備する表示装置。
[18]上記[16]に記載の硬化物を具備する電子部品。
[19](1)基板上に、上記[1]~[15]のいずれかに記載の感光性組成物の塗膜を成膜する工程、
 (2)前記感光性組成物の塗膜にフォトマスクを介して活性化学線を照射する工程、
 (3)アルカリ溶液を用いて現像し、前記感光性組成物のパターンを形成する工程、及び、
 (4)前記パターンを加熱し、前記感光性組成物の硬化パターンを得る工程、を有する、硬化物の製造方法であって、
 該フォトマスクが、透光部及び遮光部を含み、該透光部と該遮光部の間に透過率が該透光部の値より低く、かつ透過率が該遮光部の値より高い、半透光部を有するハーフトーンフォトマスクである、硬化物の製造方法。
[20]基板、第1電極、第2電極、及び画素分割層を少なくとも有し、
 さらに、発光層を含む有機EL層及び/又は発光層を含む光取り出し層を有する表示装置であって、
 該画素分割層は、該第1電極上の一部と重なるように形成され、
 該発光層を含む有機EL層及び/又は該発光層を含む光取り出し層は、該第1電極上、かつ該第1電極及び該第2電極の間に形成され、
 該画素分割層が(D-DL)着色剤を含み、該画素分割層の膜厚1μm当たりの可視光線の波長における光学濃度が0.5~5.0であって、
 該画素分割層が、以下の(WA)弱酸性基を有する樹脂を含有し、
 該(WA)弱酸性基を有する樹脂が、以下の(XA3-1)樹脂、(XA3-2)樹脂、(XA3-3)樹脂、及び(XA3-4)樹脂からなる群より選ばれる一種類以上を含み、
 下記(1x)及び/又は(2x)の条件を満たす、表示装置。
(WA)弱酸性基:フェノール性水酸基、ヒドロキシイミド基、ヒドロキシアミド基、シラノール基、1,1-ビス(トリフルオロメチル)メチロール基、及びメルカプト基からなる群より選ばれる一種類以上の基
(XA3-1)樹脂:フェノール樹脂
(XA3-2)樹脂:ポリヒドロキシスチレン
(XA3-3)樹脂:フェノール基含有エポキシ樹脂
(XA3-4)樹脂:フェノール基含有アクリル樹脂
(1x)画素分割層の段差形状における薄膜部の表面における表面粗さの最大値を(RaHT/max)とし、かつ、画素分割層の段差形状における厚膜部の表面における表面粗さの最大値を(RaFT/max)とするとき、(RaHT/max)と(RaFT/max)との差|Δ(RaHT/max-RaFT/max)|が1.0~50.0nm
(2x)画素分割層の表面における表面粗さの最大値を(RaDL/max)とし、かつ、画素分割層上のスペーサ層の表面における表面粗さの最大値を(RaSP/max)とするとき、(RaDL/max)と(RaSP/max)との差|Δ(RaDL/max-RaSP/max)|が1.0~50.0nm
 本発明の感光性組成物は、露光時の感度向上、現像後における開口パターン寸法の狭マスクバイアス抑制、及び優れたハーフトーン特性を兼ね備える。加えて、本発明の感光性組成物によれば、表示装置における発光素子の信頼性向上が可能な硬化膜を提供できる。また本発明の感光性組成物によれば、電子部品におけるマイグレーション耐性向上が可能な硬化膜を提供できる。また本発明の表示装置によれば、発光素子の信頼性向上が可能である。また本発明の電子部品によれば、素子のマイグレーション耐性向上が可能である。
段差形状を有する硬化パターンの断面の一例を示す断面図である。 バンプを有する半導体装置の一例のパッド部分の拡大断面を示す模式的断面図である。 本発明の感光性組成物の硬化物を用いた有機ELディスプレイにおける工程1~工程7の製造プロセスを模式的断面で例示する工程図である。 ハーフトーン特性評価に用いたハーフトーンフォトマスクにおける、透光部、遮光部、及び半透光部の、配置及び寸法を例示する概略図である。 発光特性評価に用いた有機ELディスプレイの基板における工程1~工程4の製造プロセスを平面図で例示する概略図である。
 <感光性組成物>
 以下、本発明の感光性組成物について述べる。
本発明の感光性組成物は、以下の条件(α)又は条件(β)を満たす、感光性組成物であって、
 全固形分における二重結合当量が、600~6,000g/molである。
条件(α):下記(I)の化合物及び/又は下記(II)の化合物を含有する
(I)以下の(WA)弱酸性基及びラジカル重合性基を有する化合物
(II)以下の(WA)弱酸性基を有する化合物及びラジカル重合性基を有する化合物
条件(β):(A)アルカリ可溶性樹脂、(B)ラジカル重合性化合物、及び(C)感光剤を含有する
(WA)弱酸性基:フェノール性水酸基、ヒドロキシイミド基、ヒドロキシアミド基、シラノール基、1,1-ビス(トリフルオロメチル)メチロール基、及びメルカプト基からなる群より選ばれる一種類以上の基。
 なお、本発明において、上記条件(α)を満たし、全固形分における二重結合当量が上述の範囲である感光性組成物を、本発明の感光性組成物の第一の態様という場合がある。
また、上記条件(β)を満たし、全固形分における二重結合当量が上述の範囲である感光性組成物を、本発明の感光性組成物の第二の態様という場合がある。
また、「(I)(WA)弱酸性基及びラジカル重合性基を有する化合物」を単に「(I)化合物」という場合がある。また、上記(II)における「(WA)弱酸性基を有する化合物」を単に「(IIa)化合物」、上記(II)における「ラジカル重合性基を有する化合物」を単に「(IIb)化合物」という場合がある。
 本発明において、ラジカル重合性基とは、室温においてメチルラジカルが付加可能な基であって、メチルラジカルが付加した場合に、別のラジカルを発生させる基をいう。室温におけるメチルラジカル発生方法としては、アセチルオキシムエステル構造を有する光重合開始剤に活性化学線(放射線)を照射する方法が挙げられる。メチルラジカルが付加した場合に発生する別のラジカルを検出する方法としては、電子スピン共鳴分析が挙げられる。また、メチルラジカルが付加した場合に別のラジカルが発生したことを確認する方法としては、ラジカル重合性基を有する化合物、及びアセチルオキシムエステル構造を有する光重合開始剤を溶剤に溶解させた組成物に対して活性化学線を照射し、活性化学線の照射前後における粘度上昇、又は、ゲル化若しくは膜化などの外観変化の有無によって確認する方法が挙げられる。活性化学線としては、例えば、可視光線、紫外線、電子線、又はX線などが挙げられる。なお、メチルラジカルがラジカル重合性基に付加した場合に発生する別のラジカルは、さらに別のラジカル重合性基に付加可能であることが好ましい。また、さらに別のラジカル重合性基に付加した場合に、同様に、さらに別のラジカルを発生することが好ましい。メチルラジカルがラジカル重合性基に付加した場合に発生する別のラジカルは、炭素ラジカル、酸素ラジカル、窒素ラジカル、又は硫黄ラジカルが好ましく、炭素ラジカルがより好ましい。
 <感光性組成物の全固形分における二重結合当量>
 本発明の感光性組成物は、全固形分における二重結合当量が、600~6,000g/molである。感光性組成物の全固形分における二重結合当量が、600~6,000g/molであると、露光時の感度向上の効果が顕著となる。加えて、表示装置における発光素子の信頼性向上の効果が顕著となる。
 上述した通り、ポジ型の感光性組成物の場合、露光部のアルカリ溶解性向上が不十分な場合に、狭マスクバイアスとなりやすい。感光性組成物の全固形分における二重結合当量を特定範囲とすることで、感光性組成物中の樹脂などが有する二重結合基と、後述する(C)感光剤が有する芳香環との相互作用により、露光部におけるアルカリ溶解性が向上することで狭マスクバイアス抑制がされると推測される。また、未露光部では後述する(C)感光剤に起因するアルカリ溶解性向上が起こらないため、感光性組成物中の樹脂などが有する二重結合基と、後述する(C)感光剤が有する芳香環との相互作用によるπ結合スタッキングが支配的となり、ハーフトーン露光部が緩やかな現像膜減りをするためハーフトーン加工性が向上すると推測される。
 一方、ネガ型の感光性組成物の場合、回折光によって発生したラジカルによる光硬化の影響で狭マスクバイアスが発生しやすい。感光性組成物の全固形分における二重結合当量を特定範囲とすることで、パターン露光時の回折光によって発生したラジカルによる光硬化の影響を極小化でき、狭マスクバイアス抑制がされると推測される。また、適度な量の二重結合基によって露光部における過度な光硬化を制御することで、露光量に対する光硬化度の勾配を緩やかにできるためハーフトーン加工性が向上すると推測される。
 本発明の感光性組成物において、感光性組成物の全固形分における二重結合当量は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、650g/mol以上が好ましく、700g/mol以上がより好ましく、750g/mol以上がさらに好ましく、800g/mol以上がさらにより好ましく、850g/mol以上が特に好ましい。さらに、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、900g/mol以上が好ましく、1,000g/mol以上がより好ましい。一方、感光性組成物の全固形分における二重結合当量は、露光時の感度向上の観点、及び、表示装置における発光素子の信頼性向上の観点から、3,000g/mol以下が好ましく、2,500g/mol以下がより好ましく、2,000g/mol以下がさらに好ましく、1,700g/mol以下がさらにより好ましく、1,500g/mol以下が特に好ましい。
 二重結合当量は、感光性組成物中の全固形分の質量と、感光性組成物中の二重結合基を有する各成分のヨウ素価から算出される。なお、ヨウ素価とは、感光性組成物100g当たりと反応するハロゲンの量をヨウ素の質量に換算し、そのヨウ素の質量を感光性組成物の固形分100g当たりに換算した値をいう。ヨウ素価の単位はgI/100gである。
 本発明の感光性組成物において、(A)アルカリ可溶性樹脂、(B)ラジカル重合性化合物、(C)感光剤、(E)分散剤、(F)化合物、及び(G)架橋剤からなる群より選ばれる一種類以上のみがエチレン性不飽和二重結合基を有することが好ましく、(A)アルカリ可溶性樹脂、(B)ラジカル重合性化合物、及び(G)架橋剤からなる群より選ばれる一種類以上のみがエチレン性不飽和二重結合基を有することがより好ましく、(A)アルカリ可溶性樹脂及び/又は(B)ラジカル重合性化合物のみがエチレン性不飽和二重結合基を有することがさらに好ましい。
 本発明の感光性組成物は、ラジカル重合性基を有する化合物を含む。ラジカル重合性基は、エチレン性不飽和二重結合基が好ましい。露光時の感度向上、表示装置における発光素子の信頼性向上、及び低温での加熱におけるラジカル重合促進の観点から、ラジカル重合性基は、光反応性基、炭素数2~5のアルケニル基、及び炭素数2~5のアルキニル基からなる群より選ばれる一種類以上であることがより好ましい。光反応性基は、スチリル基、シンナモイル基、マレイミド基、又は(メタ)アクリロイル基が好ましく、(メタ)アクリロイル基がより好ましい。一方、炭素数2~5のアルケニル基又は炭素数2~5のアルキニル基は、ビニル基、アリル基、2-メチル-2-プロペニル基、クロトニル基、2-メチル-2-ブテニル基、3-メチル-2-ブテニル基、2,3-ジメチル-2-ブテニル基、エチニル基、又は2-プロパルギル基が好ましく、ビニル基又はアリル基がより好ましい。
本発明の感光性組成物の第二の態様において、露光時の感度向上、及びハーフトーン特性向上の観点、並びに、表示装置における発光素子の信頼性向上の観点から、(A)アルカリ可溶性樹脂が、後述する(A2)樹脂を含むことが好ましい。
(A2)樹脂:ラジカル重合性基を有する樹脂。
 本発明の感光性組成物は、後述する(A)アルカリ可溶性樹脂、(B)ラジカル重合性化合物、(C)感光剤、(E)分散剤、(F)化合物、及び(G)架橋剤からなる群より選ばれる一種類以上が、ラジカル重合性基を有し、後述する(D)着色剤及び(H)溶解促進剤は、ラジカル重合性基を有しないことが好ましく、
(A)アルカリ可溶性樹脂、(B)ラジカル重合性化合物、及び(G)架橋剤からなる群より選ばれる一種類以上が、ラジカル重合性基を有し、(C)感光剤、(D)着色剤、(E)分散剤、(F)化合物、及び(H)溶解促進剤は、ラジカル重合性基を有しないことがより好ましく、
(A)アルカリ可溶性樹脂及び/又は(B)ラジカル重合性化合物が、ラジカル重合性基を有し、(C)感光剤、(D)着色剤、(E)分散剤、(F)化合物、(G)架橋剤、及び(H)溶解促進剤は、ラジカル重合性基を有しないことがさらに好ましい。
 本発明の感光性組成物の第一の態様において、(I)化合物は、後述する(A)アルカリ可溶性樹脂、(B)ラジカル重合性化合物、及び(G)架橋剤からなる群より選ばれる一種類以上を含むことが好ましく、(A)アルカリ可溶性樹脂及び/又は(G)架橋剤を含むことがより好ましい。
(IIa)化合物は、後述する(A)アルカリ可溶性樹脂、(B)ラジカル重合性化合物、(G)架橋剤、及び(H)溶解促進剤からなる群より選ばれる一種類以上を含むことが好ましく、(A)アルカリ可溶性樹脂及び/又は(G)架橋剤を含むことがより好ましい。
(IIb)化合物は、後述する(A)アルカリ可溶性樹脂、(B)ラジカル重合性化合物、(C)感光剤、(E)分散剤、(F)化合物、及び(G)架橋剤からなる群より選ばれる一種類以上を含むことが好ましく、(A)アルカリ可溶性樹脂、(B)ラジカル重合性化合物、及び(G)架橋剤からなる群より選ばれる一種類以上を含むことがより好ましい。
 <感光性組成物の全固形分における弱酸性基当量>
 本発明の感光性組成物の第一の好適な態様は、上記条件(α)を満たす感光性組成物であって、全固形分における弱酸性基当量が、400~6,000g/molである。
 また、本発明の感光性組成物の第二の好適な態様は、上記条件(β)を満たす感光性組成物であって、全固形分における弱酸性基当量が、400~6,000g/molである。
 本発明の感光性組成物において、感光性組成物の全固形分における弱酸性基当量が400~6,000g/molであると、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の効果が顕著となる。なお、弱酸性基当量における弱酸性基とは、上述の(WA)弱酸性基である。
 上述したとおり、一般的に、ポジ型の感光性組成物の場合、露光部のアルカリ溶解性向上が不十分な場合に、狭マスクバイアスとなりやすい。一方、本発明においては、感光性組成物の全固形分における弱酸性基当量を特定範囲とすることで、露光部は適度な量の弱酸性基によって残渣抑制がされるとともに、パターン露光時の回折光でもアルカリ溶解性が向上することで狭マスクバイアス抑制がされると推測される。また、未露光部では弱酸性基の温和な酸性度によってハーフトーン露光部が緩やかな現像膜減りをするためハーフトーン加工性が向上すると推測される。
 また、ネガ型の感光性組成物の場合、一般的には、回折光によって発生したラジカルによる光硬化の影響で狭マスクバイアスが発生しやすい。一方、本発明においては、感光性組成物の全固形分における弱酸性基当量を特定範囲とすることで、未露光部は適度な量の弱酸性基によって残渣抑制がされるとともに、露光部におけるアルカリ現像時の膜深部におけるサイドエッチングが抑制されることで狭マスクバイアス抑制がされると推測される。また、弱酸性基の温和な酸性度によってハーフトーン露光部が緩やかな現像膜減りをするためハーフトーン加工性が向上すると推測される。また、感光性組成物の全固形分における弱酸性基当量を特定範囲とすることに加えて、感光性組成物の全固形分におけるフェノール当量を特定範囲とすることで、パターン露光時の回折光によって発生したラジカルをフェノール性水酸基が安定化できる上、フェノール性水酸基によって露光部における過度な光硬化を制御することで、露光量に対する光硬化度の勾配を緩やかにできるため、狭マスクバイアス抑制、及びハーフトーン特性向上の観点からより好ましい。
 本発明の感光性組成物において、感光性組成物の全固形分における弱酸性基当量は、露光時の感度向上の観点、及び、表示装置における発光素子の信頼性向上の観点から、450g/mol以上が好ましく、500g/mol以上がより好ましく、550g/mol以上がさらに好ましく、600g/mol以上がさらにより好ましく、700g/mol以上が特に好ましい。さらに、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、750g/mol以上が好ましく、800g/mol以上がより好ましい。一方、感光性組成物の全固形分における弱酸性基当量は、現像後の残渣抑制、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、3,000g/mol以下が好ましく、2,500g/mol以下がより好ましく、2,000g/mol以下がさらに好ましく、1,700g/mol以下がさらにより好ましく、1,500g/mol以下が特に好ましい。
 本発明の感光性組成物において、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、弱酸性基当量が上述の範囲のいずれかであることに加えて、感光性組成物の全固形分におけるフェノール当量、ヒドロキシイミド当量、ヒドロキシアミド当量、又はシラノール当量が、400~6,000g/molであることが好ましく、フェノール当量又はシラノール当量が、400~6,000g/molであることがより好ましく、フェノール当量が、400~6,000g/molであることがさらに好ましい。フェノール当量、ヒドロキシイミド当量、ヒドロキシアミド当量、又はシラノール当量のより好ましい範囲は、上述の弱酸性基当量の好適な範囲と同様である。中でも、フェノール当量を上述の範囲とすることにより、狭マスクバイアス抑制、及びハーフトーン特性向上の効果がより顕著となる。その理由は明らかではないが、以下のように推測することができる。すなわち、フェノール性水酸基は、パターン露光時の回折光によって発生したラジカルを安定化できると推測される。加えて、フェノール性水酸基によって露光部における過度な光硬化を制御することで、露光量に対する光硬化度の勾配を緩やかにできると推測される。その結果、狭マスクバイアス抑制、及びハーフトーン特性向上の効果がより顕著になるものと推測される。
 弱酸性基当量は、以下の弱酸性基価を測定することで求めることができる。
弱酸性基価:フェノール価、ヒドロキシイミド価、ヒドロキシアミド価、シラノール価、1,1-ビス(トリフルオロメチル)メチロール価、及びメルカプト価の合計。
 本発明の感光性組成物において、弱酸性基当量は、感光性組成物の全固形分における弱酸性基価から求められる弱酸性基当量である。すなわち、感光性組成物中の全固形分の質量と、感光性組成物中の弱酸性基を有する各成分の弱酸性基価から算出される弱酸基当量である。なお、弱酸性基価とは、感光性組成物1g当たりと反応する水酸化カリウムの質量を、感光性組成物の固形分1g当たりに換算した値をいう。弱酸性基価の単位はmgKOH/gである。
 本発明の感光性組成物において、(A)アルカリ可溶性樹脂、(B)ラジカル重合性化合物、(G)架橋剤、及び(H)溶解促進剤からなる群より選ばれる一種類以上のみが(WA)弱酸性基を有することが好ましく、(A)アルカリ可溶性樹脂及び/又は(G)架橋剤のみが(WA)弱酸性基を有することがより好ましく、(A)アルカリ可溶性樹脂のみが(WA)弱酸性基を有することがさらにましい。
 本発明の感光性組成物は、露光時の感度向上、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点、並びに、表示装置における発光素子の信頼性向上の観点から、感光性組成物の全固形分における弱酸性基当量が、400~1,500g/molであって、感光性組成物の全固形分における二重結合当量が、750~6,000g/molであることが好ましい。
 なお、感光性組成物中に、(WA)弱酸性基を有する樹脂、及びその他の酸性基を有する樹脂などの複数の樹脂を含有する場合、遠心分離、分液抽出、及びカラムクロマトグラフィーなどの方法で分離可能な組成物中の成分を除去し、次いで、GPC分取によってそれぞれの樹脂を分離することが好ましい。その後、それぞれの樹脂の弱酸性基当量及びその他の酸当量を測定することが好ましい。また、感光性組成物中に、(WA)弱酸性基及びその他の酸性基を有する樹脂を含有する場合、並びに、感光性組成物中に、二種類以上の(WA)弱酸性基を有する樹脂を含有する場合、それぞれの酸性基の反応性の違いを利用して保護基を付加することで、一種類の酸性基を遊離させることが好ましい。その後、弱酸性基当量又はその他の酸当量を測定することが好ましい。次いで、さらなる保護基の付加、及び保護基の脱保護を適宜繰り返すことで、それぞれの酸性基を遊離させることが好ましい。その後、それぞれの酸性基について、弱酸性基当量又はその他の酸当量を測定することが好ましい。
 本発明の感光性組成物において、(WA)弱酸性基は、フェノール性水酸基、ヒドロキシイミド基、ヒドロキシアミド基、又はシラノール基を含むことが好ましく、フェノール性水酸基又はシラノール基を含むことがより好ましく、フェノール性水酸基を含むことがさらに好ましい。
 本発明の感光性組成物は、後述する(A)アルカリ可溶性樹脂、(B)ラジカル重合性化合物、(G)架橋剤、及び(H)溶解促進剤からなる群より選ばれる一種類以上が、フェノール性水酸基を有することが好ましく、(A)アルカリ可溶性樹脂及び/又は(G)架橋剤が、フェノール性水酸基を有することがより好ましい。このような場合、後述する(C)感光剤、(D)着色剤、(E)分散剤、及び(F)化合物は、フェノール性水酸基を有しないことが好ましい。
 <(A)アルカリ可溶性樹脂>
 本発明の感光性組成物の第一の態様は、(A)アルカリ可溶性樹脂を含有することが好ましい。本発明の感光性組成物の第一の態様において、(I)化合物及び/又は(IIa)化合物が、(A)アルカリ可溶性樹脂を含むことが好ましく、(IIa)化合物が、(A)アルカリ可溶性樹脂を含むことがより好ましい。また、(I)化合物及び(IIa)化合物が、(A)アルカリ可溶性樹脂を含むことがさらに好ましい。
一方、本発明の感光性組成物の第二の態様は、(A)アルカリ可溶性樹脂を含有する。
 本発明の感光性組成物は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、(A)アルカリ可溶性樹脂を含み、(A)アルカリ可溶性樹脂が、(WA)弱酸性基を有することが好ましい。(WA)弱酸性基は、フェノール性水酸基を含むことがより好ましい。
 本発明の感光性組成物が、(A)アルカリ可溶性樹脂を含み、(A)アルカリ可溶性樹脂が、(WA)弱酸性基を有する場合、本発明の感光性組成物は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、全固形分におけるフェノール当量が、400~6,000g/molであって、(A)アルカリ可溶性樹脂が、フェノール性水酸基を有することが好ましい。
(A)アルカリ可溶性樹脂が、フェノール性水酸基を有する場合、後述する(C)感光剤、(D)着色剤、(E)分散剤、及び(F)化合物は、フェノール性水酸基を有しないことが好ましく、かつ、後述する(B)ラジカル重合性化合物及び(H)溶解促進剤が、フェノール性水酸基を有しないことがより好ましい。
 本発明の感光性組成物は、(A)アルカリ可溶性樹脂を含み、(A)アルカリ可溶性樹脂が、ラジカル重合性基を有することが好ましい。
本発明の感光性組成物は、露光時の感度向上、表示装置における発光素子の信頼性向上、及び低温での加熱におけるラジカル重合促進の観点から、(A)アルカリ可溶性樹脂におけるラジカル重合性基が、光反応性基、炭素数2~5のアルケニル基、及び炭素数2~5のアルキニル基からなる群より選ばれる一種類以上であることが好ましい。光反応性基は、(メタ)アクリロイル基がより好ましい。炭素数2~5のアルケニル基又は炭素数2~5のアルキニル基は、ビニル基又はアリル基がより好ましい。
(A)アルカリ可溶性樹脂が、(メタ)アクリロイル基、ビニル基、又はアリル基を有する場合、後述する(D)着色剤及び(H)溶解促進剤は、(メタ)アクリロイル基、ビニル基、又はアリル基を有しないことが好ましく、かつ、後述する(C)感光剤、(E)分散剤、及び(F)化合物が、(メタ)アクリロイル基、ビニル基、又はアリル基を有しないことがより好ましい。
 本発明の感光性組成物は、露光時の感度向上、現像後における狭マスクバイアス抑制、ハーフトーン特性向上、表示装置における発光素子の信頼性向上、低温での加熱における機械物性向上、及びマイグレーション耐性向上の観点から、(A)アルカリ可溶性樹脂及び後述する(B)ラジカル重合性化合物を含み、(A)アルカリ可溶性樹脂が、ラジカル重合性基を有する樹脂及びラジカル重合性基を有しない樹脂を含有することが好ましい。
 上記のような構成とすることで、ラジカル重合性基を有しない樹脂が、アルカリ可溶性基又は有機溶剤可溶性構造による現像後の残渣抑制と、金属不純物やイオン不純物などの捕捉能によるマイグレーション抑制などを奏する一方、ラジカル重合性基を有する樹脂が、露光時の感度向上及び低温での加熱におけるラジカル重合促進などを奏すると考えられる。このような樹脂における機能分離により、複数の特性向上の効果が顕著になると推定される。
 本発明の感光性組成物において、感光性組成物の全固形分における弱酸性基当量が400~6,000g/molである場合、
本発明の感光性組成物は、(A)アルカリ可溶性樹脂、後述する(B)ラジカル重合性化合物、及び後述する(C)感光剤を含み、(A)アルカリ可溶性樹脂が、ラジカル重合性基を有する樹脂及びラジカル重合性基を有しない樹脂を含有し、(C)感光剤が、後述する(C1)光重合開始剤を含有することが好ましい。
(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物が有するラジカル重合性基は、エチレン性不飽和二重結合基が好ましい。
 本発明の感光性組成物は、(A)アルカリ可溶性樹脂及び後述する(B)ラジカル重合性化合物におけるラジカル重合性基は、光反応性基、炭素数2~5のアルケニル基、及び炭素数2~5のアルキニル基からなる群より選ばれる一種類以上であることが好ましい。光反応性基は、(メタ)アクリロイル基がより好ましい。炭素数2~5のアルケニル基又は炭素数2~5のアルキニル基は、ビニル基又はアリル基がより好ましい。
(A)アルカリ可溶性樹脂及び後述する(B)ラジカル重合性化合物が、(メタ)アクリロイル基、ビニル基、又はアリル基を有する場合、後述する(D)着色剤及び(H)溶解促進剤は、(メタ)アクリロイル基、ビニル基、又はアリル基を有しないことが好ましく、かつ、後述する(C)感光剤、(E)分散剤、及び(F)化合物が、(メタ)アクリロイル基、ビニル基、又はアリル基を有しないことがより好ましい。
 <(A)アルカリ可溶性樹脂;(A1)樹脂、(A2)樹脂、及び(A3)樹脂>
 本発明の感光性組成物は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点、並びに、表示装置における発光素子の信頼性向上の観点から、(A)アルカリ可溶性樹脂を含み、(A)アルカリ可溶性樹脂が、以下の(A1)樹脂、(A2)樹脂、及び(A3)樹脂からなる群より選ばれる一種類以上を含有することが好ましく、(A1)樹脂及び/又は(A3)樹脂を含有することがより好ましい。また、低温での加熱における機械物性向上及びマイグレーション耐性向上の観点から、(A1)樹脂を含有することが好ましい。
(A1)樹脂:(WA)弱酸性基を有し、さらにイミド構造、アミド構造、オキサゾール構造、及びシロキサン構造からなる群より選ばれる一種類以上を含む構造単位を有し、かつラジカル重合性基を有しない樹脂
(A2)樹脂:ラジカル重合性基を有する樹脂
(A3)樹脂:フェノール性水酸基を有する樹脂。
(A3)樹脂は、フェノール性水酸基及びラジカル重合性基を有する樹脂を含むことが好ましい。
 (A1)樹脂は、樹脂の主鎖における構造単位中にイミド構造、アミド構造、オキサゾール構造、及びシロキサン構造からなる群より選ばれる一種類以上を有することが好ましい。(A1)樹脂は、樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つに(WA)弱酸性基を有することが好ましい。(A3)樹脂は、樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つにフェノール性水酸基を有することが好ましく、樹脂の主鎖における構造単位中にフェノール性水酸基を有することがより好ましい。(A1)樹脂、(A3)樹脂、及び以下の(A2)樹脂は、互いに異なる樹脂である。
 なお(A1)樹脂、(A2)樹脂、及び(A3)樹脂は、これらの中で、それぞれが、別の樹脂を構成する構造や基を有する場合は、以下の規則によりいずれかに分類するものとする。ある樹脂が(A1)樹脂、(A2)樹脂、(A3)樹脂のうち、2つ以上に該当しうる場合は、以下のようにしていずれの樹脂に該当するか決定する。すなわち、イミド構造、アミド構造、オキサゾール構造、及びシロキサン構造からなる群より選ばれる一種類以上を含む構造単位(以下、単に「イミド構造等構造単位」という)を有し、かつラジカル重合性基を有しない樹脂がフェノール性水酸基を有する場合、当該樹脂は、(A1)樹脂に該当するものとする。また、イミド構造等構造単位を有する樹脂がラジカル重合性基を有し、かつ、フェノール性水酸基を有しない場合、当該樹脂は(A2)樹脂に該当するものとする。一方、イミド構造等構造単位を有さず、ラジカル重合性基を有する樹脂がフェノール性水酸基を有する場合、当該樹脂は(A3)樹脂に該当するものとする。また、イミド構造等構造単位を有する樹脂が、ラジカル重合性基を有し、さらにフェノール性水酸基を有する場合、当該樹脂は(A2)樹脂に該当するものとする。
 上述した通り、ポジ型の感光性組成物の場合、露光部のアルカリ溶解性向上が不十分な場合に、狭マスクバイアスとなりやすい。フェノール性水酸基を有する(A3)樹脂を含有させることで、露光部はフェノール性水酸基のアルカリ溶解促進作用によって残渣抑制がされるとともに、パターン露光時の回折光でもアルカリ溶解性が向上することで狭マスクバイアス抑制がされると考えられる。また、未露光部ではフェノール性水酸基の温和な酸性度によってハーフトーン露光部が緩やかな現像膜減りをするためハーフトーン加工性が向上すると推定される。同様に、剛直な骨格であるイミド構造、アミド構造、オキサゾール構造、及びシロキサン構造からなる群より選ばれる一種類以上を含む構造単位を有する(A1)樹脂を含有させることで、剛直な骨格によるアルカリ溶解阻害により露光部がアルカリ溶解性過剰となりづらく、またハーフトーン露光部が緩やかな現像膜減りをするため、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上がされると考えられる。従って、(A)アルカリ可溶性樹脂が、(A1)樹脂及び/又は(A3)樹脂を含有することが好ましく、(A1)樹脂がフェノール性水酸基を有することがより好ましい。
 一方、ネガ型の感光性組成物の場合、回折光によって発生したラジカルによる光硬化の影響で狭マスクバイアスが発生しやすい。フェノール性水酸基を有する(A3)樹脂を含有させることで、未露光部はフェノール性水酸基のアルカリ溶解促進作用によって残渣抑制がされるとともに、パターン露光時の回折光によって発生したラジカルをフェノール性水酸基が安定化することで狭マスクバイアス抑制がされると考えられる。また、フェノール性水酸基によって露光部における過度な光硬化を制御することで、露光量に対する光硬化度の勾配を緩やかにできると考えられる。加えて、フェノール性水酸基の温和な酸性度によってハーフトーン露光部が緩やかな現像膜減りをするためハーフトーン加工性が向上すると推定される。同様に、剛直な骨格であるイミド構造、アミド構造、オキサゾール構造、及びシロキサン構造からなる群より選ばれる一種類以上を含む構造単位を有する(A1)樹脂を含有させることで、剛直な骨格による立体障害や分子運動阻害により露光部における過度な光硬化が制御される。さらに、剛直な骨格によるアルカリ溶解阻害により露光部におけるアルカリ現像時の膜深部におけるサイドエッチングが抑制され、またハーフトーン露光部が緩やかな現像膜減りをするなどの効果が顕著となる。そのため、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上がされると考えられる。従って、(A)アルカリ可溶性樹脂が、(A1)樹脂及び/又は(A3)樹脂を含有することが好ましく、(A1)樹脂がフェノール性水酸基を有することがより好ましい。
 本発明の感光性組成物が、(A)アルカリ可溶性樹脂を含み、(A)アルカリ可溶性樹脂が、(A1)樹脂及び/又は(A3)樹脂を含有する場合、本発明の感光性組成物は、現像後における狭マスクバイアス抑制、ハーフトーン特性向上、表示装置における発光素子の信頼性向上、低温での加熱における機械物性向上、及びマイグレーション耐性向上の観点から、(A)アルカリ可溶性樹脂が、(A1)樹脂を含み、(A1)樹脂が、以下の(A1-1)樹脂、(A1-2)樹脂、(A1-3)樹脂、(A1-4)樹脂、(A1-5)樹脂、(A1-6)樹脂、及び(A1-7)樹脂からなる群より選ばれる一種類以上を含有することが好ましい。(A1)樹脂は、以下の(A1-1)樹脂、(A1-2)樹脂、(A1-3)樹脂、(A1-4)樹脂、(A1-5)樹脂、及び(A1-6)樹脂からなる群より選ばれる一種類以上を含有することがより好ましく、(A1-1)樹脂及び/又は(A1-5)樹脂を含有することがさらに好ましい。(A1)樹脂は、単一の樹脂又はそれらの共重合体のいずれであっても構わない。
(A1-1)樹脂:ポリイミド
(A1-2)樹脂:ポリイミド前駆体
(A1-3)樹脂:ポリベンゾオキサゾール
(A1-4)樹脂:ポリベンゾオキサゾール前駆体
(A1-5)樹脂:ポリアミドイミド
(A1-6)樹脂:ポリアミドイミド前駆体
(A1-7)樹脂:ポリシロキサン。
 上記のような(A1)樹脂は、イミド構造、アミド構造、オキサゾール構造、又はシロキサン構造を含む構造単位を有することで、機械物性向上の効果が得られる。またこれらの構造が、電気絶縁性に悪影響を及ぼす金属不純物やイオン不純物などを捕捉するため、イオンマイグレーションやエレクトロマイグレーションが抑制され、マイグレーション耐性が向上すると推定される。
 本発明の感光性組成物において、全固形分におけるフェノール当量が、400~6,000g/molであって、(A)アルカリ可溶性樹脂が、フェノール性水酸基を有する場合、本発明の感光性組成物は、(A)アルカリ可溶性樹脂が、(A1)樹脂及び/又は(A3)樹脂を含有することが好ましく、(A1)樹脂を含有することがより好ましく、(A1)樹脂及び(A3)樹脂を含有することがさらに好ましい。
 本発明の感光性組成物において、全固形分におけるフェノール当量が、400~6,000g/molであって、(A)アルカリ可溶性樹脂が、フェノール性水酸基を有する場合、本発明の感光性組成物は、現像後における狭マスクバイアス抑制、ハーフトーン特性向上、表示装置における発光素子の信頼性向上、低温での加熱における機械物性向上、及びマイグレーション耐性向上の観点から、(A)アルカリ可溶性樹脂が、(A3)樹脂を含み、(A3)樹脂が、以下の(A3-1)樹脂、(A3-2)樹脂、(A3-3)樹脂、及び(A3-4)樹脂からなる群より選ばれる一種類以上を含有することが好ましい。(A3)樹脂は、(A3-1)樹脂及び/又は(A3-3)樹脂を含有することがより好ましく、(A3-1)樹脂を含有することがさらに好ましい。(A3)樹脂は、単一の樹脂又はそれらの共重合体のいずれであっても構わない。
(A3-1)樹脂:フェノール樹脂
(A3-2)樹脂:ポリヒドロキシスチレン
(A3-3)樹脂:フェノール基含有エポキシ樹脂
(A3-4)樹脂:フェノール基含有アクリル樹脂。
 本発明の感光性組成物は、露光時の感度向上、及びハーフトーン特性向上の観点、並びに、表示装置における発光素子の信頼性向上の観点から、(A)アルカリ可溶性樹脂を含み、(A)アルカリ可溶性樹脂が、(A2)樹脂を含有することが好ましい。
 本発明の感光性組成物が、(A)アルカリ可溶性樹脂を含み、(A)アルカリ可溶性樹脂が、(A1)樹脂及び/又は(A3)樹脂を含有する場合、本発明の感光性組成物は、露光時の感度向上、現像後における狭マスクバイアス抑制、ハーフトーン特性向上、表示装置における発光素子の信頼性向上、低温での加熱における機械物性向上、及びマイグレーション耐性向上の観点から、(A)アルカリ可溶性樹脂が、さらに(A2)樹脂を含有することが好ましい。(A)アルカリ可溶性樹脂は、(A1)樹脂及び(A2)樹脂を含有することがより好ましく、(A1)樹脂、(A3)樹脂、及び(A2)樹脂を含有することがさらに好ましい。
 (A2)樹脂が有するラジカル重合性基は、露光時の感度向上の観点から、光反応性基、炭素数2~5のアルケニル基、及び炭素数2~5のアルキニル基からなる群より選ばれる一種類以上であることが好ましい。光反応性基は、スチリル基、シンナモイル基、マレイミド基、又は(メタ)アクリロイル基が好ましく、(メタ)アクリロイル基がより好ましい。一方、炭素数2~5のアルケニル基又は炭素数2~5のアルキニル基は、ビニル基、アリル基、2-メチル-2-プロペニル基、クロトニル基、2-メチル-2-ブテニル基、3-メチル-2-ブテニル基、2,3-ジメチル-2-ブテニル基、エチニル基、又は2-プロパルギル基が好ましく、ビニル基又はアリル基がより好ましい。
 (A2)樹脂は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点、並びに、表示装置における発光素子の信頼性向上の観点から、以下の(A2-a)樹脂、(A2-b)樹脂、(A2-c)樹脂、(A2-d)樹脂、(A2-e)樹脂、(A2-f)樹脂、(A2-g)樹脂、(A2-1)樹脂、(A2-2)樹脂、及び(A2-3)樹脂からなる群より選ばれる一種類以上を含有することが好ましい。(A2)樹脂は、(A2-a)樹脂、(A2-b)樹脂、(A2-c)樹脂、(A2-d)樹脂、(A2-e)樹脂、(A2-f)樹脂、及び(A2-g)樹脂からなる群より選ばれる一種類以上を含有することがより好ましく、(A2-a)樹脂、(A2-b)樹脂、(A2-c)樹脂、(A2-d)樹脂、(A2-e)樹脂、及び(A2-f)樹脂からなる群より選ばれる一種類以上を含有することがさらに好ましく、(A2-a)樹脂及び/又は(A2-e)樹脂を含有することが特に好ましい。
一方、露光時の感度向上、及びハーフトーン特性向上の観点から、(A2)樹脂は、(A2-1)樹脂、(A2-2)樹脂、及び(A2-3)樹脂からなる群より選ばれる一種類以上を含有することがより好ましく、(A2-1)樹脂及び/又は(A2-2)樹脂を含有することがさらに好ましい。
また、露光時の感度向上、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点、並びに、表示装置における発光素子の信頼性向上の観点から、(A2)樹脂は、(A2-a)樹脂、(A2-b)樹脂、(A2-c)樹脂、(A2-d)樹脂、(A2-e)樹脂、(A2-f)樹脂、及び(A2-g)樹脂からなる群より選ばれる一種類以上を含有し、さらに(A2-1)樹脂、(A2-2)樹脂、及び(A2-3)樹脂からなる群より選ばれる一種類以上を含有することも好ましい。(A2)樹脂は、単一の樹脂又はそれらの共重合体のいずれであっても構わない。
(A2-a)樹脂:不飽和基含有ポリイミド
(A2-b)樹脂:不飽和基含有ポリイミド前駆体
(A2-c)樹脂:不飽和基含有ポリベンゾオキサゾール
(A2-d)樹脂:不飽和基含有ポリベンゾオキサゾール前駆体
(A2-e)樹脂:不飽和基含有ポリアミドイミド
(A2-f)樹脂:不飽和基含有ポリアミドイミド前駆体
(A2-g)樹脂:不飽和基含有ポリシロキサン
(A2-1)樹脂:多環側鎖含有樹脂
(A2-2)樹脂:酸変性エポキシ樹脂
(A2-3)樹脂:アクリル樹脂。
 <(A)アルカリ可溶性樹脂;(A3a)樹脂、及び(A3b)樹脂>
 本発明の感光性組成物は、露光時の感度向上、及びハーフトーン特性向上の観点から、(A)アルカリ可溶性樹脂が、以下の(A3b)樹脂を含有することも好ましい。
(A3b)樹脂:(A3)樹脂のうち、フェノール性水酸基、及びラジカル重合性基を有する樹脂。
 (A3b)樹脂は、樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つにフェノール性水酸基を有し、かつ、樹脂の側鎖及び樹脂の末端のうち少なくとも1つにラジカル重合性基を有することが好ましい。なお、(A3b)樹脂は、(A1)樹脂及び(A2)樹脂とは異なる樹脂である。
 (A3b)樹脂が有するラジカル重合性基は、露光時の感度向上の観点から、光反応性基、炭素数2~5のアルケニル基、及び炭素数2~5のアルキニル基からなる群より選ばれる一種類以上であることが好ましい。光反応性基は、スチリル基、シンナモイル基、マレイミド基、又は(メタ)アクリロイル基が好ましく、(メタ)アクリロイル基がより好ましい。一方、炭素数2~5のアルケニル基又は炭素数2~5のアルキニル基は、ビニル基、アリル基、2-メチル-2-プロペニル基、クロトニル基、2-メチル-2-ブテニル基、3-メチル-2-ブテニル基、2,3-ジメチル-2-ブテニル基、エチニル基、又は2-プロパルギル基が好ましく、ビニル基又はアリル基がより好ましい。
 (A3b)樹脂の二重結合当量は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、500g/mol以上が好ましく、700g/mol以上がより好ましく、1,000g/mol以上がさらに好ましい。一方、二重結合当量は、露光時の感度向上の観点、及び、表示装置における発光素子の信頼性向上の観点から、3,000g/mol以下が好ましく、2,000g/mol以下がより好ましく、1,500g/mol以下がさらに好ましい。
 本発明の感光性組成物は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、(A)アルカリ可溶性樹脂が、以下の(A3a)樹脂を含有することも好ましい。
(A3a)樹脂:(A3)樹脂のうち、フェノール性水酸基を有し、かつラジカル重合性基を有しない樹脂。
 (A3a)樹脂は、樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つにフェノール性水酸基を有することが好ましい。なお、(A3a)樹脂は、(A1)樹脂及び(A2)樹脂とは異なる樹脂である。
 本発明の感光性組成物は、露光時の感度向上、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点、並びに、表示装置における発光素子の信頼性向上の観点から、(A)アルカリ可溶性樹脂が、(A3b)樹脂を含有し、(A)アルカリ可溶性樹脂が、さらに(A3a)樹脂を含有することが好ましい。
 <アルカリ可溶性基>
 (A1)樹脂及び(A2)樹脂は、樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つにアルカリ可溶性基として酸性基を有する。(A1)樹脂は、酸性基として(WA)弱酸性基を有する。また(A2)樹脂のうち上記のイミド構造等構造単位を有する(A2)樹脂は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、酸性基として(WA)弱酸性基を有することが好ましい。
一方、(A1)樹脂及び(A2)樹脂は、現像後の残渣抑制の観点から、酸性基としてカルボキシ基、カルボン酸無水物基、又はスルホン酸基を有することが好ましく、カルボキシ基又はカルボン酸無水物基を有することがより好ましい。(A1)樹脂及び(A2)樹脂は、酸性基として(WA)弱酸性基を有し、さらにカルボキシ基、カルボン酸無水物基、又はスルホン酸基を有することも好ましい。なお(A1)樹脂及び(A2)樹脂は、アルカリ可溶性樹脂であって、かつ有機溶剤可溶性樹脂であることも好ましい。アルカリ可溶性樹脂とは、アルカリ現像液に対する溶解性を有する樹脂をいう。有機溶剤可溶性樹脂とは、有機溶剤の現像液に対する溶解性を有する樹脂をいう。
 (A1)樹脂の酸当量は、露光時の感度向上の観点、及び、表示装置における発光素子の信頼性向上の観点から、200g/mol以上が好ましく、250g/mol以上がより好ましく、300g/mol以上がさらに好ましい。一方、酸当量は、現像後の残渣抑制、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、600g/mol以下が好ましく、500g/mol以下がより好ましく、450g/mol以下がさらに好ましい。また、(A1)樹脂の弱酸性基当量が特定範囲であることが好ましく、(A1)樹脂のフェノール当量、ヒドロキシイミド当量、ヒドロキシアミド当量、又はシラノール当量が特定範囲であることがより好ましく、(A1)樹脂のフェノール当量又はシラノール当量が特定範囲であることがさらに好ましく、(A1)樹脂のフェノール当量が特定範囲であることが特に好ましい。なお、弱酸性基当量、フェノール当量、ヒドロキシイミド当量、ヒドロキシアミド当量、又はシラノール当量の特定範囲は、上述の酸当量の好適な範囲と同様である。
 (A2)樹脂の酸当量は、露光時の感度向上の観点、及び、表示装置における発光素子の信頼性向上の観点から、300g/mol以上が好ましく、350g/mol以上がより好ましく、400g/mol以上がさらに好ましい。一方、酸当量は、現像後の残渣抑制、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、700g/mol以下が好ましく、600g/mol以下がより好ましく、550g/mol以下がさらに好ましい。また、(A2)樹脂の弱酸性基当量が特定範囲であることが好ましく、(A2)樹脂のフェノール当量、ヒドロキシイミド当量、ヒドロキシアミド当量、又はシラノール当量が特定範囲であることがより好ましく、(A2)樹脂のフェノール当量又はシラノール当量が特定範囲であることがさらに好ましく、(A2)樹脂のフェノール当量が特定範囲であることが特に好ましい。なお、弱酸性基当量、フェノール当量、ヒドロキシイミド当量、ヒドロキシアミド当量、又はシラノール当量の特定範囲は、上述の酸当量の好適な範囲と同様である。
 (A3)樹脂は、フェノール性水酸基を有する。(A3)樹脂は、フェノール性水酸基を有する構造単位及びフェノール性水酸基を有する末端構造のうち少なくとも1つを有することが好ましい。また(A3)樹脂は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、さらにヒドロキシイミド基、ヒドロキシアミド基、シラノール基、1,1-ビス(トリフルオロメチル)メチロール基、又はメルカプト基を有することも好ましい。一方、(A3)樹脂は、現像後の残渣抑制の観点から、さらにカルボキシ基、カルボン酸無水物基、又はスルホン酸基を有することが好ましく、カルボキシ基又はカルボン酸無水物基を有することがより好ましい。
 (A3)樹脂の酸当量は、露光時の感度向上の観点、及び、表示装置における発光素子の信頼性向上の観点から、70g/mol以上が好ましく、80g/mol以上がより好ましく、90g/mol以上がさらに好ましい。一方、酸当量は、現像後の残渣抑制、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、450g/mol以下が好ましく、350g/mol以下がより好ましく、300g/mol以下がさらに好ましい。また、(A3)樹脂の弱酸性基当量が特定範囲であることが好ましく、(A2)樹脂のフェノール当量が特定範囲であることがより好ましい。弱酸性基当量又はフェノール当量の好ましい特定範囲は、上述の酸当量の好適な範囲と同様である。
 <(A)アルカリ可溶性樹脂;ポリイミド、及びポリイミド前駆体>
 以下、ポリイミドである(A1-1)樹脂及び(A2-a)樹脂について、まとめて記載する。同様に、ポリイミド前駆体である(A1-2)樹脂及び(A2-b)樹脂について、まとめて記載する。ポリイミド前駆体としては、例えば、テトラカルボン酸又は対応するテトラカルボン酸二無水物などと、ジアミン又はジイソシアネート化合物などとを反応させることで得られる樹脂が挙げられる。また、ポリイミド前駆体の他の例としては、例えば、ポリアミド酸、ポリアミド酸エステル、ポリアミド酸アミド、又はポリイソイミドが挙げられる。ポリイミドとしては、例えば、ポリイミド前駆体を加熱又は触媒を用いた反応により、脱水閉環させることで得られる樹脂が挙げられる。ポリイミド及びポリイミド前駆体は、樹脂を合成する反応において、さらにジカルボン酸又は対応するジカルボン酸活性ジエステルなどを用いることで得られる、ポリアミドとの共重合体である樹脂であっても構わない。
 ポリイミドは、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、一般式(1)で表される構造単位を有することが好ましい。ポリイミド中の全構造単位に占める、一般式(1)で表される構造単位の含有比率は、50~100mol%が好ましく、60~100mol%がより好ましく、70~100mol%がさらに好ましい。
 ポリイミド前駆体は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、一般式(3)で表される構造単位を有することが好ましい。ポリイミド前駆体中の全構造単位に占める、一般式(3)で表される構造単位の含有比率は、50~100mol%が好ましく、60~100mol%がより好ましく、70~100mol%がさらに好ましい。
Figure JPOXMLDOC01-appb-C000003
 一般式(1)及び一般式(3)において、R及びRは、それぞれ独立して、4~10価の有機基を表す。R及びR10は、それぞれ独立して、2~10価の有機基を表す。R、R、及びR13は、それぞれ独立して、フェノール性水酸基、スルホン酸基、メルカプト基、又は一般式(7)若しくは一般式(8)で表される置換基を表す。R11は、一般式(7)又は一般式(8)で表される置換基を表す。R12は、フェノール性水酸基、スルホン酸基、又はメルカプト基を表す。pは0~6の整数を表す。qは0~8の整数を表す。tは2~8の整数を表し、uは0~6の整数を表し、2≦t+u≦8である。vは0~8の整数を表す。ただし、R又はRがフェノール性水酸基を表す場合、フェノール性水酸基と結合するR中の構造又はR中の構造は芳香族構造を表す。また、R12又はR13がフェノール性水酸基を表す場合、フェノール性水酸基と結合するR中の構造又はR10中の構造は芳香族構造を表す。
 一般式(1)及び一般式(3)において、R、R、R、及びR10は、それぞれ独立して、炭素数2~20の脂肪族構造、炭素数4~20の脂環式構造、又は炭素数6~30の芳香族構造を有することが好ましい。qは1~8の整数が好ましい。vは1~8の整数が好ましい。R及びRは、それぞれ独立して、酸単量体残基を表す。R及びR10は、それぞれ独立して、アミン単量体残基を表す。上述した脂肪族構造、脂環式構造、及び芳香族構造は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。
Figure JPOXMLDOC01-appb-C000004
 一般式(7)及び一般式(8)において、R28~R30は、それぞれ独立して、水素原子、炭素数1~10のアルキル基、炭素数2~6のアシル基、又は炭素数6~15のアリール基を表す。一般式(7)及び一般式(8)において、R28~R30は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数2~4のアシル基、又は炭素数6~10のアリール基が好ましい。上述したアルキル基、アシル基、及びアリール基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。
 ポリイミド前駆体としては、一般式(3)で表される構造単位におけるR11が、一般式(7)で表される置換基である場合において、R28が水素原子である構造単位をアミド酸構造単位という。一般式(3)で表される構造単位におけるR11が、一般式(7)で表される置換基である場合において、R28が炭素数1~10のアルキル基、炭素数2~6のアシル基又は炭素数6~15のアリール基である構造単位を、アミド酸エステル構造単位という。一般式(3)で表される構造単位におけるR11が、一般式(8)で表される置換基である場合の構造単位を、アミド酸アミド構造単位という。ポリイミド前駆体は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、アミド酸エステル構造単位及び/又はアミド酸アミド構造単位を有することが好ましい。アミド酸エステル構造単位及び/又はアミド酸アミド構造単位を有するポリイミド前駆体としては、テトラカルボン酸残基及び/又はテトラカルボン酸誘導体残基であるカルボキシ基の一部を、エステル化及び/又はアミド化させることで得られる樹脂が挙げられる。またポリイミド前駆体は、アミド酸構造単位、アミド酸エステル構造単位、又はアミド酸アミド構造単位の一部がイミド閉環したイミド閉環構造単位を有しても構わない。アミド酸構造単位、アミド酸エステル構造単位、アミド酸アミド構造単位、及びイミド閉環構造単位の含有比率の合計に占める、アミド酸エステル構造単位及びアミド酸アミド構造単位の含有比率の合計は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、10mol%以上が好ましく、30mol%以上がより好ましく、50mol%以上がさらに好ましい。一方、アミド酸エステル構造単位及びアミド酸アミド構造単位の含有比率の合計は、現像後の残渣抑制の観点から、100mol%以下が好ましく、90mol%以上がより好ましく、80mol%以上がさらに好ましい。
 <(A)アルカリ可溶性樹脂;ポリベンゾオキサゾール前駆体、及びポリベンゾオキサゾール>
 以下、ポリベンゾオキサゾールである(A1-3)樹脂及び(A2-c)樹脂について、まとめて記載する。同様に、ポリベンゾオキサゾール前駆体である(A1-4)樹脂及び(A2-d)樹脂について、まとめて記載する。ポリベンゾオキサゾール前駆体としては、例えば、ジカルボン酸又は対応するジカルボン酸活性ジエステルなどと、ジアミンとしてビスアミノフェノール化合物などとを反応させることで得られる樹脂が挙げられる。また、ポリベンゾオキサゾール前駆体の他の例としては、例えば、ポリヒドロキシアミドが挙げられる。ポリベンゾオキサゾールとしては、例えば、ポリベンゾオキサゾール前駆体を加熱又は触媒を用いた反応により、脱水閉環させることで得られる樹脂が挙げられる。ポリベンゾオキサゾール及びポリベンゾオキサゾール前駆体は、樹脂を合成する反応において、さらにジアミン又はジイソシアネート化合物などを用いることで得られる、ポリアミドとの共重合体である樹脂であっても構わない。
 ポリベンゾオキサゾールは、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、一般式(2)で表される構造単位を有することが好ましい。ポリベンゾオキサゾール中の全構造単位に占める、一般式(2)で表される構造単位の含有比率は、50~100mol%が好ましく、60~100mol%がより好ましく、70~100mol%がさらに好ましい。
 ポリベンゾオキサゾール前駆体は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、一般式(4)で表される構造単位を有することが好ましい。ポリベンゾオキサゾール前駆体中の全構造単位に占める、一般式(4)で表される構造単位の含有比率は、50~100mol%が好ましく、60~100mol%がより好ましく、70~100mol%がさらに好ましい。
Figure JPOXMLDOC01-appb-C000005
 一般式(2)及び一般式(4)において、R及びR14は、それぞれ独立して、2~10価の有機基を表す。R及びR15は、それぞれ独立して、芳香族構造を有する4~10価の有機基を表す。R、R、及びR16は、それぞれ独立して、フェノール性水酸基、スルホン酸基、メルカプト基、又は上述した一般式(7)若しくは一般式(8)で表される置換基を表す。R17はフェノール性水酸基を表す。R18は、スルホン酸基、メルカプト基、又は上述した一般式(7)若しくは一般式(8)で表される置換基を表す。rは0~8の整数を表す。sは0~6の整数を表す。wは0~8の整数を表す。xは2~8の整数を表し、yは0~6の整数を表し、2≦x+y≦8である。ただし、R又はRがフェノール性水酸基を表す場合、フェノール性水酸基と結合するR中の構造又はR中の構造は芳香族構造を表す。また、R16がフェノール性水酸基を表す場合、フェノール性水酸基と結合するR14中の構造は芳香族構造を表す。また、R17と結合するR15中の構造は芳香族構造を表す。
 一般式(2)及び一般式(4)において、R、R14、R、及びR15は、それぞれ独立して、炭素数2~20の脂肪族構造、炭素数4~20の脂環式構造、又は炭素数6~30の芳香族構造を有することが好ましい。sは1~6の整数が好ましい。R及びR14は、それぞれ独立して、酸単量体残基を表す。R及びR15は、それぞれ独立して、アミン単量体残基を表す。上述した脂肪族構造、脂環式構造、及び芳香族構造は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。
 <(A)アルカリ可溶性樹脂;ポリアミドイミド及びポリアミドイミド前駆体>
 以下、ポリアミドイミド又はポリアミドイミド前駆体である(A1-5)樹脂、(A1-6)樹脂、(A2-e)樹脂、及び(A2-f)樹脂について、まとめて記載する。ポリアミドイミド前駆体としては、例えば、トリカルボン酸又は対応するトリカルボン酸無水物などと、ジアミン又はジイソシアネート化合物などとを反応させることで得られる樹脂が挙げられる。ポリアミドイミドとしては、例えば、ポリアミドイミド前駆体を加熱又は触媒を用いた反応により、脱水閉環させることで得られる樹脂が挙げられる。ポリアミドイミド及びポリアミドイミド前駆体は、樹脂を合成する反応において、さらにジカルボン酸又は対応するジカルボン酸活性ジエステルなどを用いることで得られる、ポリアミドとの共重合体である樹脂であっても構わない。
 ポリアミドイミドは、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、一般式(5)で表される構造単位を有することが好ましい。ポリアミドイミド中の全構造単位に占める、一般式(5)で表される構造単位の含有比率は、50~100mol%が好ましく、60~100mol%がより好ましく、70~100mol%がさらに好ましい。
 ポリアミドイミド前駆体は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、一般式(6)で表される構造単位を有することが好ましい。ポリアミドイミド前駆体中の全構造単位に占める、一般式(6)で表される構造単位の含有比率は、50~100mol%が好ましく、60~100mol%がより好ましく、70~100mol%がさらに好ましい。
Figure JPOXMLDOC01-appb-C000006
 一般式(5)及び一般式(6)において、R19及びR23は、それぞれ独立して、3~10価の有機基を表す。R20及びR24は、それぞれ独立して、2~10価の有機基を表す。R21、R22、及びR27は、それぞれ独立して、フェノール性水酸基、スルホン酸基、メルカプト基、又は上述した一般式(7)若しくは一般式(8)で表される置換基を表す。R25は、一般式(7)又は一般式(8)で表される置換基を表す。R26は、フェノール性水酸基、スルホン酸基、又はメルカプト基を表す。mは0~7の整数を表す。nは0~8の整数を表す。aは0~7の整数を表す。bは0~8の整数を表す。ただし、R21又はR22がフェノール性水酸基を表す場合、フェノール性水酸基と結合するR19又はR20中の構造は芳香族構造を表す。また、R26又はR27がフェノール性水酸基を表す場合、フェノール性水酸基と結合するR23又はR24中の構造は芳香族構造を表す。
 一般式(5)及び一般式(6)において、R19、R23、R20、及びR24は、それぞれ独立して、炭素数2~20の脂肪族構造、炭素数4~20の脂環式構造、又は炭素数6~30の芳香族構造を有することが好ましい。nは1~8の整数が好ましい。bは1~8の整数が好ましい。R19及びR23は、それぞれ独立して、酸単量体残基を表す。R20及びR24は、それぞれ独立して、アミン単量体残基を表す。上述した脂肪族構造、脂環式構造、及び芳香族構造は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。
 <フッ素原子を有する構造単位>
 ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体、ポリアミドイミド、及びポリアミドイミド前駆体(以下、「ポリイミド系の樹脂」)は、露光時の感度向上、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、フッ素原子を有する構造単位を有することが好ましい。ここでいう露光とは、活性化学線(放射線)の照射のことであり、例えば、可視光線、紫外線、電子線、又はX線などの照射が挙げられる。以降、露光とは、活性化学線(放射線)の照射をいう。
 ポリイミド系の樹脂において、それぞれの樹脂の全構造単位のうち、カルボン酸に由来する構造単位又はカルボン酸誘導体に由来する構造単位にフッ素原子を有し、かつアミンに由来する構造単位又はアミン誘導体に由来する構造単位にフッ素原子を有する場合、それぞれの樹脂の全構造単位に占める、フッ素原子を有する構造単位の含有比率の合計は、10~100mol%が好ましく、30~100mol%がより好ましく、50~100mol%がさらに好ましい。なお、カルボン酸に由来する構造単位又はカルボン酸誘導体に由来する構造単位とは、テトラカルボン酸若しくは対応するテトラカルボン酸二無水物に由来する構造単位、ジカルボン酸若しくは対応するジカルボン酸活性ジエステルに由来する構造単位、又はトリカルボン酸若しくは対応するトリカルボン酸無水物に由来する構造単位を含む。また、アミンに由来する構造単位又はアミン誘導体に由来する構造単位とは、ジアミンに由来する構造単位、ジイソシアネート化合物に由来する構造単位、又はビスアミノフェノール化合物に由来する構造単位などを含む。
 また、それぞれの樹脂の全構造単位のうち、カルボン酸に由来する構造単位又はカルボン酸誘導体に由来する構造単位のみにフッ素原子を有する場合、全カルボン酸に由来する構造単位及び全カルボン酸誘導体に由来する構造単位の合計に占める、フッ素原子を有する構造単位の含有比率の合計は、10~100mol%が好ましく、30~100mol%がより好ましく、50~100mol%がさらに好ましい。
 一方、それぞれの樹脂の全構造単位のうち、アミンに由来する構造単位又はアミン誘導体に由来する構造単位のみにフッ素原子を有する場合、全アミンに由来する構造単位及び全アミン誘導体に由来する構造単位の合計に占める、フッ素原子を有する構造単位の含有比率の合計は、10~100mol%が好ましく、30~100mol%がより好ましく、50~100mol%がさらに好ましい。
 <アルカリ可溶性基>
 ポリイミド系の樹脂は、樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つにアルカリ可溶性基として酸性基を有する。これらの樹脂は、酸性基を有するカルボン酸に由来する構造単位又は酸性基を有するジアミンに由来する構造単位などの酸性基を有する構造単位、又は酸性基を有する末端構造を有することが好ましい。また、それぞれの樹脂が有する一部のヒドロキシ基などと、多官能カルボン酸二無水物とを反応させて得られる樹脂も好ましく、それぞれの樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つに、触媒を用いた反応により酸性基を導入した樹脂も好ましい。
 <ラジカル重合性基>
 (A2)樹脂である(A2-a)樹脂、(A2-b)樹脂、(A2-c)樹脂、(A2-d)樹脂、(A2-e)樹脂、及び(A2-f)樹脂(以下、「ポリイミド系の(A2)樹脂」)は、ラジカル重合性基を有する。これらの(A2)樹脂は、(A1-1)樹脂、(A1-2)樹脂、(A1-3)樹脂、(A1-4)樹脂、(A1-5)樹脂、及び(A1-6)樹脂(以下、「ポリイミド系の(A1)樹脂」)において、それぞれの樹脂が有する一部の酸性基などと、ラジカル重合性基を有する化合物とを反応させて得られる樹脂が好ましい。また、それぞれの樹脂の側鎖及び樹脂の末端のうち少なくとも1つに、触媒を用いた反応によりラジカル重合性基を導入した樹脂も好ましい。ラジカル重合性基を有する化合物は、ラジカル重合性基を有する求電子性化合物が好ましい。ラジカル重合性基を有する化合物は、反応性及び化合物の利用性の観点から、イソシアネート化合物、エポキシ化合物、アルデヒド化合物、ケトン化合物、アセテート化合物、カルボン酸化合物、カルボン酸誘導体、ハロゲン化アルキル化合物、アジ化アルキル化合物、スルホナートアルキル化合物、シアン化アルキル化合物、又はアルコール化合物が好ましい。これらの化合物は、ウレア結合又はウレタン結合を有することも好ましい。
 ラジカル重合性基を有するアルコール化合物としては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシヘキシル、グリセロールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、又はトリスペンタエリスリトールヘプタ(メタ)アクリレートが挙げられる。
 ポリイミド系の(A2)樹脂は、ラジカル重合性基が一般式(51)、(52)、(53)、(54)及び(55)のいずれかで表される基からなる群より選ばれる一種類以上であることが好ましい。
Figure JPOXMLDOC01-appb-C000007
 一般式(51)~(55)において、X21~X24は、それぞれ独立して、炭素数1~10のアルキレン基、炭素数4~10のシクロアルキレン基、又は炭素数6~15のアリーレン基を表す。X25は2~6価の有機基を表す。X26は直接結合又は2~6価の有機基を表す。R231~R252は、それぞれ独立して、水素原子、炭素数1~10のアルキル基、又は炭素数6~15のアリール基を表す。a、b、c、d、及びeは、それぞれ独立して、0又は1を表す。f及びgは、それぞれ独立して、1~5の整数を表す。
 一般式(51)~(55)において、X25は2~6価の脂肪族基が好ましく、2~6価の炭素数1~10のアルキレン基がより好ましい。X26は直接結合又は2~6価の脂肪族基が好ましく、2~6価の炭素数1~10のアルキレン基がより好ましい。上述したアルキル基、アリール基、アルキレン基、シクロアルキレン基、及びアリーレン基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。
 上述したポリイミド系の(A2)樹脂の二重結合当量は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、200g/mol以上が好ましく、400g/mol以上がより好ましく、500g/mol以上がさらに好ましく、700g/mol以上がさらにより好ましく、1,000g/mol以上が特に好ましい。一方、二重結合当量は、露光時の感度向上の観点、及び、表示装置における発光素子の信頼性向上の観点から、3,000g/mol以下が好ましく、2,000g/mol以下がより好ましく、1,500g/mol以下がさらに好ましい。
 <その他の構造単位、末端封止剤、及び分子量>
 ポリイミド系の樹脂が有する構造単位は、表示装置における発光素子の信頼性向上の観点から、芳香族カルボン酸に由来する構造単位又は芳香族ジアミンに由来する構造単位などの芳香族基を有する構造単位も好ましい。また、パターン形状の低テーパー化の観点から、シリコーンジアミンに由来する構造単位などのシリル基若しくはシロキサン結合を有する構造単位、又はオキシアルキレンジアミンに由来する構造単位などのオキシアルキレン骨格を有する構造単位も好ましい。また、樹脂の末端が、モノアミン又はジカルボン酸無水物などの末端封止剤で封止された構造を有することも好ましい。
 ポリイミド系の樹脂の重量平均分子量(以下、「Mw」)は、表示装置における発光素子の信頼性向上の観点から、ゲルパーミエーションクロマトグラフィー(以下、「GPC」)で測定されるポリスチレン換算で、1,000以上が好ましく、3,000以上がより好ましく、5,000以上がさらに好ましい。一方、Mwは、現像後の残渣抑制、及びパターン形状の低テーパー化の観点から、100,000以下が好ましく、50,000以下がより好ましく、30,000以下がさらに好ましく、20,000以下が特に好ましい。ポリイミド系の樹脂は公知の方法で合成できる。それぞれの樹脂の合成に用いられるテトラカルボン酸、トリカルボン酸、ジカルボン酸、及びそれらの誘導体、並びに、ジアミン、ビスアミノフェノール化合物、モノアミン、及びそれらの誘導体としては、例えば、国際公開第2017/057281号又は国際公開第2017/159876号に記載の化合物が挙げられる。
 <(A)アルカリ可溶性樹脂;ポリシロキサン>
 以下、ポリシロキサンである(A1-7)樹脂及び(A2-g)樹脂について、まとめて記載する。ポリシロキサンとしては、例えば、三官能オルガノシラン、四官能オルガノシラン、二官能オルガノシラン、及び一官能オルガノシランからなる群より選ばれる一種類以上を加水分解し、脱水縮合させて得られる樹脂が挙げられる。
 ポリシロキサンは、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点、並びに、表示装置における発光素子の信頼性向上の観点から、一般式(9)で表される三官能オルガノシラン単位及び/又は一般式(10)で表される四官能オルガノシラン単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000008
 一般式(9)において、R41は、水素原子又は1価の有機基を表す。一般式(9)及び一般式(10)において、*~*は、それぞれ独立して、樹脂中の結合点を表す。一般式(9)において、R41は、水素原子、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、炭素数1~10のハロゲン化アルキル基、炭素数4~10のハロゲン化シクロアルキル基、又は炭素数6~15のハロゲン化アリール基が好ましい。上述したアルキル基、シクロアルキル基、アリール基、ハロゲン化アルキル基、ハロゲン化シクロアルキル基、及びハロゲン化アリール基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。
 ポリシロキサンに占める、一般式(9)で表される三官能オルガノシラン単位の含有比率は、Si原子mol比で50~100mol%が好ましく、60~100mol%がより好ましく、70~100mol%がさらに好ましい。三官能オルガノシラン単位は、現像後の残渣抑制の観点から、エポキシ基を有するオルガノシラン単位が好ましい。
 ポリシロキサンに占める、一般式(10)で表される四官能オルガノシラン単位の含有比率は、現像後の残渣抑制の観点から、Si原子mol比で1mol%以上が好ましく、5mol%以上がより好ましく、10mol%以上がさらに好ましい。一方、一般式(10)で表される四官能オルガノシラン単位の含有比率は、パターン形状の低テーパー化の観点から、Si原子mol比で40mol%以下が好ましく、30mol%以下がより好ましく、20mol%以下がさらに好ましい。
 <アルカリ可溶性基>
 ポリシロキサンは、樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つにアルカリ可溶性基として酸性基を有する。ポリシロキサンは、酸性基を有するオルガノシラン単位を有する樹脂が好ましい。また、樹脂が有する一部のヒドロキシ基などと、多官能カルボン酸二無水物とを反応させて得られる樹脂も好ましく、樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つに、触媒を用いた反応により酸性基を導入した樹脂も好ましい。
 <ラジカル重合性基>
 (A2)樹脂である(A2-g)樹脂は、ラジカル重合性基を有する。(A2-g)樹脂は、ラジカル重合性基を有するオルガノシラン単位を有する樹脂が好ましい。また、樹脂が有する一部の酸性基などと、ラジカル重合性基を有する化合物とを反応させて得られる樹脂も好ましく、樹脂の側鎖及び樹脂の末端のうち少なくとも1つに、触媒を用いた反応によりラジカル重合性基を導入した樹脂も好ましい。(A2-g)樹脂の二重結合当量は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、500g/mol以上が好ましく、700g/mol以上がより好ましく、1,000g/mol以上がさらに好ましい。一方、二重結合当量は、露光時の感度向上の観点、及び、表示装置における発光素子の信頼性向上の観点から、3,000g/mol以下が好ましく、2,000g/mol以下がより好ましく、1,500g/mol以下がさらに好ましい。
 <その他の構造単位、及び分子量>
 ポリシロキサンが有する構造単位は、パターン形状の低テーパー化の観点から、二官能オルガノシラン単位又は一官能オルガノシラン単位も好ましい。また、表示装置における発光素子の信頼性向上の観点から、芳香族基を有するオルガノシラン単位も好ましい。各オルガノシラン単位は、規則的な配列又は不規則的な配列のいずれであっても構わない。規則的な配列としては、例えば、交互共重合、周期的共重合、ブロック共重合、又はグラフト共重合などが挙げられる。不規則的な配列としては、例えば、ランダム共重合などが挙げられる。また、各オルガノシラン単位は、二次元的な配列又は三次元的な配列のいずれであっても構わない。二次元的な配列としては、例えば、直鎖状が挙げられる。三次元的な配列としては、例えば、梯子状、籠状、又は網目状などが挙げられる。
 ポリシロキサンのMwは、表示装置における発光素子の信頼性向上の観点から、GPCで測定されるポリスチレン換算で、500以上が好ましく、1,000以上がより好ましい。一方、Mwは、現像後の残渣抑制、及びパターン形状の低テーパー化の観点から、50,000以下が好ましく、10,000以下がより好ましい。ポリシロキサンは公知の方法で合成できる。オルガノシランとしては、例えば、国際公開第2017/057281号又は国際公開第2017/159876号に記載の化合物が挙げられる。
 <(A)アルカリ可溶性樹脂;多環側鎖含有樹脂>
 以下、多環側鎖含有樹脂である(A2-1)樹脂について記載する。多環側鎖含有樹脂としては、例えば、以下の(1-a2-1)~(6-a2-1)で得られる樹脂が挙げられる。必要に応じて、いずれかの反応段階において多官能アルコール化合物をさらに反応させても構わない。
(1-a2-1)多官能フェノール化合物と多官能カルボン酸二無水物とを反応させて得られる化合物に、エポキシ化合物を反応させて得られる樹脂。
(2-a2-1)多官能フェノール化合物とエポキシ化合物とを反応させて得られる化合物に、多官能カルボン酸二無水物を反応させて得られる樹脂。
(3-a2-1)環状骨格含有多官能アルコール化合物と多官能カルボン酸二無水物とを反応させて得られる化合物に、エポキシ化合物を反応させて得られる樹脂。
(4-a2-1)環状骨格含有多官能アルコール化合物とエポキシ化合物とを反応させて得られる化合物に、多官能カルボン酸二無水物を反応させて得られる樹脂。
(5-a2-1)多官能エポキシ化合物と多官能カルボン酸化合物とを反応させて得られる化合物に、エポキシ化合物を反応させて得られる樹脂。
(6-a2-1)多官能エポキシ化合物とカルボン酸化合物とを反応させて得られる化合物に、多官能カルボン酸二無水物を反応させて得られる樹脂。
 多環側鎖含有樹脂は、樹脂の構造単位中に、主鎖と環状骨格を有する嵩高い側鎖とが1つの原子で繋がれた構造を有する。また、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、一般式(41)で表される構造単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000009
 一般式(41)において、X41及びX42は、それぞれ独立して、直接結合、一般式(42)又は一般式(43)で表される置換基を表す。Y41は、カルボン酸残基又はカルボン酸誘導体残基である3~4価の有機基を表す。Wは、芳香族基を少なくとも2つ有する有機基を表す。R101及びR102は、それぞれ独立して、水素原子又は炭素数1~6のアルキル基を表し、R103及びR104は、それぞれ独立して、水素原子、炭素数1~10のアルキル基、又はラジカル重合性基を有する有機基を表す。a及びbは、それぞれ独立して、0~10の整数を表す。cは0又は1を表す。一般式(42)及び一般式(43)において、R105及びR106は、それぞれ独立して、水素原子、炭素数1~10のアルキル基、又はラジカル重合性基を有する有機基を表す。*及び*は、それぞれ独立して、一般式(41)中のWとの結合点又は炭素原子との結合点を表す。*及び*は、それぞれ独立して、一般式(41)中の酸素原子との結合点を表す。
 一般式(41)において、Y41は、炭素数2~20の脂肪族構造、炭素数4~20の脂環式構造、又は炭素数6~30の芳香族構造を有する3~4価の有機基が好ましい。現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点、並びに、表示装置における発光素子の信頼性向上の観点から、Wは、一般式(44)~(49)のいずれかで表される置換基が好ましい。R103及びR104は、それぞれ独立して、水素原子又はラジカル重合性基を有する有機基が好ましい。一般式(41)~(43)中、R103~R106におけるラジカル重合性基を有する有機基は、(メタ)アクリロイル基又は一般式(50)で表される置換基が好ましい。上述したアルキル基、脂肪族構造、脂環式構造、及び芳香族構造は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。
Figure JPOXMLDOC01-appb-C000010
 一般式(44)~(49)において、X43~X52は、それぞれ独立して、単環式又は縮合多環式の炭化水素環を表す。Y43及びY53は、それぞれ独立して、直接結合、炭素原子、窒素原子、酸素原子、又は硫黄原子を表す。R107~R117は、それぞれ独立して、ハロゲン原子又は炭素数1~10のアルキル基を表す。R118~R124は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、又は炭素数6~15のアリール基を表す。a、b、c、及びdは、それぞれ独立して、0~4の整数を表す。e及びfは、それぞれ独立して、0~5の整数を表す。g、h、及びiは、それぞれ独立して、0~4の整数を表す。j及びkは、それぞれ独立して、0~3の整数を表す。Y43が直接結合、酸素原子、又は硫黄原子の場合、lは0である。Y43が窒素原子の場合、lは1である。Y43が炭素原子の場合、lは2である。Y53が直接結合、酸素原子、又は硫黄原子の場合、mは0である。Y53が窒素原子の場合、mは1である。Y53が炭素原子の場合、mは2である。*~*は、それぞれ独立して、上述した一般式(47)中のX41との結合点又は酸素原子との結合点を表す。*~*12は、それぞれ独立して、上述した一般式(47)中のX42との結合点又は酸素原子との結合点を表す。
 一般式(44)~(49)において、X43~X52は、それぞれ独立して、炭素数6~15の単環式又は縮合多環式の炭化水素環が好ましい。Y43及びY53は、それぞれ独立して、直接結合又は酸素原子が好ましい。上述したアルキル基、シクロアルキル基、アリール基、及び単環式若しくは縮合多環式の芳香族炭化水素環は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。
Figure JPOXMLDOC01-appb-C000011
 一般式(50)において、X54は、直接結合、炭素数1~10のアルキレン基、炭素数4~10のシクロアルキレン基、又は炭素数6~15のアリーレン基を表す。R125は、ビニル基、アリル基、クロトニル基、スチリル基、シンナモイル基、マレイミド基、又は(メタ)アクリロイル基を表す。R126は、水素原子、炭素数1~10のアルキル基、又はカルボキシ基を有するカルボン酸誘導体残基を表す。上述したアルキレン基、シクロアルキレン基、及びアリーレン基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。
 多環側鎖含有樹脂は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点、並びに、表示装置における発光素子の信頼性向上の観点から、縮合多環式構造を有する構造単位又は縮合多環式ヘテロ環構造を有する構造単位を有することが好ましい。縮合多環式構造又は縮合多環式ヘテロ環構造は、フルオレン骨格、キサンテン骨格、又はイソインドリノン骨格が好ましい。上述した一般式(41)において、Wが一般式(44)又は一般式(49)であり、Y43が直接結合又は酸素原子であると、フルオレン骨格を有する構造単位又はキサンテン骨格を有する構造単位を有する。また、上述した一般式(41)において、Wが一般式(48)であると、イソインドリノン骨格を有する構造単位を有する。
 <アルカリ可溶性基>
 多環側鎖含有樹脂は、樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つにアルカリ可溶性基として酸性基を有する。多環側鎖含有樹脂は、多官能カルボン酸化合物に由来する構造単位、多官能カルボン酸二無水物に由来する構造単位、及び酸性基を有する末端構造のうち少なくとも1つを有することが好ましい。また、樹脂が有する一部のヒドロキシ基などと、多官能カルボン酸二無水物とを反応させて得られる樹脂も好ましく、樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つに、触媒を用いた反応により酸性基を導入した樹脂も好ましい。
 <ラジカル重合性基>
 (A2)樹脂である(A2-1)樹脂は、ラジカル重合性基を有する。(A2-1)樹脂は、ラジカル重合性基を有するエポキシ化合物に由来する構造単位、ラジカル重合性基を有するカルボン酸化合物に由来する構造単位、及びラジカル重合性基を有する末端構造のうち少なくとも1つを有することが好ましい。また、樹脂が有する一部の酸性基などと、ラジカル重合性基を有する化合物とを反応させて得られる樹脂も好ましく、樹脂の側鎖及び樹脂の末端のうち少なくとも1つに、触媒を用いた反応によりラジカル重合性基を導入した樹脂も好ましい。(A2-1)樹脂の二重結合当量は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、300g/mol以上が好ましく、400g/mol以上がより好ましく、500g/mol以上がさらに好ましい。一方、二重結合当量は、露光時の感度向上の観点、及び、表示装置における発光素子の信頼性向上の観点から、1,500g/mol以下が好ましく、1,000g/mol以下がより好ましく、700g/mol以下がさらに好ましい。
 <その他の構造単位、末端封止剤、及び分子量>
 多環側鎖含有樹脂が有する構造単位は、表示装置における発光素子の信頼性向上の観点から、芳香族多官能カルボン酸化合物に由来する構造単位又は芳香族多官能カルボン酸二無水物に由来する構造単位などの芳香族基を有する構造単位も好ましい。また、樹脂の末端が、モノカルボン酸、ジカルボン酸無水物、又はトリカルボン酸無水物などの末端封止剤で封止された構造を有することも好ましい。
 多環側鎖含有樹脂のMwは、表示装置における発光素子の信頼性向上の観点から、GPCで測定されるポリスチレン換算で、500以上が好ましく、1,000以上がより好ましい。一方、Mwは、現像後の残渣抑制、及びパターン形状の低テーパー化の観点から、50,000以下が好ましく、10,000以下がより好ましい。多環側鎖含有樹脂は公知の方法で合成できる。フェノール化合物、アルコール化合物、エポキシ化合物、カルボン酸無水物、及びカルボン酸化合物としては、例えば、国際公開第2017/057281号又は国際公開第2017/159876号に記載の化合物が挙げられる。
 多環側鎖含有樹脂としては、例えば、“ADEKA ARKLS”(登録商標) WR-101若しくは同 WR-301(以上、いずれもADEKA社製)、又は“OGSOL”(登録商標) CR-1030(大阪ガスケミカル社製)が挙げられる。
 <(A)アルカリ可溶性樹脂;酸変性エポキシ樹脂>
 以下、酸変性エポキシ樹脂である(A2-2)樹脂について記載する。酸変性エポキシ樹脂としては、例えば、以下の(1-a2-2)~(2-a2-2)で得られる樹脂が挙げられる。必要に応じて、いずれかの反応段階において多官能アルコール化合物をさらに反応させても構わない。
(1-a2-2)多官能エポキシ化合物と多官能カルボン酸化合物とを反応させて得られる化合物に、エポキシ化合物を反応させて得られる樹脂。
(2-a2-2)多官能エポキシ化合物とカルボン酸化合物とを反応させて得られる化合物に、多官能カルボン酸二無水物を反応させて得られる樹脂。
 酸変性エポキシ樹脂は、樹脂の構造単位中に環状骨格を有する。また、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、一般式(61)、(62)及び(63)のいずれかで表される構造単位からなる群より選ばれる一種類以上を有することが好ましい。
Figure JPOXMLDOC01-appb-C000012
 一般式(61)~(63)において、X61及びX62は、それぞれ独立して、炭素数1~6の脂肪族構造を表す。X63は、炭素数1~6のアルキレン基を表す。Wは、芳香族基を少なくとも1つ有する有機基を表す。R141及びR142は、それぞれ独立して、ハロゲン原子、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、又は炭素数6~15のアリール基を表す。R143は、ハロゲン原子又は炭素数1~10のアルキル基を表す。R144~R146は、それぞれ独立して、ハロゲン原子、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、又は一般式(69)で表される置換基を表す。R147は、水素原子又は一般式(70)で表される置換基を表す。R148及びR149は、それぞれ独立して、ラジカル重合性基を有する有機基を表す。a及びbは、それぞれ独立して、0~10の整数を表す。cは0~14の整数を表す。dは0~3の整数を表す。e及びfは、それぞれ独立して、0~4の整数を表す。
 一般式(61)において、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点、並びに、表示装置における発光素子の信頼性向上の観点から、Wは、一般式(64)~(68)のいずれかで表される置換基が好ましい。一般式(61)~(63)中、R148及びR149におけるラジカル重合性基を有する有機基は、(メタ)アクリロイル基、又は一般式(72)若しくは一般式(73)で表される置換基が好ましい。上述した脂肪族構造、アルキレン基、アルキル基、シクロアルキル基、及びアリール基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。
Figure JPOXMLDOC01-appb-C000013
 一般式(64)~(68)において、X64は、炭素数1~6の脂肪族構造を表す。X65及びX66は、それぞれ独立して、単環式又は縮合多環式の炭化水素環を表す。Y65は、直接結合、炭素原子、窒素原子、酸素原子、又は硫黄原子を表す。R150は、ハロゲン原子、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、又は炭素数6~15のアリール基を表す。R151~R159は、それぞれ独立して、ハロゲン原子、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、又は一般式(69)で表される置換基を表す。R160~R162は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、又は炭素数6~15のアリール基を表す。R163~R169は、それぞれ独立して、ラジカル重合性基を有する有機基を表す。aは0~10の整数を表す。bは0~3の整数を表す。cは0~5の整数を表す。dは0~3の整数を表す。e、f、g、及びhは、それぞれ独立して、0~4の整数を表す。i及びjは、それぞれ独立して、0~3の整数を表す。Y65が直接結合、酸素原子、又は硫黄原子の場合、kは0である。Y65が窒素原子の場合、kは1である。Y65が炭素原子の場合、kは2である。*~*は、それぞれ独立して、上述した一般式(61)中のX61との結合点を表す。*~*10は、それぞれ独立して、上述した一般式(61)中の結合点を表す。
 一般式(64)~(68)において、X65及びX66は、それぞれ独立して、炭素数6~15の単環式又は縮合多環式の炭化水素環が好ましい。Y65は、直接結合又は酸素原子が好ましい。R163~R169におけるラジカル重合性基を有する有機基は、(メタ)アクリロイル基、又は一般式(72)若しくは一般式(73)で表される置換基が好ましい。上述した脂肪族構造、アルキル基、シクロアルキル基、アリール基、及び単環式若しくは縮合多環式の芳香族炭化水素環は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。
Figure JPOXMLDOC01-appb-C000014
 一般式(69)及び一般式(70)において、R170及びR172は、それぞれ独立して、一般式(72)又は一般式(73)で表される置換基を表す。R171は、ハロゲン原子、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、又は一般式(69)若しくは一般式(71)で表される置換基を表す。aは0~4の整数を表す。一般式(71)において、R173及びR174は、それぞれ独立して、水素原子、ハロゲン原子、又は炭素数1~10のアルキル基を表す。R175は、ハロゲン原子、炭素数1~10のアルキル基、又は一般式(69)で表される置換基を表す。bは0~5の整数を表す。一般式(72)及び一般式(73)において、X67及びX68は、それぞれ独立して、直接結合、炭素数1~10のアルキレン基、炭素数4~10のシクロアルキレン基、又は炭素数6~15のアリーレン基を表す。R176及びR177は、それぞれ独立して、ビニル基、アリル基、クロトニル基、スチリル基、シンナモイル基、マレイミド基、又は(メタ)アクリロイル基を表す。R178及びR179は、それぞれ独立して、水素原子、炭素数1~10のアルキル基、又は一般式(74)で表される置換基を表す。一般式(74)において、X69は、炭素数1~6のアルキレン基、炭素数2~6のアルケニレン基、炭素数4~10のシクロアルキレン基、炭素数4~10のシクロアルケニレン基、又は炭素数6~15のアリーレン基を表す。X69は、カルボン酸無水物残基であることが好ましい。上述したアルキル基、シクロアルキル基、アリール基、アルキレン基、アルケニレン基、シクロアルキレン基、シクロアルケニレン基、及びアリーレン基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。
 酸変性エポキシ樹脂は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点、並びに、表示装置における発光素子の信頼性向上の観点から、縮合多環式構造を有する構造単位、縮合多環式ヘテロ環構造を有する構造単位、芳香環骨格及び脂環式骨格が直接連結された構造を有する構造単位、又は、少なくとも2つの芳香環骨格が直接連結された構造を有する構造単位、を有することが好ましい。縮合多環式構造又は縮合多環式ヘテロ環構造は、ナフタレン骨格、フルオレン骨格、又はキサンテン骨格が好ましい。脂環式骨格は、トリシクロ[5.2.1.02,6]デカン骨格が好ましい。少なくとも2つの芳香環骨格が直接連結された構造は、ビフェニル骨格が好ましい。上述した一般式(61)において、Wが一般式(65)~(67)のいずれかで表される置換基であり、Y65が直接結合又は酸素原子であると、ナフタレン骨格を有する構造単位、ビフェニル骨格を有する構造単位、フルオレン骨格を有する構造単位、又はキサンテン骨格を有する構造単位を有する。また、上述した一般式(62)であると、芳香環骨格及びトリシクロ[5.2.1.02,6]デカン骨格が直接連結された構造を有する構造単位を有する。
 <アルカリ可溶性基>
 酸変性エポキシ樹脂は、樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つにアルカリ可溶性基として酸性基を有する。酸変性エポキシ樹脂は、多官能カルボン酸化合物に由来する構造単位、多官能カルボン酸二無水物に由来する構造単位、及び酸性基を有する末端構造のうち少なくとも1つを有することが好ましい。酸変性エポキシ樹脂を製造する方法としては、例えば、多官能エポキシ化合物と多官能カルボン酸化合物との反応により、樹脂中にカルボキシ基を有する樹脂を得る方法や、多官能エポキシ化合物とカルボン酸化合物とを反応させた後、樹脂中の一部のヒドロキシ基と多官能カルボン酸二無水物を反応させる方法が挙げられる。また、酸変性エポキシ樹脂を製造する別の方法としては、例えば、酸性基を有さない樹脂に酸性基を導入する方法が挙げられる。より具体的には、例えば、樹脂が有する一部のヒドロキシ基などと、多官能カルボン酸二無水物とを反応させる方法や、カルボキシ基を有さない樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つに、触媒を用いた反応により酸性基を導入する方法などが挙げられる。
 <ラジカル重合性基>
 (A2)樹脂である(A2-2)樹脂は、ラジカル重合性基を有する。(A2-2)樹脂は、ラジカル重合性基を有するエポキシ化合物に由来する構造単位、ラジカル重合性基を有するカルボン酸化合物に由来する構造単位、及びラジカル重合性基を有する末端構造のうち少なくとも1つを有することが好ましい。また、樹脂が有する一部の酸性基などと、ラジカル重合性基を有する化合物とを反応させて得られる樹脂も好ましく、樹脂の側鎖及び樹脂の末端のうち少なくとも1つに、触媒を用いた反応によりラジカル重合性基を導入した樹脂も好ましい。(A2-2)樹脂の二重結合当量は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、300g/mol以上が好ましく、400g/mol以上がより好ましく、500g/mol以上がさらに好ましい。一方、二重結合当量は、露光時の感度向上の観点、及び、表示装置における発光素子の信頼性向上の観点から、1,500g/mol以下が好ましく、1,000g/mol以下がより好ましく、700g/mol以下がさらに好ましい。
 <その他の構造単位、末端封止剤、及び分子量>
 酸変性エポキシ樹脂が有する構造単位は、表示装置における発光素子の信頼性向上の観点から、芳香族多官能カルボン酸化合物に由来する構造単位又は芳香族多官能カルボン酸二無水物に由来する構造単位などの芳香族基を有する構造単位も好ましい。また、樹脂の末端が、モノカルボン酸、ジカルボン酸無水物、又はトリカルボン酸無水物などの末端封止剤で封止された構造を有することも好ましい。
 酸変性エポキシ樹脂のMwは、表示装置における発光素子の信頼性向上の観点から、GPCで測定されるポリスチレン換算で、500以上が好ましく、1,000以上がより好ましい。一方、Mwは、現像後の残渣抑制、及びパターン形状の低テーパー化の観点から、50,000以下が好ましく、20,000以下がより好ましい。酸変性エポキシ樹脂は公知の方法で合成できる。エポキシ化合物、カルボン酸無水物、及びカルボン酸化合物としては、例えば、国際公開第2017/057281号又は国際公開第2017/159876号に記載の化合物が挙げられる。
 酸変性エポキシ樹脂としては、例えば、“KAYARAD”(登録商標) PCR-1222H、同 CCR-1171H、同 TCR-1348H、同 ZAR-1494H、同 ZFR-1401H、同 ZCR-1798H、同 ZXR-1807H、同 ZCR-6002H、又は同 ZCR-8001H(以上、いずれも日本化薬社製)が挙げられる。
 <(A)アルカリ可溶性樹脂;アクリル樹脂>
 以下、アクリル樹脂である(A2-3)樹脂について記載する。アクリル樹脂としては、例えば、(メタ)アクリル酸誘導体、(メタ)アクリル酸エステル誘導体、スチレン誘導体、及びその他の共重合成分からなる群より選ばれる一種類以上をラジカル共重合させて得られる樹脂が挙げられる。アクリル樹脂は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、一般式(81)で表される構造単位及び/又は一般式(82)で表される構造単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000015
 一般式(81)及び一般式(82)において、X81は、直接結合又は炭素数1~10のアルキレン基を表す。X82は、直接結合、炭素数1~10のアルキレン基、炭素数4~10のシクロアルキレン基、又は炭素数6~15のアリーレン基を表す。R201~R206は、それぞれ独立して、水素原子又は炭素数1~6のアルキル基を表す。R207は、水素原子、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、炭素数1~10のハロゲン化アルキル基、炭素数4~10のハロゲン化シクロアルキル基、又は炭素数6~15のハロゲン化アリール基を表す。R208は、ビニル基、アリル基、クロトニル基、スチリル基、シンナモイル基、マレイミド基、又は(メタ)アクリロイル基を表す。R209は、水素原子、炭素数1~10のアルキル基、又は一般式(83)で表される置換基を表す。一般式(83)において、X83は、炭素数1~6のアルキレン基、炭素数2~6のアルケニレン基、炭素数4~10のシクロアルキレン基、炭素数4~10のシクロアルケニレン基、又は炭素数6~15のアリーレン基を表す。X83は、カルボン酸無水物残基であることが好ましい。一般式(81)において、X81が直接結合であり、R207が水素原子であることが好ましい。上述したアルキル基、シクロアルキル基、アリール基、ハロゲン化アルキル基、ハロゲン化シクロアルキル基、ハロゲン化アリール基、アルキレン基、アルケニレン基、シクロアルキレン基、シクロアルケニレン基、及びアリーレン基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。
 <アルカリ可溶性基>
 アクリル樹脂は、樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つにアルカリ可溶性基として酸性基を有する。アクリル樹脂は、(メタ)アクリル酸誘導体に由来する構造単位、又は酸性基を有する末端構造を有することが好ましい。また、樹脂が有する一部のヒドロキシ基などと、多官能カルボン酸二無水物とを反応させて得られる樹脂も好ましく、樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つに、触媒を用いた反応により酸性基を導入した樹脂も好ましい。
 <ラジカル重合性基>
 (A2)樹脂である(A2-3)樹脂は、ラジカル重合性基を有する。(A2-3)樹脂は、樹脂が有する一部の酸性基などと、ラジカル重合性基を有するエポキシ化合物などとを反応させて得られる樹脂が好ましい。また、樹脂が有するエポキシ基などと、ラジカル重合性基を有するカルボン酸化合物などとを反応させて得られる樹脂も好ましい。また、樹脂の側鎖及び樹脂の末端のうち少なくとも1つに、触媒を用いた反応によりラジカル重合性基を導入した樹脂も好ましい。(A2-3)樹脂の二重結合当量は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、500g/mol以上が好ましく、700g/mol以上がより好ましく、1,000g/mol以上がさらに好ましい。一方、二重結合当量は、露光時の感度向上の観点、及び、表示装置における発光素子の信頼性向上の観点から、4,000g/mol以下が好ましく、3,000g/mol以下がより好ましく、2,000g/mol以下がさらに好ましく、1,500g/mol以下が特に好ましい。
 <その他の構造単位、及び分子量>
 アクリル樹脂が有する構造単位は、表示装置における発光素子の信頼性向上の観点から、芳香族(メタ)アクリル酸エステル誘導体に由来する構造単位又はスチレン誘導体に由来する構造単位などの芳香族基を有する構造単位も好ましく、脂環式(メタ)アクリル酸エステル誘導体に由来する構造単位などの脂環式基を有する構造単位も好ましい。
 アクリル樹脂のMwは、表示装置における発光素子の信頼性向上の観点から、GPCで測定されるポリスチレン換算で、1,000以上が好ましく、3,000以上がより好ましい。一方、Mwは、現像後の残渣抑制、及びパターン形状の低テーパー化の観点から、50,000以下が好ましく、20,000以下がより好ましい。アクリル樹脂は公知の方法で合成できる。(メタ)アクリル酸誘導体、(メタ)アクリル酸エステル誘導体、スチレン誘導体、及びその他の共重合成分としては、例えば、国際公開第2017/057281号又は国際公開第2017/159876号に記載の化合物が挙げられる。
 <(A)アルカリ可溶性樹脂;(A3x)樹脂、(A3y)樹脂、及び(A3z)樹脂>
 本発明の感光性組成物において、全固形分におけるフェノール当量が、400~6,000g/molであって、(A)アルカリ可溶性樹脂が、フェノール性水酸基を有する場合、本発明の感光性組成物は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点、並びに、表示装置における発光素子の信頼性向上の観点から、(A)アルカリ可溶性樹脂が、(A3)樹脂を含み、(A3)樹脂が、(A3-1)樹脂、(A3-2)樹脂、(A3-3)樹脂、及び(A3-4)樹脂からなる群より選ばれる一種類以上を含有し、
(A3-1)樹脂、(A3-2)樹脂、(A3-3)樹脂、及び(A3-4)樹脂が、以下の(3x)構造単位、(3y)構造単位、及び(3z)構造単位からなる群より選ばれる一種類以上を有し、
(3y)構造単位における芳香族基が、フェノール性水酸基が結合する芳香環とは別の芳香族基であって、
(3z)構造単位における第二の芳香族基が、フェノール性水酸基が結合する芳香環を除く芳香族基であることが好ましい。
(3x)構造単位:フェノール性水酸基を少なくとも2つ含む構造単位
(3y)構造単位:フェノール性水酸基、及び芳香族基を含む構造単位
(3z)構造単位:フェノール性水酸基を含む構造単位、及び第二の芳香族基を含む構造単位。
 ここで(3y)構造単位における芳香族基は、フェノール性水酸基が結合する芳香環とは別の芳香族基である。また(3z)構造単位における第二芳香族基は、フェノール性水酸基が結合する芳香環を除く芳香族基である。なお第二芳香族基とは、(3y)構造単位における芳香族基(フェノール性水酸基が結合する芳香環とは別の芳香族基をいう)と区別するための呼称である。
 本発明の感光性組成物は、(A3-1)樹脂、(A3-2)樹脂、(A3-3)樹脂、及び(A3-4)樹脂からなる群より選ばれる一種類以上が、上記(3x)構造単位、(3y)構造単位、及び(3z)構造単位からなる群より選ばれる一種類以上を有することが好ましく、(A3-1)樹脂、(A3-2)樹脂、(A3-3)樹脂、及び(A3-4)樹脂の全てが、上記(3x)構造単位、(3y)構造単位、及び(3z)構造単位からなる群より選ばれる一種類以上を有することがより好ましい。
 (A3)樹脂は、以下の(A3x)樹脂、(A3y)樹脂、及び(A3z)樹脂からなる群より選ばれる一種類以上を含有することが好ましい。(A3)樹脂は、(A3x)樹脂及び/又は(A3y)樹脂を含有することがより好ましく、(A3x)樹脂を含有することがさらに好ましい。(A3)樹脂は、(A3x)樹脂を含有し、さらに(A3y)樹脂及び/又は(A3z)樹脂を含有することも好ましい。(A3)樹脂は、単一の樹脂又はそれらの共重合体のいずれであっても構わない。
(A3x)樹脂:(3x)構造単位を有する樹脂
(A3y)樹脂:(3y)構造単位を有する樹脂
(A3z)樹脂:(3z)構造単位を有する樹脂。
 (A3x)樹脂は、樹脂が有する1つの構造単位中に、フェノール性水酸基を少なくとも2つ含む樹脂である。
(A3y)樹脂は、樹脂が有する1つの構造単位中に、フェノール性水酸基及び芳香族基を含む樹脂である。ここで芳香族基は、フェノール性水酸基が結合する芳香環とは別の芳香族基である。
(A3z)樹脂は、樹脂が有する1つの構造単位中にフェノール性水酸基を含み、さらに、樹脂が有する別の構造単位中に第二の芳香族基を含む樹脂である。ここで第二芳香族基は、フェノール性水酸基が結合する芳香環を除く芳香族基である。
 なお(3x)構造単位を有し、かつ、(3y)構造単位及び/又は(3z)構造単位を有する樹脂は、(A3x)樹脂に含まれる。また(3y)構造単位及び(3z)構造単位を有する樹脂は、(A3y)樹脂に含まれる。
 (3x)構造単位における少なくとも2つのフェノール性水酸基は、同一の芳香環に結合した少なくとも2つのフェノール性水酸基、又は異なる芳香環に結合した少なくとも2つのフェノール性水酸基が好ましく、異なる芳香環に結合した少なくとも2つのフェノール性水酸基がより好ましい。
(3y)構造単位における芳香族基及び(3z)構造単位における第二の芳香族基は、ベンゼン骨格、イソシアヌル酸骨格、トリアジン骨格、ビスフェノールAに由来する骨格、ビスフェノールFに由来する骨格、又はビスフェノールFに由来する骨格が好ましい。
また、(3y)構造単位における芳香族基及び(3z)構造単位における第二の芳香族基は、縮合多環式構造、縮合多環式ヘテロ環構造、芳香環骨格及び脂環式骨格が直接連結された構造、又は少なくとも2つの芳香環骨格が直接連結された構造を有することが好ましく、縮合多環式構造又は縮合多環式ヘテロ環構造を有することがより好ましい。
 縮合多環式構造は、ナフタレン骨格、アントラセン骨格、インダン骨格、インデン骨格、フルオレン骨格、ベンゾインダン骨格、ベンゾインデン骨格、ベンゾフルオレン骨格、ジベンゾフルオレン骨格、ジヒドロナフタレン骨格、テトラヒドロナフタレン骨格、ジヒドロアントラセン骨格、又はジヒドロフェナントレン骨格が好ましく、ナフタレン骨格、アントラセン骨格、フルオレン骨格、ベンゾフルオレン骨格、ジヒドロアントラセン骨格がより好ましい。
縮合多環式ヘテロ環構造は、カルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格、ベンゾカルバゾール骨格、ナフトベンゾフラン骨格、ナフトベンゾチオフェン骨格、インドール骨格、ベンゾフラン骨格、ベンゾチオフェン骨格、インドリン骨格、インドリノン骨格、イソインドリノン骨格、アクリジン骨格、キサンテン骨格、又はチオキサンテン骨格が好ましく、カルバゾール骨格、ジベンゾフラン骨格、ベンゾカルバゾール骨格、インドリノン骨格、イソインドリノン骨格、アクリジン骨格、又はキサンテン骨格がより好ましい。
芳香環骨格及び脂環式骨格が直接連結された構造における芳香環骨格は、上記の芳香族基又は縮合多環式構造が好ましい。
芳香環骨格及び脂環式骨格が直接連結された構造における脂環式骨格は、シクロペンタン骨格、シクロヘキサン骨格、シクロヘプタン骨格、ビシクロ[4.3.0]ノナン骨格、ビシクロ[5.4.0]ウンデカン骨格、ビシクロ[2.2.2]オクタン骨格、トリシクロ[5.2.1.02,6]デカン骨格、ぺンタシクロペンタデカン骨格、又はアダマンタン骨格が好ましい。
少なくとも2つの芳香環骨格が直接連結された構造は、ビフェニル骨格、ターフェニル骨格、又は上記の芳香族基若しくは縮合多環式構造が直接連結された構造が好ましい。
 本発明の感光性組成物において、(A3x)樹脂、(A3y)樹脂、及び(A3z)樹脂は、上述した(A3-1)樹脂、(A3-2)樹脂、(A3-3)樹脂、及び(A3-4)樹脂からなる群より選ばれる一種類以上であることも好ましい。
 <(A)アルカリ可溶性樹脂;フェノール樹脂>
 以下、フェノール樹脂である(A3-1)樹脂について記載する。フェノール樹脂としては、例えば、フェノール化合物などと、アルデヒド化合物、ケトン化合物、アルコキシメチル化合物、及びメチロール化合物からなる群より選ばれる一種類以上とを反応させて得られる樹脂が挙げられる。フェノール樹脂は、ノボラック樹脂及び/又はレゾール樹脂を含有することが好ましい。ノボラック樹脂とは、酸触媒下にて反応させて得られる樹脂をいう。レゾール樹脂とは、塩基触媒下にて反応させて得られる樹脂をいう。
 フェノール樹脂における構造単位とは、(I)フェノール化合物に由来する構造、及び(II)アルデヒド化合物、ケトン化合物、アルコキシメチル化合物、又はメチロール化合物に由来する構造、を含む繰り返し単位をいう。フェノール樹脂における構造単位は、さらに(III)その他の化合物に由来する構造を有しても構わない。
 フェノール樹脂としては、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点、並びに、表示装置における発光素子の信頼性向上の観点から、一般式(31)、(32)、(33)、(34)、(35)、(38)、(39)及び(40)のいずれかで表される構造単位を有する樹脂からなる群より選ばれる一種類以上を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000016
 一般式(31)~(35)において、X31~X37は、それぞれ独立して、炭素数1~2の脂肪族構造を表す。Y33は、炭素数1~10のアルキレン基を表す。Y35は、直接結合、炭素数1~6のアルキレン基、炭素数1~6のアルキリデン基、炭素数1~6のハロゲン化アルキレン基、炭素数1~6のハロゲン化アルキリデン基、芳香族基、縮合多環式構造、縮合多環式ヘテロ環構造、芳香環骨格及び脂環式骨格が直接連結された構造、又は少なくとも2つの芳香環骨格が直接連結された構造を表す。R71~R82は、それぞれ独立して、ハロゲン原子、炭素数1~10のアルキル基、炭素数6~15のアリール基、炭素数2~10のアルケニル基、炭素数1~10のアルコキシ基、炭素数2~10のアルケニルオキシ基、炭素数1~10のアシル基、カルボキシ基、アミノ基、又は環を形成する基を表す。環を形成する基によって連結する環は、単環式又は縮合多環式の炭化水素環を表す。R83~R88は、それぞれ独立して、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、又はヒドロキシ基を表す。aは1~4の整数を表す。bは1~5の整数を表す。mは0~3の整数を表す。nは0~4の整数を表す。cは1~4の整数を表す。o及びpは、それぞれ独立して、0~3の整数を表す。qは0~4の整数を表す。dは1~4の整数を表す。r及びsは、それぞれ独立して、0~3の整数を表す。tは0~4の整数を表す。eは1~4の整数を表す。f、g、v、及びwは、それぞれ独立して、0~4の整数を表す。uは0~3の整数を表す。hは1~3の整数を表す。xは0~2の整数を表す。y及びzは、それぞれ独立して、0又は1を表す。α、β、γ、δ、ε、及びζは、それぞれ独立して、0~4の整数を表す。*及び*は、それぞれ独立して、樹脂中の結合点を表す。
 一般式(31)~(35)において、Y35は、芳香族基、縮合多環式構造、縮合多環式ヘテロ環構造、芳香環骨格及び脂環式骨格が直接連結された構造、又は少なくとも2つの芳香環骨格が直接連結された構造が好ましく、縮合多環式構造又は縮合多環式ヘテロ環構造がより好ましい。また、上述した(3x)構造単位、(3y)構造単位、及び(3z)構造単位において、好ましい構造を例示した、芳香族基、縮合多環式構造、縮合多環式ヘテロ環構造、芳香環骨格及び脂環式骨格が直接連結された構造、又は少なくとも2つの芳香環骨格が直接連結された構造が好ましい。上述した脂肪族構造、アルキル基、シクロアルキル基、アリール基、アルケニル基、アルコキシ基、アルケニルオキシ基、アシル基、環を形成する基、アルキレン基、アルキリデン基、芳香族基、縮合多環式構造、縮合多環式ヘテロ環構造、芳香環骨格、及び脂環式骨格は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。環を形成する基によって形成される縮合多環式の炭化水素環は、ナフタレン環、アントラセン環、ピレン環、インダン環、インデン環、テトラヒドロナフタレン環、フルオレン環、キサンテン環、又はイソインドリノン環が好ましい。
Figure JPOXMLDOC01-appb-C000017
 一般式(38)~(40)において、Z31~Z34は、それぞれ独立して、炭素数1~2の脂肪族構造を表す。W32は、芳香族基、縮合多環式構造、縮合多環式ヘテロ環構造、芳香環骨格及び脂環式骨格が直接連結された構造、又は少なくとも2つの芳香環骨格が直接連結された構造を表す。W34は、直接結合、炭素数1~6のアルキレン基、炭素数1~6のアルキリデン基、炭素数1~6のハロゲン化アルキレン基、炭素数1~6のハロゲン化アルキリデン基、芳香族基、縮合多環式構造、縮合多環式ヘテロ環構造、芳香環骨格及び脂環式骨格が直接連結された構造、又は少なくとも2つの芳香環骨格が直接連結された構造を表す。R91~R96は、それぞれ独立して、ハロゲン原子、炭素数1~10のアルキル基、炭素数6~15のアリール基、炭素数2~10のアルケニル基、炭素数1~10のアルコキシ基、炭素数2~10のアルケニルオキシ基、炭素数1~10のアシル基、カルボキシ基、アミノ基、又は環を形成する基を表す。環を形成する基によって連結する環は、単環式又は縮合多環式の炭化水素環を表す。R97~R99は、それぞれ独立して、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、又はヒドロキシ基を表す。aは1~4の整数を表す。mは0~3の整数を表す。nは0~5の整数を表す。bは1~4の整数を表す。oは0~3の整数を表す。pは0~10の整数を表す。ただしW32の価数をXとすると、0≦p≦(X-2)である。c及びdは、それぞれ独立して、1~4の整数を表す。q及びrは、それぞれ独立して、0~3の整数を表す。α、β、及びγは、それぞれ独立して、0~4の整数を表す。一般式(38)~(40)において、W32は、縮合多環式構造又は縮合多環式ヘテロ環構造が好ましい。W34は、芳香族基、縮合多環式構造、縮合多環式ヘテロ環構造、芳香環骨格及び脂環式骨格が直接連結された構造、又は少なくとも2つの芳香環骨格が直接連結された構造が好ましく、縮合多環式構造又は縮合多環式ヘテロ環構造がより好ましい。また、W32及びW34は、それぞれ独立して、上述した(3x)構造単位、(3y)構造単位、及び(3z)構造単位において、好ましい構造を例示した、芳香族基、縮合多環式構造、縮合多環式ヘテロ環構造、芳香環骨格及び脂環式骨格が直接連結された構造、又は少なくとも2つの芳香環骨格が直接連結された構造が好ましい。上述した脂肪族構造、アルキル基、シクロアルキル基、アリール基、アルケニル基、アルコキシ基、アルケニルオキシ基、アシル基、環を形成する基、アルキレン基、アルキリデン基、芳香族基、縮合多環式構造、縮合多環式ヘテロ環構造、芳香環骨格、及び脂環式骨格は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。環を形成する基によって形成される縮合多環式の炭化水素環は、ナフタレン環、アントラセン環、ピレン環、インダン環、インデン環、テトラヒドロナフタレン環、フルオレン環、キサンテン環、又はイソインドリノン環が好ましい。
 なおフェノール樹脂が、一般式(31)、(32)、(33)、(35)及び(40)のいずれかで表される構造単位からなる群より選ばれる一種類以上を有する場合、(A3x)樹脂に含まれる。
フェノール樹脂が、一般式(34)で表される構造単位を有し、一般式(34)において、f及びgが、それぞれ独立して、1~4の整数を表す場合、(A3x)樹脂に含まれる。またフェノール樹脂が、一般式(34)で表される構造単位を有し、一般式(34)において、f及びgが0である場合、(A3y)樹脂に含まれる。
フェノール樹脂が、一般式(38)で表される構造単位及び/又は一般式(39)で表される構造単位を有する場合、(A3y)樹脂に含まれる。
 フェノール樹脂の全構造単位に占める、上述した一般式(31)で表される構造単位の含有比率は、50mol%以上が好ましく、60mol%以上がより好ましく、70mol%以上がさらに好ましい。一方、上述した一般式(31)で表される構造単位の含有比率は、100mol%以下が好ましく、90mol%以下がより好ましい。
フェノール樹脂の全構造単位に占める、上述した一般式(32)で表される構造単位の含有比率は、50~100mol%が好ましく、60~100mol%以上がより好ましく、70~100mol%がさらに好ましい。
フェノール樹脂の全構造単位に占める、上述した一般式(33)で表される構造単位の含有比率は、5mol%以上が好ましく、10mol%以上がより好ましく、15mol%以上がさらに好ましく、20mol%以上が特に好ましい。一方、上述した一般式(33)で表される構造単位の含有比率は、60mol%以下が好ましく、45mol%以下がより好ましい。
フェノール樹脂の全構造単位に占める、上述した一般式(34)で表される構造単位の含有比率は、50mol%以上が好ましく、60mol%以上がより好ましく、70mol%以上がさらに好ましい。一方、上述した一般式(34)で表される構造単位の含有比率は、100mol%以下が好ましく、90mol%以下がより好ましい。
フェノール樹脂の全構造単位に占める、上述した一般式(35)で表される構造単位の含有比率は、50~100mol%が好ましく、60~100mol%以上がより好ましく、70~100mol%がさらに好ましい。
フェノール樹脂の全構造単位に占める、上述した一般式(38)で表される構造単位の含有比率は、50mol%以上が好ましく、60mol%以上がより好ましく、70mol%以上がさらに好ましい。一方、上述した一般式(38)で表される構造単位の含有比率は、100mol%以下が好ましく、90mol%以下がより好ましい。
フェノール樹脂の全構造単位に占める、上述した一般式(39)で表される構造単位の含有比率は、5mol%以上が好ましく、10mol%以上がより好ましく、15mol%以上がさらに好ましく、20mol%以上が特に好ましい。一方、上述した一般式(39)で表される構造単位の含有比率は、70mol%以下が好ましく、60mol%以下がより好ましく、50mol%以下がさらに好ましい。
フェノール樹脂の全構造単位に占める、上述した一般式(40)で表される構造単位の含有比率は、5mol%以上が好ましく、10mol%以上がより好ましく、15mol%以上がさらに好ましく、20mol%以上が特に好ましい。一方、上述した一般式(40)で表される構造単位の含有比率は、70mol%以下が好ましく、60mol%以下がより好ましく、50mol%以下がさらに好ましい。
 フェノール樹脂は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、一般式(36)で表される構造単位を有することが好ましい。フェノール樹脂の全構造単位に占める、一般式(36)で表される構造単位の含有比率は、50~100mol%が好ましく、60~100mol%がより好ましく、70~100mol%がさらに好ましい。
Figure JPOXMLDOC01-appb-C000018
 一般式(36)において、X38は、炭素数1~6の脂肪族構造を表す。R89は、ハロゲン原子、炭素数1~10のアルキル基、炭素数6~15のアリール基、炭素数2~10のアルケニル基、炭素数1~10のアルコキシ基、炭素数2~10のアルケニルオキシ基、炭素数1~10のアシル基、カルボキシ基、アミノ基、又は環を形成する基を表す。環を形成する基によって連結する環は、単環式又は縮合多環式の炭化水素環を表す。R90は、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、又は炭素数6~15のアリール基を表す。aは1~4の整数を表す。bは0~3の整数を表す。αは0~4の整数を表す。上述した脂肪族構造、アルキル基、アリール基、アルケニル基、アルコキシ基、アシル基、環を形成する基、及びアルキレン基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。環を形成する基によって形成される縮合多環式の炭化水素環は、ナフタレン環、アントラセン環、ピレン環、インダン環、インデン環、テトラヒドロナフタレン環、フルオレン環、キサンテン環、又はイソインドリノン環が好ましい。
 <アルカリ可溶性基>
 フェノール樹脂は、樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つにアルカリ可溶性基としてフェノール性水酸基を有する。フェノール樹脂は、フェノール化合物と、アルデヒド化合物、アルコキシメチル化合物、及びメチロール化合物からなる群より選ばれる一種類以上とを反応させて得られる樹脂が好ましい。また、樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つに、触媒を用いた反応によりフェノール性水酸基を導入した樹脂も好ましい。なお、カルボキシ基及び/又はカルボン酸無水物基を有しても構わない。例えば、樹脂が有するフェノール性水酸基とカルボン酸無水物とを反応させて得られる樹脂、又はフェノール化合物としてカルボキシ基及び/又はカルボン酸無水物基を有するフェノール化合物を反応させて得られる樹脂が挙げられる。
 <ラジカル重合性基>
 フェノール樹脂は、以下の(A3b-1)樹脂を含有することが好ましい。(A3b-1)樹脂は、少なくとも1つのラジカル重合性基を有する(A3b)樹脂である。
(A3b-1)樹脂:不飽和基含有フェノール樹脂。
 (A3b-1)樹脂は、樹脂が有する一部の酸性基などと、ラジカル重合性基を有するエポキシ化合物などとを反応させて得られる樹脂が好ましい。また、樹脂の側鎖及び樹脂の末端のうち少なくとも1つに、触媒を用いた反応によりラジカル重合性基を導入した樹脂も好ましい。なお、(A)アルカリ可溶性樹脂が(A3b-1)樹脂を含有する場合、(A)アルカリ可溶性樹脂が、さらに以下の(A3a-1)樹脂を含有することが好ましい。不飽和基は、エチレン性不飽和二重結合基が好ましい。(A3a-1)樹脂は、ラジカル重合性基を有しない(A3a)樹脂である。
(A3a-1)樹脂:不飽和基を有しないフェノール樹脂。
 <その他の構造単位、及び分子量>
 フェノール樹脂が有する構造単位は、表示装置における発光素子の信頼性向上の観点から、芳香族アルデヒド化合物に由来する構造単位又は芳香族ケトン化合物に由来する構造単位などの芳香族基を有する構造単位も好ましく、脂環式アルデヒド化合物に由来する構造単位、脂環式ケトン化合物に由来する構造単位、脂環式アルコキシメチル化合物に由来する構造単位、又は脂環式メチロール化合物に由来する構造単位などの脂環式基を有する構造単位も好ましい。
 フェノール樹脂のMwは、表示装置における発光素子の信頼性向上の観点から、GPCで測定されるポリスチレン換算で、500以上が好ましく、1,000以上がより好ましい。一方、Mwは、現像後の残渣抑制、及びパターン形状の低テーパー化の観点から、50,000以下が好ましく、30,000以下がより好ましく、10,000以下がさらに好ましく、5,000以下がさらにより好ましく、3,000以下が特に好ましい。フェノール樹脂は公知の方法で合成できる。フェノール化合物、アルデヒド化合物、ケトン化合物、アルコキシメチル化合物、及びメチロール化合物としては、例えば、国際公開第2017/159876号に記載の化合物が挙げられる。
 <(A)アルカリ可溶性樹脂;ポリヒドロキシスチレン>
 以下、ポリヒドロキシスチレンである(A3-2)樹脂について記載する。ポリヒドロキシスチレンとしては、例えば、ヒドロキシスチレン誘導体などと、スチレン誘導体及び/又はその他の共重合成分とをラジカル共重合させて得られる樹脂が挙げられる。その他の共重合成分としては、(メタ)アクリル酸誘導体又は(メタ)アクリル酸エステル誘導体などが挙げられる。ポリヒドロキシスチレンは、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、一般式(91)で表される構造単位及び/又は一般式(92)で表される構造単位を有することが好ましい。ポリヒドロキシスチレンの全構造単位に占める、一般式(91)で表される構造単位及び一般式(92)で表される構造単位の含有比率は、50~100mol%が好ましく、60~100mol%がより好ましく、70~100mol%がさらに好ましい。
Figure JPOXMLDOC01-appb-C000019
 一般式(91)及び一般式(92)において、X121は、炭素数1~10のアルキレン基、炭素数4~10のシクロアルキレン基、又は炭素数6~15のアリーレン基を表す。R221~R226は、それぞれ独立して、水素原子又は炭素数1~6のアルキル基を表す。R227及びR228は、それぞれ独立して、ハロゲン原子、炭素数1~10のアルキル基、炭素数6~15のアリール基、炭素数2~10のアルケニル基、炭素数1~10のアルコキシ基、炭素数2~10のアルケニルオキシ基、炭素数1~10のアシル基、カルボキシ基、アミノ基、又は環を形成する基を表す。環を形成する基によって連結する環は、単環式又は縮合多環式の炭化水素環を表す。a及びbは、それぞれ独立して、1~5の整数を表す。c、及びdは、それぞれ独立して、0~4の整数を表す。上述したアルキル基、アリール基、アルケニル基、アルコキシ基、アシル基、環を形成する基、アルキレン基、シクロアルキレン基、及びアリーレン基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。環を形成する基によって形成される縮合多環式の炭化水素環は、ナフタレン環、アントラセン環、ピレン環、インダン環、インデン環、テトラヒドロナフタレン環、フルオレン環、キサンテン環、又はイソインドリノン環が好ましい。
 <アルカリ可溶性基>
 ポリヒドロキシスチレンは、樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つにアルカリ可溶性基としてフェノール性水酸基を有する。ポリヒドロキシスチレンは、少なくともヒドロキシスチレン誘導体を含む共重合成分をラジカル共重合させて得られる樹脂が好ましい。また、さらにエポキシ基などの反応性基を有する(メタ)アクリル酸エステルを含む共重合成分をラジカル共重合させて得られた樹脂において、樹脂が有するエポキシ基などと、カルボキシ基を有するフェノール化合物などとを反応させて得られる樹脂も好ましく、樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つに、触媒を用いた反応によりフェノール性水酸基を導入した樹脂も好ましい。なお、カルボキシ基及び/又はカルボン酸無水物基を有しても構わない。例えば、樹脂が有するフェノール性水酸基とカルボン酸無水物とを反応させて得られる樹脂、又はその他の共重合成分としてカルボキシ基及び/又はカルボン酸無水物基を有する共重合成分を反応させて得られる樹脂が挙げられる。
 <ラジカル重合性基>
 ポリヒドロキシスチレンは、以下の(A3b-2)樹脂を含有することが好ましい。(A3b-2)樹脂は、少なくとも1つのラジカル重合性基を有する(A3b)樹脂である。
(A3b-2)樹脂:不飽和基含有ポリヒドロキシスチレン。
 (A3b-2)樹脂は、樹脂が有する一部の酸性基などと、ラジカル重合性基を有するエポキシ化合物などとを反応させて得られる樹脂が好ましい。また、樹脂が有するエポキシ基などと、ラジカル重合性基を有するカルボン酸化合物などとを反応させて得られる樹脂も好ましい。なお、(A)アルカリ可溶性樹脂が(A3b-2)樹脂を含有する場合、(A)アルカリ可溶性樹脂が、さらに以下の(A3a-2)樹脂を含有することが好ましい。不飽和基は、エチレン性不飽和二重結合基が好ましい。(A3a-2)樹脂は、ラジカル重合性基を有しない(A3a)樹脂である。
(A3a-2)樹脂:不飽和基を有しないポリヒドロキシスチレン。
 <その他の構造単位、及び分子量>
 ポリヒドロキシスチレンが有する構造単位は、表示装置における発光素子の信頼性向上の観点から、芳香族(メタ)アクリル酸エステル誘導体に由来する構造単位などの芳香族基を有する構造単位も好ましく、脂環式(メタ)アクリル酸エステル誘導体に由来する構造単位などの脂環式基を有する構造単位も好ましい。
 ポリヒドロキシスチレンのMwは、表示装置における発光素子の信頼性向上の観点から、GPCで測定されるポリスチレン換算で、500以上が好ましく、1,000以上がより好ましい。一方、Mwは、現像後の残渣抑制、及びパターン形状の低テーパー化の観点から、50,000以下が好ましく、20,000以下がより好ましい。ポリヒドロキシスチレンは公知の方法で合成できる。ヒドロキシスチレン誘導体、スチレン誘導体、及びその他の共重合成分としては、例えば、国際公開第2017/159876号に記載の化合物が挙げられる。
 <(A)アルカリ可溶性樹脂;フェノール基含有エポキシ樹脂>
 以下、フェノール基含有エポキシ樹脂である(A3-3)樹脂について記載する。フェノール基含有エポキシ樹脂としては、例えば、以下の(1-a3-3)~(2-a3-3)で得られる樹脂が挙げられる。必要に応じて、いずれかの反応段階において多官能アルコール化合物をさらに反応させても構わない。フェノール基含有エポキシ樹脂は、樹脂の構造単位中に環状骨格を有する。
(1-a3-3)多官能エポキシ化合物と、エポキシ反応性基を有するフェノール化合物とを反応させて得られる樹脂。
(2-a3-3)上述した(1-a3-3)の樹脂に、さらに多官能カルボン酸二無水物又は多官能カルボン酸化合物を反応させて得られる樹脂。
 <アルカリ可溶性基>
 フェノール基含有エポキシ樹脂は、樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つにアルカリ可溶性基としてフェノール性水酸基を有する。フェノール基含有エポキシ樹脂は、多官能エポキシ化合物などと、カルボキシ基を有するフェノール化合物とを反応させて得られる樹脂が好ましい。また、樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つに、触媒を用いた反応によりフェノール性水酸基を導入した樹脂も好ましい。なお、カルボキシ基及び/又はカルボン酸無水物基を有しても構わない。例えば、樹脂が有するヒドロキシ基とカルボン酸無水物とを反応させて得られる樹脂が挙げられる。
 <ラジカル重合性基>
 フェノール基含有エポキシ樹脂は、以下の(A3b-3)樹脂を含有することが好ましい。(A3b-3)樹脂は、少なくとも1つのラジカル重合性基を有する(A3b)樹脂である。
(A3b-3)樹脂:不飽和基含有フェノール基含有エポキシ樹脂。
 (A3b-3)樹脂は、樹脂が有する一部の酸性基などと、ラジカル重合性基を有するエポキシ化合物などとを反応させて得られる樹脂が好ましい。また、樹脂が有するエポキシ基などと、ラジカル重合性基を有するカルボン酸化合物などとを反応させて得られる樹脂も好ましい。なお、(A)アルカリ可溶性樹脂が(A3b-3)樹脂を含有する場合、(A)アルカリ可溶性樹脂が、さらに以下の(A3a-3)樹脂を含有することが好ましい。不飽和基は、エチレン性不飽和二重結合基が好ましい。(A3a-3)樹脂は、ラジカル重合性基を有しない(A3a)樹脂である。
(A3a-3)樹脂:不飽和基を有しないフェノール基含有エポキシ樹脂。
 <その他の構造単位、及び分子量>
 フェノール基含有エポキシ樹脂が有する構造単位は、表示装置における発光素子の信頼性向上の観点から、芳香族多官能カルボン酸化合物に由来する構造単位又は芳香族多官能カルボン酸二無水物に由来する構造単位などの芳香族基を有する構造単位も好ましい。
 フェノール基含有エポキシ樹脂のMwは、表示装置における発光素子の信頼性向上の観点から、GPCで測定されるポリスチレン換算で、500以上が好ましく、1,000以上がより好ましい。一方、Mwは、現像後の残渣抑制、及びパターン形状の低テーパー化の観点から、50,000以下が好ましく、20,000以下がより好ましい。フェノール基含有エポキシ樹脂は公知の方法で合成できる。
 <(A)アルカリ可溶性樹脂;フェノール基含有アクリル樹脂>
 以下、フェノール基含有アクリル樹脂である(A3-4)樹脂について記載する。フェノール基含有アクリル樹脂としては、例えば、以下の(1-a3-4)~(5-a3-4)で得られる樹脂が挙げられる。
(1-a3-4)(メタ)アクリル酸誘導体、(メタ)アクリル酸エステル誘導体、スチレン誘導体、及びその他の共重合成分からなる群より選ばれる一種類以上をラジカル共重合させて得られる樹脂に、さらに付加反応性基を有するフェノール化合物を反応させて得られる樹脂。
(2-a3-4)上述した(1-a3-4)の樹脂に、さらに多官能カルボン酸二無水物又は多官能カルボン酸化合物を反応させて得られる樹脂。
(3-a3-4)フェノール性水酸基を有する共重合成分、並びに、(メタ)アクリル酸誘導体、(メタ)アクリル酸エステル誘導体、スチレン誘導体、及びその他の共重合成分からなる群より選ばれる一種類以上をラジカル共重合させて得られる樹脂。ここでフェノール性水酸基を有する共重合成分は、ヒドロキシスチレン誘導体とはとは別の共重合成分である。
(4-a3-4)上述した(3-a3-4)樹脂に、さらに付加反応性基を有するフェノール化合物を反応させて得られる樹脂。
(5-a3-4)上述した(4-a3-4)の樹脂に、さらに多官能カルボン酸二無水物又は多官能カルボン酸化合物を反応させて得られる樹脂。
 <アルカリ可溶性基>
 フェノール基含有アクリル樹脂は、樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つにアルカリ可溶性基としてフェノール性水酸基を有する。フェノール基含有アクリル樹脂は、エポキシ基などの反応性基を有する(メタ)アクリル酸エステルを含む共重合成分をラジカル共重合させて得られた樹脂において、樹脂が有するエポキシ基などと、カルボキシ基を有するフェノール化合物とを反応させて得られる樹脂が好ましい。また、樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つに、触媒を用いた反応によりフェノール性水酸基を導入した樹脂も好ましい。なお、カルボキシ基及び/又はカルボン酸無水物基を有しても構わない。例えば、樹脂が有するヒドロキシ基とカルボン酸無水物とを反応させて得られる樹脂が挙げられる。
 <ラジカル重合性基>
 フェノール基含有アクリル樹脂は、以下の(A3b-4)樹脂を含有することが好ましい。(A3b-4)樹脂は、少なくとも1つのラジカル重合性基を有する(A3b)樹脂である。
(A3b-4)樹脂:不飽和基含有フェノール基含有アクリル樹脂。
 (A3b-4)樹脂は、樹脂が有する一部の酸性基などと、ラジカル重合性基を有するエポキシ化合物などとを反応させて得られる樹脂が好ましい。また、樹脂が有するエポキシ基などと、ラジカル重合性基を有するカルボン酸化合物などとを反応させて得られる樹脂も好ましい。なお、(A)アルカリ可溶性樹脂が(A3b-4)樹脂を含有する場合、(A)アルカリ可溶性樹脂が、さらに以下の(A3a-4)樹脂を含有することが好ましい。不飽和基は、エチレン性不飽和二重結合基が好ましい。(A3a-4)樹脂は、ラジカル重合性基を有しない(A3a)樹脂である。
(A3a-4)樹脂:不飽和基を有しないフェノール基含有アクリル樹脂。
 <その他の構造単位、及び分子量>
 フェノール基含有アクリル樹脂が有する構造単位は、表示装置における発光素子の信頼性向上の観点から、芳香族(メタ)アクリル酸エステル誘導体に由来する構造単位又はスチレン誘導体に由来する構造単位などの芳香族基を有する構造単位も好ましく、脂環式(メタ)アクリル酸エステル誘導体に由来する構造単位などの脂環式基を有する構造単位も好ましい。
 フェノール基含有アクリル樹脂のMwは、表示装置における発光素子の信頼性向上の観点から、GPCで測定されるポリスチレン換算で、1,000以上が好ましく、3,000以上がより好ましい。一方、Mwは、現像後の残渣抑制、及びパターン形状の低テーパー化の観点から、50,000以下が好ましく、20,000以下がより好ましい。フェノール基含有アクリル樹脂は公知の方法で合成できる。
 <(A)アルカリ可溶性樹脂の含有比率>
 本発明の感光性組成物において、(A)アルカリ可溶性樹脂の合計100質量%に占める、(A1)樹脂の含有比率の合計は、現像後における狭マスクバイアス抑制、ハーフトーン特性向上、表示装置における発光素子の信頼性向上、低温での加熱における機械物性向上、及びマイグレーション耐性向上の観点から、5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上がさらに好ましく、30質量%以上がさらにより好ましく、35質量%以上が特に好ましい。一方、(A1)樹脂の含有比率の合計は、パターン形状の低テーパー化の観点から、100質量%以下が好ましく、90質量%以下がより好ましく、80質量%以下がさらに好ましく、75質量%以下がさらにより好ましく、70質量%以下が特により好ましい。
 本発明の感光性組成物において、(A)アルカリ可溶性樹脂の合計100質量%に占める、(A2)樹脂の含有比率の合計は、露光時の感度向上、ハーフトーン特性向上、及び低温での加熱における機械物性向上の観点から、5質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上がさらに好ましく、20質量%以上がさらにより好ましく、25質量%以上が特に好ましい。一方、(A2)樹脂の含有比率の合計は、現像後における狭マスクバイアス抑制、ハーフトーン特性向上、及びパターン形状の低テーパー化の観点から、95質量%以下が好ましく、85質量%以下がより好ましく、75質量%以下がさらに好ましく、70質量%以下がさらにより好ましく、65質量%以下が特に好ましい。
 本発明の感光性組成物において、(A)アルカリ可溶性樹脂の合計100質量%に占める、(A3)樹脂の含有比率の合計は、現像後における狭マスクバイアス抑制、ハーフトーン特性向上、及び低温での加熱における機械物性向上の観点から、5質量%以上が好ましく、7質量%以上がより好ましく、10質量%以上がさらに好ましく、15質量%以上がさらにより好ましく、20質量%以上が特に好ましい。一方、(A3)樹脂の含有比率の合計は、現像後の残渣抑制、露光時の感度向上、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、90質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下がさらに好ましく、65質量%以下がさらにより好ましく、60質量%以下が特に好ましい。
 溶剤を除く、本発明の感光性組成物の全固形分中に占める(A)アルカリ可溶性樹脂の含有比率は、現像後における狭マスクバイアス抑制、ハーフトーン特性向上、表示装置における発光素子の信頼性向上、低温での加熱における機械物性向上、及びマイグレーション耐性向上の観点から、10質量%以上が好ましく、20質量%以上がより好ましく、25質量%以上がさらに好ましい。一方、(A)アルカリ可溶性樹脂の含有比率は、露光時の感度向上、及び現像後の残渣抑制の観点から、75質量%以下が好ましく、65質量%以下がより好ましく、55質量%以下がさらに好ましい。また、本発明の感光性組成物が、(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物を含有する場合、本発明の感光性組成物に占める(A)アルカリ可溶性樹脂の含有量は、(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100質量部とした場合において、25質量部以上が好ましく、35質量部以上がより好ましく、45質量部以上がさらに好ましい。一方、(A)アルカリ可溶性樹脂の含有量は、85質量部以下が好ましく、80質量部以下がより好ましく、75質量部以下がさらに好ましい。
 <(B)ラジカル重合性化合物>
 本発明の感光性組成物の第一の態様は、(B)ラジカル重合性化合物(以下、「(B)化合物」)を含有することが好ましい。(I)化合物及び/又は(IIb)化合物が、(B)化合物を含むことが好ましく、(IIb)化合物が、(B)化合物を含むことがより好ましい。一方、本発明の感光性組成物の第二の態様は、(B)化合物を含有する。
(B)化合物とは、少なくとも2つのラジカル重合性基を有する化合物をいう。本発明の感光性組成物がネガ型の感光性を有する場合、パターン露光時、後述する(C1)光重合開始剤から発生するラジカルによって(B)化合物のラジカル重合が進行し、組成物の膜の露光部がアルカリ現像液に対して不溶化することで、ネガ型のパターンを形成できる。また、露光時の光硬化が促進され、露光時の感度向上の効果が顕著となる。一方、本発明の感光性組成物がポジ型の感光性を有する場合、パターン露光時の未露光部において、現像後露光時又は熱硬化時に(B)化合物のラジカル重合が進行し、組成物の膜の架橋度が向上することで、熱硬化後のパターン形状制御の効果が顕著となる。(B)化合物のラジカル重合性基は、ラジカル重合が進行しやすい観点から、(メタ)アクリロイル基を有することが好ましい。
(B)化合物は、後述する(B1)疎水性骨格含有ラジカル重合性化合物、(B2)柔軟骨格含有ラジカル重合性化合物、及び(B3)環状骨格含有ラジカル重合性化合物からなる群より選ばれる一種類以上を含有することが好ましい。また(B)化合物は、(B1)疎水性骨格含有ラジカル重合性化合物及び/又は(B3)環状骨格含有ラジカル重合性化合物を含有し、さらに(B2)柔軟骨格含有ラジカル重合性化合物を含有することがより好ましい。
 (B)化合物は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、フェノール性水酸基を有することが好ましい。一方、上述した(A)アルカリ可溶性樹脂が、フェノール性水酸基を有する場合、(B)化合物は、フェノール性水酸基を有しないことが好ましい。
(B)化合物は、露光時の感度向上の観点、及び、表示装置における発光素子の信頼性向上の観点から、(メタ)アクリロイル基、ビニル基、又はアリル基を有することが好ましい。上述した(A)アルカリ可溶性樹脂及び(B)化合物が、(メタ)アクリロイル基、ビニル基、又はアリル基を有することがより好ましい。(B)化合物が、(メタ)アクリロイル基、ビニル基、又はアリル基を有する場合、(A)アルカリ可溶性樹脂は、(メタ)アクリロイル基、ビニル基、又はアリル基を有しないことも好ましい。
 (B)化合物の二重結合当量は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、80g/mol以上が好ましく、90g/mol以上がより好ましい。一方、二重結合当量は、露光時の感度向上の観点から、800g/mol以下が好ましく、600g/mol以下がより好ましい。
 本発明の感光性組成物が、(A)アルカリ可溶性樹脂及び(B)化合物を含有する場合、本発明の感光性組成物に占める(B)化合物の含有量は、(A)アルカリ可溶性樹脂及び(B)化合物の合計を100質量部とした場合において、露光時の感度向上、及び現像後の残渣抑制の観点から、15質量部以上が好ましく、20質量部以上がより好ましく、25質量部以上がさらに好ましい。一方、(B)化合物の含有量は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点、並びに、表示装置における発光素子の信頼性向上の観点から、75質量部以下が好ましく、65質量部以下がより好ましく、55質量部以下がさらに好ましい。
 <(B)ラジカル重合性化合物;(B1)化合物>
 本発明の感光性組成物は、(B)化合物を含み、(B)化合物が、(B1)疎水性骨格含有ラジカル重合性化合物(以下、「(B1)化合物」)を含有し、(B1)化合物が、以下の(I-b1)構造及び(II-b1)構造を有し、(II-b1)構造を少なくとも2つ有することが好ましい。
(I-b1)構造:フルオレン構造、インダン構造、縮合多環脂環式構造、インドリノン構造、及びイソインドリノン構造からなる群より選ばれる一種類以上を含む構造
(II-b1)構造:ラジカル重合性基を有する有機基。
 ラジカル重合性基は、(メタ)アクリロイル基を有することが好ましい。(B1)化合物を含有させることで、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の効果が顕著となる。
 (B1)化合物は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、上述した(I-b1)構造が、一般式(141)~(147)のいずれかで表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000020
 一般式(141)~(147)において、X201~X208は、それぞれ独立して、単環式又は縮合多環式の炭化水素環を表す。X210~X214は、それぞれ独立して、炭素数1~6の脂肪族構造を表す。Y201及びY209は、それぞれ独立して、直接結合、炭素原子、窒素原子、酸素原子、又は硫黄原子を表す。R301~R309は、それぞれ独立して、ハロゲン原子又は炭素数1~10のアルキル基を表す。R310~R316は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、又は炭素数6~15のアリール基を表す。R317及びR318は、それぞれ独立して、ハロゲン原子又は炭素数1~10のアルキル基を表す。a、b、c、d、e、f、及びgは、それぞれ独立して、0~4の整数を表す。h及びiは、それぞれ独立して、0~3の整数を表す。Y201が直接結合、酸素原子、又は硫黄原子の場合、jは0である。Y201が窒素原子の場合、jは1である。Y201が炭素原子の場合、jは2である。Y209が直接結合、酸素原子、又は硫黄原子の場合、kは0である。Y209が窒素原子の場合、kは1である。Y209が炭素原子の場合、kは2である。l及びmは、それぞれ独立して、0~14の整数を表す。nは0~2の整数を表す。*~*15は、それぞれ独立して、上述した(II-b1)構造との結合点を表す。
 一般式(141)~(147)において、X201~X208は、それぞれ独立して、炭素数6~15の単環式又は縮合多環式の炭化水素環が好ましい。Y201及びY209は、それぞれ独立して、直接結合又は酸素原子が好ましい。上述した脂肪族構造、アルキル基、シクロアルキル基、アリール基、及び単環式若しくは縮合多環式の芳香族炭化水素環は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。
 (B1)化合物は、露光時の感度向上、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、(I-b1)構造、(II-b1)構造、並びに、以下の(III-b1)構造又は(IV-b1)構造を有することがより好ましい。
(III-b1)構造:アルキレンカルボニル基、オキシアルキレンカルボニル基、又はアミノアルキレンカルボニル基。
(IV-b1)構造:ヒドロキシ基を含むアルキレン基、又は、ヒドロキシ基を含むオキシアルキレン基。
 (B1)化合物が有する(III-b1)構造又は(IV-b1)構造の数の合計は、2個以上が好ましく、3個以上がより好ましく、4個以上がさらに好ましい。一方、(III-b1)構造又は(IV-b1)構造の数の合計は、10個以下が好ましく、8個以下がより好ましく、6個以下がさらに好ましい。(B1)化合物は、(III-b1)構造を有することが好ましい。(III-b1)構造は、ラクトン化合物に由来する構造又はラクタム化合物に由来する構造が好ましい。(B1)化合物が(III-b1)構造又は(IV-b1)構造を有する場合、上述した一般式(141)~(147)において、*~*15は、それぞれ独立して、上述した(II-b1)構造との結合点、上述した(III-b1)構造との結合点、又は上述した(IV-b1)構造との結合点を表す。
 (B1)化合物が後述する一般式(157)で表される構造を有する場合、上述した(III-b1)構造を有する。また、(B1)化合物が後述する一般式(156)で表される構造を有し、X231がヒドロキシ基を含む炭素数1~10のアルキレン基を表す場合、上述した(IV-b1)構造を有する。なお、一般式(156)及び一般式(157)において、*及び*は、それぞれ独立して、上述した(I-b1)構造との結合点を表す。*及び*は、それぞれ独立して、上述した(II-b1)構造との結合点を表す。一般式(157)において、*及び*は、それぞれ独立して、上述した一般式(141)~(147)中の酸素原子との結合点であることが好ましい。
 (B1)化合物の二重結合当量は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、150g/mol以上が好ましく、190g/mol以上がより好ましい。一方、二重結合当量は、現像後の残渣抑制の観点から、600g/mol以下が好ましく、400g/mol以下がより好ましい。
 本発明の感光性組成物が、(A)アルカリ可溶性樹脂及び(B)化合物を含有する場合、本発明の感光性組成物に占める(B1)化合物の含有量は、(A)アルカリ可溶性樹脂及び(B)化合物の合計を100質量部とした場合において、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、5質量部以上が好ましく、10質量部以上がより好ましい。一方、(B1)化合物の含有量は、現像後の残渣抑制の観点から、25質量部以下が好ましく、20質量部以下がより好ましい。
 <(B)ラジカル重合性化合物;(B2)化合物>
 本発明の感光性組成物は、(B)化合物を含み、(B)化合物が、(B2)柔軟骨格含有ラジカル重合性化合物(以下、「(B2)化合物」)を含有し、(B2)化合物が、以下の(I-b2)構造、(II-b2)構造、及び(III-b2)構造を有し、(II-b2)構造を少なくとも2つ有することが好ましい。
(I-b2)構造:少なくとも2つのヒドロキシ基を有する化合物に由来する構造
(II-b2)構造:ラジカル重合性基を有する有機基
(III-b2)構造:アルキレン基、オキシアルキレン基、ヒドロキシ基を含むアルキレン基、ヒドロキシ基を含むオキシアルキレン基、アルキレンカルボニル基、オキシアルキレンカルボニル基、又はアミノアルキレンカルボニル基。
 ラジカル重合性基は、(メタ)アクリロイル基を有することが好ましい。(B2)化合物を含有させることで、露光時の感度向上、現像後の残渣抑制、及びハーフトーン特性向上の効果が顕著となる。
 (B2)化合物において、(I-b2)構造は、露光時の感度向上、現像後の残渣抑制、及びハーフトーン特性向上の観点から、以下の(I-b2x)構造がより好ましい。
(I-b2x)構造:脂肪族多官能アルコールに由来する構造、脂環式構造、及びヘテロ脂環式構造からなる群より選ばれる一種類以上を含む構造。
 (B2)化合物は、露光時の感度向上、現像後の残渣抑制、及びハーフトーン特性向上の観点から、上述した(I-b2x)構造が、一般式(151)~(154)のいずれかで表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000021
 一般式(151)~(154)において、X221~X228は、それぞれ独立して、炭素数1~6の脂肪族構造を表す。R321~R325は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数4~10のシクロアルキル基を表す。a及びbは、それぞれ独立して、0~5の整数を表す。*~*16は、それぞれ独立して、上述した(II-b2)構造との結合点又は上述した(III-b2)構造との結合点を表す。上述した脂肪族構造、アルキル基、及びシクロアルキル基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。
 (B2)化合物が上述した(I-b2x)構造を有する化合物を含有する場合、現像後における狭マスクバイアス抑制、ハーフトーン特性向上、及びパターン形状の低テーパー化の観点から、(B2)化合物は、さらに、上述した(I-b2)構造として、一般式(155)で表される構造を有する化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000022
 一般式(155)において、X229及びX230は、それぞれ独立して、炭素数1~6の脂肪族構造を表す。Y229は、直接結合、窒素原子、又は酸素原子を表す。R326は、水素原子、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数4~10のシクロアルキル基を表す。Y229が直接結合又は酸素原子の場合、aは0である。Y229が窒素原子の場合、aは1である。*及び*は、それぞれ独立して、上述した(III-b2)構造との結合点を表す。上述した脂肪族構造は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。
 (B2)化合物は、露光時の感度向上、現像後の残渣抑制、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、以下の(III-b2x)構造を有することがより好ましい。
(III-b2x)構造:アルキレンカルボニル基、オキシアルキレンカルボニル基、又はアミノアルキレンカルボニル基。
 (B2)化合物が有する(III-b2)構造の数、及び(III-b2x)構造の数の合計は、2個以上が好ましく、3個以上がより好ましく、4個以上がさらに好ましい。一方、(III-b2)構造の数、及び(III-b2x)構造の数の合計は、12個以下が好ましく、10個以下がより好ましく、8個以下がさらに好ましい。アルキレン基、オキシアルキレン基、ヒドロキシ基を含むアルキレン基、及びヒドロキシ基を含むオキシアルキレン基は、エポキシ化合物に由来する構造又はアルキレングリコールに由来する構造が好ましい。(B2)化合物は、(III-b2x)構造を有することが好ましい。(III-b2x)構造は、ラクトン化合物に由来する構造又はラクタム化合物に由来する構造が好ましい。
 (B2)化合物は、露光時の感度向上、現像後の残渣抑制、及びハーフトーン特性向上の観点から、上述した(III-b2)構造は、一般式(156)及び一般式(157)のいずれかで表される構造からなる群より選ばれる一種類以上であることが好ましい。
Figure JPOXMLDOC01-appb-C000023
 一般式(156)及び一般式(157)において、X231及びX232は、それぞれ独立して、炭素数1~10のアルキレン基、又はヒドロキシ基を含む炭素数1~10のアルキレン基を表す。Y231及びY232は、それぞれ独立して、直接結合、窒素原子、又は酸素原子を表す。R327は、水素原子、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数4~10のシクロアルキル基を表す。a及びbは、それぞれ独立して、1~4の整数を表す。Y232が直接結合又は酸素原子の場合、cは0である。Y232が窒素原子の場合、cは1である。*及び*は、それぞれ独立して、上述した(I-b2)構造との結合点を表す。*及び*は、それぞれ独立して、上述した(II-b2)構造との結合点を表す。一般式(156)及び一般式(157)において、*及び*は、それぞれ独立して、一般式(151)~(154)中の酸素原子との結合点であることが好ましい。上述したアルキレン基、アルキル基、及びシクロアルキル基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。(B2)化合物が一般式(157)で表される構造を有する場合、上述した(III-b2x)構造を有する。
 (B2)化合物が有するラジカル重合性基数は、露光時の感度向上、現像後の残渣抑制、及びハーフトーン特性向上の観点から、2個以上が好ましく、3個以上がより好ましく、4個以上がさらに好ましい。一方、ラジカル重合性基数は、ハーフトーン特性向上、及びパターン形状の低テーパー化の観点から、12個以下が好ましく、10個以下がより好ましく、8個以下がさらに好ましい。また、(B2)化合物の二重結合当量は、ハーフトーン特性向上、及びパターン形状の低テーパー化の観点から、100g/mol以上が好ましく、120g/mol以上がより好ましい。一方、二重結合当量は、露光時の感度向上、現像後の残渣抑制、及びハーフトーン特性向上の観点から、600g/mol以下が好ましく、400g/mol以下がより好ましい。(B2)化合物は、露光時の感度向上、現像後の残渣抑制、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、少なくとも3つの(II-b2)構造を有する化合物、及び2つの(II-b2)構造を有する化合物を含有することがより好ましい。
 本発明の感光性組成物が、(A)アルカリ可溶性樹脂及び(B)化合物を含有する場合、本発明の感光性組成物に占める(B2)化合物の含有量は、(A)アルカリ可溶性樹脂及び(B)化合物の合計を100質量部とした場合において、露光時の感度向上、現像後の残渣抑制、及びハーフトーン特性向上の観点から、10質量部以上が好ましく、20質量部以上がより好ましい。一方、(B2)化合物の含有量は、ハーフトーン特性向上、及びパターン形状の低テーパー化の観点から、40質量部以下が好ましく、35質量部以下がより好ましい。
 <(B)ラジカル重合性化合物;(B3)化合物>
 本発明の感光性組成物は、(B)化合物を含み、(B)化合物が、(B3)環状骨格含有ラジカル重合性化合物(以下、「(B3)化合物」)を含有し、(B3)化合物が、以下の(I-b3)構造及び(II-b3)構造を有し、(II-b3)構造を少なくとも2つ有することが好ましい。
(I-b3)構造:脂環式構造及び/又はヘテロ脂環式構造を含む構造
(II-b3)構造:ラジカル重合性基を有する有機基。
 (B3)化合物は、(B1)化合物及び(B2)化合物とは異なる化合物である。なお、(B1)化合物及び(B2)化合物の両方に該当する化合物は、(B1)化合物に含まれるものとする。ラジカル重合性基は、(メタ)アクリロイル基を有することが好ましい。(B3)化合物を含有させることで、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の効果が顕著となる。
 (B3)化合物は、現像後の残渣抑制、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、上述した(I-b3)構造が、窒素原子を少なくとも2つ有する環状構造を含む構造であることが好ましい。窒素原子を少なくとも2つ有する環状構造は、イソシアヌル酸構造及び/又はトリアジン構造が好ましい。
 (B3)化合物の二重結合当量は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、150g/mol以上が好ましく、190g/mol以上がより好ましい。一方、二重結合当量は、現像後の残渣抑制の観点から、600g/mol以下が好ましく、400g/mol以下がより好ましい。
 本発明の感光性組成物が、(A)アルカリ可溶性樹脂及び(B)化合物を含有する場合、本発明の感光性組成物に占める(B3)化合物の含有量は、(A)アルカリ可溶性樹脂及び(B)化合物の合計を100質量部とした場合において、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、5質量部以上が好ましく、10質量部以上がより好ましい。一方、(B3)化合物の含有量は、現像後の残渣抑制の観点から、25質量部以下が好ましく、20質量部以下がより好ましい。
 なお(B1)化合物、(B2)化合物、及び(B3)化合物の含有量の合計は、15質量部以上が好ましく、20質量部以上がより好ましく、25質量部以上がさらに好ましい。一方、(B1)化合物、(B2)化合物、及び(B3)化合物の含有量の合計は、75質量部以下が好ましく、65質量部以下がより好ましく、55質量部以下がさらに好ましい。
 <(B)ラジカル重合性化合物;(B4)化合物~(B8)化合物>
 本発明の感光性組成物は、露光時の感度向上及び低温での加熱における機械物性向上の観点から、(B)化合物を含み、
さらに、以下の条件(γ)、条件(δ)、及び条件(ε)のうち少なくとも1つを満たすことが好ましい。
条件(γ):(B)化合物が、以下の(B4)第4重合性化合物(以下、「(B4)化合物」)及び(B5)第5重合性化合物(以下、「(B5)化合物」)を含有する
条件(δ):(B)ラジカル重合性化合物が、以下の(B6)第6重合性化合物(以下、「(B6)化合物」)及び(B7)第7重合性化合物(以下、「(B7)化合物」)を含有する
条件(ε):(B)ラジカル重合性化合物が、以下の(B4)化合物又は(B5)化合物を含有し、さらに、以下の(B6)化合物又は(B7)化合物を含有する
(B4)化合物:下記(I-b4)構造を有し、さらに少なくとも2つのラジカル重合性基を有する化合物
(I-b4)構造:脂環式構造を含む構造及び/又はヘテロ脂環式構造を含む構造
(B5)化合物:下記(I-b5)構造及び(II-b5)構造を有し、さらに少なくとも2つのラジカル重合性基を有する化合物
(I-b5)構造:芳香族構造を含む構造
(II-b5)構造:脂肪族構造を含む構造
(B6)化合物:少なくとも2つの(メタ)アクリロイル基を有し、さらに下記(I-b6)構造を有する化合物
(I-b6)構造:少なくとも2つの(メタ)アクリロイル基間を最小原子数4~10個で連結し、かつ、脂肪族構造を含む構造
(B7)化合物:少なくとも2つの(メタ)アクリロイル基を有し、さらに下記(I-b7)構造を有する化合物
(I-b7)構造:少なくとも2つの(メタ)アクリロイル基間を最小原子数11~45個で連結し、かつ、脂肪族構造を含む構造。
 なお(B)化合物が、(B4)化合物、(B5)化合物、(B6)化合物、又は(B7)化合物を含有する場合、(B)化合物は、(B1)化合物、(B2)化合物、及び(B3)化合物を含有しない。
 (B4)化合物において上記の(I-b4)構造における脂環式構造は、低温での加熱における機械物性向上の観点から、縮合多環脂環式構造が好ましく、トリシクロ[5.2.1.02,6]デカン構造がより好ましい。また上記の(I-b4)構造におけるヘテロ脂環式構造は同様の観点から、含窒素環状構造が好ましく、窒素原子を少なくとも2つ有する環状構造がより好ましく、イソシアヌル酸構造及び/又はトリアジン構造がさらに好ましい。(B4)化合物において上記の(I-b4)構造におけるヘテロ脂環式構造が有する窒素原子数は、1個以上が好ましく、2個以上がより好ましく、3個以上がさらに好ましい。一方、窒素原子数は、6個以下が好ましく、4個以下がより好ましい。
 (B4)化合物は、さらに以下の(II-b4)構造を有することが好ましい。
(II-b4)構造:脂肪族構造を含む構造
(B1)化合物において上記の(II-b4)構造における脂肪族構造は、露光時の感度向上及びマイグレーション耐性向上の観点から、アルキレン基、オキシアルキレン基、ヒドロキシ基を含むアルキレン基、ヒドロキシ基を含むオキシアルキレン基、アルキレンカルボニル基、オキシアルキレンカルボニル基、又はアミノアルキレンカルボニル基が好ましい。
 (B5)化合物において上記の(I-b5)構造における芳香族構造は、低温での加熱における機械物性向上の観点から、ベンゼン構造又はビフェニル構造が好ましい。また上記の(I-b5)構造における芳香族構造は同様の観点から、縮合多環式構造が好ましく、フルオレン構造、インダン構造、又はナフタレン構造がより好ましい。また上記の(I-b5)構造における芳香族構造は同様の観点から、縮合多環式ヘテロ環構造が好ましく、キサンテン構造、インドリノン構造、又はイソインドリノン構造がより好ましい。
 (B5)化合物において上記の(II-b5)構造における脂肪族構造は、露光時の感度向上及びマイグレーション耐性向上の観点から、アルキレン基、オキシアルキレン基、ヒドロキシ基を含むアルキレン基、ヒドロキシ基を含むオキシアルキレン基、アルキレンカルボニル基、オキシアルキレンカルボニル基、又はアミノアルキレンカルボニル基が好ましい。
 (B6)化合物又は(B7)化合物が2つの(メタ)アクリロイル基を有する場合、上記の(I-b6)構造又は(I-b7)構造における最小原子数とは、2つの(メタ)アクリロイル基のカルボニル炭素間における炭素原子及びヘテロ原子を含む最小原子数をいう。なおカルボニル炭素間における炭素原子及びヘテロ原子に結合する原子は、最小原子数の計算には含めない。例えば、カルボニル炭素間に酸素原子、プロピレン基、及び酸素原子が存在する場合、最小原子数は5個である。また(B6)化合物又は(B7)化合物が3つ以上の(メタ)アクリロイル基を有する場合、上記最小原子数とは、全ての(メタ)アクリロイル基のカルボニル炭素を連結する炭素原子及びヘテロ原子を含む最小原子数をいう。同様に、カルボニル炭素を連結する炭素原子及びヘテロ原子に結合する原子は、最小原子数の計算には含めない。
 (B6)化合物は、上記の(I-b6)構造における最小原子数を特定範囲とすることで、硬化物中の(B)化合物由来の低分子をより低減でき、マイグレーション耐性向上の効果が顕著となる。上記の(I-b6)構造における最小原子数は、5個以上が好ましく、6個以上がより好ましい。一方、上記の(I-b6)構造における最小原子数は、9個以下が好ましく、8個以下がより好ましい。一方、(B7)化合物は、上記の(I-b7)構造における最小原子数を特定範囲とすることで、分子運動性向上により(メタ)アクリロイル基同士や、(メタ)アクリロイル基と他のラジカル重合性基との衝突確率が向上し、露光時の感度向上の効果が顕著となる。上記の(I-b7)構造における最小原子数は、13個以上が好ましく、15個以上がより好ましく、17個以上がさらに好ましく、20個以上が特に好ましい。一方、上記の(I-b7)構造における最小原子数は、40個以下が好ましく、35個以下がより好ましく、30個以下がさらに好ましく、25個以下が特に好ましい。
 (B6)化合物及び(B7)化合物において、上記の(I-b6)構造及び(I-b7)構造における脂肪族構造は、露光時の感度向上及びマイグレーション耐性向上の観点から、アルキレン基、オキシアルキレン基、ヒドロキシ基を含むアルキレン基、ヒドロキシ基を含むオキシアルキレン基、アルキレンカルボニル基、オキシアルキレンカルボニル基、又はアミノアルキレンカルボニル基が好ましい。また上記の(I-b6)構造及び(I-b7)構造における脂肪族構造は、脂肪族多官能アルコールに由来する構造が好ましい。なお(B6)化合物及び(B7)化合物は、上記の(B4)化合物及び(B5)化合物とは異なる化合物であり、脂環式構造を含む構造、ヘテロ脂環式構造を含む構造、及び芳香族構造を含む構造を有しない。
 上記のような(B)化合物は、露光時のラジカル発生や低温での加熱におけるラジカル発生により、硬化物の架橋度向上の効果が得られることに加え、樹脂の側鎖や末端のラジカル重合性基との反応による架橋度向上の効果が得られるため、低温での加熱における機械物性が向上すると推定される。また上記の(II-b4)構造、(II-b5)構造、(I-b6)構造、又は(I-b7)構造における脂肪族構造を有する(B)化合物は、硬化物中の(B)化合物由来の低分子成分低減により、イオンマイグレーションやエレクトロマイグレーションが抑制され、マイグレーション耐性が向上すると推定される。
 (B)化合物は低温での加熱における機械物性向上の観点から、さらに以下の(B8)化合物を含有することも好ましい。なお(B8)化合物は上記の(B5)化合物とは異なる化合物であり、上記の(II-b5)構造を有しない。
(B8)化合物:縮合多環式構造を含む構造及び/又は縮合多環式ヘテロ環構造を含む構造を有し、さらに少なくとも2つのラジカル重合性基を有する化合物
(B8)化合物において上記の縮合多環式構造は、フルオレン構造、インダン構造、又はナフタレン構造が好ましい。また(B8)化合物において上記の縮合多環式ヘテロ環構造は、キサンテン構造、インドリノン構造、又はイソインドリノン構造が好ましい。
 (B)化合物は、上記の(B4)化合物、(B5)化合物、(B6)化合物、(B7)化合物、及び(B8)化合物からなる群より選ばれる一種類以上を含有することも好ましい。(B)化合物は、上記の(B4)化合物、(B5)化合物、(B6)化合物、及び(B7)化合物からなる群より選ばれる二種類以上を含有することも好ましく、さらに上記の(B8)化合物を含有することもより好ましい。
 本発明の感光性組成物が(A)アルカリ可溶性樹脂及び(B)化合物を含有する場合、(B4)化合物の含有量は、(A)アルカリ可溶性樹脂及び(B)化合物の合計を100質量部とした場合において、露光時の感度向上及び低温での加熱における機械物性向上の観点から、5質量部以上が好ましく、10質量部以上がより好ましく、15質量部以上がさらに好ましく、20質量部以上が特に好ましい。一方、(B4)化合物の含有量は、低温での加熱における機械物性向上及びマイグレーション耐性向上の観点から、50質量部以下が好ましく、45質量部以下がより好ましく、40質量部以下がさらに好ましく、35質量部以下がさらにより好ましく、30質量部以下が特に好ましく、25質量部以下が最も好ましい。(B5)化合物、(B6)化合物、(B7)化合物、及び(B8)化合物の好ましい含有量も、それぞれ上記と同様である。
 なお(B4)化合物、(B5)化合物、(B6)化合物、(B7)化合物、及び(B8)化合物の含有量の合計は、15質量部以上が好ましく、20質量部以上がより好ましく、25質量部以上がさらに好ましい。一方、(B4)化合物、(B5)化合物、(B6)化合物、(B7)化合物、及び(B8)化合物の含有量の合計は、75質量部以下が好ましく、65質量部以下がより好ましく、55質量部以下がさらに好ましい。
 <(C)感光剤>
 本発明の感光性組成物の第一の態様は、さらに、(C)感光剤を含有することが好ましい。本発明の感光性組成物の第二の態様は、(C)感光剤を含有する。
(C)感光剤とは、露光によって結合開裂、反応、又は構造変化して別の化合物を発生させることで、組成物にポジ型又はネガ型の感光性を付与する化合物をいう。(C)感光剤は、(C1)光重合開始剤(以下、「(C1)化合物」)、(C2)光酸発生剤、及び(C3)ナフトキノンジアジド化合物(以下、「(C3)化合物」)からなる群より選ばれる一種類以上を含有することが好ましい。組成物にネガ型の感光性を付与する場合、(C1)化合物を含有することが好ましく、さらに、(C2)光酸発生剤及び/又は(C3)化合物を含有することがより好ましい。組成物にポジ型の感光性を付与する場合、(C3)化合物を含有することが好ましく、さらに、(C1)化合物及び/又は(C2)光酸発生剤を含有することがより好ましい。
 (C)感光剤は、露光時の感度向上の観点、及び、表示装置における発光素子の信頼性向上の観点から、(メタ)アクリロイル基、ビニル基、又はアリル基を有することが好ましい。ただし、上述した(A)アルカリ可溶性樹脂が、(メタ)アクリロイル基、ビニル基、又はアリル基を有する場合、(C)感光剤は、(メタ)アクリロイル基、ビニル基、又はアリル基を有しないことが好ましい。
 溶剤を除く、本発明の感光性組成物の全固形分中に占める(C)感光剤の含有比率は、露光時の感度向上の観点から、0.3質量%以上が好ましく、1.0質量%以上がより好ましく、2.0質量%以上がさらに好ましい。一方、(C)感光剤の含有比率は、現像後の残渣抑制の観点から、25質量%以下が好ましく、20質量%以下がより好ましく、15質量%以下がさらに好ましい。
 <(C)感光剤;(C1)化合物>
 本発明の感光性組成物は、(C)感光剤を含み、(C)感光剤が、(C1)光重合開始剤を含有することが好ましい。
 本発明の感光性組成物において、感光性組成物の全固形分における弱酸性基当量が400~6,000g/molである場合、本発明の感光性組成物は、(C)感光剤を含み、(C)感光剤が、(C1)光重合開始剤を含有することが好ましい。
(C1)化合物とは、露光によって結合開裂及び/又は反応してラジカルを発生する化合物をいう。(C1)化合物を含有することが、ネガ型のパターン形成に好適である。露光時、(C1)化合物から発生するラジカルが僅かな量であっても、上述した(B)化合物などのラジカル重合が連鎖的に進行するため、低露光量の光でのネガ型のパターン形成に好適であり、露光時の感度向上の効果が顕著となる。
 (C1)化合物は、ベンジルケタール系化合物、α-ヒドロキシケトン系化合物、α-アミノケトン系化合物、アシルホスフィンオキシド系化合物、ビイミダゾール系化合物、オキシムエステル系化合物、アクリジン系化合物、チタノセン系化合物、ベンゾフェノン系化合物、アセトフェノン系化合物、芳香族ケトエステル系化合物、又は安息香酸エステル系化合物が好ましい。露光時の感度向上の観点から、α-ヒドロキシケトン系化合物、α-アミノケトン系化合物、アシルホスフィンオキシド系化合物、ビイミダゾール系化合物、又はオキシムエステル系化合物がより好ましく、露光時の感度向上、ハーフトーン特性向上、及び現像後の残渣抑制の観点から、オキシムエステル系化合物がさらに好ましい。
 溶剤を除く、本発明の感光性組成物の全固形分中に占める(C1)化合物の含有比率は、露光時の感度向上の観点から、0.3質量%以上が好ましく、1.0質量%以上がより好ましく、2.0質量%以上がさらに好ましい。一方、(C1)化合物の含有比率は、現像後の残渣抑制の観点から、25質量%以下が好ましく、20質量%以下がより好ましく、15質量%以下がさらに好ましい。また、本発明の感光性組成物が、(A)アルカリ可溶性樹脂及び(B)化合物を含有する場合、本発明の感光性組成物に占める(C1)化合物の含有量は、(A)アルカリ可溶性樹脂及び(B)化合物の合計を100質量部とした場合において、1質量部以上が好ましく、3質量部以上がより好ましく、5質量部以上がさらに好ましい。一方、(C1)化合物の含有量は、30質量部以下が好ましく、25質量部以下がより好ましく、20質量部以下がさらに好ましい。
 <(C)感光剤;(C1-1)化合物>
 本発明の感光性組成物は、(C1)化合物が、(C1-1)オキシムエステル系化合物(以下、「(C1-1)化合物」)を含有することが好ましい。
(C1-1)化合物とは、露光によって結合開裂及び/又は反応してラジカルを発生する骨格として、オキシムエステル構造を有する化合物をいう。(C1-1)化合物を含有させることで、露光時の感度向上、ハーフトーン特性向上、及び現像後の残渣抑制の効果が顕著となる。
 本発明の感光性組成物は、露光時の感度向上、ハーフトーン特性向上、及び現像後の残渣抑制の観点から、(C1)化合物が、(C1-1)化合物を含有し、さらに、上述した(B)化合物を含有することが好ましい。(C1-1)化合物は、露光時の光に対する吸光度が高いため、高効率的なラジカル発生に好適であり、(B)化合物のラジカル重合の反応速度向上が顕著となる。
 (C1-1)化合物は、縮合多環式構造、縮合多環式ヘテロ環構造、又はジフェニルスルフィド構造を有することが好ましい。(C1-1)化合物は、縮合多環式構造、縮合多環式へテロ環構造、又はジフェニルスルフィド構造に、少なくとも1つのオキシムエステル構造が結合した構造(α-オキシム構造)、又は少なくとも1つのオキシムエステルカルボニル構造が結合した構造(すなわち、カルボニル構造を介してオキシムエステル構造が結合した構造;β-オキシム構造)を有することが好ましく、少なくとも1つのオキシムエステル構造が結合した構造を有することがより好ましい。縮合多環式構造は、フルオレン構造、ベンゾフルオレン構造、ジベンゾフルオレン構造、インデン構造、インダン構造、ベンゾインデン構造、又はベンゾインダン構造が好ましく、フルオレン構造、ベンゾフルオレン構造、又はジベンゾフルオレン構造がより好ましい。縮合多環式ヘテロ環構造は、カルバゾール構造、ジベンゾフラン構造、ジベンゾチオフェン構造、ベンゾカルバゾール構造、インドール構造、インドリン構造、ベンゾインドール構造、ベンゾインドリン構造、フェノチアジン構造、又はフェノチアジンオキシド構造が好ましく、カルバゾール構造、ベンゾカルバゾール構造、インドール構造、又はベンゾインドール構造がより好ましい。露光時の感度向上、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、(C1-1)化合物は、フルオレン構造、ベンゾフルオレン構造、ジベンゾフルオレン構造、ベンゾカルバゾール構造、インドール構造、ベンゾインドール構造、フェノチアジン構造、又はフェノチアジンオキシド構造を有することが好ましい。
 本発明の感光性組成物は、(C)感光剤を含み、(C)感光剤が、(C1)化合物を含有し、(C1)化合物が、(C1-1)化合物を含み、(C1-1)化合物が、ニトロ基、ナフチルカルボニル構造、トリメチルベンゾイル構造、チオフェニルカルボニル構造、フリルカルボニル構造、少なくとも2つのオキシムエステル構造、及び少なくとも2つのオキシムエステルカルボニル構造からなる群より選ばれる一種類以上を有することが好ましい。
 (C1-1)化合物が、ニトロ基、ナフチルカルボニル構造、トリメチルベンゾイル構造、チオフェニルカルボニル構造、フリルカルボニル構造、少なくとも2つのオキシムエステル構造、及び少なくとも2つのオキシムエステルカルボニル構造からなる群より選ばれる一種類以上を有することで、露光時の感度向上、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の効果が顕著となる。中でも、縮合多環式構造、縮合多環式へテロ環構造、又はジフェニルスルフィド構造に、これらの構造が結合した構造を有することが好ましい。
 本発明の感光性組成物は、(C1-1)化合物が、ニトロ基、ナフチルカルボニル構造、トリメチルベンゾイル構造、チオフェニルカルボニル構造、フリルカルボニル構造、少なくとも2つのオキシムエステル構造、及び少なくとも2つのオキシムエステルカルボニル構造からなる群より選ばれる一種類以上を有する場合、(C1-1)化合物が、さらに、フルオレン骨格、ベンゾフルオレン骨格、及びジベンゾフルオレン骨格からなる群より選ばれる一種類以上を有することが好ましい。
 (C1-1)化合物が、フルオレン骨格、ベンゾフルオレン骨格、及びジベンゾフルオレン骨格からなる群より選ばれる一種類以上を有することで、(C1-1)化合物がフォトブリーチング性を有するため、露光時の感度向上、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の効果が顕著となる。フォトブリーチング性とは、露光によって結合開裂及び/又は反応することで、紫外領域の波長(例えば、400nm以下)の吸光度及び/又は可視光線の波長(380~780nm)の吸光度が低下することをいう。同様に、フォトブリーチング性を有する観点から、(C1-1)化合物は、ジフェニルスルフィド構造、インドール構造、ベンゾインドール構造、フェノチアジン構造、又はフェノチアジンオキシド構造を有することも好ましく、縮合多環式構造又は縮合多環式へテロ環構造に、少なくとも1つのオキシムエステルカルボニル構造が結合した構造を有することも好ましい。
 (C1-1)化合物は、露光時の感度向上、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、ハロゲン原子で置換された基を有することが好ましく、フッ素原子で置換された基を有することがより好ましい。上述した(A)アルカリ可溶性樹脂がハロゲン原子を有する構造単位を有する場合、樹脂と光重合開始剤との相溶性向上により、膜表面から膜深部における光硬化が促進されるためと推測される。なお、上述したポリイミド系の樹脂は、上述したフッ素原子を有する構造単位を有することが好ましい。ハロゲン原子で置換された基は、トリフルオロメチル基、トリフルオロプロピル基、トリクロロプロピル基、テトラフルオロプロピル基、フルオロシクロペンチル基、フルオロフェニル基、ペンタフルオロフェニル基、トリフルオロプロポキシ基、テトラフルオロプロポキシ基、又はペンタフルオロフェノキシ基が好ましい。
 (C1-1)化合物は、露光時の感度向上、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、ラジカル重合性基を有することが好ましく、光反応性基、炭素数2~5のアルケニル基、及び炭素数2~5のアルキニル基からなる群より選ばれる一種類以上を有することがより好ましい。中でも、縮合多環式構造、縮合多環式へテロ環構造、又はジフェニルスルフィド構造に、少なくとも1つの炭素数2~5のアルケニル基が結合した構造を有することが好ましい。光反応性基は、スチリル基、シンナモイル基、マレイミド基、又は(メタ)アクリロイル基が好ましく、(メタ)アクリロイル基がより好ましい。一方、炭素数2~5のアルケニル基又は炭素数2~5のアルキニル基は、ビニル基、アリル基、2-メチル-2-プロペニル基、クロトニル基、2-メチル-2-ブテニル基、3-メチル-2-ブテニル基、2,3-ジメチル-2-ブテニル基、エチニル基、又は2-プロパルギル基が好ましく、ビニル基又はアリル基がより好ましい。
 縮合多環式構造、縮合多環式ヘテロ環構造、又はジフェニルスルフィド構造を有する(C1-1)化合物は、露光時の感度向上、ハーフトーン特性向上、及び現像後の残渣抑制の観点から、一般式(17)、(18)及び(19)のいずれかで表される化合物からなる群より選ばれる一種類以上を含有することが好ましく、一般式(18)で表される化合物を含有することがより好ましい。なお、縮合多環式構造を有する場合、一般式(17)及び一般式(18)において、Y及びYは、それぞれ独立して、炭素原子である。また、縮合多環式ヘテロ環構造を有する場合、一般式(17)及び一般式(18)において、Y及びYは、それぞれ独立して、窒素原子、酸素原子、又は硫黄原子を表す。
Figure JPOXMLDOC01-appb-C000024
 一般式(17)~(19)において、X、X、X、X、及びXは、それぞれ独立して、直接結合、炭素数1~10のアルキレン基、炭素数4~10のシクロアルキレン基、又は炭素数6~15のアリーレン基を表す。Y及びYは、それぞれ独立して、炭素原子、窒素原子、酸素原子、又は硫黄原子を表す。R451~R456は、それぞれ独立して、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、炭素数1~10のアルコキシ基、又は炭素数1~10のヒドロキシアルキル基を表す。R457~R459は、それぞれ独立して、一般式(57)~(60)のいずれかで表される置換基、又はニトロ基を表す。R460~R467は、それぞれ独立して、水素原子、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、又は、炭素数4~10の環を形成する基を表す。R468及びR469は、それぞれ独立して、水素原子、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、炭素数2~10のアルケニル基、炭素数1~10のアルコキシ基、炭素数1~10のハロアルキル基、炭素数1~10のハロアルコキシ基、又は炭素数2~15のアシル基を表す。R471~R473は、それぞれ独立して、水素原子、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、炭素数2~10のアルケニル基、炭素数1~10のアルコキシ基、炭素数1~10のハロアルキル基、炭素数1~10のハロアルコキシ基、炭素数4~10の複素環基、炭素数4~10の複素環オキシ基、炭素数2~10のアシル基、又はニトロ基を表す。R474~R476は、それぞれ独立して、水素原子、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、又は炭素数6~15のアリール基を表す。aは0~3の整数を表す。cは0~5の整数を表す。b及びdは、それぞれ独立して、0又は1を表す。e及びfは、それぞれ独立して、0~2の整数を表す。Y及びYが、それぞれ独立して、炭素原子の場合、g及びhは、それぞれ独立して、2である。Y及びYが、それぞれ独立して、窒素原子の場合、g及びhは、それぞれ独立して、1である。Y及びYが、それぞれ独立して、酸素原子又は硫黄原子の場合、g及びhは、それぞれ独立して、0である。j、k、及びlは、それぞれ独立して、0又は1を表す。m、n、及びoは、それぞれ独立して、1~10の整数を表す。p、q、及びrは、それぞれ独立して、1~4の整数を表す。x、y、及びzは、それぞれ独立して、1~4の整数を表す。
Figure JPOXMLDOC01-appb-C000025
 一般式(57)~(60)において、R477~R480は、それぞれ独立して、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、炭素数1~10のアルコキシ基、炭素数1~10のヒドロキシアルキル基、又は環を形成する基を表す。複数のR477~R480で形成する環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、シクロペンタン環、又はシクロヘキサン環が挙げられる。aは0~7の整数を表す。bは0~2の整数を表す。c及びdは、それぞれ独立して、0~3の整数を表す。複数のR477~R480で形成する環としては、ベンゼン環又はナフタレン環が好ましい。
 溶剤を除く、本発明の感光性組成物の全固形分中に占める(C1-1)化合物の含有比率は、露光時の感度向上、及びハーフトーン特性向上の観点から、0.3質量%以上が好ましく、1.0質量%以上がより好ましく、2.0質量%以上がさらに好ましい。一方、(C1-1)化合物の含有比率は、現像後の残渣抑制の観点から、25質量%以下が好ましく、20質量%以下がより好ましく、15質量%以下がさらに好ましい。また、本発明の感光性組成物が、(A)アルカリ可溶性樹脂及び(B)化合物を含有する場合、本発明の感光性組成物に占める(C1-1)化合物の含有量は、(A)アルカリ可溶性樹脂及び(B)化合物の合計を100質量部とした場合において、1質量部以上が好ましく、3質量部以上がより好ましく、5質量部以上がさらに好ましい。一方、(C1-1)化合物の含有量は、30質量部以下が好ましく、25質量部以下がより好ましく、20質量部以下がさらに好ましい。
 <(C)感光剤;(C2)化合物>
 本発明の感光性組成物は、(C)感光剤を含み、(C)感光剤が、(C2)光酸発生剤を含有することが好ましい。
(C2)光酸発生剤とは、露光によって結合開裂及び/又は反応して酸を発生する化合物をいう。露光時、(C2)光酸発生剤から発生する酸が僅かな量であっても、カチオン重合性化合物のカチオン重合、及び/又は、後述する(G)架橋剤などと樹脂との架橋が連鎖的に進行するため、低露光量でのネガ型のパターン形成に好適であり、露光時の感度向上、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の効果が顕著となる。(C)感光剤が、上述した(C1)化合物及び(C2)光酸発生剤を含有することも好ましい。一方、(C)感光剤が後述する(C3)化合物及び(C2)光酸発生剤を含有する場合、アルカリ現像後かつ熱硬化前における露光時、(C2)光酸発生剤から酸を発生できる。発生した酸により、その後の熱硬化時における後述する(C)架橋剤などと樹脂との架橋を促進できるため、硬化膜の耐熱性向上、及び硬化膜の耐薬品性向上の効果が顕著となる。
 (C2)光酸発生剤としては、例えば、イオン性化合物又は非イオン性化合物が挙げられる。イオン性化合物は、トリオルガノスルホニウム塩系化合物が好ましい。非イオン性化合物は、ハロゲン含有化合物、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物、カルボン酸エステル化合物、スルホンイミド化合物、リン酸エステル化合物、又はスルホンベンゾトリアゾール化合物が好ましい。
 <(C)感光剤;(C3)化合物>
 本発明の感光性組成物は、(C)感光剤を含み、
(C)感光剤が、(C3)ナフトキノンジアジド化合物を含有することが好ましい。
(C3)化合物とは、露光によって構造変化してインデンカルボン酸及び/又はスルホインデンカルボン酸を発生する化合物をいう。露光時、(C3)化合物が構造変化した酸性化合物により、組成物の膜の露光部がアルカリ現像液に対して可溶化することで、ポジ型のパターンを形成できる。また、露光部のアルカリ現像液に対する溶解性が選択的に向上し、現像後の解像度向上の効果が顕著となる。一方、本発明の感光性組成物がネガ型の感光性を有する場合、(C)感光剤が、上述した(C1)化合物及び(C3)化合物を含有することで、現像後における狭マスクバイアス抑制、ハーフトーン特性向上、現像時のパターン形状変化抑制、及びパターン形状の低テーパー化の効果が顕著となる。
 (C3)化合物は、フェノール性水酸基の有する化合物の5-ナフトキノンジアジドスルホン酸エステル体又は4-ナフトキノンジアジドスルホン酸エステル体が好ましい。(C3)化合物を製造する方法としては、例えば、フェノール性水酸基を有する化合物と、ナフトキノンジアジドスルホン酸とをエステル化反応させる方法や、フェノール性水酸基を有する化合物と、ナフトキノンジアジドスルホン酸クロリドとをエステル化反応させる方法などが挙げられる。ナフトキノンジアジドスルホン酸クロリドは、5-ナフトキノンジアジドスルホン酸クロリド又は4-ナフトキノンジアジドスルホン酸クロリドが好ましい。
 <(D)着色剤;(Da)化合物、及び(Db)化合物>
 本発明の感光性組成物は、さらに、(D)着色剤を含有することが好ましい。また本発明の感光性組成物は、(D)着色剤が、(Da)黒色剤を含むことが好ましい。
(D)着色剤とは、可視光線の波長(380~780nm)の光を吸収することで着色させる化合物をいう。(D)着色剤を含有させることで、組成物の膜を透過する光又は組成物の膜から反射する光を所望の色に着色できる。また、組成物の膜に遮光性を付与できる。(D)着色剤は、(D1)顔料又は(D2)染料が好ましい。特に、可視光線の遮光性が必要な場合、(Da)黒色剤が好ましい。(Da)黒色剤とは、可視光線の波長の光を吸収することで黒色化させる化合物をいう。(Da)黒色剤を含有させることで、組成物の膜の遮光性向上、及び表示装置における発光素子の信頼性向上の効果が顕著となる。(Da)黒色剤を含有する組成物の膜は、外光反射抑制による高コントラスト化、隣接画素からの光漏れ防止、又はTFTの誤作動防止などが要求される用途に好適であり、有機ELディスプレイの画素分割層、TFT平坦化層、TFT保護層、層間絶縁層、又はゲート絶縁層として特に好ましい。また、ブラックマトリックス又はブラックカラムスペーサーとしても好ましい。
 本発明の感光性組成物は、(Da)黒色剤を含み、感光性組成物の全固形分における弱酸性基当量が、400~6,000g/molであって、感光性組成物の全固形分における二重結合当量が、600~6,000g/molであることで、露光時の感度向上、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の効果が顕著となる。加えて、表示装置における発光素子の信頼性向上の効果が顕著となる。これは、(Da)黒色剤を含有させる場合、パターン露光時の紫外線等も遮断されるため露光時の感度低下等の要因となるが、感光性組成物の全固形分における弱酸性基当量及び二重結合当量を特定範囲とすることで、露光部と未露光部におけるアルカリ溶解性制御を高い次元で両立できるためと推測される。
 なお、(Da)黒色剤を含有し、さらに(Db)黒色以外の着色剤を含有しても構わない。(Db)黒色以外の着色剤を含有させることで、組成物の膜を所望の色座標に調色できる。
 (D2)染料とは、対象物の表面構造に化学吸着等をして着色させる化合物をいい、一般に溶剤等に可溶である。(D2)染料としては、例えば、アントラキノン系染料、アゾ系染料、アジン系染料、フタロシアニン系染料、メチン系染料、オキサジン系染料、キノリン系染料、インジゴ系染料、インジゴイド系染料、カルボニウム系染料、スレン系染料、ペリノン系染料、ペリレン系染料、トリアリールメタン系染料、又はキサンテン系染料が挙げられる。
 (D)着色剤における黒色とは、Colour Index Generic Name(以下、「C.I.ナンバー」)に“BLACK”が含まれるものをいう。C.I.ナンバーが付与されていないものを含有するときは、硬化膜とした場合に黒色であるものをいう。硬化膜とした場合における黒色とは、(D)着色剤を含有する組成物の硬化膜の透過スペクトルにおいて、波長550nmにおける膜厚1.0μmあたりの透過率をランベルト・ベールの式に基づいて、波長550nmにおける透過率が10%となるように膜厚を0.1~1.5μmの範囲内で換算した場合に、換算後の透過スペクトルにおける波長450~650nmにおける透過率が25%以下であることをいう。硬化膜の透過スペクトルは、国際公開第2019/087985号の段落[0285]に記載の方法に基づき、求めることができる。
 顔料の平均一次粒子径は20~150nmであることが好ましい。顔料の平均一次粒子径は、発光素子の信頼性向上の観点から、20nm以上が好ましく、30nm以上がより好ましく、40nm以上がさらに好ましく、50nm以上がさらにより好ましく、60nm以上が特に好ましい。一方、顔料の平均一次粒子径は、遮光性向上及び発光素子の信頼性向上の観点から、150nm以下が好ましく、120nm以下がより好ましく、100nm以下がさらに好ましく、90nm以下がさらにより好ましく、80nm以下が特に好ましい。顔料の一次粒子径とは、顔料の一次粒子における長軸径をいう。顔料分散液中の顔料の平均一次粒子径の好ましい範囲は、上記の顔料の平均一次粒子径の好ましい範囲の通りである。
 顔料の一次粒子径は、硬化膜を薄く割断したものを測定試料として、イオンミリング処理により研磨して平滑性を高めた断面について、透過型電子顕微鏡(以下、「TEM」)を用いて硬化膜の表面から深さ方向に0.2~0.8μmの範囲に位置する箇所を倍率50,000倍の条件で観測した撮像を、画像解析式粒度分布測定ソフトウェア(Mac-View;MOUNTECH社製)を用いて測定できる。また顔料の平均一次粒子径は、測定試料の断面を撮像及び解析し、顔料の一次粒子30個を測定した平均値として算出できる。さらに、透過型電子顕微鏡-エネルギー分散型X線分光法(以下、「TEM-EDX」)で観測することで粒子を構成する元素を判別できる。なお、顔料分散液中の顔料の平均一次粒子径は、動的光散乱法により粒度分布を測定することで求めることができる。
 溶剤を除く、本発明の感光性組成物の全固形分中に占める(D)着色剤の含有比率は、遮光性向上の観点、及び、表示装置における発光素子の信頼性向上の観点から、5質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。一方、(D)着色剤の含有比率は、露光時の感度向上の観点、及び、表示装置における発光素子の信頼性向上の観点から、70質量%以下が好ましく、50質量%以下がより好ましい。本発明の感光性組成物において、(Da)黒色剤の好ましい含有比率は、上述した(D)着色剤の好ましい含有比率の通りである。
 <(D)着色剤;(D1a)化合物、及び(D1b)化合物>
 本発明の感光性組成物は、(Da)黒色剤が、(D1a)黒色顔料を含有することが好ましい。(D1a)黒色顔料とは、可視光線の波長の光を吸収することで黒色化させる顔料をいう。顔料とは、対象物の表面に物理吸着又は相互作用等をして着色させる化合物をいい、一般に溶剤等に不溶である。(D1a)黒色顔料を含有させることで、組成物の膜の遮光性向上、及び表示装置における発光素子の信頼性向上の効果が顕著となる。なお、(D1a)黒色顔料が、後述する(D1a-1)有機黒色顔料及び/又は(D1a-2)無機黒色顔料である場合、さらに(D1b)黒色以外の顔料を含有しても構わない。(D1b)黒色以外の顔料を含有させることで、組成物の膜を所望の色座標に調色できる。(D1b)黒色以外の顔料は、後述する青色顔料、赤色顔料、黄色顔料、紫色顔料、橙色顔料、及び緑色顔料からなる群より選ばれる一種類以上であることが好ましい。本発明の感光性組成物において、(D1a)黒色顔料の好ましい含有比率は、上述した(D)着色剤の好ましい含有比率の通りである。
 <(D)着色剤;(D1a-1)化合物、(D1a-2)化合物、及び(D1a-3)化合物>
 本発明の感光性組成物は、(D1a)黒色顔料が、(D1a-1)有機黒色顔料(以下、「(D1a-1)化合物」)、(D1a-2)無機黒色顔料(以下、「(D1a-2)化合物」)、及び(D1a-3)二色以上の着色顔料混合物(以下、「(D1a-3)化合物」)からなる群より選ばれる一種類以上であることが好ましい。表示装置における発光素子の信頼性向上の観点から、(D1a-1)化合物及び/又は(D1a-3)化合物であることがより好ましく、(D1a-1)化合物がさらに好ましい。
 (D1a-1)化合物としては、例えば、(D1a-1a)ベンゾフラノン系黒色顔料、(D1a-1b)ペリレン系黒色顔料、(D1a-1c)アゾ系黒色顔料、アントラキノン系黒色顔料、アニリン系黒色顔料、又はカーボンブラックが挙げられる。(D1a-2)化合物としては、例えば、グラファイト若しくは銀スズ合金、又は、チタン、銅、鉄、マンガン、コバルト、クロム、ニッケル、亜鉛、カルシウム、若しくは銀などの金属における、微粒子、酸化物、複合酸化物、硫化物、硫酸塩、硝酸塩、炭酸塩、窒化物、炭化物、若しくは酸窒化物が挙げられる。(D1a-3)化合物とは、二色以上の顔料を組み合わせることで、擬似的に黒色化させる顔料混合物をいう。二色以上の顔料を混合するため、組成物の膜を所望の色座標に調色できる。
 本発明の感光性組成物は、さらに、(D1a-1)化合物及び/又は(D1a-3)化合物を含有し、
(D1a-1)化合物が、(D1a-1a)ベンゾフラノン系黒色顔料、(D1a-1b)ペリレン系黒色顔料、及び(D1a-1c)アゾ系黒色顔料からなる群より選ばれる一種類以上を含み、
(D1a-3)化合物が、赤、橙、黄、緑、青及び紫色の顔料からなる群より選ばれる二色以上の顔料を含むことが好ましい。
 本発明の感光性組成物は、(D1a)黒色顔料として、遮光性の高いこれらの顔料を含む場合においても、感光性組成物の全固形分における弱酸性基当量が、400~6,000g/molであって、感光性組成物の全固形分における二重結合当量が、600~6,000g/molであることがより好ましい。これは同様に、感光性組成物の全固形分における弱酸性基当量及び二重結合当量を特定範囲とすることで、露光部と未露光部におけるアルカリ溶解性制御を高い次元で両立できるためと推測される。
 (D1a-3)化合物は、赤、橙、黄、緑、青、及び紫色の顔料からなる群より選ばれる二色以上の顔料を含むことが好ましい。(D1a-3)化合物は、露光時の感度向上、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点、並びに、表示装置における発光素子の信頼性向上の観点から、(I-d1)青色顔料、赤色顔料、及び黄色顔料を含む着色顔料混合物、(II-d1)青色顔料、赤色顔料、及び橙色顔料を含む着色顔料混合物、(III-d1)青色顔料、紫色顔料、及び橙色顔料を含む着色顔料混合物、又は(IV-d1)紫色顔料及び黄色顔料を含む着色顔料混合物であることが好ましい。(D1a-3)二色以上の着色顔料混合物において、青色顔料は、C.I.ピグメントブルー15:4、C.I.ピグメントブルー15:6、又はC.I.ピグメントブルー60が好ましく、赤色顔料は、C.I.ピグメントレッド123、C.I.ピグメントレッド149、C.I.ピグメントレッド177、C.I.ピグメントレッド179、又はC.I.ピグメントレッド190が好ましく、黄色顔料は、C.I.ピグメントイエロー120、C.I.ピグメントイエロー151、C.I.ピグメントイエロー175、C.I.ピグメントイエロー180、C.I.ピグメントイエロー181、C.I.ピグメントイエロー192、又はC.I.ピグメントイエロー194が好ましく、紫色顔料は、C.I.ピグメントバイオレット19、C.I.ピグメントバイオレット29、又はC.I.ピグメントバイオレット37が好ましく、橙色顔料は、C.I.ピグメントオレンジ43、C.I.ピグメントオレンジ64、又はC.I.ピグメントオレンジ72が好ましい(数値はいずれもC.I.ナンバー)。本発明の感光性組成物において、(D1a-1)化合物、(D1a-2)化合物、及び(D1a-3)化合物の含有比率の合計は、上述した(D)着色剤の好ましい含有比率の通りである。
 <(D)着色剤;(D1a-1a)化合物、(D1a-1b)化合物、及び(D1a-1c)化合物>
 本発明の感光性組成物は、(D1a-1)化合物が、(D1a-1a)ベンゾフラノン系黒色顔料、(D1a-1b)ペリレン系黒色顔料、及び(D1a-1c)アゾ系黒色顔料からなる群より選ばれる一種類以上(以下、「特定の(D1a-1)有機黒色顔料」)を含有することが好ましく、(D1a-1a)ベンゾフラノン系黒色顔料を含有することがより好ましい。特定の(D1a-1)有機黒色顔料は、一般的な有機顔料と比較して組成物中の顔料の単位含有比率当たりの遮光性に優れるとともに、紫外領域の波長(例えば、400nm以下)の透過率が高いため、露光時の感度向上、現像後の残渣抑制、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の効果が顕著となる。また、一般的な有機顔料や無機顔料と比較して絶縁性及び低誘電性に優れるため、表示装置における発光素子の信頼性向上の効果が顕著となる。
 本発明の感光性組成物において、感光性組成物の全固形分における弱酸性基当量及び二重結合当量を特定範囲とすることと、組み合わせることに好適な(D1a-1)化合物は、顔料の可視光線の波長における高い遮光性、及び顔料の紫外領域の波長における高い透過率の観点から、(D1a-1a)ベンゾフラノン系黒色顔料が特に好ましい。
 本発明の感光性組成物は、(D1a-1)化合物を含有し、(D1a-1)化合物が、(D1a-1a)ベンゾフラノン系黒色顔料を含むことが好ましい。
 (D1a-1a)ベンゾフラノン系黒色顔料は、少なくとも2つのベンゾフラン-2(3H)-オン構造又は少なくとも2つのベンゾフラン-3(2H)-オン構造を有することが好ましく、一般式(161)及び一般式(162)のいずれかで表される化合物、それらの幾何異性体、それらの塩、又はそれらの幾何異性体の塩がより好ましい。
Figure JPOXMLDOC01-appb-C000026
 一般式(161)及び一般式(162)において、R341~R344は、それぞれ独立して、水素原子、ハロゲン原子、又は炭素数1~10のアルキル基を表す。R345~R348は、それぞれ独立して、ハロゲン原子、R353、COOH、COOR353、COO、CONH、CONHR353、CONR353354、CN、OH、OR353、OCOR353、OCONH、OCONHR353、OCONR353354、NO、NH、NHR353、NR353354、NHCOR353、NR353COR354、N=CH、N=CHR353、N=CR353354、SH、SR353、SOR353、SO353、SO353、SOH、SO 、SONH、SONHR353、又はSONR353354を表す。R353及びR354は、それぞれ独立して、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数2~10のアルケニル基、炭素数4~10のシクロアルケニル基、又は炭素数2~10のアルキニル基を表す。複数のR345~R348は、互いに直接結合、又は、酸素原子ブリッジ、硫黄原子ブリッジ、NHブリッジ、若しくはNR353ブリッジにより環を形成しても構わない。R349~R352は、それぞれ独立して、水素原子、炭素数1~10のアルキル基、又は炭素数6~15のアリール基を表す。a、b、c、及びdは、それぞれ独立して、0~4の整数を表す。上述したアルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、及びアリール基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。
 (D1a-1b)ペリレン系黒色顔料は、ペリレン構造を有することが好ましく、一般式(164)~(166)のいずれかで表される化合物、又はそれらの塩がより好ましく、3,4,9,10-ペリレンテトラカルボン酸ビスベンゾイミダゾール構造を有する化合物、その幾何異性体、その塩、又はその幾何異性体の塩を含むことがさらに好ましい。
Figure JPOXMLDOC01-appb-C000027
 一般式(164)~(166)において、X241及びX242は、それぞれ独立して、直接結合又は炭素数1~10のアルキレン基を表す。Y241及びY242は、それぞれ独立して、直接結合又は炭素数6~15のアリーレン基を表す。R361及びR362は、それぞれ独立して、水素原子、ヒドロキシ基、炭素数1~10のアルキル基、炭素数1~6のアルコキシ基、又は炭素数2~6のアシル基を表す。R363~R369は、それぞれ独立して、ヒドロキシ基、炭素数1~10のアルキル基、炭素数1~6のアルコキシ基、炭素数2~6のアシル基、ハロゲン原子、R370、COOH、COOR370、COO、CONH、CONHR370、CONR370371、CN、OH、OR370、OCOR370、OCONH、OCONHR370、OCONR370371、NO、NH、NHR370、NR370371、NHCOR370、NR370COR371、N=CH、N=CHR370、N=CR370371、SH、SR370、SOR370、SO370、SO370、SOH、SO 、SONH、SONHR370、又はSONR370371を表す。R370及びR371は、それぞれ独立して、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数2~10のアルケニル基、炭素数4~10のシクロアルケニル基、又は炭素数2~10のアルキニル基を表す。複数のR367~R369は、互いに直接結合、又は、酸素原子ブリッジ、硫黄原子ブリッジ、NHブリッジ、若しくはNR370ブリッジにより環を形成しても構わない。a及びbは、それぞれ独立して、0~5の整数を表す。c、d、e、及びfは、それぞれ独立して、0~4の整数を表す。g、h、及びiは、それぞれ独立して、0~8の整数を表す。X241及びX242が直接結合であって、Y241及びY242が直接結合の場合、R361及びR362は、それぞれ独立して、水素原子又は炭素数1~10のアルキル基が好ましく、a及びbは1である。X241及びX242が炭素数1~10のアルキレン基であって、Y241及びY242が直接結合の場合、R361及びR362はヒドロキシ基が好ましく、a及びbは1である。X241及びX242が炭素数1~10のアルキレン基であって、Y241及びY242が炭素数6~15のアリーレン基の場合、R361及びR362は、それぞれ独立して、ヒドロキシ基、炭素数1~6のアルコキシ基、又は炭素数2~6のアシル基が好ましく、a及びbは、それぞれ独立して、0~5の整数を表す。上述したアルキレン基、アリーレン基、アルキル基、アルコキシ基、及びアシル基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。
 (D1a-1c)アゾ系黒色顔料は、分子内にアゾ基を有することが好ましく、アゾメチン構造及びカルバゾール構造を有する化合物又はその塩を含むことがより好ましく、一般式(168)で表される化合物又はその塩がさらに好ましい。
Figure JPOXMLDOC01-appb-C000028
 一般式(168)において、X251は、炭素数6~15のアリーレン基を表す。Y251は、炭素数6~15のアリーレン基を表す。R381~R383は、それぞれ独立して、ハロゲン原子、R390、COOH、COOR390、COO、CONH、CONHR390、CONR390391、CN、OH、OR390、OCOR390、OCONH、OCONHR390、OCONR390391、NO、NH、NHR390、NR390391、NHCOR390、NR390COR391、N=CH、N=CHR390、N=CR390391、SH、SR390、SOR390、SO390、SO390、SOH、SO 、SONH、SONHR390、又はSONR390391を表す。R390及びR391は、それぞれ独立して、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数2~10のアルケニル基、炭素数4~10のシクロアルケニル基、又は炭素数2~10のアルキニル基を表す。複数のR381~R383は、互いに直接結合、又は、酸素原子ブリッジ、硫黄原子ブリッジ、NHブリッジ、若しくはNR390ブリッジにより環を形成しても構わない。R384は、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~6のアルコキシ基、又はニトロ基を表す。R385は、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~6のアルコキシ基、炭素数2~10のアシルアミノ基、又はニトロ基を表す。R386~R389は、それぞれ独立して、水素原子又は炭素数1~10のアルキル基を表す。aは0~4の整数を表す。bは0~2の整数を表す。cは0~4の整数を表す。d及びeは、それぞれ独立して、0~8の整数を表す。nは1~4の整数を表す。上述したアリーレン基、アルキル基、アルコキシ基、及びアシルアミノ基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。
 (D1a-1a)ベンゾフラノン系黒色顔料としては、例えば、“IRGAPHOR”(登録商標) BLACK S0100CF(BASF社製)、国際公開第2010/081624号記載の黒色顔料、又は国際公開第2010/081756号記載の黒色顔料が挙げられる。また、(D1a-1b)ペリレン系黒色顔料としては、例えば、C.I.ピグメントブラック31又はC.I.ピグメントブラック32が挙げられる(数値はいずれもC.I.ナンバー)。上述した以外に、“PALIOGEN”(登録商標) BLACK S0084、同 K0084、同 L0086、同 K0086、同 K0087、同 K0088、同 EH0788、同 FK4280、又は同 FK4281(以上、いずれもBASF社製)が挙げられる。また、(D1a-1c)アゾ系黒色顔料としては、例えば、“CHROMOFINE”(登録商標) BLACK A1103(大日精化工業社製)、特開平01-170601号公報に記載された黒色顔料、又は特開平02-034664号公報に記載された黒色顔料が挙げられる。本発明の感光性組成物において、特定の(D1a-1)有機黒色顔料の含有比率の合計は、上述した(D)着色剤の好ましい含有比率の通りである。
 <(DC)被覆層>
 本発明の感光性組成物は、(D1a-1)化合物が、さらに(DC)被覆層を有することが好ましい。(DC)被覆層とは、例えば、シランカップリング剤による表面処理、ケイ酸塩による表面処理、金属アルコキシドによる表面処理、又は樹脂による被覆処理などの処理で形成される顔料表面を被覆する層をいう。(DC)被覆層を有することで、(D1a-1)化合物の耐酸性、耐アルカリ性、耐溶剤性、分散安定性、又は耐熱性を向上でき、現像後の残渣抑制、ハーフトーン特性向上、及び表示装置における発光素子の信頼性向上の効果が顕著となる。特に、上述した(D1a-1)化合物が、(D1a-1a)ベンゾフラノン系黒色顔料を含有する場合、(DC)被覆層を有することで、顔料に起因する現像後の残渣抑制、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の効果が顕著となる。加えて、表示装置における発光素子の信頼性向上の効果が顕著となる。(D1a-1)化合物に対する、(DC)被覆層による平均被覆率は、現像後の残渣抑制の観点、及び、表示装置における発光素子の信頼性向上の観点から、50~100%が好ましく、70~100%がより好ましく、90~100%がさらに好ましい。(D1a-1)化合物に対する、(DC)被覆層による平均被覆率は、国際公開第2019/087985号の段落[0349]に記載の方法に基づき、求めることができる。
 <(DC)被覆層;(DC-1)被覆層、(DC-2)被覆層、及び(DC-3)被覆層>
 (DC)被覆層は、現像後の残渣抑制の観点、及び、表示装置における発光素子の信頼性向上の観点から、(DC-1)シリカ被覆層(以下、「(DC-1)被覆層」)、(DC-2)金属酸化物被覆層(以下、「(DC-2)被覆層」)、及び(DC-3)金属水酸化物被覆層(以下、「(DC-3)被覆層」)からなる群より選ばれる一種類を含有することが好ましく、(DC-1)被覆層がより好ましい。(DC-1)被覆層におけるシリカとしては、例えば、二酸化ケイ素又はその含水物が挙げられる。(DC-2)被覆層における金属酸化物には、金属酸化物そのものだけでなく、例えば、金属酸化物の水和物なども含まれる。金属酸化物としては、例えば、アルミナ(Al)又はアルミナ水和物(Al・nHO)が挙げられる。(DC-3)被覆層における金属水酸化物としては、例えば、水酸化アルミニウム(Al(OH))が挙げられる。
 本発明の感光性組成物において、(DC-1)被覆層の含有量は、(D1a-1)化合物を100質量部とした場合において、現像後の残渣抑制の観点、及び、表示装置における発光素子の信頼性向上の観点から、1質量部以上が好ましく、5質量部以上がより好ましい。一方、(DC-1)被覆層の含有量は、現像後の残渣抑制の観点から、20質量部以下が好ましく、10質量部以下がより好ましい。また、本発明の感光性組成物において、(DC-2)被覆層及び(DC-3)被覆層の含有量の合計は、(D1a-1)化合物を100質量部とした場合において、現像後の残渣抑制の観点、及び、表示装置における発光素子の信頼性向上の観点から、0.1質量部以上が好ましく、0.5質量部以上がより好ましい。一方、(DC-2)被覆層及び(DC-3)被覆層の含有量の合計は、現像後の残渣抑制の観点から、20質量部以下が好ましく、10質量部以下がより好ましい。
 <(E)分散剤>
 本発明の感光性組成物は、さらに、(E)分散剤を含有することが好ましい。(E)分散剤とは、上述した(D1)顔料などの表面と相互作用する表面親和性基と、分散安定性を向上させる分散安定化構造とを有する化合物をいう。分散安定化構造としては、例えば、静電反発によって分散安定化させるイオン性置換基や極性置換基、又は立体障害によって分散安定化させるポリマー鎖などが挙げられる。(D1)顔料の数平均粒子径が500nm以下である場合、表面積の増大によって分散安定性が低下し、粒子の凝集が発生しやすくなる。(E)分散剤を含有させることで、現像後の残渣抑制、及び現像後の解像度向上の効果が顕著となる。
 (E)分散剤は、露光時の感度向上の観点、及び、表示装置における発光素子の信頼性向上の観点から、(メタ)アクリロイル基、ビニル基、又はアリル基を有することが好ましい。上述した(A)アルカリ可溶性樹脂が、(メタ)アクリロイル基、ビニル基、又はアリル基を有する場合、(E)分散剤は、(メタ)アクリロイル基、ビニル基、又はアリル基を有しないことがより好ましい。
 (E)分散剤は、現像後の残渣抑制の観点から、塩基性基、酸性基、塩基性基の塩構造、及び酸性基の塩構造からなる群より選ばれる一種類以上を有することが好ましく、塩基性基、及び/又は、塩基性基の塩構造を有することがより好ましい。(E)分散剤は、現像後の残渣抑制の観点から、塩基性基のみを有する分散剤、塩基性基及び酸性基を有する分散剤、塩基性基が酸と塩形成した構造を有する分散剤、又は、酸性基が塩基と塩形成した構造を有する分散剤が好ましく、塩基性基のみを有する分散剤、又は、塩基性基及び酸性基を有する分散剤がより好ましい。なお、酸性基のみを有する分散剤、又は、塩基性基及び酸性基のいずれも有しない分散剤を含有しても構わない。
 (E)分散剤が有する塩基性基は、三級アミノ基、又は、ピロリジン骨格、ピロール骨格、イミダゾール骨格、若しくはピペリジン骨格などの含窒素環骨格が好ましい。(E)分散剤が有する酸性基は、カルボキシ基、スルホン酸基、リン酸基、又はフェノール性水酸基が好ましい。(E)分散剤が有する塩基性基が酸と塩形成した構造は、四級アンモニウム塩構造又は上述した含窒素環骨格が塩形成した構造が好ましい。塩基性基の塩構造におけるカウンターアニオンは、カルボン酸アニオン、スルホン酸アニオン、フェノキシアニオン、硫酸アニオン、硝酸アニオン、リン酸アニオン、又はハロゲンアニオンが好ましく、カルボン酸アニオンがより好ましい。ポリマー鎖を有する(E)分散剤は、アクリル樹脂系分散剤、ポリオキシアルキレンエーテル系分散剤、ポリエステル系分散剤、ポリウレタン系分散剤、ポリオール系分散剤、ポリアルキレンアミン系分散剤、ポリエチレンイミン系分散剤、又はポリアリルアミン系分散剤が好ましい。
 <(E)分散剤;(E1)化合物>
 (E)分散剤は、(E1)塩基性基を有する顔料分散剤(以下、「(E1)化合物」)を含有することが好ましく、(E1)化合物が、一般式(26)、(27)、(28)及び(29)のいずれかで表される構造からなる群より選ばれる一種類以上の構造、並びに、ポリオキシアルキレン構造を有することがより好ましい。(E1)化合物は、顔料分散液の保管時の粘度上昇抑制、硬化膜の平坦性向上、及び現像後の残渣抑制の観点から、一般式(26)で表される構造、及びポリオキシアルキレン構造を有することがさらに好ましい。また、(E1)塩基性基を有する顔料分散剤は、顔料の分散性向上、及び顔料分散液の冷凍保管時における顔料凝集物抑制の観点から、一般式(29)で表される構造、及びポリオキシアルキレン構造を有することもさらに好ましい。
Figure JPOXMLDOC01-appb-C000029
 一般式(26)~(28)において、R56~R59は、それぞれ独立して、炭素数1~6のアルキル基を表す。nは1~9の整数を表す。*~*は、それぞれ独立して、ポリオキシアルキレン構造との結合点を表す。一般式(29)において、X56及びX57は、それぞれ独立して、水素原子又は炭素数1~6のアルキル基を表す。Y56~Y59は、それぞれ独立して、炭素数1~6のアルキレン基を表す。a及びbは、それぞれ独立して、1~100の整数を表す。c及びdは、それぞれ独立して、0~100の整数を表す。*は、炭素原子又は窒素原子との結合点を表す。a及びbは、それぞれ独立して、5~60の整数が好ましく、10~40の整数がより好ましい。c及びdは、それぞれ独立して、0~20の整数が好ましく、0~10の整数がより好ましい。
 (E)分散剤((E1)化合物を含む)のアミン価は、現像後の残渣抑制の観点から、5mgKOH/g以上が好ましく、10mgKOH/g以上がより好ましい。一方、アミン価は、現像後の残渣抑制の観点から、100mgKOH/g以下が好ましく、70mgKOH/g以下がより好ましい。ここでいうアミン価とは、(E)分散剤1g又は(E1)化合物1g当たりと反応する酸と当量の水酸化カリウムの質量をいい、単位はmgKOH/gである。
(E)分散剤及び(E1)化合物の酸価は、現像後の残渣抑制の観点から、10mgKOH/g以上が好ましく、20mgKOH/g以上がより好ましい。一方、酸価は、現像後の残渣抑制の観点から、100mgKOH/g以下が好ましく、70mgKOH/g以下がより好ましい。ここでいう酸価とは、(E)分散剤1g又は(E1)化合物1g当たりと反応する水酸化カリウムの質量をいい、単位はmgKOH/gである。
 本発明の感光性組成物が(D1)顔料を含有する場合、本発明の感光性組成物に占める(E)分散剤及び(E1)化合物の含有量の合計は、(D1)顔料を100質量部とした場合において、現像後の残渣抑制の観点から、5質量部以上が好ましく、15質量部以上がより好ましい。一方、(E)分散剤及び(E1)化合物の含有量の合計は、現像後の残渣抑制の観点から、50質量部以下が好ましく、40質量部以下がより好ましい。
 <(F)化合物;(F0)化合物、及び(FB)化合物>
 本発明の感光性組成物は、さらに、以下の(F0)化合物及び/又は(FB)化合物を含有することが好ましい。
(F0)化合物:リン原子を含む酸性基、及び/又は、リン原子を含む酸性基の塩を有する化合物(以下、「(F0)化合物」)。
(FB)化合物:リン原子を含むベタイン構造を有する化合物(以下、「(FB)化合物」)。
 なお、(F0)化合物、(FB)化合物、後述する(FC1)化合物、及び後述する(FT)化合物をまとめて、以下、「(F)化合物」という場合もある。
 (F)化合物は、露光時の感度向上の観点、及び、表示装置における発光素子の信頼性向上の観点から、(メタ)アクリロイル基、ビニル基、又はアリル基を有することが好ましい。上述した(A)アルカリ可溶性樹脂が、(メタ)アクリロイル基、ビニル基、又はアリル基を有する場合、(F)化合物は、(メタ)アクリロイル基、ビニル基、又はアリル基を有しないことがより好ましい。
 本発明の感光性組成物は、(F0)化合物が、以下の(I-f0)構造を有することが好ましい。
(I-f0)構造:炭素数4~30の1~2価の脂肪族基、炭素数10~30のアルキルアリール基、及び炭素数6~15のアリール基が結合したオキシアルキレン基からなる群より選ばれる一種類以上の基。
 本発明の感光性組成物は、(FB)化合物が、以下の(I-fb)構造を有することが好ましい。
(I-fb)構造:アンモニウムカチオン構造を有する炭素数1~6の1~2価の脂肪族基。
 (F0)化合物及び/又は(FB)化合物を含有させることで、現像後の残渣抑制、及びハーフトーン特性向上の効果が顕著となる。加えて、表示装置における発光素子の信頼性向上の効果が顕著となる。(F0)化合物及び/又は(FB)化合物は、二種類以上の化合物を含有することも好ましく、二種類以上の(F0)化合物及び二種類以上の(FB)化合物を含有することも好ましい。(F0)化合物及び(FB)化合物を含有することが特に好ましい。
 <(F)化合物;(F1)化合物、及び(FB1)化合物>
 本発明の感光性組成物は、(F0)化合物及び/又は(FB)化合物を含有し、(F0)化合物が、以下の(F1)化合物を含み、(FB)化合物が、以下の(FB1)化合物を含むことが好ましい。
(F1)化合物:リン酸化合物、ホスホン酸化合物、ホスフィン酸化合物、及びそれらの塩からなる群より選ばれる一種類以上(以下、「(F1)化合物」)。
(FB1)化合物:リン酸ベタイン化合物、ホスホン酸ベタイン化合物、及びホスフィン酸ベタイン化合物からなる群より選ばれる一種類以上(以下、「(FB1)化合物」)。
 本発明の感光性組成物は、(F1)化合物が、以下の(I-f1)構造及び/又は(II-f1)構造を有することが好ましい。
(I-f1)構造:炭素数4~30の1価の脂肪族基、炭素数6~30の2価の脂肪族基、及び炭素数10~30のアルキルアリール基からなる群より選ばれる一種類以上の基。
(II-f1)構造:炭素数4~30の1価の脂肪族基が結合したオキシアルキレン基、炭素数10~30のアルキルアリール基が結合したオキシアルキレン基、及び炭素数6~15のアリール基が結合した炭素数4~15のオキシアルキレン基からなる群より選ばれる一種類以上の基。
 本発明の感光性組成物は、(FB1)化合物が、以下の(I-fb1)構造を有することが好ましい。
(I-fb1)構造:アンモニウムカチオン構造を有する炭素数1~6の1~2価の脂肪族基。
 (F1)化合物及び/又は(FB1)化合物を含有させることで、現像後の残渣抑制、及びハーフトーン特性向上の効果が顕著となる。加えて、表示装置における発光素子の信頼性向上の効果が顕著となる。(F1)化合物及び/又は(FB1)化合物は、二種類以上の化合物を含有することも好ましく、二種類以上の(F1)化合物及び二種類以上の(FB1)化合物を含有することも好ましい。(F1)化合物及び(FB1)化合物を含有することが特に好ましい。
 (F1)化合物は、リン原子に結合する置換基及び/又はP-O結合上の酸素原子に結合する置換基を有し、置換基が(I-f1)構造、及び/又は、(II-f1)構造であることが好ましい。
 (I-f1)構造は、以下の(I-f1x)構造が好ましい。
(I-f1x)構造:炭素数6~12の1価の脂肪族基、炭素数6~12の2価の脂肪族基、及び炭素数14~26のアルキルアリール基からなる群より選ばれる一種類以上の基。
 1価の脂肪族基は、アルキル基、アルケニル基、又はアルキニル基が好ましい。2価の脂肪族基は、アルキレン基、アルケニレン基、又はアルキニレン基が好ましい。また、(I-f1)構造は、直鎖構造及び/又は分岐構造であることも好ましい。
 (II-f1)構造は、以下の(II-f1x)構造が好ましい。
(II-f1x)構造:炭素数6~12の1価の脂肪族基が結合したオキシアルキレン基、炭素数14~26のアルキルアリール基が結合したオキシアルキレン基、及び炭素数6~10のアリール基が結合した炭素数6~12のオキシアルキレン基からなる群より選ばれる一種類以上の基。
 1価の脂肪族基は、アルキル基、アルケニル基、又はアルキニル基が好ましい。また、(II-f1)構造は、直鎖構造及び/又は分岐構造であることも好ましい。
 (F0)化合物におけるリン原子を含む酸性基の塩は、リン原子を含む酸性基と、カチオン構造を有する化合物との塩が挙げられる。同様に、(F1)化合物におけるリン酸化合物の塩、ホスホン酸化合物の塩、又はホスフィン酸化合物の塩は、リン酸化合物、ホスホン酸化合物、及びホスフィン酸化合物と、カチオン構造を有する化合物との塩が挙げられる。カチオン構造を有する化合物は、金属原子のカチオン、アンモニウムカチオン、ホスホニウムカチオン、及びスルホニウムカチオンからなる群より選ばれる一種類以上を有する化合物が挙げられ、アンモニウムカチオンを有する化合物が好ましい。アンモニウムカチオンは、一級アンモニウムカチオン、二級アンモニウムカチオン、三級アンモニウムカチオン、又は四級アンモニウムカチオンが好ましく、四級アンモニウムカチオンがより好ましい。アンモニウムカチオンは、少なくとも1つの炭素数1~30の脂肪族基を有することが好ましく、炭素数1~15の脂肪族基を有することがより好ましく、炭素数1~10の脂肪族基を有することがさらに好ましく、炭素数1~6の脂肪族基を有することが特に好ましい。脂肪族基としては、1~2価の直鎖構造及び/又は分岐構造の脂肪族基が好ましく、直鎖構造のアルキル基、アルケニル基、及びアルキニル基からなる群より選ばれる基が好ましく、直鎖構造のアルキル基がさらに好ましい。
 (F1)化合物は、一般式(11)、(12)及び(13)のいずれかで表される化合物及びそれらの塩からなる群より選ばれる一種類以上を含有することが好ましい。一般式(11)、(12)及び(13)のいずれかで表される化合物及びそれらの塩からなる群より選ばれる二種類以上の化合物を含有することも好ましい。(F1)化合物は、現像後の残渣抑制、及びハーフトーン特性向上の観点、並びに、表示装置における発光素子の信頼性向上の観点から、少なくとも一般式(12)で表される化合物及び/又はその塩を含むことが特に好ましい。
Figure JPOXMLDOC01-appb-C000030
 一般式(11)~(13)において、Z11~Z13は、それぞれ独立して、直接結合、炭素数6~30の2価の脂肪族基、又は一般式(14)で表される基を表す。Z14~Z16は、それぞれ独立して、直接結合、炭素数6~30の2価の脂肪族基、又は一般式(15)で表される基を表す。一般式(11)におけるZ11が直接結合の場合、対応するR31は、炭素数4~30の1価の脂肪族基、又は炭素数10~30のアルキルアリール基を表す。一般式(12)及び一般式(13)における、Z12及び対応するR32、並びに、Z13及び対応するR33においても一般式(11)におけるZ11及び対応するR31の関係と同様である。一般式(11)におけるZ14が直接結合の場合、対応するR34は、水素原子、炭素数4~30の1価の脂肪族基、炭素数10~30のアルキルアリール基、光反応性基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基、又は熱反応性基を表す。一般式(12)及び一般式(13)における、Z15及び対応するR35、並びに、Z16及び対応するR36においても一般式(11)におけるZ14及び対応するR34の関係と同様である。一般式(11)におけるZ11とZ14の少なくともいずれかが、炭素数6~30の2価の脂肪族基の場合、対応するR31及び/又はR34は、それぞれ独立して、水素原子、ヒドロキシ基、又は炭素数1~15の1価の有機基を表す。一般式(12)及び一般式(13)における、Z12とZ15及び対応するR32とR35、並びに、Z13とZ16及び対応するR33とR36においても一般式(11)におけるZ11とZ14及び対応するR31とR34の関係と同様である。一般式(11)におけるZ11が、一般式(14)で表される基の場合、対応するR31は、炭素数4~30の1価の脂肪族基、炭素数10~30のアルキルアリール基、又は炭素数6~15のアリール基を表す。一般式(12)及び一般式(13)における、Z12及び対応するR32、並びに、Z13及び対応するR33においても一般式(11)におけるZ11及び対応するR31の関係と同様である。一般式(11)におけるZ14が、一般式(15)で表される基の場合、対応するR34は、水素原子、炭素数4~30の1価の脂肪族基、炭素数10~30のアルキルアリール基、炭素数6~15のアリール基、光反応性基、炭素数2~5のアルケニル基、炭素数2~5のアルキニル基、又は熱反応性基を表す。一般式(12)及び一般式(13)における、Z15及び対応するR35、並びに、Z16及び対応するR36においても一般式(11)におけるZ14及び対応するR34の関係と同様である。光反応性基、炭素数2~5のアルケニル基、及び炭素数2~5のアルキニル基は、ラジカル重合性基であることが好ましい。熱反応性基は、アルコキシメチル基、メチロール基、エポキシ基、オキセタニル基、又はブロックイソシアネート基が好ましい。
 一般式(14)及び一般式(15)において、Y11及びY12は、それぞれ独立して、炭素数1~15のアルキレン基を表す。R37及びR38は、それぞれ独立して、炭素数1~6のアルキル基を表す。m及びnは、それぞれ独立して、1~15の整数を表す。p及びqは、それぞれ独立して、0~4の整数を表す。*は、一般式(11)中の酸素原子との結合点、一般式(12)中のリン原子との結合点、又は一般式(13)中のリン原子との結合点を表す。*は、一般式(11)中のR31との結合点、一般式(12)中のR32との結合点、又は一般式(13)中のR33との結合点を表す。*は、一般式(11)中の酸素原子との結合点、一般式(12)中の酸素原子との結合点、又は一般式(13)中のリン原子との結合点を表す。*は、一般式(11)中のR34との結合点、一般式(12)中のR35との結合点、又は一般式(13)中のR36との結合点を表す。
 本発明の感光性組成物は、後述するアセテート結合を有する溶剤としてプロピレングリコールモノアルキルエーテルアセテートを含有し、かつ(F1)化合物は、上述した一般式(11)~(13)中、Z11~Z13が直接結合又は一般式(14)で表される基の場合、R31~R33における炭素数4~30の1価の脂肪族基が、それぞれ独立して炭素数6~12の1価の脂肪族基であり、上述した一般式(11)~(13)中、Z14~Z16が直接結合の場合、R34~R36は水素原子であることが好ましい。
 このような(F1)化合物を、以下、「特定の(F1)化合物」という。なお(F1)化合物が、上述した(I-f1)構造として、炭素数6~12の1価の脂肪族基、及び/又は、上述した(II-f1)構造として、炭素数6~12の1価の脂肪族基が結合したオキシアルキレン基を有する場合、同様にこのような化合物を、以下、「特定の(F1)化合物」という。
 (F1)化合物が、特定の(F1)化合物を含有することで、特異的に(F1)化合物のプロピレングリコールモノアルキルエーテルアセテートへの溶解性を顕著に向上できる。それにより、現像後の残渣抑制、及びハーフトーン特性向上の効果が顕著となる。加えて、表示装置における発光素子の信頼性向上の効果が顕著となる。なお、プロピレングリコールモノアルキルエーテルアセテートは、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートが好ましく、プロピレングリコールモノメチルエーテルアセテートがより好ましい。
 (F1)化合物は、ハーフトーン特性向上の観点から、さらに以下の(III-f1)構造を有することも好ましい。
(III-f1)構造:光反応性基、炭素数2~5のアルケニル基、及び炭素数2~5のアルキニル基からなる群より選ばれる一種類以上。
 (F1)化合物は、リン原子に結合する置換基及び/又はP-O結合上の酸素原子に結合する二種類以上の置換基を有し、
置換基が、(I-f1)構造及び/又は(II-f1)構造、並びに、(III-f1)構造であることが好ましい。
 (III-f1)構造において、光反応性基は、ラジカル重合性基が好ましく、スチリル基、シンナモイル基、マレイミド基、又は(メタ)アクリロイル基がより好ましく、(メタ)アクリロイル基がさらに好ましい。一方、炭素数2~5のアルケニル基又は炭素数2~5のアルキニル基は、ラジカル重合性基が好ましく、ビニル基、アリル基、2-メチル-2-プロペニル基、クロトニル基、2-メチル-2-ブテニル基、3-メチル-2-ブテニル基、2,3-ジメチル-2-ブテニル基、エチニル基、又は2-プロパルギル基がより好ましく、ビニル基又はアリル基がさらに好ましい。
 本発明の感光性組成物は、上述した(F1)化合物及び/又は(FB1)化合物を含み、かつ(F1)化合物とは別の、上述した光反応性基、炭素数2~5のアルケニル基、及び炭素数2~5のアルキニル基からなる群より選ばれる一種類以上を有する、リン酸化合物、ホスホン酸化合物、及びホスフィン酸化合物からなる群より選ばれる一種類以上を含有することも好ましい。
 (FB1)化合物は、リン原子に結合する置換基及び/又はP-O結合上の酸素原子に結合する置換基を有し、置換基が(I-fb1)構造であることが好ましい。
 (I-fb1)構造において、炭素数1~6の1~2価の脂肪族基は、炭素数1~4の2価の脂肪族基が好ましい。1価の脂肪族基は、アルキル基、アルケニル基、又はアルキニル基が好ましい。2価の脂肪族基は、アルキレン基、アルケニレン基、又はアルキニレン基が好ましい。また、炭素数1~6の1~2価の脂肪族基は、直鎖構造及び/又は分岐構造であることも好ましい。炭素数1~6の1~2価の脂肪族基は、置換基として、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、カルボキシ基、又はヒドロキシ基を有しても構わない。
 (I-fb1)構造において、アンモニウムカチオン構造は、アンモニウムカチオン、モノアルキルアンモニウムカチオン、ジアルキルアンモニウムカチオン、又はトリアルキル四級アンモニウムカチオンが好ましく、トリアルキル四級アンモニウムカチオンがより好ましい。
 (I-fb1)構造は、少なくとも1つのヒドロキシ基、及び、少なくとも1つのアンモニウム基又はアミノ基を有する炭素数1~6の窒素含有脂肪族アルコール化合物に由来する構造がより好ましい。そのような化合物は、エタノールアミン、プロパノールアミン、ブタノールアミン、ペンタノールアミン、セリン、トレオニン、チオシン、又はコリンが好ましく、エタノールアミン、セリン、又はコリンがより好ましい。
 本発明の感光性組成物は、後述するアセテート結合を有する溶剤としてプロピレングリコールモノアルキルエーテルアセテートを少なくとも含み、さらに、後述するエーテル結合を少なくとも3つ有する溶剤としてジエチレングリコールジアルキルエーテル、及び/又は、後述するアルコール性水酸基を有する溶剤としてプロピレングリコールモノアルキルエーテル、乳酸アルキル、ヒドロキシ酢酸アルキル、及び酢酸ヒドロキシアルキルからなる群より選ばれる一種類以上を含有する場合(以下、「特定の溶剤を含有する場合」)において、(FB1)化合物は、上述した(I-fb1)構造において、トリアルキル四級アンモニウムカチオン構造を有することが好ましい。
 トリアルキル四級アンモニウムカチオン構造は、炭素数1~6のアルキル基を3つ有することが好ましく、炭素数1~4のアルキル基を3つ有することがより好ましい。このような(FB1)化合物を、以下、「特定の(FB1)化合物」という。
 特定の溶剤を含有する場合において、(FB1)化合物が、特定の(FB1)化合物を含有することで、特異的に(FB1)化合物の溶剤への溶解性を顕著に向上できる。それにより、現像後の残渣抑制、及びハーフトーン特性向上の効果が顕著となる。加えて、表示装置における発光素子の信頼性向上の効果が顕著となる。
なお、プロピレングリコールモノアルキルエーテルアセテートは、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートが好ましく、プロピレングリコールモノメチルエーテルアセテートがより好ましい。
また、ジエチレングリコールジアルキルエーテルは、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、及びジエチレングリコールエチルメチルエーテルが好ましく、ジエチレングリコールエチルメチルエーテルがより好ましい。
また、プロピレングリコールモノアルキルエーテル、乳酸アルキル、ヒドロキシ酢酸アルキル、又は酢酸ヒドロキシアルキルは、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、ヒドロキシ酢酸メチル、ヒドロキシ酢酸エチル、酢酸2-ヒドロキシメチル、及び酢酸2-ヒドロキシエチルが好ましく、プロピレングリコールモノメチルエーテル、乳酸エチル、ヒドロキシ酢酸エチル、又は酢酸2-ヒドロキシエチルがより好ましい。
 (FB1)化合物は、現像後の残渣抑制、及びハーフトーン特性向上の観点、並びに、表示装置における発光素子の信頼性向上の観点から、さらに以下の(II-fb1)構造を有することが好ましい。
(II-fb1)構造:炭素数6~30の脂肪酸化合物に由来する脂肪酸エステル構造、及び/又は、炭素数6~30の脂肪族アルコールに由来する脂肪族エーテル構造。
 (FB1)化合物は、リン原子に結合する置換基及び/又はP-O結合上の酸素原子に結合する二種類以上の置換基を有し、置換基が(I-fb1)構造、及び、(II-fb1)構造であることが好ましい。
 (II-fb1)構造は、炭素数6~30の1~2価の脂肪族基を有することが好ましく、炭素数10~20の1~2価の脂肪族基を有することがより好ましい。1価の脂肪族基は、アルキル基、アルケニル基、又はアルキニル基が好ましい。2価の脂肪族基は、アルキレン基、アルケニレン基、又はアルキニレン基が好ましい。また、炭素数6~30の1~2価の脂肪族基は、直鎖構造及び/又は分岐構造であることも好ましい。なお、上述した特定の溶剤を含有する場合において、(FB1)化合物が、上述した(II-fb1)構造を有することで、さらに特異的に(FB1)化合物の溶剤への溶解性を顕著に向上できる。
 (FB1)化合物は、現像後の残渣抑制、及びハーフトーン特性向上の観点、並びに、表示装置における発光素子の信頼性向上の観点から、(I-fb1)構造を有し、さらに以下の(IV-fb1)構造又は(V-fb1)構造を有する化合物(以下、「ベタイン型のリン脂質の(FB1)化合物」)を含有することが好ましい。
(IV-fb1)構造:少なくとも3つのヒドロキシ基を有する、炭素数2~6の脂肪族多官能アルコール化合物に由来するエステル構造。
(V-fb1)構造:少なくとも2つのヒドロキシ基、並びに、少なくとも1つのアミノ基又は少なくとも1つのアルキルアミド基を有する、炭素数15~20の窒素含有脂肪族アルコール化合物に由来するエステル構造。
 なお、上述した特定の溶剤を含有する場合において、(FB1)化合物が、ベタイン型リン脂質の(FB1)化合物を含有することで、さらに特異的に(FB1)化合物の溶剤への溶解性を顕著に向上できる。
 (FB1)化合物は、ベタイン型リン脂質の(FB1)化合物として、グリセロリン脂質及び/又はスフィンゴリン脂質を含むことが特に好ましい。ベタイン型リン脂質の(FB1)化合物は、ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリン、スフィンゴミエリン、水添ホスファチジルコリン、水添ホスファチジルエタノールアミン、水添ホスファチジルセリン、水添スフィンゴミエリン、リゾホスファチジルコリン、リゾホスファチジルエタノールアミン、リゾホスファチジルセリン、リゾスフィンゴミエリン、レシチン、水添レシチン、リゾレシチン、セファリン、水添セファリン、リゾセファリン、プラズマローゲン、血小板活性化因子、及び(トリメチルアンモニオ)エチルホスホン酸セラミドからなる群より選ばれる一種類以上を含有することが特に好ましい。
 (FB1)化合物は、ハーフトーン特性向上の観点から、さらに以下の(III-fb1)構造を有することも好ましい。
(III-fb1)構造:光反応性基、炭素数2~5のアルケニル基、及び炭素数2~5のアルキニル基からなる群より選ばれる一種類以上。
 (FB1)化合物は、リン原子に結合する置換基及び/又はP-O結合上の酸素原子に結合する二種類以上の置換基を有し、置換基が(I-fb1)構造、及び、(III-fb1)構造であることが好ましい。
 また、(FB1)化合物が二種類以上の(FB1)化合物を含有し、上述した(II-fb1)構造、上述した(IV-fb1)構造、及び上述した(V-fb1)構造からなる群より選ばれる一種類以上を有する化合物を含み、さらに(III-fb1)構造を有する化合物を含むことも好ましい。
 (III-fb1)構造において、光反応性基は、ラジカル重合性基が好ましく、スチリル基、シンナモイル基、マレイミド基、又は(メタ)アクリロイル基がより好ましく、(メタ)アクリロイル基がさらに好ましい。一方、炭素数2~5のアルケニル基又は炭素数2~5のアルキニル基は、ラジカル重合性基が好ましく、ビニル基、アリル基、2-メチル-2-プロペニル基、クロトニル基、2-メチル-2-ブテニル基、3-メチル-2-ブテニル基、2,3-ジメチル-2-ブテニル基、エチニル基、又は2-プロパルギル基がより好ましく、ビニル基又はアリル基がさらに好ましい。
 溶剤を除く、本発明の感光性組成物の全固形分中に占める(F1)化合物及び(FB1)化合物の含有比率の合計は、現像後の残渣抑制の観点、及び、表示装置における発光素子の信頼性向上の観点から、0.02質量%以上が好ましく、0.05質量%以上がより好ましく、0.15質量%以上がさらに好ましく、0.25質量%以上が特に好ましい。一方、(F1)化合物及び(FB1)化合物の含有比率の合計は、現像後の残渣抑制の観点、及び、表示装置における発光素子の信頼性向上の観点から、1.8質量%以下が好ましく、1.5質量%以下がより好ましく、1.3質量%以下がさらに好ましく、1.0質量%以下が特に好ましい。また、本発明の感光性組成物が、(A)アルカリ可溶性樹脂及び(B)化合物を含有する場合、本発明の感光性組成物に占める(F1)化合物及び(FB1)化合物の含有量の合計は、(A)アルカリ可溶性樹脂及び(B)化合物の合計を100質量部とした場合において、0.05質量部以上が好ましく、0.10質量部以上がより好ましく、0.30質量部以上がさらに好ましく、0.50質量部以上が特に好ましい。一方、(F1)化合物及び(FB1)化合物の含有量の合計は、3.0質量部以下が好ましく、2.5質量部以下がより好ましく、2.0質量部以下がさらに好ましく、1.5質量部以下が特に好ましい。
 <(F)化合物;(FC1)化合物>
 本発明の感光性組成物は、さらに、(FC1)非ベタイン型リン脂質(以下、「(FC1)化合物」)を含有することが好ましい。(FC1)化合物を含有させることで、現像後の残渣抑制、及びハーフトーン特性向上の効果が顕著となる。加えて、表示装置における発光素子の信頼性向上の効果が顕著となる。(FC1)化合物は、二種類以上の化合物を含有することも好ましく、(F1)化合物及び/又は(FB1)化合物を含み、さらに(FC1)化合物を含有することが特に好ましい。
 (FC1)化合物は、少なくとも以下の(I-fc1)構造並びに(II-fc1)構造を有する。
(I-fc1)構造:リン原子を含む酸性基、リン原子を含むアニオン構造、及びリン原子を含む酸性基の塩からなる群より選ばれる一種類以上。
(II-fc1)構造:炭素数6~30の脂肪酸化合物に由来する脂肪酸エステル構造、及び/又は、炭素数6~30の脂肪族アルコールに由来する脂肪族エーテル構造。
 (I-fc1)構造が、リン原子を含む酸性基及び/又はリン原子を含むアニオン構造である場合、(FC1)化合物は、アンモニウムカチオン構造を有しないことが好ましい。上述したリン原子を含むアニオン構造は、リン原子を含む酸性基に由来するアニオン構造が好ましい。(FC1)化合物は、リン原子に結合する置換基及び/又はP-O結合上の酸素原子に結合する二種類以上の置換基を有し、置換基が(I-fc1)構造、及び、(II-fc1)構造であることが好ましい。
 (I-fc1)構造は、リン酸基、ホスホン酸基、若しくはホスフィン酸基、及び/又は、リン酸アニオン、ホスホン酸アニオン、若しくはホスフィン酸アニオンが好ましい。
 (II-fc1)構造は、炭素数6~30の1~2価の脂肪族基を有することが好ましく、炭素数10~20の1~2価の脂肪族基を有することがより好ましい。1価の脂肪族基は、アルキル基、アルケニル基、又はアルキニル基が好ましい。2価の脂肪族基は、アルキレン基、アルケニレン基、又はアルキニレン基が好ましい。また、炭素数6~30の1~2価の脂肪族基は、直鎖構造及び/又は分岐構造であることも好ましい。
 (FC1)化合物は、ホスファチジン酸、ホスファチジルグリセロール、リゾホスファチジン酸、リゾホスファチジルグリセロール、ホスファチジルイノシトール、リゾホスファチジルイノシトール、ジホスファチジルグリセロール、カルジオリピン、スフィンゴシン-1-リン酸、及びホスファチジル-シチジン一リン酸からなる群より選ばれる一種類以上を含有することが特に好ましい。
 本発明の感光性組成物において、(F1)化合物、(FB1)化合物、及び(FC1)化合物の含有比率の合計は、上述した(F1)化合物及び(FB1)化合物の好ましい含有比率の通りである。また、本発明の感光性組成物が、(A)アルカリ可溶性樹脂及び(B)化合物を含有する場合、(F1)化合物、(FB1)化合物、及び(FC1)化合物の含有量の合計は、上述した(F1)化合物及び(FB1)化合物の好ましい含有量の通りである。
 <(F)化合物;(FT)化合物>
 本発明の感光性組成物は、さらに、(FT)反応性基を有する、リン原子を含む酸性基のエステル化合物(以下、「(FT)化合物」)を含有することが好ましい。(FT)化合物を含有させることで、ハーフトーン特性向上、及び現像後のパターン剥がれ抑制の効果が顕著となる。(FT)化合物は、二種類以上の化合物を含有することも好ましく、(F1)化合物及び/又は(FB1)化合物を含み、さらに(FT)化合物を含有することが特に好ましい。
 (FT)化合物は、ラジカル重合性基を有することが好ましく、光反応性基、炭素数2~5のアルケニル基、及び炭素数2~5のアルキニル基からなる群より選ばれる一種類以上を有することがより好ましい。(FT)化合物が有する、光反応性基、炭素数2~5のアルケニル基、及び炭素数2~5のアルキニル基からなる群より選ばれる一種類以上の数を(X)とし、(FT)化合物が有する、1~2価の脂肪族基、1~2価の脂環式基、1~2価の芳香族基、及び置換基が結合したオキシアルキレン基からなる群より選ばれる一種類以上の数を(Y)とするとき、(X)及び(Y)が、式(FT-α)~(FT-γ)を満たすことが好ましい。
X+Y=3 (FT-α)
1≦X≦3 (FT-β)
0≦Y≦2 (FT-γ)。
 式(FT-α)~(FT-γ)において、Xは、1~3の整数が好ましく、2又は3であることがより好ましく、3であることがさらに好ましい。Yは、0~2の整数が好ましく、0又は1であることがより好ましい。
 (FT)化合物は、リン原子に結合する置換基及び/又はP-O結合上の酸素原子に結合する置換基を有し、置換基が、ラジカル重合性基を有することが好ましく、光反応性基、炭素数2~5のアルケニル基、及び炭素数2~5のアルキニル基からなる群より選ばれる一種類以上を有することがより好ましい。
また置換基が、1~2価の脂肪族基、1~2価の脂環式基、1~2価の芳香族基、及び置換基が結合したオキシアルキレン基からなる群より選ばれる一種類以上を有することも好ましい。
 本発明の感光性組成物は、さらに以下の(FT1)化合物、(F1)化合物として上述した(III-fb1)構造を有する化合物、及び(FB1)化合物として上述した(III-fb1)構造を有する化合物、からなる群より選ばれる一種類以上を含有することが好ましい。
(FT1)化合物:光反応性基、炭素数2~5のアルケニル基、及び炭素数2~5のアルキニル基からなる群より選ばれる一種類以上を少なくとも3つ有する、リン原子を含む酸性基のエステル化合物。
 (FT)化合物おいて、光反応性基は、ラジカル重合性基が好ましく、スチリル基、シンナモイル基、マレイミド基、又は(メタ)アクリロイル基がより好ましく、(メタ)アクリロイル基がさらに好ましい。一方、炭素数2~5のアルケニル基又は炭素数2~5のアルキニル基は、ラジカル重合性基が好ましく、ビニル基、アリル基、2-メチル-2-プロペニル基、クロトニル基、2-メチル-2-ブテニル基、3-メチル-2-ブテニル基、2,3-ジメチル-2-ブテニル基、エチニル基、又は2-プロパルギル基がより好ましく、ビニル基又はアリル基がさらに好ましい。
 (FT)化合物は、上述した光反応性基、炭素数2~5のアルケニル基、及び炭素数2~5のアルキニル基からなる群より選ばれる一種類以上を有する、リン酸トリエステル化合物、亜リン酸トリエステル化合物、ホスホン酸ジエステル化合物、次亜リン酸ジエステル化合物、及びホスフィン酸モノエステル化合物からなる群より選ばれる一種類以上を含有することが好ましい。
 本発明の感光性組成物において、(F1)化合物、(FB1)化合物、及び(FT)化合物の含有比率の合計は、上述した(F1)化合物及び(FB1)化合物の好ましい含有比率の通りである。また、本発明の感光性組成物が、(A)アルカリ可溶性樹脂及び(B)化合物を含有する場合、(F1)化合物、(FB1)化合物、及び(FT)化合物の含有量の合計は、上述した(F1)化合物及び(FB1)化合物の好ましい含有量の通りである。
 <(G)架橋剤>
 本発明の感光性組成物は、さらに、(G)架橋剤を含有することが好ましい。(G)架橋剤とは、樹脂などと結合可能な架橋性基を有する化合物又はカチオン重合性基を有する化合物をいう。一般に、架橋性基による樹脂などとの架橋反応及びカチオン重合性基によるカチオン重合は、酸及び/又は熱によって促進可能であり、硬化膜の耐熱性向上、及び硬化膜の耐薬品性向上に好適である。(G)架橋剤は、アルコキシアルキル基、ヒドロキシアルキル基、エポキシ基、オキセタニル基、ビニル基、及びアリル基からなる群より選ばれる一種類以上の基を少なくとも2つ有する化合物が好ましい(ただし、上述した(B)化合物は除く)。アルコキシアルキル基は、アルコキシメチル基が好ましく、メトキシメチル基がより好ましい。ヒドロキシアルキル基は、メチロール基が好ましい。
 (G)架橋剤は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、フェノール性水酸基を有することが好ましい。上述した(A)アルカリ可溶性樹脂及び(G)架橋剤が、フェノール性水酸基を有することがより好ましい。
(G)架橋剤は、露光時の感度向上の観点、及び、表示装置における発光素子の信頼性向上の観点から、(メタ)アクリロイル基、ビニル基、又はアリル基を有することが好ましい。上述した(A)アルカリ可溶性樹脂及び(G)架橋剤が、(メタ)アクリロイル基、ビニル基、又はアリル基を有することがより好ましく、上述した(A)アルカリ可溶性樹脂、(B)化合物、及び(G)架橋剤が、(メタ)アクリロイル基、ビニル基、又はアリル基を有することがより好ましい。(B)化合物及び/又は(G)架橋剤が、(メタ)アクリロイル基、ビニル基、又はアリル基を有する場合、(A)アルカリ可溶性樹脂は、(メタ)アクリロイル基、ビニル基、又はアリル基を有しないことも好ましい。
 <(G)架橋剤;(G1)化合物>
 本発明の感光性組成物は、さらに、(G1)疎水性骨格含有エポキシ架橋剤(以下、「(G1)化合物」)を含有することが好ましい。(G1)化合物とは、以下の(I-g1)構造及び(II-g1)構造を有し、(II-g1)構造を少なくとも2つ有する化合物をいう。
(I-g1)構造:縮合多環式構造、縮合多環式ヘテロ環構造、芳香環骨格及び脂環式骨格が直接連結された構造、並びに少なくとも2つの芳香環骨格が直接連結された構造からなる群より選ばれる一種類以上を含む構造。
(II-g1)構造:エポキシ基を有する有機基。
 (G1)化合物を含有させることで、ハーフトーン特性向上、及び現像後における開口パターン寸法のバラツキ抑制の効果が顕著となる。
 (G1)化合物は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、上述した(I-g1)構造が、フルオレン構造、インダン構造、インドリノン構造、イソインドリノン構造、キサンテン構造、トリシクロ[5.2.1.02,6]デカン構造、及びビナフチル構造からなる群より選ばれる一種類以上を含む構造であることが好ましい。
 (G1)化合物のエポキシ基当量は、現像後の残渣抑制の観点から、150g/mol以上が好ましく、170g/mol以上がより好ましく、190g/mol以上がさらに好ましい。一方、エポキシ基当量は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、800g/mol以下が好ましく、600g/mol以下がより好ましく、500g/mol以下がさらに好ましい。
 溶剤を除く、本発明の感光性組成物の全固形分中に占める(G1)化合物の含有比率は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、0.3質量%以上が好ましく、1.0質量%以上がより好ましく、2.0質量%以上がさらに好ましい。一方、(G1)化合物の含有比率は、現像後の残渣抑制の観点から、25質量%以下が好ましく、20質量%以下がより好ましく、15質量%以下がさらに好ましい。また、本発明の感光性組成物が、(A)アルカリ可溶性樹脂及び(B)化合物を含有する場合、本発明の感光性組成物に占める(G1)化合物の含有量は、(A)アルカリ可溶性樹脂及び(B)化合物の合計を100質量部とした場合において、1質量部以上が好ましく、3質量部以上がより好ましく、5質量部以上がさらに好ましい。一方、(G1)化合物の含有量は、30質量部以下が好ましく、25質量部以下がより好ましく、20質量部以下がさらに好ましい。
 <(G)架橋剤;(G2)化合物、及び(G3)化合物>
 本発明の感光性組成物は、さらに、以下の(G2)化合物及び/又は(G3)化合物を含有し、架橋性基が、アルコキシアルキル基、ヒドロキシアルキル基、エポキシ基、オキセタニル基、ビニル基、及びアリル基からなる群より選ばれる一種類以上を含むことが好ましい。アルコキシアルキル基は、アルコキシメチル基が好ましく、メトキシメチル基がより好ましい。ヒドロキシアルキル基は、メチロール基が好ましい。
(G2)化合物:少なくとも2つのフェノール性水酸基、及び少なくとも2つの架橋性基を有する化合物。
(G3)化合物:窒素原子を少なくとも2つ有する環状構造、及び少なくとも2つの架橋性基を有する化合物。
 (G2)化合物及び/又は(G3)化合物を含有させることで、現像後の残渣抑制、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の効果が顕著となる。(G2)化合物又は(G3)化合物が有する架橋性基数は、2つ以上が好ましく、3つ以上がより好ましく、4つ以上がさらに好ましい。一方、架橋性基数は、8つ以下が好ましく、7つ以下がより好ましく、6つ以下がさらに好ましい。
 (G2)化合物は、以下の(I-g2)構造を少なくとも2つ有することが好ましい。また(G2)化合物は、以下の(I-g2x)構造を少なくとも2つ有することがより好ましい。
(I-g2)構造:1つの芳香族構造にフェノール性水酸基、及び架橋性基が結合した構造。
(I-g2x)構造:1つの芳香族構造にフェノール性水酸基、及び少なくとも2つの架橋性基、が結合した構造。
 (G2)化合物が有する(I-g2)構造の数、及び(I-g2x)構造の数の合計は、2つ以上が好ましく、3つ以上がより好ましく、4つ以上がさらに好ましい。一方、(I-g2)構造の数、及び(I-g2x)構造の数の合計は、8つ以下が好ましく、7つ以下がより好ましく、6つ以下がさらに好ましい。(G2)化合物は、芳香族構造などの疎水性骨格を有することが好ましい。疎水性骨格は、フルオレン構造、インダン構造、縮合多環脂環式構造、少なくとも2つの芳香環骨格が脂肪族基で連結された構造、及び少なくとも2つの芳香環骨格が直接連結された構造からなる群より選ばれる一種類以上を含む構造が好ましい。
 (G2)化合物は、現像後の残渣抑制、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、(G2)化合物が有するフェノール性水酸基数は、2つ以上が好ましく、3つ以上がより好ましく、4つ以上がさらに好ましい。一方、フェノール性水酸基数は、8つ以下が好ましく、7つ以下がより好ましく、6つ以下がさらに好ましい。
 (G3)化合物は、以下の(I-g3)構造を有することが好ましい。また(G3)化合物は、以下の(I-g3x)構造を有することがより好ましい。
(I-g3)構造:窒素原子を少なくとも2つ有する環状骨格に、架橋性基が結合した構造。
(I-g3x)構造:窒素原子を少なくとも2つ有する環状骨格に、少なくとも2つの架橋性基が結合した構造。
 (G3)化合物が有する(I-g3x)構造における架橋性基数は、2つ以上が好ましく、3つ以上がより好ましく、4つ以上がさらに好ましい。一方、架橋性基数は、8つ以下が好ましく、7つ以下がより好ましく、6つ以下がさらに好ましい。
 (G3)化合物は、現像後の残渣抑制、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、(G3)化合物が有する窒素原子を少なくとも2つ有する環状骨格は、イソシアヌル酸構造、トリアジン構造、グリコールウリル構造、イミダゾリドン構造、ピラゾール構造、イミダゾール構造、トリアゾール構造、テトラゾール構造、及びプリン構造からなる群より選ばれる一種類以上が好ましく、イソシアヌル酸構造、トリアジン構造、及びグリコールウリル構造からなる群より選ばれる一種類以上がより好ましく、イソシアヌル酸構造及び/又はトリアジン構造がさらに好ましい。
 (G2)化合物は、一般式(181)、(182)、(183)及び(184)のいずれかで表される化合物からなる群より選ばれる一種類以上を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000031
 一般式(181)~(184)において、Y311は、直接結合、炭素原子、窒素原子、酸素原子、又は硫黄原子を表す。R411~R423は、それぞれ独立して、ハロゲン原子又は炭素数1~10のアルキル基を表す。R424~R430は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、又は炭素数6~15のアリール基を表す。R431~R440は、それぞれ独立して、炭素数2~10のアルコキシアルキル基、炭素数1~6のヒドロキシアルキル基、エポキシ基を有する炭素数1~6のアルキル基、エポキシ基を有する炭素数2~10のアルコキシアルキル基、オキセタニル基を有する炭素数1~8のアルキル基、オキセタニル基を有する炭素数2~12のアルコキシアルキル基、ビニル基、又はアリル基を表す。a及びbは、それぞれ独立して、0~4の整数を表す。c及びdは、それぞれ独立して、0~2の整数を表す。e、f、g、h、i、j、k、及びlは、それぞれ独立して、0~3の整数を表す。mは0~4の整数を表す。Y311が直接結合、酸素原子、又は硫黄原子の場合、nは0である。Y311が窒素の場合、nは1である。Y311が炭素原子の場合、nは2である。o、p、α、及びβは、それぞれ独立して、1~3の整数を表し、2≦o+α≦4であり、2≦p+β≦4である。q、r、γ、及びδは、それぞれ独立して、1~4の整数を表し、2≦q+γ≦5であり、2≦r+δ≦5である。s、t、u、ε、ζ、及びηは、それぞれ独立して、1~4の整数を表し、2≦s+ε≦5であり、2≦t+ζ≦5であり、2≦u+η≦5である。v、w、x、θ、λ、及びπは、それぞれ独立して、1~4の整数を表し、2≦v+θ≦5であり、2≦w+λ≦5であり、2≦x+π≦5である。Y311は、直接結合又は酸素原子が好ましい。上述したアルキル基、シクロアルキル基、アリール基、アルコキシアルキル基、及びヒドロキシアルキル基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。
 (G3)化合物は、一般式(171)、(172)及び(173)のいずれかで表される化合物からなる群より選ばれる一種類以上を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000032
 一般式(171)~(173)において、Y264~Y266は、それぞれ独立して、直接結合、酸素原子、又は窒素原子を表す。R261~R270は、それぞれ独立して、一般式(174)~(178)のいずれかで表される基、水素原子、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、又はヒドロキシ基を表す。一般式(174)~(178)において、X271は、炭素数1~6のアルキレン基を表す。X272~X274、及びX276は、それぞれ独立して、直接結合又は炭素数1~10のアルキレン基を表す。X275は、直接結合、炭素数1~6のアルキレン基、又は炭素数6~15のアリーレン基を表す。Y272は、直接結合又は炭素数1~10のアルキレン基を表す。Z272及びZ273は、直接結合、炭素数1~10のアルキレン基、炭素数4~10のシクロアルキレン基、又は炭素数6~15のアリーレン基を表す。R271は、水素原子、又は炭素数1~6のアルキル基を表す。R272及びR273は、それぞれ独立して、一般式(179)又は一般式(180)で表される基を表す。R274は、水素原子、又は炭素数1~10のアルキル基を表す。R275及びR276は、それぞれ独立して、水素原子、炭素数1~10のアルキル基、又はヒドロキシ基を表す。Y264~Y266が、それぞれ独立して、直接結合又は酸素原子の場合、a、b、及びcは1である。Y264~Y266が、それぞれ独立して、窒素原子の場合、a、b、及びcは2である。dは0又は1を表す。eは0又は1を表す。fは1~4の整数を表す。eが1の場合、dは1であり、Y272は、炭素数1~10のアルキレン基を表す。gは1~4の整数を表す。hは1~6の整数を表す。*~*は、それぞれ独立して、結合点を表す。上述したアルキル基、シクロアルキル基、アリール基、アルキレン基、シクロアルキレン基、及びアリーレン基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。
 溶剤を除く、本発明の感光性組成物の全固形分中に占める(G2)化合物及び(G3)化合物の含有比率の合計は、現像後の残渣抑制、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、0.3質量%以上が好ましく、1.0質量%以上がより好ましく、2.0質量%以上がさらに好ましい。一方、(G2)化合物及び(G3)化合物の含有比率の合計は、現像後の残渣抑制、及び露光時の感度向上の観点から、25質量%以下が好ましく、20質量%以下がより好ましく、15質量%以下がさらに好ましい。また、本発明の感光性組成物が、(A)アルカリ可溶性樹脂及び(B)化合物を含有する場合、本発明の感光性組成物に占める(G2)化合物及び(G3)化合物の含有量の合計は、(A)アルカリ可溶性樹脂及び(B)化合物の合計を100質量部とした場合において、1質量部以上が好ましく、3質量部以上がより好ましく、5質量部以上がさらに好ましい。一方、(G2)化合物及び(G3)化合物の含有量の合計は、30質量部以下が好ましく、25質量部以下がより好ましく、20質量部以下がさらに好ましい。
 <(H)溶解促進剤>
 本発明の感光性組成物は、さらに、(H)溶解促進剤(以下、「(H)化合物」)を含有することが好ましい。(H)化合物とは、アルカリ現像液へ溶解可能な酸性基及び/又は親水性基を有する化合物をいう。(H)化合物を含有させることで現像後の残渣抑制の効果が顕著となる。(H)化合物は、多官能カルボン酸化合物、多官能フェノール化合物、ヒドロキシイミド化合物、並びに、ヒドロキシ基及びオキシアルキレン基を有する化合物からなる群より選ばれる一種類以上を含有することが好ましい。
 (H)化合物は、現像後における狭マスクバイアス抑制、及びハーフトーン特性向上の観点から、フェノール性水酸基を有することが好ましい。一方、上述した(A)アルカリ可溶性樹脂が、フェノール性水酸基を有する場合、(H)化合物は、フェノール性水酸基を有しないことが好ましい。
 (H)化合物が有するオキシアルキレン基は、炭素数1~10の1~2価の脂肪族基、炭素数6~15のアリール基、炭素数7~25のアリールアルキル基、炭素数7~25のアルキルアリール基、並びに、炭素数7~25のアリールアルキル基が少なくとも2つ結合した炭素数6~15のアリール基、からなる群より選ばれる基が結合していることが好ましい。炭素数7~25のアリールアルキル基は、炭素数6~15のアリール基を有する炭素数2~5のアルケニル基が好ましい。(H)化合物が有するオキシアルキレン基は、炭素数1~6のオキシアルキレン基が好ましく、オキシエチレン基、又はオキシプロピレン基がより好ましく、オキシエチレン基がさらに好ましい。(H)化合物が有するオキシアルキレン基数は、2個以上が好ましく、3個以上がより好ましく、4個以上がさらに好ましい。一方、オキシアルキレン基数は、20個以下が好ましく、15個以下がより好ましく、10個以下がさらに好ましい。
 溶剤を除く、本発明の感光性組成物の全固形分中に占める(H)化合物の含有比率は、現像後の残渣抑制の観点から、0.2質量%以上が好ましく、0.3質量%以上がより好ましく、1.0質量%以上がさらに好ましい。一方、(H)化合物の含有比率は、現像後のパターン剥がれ抑制の観点から、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましい。また、本発明の感光性組成物が、(A)アルカリ可溶性樹脂及び(B)化合物を含有する場合、本発明の感光性組成物に占める(H)化合物の含有量は、(A)アルカリ可溶性樹脂及び(B)化合物の合計を100質量部とした場合において、0.5質量%以上が好ましく、1質量部以上がより好ましく、3質量部以上がさらに好ましい。一方、(H)化合物の含有量は、25質量部以下が好ましく、20質量部以下がより好ましく、15質量部以下がさらに好ましい。
 <(I)無機粒子>
 本発明の感光性組成物は、ハーフトーン特性向上、発光素子の信頼性向上、及びマイグレーション耐性向上の観点から、さらに、(I)無機粒子を含有することが好ましい。(I)無機粒子とは、金属元素、半金属元素、及び半導体元素からなる群より選ばれる元素を主成分に含む粒子をいう。なお主成分とは、構成成分において質量を基準として最も多く含まれる成分をいう。(I)無機粒子としては、例えば、上記元素のハロゲン化物、酸化物、窒化物、水酸化物、炭酸塩、硫酸塩、硝酸塩、又はメタケイ酸塩が挙げられる。
 (I)無機粒子を含有させることで、感光性組成物の硬化膜は、(I)無機粒子の堅牢な構造が導入されるため耐熱性が顕著に向上し、画素分割層等からのアウトガスが抑制される。その結果、発光素子の劣化が抑制されるため、発光素子の信頼性向上の効果が顕著となる。
 (I)無機粒子は、粒子表面にヒドロキシ基及び/又はシラノール基を有することが好ましい。(I)無機粒子は、粒子表面のヒドロキシ基及び/又はシラノール基の酸性度や負電荷により、電気絶縁性に悪影響を及ぼす金属不純物やイオン不純物などを捕捉すると考えられる。また粒子の堅牢な構造によって熱処理や電圧印加をしても捕捉した不純物を保持し続けるため、マイグレーション耐性が向上すると推定される。
 ポジ型の感光性組成物の場合、(I)無機粒子の堅牢な構造よるアルカリ溶解阻害により露光部がアルカリ溶解性過剰となりづらく、またハーフトーン露光部が緩やかな現像膜減りをするため、ハーフトーン特性向上の効果が顕著になると考えられる。一方、ネガ型の感光性組成物の場合、(I)無機粒子の堅牢な構造による立体障害や分子運動阻害により露光部における過度な光硬化が制御される。さらに、堅牢な構造によるアルカリ溶解阻害により露光部におけるアルカリ現像時の膜深部におけるサイドエッチングが抑制され、またハーフトーン露光部が緩やかな現像膜減りをするなどの効果が顕著となる。そのため、ハーフトーン特性向上の効果が顕著になると考えられる。
 (I)無機粒子は、シリカ粒子、アルミナ粒子、チタニア粒子、酸化バナジウム粒子、酸化クロム粒子、酸化鉄粒子、酸化コバルト粒子、酸化亜鉛粒子、酸化ジルコニウム粒子、酸化ニオブ粒子、酸化スズ粒子、又は酸化セリウム粒子が好ましく、シリカ粒子が好ましい。
 本発明の感光性組成物は、ハーフトーン特性向上、発光素子の信頼性向上、マイグレーション耐性向上、及び外光反射抑制の観点から、(I)無機粒子が、(I1)シリカ粒子を含有することが好ましい。硬化物の表面に偏在するシリカ粒子により、入射した外光の反射・散乱が低減されるため、外光反射抑制の効果が顕著となる。
 (I1)シリカ粒子とは、ケイ素を主成分の元素に含む無機粒子をいう。(I1)シリカ粒子としては、例えば、水を除いた質量のうち二酸化ケイ素の純分が90質量%以上の粒子、二酸化ケイ素(無水ケイ酸)からなる粒子、二酸化ケイ素水和物(含水ケイ酸又はホワイトカーボン)からなる粒子、石英ガラスからなる粒子、又は、オルトケイ酸、メタケイ酸、及びメタ二ケイ酸からなる粒子が挙げられる。これらの粒子の構造は特に限定されず、内部空隙を有していても構わない。ただし、有機顔料及び無機顔料における表面処理剤又は被覆層に含まれる二酸化ケイ素は、その一次粒子径やアスペクト比によらず(I1)シリカ粒子には含まれないものとする。
 (I1)シリカ粒子は、マイグレーション耐性向上の観点から、表面に官能基を有することが好ましい。シリカ粒子が表面に有する官能基は、ラジカル重合性基、熱反応性基、ヒドロキシ基、シラノール基、アルコキシシリル基、アルキルシリル基、ジアルキルシリル基、トリアルキルシリル基、フェニルシリル基、又はジフェニルシリル基が好ましい。ラジカル重合性基又は熱反応性基は、ラジカル重合性基を含む表面修飾基の反応残基又は熱反応性基を含む表面修飾基の反応残基であることも好ましい。(I1)シリカ粒子は、表面にラジカル重合性基及び/又は熱反応性基を有することがより好ましい。
 このような構成とすることで、露光時の感度向上及びハーフトーン特性向上の効果が顕著となる。加えて、発光素子の信頼性向上及び発光素子の低電圧駆動化の効果が顕著となる。ラジカル重合性基及び/又は熱反応性基を有する(I1)シリカ粒子を含有させることで、ラジカル重合性基又は熱反応性基の架橋構造により、ポジ型の感光性組成物の場合の露光部における過剰なアルカリ溶解抑制、又は、ネガ型の感光性組成物の場合の露光部におけるアルカリ現像時の膜深部におけるサイドエッチング抑制により、上記の効果が顕著になると推定される。また、(メタ)アクリロイル基などのラジカル重合性基がラジカル重合した架橋構造が導入されるため、感光性組成物の硬化膜は架橋密度向上により耐熱性向上の効果が顕著となる。その結果、画素分割層等からのアウトガスが抑制されるため、発光素子の信頼性向上の効果が顕著になると推定される。
 ラジカル重合性基は、エチレン性不飽和二重結合基が好ましい。ラジカル重合性基は、光反応性基、炭素数2~5のアルケニル基、及び炭素数2~5のアルキニル基からなる群より選ばれる一種類以上がより好ましい。光反応性基は、スチリル基、シンナモイル基、マレイミド基、又は(メタ)アクリロイル基が好ましく、(メタ)アクリロイル基がより好ましい。一方、炭素数2~5のアルケニル基又は炭素数2~5のアルキニル基は、ビニル基、アリル基、2-メチル-2-プロペニル基、クロトニル基、2-メチル-2-ブテニル基、3-メチル-2-ブテニル基、2,3-ジメチル-2-ブテニル基、エチニル基、又は2-プロパルギル基が好ましく、ビニル基又はアリル基がより好ましい。熱反応性基は、アルコキシメチル基、メチロール基、エポキシ基、オキセタニル基、又はブロックイソシアネート基が好ましい。
 (I1)シリカ粒子の平均一次粒子径は、ハーフトーン特性向上、発光素子の信頼性向上、及びマイグレーション耐性向上の観点から、5.0nm以上が好ましく、7.0nm以上がより好ましく、10nm以上がさらに好ましい。一方、(I1)シリカ粒子の平均一次粒子径は、現像後の残渣抑制、外光反射抑制、及び発光素子の信頼性向上の観点から、200nm以下が好ましく、100nm以下がより好ましく、70nm以下がさらに好ましい。さらに、50nm以下が好ましく、40nm以下がより好ましく、30nm以下がさらに好ましく、25nm以下がさらにより好ましく、20nm以下が特に好ましく、15nm以下が最も好ましい。
 また(I1)シリカ粒子の平均一次粒子径は、高弾性率化及び低熱膨張率化の観点から、0.20μm超が好ましく、0.30μm以上がより好ましく、0.50μm以上がさらに好ましい。一方、(I1)シリカ粒子の平均一次粒子径は現像後の残渣抑制の観点から、100μm以下が好ましく、50μm以下がより好ましく、30μm以下がさらに好ましく、10μm以下がさらにより好ましく、5.0μm以下が特に好ましく、3.0μm以下が最も好ましい。
 (I1)シリカ粒子の一次粒子径とは、(I1)シリカ粒子の一次粒子における長軸径をいう。膜中のシリカ粒子の平均一次粒子径は、TEMを用いて膜の断面を撮像及び解析し、シリカ粒子の一次粒子30個を測定した平均値として算出できる。シリカ粒子分散液中のシリカ粒子の平均一次粒子径は、動的光散乱法又はレーザー回折・散乱法により粒度分布を測定して求められる。測定器としては、例えば、動的光散乱法は堀場製作所社製のSZ-100が挙げられ、レーザー回折・散乱法は島津製作所社製のSLD3100又は堀場製作所社製のLA-920若しくはその同等品が挙げられる。
 (I1)シリカ粒子は、発光素子の信頼性向上及びマイグレーション耐性向上の観点から、ナトリウム元素を含む(I1)シリカ粒子を含有することが好ましい。ナトリウム元素の存在形態としては、例えば、イオン(Na)又はシラノール基との塩(Si-ONa)が挙げられる。(I1)シリカ粒子に占めるナトリウム元素の含有量は、1.0質量ppm以上が好ましく、5.0質量ppm以上がより好ましく、10質量ppm以上がさらに好ましく、50質量ppm以上がさらにより好ましく、100質量ppm以上が特に好ましい。一方、(I1)シリカ粒子に占めるナトリウム元素の含有量は、10,000質量ppm以下が好ましく、5,000質量ppm以下がより好ましく、1,000質量ppm以下がさらに好ましい。(I1)シリカ粒子が有するナトリウム元素は、TEM-EDXを用いて膜の断面を撮像及び解析して検出できる。(I1)シリカ粒子中にナトリウム元素を意図的に微量含有させることで、硬化物中における分極構造や電荷バランスが制御されると考えられる。それにより、電気絶縁性に悪影響を及ぼす金属不純物やイオン不純物などを効率的に捕捉するため、マイグレーション耐性が向上すると推定される。
 本発明の感光性組成物の全固形分に占める(I)無機粒子の含有比率は、ハーフトーン特性向上の観点、発光素子の信頼性向上、及びマイグレーション耐性向上の観点から、5.0質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上がさらに好ましく、20質量%以上が特に好ましい。一方、(I)無機粒子の含有比率は、現像後の残渣抑制及び発光素子の信頼性向上の観点から、90質量%以下が好ましく、70質量%以下がより好ましく、50質量%以下がさらに好ましい。
 <ハロゲン元素、硫黄元素、及びリン元素の含有量>
 本発明の感光性組成物は、表示装置における発光素子の信頼性向上、及び発光素子の低電圧駆動化の観点から、さらに、ハロゲン元素を含む成分、硫黄元素を含む成分、及びリン元素を含む成分からなる群より選ばれる一種類以上を含有することが好ましく、ハロゲン元素を含む成分及び/又は硫黄元素を含む成分を含有することがより好ましく、硫黄元素を含む成分を含有することがさらに好ましい。また、本発明の感光性組成物は、ハロゲン元素を含む成分、硫黄元素を含む成分、及びリン元素を含む成分からなる群より選ばれる二種類以上を含有することが好ましく、ハロゲン元素を含む成分及び硫黄元素を含む成分を含有することがより好ましく、ハロゲン元素を含む成分、硫黄元素を含む成分、及びリン元素を含む成分を含有することがさらに好ましい。
ハロゲン元素は、塩素元素、臭素元素、ヨウ素元素、又はフッ素元素が挙げられる。ハロゲン元素は、塩素元素、臭素元素、及びヨウ素元素からなる群より選ばれる一種類以上を含むことが好ましく、塩素元素及び/又は臭素元素を含むことがより好ましく、塩素元素を含むことがさらに好ましい。
 感光性組成物中に占めるハロゲン元素の含有量は、0.01質量ppm以上が好ましく、0.03質量ppm以上がより好ましく、0.05質量ppm以上がさらに好ましく、0.07質量ppm以上がさらにより好ましく、0.1質量ppm以上が特に好ましい。一方、ハロゲン元素の含有量は、700質量ppm以下が好ましく、500質量ppm以下がより好ましく、300質量ppm以下がさらに好ましい。さらに、発光特性向上の観点から、100質量ppm以下が好ましく、70質量ppm以下がより好ましく、50質量ppm以下がさらに好ましく、30質量ppm以下がさらにより好ましく、10質量ppm以下が特に好ましい。さらに、発光素子の低電圧駆動化の観点から、7質量ppm以下が好ましく、5質量ppm以下がより好ましく、3質量ppm以下がさらに好ましく、1質量ppm以下が特に好ましい。
感光性組成物中に占める硫黄元素の含有量は、0.01質量ppm以上が好ましく、0.03質量ppm以上がより好ましく、0.05質量ppm以上がさらに好ましく、0.07質量ppm以上がさらにより好ましく、0.1質量ppm以上が特に好ましい。一方、硫黄元素の含有量は、700質量ppm以下が好ましく、500質量ppm以下がより好ましく、300質量ppm以下がさらに好ましい。さらに、発光特性向上の観点から、100質量ppm以下が好ましく、70質量ppm以下がより好ましく、50質量ppm以下がさらに好ましく、30質量ppm以下がさらにより好ましく、10質量ppm以下が特に好ましい。さらに、発光素子の低電圧駆動化の観点から、7質量ppm以下が好ましく、5質量ppm以下がより好ましく、3質量ppm以下がさらに好ましく、1質量ppm以下が特に好ましい。
感光性組成物中に占めるリン元素の含有量は、0.01質量ppm以上が好ましく、0.03質量ppm以上がより好ましく、0.05質量ppm以上がさらに好ましく、0.07質量ppm以上がさらにより好ましく、0.1質量ppm以上が特に好ましい。一方、リン元素の含有量は、700質量ppm以下が好ましく、500質量ppm以下がより好ましく、300質量ppm以下がさらに好ましい。さらに、発光特性向上の観点から、100質量ppm以下が好ましく、70質量ppm以下がより好ましく、50質量ppm以下がさらに好ましく、30質量ppm以下がさらにより好ましく、10質量ppm以下が特に好ましい。さらに、発光素子の低電圧駆動化の観点から、7質量ppm以下が好ましく、5質量ppm以下がより好ましく、3質量ppm以下がさらに好ましく、1質量ppm以下が特に好ましい。
 本発明の感光性組成物は、ハロゲン元素を含む成分、硫黄元素を含む成分、及びリン元素を含む成分からなる群より選ばれる一種類以上を含有し、下記(1)~(3)の条件を1つ以上満たすことが好ましい。
(1)感光性組成物中に占めるハロゲン元素の含有量が0.01~100質量ppm
(2)感光性組成物中に占める硫黄元素の含有量が0.01~100質量ppm
(3)感光性組成物中に占めるリン元素の含有量が0.01~100質量ppm
また、本発明の感光性組成物は、(1)の条件及び/又は(2)の条件を満たすことがより好ましく、(2)の条件を満たすことがさらに好ましい。また、本発明の感光性組成物は、(1)~(3)の条件からなる群より選ばれる二つ以上の条件を満たすことが好ましく、(1)の条件及び(2)の条件を満たすことがより好ましく、(1)~(3)の条件を全て満たすことがさらに好ましい。
 本発明の感光性組成物は、ハロゲン元素を含む成分、硫黄元素を含む成分、及びリン元素を含む成分からなる群より選ばれる一種類以上を含有し、
感光性組成物がハロゲン元素を含む成分を含有する場合、感光性組成物中に占めるハロゲン元素の含有量が0.01~100質量ppmであって、
感光性組成物が硫黄元素を含む成分を含有する場合、感光性組成物中に占める硫黄元素の含有量が0.01~100質量ppmであって、
感光性組成物がリン元素を含む成分を含有する場合、感光性組成物中に占めるリン元素の含有量が0.01~100質量ppmであることがより好ましい。
 感光性組成物が、ハロゲン元素を含む成分、硫黄元素を含む成分、及びリン元素を含む成分からなる群より選ばれる一種類以上を含有し、感光性組成物中に占めるハロゲン元素、硫黄元素、及びリン元素からなる群より選ばれる一種類以上の含有量を特定範囲とすることで、表示装置における発光素子の信頼性向上、及び発光素子の低電圧駆動化の効果が顕著となる。これは、感光性組成物中にこれらの元素を含む成分を微量含有させることで、例えば有機ELディスプレイにおける画素分割層を形成する工程において、第1電極の表面がこれらの元素によって表面改質されると考えられる。または、画素分割層を形成した後、画素分割層に含まれるこれらの元素が遷移することで、第1電極の表面がこれらの元素によって表面改質されると考えられる。そのため、第1電極の仕事関数差の調整によって、表示装置における発光素子の低電圧駆動化の効果が顕著になると推定される。また、意図的にこれらの元素を含む成分を微量含有させることで、例えば有機ELディスプレイにおける画素分割層中における分極構造や電荷バランスが制御されると考えられる。それにより、発光特性に悪影響を及ぼす金属不純物やイオン不純物に起因するイオンマイグレーションやエレクトロマイグレーションを抑制することで、表示装置における発光素子の信頼性向上の効果が顕著になると推定される。
 また、ハロゲン元素は非共有電子対をより多く有するため、電子を供与するドーパントとして機能してドナー準位を形成することで、第1電極の仕事関数差の調整による発光素子の低電圧駆動化の効果が顕著になると推測される。
また、硫黄元素は非共有電子対を比較的多く有することで、同様にドーパントとして機能することに加え、空の原子軌道である3d軌道を利用することでより効率的に電子供与できるため、ドナー準位を形成しやすいと考えられる。加えて、空の原子軌道である3d軌道によって電子を受容するドーパントとしても機能することで、アクセプター準位も形成できると考えられる。これらの機能により、第1電極の仕事関数差の調整による発光素子の低電圧駆動化の効果が顕著になると推測される。
また、リン元素は非共有電子対を有することで、同様にドーパントとして機能することに加えて、空の原子軌道である3d軌道を利用することで、同様にドナー準位を形成しやすいと考えられる。加えて、空の原子軌道である3d軌道によって電子を受容することで、同様にアクセプター準位も形成できると考えられる。これらの機能により、第1電極の仕事関数差の調整による発光素子の低電圧駆動化の効果が顕著になると推測される。
 感光性組成物が含有するハロゲン元素を含む成分、硫黄元素を含む成分、及びリン元素を含む成分は、単体、イオン、化合物、又は化合物イオンであることが好ましい。すなわち、感光性組成物が、ハロゲン元素の単体、ハロゲン元素のイオン、ハロゲン元素を含む化合物、ハロゲン元素を含む化合物イオン、硫黄元素の単体、硫黄元素のイオン、硫黄元素を含む化合物、硫黄元素を含む化合物イオン、リン元素の単体、リン元素のイオン、リン元素を含む化合物、又はリン元素を含む化合物イオンを含むことが好ましい。感光性組成物中に占めるハロゲン元素の含有量は、単体、イオン、化合物、又は化合物イオンであるハロゲン元素の総量である。同様に、感光性組成物中に占める硫黄元素の含有量は、単体、イオン、化合物、又は化合物イオンである硫黄元素の総量である。同様に、感光性組成物中に占めるリン元素の含有量は、単体、イオン、化合物、又は化合物イオンであるリン元素の総量である。
 ハロゲン元素の単体は、塩素、臭素、ヨウ素、又はフッ素が挙げられ、塩素又は臭素が好ましく、塩素がより好ましい。
ハロゲン元素のイオンは、塩化物イオン、臭化物イオン、ヨウ化物イオン、又はフッ化物イオンが挙げられ、塩化物イオン又は臭化物イオンが好ましく、塩化物イオンがより好ましい。
ハロゲン元素を含む化合物は、ハロゲン化脂肪族化合物、ハロゲン化脂環式化合物、ハロゲン化芳香族化合物、ハロゲン化水素、二酸化ハロゲン、又はハロゲンオキソ酸が挙げられ、塩素原子が結合した脂肪族化合物、塩素原子が結合した脂環式化合物、塩素原子が結合した芳香族化合物、塩化水素、二酸化塩素、臭素原子が結合した脂肪族化合物、臭素原子が結合した脂環式化合物、臭素原子が結合した芳香族化合物、臭化水素、又は二酸化臭素が好ましく、塩素原子が結合した脂肪族化合物、塩素原子が結合した脂環式化合物、又は塩素原子が結合した芳香族化合物が好ましい。これらは、無置換体又は置換体のいずれであっても構わない。
ハロゲン元素を含む化合物イオンは、次亜ハロゲンオキソ酸イオン、亜ハロゲンオキソ酸イオン、ハロゲンオキソ酸イオン、又は過ハロゲンオキソ酸イオンが挙げられ、次亜塩素酸イオン、亜塩素酸イオン、塩素酸イオン、又は過塩素酸イオンが好ましい。これらは、無置換体又は置換体のいずれであっても構わない。
塩素原子が結合した脂肪族化合物、塩素原子が結合した脂環式化合物、又は塩素原子が結合した芳香族化合物は、ジクロロメタン、ジクロロエタン、テトラクロロエタン、クロロホルム、四塩化炭素、クロロシクロプロパン、エピクロロヒドリン、クロロベンゼン、又は塩化ベンジルが挙げられる。臭素原子が結合した脂肪族化合物、臭素原子が結合した脂環式化合物、又は臭素原子が結合した芳香族化合物は、ジブロモメタン、ジブロモエタン、テトラブロモエタン、ブロモホルム、四臭化炭素、ブロモシクロプロパン、エピブロモヒドリン、ブロモベンゼン、又は臭化ベンジルが挙げられる。
 硫黄元素の単体は硫黄である。硫黄は、単斜硫黄、斜方硫黄、又はゴム状硫黄などの同素体であっても構わない。
硫黄元素のイオンは硫化物イオンである。
硫黄元素を含む化合物は、チオール化合物、スルフィド化合物、ジスルフィド化合物、スルホキシド化合物、スルホン化合物、スルトン化合物、二硫化炭素、チオフェン化合物、チオカルボニル化合物、ジチオカルボニル化合物、トリチオカルボニル化合物、硫化水素、一酸化硫黄、二酸化硫黄、三酸化硫黄、スルフィン酸、スルホン酸、亜硫酸、硫酸、又はチオ硫酸が挙げられ、チオール化合物、スルフィド化合物、ジスルフィド化合物、スルホキシド化合物、スルホン化合物、スルトン化合物、二硫化炭素、又はチオフェン化合物が好ましく、チオール化合物、スルフィド化合物、又はスルホキシド化合物がより好ましい。これらは、無置換体又は置換体のいずれであっても構わない。
硫黄元素を含む化合物イオンは、チオラートイオン、スルフィン酸イオン、スルホン酸イオン、亜硫酸イオン、硫酸イオン、チオ硫酸イオン、又はスルホニウムイオンが挙げられ、チオラートイオンが好ましい。これらは、無置換体又は置換体のいずれであっても構わない。
チオール化合物は、ブタンチオール、オクタンチオール、ドデカンチオール、オクタデカンチオール、エタンジチオール、オクタンジチオール、シクロプロパンチオール、チオフェノール、トルエンチオール、メルカプトプロピルトリメトキシシラン、メルカプトオクチルトリメトキシシラン、又はメルカプトドデシルトリメトキシシランが挙げられる。スルフィド化合物は、ジメチルスルフィド、ジブチルスルフィド、ジオクチルスルフィド、ジドデシルスルフィド、ジシクロプロピルスルフィド、ジフェニルスルフィド、又はジベンジルスルフィドが挙げられる。スルホキシド化合物は、ジメチルスルホキシド、ジブチルスルホキシド、ジオクチルスルホキシド、ジドデシルスルホキシド、ジシクロプロピルスルホキシド、ジフェニルスルホキシド、又はジベンジルスルホキシドが挙げられる。
 リン元素の単体はリンである。リンは、黄リン、赤リン、黒リン、又は紫リンなどの同素体であっても構わない。
リン元素のイオンはリン化物イオンである。
リン元素を含む化合物は、ホスフィン化合物、ホスフィンオキシド、ホスフィン酸モノエステル、ホスホン酸ジエステル、次亜リン酸ジエステル、亜リン酸トリエステル、リン酸トリエステル、三酸化リン、又は五酸化二リンが挙げられ、ホスフィン化合物、又はホスフィンオキシド化合物が好ましい。これらは、無置換体又は置換体のいずれであっても構わない。
リン元素を含む化合物イオンは、次亜リン酸イオン、亜リン酸イオン、リン酸イオン、ポリリン酸イオン、又はホスホニウムイオンが挙げられる。これらは、無置換体又は置換体のいずれであっても構わない。
ホスフィン化合物は、トリブチルホスフィン、トリオクチルホスフィン、トリドデシルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン、又はトリベンジルホスフィンが挙げられる。ホスフィンオキシド化合物は、トリブチルホスフィンオキシド、トリオクチルホスフィンオキシド、トリドデシルホスフィンオキシド、トリシクロヘキシルホスフィンオキシド、トリフェニルホスフィンオキシド、又はトリベンジルホスフィンオキシドが挙げられる。
 感光性組成物が、塩化物イオン、臭化物イオン、ヨウ化物イオン、フッ化物イオン、次亜ハロゲンオキソ酸イオン、亜ハロゲンオキソ酸イオン、ハロゲンオキソ酸イオン、過ハロゲンオキソ酸イオン、硫化物イオン、チオラートイオン、スルフィン酸イオン、スルホン酸イオン、亜硫酸イオン、硫酸イオン、チオ硫酸イオン、次亜リン酸イオン、亜リン酸イオン、リン酸イオン、又はポリリン酸イオンを含有する場合、カウンターカチオンを含有しても構わない。カウンターカチオンは、金属元素イオン、アンモニウムイオン、一級アンモニウムイオン、二級アンモニウムイオン、三級アンモニウムイオン、又は四級アンモニウムイオンが挙げられ、四級アンモニウムイオンが好ましい。金属元素イオンは、アルカリ金属イオン、アルカリ土類金属イオン、典型元素金属イオン、又は遷移金属イオンが挙げられる。金属元素は、Li、Be、Na、Mg、Al、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、又はZnが好ましい。一級アンモニウムイオン、二級アンモニウムイオン、三級アンモニウムイオン、及び四級アンモニウムイオンは、それぞれ、脂肪族基、脂環式基、又は芳香族基を1~4個有する。感光性組成物が、スルホニウムイオン、又はホスホニウムイオンを含有する場合、カウンターアニオンを含有しても構わない。カウンターアニオンは、水酸化物イオン、カルボン酸イオン、次亜硝酸イオン、亜硝酸イオン、硝酸イオン、又はフェノキシイオンが挙げられる。
 <特定の含窒素化合物の含有量>
 本発明の感光性組成物はマイグレーション耐性向上の観点から、さらに、一般式(20)で表される環状アミド化合物、一般式(21)で表されるアミド化合物、一般式(22)で表される環状ウレア化合物、及び一般式(23)で表されるウレア化合物からなる群より選ばれる一種類以上を含有し、下記(4)の条件を満たすことが好ましい。
(4)感光性組成物の全固形分に占める一般式(20)で表される環状アミド化合物、一般式(21)で表されるアミド化合物、一般式(22)で表される環状ウレア化合物、及び一般式(23)で表されるウレア化合物(以下、「特定の含窒素化合物」)の含有量の合計が0.010~5.0質量%。
Figure JPOXMLDOC01-appb-C000033
 一般式(20)~(23)において、R46~R54は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、炭素数2~6のアルケニル基、又は炭素数1~6のヒドロキシアルキル基を表す。R130は、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のヒドロキシアルキル基、炭素数1~6のヒドロキシアルコキシ基、ヒドロキシ基、アミノ基、炭素数1~6のモノアルキルアミノ基、又は炭素数2~12のジアルキルアミノ基を表す。R131~R138は、それぞれ独立して、炭素数1~6のアルキル基を表す。a、b、及びcは、それぞれ独立して、0~6の整数を表す。dは1又は2を表す。e、f、g、h、及びiは、それぞれ独立して、0~2の整数を表す。bが0の場合、dは1である。
 特定の含窒素化合物としては、例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ブチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、N-ビニル-2-ピロリドン、N,N’-ジメチルホルムアミド、N,N’-ジエチルホルムアミド、N,N’-ジメチルアセトアミド、N,N’-ジメチルプロピオンアミド、N,N’-ジメチルイソブチルアミド、N,N’-ジメチル-3-メトキシプロピオンアミド、N,N’-ジメチル-3-ブトキシプロピオンアミド、1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、N,N’-ジメチルプロピレン尿素、1,1,3,3-テトラメチル尿素、又は1,1,3,3-テトラエチル尿素が挙げられる。
 感光性組成物の全固形分に占める特定の含窒素化合物の含有量の合計は、0.030質量%以上がより好ましく、0.050質量%以上がさらに好ましく、0.070質量%以上が特に好ましく、0.10質量%以上が最も好ましい。一方、特定の含窒素化合物の含有量の合計は、4.0質量%以下がより好ましく、3.5質量%以下がさらに好ましく、3.0質量%以下が特に好ましい。さらにマイグレーション耐性向上の観点から、2.5質量%以下が好ましく、2.0質量%以下がより好ましく、1.5質量%以下がさらに好ましく、1.0質量%以下がさらにより好ましく、0.70質量%以下が特に好ましく、0.50質量%以下が最も好ましい。
 半導体装置に関して、多層の金属再配線における層間絶縁層に用いられる材料には、多層化に伴う応力に耐えるための高い機械物性が求められている。加えて、半導体装置の高集積化に伴う配線微細化により、電気絶縁性に関する信頼性も求められるため、高いマイグレーション耐性も要求される。また近年用いられているメモリや半導体パッケージ作製時に用いるモールド樹脂などは耐熱性が低く、高温プロセスが適用できないという制約がある。そのため、半導体装置の表面保護層や層間絶縁層に用いられる材料には250℃以下、さらに望ましくは220℃以下の低温での加熱でも硬化可能であり、高い機械物性を有することも求められている。
 本発明の感光性組成物は、上記の特定の含窒素化合物を含有させることで、樹脂の架橋度向上や閉環反応促進により、低温での加熱においても優れた機械物性を奏功すると考えられる。加えて、マイグレーション耐性向上の効果が顕著となる。また上記の特定の含窒素化合物は、非共有電子対を有する含窒素構造が電気絶縁性に悪影響を及ぼす金属不純物やイオン不純物などを捕捉するため、イオンマイグレーションやエレクトロマイグレーションが抑制され、マイグレーション耐性が向上すると推定される。
 <特定の金属元素の含有量>
 本発明の感光性組成物が、特定の含窒素化合物からなる群より選ばれる一種類以上を含有し、上記(4)の条件を満たす場合、
本発明の感光性組成物は、低温での加熱における機械物性向上及びマイグレーション耐性向上の観点から、さらに、ナトリウム元素を含む成分、カリウム元素を含む成分、マグネシウム元素を含む成分、カルシウム元素を含む成分、鉄元素を含む成分、銅元素を含む成分、及びクロム元素を含む成分からなる群より選ばれる一種類以上を含有し、下記(5)の条件を満たすことが好ましい。
(5)感光性組成物の全固形分に占めるナトリウム元素、カリウム元素、マグネシウム元素、カルシウム元素、鉄元素、銅元素、及びクロム元素(以下、「特定の金属元素」)の含有量の合計が0.010~500質量ppm。
 特定の金属元素を含む成分は、特定の金属元素のハロゲン化物、酸化物、窒化物、水酸化物、硫化物、炭化物、酸窒化物、カルボン酸塩、リン酸塩、炭酸塩、硫酸塩、硝酸塩、又はメタケイ酸塩が好ましい。
 感光性組成物の全固形分に占める特定の金属元素の含有量の合計は、0.030質量ppm以上が好ましく、0.050質量ppm以上がより好ましく、0.070質量ppm以上がさらに好ましく、0.10質量ppm以上が特に好ましい。一方、特定の金属元素の含有量の合計は、300質量ppm以下が好ましく、200質量ppm以下がより好ましく、100質量ppm以下がさらに好ましい。さらに、低温での加熱における機械物性向上及びマイグレーション耐性向上の観点から、50質量ppm以下が好ましく、30質量ppm以下がより好ましく、10質量ppm以下がさらに好ましく、5質量ppm以下がさらにより好ましく、3質量ppm以下が特に好ましく、1質量ppm以下が最も好ましい。
 上記の特定の金属元素は、金属元素の正電荷により、電気絶縁性に悪影響を及ぼす金属不純物やイオン不純物などを捕捉するため、イオンマイグレーションやエレクトロマイグレーションが抑制され、マイグレーション耐性が向上すると推定される。本発明の感光性組成物において、特定の含窒素化合物の存在下、特定の金属元素を意図的に微量含有させることで、金属錯体が形成されると推定される。形成された金属錯体は、ポリイミド、ポリベンゾオキサゾール、及びそれらの前駆体などの芳香環を有する樹脂における、芳香環上での架橋反応や樹脂の閉環反応、ポリシロキサンなどのシラノール基を有する樹脂における架橋反応を促進する触媒として機能すると考えられる。その結果、効率的に架橋反応や閉環反応が進行するため、低温での加熱においても優れた機械物性を奏功すると考えられる。また形成された金属錯体は、金属元素の正電荷や含窒素構造により、電気絶縁性に悪影響を及ぼす金属不純物やイオン不純物などを効率的に捕捉するため、マイグレーション耐性が向上すると推定される。
 <撥インク剤、及びその他の添加剤>
 本発明の感光性組成物は、さらに、撥インク剤を含有することも好ましい。撥インク剤とは、撥水性の構造及び/又は撥油性の構造を有する化合物をいう。撥インク剤を含有させることで膜の撥液性を向上できるため、膜の純水に対する接触角及び/又は膜の有機溶剤に対する接触角を高めることができる。撥インク剤は、少なくとも2つの光反応性基、少なくとも2つの炭素数2~5のアルケニル基、少なくとも2つの炭素数2~5のアルキニル基、及び少なくとも2つの熱反応性基からなる群より選ばれる一種類以上を有することが好ましい。
光反応性基は、ラジカル重合性基が好ましく、スチリル基、シンナモイル基、マレイミド基、又は(メタ)アクリロイル基がより好ましく、(メタ)アクリロイル基がさらに好ましい。一方、炭素数2~5のアルケニル基又は炭素数2~5のアルキニル基は、ラジカル重合性基が好ましく、ビニル基、アリル基、2-メチル-2-プロペニル基、クロトニル基、2-メチル-2-ブテニル基、3-メチル-2-ブテニル基、2,3-ジメチル-2-ブテニル基、エチニル基、又は2-プロパルギル基がより好ましく、ビニル基又はアリル基がさらに好ましい。熱反応性基は、アルコキシメチル基、メチロール基、エポキシ基、オキセタニル基、又はブロックイソシアネート基が好ましい。撥インク剤は、ポリマー鎖を有することも好ましく、ポリマー鎖の繰り返し単位の側鎖に撥水性の構造、撥油性の構造、少なくとも2つの光反応性基、少なくとも2つの炭素数2~5のアルケニル基、少なくとも2つの炭素数2~5のアルキニル基、及び少なくとも2つの熱反応性基からなる群より選ばれる一種類以上を有することも好ましい。ポリマー鎖を有する撥インク剤としては、例えば、アクリル樹脂系撥インク剤、ポリオキシアルキレンエーテル系撥インク剤、ポリエステル系撥インク剤、ポリウレタン系撥インク剤、ポリオール系撥インク剤、ポリエチレンイミン系撥インク剤、又はポリアリルアミン系撥インク剤が挙げられる。
 本発明の感光性組成物は、さらに、増感剤、連鎖移動剤、重合禁止剤、シランカップリング剤、及び界面活性剤からなる群より選ばれる一種類以上を含有することも好ましい。増感剤を含有させることで露光時の感度向上の効果が顕著となる。増感剤は、フルオレン骨格、ベンゾフルオレン骨格、フルオレノン骨格、又はチオキサントン骨格を有する化合物が好ましい。連鎖移動剤を含有させることで露光時の感度向上の効果が顕著となる。連鎖移動剤としては、メルカプト基を少なくとも2つ有する化合物が好ましい。重合禁止剤を含有させることで現像後の解像度向上の効果が顕著となる。重合禁止剤は、ヒンダードフェノール化合物、ヒンダードアミン化合物、又はベンゾイミダゾール化合物が好ましい。シランカップリング剤を含有させることで硬化膜と下地の基板との密着性向上の効果が顕著となる。シランカップリング剤は、三官能オルガノシラン、四官能オルガノシラン、又はシリケート化合物が好ましい。界面活性剤を含有させることで塗膜の膜厚均一性向上の効果が顕著となる。界面活性剤は、フッ素樹脂系界面活性剤、シリコーン系界面活性剤、ポリオキシアルキレンエーテル系界面活性剤、又はアクリル樹脂系界面活性剤が好ましい。本発明の感光性組成物に占める界面活性剤の含有比率は、感光性組成物全体の、0.001質量%以上が好ましく、0.005質量%以上がより好ましい。一方、界面活性剤の含有比率は、1質量%以下が好ましく、0.5質量%以下がより好ましい。
 <溶剤>
 本発明の感光性組成物は、さらに、溶剤を含有することも好ましい。溶剤を含有させることで、組成物の膜を基板上に所望の膜厚で成膜でき、塗膜の膜厚均一性向上の効果が顕著となる。溶剤は、各種樹脂及び各種添加剤の溶解性の観点から、アルコール性水酸基を有する化合物、カルボニル基を有する化合物、エステル結合を有する化合物、又はエーテル結合を少なくとも3つ有する化合物が好ましい。溶剤は、塗膜の膜厚均一性向上の観点から、大気圧下の沸点が110℃以上である化合物が好ましい。一方、熱硬化時の膜収縮抑制による平坦性向上の観点から、大気圧下の沸点が250℃以下である化合物が好ましい。本発明の感光性組成物に占める溶剤の含有比率は、塗布方法などに応じて適宜調整可能である。例えば、スピンコーティングにより塗膜を形成する場合、感光性組成物全体の50~95質量%とすることが一般的である。
 本発明の感光性組成物は、(D)着色剤として(D1)顔料を含有する場合、溶剤として、カルボニル基を有する溶剤又はエステル結合を有する溶剤を含有することで、(D1)顔料の分散安定性向上により、現像後の残渣抑制の効果が顕著となる。カルボニル基は、アルキルカルボニル基、ジアルキルカルボニル基、ホルミル基、カルボキシ基、アミド基、イミド基、ウレア結合、又はウレタン結合が好ましい。エステル結合は、カルボン酸エステル結合、炭酸エステル結合、又はギ酸エステル結合が好ましく、カルボン酸エステル結合がより好ましい。カルボン酸エステル結合の中でも、アセテート結合、プロピオネート結合、又はブチレート結合がより好ましく、アセテート結合がさらに好ましい。本発明の感光性組成物において、溶剤に占めるカルボニル基を有する溶剤又はエステル結合を有する溶剤の含有比率の合計は、現像後の残渣抑制、及び現像後の解像度向上の観点から、30~100質量%が好ましく、50~100質量%がより好ましく、70~100質量%がさらに好ましい。本発明の感光性組成物において、(F1)化合物が、上述した特定の(F1)化合物を含有する場合、同様に溶剤に占めるプロピレングリコールモノアルキルエーテルアセテートの含有比率は、30~100質量%が好ましく、50~100質量%がより好ましく、70~100質量%がさらに好ましい。
 本発明の感光性組成物において、(FB1)化合物が、上述した特定の(FB1)化合物を含有する場合、溶剤に占めるプロピレングリコールモノアルキルエーテルアセテートの含有比率は、30質量%以上が好ましく、40質量%以上がより好ましく、50質量%以上がさらに好ましい。一方、プロピレングリコールモノアルキルエーテルアセテートの含有比率は、90質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下がさらに好ましい。また、本発明の感光性組成物において、(FB1)化合物が、上述した特定の(FB1)化合物を含有する場合、溶剤に占めるジエチレングリコールジアルキルエーテル、及び/又は、アルコール性水酸基を有する溶剤の含有比率の合計は、10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。一方、これらの溶剤の含有比率の合計は、50質量%以下が好ましく、40質量%以下がより好ましい。アルコール性水酸基を有する溶剤は、アルコール性水酸基、並びに、エーテル結合及び/又はエステル結合を有する溶剤が好ましい。エステル結合は、カルボン酸エステル結合、炭酸エステル結合、又はギ酸エステル結合が好ましく、カルボン酸エステル結合がより好ましい。アルコール性水酸基、並びに、エーテル結合及び/又はカルボン酸エステル結合を有する溶剤は、プロピレングリコールモノアルキルエーテル、乳酸アルキル、ヒドロキシ酢酸アルキル、及び酢酸ヒドロキシアルキルからなる群より選ばれる一種類以上が好ましい。
 <本発明の感光性組成物の製造方法>
 本発明の感光性組成物の代表的な製造方法について説明する。(D)着色剤が(Da)黒色剤を含み、(Da)黒色剤が(D1a)黒色顔料を含有する場合、(A)アルカリ可溶性樹脂の溶液に必要に応じて(E)分散剤を加えた混合溶液に、分散機を用いて(D1a)黒色顔料を分散させ、顔料分散液を調製する。次に、この顔料分散液に、(A)アルカリ可溶性樹脂、(B)ラジカル重合性化合物、(C)感光剤、必要に応じてその他の添加剤、及び任意の溶剤を加え、20分~3時間攪拌して均一な溶液とする。攪拌後、得られた溶液を濾過することで本発明の感光性組成物が得られる。分散機は、現像後の残渣抑制の観点から、ビーズミルが好ましい。ビーズとしては、例えば、チタニアビーズ、ジルコニアビーズ、又はジルコンビーズが挙げられる。ビーズ径は、0.01~6mmが好ましく、0.015~5mmがより好ましく、0.03~3mmがさらに好ましい。
 <感光性フィルム>
 本発明において、感光性フィルムは、本発明の感光性組成物を成膜した、半硬化状態(Bステージ)のものである。半硬化状態とは、架橋構造を形成していないか、一部反応により架橋構造が形成されているものの、膜が流動性を有していること、又、その状態をいう。例えば、基板等に塗布した後、塗膜を減圧乾燥させて溶剤を留去させた状態、又は、塗膜を40~150℃で加熱して乾燥させた状態が挙げられ、アルカリ溶液又は有機溶剤に可溶である状態をいう。感光性フィルムとは、ポジ型又はネガ型の感光性を有し、単膜で自立膜を形成可能な膜をいう。感光性フィルムは接着性を有することが好ましく、複数の部材を接合していることも好ましい。単膜で自立膜を形成可能とは、支持体を有しない状態で、幅1.5cm以上、長さ5.0cm以上、かつ厚さ5.0μm以上の膜を形成可能であることをいう。
 本発明における感光性フィルムは、ポジ型又はネガ型の感光性を有するため、パターニング露光後、アルカリ現像液又は有機溶剤で現像することでポジ型又はネガ型のパターンを形成可能である。本発明における感光性フィルムは、凹凸構造を有する基板上へのパターン形成、中空構造体の形成、又はドライフィルムレジストにおいて好適である。本発明における感光性フィルムは、支持体上に配置されている積層体であることが好ましい。本発明において、積層体は、支持体及び本発明における感光性フィルムを有する。このような構成とすることが、ハンドリング性の観点から好適である。
 支持体は、本発明における感光性フィルムとの密着性向上、フレキシブル性、及びハンドリング性の観点から、フレキシブル基板が好ましい。フレキシブル基板は、ポリイミド基板、ポリフェニレンスルフィド基板、シリコーン基板、アクリル樹脂基板、エポキシ樹脂基板、ポリエチレンテレフタレート基板、ポリブチレンテレフタレート基板、ポリエチレンナフタレート基板、又はポリカーボネート基板が好ましい。支持体はリジッド基板であっても構わない。リジッド基板としては、例えば、ガラス基板、石英基板、水晶基板、又はサファイア基板が挙げられる。支持体における本発明の感光性フィルム側の表面は、フィルムとの密着性向上及び剥離性向上の観点から、シランカップリング剤などの表面処理がされていても構わない。支持体の厚みはハンドリング性の観点から、10~200μmが好ましい。
 <硬化物と硬化物の光学濃度、テーパー角、及び段差形状>
 本発明の硬化物は本発明の感光性組成物を硬化したものである。硬化とは、反応により架橋構造が形成され、膜の流動性が無くなること、又、その状態をいう。反応は、加熱、エネルギー線の照射等、特に限定されるものではないが、加熱によるものが好ましい。加熱によって架橋構造が形成され、膜の流動性が無くなった状態を熱硬化という。加熱条件としては、例えば、150~500℃で、5~300分間加熱するなどの条件である。加熱方法としては、例えば、オーブン、ホットプレート、赤外線、フラッシュアニール装置、又はレーザーアニール装置を用いて加熱する方法が挙げられる。処理雰囲気としては、例えば、空気、酸素、窒素、ヘリウム、ネオン、アルゴン、クリプトン若しくはキセノン雰囲気下、酸素を1~10,000質量ppm(0.0001~1質量%)含有するガス雰囲気下、又は、真空下が挙げられる。
 本発明の感光性組成物を硬化した硬化膜において、膜厚1μm当たりの可視光線の波長(380~780nm)における光学濃度は0.5~5.0が好ましい。上記光学濃度は、外光反射抑制、隣接画素からの光漏れ防止、及び発光素子の信頼性向上の観点から、0.5以上が好ましく、0.7以上がより好ましく、1.0以上がさらに好ましく、1.2以上がさらにより好ましく、1.5以上が特に好ましい。一方、上記光学濃度は、発光輝度向上及び発光素子の信頼性向上の観点から、5.0以下が好ましく、4.0以下がより好ましく、3.0以下がさらに好ましく、2.5以下がさらにより好ましく、2.0以下が特に好ましい。膜厚1μm当たりの光学濃度は、上述した(D)着色剤の組成及び含有比率により調節できる。ここで光学濃度とは、本発明の感光性組成物を250℃で60分間加熱して硬化した硬化物における光学濃度をいう。熱硬化条件は、酸素濃度20質量ppm以下の窒素雰囲気下、昇温速度3.5℃/minで250℃まで昇温し、250℃で60分間加熱処理を行った後、50℃まで冷却するというものである。なお感光性組成物が染料を含有する場合、又は、感光性組成物がポジ型の感光性を有する場合、熱硬化条件は、酸素濃度20質量ppm以下の窒素雰囲気下、昇温速度3.5℃/minで200℃まで昇温し、200℃で60分間加熱処理を行った後、50℃まで冷却する条件とした。この熱硬化条件は、特に断りのない限り本明細書全体において共通する。本発明の感光性組成物を硬化した硬化膜が含む、硬化パターンの断面における傾斜辺のテーパー角は、電極断線防止、及び表示装置における発光素子の信頼性向上の観点から、20~45°が好ましい。
 本発明の感光性組成物を硬化した硬化膜が含む、段差形状を有する硬化パターンの断面の一例を、図1に示す。段差形状における厚膜部34は、露光時の硬化部に相当し、硬化パターンの最大の膜厚を有する。段差形状における薄膜部35a,35b,35cは、露光時のハーフトーン露光部に相当し、厚膜部34の厚さより小さい膜厚を有する。段差形状を有する硬化パターンの断面における傾斜辺36a,36b,36c,36d,36eのそれぞれのテーパー角θ,θ,θ,θ,θは、いずれも低テーパーであることが好ましい。ここでいうテーパー角θ,θ,θ,θ,θとは、図1に示すように、硬化パターンが形成される下地の基板の水平辺37、又は薄膜部35a,35b,35cの水平辺と、薄膜部35a,35b,35cの水平辺と交差する段差形状を有する硬化パターンの断面における傾斜辺36a,36b,36c,36d,36eとが成す、段差形状を有する硬化パターンの断面内部の角をいう。ここでいう順テーパーとは、テーパー角が0°より大きく90°未満の範囲内であることをいい、逆テーパーとは、テーパー角が90°より大きく180°未満の範囲内であることをいう。また矩形とは、テーパー角が90°であることをいい、低テーパーとは、テーパー角が0°より大きく60°の範囲内であることをいう。本発明の感光性組成物を硬化した硬化膜が含む、段差形状を有する硬化パターンの断面における傾斜辺のテーパー角は、上述した低テーパー形状の硬化パターンの好ましいテーパー角の通りである。
 本発明の感光性組成物を硬化した硬化膜が含む、段差形状を有する硬化パターンの下側(下地の基板の水平辺37側)表面の平面及び上側表面の平面間の厚さにおいて、最も大きい厚さを有する領域を厚膜部34、厚膜部34の厚さより小さい厚さを有する領域を薄膜部35a,35b,35cとする。厚膜部34の膜厚を(TFT)μmとし、厚膜部34に少なくとも1つの段差形状を介して配置された薄膜部35a,35b,35cの膜厚を(THT)μmとした場合、(TFT)と(THT)との膜厚差(ΔTFT-HT)μmは、それぞれが、0.5μm以上が好ましく、1.0μm以上がより好ましく、1.5μm以上がさらに好ましく、2.0μm以上がさらにより好ましく、2.5μm以上が特に好ましく、3.0μm以上が最も好ましい。また、全てが、0.5μm以上が好ましく、1.0μm以上がより好ましく、1.5μm以上がさらに好ましく、2.0μm以上がさらにより好ましく、2.5μm以上が特に好ましく、3.0μm以上が最も好ましい。なお、(TFT)と薄膜部35a又は35bの膜厚(THT)との膜厚差(ΔTFT-HT)μmが、上記範囲であることがより好ましく、(TFT)と薄膜部35aの膜厚(THT)との膜厚差(ΔTFT-HT)μmが、上記範囲であることがさらに好ましい。膜厚差が0.5μm以上であると、表示装置における発光素子の信頼性向上の効果が顕著となる。膜厚差が1.5μm以上であると、発光層を形成する際の蒸着マスクとの接触面積を小さくできるため、パネルの歩留まり低下抑制、及び表示装置における発光素子の信頼性向上の効果が顕著となる。また、段差形状を有する硬化パターン一層で十分な膜厚差を有するため、プロセスタイム削減・生産性向上の効果が顕著となる。一方、膜厚差(ΔTFT-HT)μmは、10.0μm以下が好ましく、9.5μm以下がより好ましく、9.0μm以下がさらに好ましく、8.5μm以下がさらにより好ましく、8.0μm以下が特に好ましい。膜厚差が10.0μm以下であると、段差形状を有する硬化パターン形成時の露光量を低減できるため、プロセスタイム削減・生産性向上の効果が顕著となる。
 本発明の硬化物は感光性組成物を硬化したものであって、硬化物が段差形状を有する硬化パターンを有し、硬化パターンの段差形状における、厚膜部34の膜厚を(TFT)μmとし、かつ、薄膜部35a,35b,35cの膜厚を(THT)μmとするとき、厚膜部34の膜厚(TFT)μm及び薄膜部35a、35b、又は35cの膜厚(THT)μmが、式(α)~(γ)で表される関係を全て満たすことが好ましく、(TFT)μm及び薄膜部35a又は35bの膜厚(THT)μmが、式(α)~(γ)で表される関係を全て満たすことがより好ましく、(TFT)μm及び薄膜部35aの膜厚(THT)μmが、式(α)~(γ)で表される関係を全て満たすことがさらに好ましい。また、(TFT)μm、並びに、薄膜部35a、35b、及び35cの全ての膜厚(THT)μmが、式(α)~(γ)で表される関係を全て満たすことも好ましい。
2.0≦(TFT)≦10.0 (α)
0.20≦(THT)≦7.5 (β)
0.10×(TFT)≦(THT)≦0.75×(TFT) (γ)。
 厚膜部34の膜厚(TFT)μm及び薄膜部35a、35b、又は35cの膜厚(THT)μmが、式(δ)~(ζ)で表される関係をさらに全て満たすことが好ましく、厚膜部34の膜厚(TFT)μm及び薄膜部35a又は35bの膜厚(THT)μmが、式(δ)~(ζ)で表される関係をさらに全て満たすことがより好ましく、厚膜部34の膜厚(TFT)μm及び薄膜部35aの膜厚(THT)μmが、式(δ)~(ζ)で表される関係をさらに全て満たすことがさらに好ましい。また、(TFT)μm、並びに、薄膜部35a、35b、及び35cの全ての膜厚(THT)μmが、式(δ)~(ζ)で表される関係をさらに全て満たすことも好ましい。
2.0≦(TFT)≦10.0 (δ)
0.30≦(THT)≦7.0 (ε)
0.15×(TFT)≦(THT)≦0.70×(TFT) (ζ)。
 厚膜部34の膜厚(TFT)μm及び薄膜部35a,35b,35cの膜厚(THT)μmが上述した範囲内であると、パネルの歩留まり低下抑制、及び表示装置における発光素子の信頼性向上の効果が顕著となる。加えて、プロセスタイム削減・生産性向上の効果が顕著となる。
 <画素分割層の段差形状を有するパターン表面における接触角>
 本発明の感光性組成物を硬化した硬化膜が、有機ELディスプレイの画素分割層である場合において、上述した段差形状を有するパターンを含む硬化膜における、厚膜部の純水に対する接触角を(CAwFT)°とし、かつ、薄膜部の純水に対する接触角を(CAwHT)°とするとき、前記(CAwFT)°と前記(CAwHT)°との接触角差(ΔCAwFT-HT)°は、インクジェット塗布で有機EL層を形成する場合のインク同士の混色防止抑制の観点から、20°以上が好ましく、40°以上がより好ましい。一方、有機EL層の成膜不良抑制の観点から、純水に対する接触角差(ΔCAwFT-HT)°は、90°以下が好ましく、70°以下がより好ましい。なお、(CAwFT)°と薄膜部35a、35b、又は35cの純水に対する接触角(CAwHT)°との接触角差(ΔCAwFT-HT)°が、上記範囲であることが好ましく、(CAwFT)°と薄膜部35a又は35cの純水に対する接触角(CAwHT)°との接触角差(ΔCAwFT-HT)°が、上記範囲であることがより好ましく、(CAwFT)°と薄膜部35aの純水に対する接触角(CAwHT)°との接触角差(ΔCAwFT-HT)°が、上記範囲であることがさらに好ましい。また、(CAwFT)°と薄膜部35a、35b、及び35cの純水に対する接触角(CAwHT)°との全ての接触角差(ΔCAwFT-HT)°が、上記範囲であることも好ましい。
 本発明の感光性組成物を硬化した硬化膜が、有機ELディスプレイの画素分割層である場合において、上述した段差形状を有するパターンを含む硬化膜における、厚膜部のプロピレングリコールモノメチルエーテルアセテートに対する接触角を(CApFT)°とし、かつ、薄膜部のプロピレングリコールモノメチルエーテルアセテートに対する接触角を(CApHT)°とするとき、前記(CApFT)°と前記(CApHT)°との接触角差(ΔCApFT-HT)°は、インクジェット塗布で有機EL層を形成する場合のインク同士の混色防止抑制の観点から、10°以上が好ましく、30°以上がより好ましい。一方、有機EL層の成膜不良抑制の観点から、プロピレングリコールモノメチルエーテルアセテートに対する接触角差(ΔCApFT-HT)°は、70°以下が好ましく、50°以下がより好ましい。
 <硬化物を具備する素子及び物品>
 本発明において、素子は、本発明の硬化物を具備する。また本発明において、物品は、本発明の硬化物を具備する。物品としては、例えば、電子部品、電子装置、移動体、建造物、又は窓などが挙げられる。電子部品としては、例えば、半導体装置、アンテナ、表示装置、金属張積層板、配線基板、半導体パッケージ、半導体装置を含む能動部品、又は受動部品が挙げられる。半導体装置としては、例えば、トランジスタ、ダイオード、集積回路、プロセッサ、又はメモリが挙げられる。受動部品としては、例えば、抵抗、キャパシタ、又はインダクタが挙げられる。電子装置としては、例えば、産業用装置、医療用装置、又は建築用装置などが挙げられる。移動体としては、例えば、車両、鉄道、飛行機、又は重機などが挙げられる。建造物としては、例えば、住居、店舗、オフィス、ビル、又は工場などが挙げられる。窓としては、例えば、電子装置窓、移動体窓、又は建造物窓などが挙げられる。
 本発明の感光性組成物は、電子部品の形成に用いられることが好ましい。また本発明の感光性組成物は、半導体装置、アンテナ、表示装置、及び金属張積層板からなる群より選ばれる一種類以上の形成に用いられることも好ましい。
 半導体装置としては、例えば、ファンアウト・ウェハレベル・パッケージ構造、ファンアウト・パネルレベル・パッケージ構造、又はアンテナ・イン・パッケージ構造を有する半導体装置が挙げられる。アンテナとしては、例えば、マイクロストリップラインアンテナ、ストリップラインアンテナ、コプレーナラインアンテナ、グランド付きコプレーナライン(Conductor Back Coplanar;CBC)アンテナ、基板統合導波路(Substrate Integrated Waveguide;SIW)アンテナ、ポスト壁導波路(Post Wall Waveguide;PWW)アンテナ、平行二線型ライン(Coplanar Strip;CPS)アンテナ、又はスロットラインアンテナが挙げられる。表示装置としては、例えば、有機ELディスプレイ、量子ドットディスプレイ、マイクロ発光ダイオード(以下、「マイクロLED」)ディスプレイ、ミニLEDディスプレイ、又は液晶ディスプレイが挙げられる。金属張積層板としては、例えば、プリント回路基板が挙げられる。
 本発明の電子部品は、本発明の硬化物を具備する。本発明の硬化物は、低温での加熱においても優れた機械物性及び高マイグレーション耐性を兼ね備えることが可能である。そのため本発明の感光性組成物は、電子部品における金属配線の絶縁層、金属配線の保護層、又は金属配線の層間絶縁層の形成に用いられることが好ましい。
 本発明において、半導体装置、アンテナ、表示装置、及び金属張積層板は、本発明の硬化物を具備する。上記と同様の理由により、本発明の感光性組成物は、半導体装置における再配線の層間絶縁層の形成に用いられることも好ましく、アンテナにおける金属配線の絶縁層、金属配線の保護層、又は金属配線とグランド配線との層間絶縁層の形成に用いられることも好ましく、有機ELディスプレイ、量子ドットディスプレイ、又はマイクロLEDディスプレイにおける画素分割層、TFTの平坦化層、TFTの保護層、TFTの層間絶縁層、又はゲート絶縁層の形成に用いられることも好ましく、金属張積層板における金属配線の絶縁層、金属配線の保護層、又は金属配線のソルダーレジスト層の形成に用いられることも好ましい。
 本発明の硬化物を用いた、バンプを有する半導体装置への応用例について図面を用いて説明する。図2は、バンプを有する半導体装置のパッド部分の拡大断面を示す模式的断面図である。Siウェハ21上には、入出力用のAlパッド22上にパッシベーション層23が形成されており、パッシベーション層23にはビアホールが形成されている。パッシベーション層23上には、パターン形成された本発明の硬化物である絶縁層24が形成されており、さらに、CrやTiなどの金属層25がAlパッド22と接続されるように形成され、電解めっき等でAlやCuなどの金属配線26が形成されている。金属層25はハンダバンプ30の周辺をエッチングして、各パッド間を絶縁する。絶縁されたパッドにはバリア金属層28とハンダバンプ30が形成されている。絶縁層27はパターン形成された感光性組成物の硬化物であって、本発明の硬化物であることが好ましい。絶縁層27を形成する感光性組成物は、スクライブライン29の形成において厚膜でのパターン形成が可能である。絶縁層24及び/又は絶縁層27が本発明の硬化物である場合、低温での加熱において機械物性に優れるため、ウェハの反りが抑えられ、露光やウェハの運搬などの工程の精度向上の効果が顕著となる。また半導体実装時における封止樹脂の応力も緩和できるため、Low-k層の損傷を抑制し、半導体装置の信頼性向上の効果が顕著となる。
 <中空構造体>
 本発明において、中空構造体は、本発明の硬化物を具備する。本発明の電子部品は、本発明の中空構造体を有することが好ましい。本発明における中空構造体は、中空構造支持材及び中空構造屋根材を有する。中空構造支持材及び中空構造屋根材は、本発明の硬化物であることが好ましい。中空構造支持材及び中空構造屋根材は、耐熱性向上及び信頼性向上の観点から、上記のポリイミド系の樹脂を含有することが好ましい。中空構造支持材の膜厚は5~20μmが好ましい。中空構造屋根材の膜厚は10~50μmが好ましい。
 本発明の感光性組成物は、中空構造体の形成に用いられることが好ましく、中空構造支持材及び/又は中空構造屋根材の形成に用いられることがより好ましい。本発明の感光性フィルムは、中空構造体の形成により好適であり、中空構造支持材及び/又は中空構造屋根材の形成にさらに好適であり、中空構造屋根材の形成に特に好適である。中空構造体を有する電子部品としては、例えば、MEMS(Micro Electro Mechanical Systems)等が挙げられる。MEMSとしては、例えば、センサ、ノイズフィルター、SAW(Surface Acoustic Wave)フィルター、又はBAW(Bulk Acoustic Wave)フィルターが挙げられる。
 <本発明の硬化物を具備する表示装置>
 以下、本発明の硬化物を具備する表示装置について述べる。本発明の表示装置としては、例えば、有機ELディスプレイ、量子ドットディスプレイ、マイクロLEDディスプレイ、LEDディスプレイ、液晶ディスプレイ、プラズマディスプレイ、又は電界放出ディスプレイが挙げられる。本発明の表示装置は、有機ELディスプレイ、量子ドットディスプレイ、又はマイクロLEDディスプレイが好ましく、有機ELディスプレイがより好ましい。
 本発明の感光性組成物は、露光時の感度向上、現像後における開口パターン寸法の狭マスクバイアス抑制、及び優れたハーフトーン特性を兼ね備えることが可能である。加えて、表示装置における発光素子の信頼性向上が可能である。そのため、上述した硬化条件にて本発明の感光性組成物を硬化した硬化膜は、有機ELディスプレイの画素分割層、TFT平坦化層、TFT保護層、層間絶縁層、又はゲート絶縁層として特に好ましい。また、ブラックマトリックス又はブラックカラムスペーサーとしても好ましい。硬化膜は、有機ELディスプレイに特に好適に具備できる。その結果、発光素子の高信頼性によって有機ELディスプレイの耐久性向上を実現できる。上述した理由により、本発明の感光性組成物は有機ELディスプレイにおける画素分割層を形成するための用途において、特に好適である。さらに、現像後における開口パターン寸法の狭マスクバイアス抑制、及び優れたハーフトーン特性を有するため、有機ELディスプレイにおける画素分割層の段差形状を一括形成するための用途において、特に好適である。
 すなわち、本発明の感光性組成物は、有機ELディスプレイにおける画素分割層の段差形状を一括形成するために用いられることが好ましい。
 本発明の感光性組成物において、(D)着色剤が(Da)黒色剤を含む場合、上述した通り硬化膜の遮光性向上による外光反射抑制が可能となる。そのため、本発明の感光性組成物を硬化した硬化膜を具備する表示装置は、発光素子の光取り出し側に直線偏光板、1/4波長板、又は円偏光板などの偏光フィルムを有しなくても、外光反射抑制が可能である。従って、硬化膜がフレキシブル基板上に積層されている構造を有し、かつ偏光フィルムを有しない、フレキシブル性を有する表示装置に特に好適に具備できる。フレキシブル基板は、ポリイミド基板、ポリエチレンテレフタレート基板、シクロオレフィンポリマー基板、ポリカーボネート基板、又はセルローストリアセテート基板が好ましい。フレキシブル性を有する表示装置は、曲面の表示部、外側に折り曲げ可能な表示部、又は内側に折り曲げ可能な表示部を有することが好ましい。
 本発明の表示装置の第一の態様は、本発明の硬化物を具備する。本発明の表示装置の第一の態様は、基板、第1電極、第2電極、及び画素分割層を少なくとも有し、さらに、発光層を含む有機EL層及び/又は発光層を含む光取り出し層を有する表示装置であって、画素分割層は、第1電極上の一部と重なるように形成され、発光層を含む有機EL層及び/又は発光層を含む光取り出し層は、第1電極上、かつ第1電極及び第2電極の間に形成された積層構造を有することが好ましい。本発明の表示装置の第一の態様は、画素分割層が本発明の硬化物であることが好ましい。また本発明の表示装置の第一の態様は、有機ELディスプレイであることが好ましい。
 <表示装置>
 以下、本発明の表示装置の第二の態様について述べる。
本発明の表示装置の第二の態様は、基板、第1電極、第2電極、及び画素分割層を少なくとも有し、
 さらに、発光層を含む有機EL層及び/又は発光層を含む光取り出し層を有する表示装置であって、
 該画素分割層は、該第1電極上の一部と重なるように形成され、
 該発光層を含む有機EL層及び/又は該発光層を含む光取り出し層は、該第1電極上、かつ該第1電極及び該第2電極の間に形成され、
 該画素分割層が(D-DL)着色剤を含み、該画素分割層の膜厚1μm当たりの可視光線の波長における光学濃度が0.5~5.0であって、
 該画素分割層が、以下の(WA)弱酸性基を有する樹脂を含有し、
 該(WA)弱酸性基を有する樹脂が、以下の(XA3-1)樹脂、(XA3-2)樹脂、(XA3-3)樹脂、及び(XA3-4)樹脂からなる群より選ばれる一種類以上を含み、
 下記(1x)及び/又は(2x)の条件を満たす、表示装置である。
(WA)弱酸性基:フェノール性水酸基、ヒドロキシイミド基、ヒドロキシアミド基、シラノール基、1,1-ビス(トリフルオロメチル)メチロール基、及びメルカプト基からなる群より選ばれる一種類以上の基
(XA3-1)樹脂:フェノール樹脂
(XA3-2)樹脂:ポリヒドロキシスチレン
(XA3-3)樹脂:フェノール基含有エポキシ樹脂
(XA3-4)樹脂:フェノール基含有アクリル樹脂
(1x)画素分割層の段差形状における薄膜部の表面における表面粗さの最大値を(RaHT/max)とし、かつ、画素分割層の段差形状における厚膜部の表面における表面粗さの最大値を(RaFT/max)とするとき、(RaHT/max)と(RaFT/max)との差|Δ(RaHT/max-RaFT/max)|が1.0~50.0nm
(2x)画素分割層の表面における表面粗さの最大値を(RaDL/max)とし、かつ、画素分割層上のスペーサ層の表面における表面粗さの最大値を(RaSP/max)とするとき、(RaDL/max)と(RaSP/max)との差|Δ(RaDL/max-RaSP/max)|が1.0~50.0nm。
 上記のような構成とすることで、本発明は、発光素子の信頼性向上が可能である。これは画素分割層が特定の(WA)弱酸性基を有する樹脂を含有し、かつフェノール性水酸基を有する特定の樹脂を含有することで、画素分割層のパターン形成時における膜表面のラフネスを低減できるためと考えられる。例えば、画素分割層に遮光性を付与するため、画素分割層が(D-DL)着色剤を含み、かつ可視光線の波長における光学濃度を特定範囲とする場合、画素分割層中の顔料などによって膜表面のラフネスが顕著に悪化することがある。画素分割層の表面における顕著なラフネス悪化は、画素分割層上に形成されるカソード(陰極)における電界集中又は封止工程における欠陥発生による信頼性悪化の要因となる場合や、電極断線又は電極短絡による画素非点灯の要因となる場合もある。本発明は、画素分割層が(D-DL)着色剤を含み、かつ可視光線の波長における光学濃度を特定範囲とする場合であっても、上記の特定の樹脂を含有することで本発明の効果を奏功する。
 すなわち、画素分割層を形成する感光性組成物がネガ型の感光性を有する場合、上記の特定の(WA)弱酸性基を有する樹脂の穏和な酸性度により、露光部の膜減りが抑制されると考えられる。加えて、フェノール性水酸基を有する特定の樹脂により、パターン露光時に発生した過剰なラジカルが安定化される上、フェノール性水酸基によって露光部における過度な光硬化が制御されるため、熱硬化時のリフロー性が向上すると推定される。これらの作用により、画素分割層の表面におけるラフネスが低減されるため、上記(1x)及び/又は(2x)の条件を満たすことで、本発明の効果を奏功する。
 また、画素分割層を形成する感光性組成物がポジ型の感光性を有する場合、上記の特定の(WA)弱酸性基を有する樹脂の穏和な酸性度により、未露光部の膜減りが抑制されると考えられる。加えて、フェノール性水酸基を有する特定の樹脂のπ結合スタッキングにより、熱硬化時の過度な架橋反応が抑制されるため、熱硬化時のリフロー性が向上すると推定される。これらの作用により、画素分割層の表面におけるラフネスが低減されるため、上記(1x)及び/又は(2x)の条件を満たすことで、本発明の効果を奏功する。
 <基板>
 本発明の表示装置の第一の態様は、基板を有することが好ましい。本発明の表示装置の第二の態様は、基板を有する。基板は、耐衝撃性向上の観点からガラス基板が好ましい。基板としては、例えば、ガラス上に、電極又は配線として、インジウム、スズ、亜鉛、アルミニウム、及びガリウムから選ばれる一種類以上を有する酸化物、金属(モリブデン、銀、銅、アルミニウム、クロム、若しくはチタンなど)、又はCNT(Carbon Nano Tube)が形成された基板が挙げられる。基板は、折り曲げ性向上の観点から、ポリイミド基板などのフレキシブル基板が好ましい。
 <第1電極、及び第2電極>
 本発明の表示装置の第一の態様は、第1電極及び第2電極を有することが好ましい。本発明の表示装置の第二の態様は、第1電極及び第2電極を有する。第1電極と第2電極として、透明電極と非透明電極とを組み合わせることにより、後述する発光層における発光を片側に取り出すことができる。本発明の表示装置における、透明電極及び非透明電極には、電気特性に優れること、陽極として用いる場合には効率良く正孔を注入できること、陰極として用いる場合には効率良く電子を注入できることなどの複合的な特性が求められる。
 本発明の表示装置は、上述した第1電極の発光層側の最表層に、インジウム、スズ、亜鉛、アルミニウム、及びガリウムからなる群より選ばれる一種類以上を含む透明導電性酸化膜層を有することが好ましく、少なくともインジウムを含む透明導電性酸化膜層を有することがより好ましく、少なくともインジウムを含むアモルファス性の透明導電性酸化膜層を有することがさらに好ましい。少なくともインジウムを含む透明導電性酸化膜層は、仕事関数差の調整による発光特性の低電圧駆動化の観点から、酸化インジウムスズ(ITO)、又は酸化インジウム亜鉛(IZO)が好ましく、ITOがより好ましい。
 第1電極は、単層構造又は多層構造である。第1電極が単層構造の場合、第1電極は透明電極であり、インジウムを含む透明導電性酸化膜層が好ましい。第1電極が多層構造の場合、第1電極は透明電極又は非透明電極であり、第1電極の発光層側の最表層に、少なくともインジウムを含む透明導電性酸化膜層を有することが好ましい。第2電極は、単層構造の透明電極、多層構造の透明電極、単層構造の非透明電極、又は多層構造の非透明電極である。上述した第1電極が透明電極の場合、第2電極は非透明電極である。一方、第1電極が非透明電極の場合、第2電極は透明電極である。本発明の表示装置は、上述した第1電極が、透明導電性酸化膜層及び非透明導電性金属層を少なくとも含む多層構造を有し、第1電極の発光層側の最表層に、少なくともインジウムを含むアモルファス性の導電性酸化膜層を有し、非透明導電性金属層が、少なくとも銀を含む合金層を有し、トップエミッション型の構成であることが好ましい
 <画素分割層>
 本発明の表示装置の第一の態様は、画素分割層を有することが好ましい。画素分割層は、上述した第1電極上の一部と重なるように形成されていることが好ましい。
本発明の表示装置の第二の態様は、画素分割層を有し、画素分割層は、第1電極上の一部と重なるように形成されている。
画素分割層は、上述した感光性組成物を硬化した硬化膜が好ましい。画素分割層が第1電極上の一部で重なるように形成されることで、任意の画素の第1電極と、その画素の後述する第2電極とを絶縁することができ、第1電極と第2電極との短絡に起因する画素非点灯を抑制できる。また、任意の画素の第1電極と、その画素と隣接する画素の第1電極とを絶縁することができ、第1電極同士の短絡に起因する画素非点灯を抑制できる。
 <画素分割層が有する樹脂、化合物、着色剤、及び無機粒子>
 本発明の表示装置は、表示装置における発光素子の信頼性向上及びマイグレーション耐性向上の観点から、上述した画素分割層が、(XA1)イミド構造、アミド構造、オキサゾール構造、及びシロキサン構造からなる群より選ばれる一種類以上を含む構造単位を有する樹脂(以下、「(XA1)樹脂」)を含有することが好ましい。(XA1)樹脂は、樹脂の主鎖における構造単位中にイミド構造、アミド構造、オキサゾール構造、及びシロキサン構造からなる群より選ばれる一種類以上を有することが好ましい。これらの樹脂は、上述した(A1)樹脂に由来する構造及び/又は上述した(A2)樹脂に由来する構造を有する樹脂であることが好ましい。画素分割層が、上述した一般式(1)、(2)、(3)、(4)、(5)、(6)、(9)及び(10)のいずれかで表される構造単位からなる群より選ばれる一種類以上を有することが好ましく、一般式(1)で表される構造単位及び/又は一般式(5)で表される構造単位を有することがより好ましい。
 本発明の表示装置は、表示装置における発光素子の信頼性向上の観点から、上述した画素分割層が、(XA3)フェノール性水酸基を含む構造単位を有する樹脂(以下、「(XA3)樹脂」)を含有することが好ましい。これらの樹脂は、上述した(A3)樹脂に由来する構造、上述した(A1)樹脂に由来する構造、及び上述した(A2)樹脂に由来する構造からなる群より選ばれる一種類以上を有する樹脂であることが好ましい。画素分割層が、上述した一般式(36)、(91)及び(92)のいずれかで表される構造単位からなる群より選ばれる一種類以上を有することが好ましく、一般式(36)で表される構造単位を有することがより好ましい。これらの樹脂は、樹脂の主鎖、樹脂の側鎖及び樹脂の末端のうち少なくとも1つにアルカリ可溶性基としてフェノール性水酸基を有し、樹脂の構造単位中に芳香環骨格を含むことが好ましく、樹脂の主鎖における構造単位中にアルカリ可溶性基としてフェノール性水酸基を有し、芳香環骨格を含むことがより好ましい。樹脂中に含まれるフェノール性水酸基の一部が、他の樹脂や化合物と反応して架橋構造を形成していることも好ましい。
 本発明の表示装置は、表示装置における発光素子の信頼性向上の観点から、上述した画素分割層が、(XA2)ラジカル重合性基の反応残基を有する樹脂(以下、「(XA2)樹脂」)を含有することが好ましい。これらの樹脂は、上述した(A2)樹脂に由来する構造及び/又は上述した(A3)樹脂に由来する構造を有する樹脂であることが好ましい。画素分割層が、上述した(1)、(2)、(3)、(4)、(5)、(6)、(9)、(10)、(41)、(61)、(62)、(63)、(81)及び(82)のいずれかで表される構造単位からなる群より選ばれる一種類以上を有することが好ましく、一般式(1)、(2)、(3)、(4)、(5)、(6)、(9)及び(10)のいずれかで表される構造単位からなる群より選ばれる一種類以上を有することがより好ましく、一般式(1)、(2)、(3)、(4)、(5)及び(6)のいずれかで表される構造単位からなる群より選ばれる一種類以上を有することがさらに好ましい。
 画素分割層が、上述した(XA1)樹脂及び/又は上述した(XA3)樹脂を含有し、さらに上述した(XA2)樹脂を含有することがより好ましい。画素分割層がこれらの樹脂を有することで、表示装置における発光素子の信頼性向上及びマイグレーション耐性向上の効果が顕著となる。
 本発明の表示装置は、遮光性向上による表示装置のコントラスト向上、及び表示装置における発光素子の信頼性向上、及び発光素子の低電圧駆動化の観点から、上述した画素分割層が、さらにリン酸エステル構造含有化合物、ホスホン酸構造含有化合物、ホスホン酸エステル構造含有化合物、亜リン酸エステル構造含有化合物、ホスフィン酸構造含有化合物、ホスフィン酸エステル構造含有化合物、次亜リン酸エステル構造含有化合物、リン酸ベタインエステル構造含有化合物、ホスホン酸ベタイン構造含有化合物、ホスホン酸ベタインエステル構造含有化合物、亜リン酸ベタインエステル構造含有化合物、ホスフィン酸ベタイン構造含有化合物、ホスフィン酸ベタインエステル構造含有化合物及び次亜リン酸ベタインエステル構造含有化合物からなる群より選ばれる一種類以上(以下、「リン酸系構造を有する化合物」)を含有することが好ましい。
 リン酸系構造を有する化合物は、ホスホン酸構造含有化合物、ホスホン酸エステル構造含有化合物及び亜リン酸エステル構造含有化合物からなる群より選ばれる一種類以上を含有することがより好ましく、ホスホン酸構造含有化合物及び/又はホスホン酸エステル構造含有化合物を含有することがさらに好ましい。リン酸系構造を有する化合物は、上述した(F0)化合物に由来する構造を有する化合物及び/又は(FB)化合物に由来する構造を有する化合物であることが好ましく、上述した(F1)化合物に由来する構造を有する化合物及び/又は(FB1)化合物に由来する構造を有する化合物であることがより好ましい。
 本発明の表示装置の第一の態様は、上述した画素分割層が、さらに(D)着色剤を含有することが好ましい。本発明の表示装置の第二の態様は、画素分割層が(D-DL)着色剤を含む。画素分割層が含む(D-DL)着色剤は、(Da)黒色剤がより好ましい。画素分割層が、(Da)黒色剤を含有することで、遮光性向上による表示装置のコントラスト向上、及び表示装置における発光素子の信頼性向上の効果が顕著となる。
 本発明の表示装置は、上述した画素分割層が、さらに(D1a)黒色顔料を含有することが好ましい。画素分割層は、(D1a)黒色顔料が上述した特定の(D1a-1)有機黒色顔料を含有することがより好ましく、(D1a-1a)ベンゾフラノン系黒色顔料を含有することがさらに好ましい。上述した画素分割層は、一般式(161)及び一般式(162)のいずれかで表される構造を有する化合物、それらの幾何異性体、それらの塩、それらの幾何異性体の塩;一般式(164)、(165)及び(166)のいずれかで表される構造を有する化合物、それらの塩;一般式(168)で表される構造を有する化合物、並びにその塩、からなる群より選ばれる一種類以上を含有することも好ましい。上述した画素分割層が、一般式(161)及び一般式(162)のいずれかで表される構造を有する化合物を含有することがより好ましい。
 本発明の表示装置の第一の態様は、画素分割層の膜厚1μm当たりの可視光線の波長における光学濃度が0.5~5.0であることが好ましい。本発明の表示装置の第二の態様は、画素分割層の膜厚1μm当たりの可視光線の波長における光学濃度が0.5~5.0である。
上記光学濃度は、外光反射抑制、隣接画素からの光漏れ防止、及び発光素子の信頼性向上の観点から、0.5以上が好ましく、0.7以上がより好ましく、1.0以上がさらに好ましく、1.2以上がさらにより好ましく、1.5以上が特に好ましい。一方、上記光学濃度は、発光輝度向上及び発光素子の信頼性向上の観点から、5.0以下が好ましく、4.0以下がより好ましく、3.0以下がさらに好ましく、2.5以下がさらにより好ましく、2.0以下が特に好ましい。ここで画素分割層の光学濃度に関しては、上述した本発明の感光性組成物を硬化した硬化膜の光学濃度に関する記載の通りである。
 本発明の表示装置は、発光素子の信頼性向上及びマイグレーション耐性向上の観点から、上述した画素分割層が、さらに無機粒子を含有することが好ましい。画素分割層中の無機粒子は、シリカ粒子、アルミナ粒子、チタニア粒子、酸化バナジウム粒子、酸化クロム粒子、酸化鉄粒子、酸化コバルト粒子、酸化銅粒子、酸化亜鉛粒子、酸化ジルコニウム粒子、酸化ニオブ粒子、酸化スズ粒子、又は酸化セリウム粒子が好ましく、シリカ粒子がより好ましい。画素分割層中の無機粒子は、上述した(I)無機粒子であることが好ましく、画素分割層中のシリカ粒子は、上述した(I1)シリカ粒子であることが好ましい。
 画素分割層中のシリカ粒子の平均一次粒子径は、発光素子の信頼性向上及びマイグレーション耐性向上の観点から、5.0nm以上が好ましく、7.0nm以上がより好ましく、10nm以上がさらに好ましい。一方、画素分割層中のシリカ粒子の平均一次粒子径は、外光反射抑制及び発光素子の信頼性向上の観点から、200nm以下が好ましく、100nm以下がより好ましく、70nm以下がさらに好ましい。さらに、50nm以下が好ましく、40nm以下がより好ましく、30nm以下がさらに好ましく、25nm以下がさらにより好ましく、20nm以下が特に好ましく、15nm以下が最も好ましい。
 また画素分割層中のシリカ粒子の平均一次粒子径は、高弾性率化及び低熱膨張率化の観点から、0.20μm超が好ましく、0.30μm以上がより好ましく、0.50μm以上がさらに好ましい。一方、画素分割層中のシリカ粒子の平均一次粒子径はマイグレーション耐性向上の観点から、100μm以下が好ましく、50μm以下がより好ましく、30μm以下がさらに好ましく、10μm以下がさらにより好ましく、5.0μm以下が特に好ましく、3.0μm以下が最も好ましい。画素分割層中のシリカ粒子の一次粒子径とは、画素分割層中のシリカ粒子の一次粒子における長軸径をいう。
 <画素分割層中の特定の樹脂>
 本発明の表示装置の第二の態様は、画素分割層が、以下の(WA)弱酸性基を有する樹脂を含有する。
(WA)弱酸性基:フェノール性水酸基、ヒドロキシイミド基、ヒドロキシアミド基、シラノール基、1,1-ビス(トリフルオロメチル)メチロール基、及びメルカプト基からなる群より選ばれる一種類以上の基。
 これらの樹脂は、上述した(A1)樹脂に由来する構造、上述した(A2)樹脂に由来する構造、及び上述した(A3)樹脂に由来する構造からなる群より選ばれる一種類以上を有する樹脂であることが好ましい。画素分割層中の上記(WA)弱酸性基を有する樹脂に関する例示及び好ましい記載は、上記(XA1)樹脂、(XA2)樹脂、及び(XA3)樹脂に関する例示及び好ましい記載の通りである。
 本発明の表示装置の第二の態様は、画素分割層中の(WA)弱酸性基を有する樹脂が、以下の(XA3-1)樹脂、(XA3-2)樹脂、(XA3-3)樹脂、及び(XA3-4)樹脂からなる群より選ばれる一種類以上を含む。
(XA3-1)樹脂:フェノール樹脂
(XA3-2)樹脂:ポリヒドロキシスチレン
(XA3-3)樹脂:フェノール基含有エポキシ樹脂
(XA3-4)樹脂:フェノール基含有アクリル樹脂。
 これらの樹脂は、上述した(A3)樹脂に由来する構造を有する樹脂であることが好ましい。画素分割層中の上記(XA3-1)樹脂、(XA3-2)樹脂、(XA3-3)樹脂、及び(XA3-4)樹脂に関する例示及び好ましい記載は、上記(XA3)樹脂に関する例示及び好ましい記載の通りである。
 <スペーサ層>
 本発明の表示装置は、画素分割層が硬化パターンを有し、かつ、画素分割層上の一部にスペーサ層を有し、スペーサ層の膜厚(TSP)μmが0.5~10.0μmであることが好ましい。このような構成とすることで、フォトリソグラフィーにより、十分な高さを有するスペーサ層を形成できる。スペーサ層を有するため、画素分割層の損傷抑制により、パネルの歩留まり低下抑制及び発光素子の信頼性向上の効果が顕著となる。
 本発明の表示装置においてスペーサ層の膜厚(TSP)μmは、0.5μm以上が好ましく、1.0μm以上がより好ましく、1.5μm以上がさらに好ましく、2.0μm以上がさらにより好ましく、2.5μm以上が特に好ましく、3.0μm以上が最も好ましい。一方、スペーサ層の膜厚(TSP)μmは、10.0μm以下が好ましく、9.0μm以下がより好ましく、8.0μm以下がさらに好ましい。
 本発明の表示装置は、画素分割層が段差形状を有する硬化パターンを含み、画素分割層の硬化パターンの段差形状における、厚膜部の膜厚を(TFT)μmとし、かつ、薄膜部の膜厚を(THT)μmとするとき、(TFT)μmと(THT)μmとの膜厚差(ΔTFT-HT)μmが0.5~10.0μmであって、画素分割層上の一部にスペーサ層を有し、スペーサ層の膜厚(TSP)μmが0.5~10.0μmであることが好ましい。このような構成とすることで、フォトリソグラフィーにより、十分な高さを有するスペーサ層を形成できる。そのため、パネルの歩留まり低下抑制及び発光素子の信頼性向上の効果が顕著となる。
 スペーサ層が有する樹脂、化合物、着色剤、及び無機粒子に関する例示及び好ましい記載は、上記の画素分割層が有する樹脂、化合物、着色剤、及び無機粒子に関する例示及び好ましい記載の通りである。
 <画素分割層及びスペーサ層の表面における表面粗さの最大値>
 本発明の表示装置の第二の態様は、下記(1x)及び/又は(2x)の条件を満たす。
(1x)画素分割層の段差形状における薄膜部の表面における表面粗さの最大値を(RaHT/max)とし、かつ、画素分割層の段差形状における厚膜部の表面における表面粗さの最大値を(RaFT/max)とするとき、(RaHT/max)と(RaFT/max)との差|Δ(RaHT/max-RaFT/max)|が1.0~50.0nm
(2x)画素分割層の表面における表面粗さの最大値を(RaDL/max)とし、かつ、画素分割層上のスペーサ層の表面における表面粗さの最大値を(RaSP/max)とするとき、(RaDL/max)と(RaSP/max)との差|Δ(RaDL/max-RaSP/max)|が1.0~50.0nm。
 本発明の表示装置において、画素分割層の表面における表面粗さの最大値を上述した範囲内とすることで、発光素子の信頼性向上が可能であるとともに、外光反射抑制の効果が顕著となる。これは、画素分割層の表面における拡散反射光を増加させることで、視認性における眩しさ及び映り込みへの寄与が大きい正反射光を低減できるためと推定される。
 本発明の表示装置は、画素分割層が段差形状を有する硬化パターンを含む場合、上記(1x)の条件を満たすことが好ましい。上記|Δ(RaHT/max-RaFT/max)|は、発光素子の信頼性向上及び外光反射抑制の観点から、1.0nm以上が好ましく、3.0nm以上がより好ましく、5.0nm以上がさらに好ましく、7.0nm以上が特に好ましく、10.0nm以上が最も好ましい。一方、上記|Δ(RaHT/max-RaFT/max)|は、発光素子の信頼性向上及び外光反射抑制の観点から、50.0nm以下が好ましく、40.0nm以下がより好ましく、30.0nm以下がさらに好ましく、20.0nm以下が特に好ましい。
 本発明の表示装置は、画素分割層が硬化パターンを有し、かつ、画素分割層上の一部にスペーサ層を有する場合、上記(2x)の条件を満たすことが好ましい。上記|Δ(RaDL/max-RaSP/max)|に関する例示及び好ましい記載は、上記|Δ(RaHT/max-RaFT/max)|に関する例示及び好ましい記載の通りである。
 画素分割層の表面における表面粗さの最大値は、発光素子の信頼性向上及び外光反射抑制の観点から、0.1nm以上が好ましく、0.3nm以上がより好ましく、0.5nm以上がさらに好ましく、0.7nm以上がさらにより好ましく、1.0nm以上が特に好ましい。さらに、3.0nm以上が好ましく、5.0nm以上がより好ましく、7.0nm以上がさらに好ましく、10.0nm以上が特に好ましい。一方、画素分割層の表面における表面粗さの最大値は、発光素子の信頼性向上及び外光反射抑制の観点から、50.0nm以下が好ましく、40.0nm以下がより好ましく、30.0nm以下がさらに好ましく、20.0nm以下が特に好ましい。
 画素分割層の薄膜部の表面における表面粗さの最大値、画素分割層の厚膜部の表面における表面粗さの最大値、及びスペーサ層の表面における表面粗さの最大値に関する例示及び好ましい記載は、上記画素分割層の表面における表面粗さの最大値に関する例示及び好ましい記載の通りである。
 本発明の表示装置において、表面粗さの最大値は、原子間力顕微鏡(以下、「AFM」)によって測定できる。一般的に、AFMによる測定は、水平な面に置いた表示装置が有する画素分割層等の表面に対して、鉛直上方から測定を行う。また表面粗さの最大値とは、画素分割層等の表面におけるAFMにより測定可能な面、すなわち、基板と略平行な面において測定された値をいう。
 <発光層を含む有機EL層及び発光層を含む光取り出し層>
 本発明の表示装置は、さらに、発光層を含む有機EL層及び/又は発光層を含む光取り出し層を有することが好ましい。発光層を含む有機EL層及び/又は発光層を含む光取り出し層は、上述した第1電極上、かつ上述した第1電極及び第2電極の間に形成された積層構造を有することが好ましい。
本発明の表示装置の第二の態様は、さらに、発光層を含む有機EL層及び/又は発光層を含む光取り出し層を有し、発光層を含む有機EL層及び/又は発光層を含む光取り出し層は、第1電極上、かつ第1電極及び第2電極の間に形成されている。
このような構成とすることで、発光画素部に相当する領域を形成できる。
 有機EL層は、さらに、正孔輸送層及び/又は電子輸送層を有することが好ましく、発光層との積層構造となるように有機EL層を形成することが好ましい。有機EL層の構成としては、例えば、(1)正孔輸送層/発光層、(2)正孔輸送層/発光層/電子輸送層、又は、(3)発光層/電子輸送層などが挙げられる。有機EL層の構成については、正孔と電子の注入や輸送、発光層における発光効率などを総合的に高めるために種々検討されており、好ましい構成としては、例えば、特開平8-109373号公報に記載された有機EL素子、すなわち、少なくとも一方が透明な一対の電極間に少なくとも正孔輸送帯域を有し、前記正孔輸送帯が陽極に接する正孔輸送層と発光層に接するブロッキング層、あるいは陽極に接する正孔注入層と前記正孔注入層に接する正孔輸送層と発光層に接するブロッキング層からなる有機薄膜EL素子において、前記正孔輸送層が特定の一般式で示されるヒストリフェニルアミンスチリル誘導体を含有することを特徴とする有機薄膜EL素子などが挙げられる。
 なお、本発明の表示装置は、発光層を含む有機EL層を用いた積層構造とすることで、表示装置である有機ELディスプレイを製造することができる。一方、本発明の表示装置は、発光層を含む光取り出し層を用いた積層構造とすることで、表示装置である量子ドットディスプレイ又はマイクロLEDディスプレイを製造することができる。
 本発明の表示装置は、発光層を含む光取り出し層が量子ドットを含む構成である量子ドットディスプレイも好ましい。量子ドットディスプレイは、基板上に、第1電極、第2電極、画素分割層、及び発光層を含む光取り出し層を有する表示装置であって、画素分割層は、第1電極上の一部と重なるように形成され、発光層を含む光取り出し層は、第1電極上、かつ第1電極及び第2電極の間に形成された構成を有し、発光層を含む光取り出し層が量子ドットを含む構成を有する表示装置である。
 本発明の表示装置は、発光層を含む光取り出し層が無機半導体を含む構成であるマイクロLEDディスプレイも好ましい。マイクロLEDディスプレイは、基板上に、第1電極、第2電極、画素分割層、及び発光層を含む光取り出し層を有する表示装置であって、画素分割層は、第1電極上の一部と重なるように形成され、発光層を含む光取り出し層は、第1電極上、かつ第1電極及び第2電極の間に形成された構成を有し、発光層を含む光取り出し層が無機半導体を含む構成を有する表示装置である。
 本発明の表示装置は、発光輝度向上及び発光色純度向上の観点から、さらに、量子ドットを含むカラーフィルタを有することが好ましい。量子ドットを含むカラーフィルタを有する積層構造とする場合、量子ドットを含むカラーフィルタと重畳し、かつ量子ドットを含むカラーフィルタよりも下層に位置する発光素子は、青色光を発光する有機EL発光素子、白色光を発光する有機EL発光素子、青色光を発光するLED素子、又は白色光を発光するLED素子が好ましい。
 本発明の表示装置は、複数の画素部を有することが好ましい。本発明の表示装置は、画素分割層の開口部における、上述した第1電極上、かつ、発光層を含む有機EL層及び/又は発光層を含む光取り出し層が形成された箇所を画素部とすることが好ましい。画素部に相当する領域は、発光層を含む有機EL層及び/又は発光層を含む光取り出し層が、上述した第1電極部と接する領域に相当する。本発明の表示装置は、画素部が、カラーフィルタ層及びブラックマトリックス層の開口部と重畳することが好ましい。本発明の表示装置は、同一の基板上に、第1電極、第2電極、画素分割層、発光層を含む有機EL層及び/又は発光層を含む光取り出し層、封止層、カラーフィルタ層、及びブラックマトリックス層を有することが好ましい。
 <有機ELディスプレイの製造プロセスの模式的断面図>
 本発明の感光性組成物において、(D)着色剤が(Da)黒色剤を含む場合、組成物を硬化した硬化膜を、遮光性を有する画素分割層として具備する有機ELディスプレイの製造プロセスを例に、図3に模式的断面図を示して説明する。まず、(工程1)ガラス基板1上に、薄膜トランジスタ(以下、「TFT」)2を形成し、TFT平坦化膜用の感光性材料を成膜し、フォトリソグラフィーによってパターン加工した後、熱硬化させてTFT平坦化用の硬化膜3を形成する。次に、(工程2)銀‐パラジウム‐銅合金(以下、「APC」)をスパッタにより成膜し、フォトレジストを用いてエッチングによりパターン加工してAPC層を形成し、さらに、APC層の上層に酸化インジウムスズ(以下、「ITO」)をスパッタにより成膜し、フォトレジストを用いたエッチングによりパターン加工し、第1電極として反射電極4を形成する。その後、(工程3)本発明の感光性組成物を塗布及びプリベークして、プリベーク膜5aを形成する。次いで、(工程4)所望のパターンを有するマスク6を介して、活性化学線7を照射する。次に、(工程5)現像してパターン加工をした後、必要に応じてブリーチング露光及びミドルベークする。さらに、熱硬化させることで、遮光性を有する画素分割層として、所望のパターンを有する硬化パターン5bを形成する。その後、(工程6)EL発光材料を、マスクを介した蒸着によって成膜して有機EL層8を形成し、マグネシウム‐銀合金(以下、「MgAg」)を蒸着により成膜し、フォトレジストを用いてエッチングによりパターン加工し、第2電極として透明電極9を形成する。次に(工程7)平坦化膜用の感光性材料を成膜し、フォトリソグラフィーによってパターン加工した後、熱硬化させて平坦化用の硬化膜10を形成し、その後、カバーガラス11を接合させることで、本発明の感光性組成物の硬化膜を、遮光性を有する画素分割層として具備する有機ELディスプレイを得る。
 <硬化物の製造方法>
 本発明の硬化物の製造方法は、以下の(1)~(4)の工程を有することが好ましい。
(1)基板上に、本発明の感光性組成物の塗膜を成膜する工程、
(2)感光性組成物の塗膜にフォトマスクを介して活性化学線を照射する工程、
(3)アルカリ溶液を用いて現像し、感光性組成物のパターンを形成する工程、及び、
(4)パターンを加熱し、感光性組成物の硬化パターンを得る工程。
また、本発明の硬化物の製造方法は、フォトマスクが、透光部及び遮光部を含み、透光部と遮光部の間に透過率が透光部の値より低く、かつ透過率が遮光部の値より高い、半透光部を有するハーフトーンフォトマスクであることが好ましい。
なお、硬化物の製造方法としては、国際公開第2019/087985号の段落[0453]~段落[0481]に記載の各方法を適用しても構わない。
 <塗膜を成膜する工程>
 本発明の硬化物の製造方法は、(1)基板上に、本発明の感光性組成物の塗膜を成膜する工程、を有する。感光性組成物を成膜する方法としては、例えば、基板上に、感光性組成物を塗布する方法、又は、基板上に、感光性組成物をパターン状に塗布する方法が挙げられる。基板としては、例えば、ガラス上に、電極又は配線として、インジウム、スズ、亜鉛、アルミニウム、及びガリウムから選ばれる一種類以上を含む酸化物、金属(モリブデン、銀、銅、アルミニウム、クロム、若しくはチタンなど)、又はCNT(Carbon Nano Tube)が形成された基板などが用いられる。インジウム、スズ、亜鉛、アルミニウム、及びガリウムから選ばれる一種類以上を含む酸化物としては、例えば、酸化インジウムスズ(ITO)が挙げられる。
 <基板上に、感光性組成物を塗布する方法>
 基板上に、感光性組成物を塗布する方法としては、例えば、スピンコーティング、カーテンフローコーティング、スプレーコーティング、又はスリットコーティングが挙げられる。塗布膜厚は、塗布方法、感光性組成物の固形分濃度や粘度などによって異なるが、通常は、塗布及びプリベーク後の膜厚が0.1~30μmである。基板上に、感光性組成物を塗布した後、プリベークして成膜することが好ましい。プリベークは、オーブン、ホットプレート、赤外線、フラッシュアニール装置、又はレーザーアニール装置などを使用することができる。プリベーク温度は、50~150℃が好ましい。プリベーク時間は、30秒~10分が好ましい。また、80℃で2分間プリベークした後、120℃で2分間プリベークするなど、二段又はそれ以上の多段でプリベークしても構わない。
 <基板上に成膜した塗膜をパターン加工する方法>
 基板上に成膜した、感光性組成物の塗膜をパターン加工する方法としては、例えば、フォトリソグラフィーにより直接パターン加工する方法、又はエッチングによりパターン加工する方法が挙げられる。工程数削減、及びプロセスタイム短縮の観点から、フォトリソグラフィーにより直接パターン加工する方法が好ましい。
 <フォトマスクを介して活性化学線を照射する工程>
 本発明の硬化物の製造方法は、(2)上述した感光性組成物の塗膜にフォトマスクを介して活性化学線を照射する工程、を有する。フォトマスクを介して活性化学線を照射する方法としては、例えば、ステッパー、スキャナー、ミラープロジェクションマスクアライナー(MPA)、又はパラレルライトマスクアライナー(PLA)などの露光機を用いてパターニング露光する方法が挙げられる。
 フォトマスクは、透光部及び遮光部を含むパターンを有するフォトマスクであって、透光部と遮光部の間に、透過率が透光部の値より低く、かつ透過率が遮光部の値より高い、半透光部を有するハーフトーンフォトマスクを用いることが好ましい。ハーフトーンフォトマスクを用いて露光することで、現像後に段差形状を有するパターンを形成することができる。ネガ型の感光性組成物を用いた場合、段差形状を有するパターンにおいて、透光部を介して活性化学線を照射した露光部から形成した箇所は厚膜部に相当し、半透光部を介して活性化学線を照射したハーフトーン部から形成した箇所は薄膜部に相当する。
 活性化学線の露光波長は、150nm以上が好ましく、300nm以上がより好ましい。一方、露光波長は、450nm以下が好ましく、420nm以下がより好ましい。活性化学線は、水銀灯のj線(波長313nm)、i線(波長365nm)、h線(波長405nm)、若しくはg線(波長436nm)、又は、i線、h線及びg線の混合線が特に好ましい。活性化学線として、XeF(波長351nm)レーザー、XeCl(波長308nm)レーザー、KrF(波長248nm)レーザー、又はArF(波長193nm)レーザーなどを用いても構わない。活性化学線の露光量は、i線照度値で、100J/m(10mJ/cm)~30,000J/m(3,000mJ/cm)以下が好ましい。露光後、露光後ベークをしても構わない。露光後ベークをすることで、現像後の解像度向上、又は現像条件の許容幅拡大が可能である。
 <アルカリ溶液を用いて現像し、パターンを形成する工程>
 本発明の硬化物の製造方法は、(3)アルカリ溶液を用いて現像し、上述した感光性組成物のパターンを形成する工程、を有する。フォトマスクを介して活性化学線を照射した後、アルカリ溶液を用いて現像する方法としては、例えば、自動現像機を用いて現像する方法が挙げられる。現像方法としては、例えば、パドル現像、スプレー現像、又はディップ現像が挙げられる。ネガ型の感光性を有する場合、未露光部が現像液で除去されたパターンを形成でき、ポジ型の感光性を有する場合、露光部が現像液で除去されたパターンを形成できる。
 現像液は、アルカリ溶液が好ましく、有機系のアルカリ溶液、又はアルカリ性を示す化合物の水溶液が好ましい。アルカリ溶液としては、例えば、ジエタノールアミン、トリメチルアミン、トリエチルアミン、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、水酸化テトラメチルアンモニウム、又は水酸化テトラエチルアンモニウムが挙げられる。現像液は、有機溶媒を用いても構わない。現像液は、有機溶媒と感光性組成物に対する貧溶媒の、両方を含有する混合溶液を用いても構わない。アルカリ溶液のアルカリ濃度は、0.01~5質量%が好ましい。現像時間は、30秒~10分が好ましい。現像後、得られたパターンをリンス液で洗浄することが好ましい。リンス液は、現像液としてアルカリ水溶液を用いた場合、水が好ましい。リンス液は、アルコール類の水溶液、エステル類の水溶液、酸性を示す化合物の水溶液、又は有機溶媒を用いても構わない。現像後、現像後露光をしても構わない。現像後露光をすることで、熱硬化後の解像度向上、熱硬化後のパターン形状制御、及び熱硬化後の段差形状を有するパターン形成が可能である。また、現像後、ミドルベークをしても構わない。ミドルベークをすることで、熱硬化後の解像度向上、及び熱硬化後のパターン形状制御が可能である。
 <パターンを加熱し、硬化パターンを得る工程>
 本発明の硬化物の製造方法は、(4)上述した感光性組成物のパターンを加熱し、上述した感光性組成物の硬化パターンを得る工程(以下、「(4)工程」)、を有する。
(4)工程は、パターンを加熱して熱硬化させることが好ましい。熱硬化方法としては、例えば、オーブン、ホットプレート、赤外線、フラッシュアニール装置、又はレーザーアニール装置を用いて加熱する方法が挙げられる。熱硬化させることで、硬化膜の耐熱性を向上できるとともに、低テーパー形状のパターンを形成できる。熱硬化温度は、150~500℃が好ましい。熱硬化時間は、5~300分が好ましい。また、150℃で30分間熱硬化させた後、250℃で30分間熱硬化させるなど、二段又はそれ以上の多段で熱硬化させても構わない。処理雰囲気としては、例えば、空気、酸素、窒素、ヘリウム、ネオン、アルゴン、クリプトン若しくはキセノン雰囲気下、酸素を1~10,000質量ppm(0.0001~1質量%)含有するガス雰囲気下、又は、真空下が挙げられる。
 以下に実施例、参考例、及び比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの範囲に限定されない。なお、以下の説明または表で用いた化合物のうち略語を使用しているものについて、略語に対応する名称を、まとめて表1に示す。
Figure JPOXMLDOC01-appb-T000034
 <各樹脂の合成例>
 (A)アルカリ可溶性樹脂として、合成例1~32で得られた各樹脂の組成を、まとめて表2-1~表2-4に示す。各樹脂は以下の文献に記載の方法に基づき、適宜モノマーとなる単量体化合物や共重合比率を変更して、公知の方法により合成した。モノマーの共重合比率は、表2-1~表2-4の通りである。
・合成例1及び2のポリイミド(PI-1)~(PI-2)は、国際公開第2017/057281号の段落[0544]の合成例1に記載の方法。
・合成例4のポリイミド前駆体(PIP-1)は、国際公開第2017/057281号の段落[0548]の合成例15に記載の方法。
・合成例5及び6のポリイミド前駆体(PIP-2)~(PIP-3)は、特開2018-165819号公報の段落[0114]の合成例6に記載の方法。
・合成例7のポリベンゾオキサゾール(PB-1)は、国際公開第2017/057281号の段落[0546]の合成例12に記載の方法。
・合成例11のポリシロキサン(PS-1)は、国際公開第2017/057281号の段落[0553]の合成例30に記載の方法。
・合成例12の多環側鎖含有樹脂(CR-1)は、国際公開第2017/057281号の段落[0563]の合成例45に記載の方法。
・合成例31及び32のフェノール基含有アクリル樹脂(PAC-1)~(PAC-2)は、国際公開第2017/057281号の段落[0564]の合成例46に記載の方法。
・合成例3のポリイミド(PI-3)は、国際公開第2017/159876号の段落[0726]の合成例6に記載の方法。
・合成例13の酸変性エポキシ樹脂(AE-2)は、国際公開第2017/159876号の段落[0744]の合成例25に記載の方法。
・合成例14のアクリル樹脂(AC-1)は、国際公開第2017/159876号の段落[0739]の合成例20に記載の方法。
・合成例15、19~21、及び23~28のフェノール樹脂(PR-1)、(PR-5)~(PR-7)、及び(PR-9)~(PR-14)は、国際公開第2017/159876号の段落[0740]の合成例21に記載の方法。
・合成例29のポリヒドロキシスチレン(PHS-1)は、国際公開第2017/159876号の段落[0742]の合成例23に記載の方法。
・合成例8のポリベンゾオキサゾール前駆体(PBP-1)は、国際公開第2017/057143号の段落[0161]の合成例9に記載の方法。
・合成例9及び10のポリアミドイミド(PAI-1)~(PAI-2)は、国際公開第2018/159384号の段落[0160]の合成例9に記載の方法。
・合成例16のフェノール樹脂(PR-2)は、国際公開第2012/141165号の段落[0120]の合成例5に記載の方法。
・合成例17のフェノール樹脂(PR-3)は、国際公開第2016/103850号の段落[0119]の合成例2に記載の方法。
・合成例18及び22のフェノール樹脂(PR-4)及び(PR-8)は、国際公開第2014/046062号の段落[0188]の合成例12に記載の方法。
・合成例30のフェノール基含有エポキシ樹脂(PE-1)は、特開2020-042150号公報の段落[0171]の製造例1に記載の方法。
 なお、合成例3及び10は、国際公開第2017/159876号の段落[0726]の合成例6に記載の方法に基づき、ラジカル重合性基を導入した。
合成例14、21、及び32は、国際公開第2017/159876号の段落[0739]の合成例20に記載の方法に基づき、ラジカル重合性基を導入した。
合成例13において、エポキシ基を有するNC-3500に対して、不飽和カルボン酸を反応させており、NC-3500由来のエポキシ基に対して全て開環付加させた。
合成例14、21、及び32において、エポキシ基を有するGMAを反応させており、GMAのエポキシ基を全て開環付加させた。
合成例30において、エポキシ基を有するNC-3000-H由来の構造単位に対して、カルボキシ基含有フェノール化合物を反応させており、NC-3000-H由来のエポキシ基に対して全て開環付加させた。
合成例31において、エポキシ基を有するGMA由来の構造単位に対して、カルボキシ基含有フェノール化合物を反応させており、GMA由来のエポキシ基に対して全て開環付加させた。
酸変性エポキシ樹脂(AE-1)は、市販の樹脂であるZCR-1569Hを使用した。
 合成例4で使用した下記構造のヒドロキシ基含有ジアミンである(HA)は、国際公開第2016/056451号の段落[0374]~段落[0376]における、合成例1に記載の合成方法に基づき、公知の方法により合成した。なお下記構造のヒドロキシ基含有ジアミンである(HA)を用いて合成例4で得られた樹脂は、アミド酸エステル構造単位、アミド酸構造単位、及びイミド閉環構造を有するポリイミド前駆体である。
Figure JPOXMLDOC01-appb-C000035
 合成例16及び17において、国際公開第2012/141165号の段落[0109]~段落[0122]における、合成例3及び合成例5に記載の合成方法に基づき、XLNと4-ヒドロキシベンズアルデヒドとの縮合反応物に代えて、XLNとSADとの縮合反応物として下記構造のフェノール化合物を合成し、得られたフェノール化合物をアルデヒド化合物との縮合反応に使用した。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
 各合成例で得られた樹脂、並びに、各実施例、参考例、及び比較例で使用した樹脂について、各樹脂が有する構造単位と構造を、まとめて表3に示す。
Figure JPOXMLDOC01-appb-T000041
 各実施例、参考例、及び比較例で使用した(D)着色剤及び(E)分散剤の一覧と説明を、まとめて表4に示す。
Figure JPOXMLDOC01-appb-T000042
 <各着色剤>
・Bk-CBF1は、国際公開第2019/087985号の段落[0503]~段落[0505]、被覆例1に記載されている被覆層を有するベンゾフラノン系黒色顔料。
・Bk-CBF2は、国際公開第2018/038083号の段落[0186]~段落[0188]及び段落[0191]、実施例18に記載の合成方法で得られる被覆層を有するペリレン系黒色顔料。
 <各顔料分散液の調製例>
 顔料分散液として、調製例1~7で得られた各分散液の組成を、まとめて表5-1に示す。調製例1~7は、国際公開第2019/087985号の段落[0506]に記載の方法に基づき、各顔料分散液を公知の方法により調製した。また、調製例1~7で使用したポリアルキレンアミン系-ポリオキシアルキレンエーテル系分散剤(ADP)は、特開2020-070352号公報の段落[0138]~段落[0141]における、合成例2に記載の方法に基づき、公知の方法により合成した。
Figure JPOXMLDOC01-appb-T000043
 合成例33 シリカ粒子(SP-1)分散液の合成
 三口フラスコに、溶剤としてMEKを104.5g、ナトリウム元素を含有するシリカ粒子分散液としてMEK-ST-40を142.5g、重合禁止剤としてMOPを0.01g秤量して添加して混合し、10分間攪拌した後、液温を50℃に昇温した。次いで、表面修飾剤として、3.0gのKBM-503を50.0gのMEKに溶解させた溶液を10分間かけて滴下した。滴下終了後、50℃で2時間攪拌して表面修飾剤を脱水縮合させた。反応後、反応溶液を室温に冷却し、シリカ粒子(SP-1)分散液を得た。得られたシリカ粒子(SP-1)は、ラジカル重合性基としてメタクリロイル基を含む表面修飾基を有する。
 シリカ粒子として、合成例33で得られたシリカ粒子分散液及び市販のシリカ粒子分散液の組成を、まとめて表5-2に示す。なおシリカ粒子(SP-2)分散液は、市販のシリカ粒子分散液であるMEK-ST-40を使用した。シリカ粒子(SP-3)分散液は、市販のシリカ粒子分散液であるMEK-ST-Lを使用した。
Figure JPOXMLDOC01-appb-T000044
 <各実施例、参考例、及び比較例における評価方法>
 各実施例、参考例、及び比較例における評価方法を以下に示す。
 (1)樹脂の重量平均分子量
 GPC分析装置(HLC-8220;東ソー社製)を用い、流動層としてテトラヒドロフラン又はN-メチル-2-ピロリドンを用いて、「JIS K7252-3(2008)」に基づき、常温付近での方法によりポリスチレン換算の重量平均分子量を測定して求めた。
 (2)フェノール当量、ヒドロキシイミド当量、ヒドロキシアミド当量、シラノール当量、1,1-ビス(トリフルオロメチル)メチロール当量、メルカプト当量、及びカルボン酸当量;弱酸性基当量
 電位差自動滴定装置(AT-510;京都電子工業社製)を用い、滴定試薬として0.1mol/Lの水酸化ナトリウム/エタノール溶液、滴定溶剤としてキシレン/N,N-ジメチルホルムアミド=1/1(質量比)を用いて、「JIS K2501(2003)」に基づき、電位差滴定法により、フェノール価(単位はmgKOH/g)又はカルボン酸価(単位はmgKOH/g)を測定して求めた。測定したフェノール価又はカルボン酸価の値から、フェノール当量(単位はg/mol)又はカルボン酸当量(単位はg/mol)を算出した。
なおシラノール当量は、アセチル化試薬として無水酢酸、触媒としてイミダゾール及びN,N’-ジメチルアミノピリジン、溶剤としてN,N-ジメチルホルムアミドを用いて、シラノール基をアセチル化する反応において、同様に電位差滴定法によって測定したシラノール価の値から、シラノール当量(単位はg/mol)を算出した。
同様に、ヒドロキシイミド当量、ヒドロキシアミド当量、1,1-ビス(トリフルオロメチル)メチロール当量、及びメルカプト当量は、それぞれの酸性基(ヒドロキシイミド基、ヒドロキシアミド基、1,1-ビス(トリフルオロメチル)メチロール基、及びメルカプト基)をアセチル化した試料を調製し、同様に電位差滴定法によって測定したそれぞれの酸性基の酸価から、それぞれの酸性基の当量(単位はg/mol)を算出した。
なお弱酸性基当量は、フェノール価、ヒドロキシイミド価、ヒドロキシアミド価、シラノール価、1,1-ビス(トリフルオロメチル)メチロール価、及びメルカプト価の合計によって求めた弱酸性基価から、弱酸性基当量を算出した。
 組成物中に、フェノール性水酸基、シラノール基、又はカルボキシ基を有する複数の樹脂を含有する場合、遠心分離、分液抽出、及びカラムクロマトグラフィーなどの方法で分離可能な組成物中の成分を除去し、次いで、GPC分取によってそれぞれの樹脂を分離した。その後、上述したカルボン酸当量を測定する方法に基づき、カルボン酸当量(単位はg/mol)を算出した。同様に、上述したシラノール当量を測定する方法に基づき、シラノール当量(単位はg/mol)を算出した。
 樹脂中にフェノール性水酸基、シラノール基、及びカルボキシ基のうち、複数の酸性基を有する場合、まず、シリル化試薬として塩化tert-ブチルジメチルシリル、触媒としてイミダゾール、溶剤としてN,N-ジメチルホルムアミドを用いて、フェノール性水酸基及びシラノール基をシリルエーテル基によって保護した。次に、上述したカルボン酸当量を測定する方法に基づき、カルボン酸当量(単位はg/mol)を算出した。
別途、同様の方法でフェノール性水酸基及びシラノール基をシリルエーテル基によって保護した後、tert-ブチル化試薬として臭化tert-ブチル、溶媒としてN,N-ジメチルホルムアミドを用いて、カルボキシ基をtert-ブチルエステル基によって保護した。その後、脱シリル化試薬としてフッ化テトラブチルアンモニウム、溶媒としてN,N-ジメチルホルムアミドを用いて、フェノール性水酸基及びシラノール基を脱保護した。次いで、メトキシメチル化試薬としてクロロメチルメチルエーテル、触媒として水素化ナトリウム、溶剤として滴定溶剤としてN,N-ジメチルホルムアミドを用いて、フェノール性水酸基をメトキシメチルエーテル基によって保護した。その後、上述したシラノール当量を測定する方法に基づき、シラノール当量(単位はg/mol)を算出した。
別途、同様の方法でカルボキシ基をtert-ブチルエステル基によって保護し、さらにフェノール性水酸基をメトキシメチル基によって保護した。その後、シリル化試薬としてtert-ブチルジメチルシリルクロリド、触媒としてイミダゾール、溶剤としてN,N-ジメチルホルムアミドを用いて、シラノール基をシリルエーテル基によって保護した。次いで、脱メトキシメチル化試薬として1mol/L塩酸、溶媒としてメタノールを用いて、フェノール性水酸基を脱保護した。その後、上述したフェノール当量を測定する方法に基づき、フェノール当量(単位はg/mol)を算出した。
 (3)二重結合当量
 電位差自動滴定装置(AT-510;京都電子工業社製)を用い、ヨウ素供給源として一塩化ヨウ素溶液(三塩化ヨウ素=7.9g、ヨウ素=8.9g、酢酸=1,000mLの混合溶液)、未反応ヨウ素の捕捉水溶液として100g/Lのヨウ化カリウム水溶液、滴定試薬として0.1mol/Lのチオ硫酸ナトリウム水溶液を用いて、JIS K0070:1992「化学製品の酸価、けん化価、エステル価、よう素価、水酸基価、及び不けん化物の試験方法」の「第6項よう素価」に記載の方法に基づき、ウィイス法により、樹脂のヨウ素価を測定した。測定したヨウ素価(単位はgI/100g)の値から、二重結合当量(単位はg/mol)を算出した。
 (4)顔料分散液中の顔料の平均一次粒子径
 動的光散乱法粒度分布測定装置(SZ-100;堀場製作所社製)を用い、レーザー波長を532nm、希釈溶媒としてPGMEA、希釈倍率を250倍(重量比)、溶媒粘度を1.25、溶媒屈折率を1.40、測定温度を25℃、測定モードを散乱光、演算条件を多分散・ブロードとして、D50(メジアン径)を測定した。なお測定回数を2回として、平均値を顔料分散液中の顔料の平均一次粒子径とした。
 (5)硬化膜中の顔料の平均一次粒子径
 下記、実施例1記載の方法で、組成物の硬化膜を作製した。透過型電子顕微鏡を用いて硬化膜の断面を撮像及び解析し、顔料の一次粒子径を測定した。顔料の一次粒子30個を測定した平均値を、硬化膜中の顔料の平均一次粒子径として求めた。
 (6)基板の前処理
 ガラス上に、APC(銀/パラジウム/銅=98.07/0.87/1.06(質量比))をスパッタにより100nm成膜し、さらに、APC層の上層に、ITOをスパッタにより10nm成膜したガラス基板(ジオマテック社製;以下、「ITO/Ag基板」)は、卓上型光表面処理装置(PL16-110;セン特殊光源社製)を用いて、100秒間UV-O洗浄処理をして使用した。テンパックスガラス基板(AGCテクノグラス社製)は、前処理をせずに使用した。その他の基板は、ホットプレート(HP-1SA;アズワン社製)を用いて、130℃で2分間加熱して脱水ベーク処理をして使用した。
 (7)膜厚測定
 表面粗さ・輪郭形状測定機(SURFCOM1400D;東京精密社製)を用いて、測定倍率を10,000倍、測定長さを1.0mm、測定速度を0.30mm/sとして、膜厚を測定した。
 (8)感度
 下記、実施例1記載の方法で、組成物の現像後膜を作製した。FPD/LSI検査顕微鏡(OPTIPHOT-300;ニコン社製)を用いて、作製した現像後膜の解像パターンを観察した。感度の指標として、20μmのライン・アンド・スペースパターンにおいて、開口部に相当するスペースパターンを18μmの寸法幅にて形成できる露光量(i線照度計の値)を感度とした。下記のように判定し、感度が90mJ/cm以下となる、A+、A、B+、B、C+及びCを合格とし、感度が60mJ/cm以下となる、A+、A、B+、及びBを良好とし、感度40mJ/cm以下となる、A+及びAを優秀とした。
A+:感度が30mJ/cm以下
A:感度が30mJ/cmを超え、かつ40mJ/cm以下
B+:感度が40mJ/cmを超え、かつ50mJ/cm以下
B:感度が50mJ/cmを超え、かつ60mJ/cm以下
C+:感度が60mJ/cmを超え、かつ75mJ/cm以下
C:感度が75mJ/cmを超え、かつ90mJ/cm以下
D:感度が90mJ/cmを超え、かつ150mJ/cm以下
E:感度が150mJ/cmを超える。
 (9)マスクバイアス
 下記、実施例1記載の方法で、組成物の現像後膜を作製した。FPD/LSI検査顕微鏡(OPTIPHOT-300;ニコン社製)を用いて、作製した現像後膜の解像パターンを観察し、マスク寸法が20μmのライン・アンド・スペースパターンにおいて、開口部に相当するパターンの開口寸法(CDDEV)μmを測長した。なお、露光量としては、開口寸法(CDDEV)μmが20μm未満となり、かつプリベーク後の膜厚を(TPB)μmと現像後の膜厚(TDEV)μmにおいて、現像残膜率((TDEV)/(TPB)×100)が70%以上となる最小露光量とした。マスクバイアスの指標として、マスク寸法である20μmとの開口寸法差((CDDEV)-20)μmを算出した。下記のように判定し、開口寸法差が3.0μm以下となる、A+、A、B+、B、C+及びCを合格とし、開口寸法差が2.0μm以下となる、A+、A、B+及びBを良好とし、開口寸法差1.0μm以下となる、A+及びAを優秀とした。
A+:開口寸法差が0.5μm以下
A:開口寸法差が0.5μmを超え、かつ1.0μm以下
B+:開口寸法差が1.0μmを超え、かつ1.5μm以下
B:開口寸法差が1.5μmを超え、かつ2.0μm以下
C+:開口寸法差が2.0μmを超え、かつ2.5μm以下
C:開口寸法差が2.5μmを超え、かつ3.0μm以下
D:開口寸法差が3.0μmを超え、かつ4.0μm以下
E:開口寸法差が4.0μmを超える。
 (10)ハーフトーン特性
 下記、実施例1記載の方法で、ITO/Ag基板上に組成物のプリベーク膜を5μmの膜厚で成膜し、両面アライメント片面露光装置(マスクアライナー PEM-6M;ユニオン光学社製)を用いて、ハーフトーン特性評価用のハーフトーンフォトマスクを介して、露光量を変えて超高圧水銀灯のi線(波長365nm)、h線(波長405nm)、及びg線(波長436nm)でパターニング露光し、フォトリソ用小型現像装置(AD-1200;滝沢産業社製)を用いて現像して組成物の現像後膜を作製した。ハーフトーンフォトマスクは、透光部、遮光部、及び、透光部と遮光部の間に半透光部を有するフォトマスクを用いた。半透光部の透過率(%THT)がそれぞれ、透光部の透過率(%TFT)の20%、25%、30%、35%、40%、又は50%である箇所を有する。透光部と半透光部は隣接しており、半透光部と遮光部は隣接している。ハーフトーンフォトマスクの一例として、透光部41、遮光部42、及び半透光部43の配置、並びに、寸法の一例を、図4に示す。
 作製した現像後膜の段差形状を有する解像パターンについて、透光部から形成された厚膜部の現像後の膜厚(TFT)μmを測定した。ハーフトーン露光部である半透光部から形成された薄膜部は、透過率の異なる箇所の現像後の膜厚(THT)μmを測定し、現像後に残膜した薄膜部の最小膜厚(THT/min)μmを求めた。ハーフトーン特性の指標として、最大段差膜厚((TFT)-(THT/min))μmを算出した。下記のように判定し、最大段差膜厚が0.4μm以上となる、A+、A、B+、B、C+及びCを合格とし、最大段差膜厚が1.0μm以上となる、A+、A、B+及びBを良好とし、最大段差膜厚が2.0μm以上となる、A+及びAを優秀とした。
A+:最大段差膜厚が2.5μm以上
A:最大段差膜厚が2.0μm以上、かつ2.5μm未満
B+:最大段差膜厚が1.5μm以上、かつ2.0μm未満
B:最大段差膜厚が1.0μm以上、かつ1.5μm未満
C+:最大段差膜厚が0.7μm以上、かつ1.0μm未満
C:最大段差膜厚が0.4μm以上、かつ0.7μm未満
D:最大段差膜厚が0.1μm以上、かつ0.4μm未満
E:最大段差膜厚が0.1μm未満、又は現像後に残膜せず測定不能。
 (11)遮光性(光学濃度値(以下、「OD値」))
 下記、実施例1記載の方法で、テンパックスガラス基板上に組成物の硬化膜を作製した。透過濃度計(X-Rite 361T(V);X-Rite社製)を用いて、作製した硬化膜の面内3箇所における入射光強度(I)及び透過光強度(I)をそれぞれ測定した。遮光性の指標として、膜厚1μm当たりのOD値を下記式により算出し、面内3箇所におけるOD値の平均値を算出した。
OD値=log10(I/I)。
 (12)発光素子の発光特性(電流密度-電圧特性、及び信頼性)
 <有機ELディスプレイの作製方法>
 図5に、使用した基板の概略図を示す。まず、38×46mmの無アルカリガラス基板47に、非透明導電性金属層としてAPC(銀/パラジウム/銅=98.07/0.87/1.06(質量比))をスパッタにより100nm成膜し、エッチングによりパターン加工してAPC層を形成した。さらに、APC層の上層に透明導電性酸化膜層としてアモルファス性のITOをスパッタにより10nm成膜し、エッチングにより、第1電極48として反射電極を形成した。また、第2電極を取り出すため補助電極49も同時に形成した(図5(工程1))。得られた基板を“セミコクリーン”(登録商標)56(フルウチ化学社製)で10分間超音波洗浄し、超純水で洗浄した。次に、この基板上に、組成物を実施例1に記載された方法で塗布及びプリベークし、所定のパターンを有するフォトマスクを介してパターンニング露光、現像及びリンスした後、加熱し熱硬化させた。以上の方法で、幅70μm及び長さ260μmの開口部が、幅方向にピッチ155μm及び長さ方向にピッチ465μmで配置され、それぞれの開口部が第1電極を露出せしめる形状の画素分割層50を、基板有効エリアに限定して形成した(図5(工程2))。なお、この開口部が、最終的に有機ELディスプレイの発光画素となる。また、基板有効エリアは、16mm四方であり、画素分割層50の厚さは、約1.0μmで形成した。
 次に、第1電極48、補助電極49及び画素分割層50を形成した基板を用いて、有機ELディスプレイの作製を行った。前処理として、窒素プラズマ処理を行った後、真空蒸着法により、発光層を含む有機EL層51を形成した(図5(工程3))。なお、蒸着時の真空度は、1×10-3Pa以下であり、蒸着中は蒸着源に対して基板を回転させた。まず、正孔注入層として、化合物(HT-1)を10nm、正孔輸送層として、化合物(HT-2)を50nm蒸着した。次に、発光層に、ホスト材料として、化合物(GH-1)とドーパント材料として、化合物(GD-1)を、ドープ濃度が10%になるように40nmの厚さに蒸着した。その後、電子輸送材料として、化合物(ET-1)と化合物(LiQ)を、体積比1:1で40nmの厚さに積層した。なお、有機EL層で用いた化合物(化合物(HT-1)、化合物(HT-2)、化合物(GH-1)、化合物(GD-1)、化合物(ET-1)、及び化合物(LiQ))は、国際公開第2017/057281号の段落[0599]~段落[0600]に記載のものと同一化合物を用いた。
 次に、化合物(LiQ)を2nm蒸着した後、MgAg(マグネシウム/銀=10/1(体積比))を10nm蒸着して第2電極52とし、透明電極を形成した(図5(工程4))。その後、低湿窒素雰囲気下、エポキシ樹脂系接着剤を用いて、キャップ状ガラス板を接着することで封止をし、1枚の基板上に5mm四方のトップエミッション型有機ELディスプレイを4つ作製した。なお、ここでいう膜厚は、水晶発振式膜厚モニター表示値である。
 <電流密度-電圧特性評価>
 上述した方法で作製した有機ELディスプレイを、低電圧側から順次電圧値を変え、電流密度が30mA/cmとなるまで直流駆動にて発光させた。低電圧側から順次電圧値を変えた場合における電圧値及び電流密度をプロットし、電流密度-電圧特性の指標として、電流密度が10mA/cmとなる駆動電圧を求めた。下記のように判定し、駆動電圧が4.5V以下となる、A+、A、B+、B、C+及びCを合格とし、駆動電圧が4.0V以下となる、A+、A、B+及びBを良好とし、駆動電圧が3.5V以下となる、A+及びAを優秀とした。
A+:駆動電圧が3.2V以下
A:駆動電圧が3.2Vを超え、かつ3.5V以下
B+:駆動電圧が3.5Vを超え、かつ3.7V以下
B:駆動電圧が3.7Vを超え、かつ4.0V以下
C+:駆動電圧が4.0Vを超え、かつ4.2V以下
C:駆動電圧が4.2Vを超え、かつ4.5V以下
D:駆動電圧が4.5Vを超え、かつ5.5V以下
E:駆動電圧が5.5Vを超える、又は測定不能。
 <信頼性評価>
 上述した方法で作製した有機ELディスプレイを、10mA/cmで直流駆動にて発光させ、非発光領域や輝度ムラなどの発光不良がないかを観察した。また、耐久性試験として、80℃で500時間保持した。耐久性試験後、有機ELディスプレイを10mA/cmで直流駆動にて発光させて発光特性に変化がないかを観察し、耐久性試験前の発光領域面積を100%とした場合における、耐久性試験後の発光領域面積を測定した。下記のように判定し、発光領域面積が80%以上となる、A+、A、B+、B、C+及びCを合格とし、発光領域面積が90%以上となる、A+、A、B+及びBを良好とし、発光領域面積が97%以上となる、A+及びAを優秀とした。
A+:発光領域面積が100%
A:発光領域面積が97%以上、かつ100%未満
B+:発光領域面積が94%以上、かつ97%未満
B:発光領域面積が90%以上、かつ94%未満
C+:発光領域面積が85%以上、かつ90%未満
C:発光領域面積が80%以上、かつ85%未満
D:発光領域面積が60%以上、かつ80%未満
E:発光領域面積が60%未満。
 (13)機械物性(破断点伸度)
 下記、実施例1記載の方法で、6インチ径のSiO/Siウェハ上に組成物の硬化膜を膜厚約5μmで作製した。希フッ化水素酸を用いて、SiO/Siウェハ上から硬化膜を剥離した。剥離した硬化膜を幅1.5cm×長さ9.0cmの短冊状にカットした。テンシロン(RTM-100;オリエンテック社製)を用いて、室温23.0℃、湿度45.0%RHの条件下、引っ張り速度50mm/分で引っ張り試験を行い、破断点伸度を測定した。なお1検体につき10枚の短冊について測定した。機械物性の指標として、得られた結果から上位5点の平均値を算出した。下記のように判定し、破断点伸度が5.0%以上となる、A+、A、B+、B、C+、及びCを合格とし、破断点伸度が10%以上となる、A+、A、B+、及びBを良好とし、破断点伸度が20%以上となる、A+及びAを優秀とした。
A+:破断点伸度が30%以上
A:破断点伸度が20%以上、かつ30%未満
B+:破断点伸度が15%以上、かつ20%未満
B:破断点伸度が10%以上、かつ15%未満
C+:破断点伸度が7.5%以上、かつ10%未満
C:破断点伸度が5.0%以上、かつ7.5%未満
D:破断点伸度が1.0%以上、かつ5.0%未満
E:破断点伸度が1.0%未満又は測定不能。
 (14)マイグレーション耐性(絶縁信頼性)
 下記、実施例1記載の方法で、マイグレーション評価用基板(WALTS-TEG ME0102JY;ウォルツ社製)上に組成物の硬化膜を膜厚約1.5μmで作製した。次いで、櫛歯の銅配線のライン・アンド・スペースパターンにおいて、ライン15μmとスペース10μmの測定用端子の箇所に導線をハンダ付けして評価用素子を作製した。作製した評価用素子を、絶縁劣化特性評価システム(ETAC SIR13;楠本化成社製)を用いて、高温高湿下での絶縁信頼性を評価した。試験条件を温度85℃、湿度85%RHに設定した高温高湿槽内に評価用素子を入れ、5.0Vの電圧を印加し、抵抗値の経時変化を5分間隔で測定した。抵抗値が1.0×10Ω以下に達した場合に絶縁不良と判断し、マイグレーション耐性の指標として、その時点での試験時間を測定した。下記のように判定し、試験時間が200時間以上となる、A+、A、B+、B、C+、及びCを合格とし、試験時間が400時間以上となる、A+、A、B+、及びBを良好とし、試験時間が800時間以上となる、A+及びAを優秀とした。
A+:試験時間が1,000時間以上
A:試験時間が800時間以上、かつ1,000時間未満
B+:試験時間が600時間以上、かつ800時間未満
B:試験時間が400時間以上、かつ600時間未満
C+:試験時間が300時間以上、かつ400時間未満
C:試験時間が200時間以上、かつ300時間未満
D:試験時間が50時間以上、かつ200時間未満
E:試験時間が50時間未満又は測定不能。
 <各実施例、参考例、及び比較例で使用した化合物>
 各実施例、参考例、及び比較例で使用した(F1)化合物、(FB1)化合物、(FC1)化合物、及び(FT)化合物の一覧と物性値を、まとめて表5-3~表5-4に示す。(FB1)化合物である(fb-1)の組成比についても、表5-4に示す。
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
 各実施例、参考例、及び比較例における略語に対応する名称を、まとめて表6に示す。また各実施例、参考例、及び比較例で使用した、塩素元素、臭素元素、硫黄元素、又はリン元素を含む化合物(以下、「特定の元素を含む化合物」);特定の含窒素化合物;特定の金属元素を含む化合物、それぞれに対応する化合物も、まとめて表6に示す。
Figure JPOXMLDOC01-appb-T000047
 各実施例、参考例、及び比較例で使用した化合物として、(b-1)~(b-9)、(bx-1)~(bx-9)、(c-1)~(c-6)、(f-1)~(f-2)、(ft-1)、(g-1)~(g-10)、(h-1)、(j-1)、(k-1)、及び(NQD-1)の構造を以下に示す。
なお(b-1)、(b-3)、(b-4)、及び(b-5)は上記の(B-1)化合物に相当する。(b-2)、(b-6)、(b-7)、及び(b-8)は上記の(B-2)化合物に相当する。(b-9)は上記の(B-3)化合物に相当する。
(h-1)は、溶解促進剤であり、疎水性構造(炭素数6のフェニル基を有する炭素数2のエチレン基が2つ結合した、炭素数6のフェニル基)、親水性構造(12個の炭素数2のオキシエチレン基)、及び親水性基(オキシエチレン基に結合するヒドロキシ基)を有する。
(j-1)は、増感剤のフルオレノン化合物である。
(k-1)は、密着改良剤であるシランカップリング剤のオルガノシラン化合物であり、エポキシ基を有する。
 なお(bx-1)及び(bx-2)は上記の(B-4)化合物に相当し、(bx-3)及び(bx-4)は上記の(B-5)化合物に相当する。(bx-5)は上記の(B-6)化合物に相当し、上記の(I-b6)構造における最小原子数は4個である。(bx-6)、(bx-7)、(bx-8)、及び(bx-9)は上記の(B-7)化合物に相当し、上記の(I-b7)構造における最小原子数は、(bx-6)が13個、(bx-7)が23個、(bx-8)が31個、(bx-9)が17個である。
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
 <実施例1>
 表7-1に記載の組成にて、組成物1を調製した。まず、(D)着色剤を含まない調合液を調製した後、顔料分散液と調合液とを混合して組成物を調製した。溶剤として、PGMEA/EDM/MBA=70/20/10(質量比)を用いて、組成物の固形分濃度が15質量%となるように調製した。なお、得られた組成物の溶液は、0.45μmφのフィルターで濾過して使用した。
 <組成物の硬化膜の作製>
 調製した組成物1を、ITO/Ag基板上にスピンコーター(MS-A100;ミカサ社製)を用いて任意の回転数でスピンコーティングにより塗布した後、ブザーホットプレート(HPD-3000BZN;アズワン社製)を用いて120℃で120秒間プリベークし、膜厚約1.8μmのプリベーク膜を作製した。作製したプリベーク膜を、フォトリソ用小型現像装置(AD-1200;滝沢産業社製)を用いて、2.38質量%TMAH水溶液又はシクロペンタノンでスプレー現像し、プリベーク膜(未露光部)が完全に溶解する時間(Breaking Point;以下、「BP」)を測定した。
 上述の方法と同様にプリベーク膜を作製し、作製したプリベーク膜を、両面アライメント片面露光装置(マスクアライナー PEM-6M;ユニオン光学社製)を用いて、感度測定用のグレースケールマスク(MDRM MODEL 4000-5-FS;Opto-Line International社製)を介して、超高圧水銀灯のi線(波長365nm)、h線(波長405nm)、及びg線(波長436nm)でパターニング露光した。露光量は、20μmのライン・アンド・スペースパターンにおいて、開口部に相当するスペースパターンを18μmの寸法幅にて形成できる露光量(i線照度計の値)とした。露光後、フォトリソ用小型現像装置(AD-1200;滝沢産業社製)を用いて、2.38質量%TMAH水溶液で現像し、水で30秒間リンスして組成物1の現像後膜を作製した。現像時間は、BP+20秒とした。なお2.38質量%TMAH水溶液で現像後にパターン形成できなかった場合は、上記の方法と同様に露光した膜を作製し、露光後、フォトリソ用小型現像装置(AD-1200;滝沢産業社製)を用いて、シクロペンタノンで現像し、水で30秒間リンスして組成物1の現像後膜を作製した。現像時間は、BP+20秒とした。現像後、高温イナートガスオーブン(INH-9CD-S;光洋サーモシステム社製)を用いて、250℃で熱硬化させ、膜厚約1.2μmの組成物1の硬化膜を作製した。熱硬化条件は、酸素濃度20質量ppm以下の窒素雰囲気下、昇温速度3.5℃/minで250℃まで昇温し、250℃で60分間加熱処理を行った後、50℃まで冷却した。
 核磁気共鳴分光分析、赤外分光分析、及び飛行時間型二次イオン質量分析などの方法で硬化膜を分析し、硬化膜中に含まれる樹脂の構造単位及び化合物の構造を分析した。上述の方法で組成物1を硬化した硬化膜は、以下の樹脂及び化合物を含有することを確認した。すなわち、組成物1を硬化した硬化膜は、組成物1が含有する各構成成分に由来する構造を有する化合物を含有する。
(A1)樹脂に由来する構造:一般式(1)で表される構造単位を有する樹脂。
(A2)樹脂に由来する構造:一般式(61)で表される構造単位を有する樹脂。
(A3)樹脂に由来する構造:一般式(36)で表される構造単位を有する樹脂。
(B1)化合物に由来する構造:フルオレン構造を有する化合物。
(C1-1)化合物に由来する構造:ベンゾカルバゾール構造を有する化合物。
(D1a)黒色顔料:(D1a-1a)ベンゾフラノン系黒色顔料、かつ一般式(161)で表される構造を有する顔料。
(F1)化合物に由来する構造:ホスホン酸エステル構造を有する化合物。
 <実施例2~172、及び比較例1~16>
 実施例1と同様に、組成物2~188を表7-1~表18に記載の組成にて調製した。表7-1~表18において括弧内の数値は各成分の固形分の質量部を示す。なお組成物133~188は、溶剤として、PGMEA/EL/GBL=50/40/10(質量比)を用いて、組成物の固形分濃度が20質量%となるように調製した。また特定の金属元素を含む化合物の添加量は、組成物の全固形分に占める特定の金属元素の含有量が、それぞれ表17に記載の組成となるように調製した。特定の含窒素化合物の添加量は、組成物の全固形分に占める含有量が、それぞれ表17に記載の組成となるように調製した。
 得られた各組成物を用いて、実施例1と同様に、基板上に組成物を成膜して感光特性、硬化膜特性、及び発光特性の評価を行った。これらの評価結果と、各組成物の弱酸性基当量及び二重結合当量とを、まとめて表7-1~表18に示す。なお、比較しやすくするため、表7-2には実施例1及び実施例2の組成及び評価結果、表8及び表9には実施例1及び実施例41の組成及び評価結果、表10、表11、表12-1、及び表13には実施例1の組成及び評価結果、並びに、表14には実施例1及び実施例41の組成及び評価結果をそれぞれ記載した。また表16及び表17には、実施例125の組成及び評価結果をそれぞれ記載した。
 表7-1~表7-3において、(A)アルカリ可溶性樹脂として(A1)樹脂、(A2)樹脂、及び(A3)樹脂からなる群より選ばれる一種類以上を変えた組成物にて、各種特性の評価をした。
表8において、(A)アルカリ可溶性樹脂及び(B)化合物の含有比率や、(B)化合物における併用比率を変えた組成物にて、弱酸性基当量及び二重結合当量を変化させて各種特性の評価をした。
表9において、(B)化合物、(C)感光剤、及び(C1-1)化合物からなる群より選ばれる一種類以上を変えた組成物にて、弱酸性基当量及び二重結合当量を変化させて各種特性の評価をした。
表10において、(F)化合物、(H)化合物、及び(G)架橋剤からなる群より選ばれる一種類以上を変えた組成物にて、各種特性の評価をした。
表11において、(D1a)黒色顔料の種類を変えた組成物にて、各種特性の評価をした。なお表12-1の実施例99は、(D)着色剤及び(E)分散剤を含有しない組成物にて、各種特性の評価をした。また表12-1の実施例100及び実施例101はポジ型の感光性を有し、(D)着色剤及び(E)分散剤の含有有無を変えた組成物にて、各種特性の評価をした。
表12-1は、実施例1、表9の実施例65、67、及び表10の実施例80((C1-1)化合物、(C)感光剤、又は(F)化合物を変えた組成)、並びに、表12-1の実施例97~101((D1a)黒色顔料の種類や含有有無を変えた組成、又はポジ型の感光性を有する組成)について、塩素元素、臭素元素、硫黄元素、又はリン元素の含有量を記載の上、発光特性に関して、信頼性及び電流密度-電圧特性発光特性の評価結果をまとめた。
表12-2において、塩素元素、臭素元素、硫黄元素、又はリン元素を含む添加剤を変えた組成物にて、各種特性の評価をした。なお表12-2は、実施例102~121について、塩素元素、臭素元素、硫黄元素、又はリン元素の含有量を記載の上、発光特性に関して、信頼性及び電流密度-電圧特性発光特性の評価結果をまとめた。
表13において、(I)無機粒子を変えた組成物にて、各種特性の評価をした。
表14において、比較例1~8は、弱酸性基当量及び/又は二重結合当量が特定の範囲でない組成物にて、各種特性の評価をした。
 表15において、(A)アルカリ可溶性樹脂として(A1)樹脂、(A2)樹脂、又は(A3)樹脂を変えた組成物にて、感度、機械物性、及びマイグレーション耐性の評価をした。
表16において、(B4)化合物~(B7)化合物、(G)架橋剤、又は(I)無機粒子を変えた組成にて、感度、機械物性、及びマイグレーション耐性の評価をした。
表17において、特定の含窒素化合物の含有量又は特定の金属元素の含有量を変えた組成物にて、感度、機械物性、及びマイグレーション耐性の評価をした。
表18において、比較例9~16は、弱酸性基当量及び/又は二重結合当量が特定の範囲でない組成物にて、感度、機械物性、及びマイグレーション耐性の評価をした。
 なおポジ型の感光性を有する組成物を用いた場合の現像時間は60秒、90秒、又は120秒とし、感度測定用のグレースケールマスク(MDRM MODEL 4000-5-FS;Opto-Line International社製)を用いて、20μmのライン・アンド・スペースパターンにおいて、開口部に相当するスペースパターンを18μmの寸法幅にて形成できる最適露光量(i線照度計の値)を求めた。またポジ型の感光性を有する組成物を用いた場合、熱硬化条件は、酸素濃度20質量ppm以下の窒素雰囲気下、昇温速度3.5℃/minで200℃まで昇温し、200℃で60分間加熱処理を行った後、50℃まで冷却した。
 <組成物中の塩素元素、臭素元素、硫黄元素、及びリン元素の含有量>
 組成物中の塩素元素、臭素元素、硫黄元素、及びリン元素の含有量は、下記の測定条件で燃焼イオンクロマトグラフィーによって測定した。組成物を分析装置の燃焼管内で燃焼・分解させ、発生したガスを吸収液に吸収後、吸収液の一部をイオンクロマトグラフィーにより分析した。元素含有量の記載が無いものは、当該元素が検出されなかったことを示す。
<燃焼・吸収条件>
システム:AQF-2100H、GA-210(三菱化学社製)
電気炉温度:Inlet 900℃, Outlet 1000℃
ガス:Ar/O 200mL/min, O 400mL/min
吸収液:H 0.1%
吸収液量:5mL
<イオンクロマトグラフィー・アニオン分析条件>
システム:ICS1600(DIONEX社製)
移動相:2.7mmol/L NaCO, 0.3mmol/L NaHCO
流速:1.50mL/min
検出器:電気伝導度検出器
注入量:100μL。
 <組成物中の特定の含窒素化合物の含有量>
 組成物中の特定の含窒素化合物の含有量は、標準物質による検量線を用いたガスクロマトグラフィー質量分析及び液体クロマトグラフィー質量分析によって測定した。なお組成物の全固形分に占める含有量は、得られた測定値と下記式から算出した。
(組成物の全固形分に占める含有量)=(組成物中の含有量)×100/(組成物の固形分濃度[質量%])。
 <組成物中の特定の金属元素の含有量>
 組成物中の特定の金属元素の含有量は、標準物質による検量線を用いた誘導結合プラズマ質量分析及び誘導結合プラズマ発光分光分析によって測定した。なお組成物の全固形分に占める含有量は、得られた測定値と下記式から算出した。
(組成物の全固形分に占める含有量)=(組成物中の含有量)×100/(組成物の固形分濃度[質量%])。
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
 1 ガラス基板
 2 TFT
 3 TFT平坦化用の硬化膜
 4 反射電極
 5a プリベーク膜
 5b 硬化パターン
 6 マスク
 7 活性化学線
 8,51 有機EL層
 9 透明電極
 10 平坦化用の硬化膜
 11 カバーガラス
 21 Siウェハ
 22 Alパッド
 23 パッシベーション層
 24 絶縁層
 25 金属層
 26 金属配線
 27 絶縁層
 28 バリア金属層
 29 スクライブライン
 30 ハンダバンプ
 34 厚膜部
 35a,35b,35c 薄膜部
 36a,36b,36c,36d,36e 硬化パターンの断面における傾斜辺
 37 下地の基板の水平辺
 41 透光部
 42 遮光部
 43 半透光部
 47 無アルカリガラス基板
 48 第1電極
 49 補助電極
 50 画素分割層
 52 第2電極
 

Claims (20)

  1.  以下の条件(α)又は条件(β)を満たす、感光性組成物であって、
     全固形分における二重結合当量が、600~6,000g/molである、感光性組成物。
    条件(α):下記(I)の化合物及び/又は下記(II)の化合物を含有する
    (I)以下の(WA)弱酸性基及びラジカル重合性基を有する化合物
    (II)以下の(WA)弱酸性基を有する化合物及びラジカル重合性基を有する化合物
    条件(β):(A)アルカリ可溶性樹脂、(B)ラジカル重合性化合物、及び(C)感光剤を含有する
    (WA)弱酸性基:フェノール性水酸基、ヒドロキシイミド基、ヒドロキシアミド基、シラノール基、1,1-ビス(トリフルオロメチル)メチロール基、及びメルカプト基からなる群より選ばれる一種類以上の基
  2.  全固形分における弱酸性基当量が、400~6,000g/molである、請求項1に記載の感光性組成物。
  3.  さらに、一般式(20)で表される環状アミド化合物、一般式(21)で表されるアミド化合物、一般式(22)で表される環状ウレア化合物、及び一般式(23)で表されるウレア化合物からなる群より選ばれる一種類以上を含有し、下記(4)の条件を満たす、請求項1に記載の感光性組成物。
    (4)該感光性組成物の全固形分に占める一般式(20)で表される環状アミド化合物、一般式(21)で表されるアミド化合物、一般式(22)で表される環状ウレア化合物、及び一般式(23)で表されるウレア化合物の含有量の合計が0.010~5.0質量%
    Figure JPOXMLDOC01-appb-C000001
    (一般式(20)~(23)において、R46~R54は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、炭素数2~6のアルケニル基、又は炭素数1~6のヒドロキシアルキル基を表す。R130は、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のヒドロキシアルキル基、炭素数1~6のヒドロキシアルコキシ基、ヒドロキシ基、アミノ基、炭素数1~6のモノアルキルアミノ基、又は炭素数2~12のジアルキルアミノ基を表す。R131~R138は、それぞれ独立して、炭素数1~6のアルキル基を表す。a、b、及びcは、それぞれ独立して、0~6の整数を表す。dは1又は2を表す。e、f、g、h、及びiは、それぞれ独立して、0~2の整数を表す。bが0の場合、dは1である。)
  4.  さらに、ナトリウム元素を含む成分、カリウム元素を含む成分、マグネシウム元素を含む成分、カルシウム元素を含む成分、鉄元素を含む成分、銅元素を含む成分、及びクロム元素を含む成分からなる群より選ばれる一種類以上を含有し、下記(5)の条件を満たす、請求項3に記載の感光性組成物。
    (5)該感光性組成物の全固形分に占めるナトリウム元素、カリウム元素、マグネシウム元素、カルシウム元素、鉄元素、銅元素、及びクロム元素の含有量の合計が0.010~500質量ppm
  5.  (A)アルカリ可溶性樹脂を含み、
     該(A)アルカリ可溶性樹脂が、前記(WA)弱酸性基を有し、
     全固形分におけるフェノール当量が、400~6,000g/molであって、
     前記(A)アルカリ可溶性樹脂が、フェノール性水酸基を有する、請求項1~4のいずれかに記載の感光性組成物。
  6.  前記(A)アルカリ可溶性樹脂が、以下の(A3-1)樹脂、(A3-2)樹脂、(A3-3)樹脂、及び(A3-4)樹脂からなる群より選ばれる一種類以上を含有する、請求項5に記載の感光性組成物。
    (A3-1)樹脂:フェノール樹脂
    (A3-2)樹脂:ポリヒドロキシスチレン
    (A3-3)樹脂:フェノール基含有エポキシ樹脂
    (A3-4)樹脂:フェノール基含有アクリル樹脂
  7.  前記(A3-1)樹脂、(A3-2)樹脂、(A3-3)樹脂、及び(A3-4)樹脂が、以下の(3x)構造単位、(3y)構造単位、及び(3z)構造単位からなる群より選ばれる一種類以上を有し、
     該(3y)構造単位における芳香族基が、フェノール性水酸基が結合する芳香環とは別の芳香族基であって、
     該(3z)構造単位における第二の芳香族基が、フェノール性水酸基が結合する芳香環を除く芳香族基である、請求項6に記載の感光性組成物。
    (3x)構造単位:フェノール性水酸基を少なくとも2つ含む構造単位
    (3y)構造単位:フェノール性水酸基、及び芳香族基を含む構造単位
    (3z)構造単位:フェノール性水酸基を含む構造単位、及び第二の芳香族基を含む構造単位
  8.  (A)アルカリ可溶性樹脂、(B)ラジカル重合性化合物、及び(C)感光剤を含み、
     該(A)アルカリ可溶性樹脂が、ラジカル重合性基を有する樹脂及びラジカル重合性基を有しない樹脂を含有し、
     該(C)感光剤が、(C1)光重合開始剤を含有する、請求項2~4のいずれかに記載の感光性組成物。
  9.  全固形分における弱酸性基当量が、400~1,500g/molであって、
     前記二重結合当量が、750~6,000g/molである、請求項1~4のいずれかに記載の感光性組成物。
  10.  さらに、(I)無機粒子を含有し、
     該(I)無機粒子が、(I1)シリカ粒子を含有する、請求項1~4のいずれかに記載の感光性組成物。
  11.  さらに、ハロゲン元素を含む成分、硫黄元素を含む成分、及びリン元素を含む成分からなる群より選ばれる一種類以上を含有し、下記(1)~(3)の条件を1つ以上満たす、請求項1~4のいずれかに記載の感光性組成物。
    (1)該感光性組成物中に占めるハロゲン元素の含有量が0.01~100質量ppm
    (2)該感光性組成物中に占める硫黄元素の含有量が0.01~100質量ppm
    (3)該感光性組成物中に占めるリン元素の含有量が0.01~100質量ppm
  12.  (A)アルカリ可溶性樹脂を含み、
     該(A)アルカリ可溶性樹脂が、以下の(A1)樹脂、(A2)樹脂、及び(A3)樹脂からなる群より選ばれる一種類以上を含有する、請求項1~4のいずれかに記載の感光性組成物。
    (A1)樹脂:前記(WA)弱酸性基を有し、さらにイミド構造、アミド構造、オキサゾール構造、及びシロキサン構造からなる群より選ばれる一種類以上を含む構造単位を有し、かつラジカル重合性基を有しない樹脂
    (A2)樹脂:ラジカル重合性基を有する樹脂
    (A3)樹脂:フェノール性水酸基を有する樹脂
  13.  前記(A)アルカリ可溶性樹脂が、前記(A1)樹脂及び/又は(A3)樹脂を含有し、さらに前記(A2)樹脂を含有する、請求項12に記載の感光性組成物。
    (A2)樹脂:ラジカル重合性基を有する樹脂
  14.  さらに、(D1a-1)有機黒色顔料及び/又は(D1a-3)二色以上の着色顔料混合物を含有し、
     該(D1a-1)有機黒色顔料が、(D1a-1a)ベンゾフラノン系黒色顔料、(D1a-1b)ペリレン系黒色顔料、及び(D1a-1c)アゾ系黒色顔料からなる群より選ばれる一種類以上を含み、
     該(D1a-3)二色以上の着色顔料混合物が、赤、橙、黄、緑、青及び紫色の顔料からなる群より選ばれる二色以上の顔料を含む、請求項1~4のいずれかに記載の感光性組成物。
  15.  (B)ラジカル重合性化合物を含み、
     さらに、以下の条件(γ)、条件(δ)、及び条件(ε)のうち少なくとも1つを満たす、請求項1~4のいずれかに記載の感光性組成物。
    条件(γ):該(B)ラジカル重合性化合物が、以下の(B4)第4重合性化合物及び(B5)第5重合性化合物を含有する
    条件(δ):該(B)ラジカル重合性化合物が、以下の(B6)第6重合性化合物及び(B7)第7重合性化合物を含有する
    条件(ε):該(B)ラジカル重合性化合物が、以下の(B4)第4重合性化合物又は(B5)第5重合性化合物を含有し、さらに、以下の(B6)第6重合性化合物又は(B7)第7重合性化合物を含有する
    (B4)第4重合性化合物:下記(I-b4)構造を有し、さらに少なくとも2つのラジカル重合性基を有する化合物
    (I-b4)構造:脂環式構造を含む構造及び/又はヘテロ脂環式構造を含む構造
    (B5)第5重合性化合物:下記(I-b5)構造及び(II-b5)構造を有し、さらに少なくとも2つのラジカル重合性基を有する化合物
    (I-b5)構造:芳香族構造を含む構造
    (II-b5)構造:脂肪族構造を含む構造
    (B6)第6重合性化合物:少なくとも2つの(メタ)アクリロイル基を有し、さらに下記(I-b6)構造を有する化合物
    (I-b6)構造:少なくとも2つの(メタ)アクリロイル基間を最小原子数4~10個で連結し、かつ、脂肪族構造を含む構造
    (B7)第7重合性化合物:少なくとも2つの(メタ)アクリロイル基を有し、さらに下記(I-b7)構造を有する化合物
    (I-b7)構造:少なくとも2つの(メタ)アクリロイル基間を最小原子数11~45個で連結し、かつ、脂肪族構造を含む構造
  16.  請求項1~4のいずれかに記載の感光性組成物を硬化した硬化物。
  17.  請求項16に記載の硬化物を具備する表示装置。
  18.  請求項16に記載の硬化物を具備する電子部品。
  19.  (1)基板上に、請求項1~4のいずれかに記載の感光性組成物の塗膜を成膜する工程、
     (2)前記感光性組成物の塗膜にフォトマスクを介して活性化学線を照射する工程、
     (3)アルカリ溶液を用いて現像し、前記感光性組成物のパターンを形成する工程、及び、
     (4)前記パターンを加熱し、前記感光性組成物の硬化パターンを得る工程、を有する、硬化物の製造方法であって、
     該フォトマスクが、透光部及び遮光部を含み、該透光部と該遮光部の間に透過率が該透光部の値より低く、かつ透過率が該遮光部の値より高い、半透光部を有するハーフトーンフォトマスクである、硬化物の製造方法。
  20.  基板、第1電極、第2電極、及び画素分割層を少なくとも有し、
     さらに、発光層を含む有機EL層及び/又は発光層を含む光取り出し層を有する表示装置であって、
     該画素分割層は、該第1電極上の一部と重なるように形成され、
     該発光層を含む有機EL層及び/又は該発光層を含む光取り出し層は、該第1電極上、かつ該第1電極及び該第2電極の間に形成され、
     該画素分割層が(D-DL)着色剤を含み、該画素分割層の膜厚1μm当たりの可視光線の波長における光学濃度が0.5~5.0であって、
     該画素分割層が、以下の(WA)弱酸性基を有する樹脂を含有し、
     該(WA)弱酸性基を有する樹脂が、以下の(XA3-1)樹脂、(XA3-2)樹脂、(XA3-3)樹脂、及び(XA3-4)樹脂からなる群より選ばれる一種類以上を含み、
     下記(1x)及び/又は(2x)の条件を満たす、表示装置。
    (WA)弱酸性基:フェノール性水酸基、ヒドロキシイミド基、ヒドロキシアミド基、シラノール基、1,1-ビス(トリフルオロメチル)メチロール基、及びメルカプト基からなる群より選ばれる一種類以上の基
    (XA3-1)樹脂:フェノール樹脂
    (XA3-2)樹脂:ポリヒドロキシスチレン
    (XA3-3)樹脂:フェノール基含有エポキシ樹脂
    (XA3-4)樹脂:フェノール基含有アクリル樹脂
    (1x)画素分割層の段差形状における薄膜部の表面における表面粗さの最大値を(RaHT/max)とし、かつ、画素分割層の段差形状における厚膜部の表面における表面粗さの最大値を(RaFT/max)とするとき、(RaHT/max)と(RaFT/max)との差|Δ(RaHT/max-RaFT/max)|が1.0~50.0nm
    (2x)画素分割層の表面における表面粗さの最大値を(RaDL/max)とし、かつ、画素分割層上のスペーサ層の表面における表面粗さの最大値を(RaSP/max)とするとき、(RaDL/max)と(RaSP/max)との差|Δ(RaDL/max-RaSP/max)|が1.0~50.0nm
PCT/JP2022/035169 2021-09-29 2022-09-21 感光性組成物、硬化物、表示装置、電子部品、及び硬化物の製造方法 WO2023054116A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280063717.3A CN117999515A (zh) 2021-09-29 2022-09-21 感光性组合物、固化物、显示装置、电子部件及固化物的制造方法
JP2022558070A JPWO2023054116A1 (ja) 2021-09-29 2022-09-21
EP22875983.3A EP4411478A1 (en) 2021-09-29 2022-09-21 Photosensitive composition, cured product, display device, electronic component, and method for producing cured product
KR1020247002530A KR20240063855A (ko) 2021-09-29 2022-09-21 감광성 조성물, 경화물, 표시 장치, 전자부품, 및 경화물의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021158861 2021-09-29
JP2021-158861 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023054116A1 true WO2023054116A1 (ja) 2023-04-06

Family

ID=85780704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035169 WO2023054116A1 (ja) 2021-09-29 2022-09-21 感光性組成物、硬化物、表示装置、電子部品、及び硬化物の製造方法

Country Status (6)

Country Link
EP (1) EP4411478A1 (ja)
JP (1) JPWO2023054116A1 (ja)
KR (1) KR20240063855A (ja)
CN (1) CN117999515A (ja)
TW (1) TW202330680A (ja)
WO (1) WO2023054116A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170601A (ja) 1987-12-26 1989-07-05 Dainichiseika Color & Chem Mfg Co Ltd 黒色硬化性樹脂組成物
JPH0234664A (ja) 1988-07-22 1990-02-05 Dainichiseika Color & Chem Mfg Co Ltd 黒色熱硬化性樹脂組成物
JP2009003442A (ja) 2007-05-23 2009-01-08 Mitsubishi Chemicals Corp 感光性樹脂組成物、液晶配向制御突起、スペーサー、カラーフィルター及び画像表示装置
JP2009251392A (ja) * 2008-04-08 2009-10-29 Fujifilm Corp ネガ型レジスト組成物及びパターン形成方法
WO2010081624A1 (en) 2009-01-19 2010-07-22 Basf Se Black matrix for colour filters
WO2010081756A1 (en) 2009-01-19 2010-07-22 Basf Se Black pigment dispersion
WO2017057281A1 (ja) 2015-09-30 2017-04-06 東レ株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び表示装置、並びにその製造方法
WO2017159876A1 (ja) 2016-03-18 2017-09-21 東レ株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する表示装置、及びその製造方法
WO2019087985A1 (ja) 2017-10-31 2019-05-09 東レ株式会社 ネガ型感光性樹脂組成物、硬化膜、並びに有機elディスプレイ及びその製造方法
WO2019182041A1 (ja) * 2018-03-23 2019-09-26 東レ株式会社 硬化膜の製造方法、及び有機elディスプレイの製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170601A (ja) 1987-12-26 1989-07-05 Dainichiseika Color & Chem Mfg Co Ltd 黒色硬化性樹脂組成物
JPH0234664A (ja) 1988-07-22 1990-02-05 Dainichiseika Color & Chem Mfg Co Ltd 黒色熱硬化性樹脂組成物
JP2009003442A (ja) 2007-05-23 2009-01-08 Mitsubishi Chemicals Corp 感光性樹脂組成物、液晶配向制御突起、スペーサー、カラーフィルター及び画像表示装置
JP2009251392A (ja) * 2008-04-08 2009-10-29 Fujifilm Corp ネガ型レジスト組成物及びパターン形成方法
WO2010081624A1 (en) 2009-01-19 2010-07-22 Basf Se Black matrix for colour filters
WO2010081756A1 (en) 2009-01-19 2010-07-22 Basf Se Black pigment dispersion
WO2017057281A1 (ja) 2015-09-30 2017-04-06 東レ株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び表示装置、並びにその製造方法
WO2017159876A1 (ja) 2016-03-18 2017-09-21 東レ株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する表示装置、及びその製造方法
WO2019087985A1 (ja) 2017-10-31 2019-05-09 東レ株式会社 ネガ型感光性樹脂組成物、硬化膜、並びに有機elディスプレイ及びその製造方法
WO2019182041A1 (ja) * 2018-03-23 2019-09-26 東レ株式会社 硬化膜の製造方法、及び有機elディスプレイの製造方法

Also Published As

Publication number Publication date
CN117999515A (zh) 2024-05-07
KR20240063855A (ko) 2024-05-10
JPWO2023054116A1 (ja) 2023-04-06
TW202330680A (zh) 2023-08-01
EP4411478A1 (en) 2024-08-07

Similar Documents

Publication Publication Date Title
JP7234631B2 (ja) ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び有機elディスプレイ、並びにその製造方法
JP7230508B2 (ja) 感光性樹脂組成物、硬化膜、硬化膜を具備する有機elディスプレイ、並びに有機elディスプレイの製造方法
KR102318807B1 (ko) 네가티브형 감광성 수지 조성물, 경화막, 경화막을 구비하는 표시 장치, 및 그의 제조 방법
JP7255182B2 (ja) ネガ型感光性樹脂組成物、硬化膜、並びに有機elディスプレイ及びその製造方法
WO2022070946A1 (ja) 感光性樹脂組成物、硬化物、及び表示装置、並びに、硬化物の製造方法
WO2021125080A1 (ja) 感光性樹脂組成物、硬化膜、有機elディスプレイ、及び表示装置、並びに、硬化膜の製造方法
TWI725250B (zh) 樹脂組成物、樹脂薄片、硬化膜、有機el顯示裝置、半導體電子零件、半導體裝置及有機el顯示裝置之製造方法
TWI724137B (zh) 具備硬化膜之有機 el 顯示元件
WO2022264934A1 (ja) 感光性樹脂組成物、硬化物及び硬化物の製造方法並びに表示装置
WO2021006315A1 (ja) ネガ型感光性樹脂組成物、硬化膜、有機elディスプレイ及び硬化膜の製造方法
JP2022136981A (ja) 感光性組成物、硬化物、表示装置、及び硬化物の製造方法
WO2023054116A1 (ja) 感光性組成物、硬化物、表示装置、電子部品、及び硬化物の製造方法
WO2023190218A1 (ja) 表示装置及び感光性組成物
WO2024190310A1 (ja) 感光性組成物、硬化物、表示装置、及び硬化物の製造方法
WO2024161862A1 (ja) 感光性組成物、硬化物、表示装置、及び硬化物の製造方法
WO2024190309A1 (ja) 感光性組成物、硬化物、表示装置、及び硬化物の製造方法
WO2024190311A1 (ja) 感光性組成物、硬化物、表示装置、及び硬化物の製造方法
WO2024070725A1 (ja) 感光性組成物、硬化物、電子部品、及び硬化物の製造方法
WO2023190317A1 (ja) 表示装置
JP2024116076A (ja) 感光性組成物、硬化物、電子部品、及び硬化物の製造方法
JP2024004473A (ja) 表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022558070

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875983

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280063717.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11202401170Y

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022875983

Country of ref document: EP

Effective date: 20240429