WO2023053852A1 - 炭素繊維含有ポリプロピレン組成物 - Google Patents

炭素繊維含有ポリプロピレン組成物 Download PDF

Info

Publication number
WO2023053852A1
WO2023053852A1 PCT/JP2022/033229 JP2022033229W WO2023053852A1 WO 2023053852 A1 WO2023053852 A1 WO 2023053852A1 JP 2022033229 W JP2022033229 W JP 2022033229W WO 2023053852 A1 WO2023053852 A1 WO 2023053852A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene
component
weight
bonds
ethylene
Prior art date
Application number
PCT/JP2022/033229
Other languages
English (en)
French (fr)
Inventor
俊 高橋
正彦 沼倉
賢一 瀬野
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2023537217A priority Critical patent/JPWO2023053852A1/ja
Publication of WO2023053852A1 publication Critical patent/WO2023053852A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment

Definitions

  • the present invention relates to a carbon fiber-containing polypropylene composition and a molded article containing the composition.
  • Automobile members use members made of polypropylene compositions, and in order to improve the mechanical strength of the members, members made of a composition in which polypropylene is kneaded with glass fiber are used.
  • Carbon fiber is a fiber with a diameter of about 7 ⁇ m, and is usually used as a bundle of several thousand to tens of thousands of fibers with a sizing agent applied to the surface. Then, the bundle is cut into lengths of 3 to 6 mm and kneaded with polypropylene for use. Polypropylene, epoxy compounds, and urethane compounds are used as the sizing agent.
  • the carbon fibers used (for example, those used in aircraft) can be reused after being fired.
  • the present inventors focused on the interface between the carbon fiber and polypropylene, and particularly studied the surface of the carbon fiber. As a result, the present invention was discovered.
  • the weight is reduced by using carbon fibers to reinforce the polypropylene composition, and the composition is characterized by having a specific bond and its content on the surface of the carbon fiber. Or at least one of the tensile strength, bending strength, Charpy impact strength and deflection temperature under load (HDT) of a molded article (automobile member etc.) containing the composition and the workability of the polypropylene composition was found to be increased.
  • the tensile strength, bending strength, Charpy impact strength and deflection temperature under load (HDT) of a molded article (automobile member etc.) containing the composition and the workability of the polypropylene composition was found to be increased.
  • the present invention relates to, but is not limited to: [Invention 1] A carbon fiber-containing polypropylene composition containing polypropylene (component 1), carbon fibers (component 2), modified polypropylene (component 3) and an ethylene-based elastomer (component 4) and satisfying all of the following requirements:
  • Requirement 1 The weight of component 1 is 100 parts by weight, the weight of component 2 is in the range of 1 to 200 parts by weight, the weight of component 3 is in the range of 1 to 100 parts by weight, and the weight of component 4 is in the range of 1 to 100 parts by weight. 200 parts by weight;
  • Requirement 2 Component 1 has a melting peak temperature of 155° C.
  • Component 1 is a heterophasic polymerized material consisting of a propylene homopolymer portion and an ethylene-propylene copolymer portion.
  • component 3 is at least one modified polypropylene selected from the group consisting of maleic anhydride-modified polypropylene, epoxy-modified polypropylene, carbodiimide-modified polypropylene, and oxazoline-modified polypropylene.
  • Component 4 is an ethylene-propylene copolymer or an ethylene- ⁇ -olefin copolymer containing a C 4-12 ⁇ -olefin structural unit, and has a density in the range of 0.85 to 0.90 g/cm 3 . 4.
  • the weight of the fiber-reinforced polypropylene composition and the molded article containing the composition can be successfully reduced.
  • R R L +k * (R U ⁇ R L ), where k is a variable ranging from 1 percent to 100 percent in 1 percent increments, i.e., k is 1 percent, 2 percent, 3 percent , 4 percent, 5 percent, ..., 50 percent, 51 percent, 52 percent, ..., 95 percent, 96 percent, 97 percent, 98 percent, 99 percent, or 100 percent).
  • k is a variable ranging from 1 percent to 100 percent in 1 percent increments, i.e., k is 1 percent, 2 percent, 3 percent , 4 percent, 5 percent, ..., 50 percent, 51 percent, 52 percent, ..., 95 percent, 96 percent, 97 percent, 98 percent, 99 percent, or 100 percent).
  • any numerical range defined by two R numbers as set forth above is also specifically disclosed.
  • lower limit to upper limit which represents a numerical range
  • upper limit or lower indicates “lower limit or higher, upper limit or lower”
  • upper limit to lower limit indicates “upper limit or lower, lower limit or higher”. That is, these descriptions represent numerical ranges, including lower and upper limits.
  • Carbon fiber-containing polypropylene composition comprises polypropylene (sometimes referred to as “component 1"), carbon fiber (sometimes referred to as “component 2”) and modified polypropylene (“component 3 ”) and an ethylene-based elastomer (sometimes referred to as “component 4”).
  • Polypropylene (Component 1) means a polymer containing 50% by weight or more of monomer units derived from propylene, and examples thereof include: propylene homopolymer, propylene-ethylene random copolymer, propylene- ⁇ -olefin random copolymer, propylene-ethylene- ⁇ -olefin copolymer, Copolymerization of a propylene homopolymer component or a copolymer component consisting mainly of propylene (hereinafter sometimes referred to as polymer component I), at least one monomer selected from ethylene and ⁇ -olefins, and propylene and a copolymer component (hereinafter sometimes referred to as polymer component II) obtained by the above process.
  • polymer component I propylene
  • polymer component II propylene and a copolymer component obtained by the above process.
  • These polypropylenes may be used alone, or at least two of them may be used in combination.
  • Preferred ⁇ -olefins used in the production of polypropylene include 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene and 1-decene, more preferably includes 1-butene, 1-hexene and 1-octene.
  • propylene- ⁇ -olefin random copolymer examples include propylene-1-butene random copolymer, propylene-1-hexene random copolymer, and propylene-1-octene random copolymer.
  • propylene-ethylene- ⁇ -olefin copolymer examples include propylene-ethylene-1-butene copolymer, propylene-ethylene-1-hexene copolymer, propylene-ethylene-1-octene copolymer and the like. mentioned.
  • the content of ethylene or ⁇ -olefin contained in the propylene-ethylene random copolymer, propylene- ⁇ -olefin random copolymer and propylene-ethylene- ⁇ -olefin copolymer is usually 0.01 to 30% by weight. %, preferably 0.1 to 20% by weight. However, the total amount of the copolymer is 100% by weight.
  • the polymer component I of the heterophasic propylene polymerized material is a copolymer component consisting mainly of propylene
  • the polymer component I contains ethylene and C 4-12 (4-12 carbon atoms) At least one olefin selected from ⁇ -olefins is contained, and the content is usually 0.01 to 30% by weight. However, the total amount of the polymer component I is 100% by weight.
  • the polymer component I is a copolymer component mainly composed of propylene, for example, a propylene-ethylene copolymer component, a propylene-1-butene copolymer component, a propylene-1-hexene copolymer component, etc. mentioned.
  • Examples of the polymer component II of the heterophasic propylene polymer material include a propylene-ethylene copolymer component, a propylene-ethylene-1-butene copolymer component, a propylene-ethylene-1-hexene copolymer component, A propylene-ethylene-1-octene copolymer component, a propylene-1-butene copolymer component, a propylene-1-hexene copolymer component, a propylene-1-octene copolymer component and the like can be mentioned.
  • the content of at least one olefin selected from ethylene and C4-12 ⁇ -olefins contained in the polymer component II is usually 1 to 50% by weight, preferably 10 to 40% by weight, More preferably 20 to 35% by weight. However, the total amount of the polymer component II is 100% by weight.
  • the content of at least one olefin selected from ethylene and C4-12 ⁇ -olefins can be determined by infrared spectroscopy.
  • the content of the polymer component II contained in the heterophasic propylene polymer material is usually 1-70% by weight, preferably 5-50% by weight, more preferably 10-40% by weight. However, the total amount of the heterophasic propylene polymerized material is 100% by weight.
  • heterophagic propylene polymerized materials comprising said polymer component I and said polymer component II include: (propylene)-(propylene-ethylene) polymeric materials, (propylene)-(propylene-ethylene-1-butene) polymeric materials, (propylene)-(propylene-ethylene-1-hexene) polymeric materials, (propylene)-(propylene-1-butene) polymeric material, (propylene)-(propylene-1-hexene) polymeric material, (propylene-ethylene)-(propylene-ethylene) polymeric materials, (propylene-ethylene)-(propylene-ethylene-1-butene) polymeric material, (propylene-ethylene)-(propylene-ethylene-1-hexene) polymeric material, (propylene-ethylene)-(propylene-1-butene) polymeric materials, (propylene-ethylene)-(propylene-1-hexene) polymeric material, (propylene-ethylene)-(propylene-1
  • the intrinsic viscosity (135°C, tetralin) [ ⁇ cxs] of the component soluble in xylene at 20°C is 2 to 10, preferably 4.5 to 8, and 4.5 to 7. is more preferable, and the ratio of [ ⁇ cxs] to the intrinsic viscosity of the component insoluble in xylene at 20°C (tetralin at 135°C) [ ⁇ cxis] ([ ⁇ cxs]/[ ⁇ cxis]) is 2 to 10. More preferably, the [ ⁇ cxs]/[ ⁇ cxis] is 4-8.
  • the intrinsic viscosity is determined by measuring the reduced viscosity in tetralin at 135°C using an Ubbelohde viscometer, and described in "Polymer Solution, Polymer Experiments 11" (published by Kyoritsu Shuppan Co., Ltd., 1982), page 491. It is obtained by extrapolation according to the calculation method.
  • the 20° C. xylene soluble portion (CXS portion) and the 20° C. xylene insoluble portion (CXIS portion) can be obtained by the following method. After about 5 g of component (A) is completely dissolved in 500 ml of boiling xylene, the xylene solution is gradually cooled to room temperature, conditioned at 20° C. for 4 hours or longer, and the precipitate and solution are separated by filtration. The precipitate is obtained as the CXIS part, which can be obtained by removing the solvent from the solution and recovering the polymer dissolved in the solution.
  • the melting peak temperature of the heterophasic propylene polymerized material is preferably 155°C or higher, more preferably 160°C or higher. Moreover, the melting peak temperature is usually 175° C. or lower.
  • the melting peak temperature is the peak temperature of the endothermic peak with the highest peak temperature in the differential scanning calorimetry curve during temperature rise measured by a differential scanning calorimeter. The measurement of the differential scanning calorimetry curve by the differential scanning calorimeter is performed under the following conditions, and the melting temperature is obtained from the differential scanning calorimetry curve in the heating operation.
  • Temperature-decreasing operation Melted at 220°C, then temperature was decreased from 220°C to -90°C at a temperature decreasing rate of 5°C/min.
  • Temperature raising operation Immediately after the temperature lowering operation, the temperature is raised from -90°C to 200°C at a rate of 5°C/min.
  • the melt mass flow rate of polypropylene (component 1) is preferably 10 to 300 g/10 min, more preferably 20, from the viewpoint of appearance and tensile elongation at break of the resulting molded article. ⁇ 200 g/10 min.
  • the melt mass flow rate is measured according to JIS K7210 under conditions of a temperature of 230°C and a load of 2.16 kg.
  • a known polymerization method using a known olefin polymerization catalyst is used.
  • a multistage polymerization method using a Ziegler-Natta catalyst can be mentioned.
  • a slurry polymerization method, a solution polymerization method, a bulk polymerization method, a gas phase polymerization method, or the like can be used, and two or more of these methods may be combined.
  • Carbon fiber (component 2) Various conventionally known carbon fibers can be used for the carbon fiber (component 2). Specific examples include polyacrylonitrile-based, rayon-based, pitch-based, polyvinyl alcohol-based, regenerated cellulose-based, and pitch-based carbon fibers produced from mesophase pitch.
  • the fiber diameter of component 2 is not particularly limited. It is 3 ⁇ m or more, more preferably 8 ⁇ m or more. In order to improve the fiber aspect ratio when the pellet length is fixed, the fiber diameter is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the aspect ratio of component 2 is not particularly limited, it is preferably 5 or more for reinforcing fibers. Moreover, the aspect ratio is preferably 6000 or less for improvement of moldability.
  • the aspect ratio of component 2 can be determined from the average fiber diameter and the average fiber length by (average fiber length) ⁇ (average fiber diameter).
  • a continuous fiber bundle is used as the raw material for component 2, which is commercially available as tow.
  • the average fiber diameter is 3 to 30 ⁇ m, and the number of filament bundles is 500 to 24,000.
  • the average fiber diameter is 4 to 10 ⁇ m and the number of bundles is 6,000 to 15,000.
  • chopped strands can also be used as component 2.
  • the chopped strands usually have a length of 1 to 20 mm and a diameter of about 3 to 30 ⁇ m, preferably 4 to 10 ⁇ m.
  • the fiber length of component 2, which constitutes the carbon fiber-containing polypropylene composition of the present invention is usually 0.05 to 200 mm, preferably 0.2 to 50 mm, more preferably 4 to 20 mm.
  • the average aspect ratio (fiber length/fiber diameter) of component 2 is usually 5-6000, preferably 10-3000, more preferably 15-2000.
  • the surface of component 2 is preferably surface-treated by oxidation etching or coating.
  • Oxidation etching treatment includes air oxidation treatment, oxygen treatment, treatment with oxidizing gas, treatment with ozone, corona treatment, flame treatment, (atmospheric pressure) plasma treatment, oxidizing liquid (nitric acid, alkali metal hypochlorite). aqueous solution, potassium dichromate-sulfuric acid, potassium permanganate-sulfuric acid) and the like.
  • Materials for coating carbon fibers include carbon, silicon carbide, silicon dioxide, silicon, plasma monomer, ferrocene, and iron trichloride.
  • sizing agents such as urethane, olefin (polypropylene, etc.), acrylic, nylon, butadiene, epoxy (including special epoxy), and polyester may be used.
  • Carbon fiber reinforced plastic hereinafter referred to as CFRP
  • CFRP Carbon fiber reinforced plastic
  • carbon fiber has excellent mechanical properties such as specific strength and specific elastic modulus, so it is used for aerospace applications, fishing rods, golf shafts, tennis rackets. It is widely used in sports/leisure applications, etc., and other applications.
  • Carbon fibers (virgin carbon fibers) are obtained by firing precursor fibers such as polyacrylonitrile fibers at 1000 to 3000°C.
  • Recycled carbon fiber is obtained by pyrolyzing CFRP matrix resin at approximately 500°C and can be effectively reused.
  • the energy (calorific value) required to manufacture recycled carbon fiber is smaller than the energy (calorific value) required to manufacture virgin carbon fiber. It is preferable from the point of view.
  • Modified polypropylene (component 3)
  • the modified polypropylene (component 3) is not particularly limited as long as it is a polypropylene modified to impart polarity. Maleic anhydride-modified polypropylene, carbodiimide-modified polypropylene, epoxy-modified polypropylene, and oxazoline-modified polypropylene are preferred.
  • maleic anhydride-modified polypropylene examples include the following 1 to 4: 1. A modified polypropylene obtained by graft polymerization of an unsaturated carboxylic acid and/or a derivative thereof to a propylene homopolymer, 2. A modified polypropylene obtained by graft polymerizing an unsaturated carboxylic acid and/or a derivative thereof to a propylene copolymer consisting of at least two monomers; 3.
  • Modified propylene obtained by graft polymerization of an unsaturated carboxylic acid and/or a derivative thereof to a block copolymer obtained by homopolymerizing propylene and then copolymerizing at least two olefins; 4.
  • Modified polypropylene obtained by random or block copolymerization of propylene, optionally at least one olefin, and unsaturated carboxylic acid and/or its derivative.
  • Examples of unsaturated carboxylic acids used for producing polypropylene MM include maleic acid, fumaric acid, itaconic acid, acrylic acid, and methacrylic acid.
  • Examples of unsaturated carboxylic acid derivatives include acid anhydrides, ester compounds, amide compounds, imide compounds, metal salts derived from the above unsaturated carboxylic acids, and specific examples include maleic anhydride.
  • itaconic anhydride methyl acrylate, ethyl acrylate, butyl acrylate, glycidyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, glycidyl methacrylate, monoethyl maleate, diethyl maleate, fumaric acid monomethyl ester, fumaric acid dimethyl ester, acrylamide, methacrylamide, maleic acid monoamide, maleic acid diamide, fumaric acid monoamide, maleimide, N-butylmaleimide, sodium methacrylate and the like.
  • a compound such as citric acid and malic acid which is dehydrated to produce an unsaturated carboxylic acid in the step of graft polymerization onto polypropylene, may be used.
  • unsaturated carboxylic acids and/or derivatives thereof glycidyl esters of acrylic acid, methacrylic acid, and maleic anhydride are preferred.
  • Polypropylene MM is preferably (1) Modified polypropylene obtained by graft polymerization of maleic anhydride to polypropylene having propylene monomer and optionally ethylene monomer as main structural units, (2) a modified polypropylene obtained by copolymerizing an olefin consisting mainly of propylene monomers and optionally ethylene monomers with glycidyl methacrylate or maleic anhydride; is mentioned.
  • the polypropylene MM preferably contains 0.00 of polymerized monomer units derived from unsaturated carboxylic acid and/or derivatives thereof. Maleic anhydride-modified polypropylene containing 01 to 10% by weight.
  • polymerized monomer units derived from the unsaturated carboxylic acid and/or its derivative The content is preferably 3 to 10% by weight, and in the case of polypropylene MM obtained by graft polymerization, the content of polymerized monomer units derived from unsaturated carboxylic acid and/or derivatives thereof is 0.01 to 10% by weight. %, more preferably 0.05 to 0.9% by weight.
  • Carbodiimide-modified polypropylene (polypropylene CM)
  • Carbodiimide-modified polypropylene (sometimes referred to as polypropylene CM) is a polypropylene having a group that reacts with a carbodiimide group (sometimes referred to as polymer C') and a carbodiimide group-containing compound (sometimes referred to as compound C). obtained by reacting Specifically, a method of melt-kneading the two may be used.
  • melt-kneading An example of melt-kneading is shown below.
  • a method of melt-kneading the polymer C' and the compound C the polymer C' and the compound C are simultaneously or sequentially charged into a Henschel mixer, a V-type blender, a tumbler blender, a ribbon blender, or the like.
  • a method of melt-kneading can be exemplified.
  • an apparatus having excellent kneading performance such as a multi-screw extruder, a kneader, and a Banbury mixer, since a polymer composition in which each component is more uniformly dispersed and reacted can be obtained.
  • the polymer C' and the compound C may be mixed in advance and then supplied from the hopper, or some components may be supplied from the hopper and extruder tip near the hopper part. You may supply other components from the supply port installed in the arbitrary parts between.
  • melt-kneading of the above components should be equal to or higher than the highest melting peak temperature among the melting peak temperatures of the components to be mixed. Specifically, melt-kneading is preferably carried out at 150 to 300°C, more preferably 200 to 280°C, still more preferably 230 to 270°C.
  • Polypropylene CM has excellent fluidity at 190°C or 230°C.
  • the melt mass flow rate (MFR) of the polypropylene CM at a temperature of 190° C. or 230° C. and a load of 2.16 kg is preferably 0.01 to 400 g/10 minutes, more preferably 0.1 to 300 g/10 minutes, and still more preferably It ranges from 1 to 200 g/10 minutes. Within such a range, the reinforcing properties and dispersibility of the reinforcing fibers are excellent, which is preferable.
  • the ratio of the number of moles of the groups that react with the carbodiimide groups in the polymer C' to the number of moles of the compound C is 1:0.2 to 10.0, preferably 1:0.4. 8, more preferably 1:2 to 8, the reaction efficiency between the polymer C' and the compound C is high, and a polypropylene CM having excellent fluidity can be obtained.
  • the content of carbodiimide groups in polypropylene CM is not particularly limited to 100 g of polypropylene CM. More preferably, it is 10 mmol or more. Further, in order to improve molding processability, reinforcement effect of reinforcing fibers, dispersibility improvement effect, and economic efficiency, the content is preferably 200 mmol or less, more preferably 150 mmol or less, further preferably 100 mmol or less. From this point of view, when manufacturing polypropylene CM, it is preferable to adjust the compounding amount of compound C so that the content of carbodiimide groups in polypropylene CM is within the above range.
  • the infrared absorption is measured using an infrared absorption spectrometer. From the obtained chart, the absorbance of the absorption band (1790 cm -1 when using maleic anhydride) resulting from the peak intensity of the compound having a group that reacts with the carbodiimide group in the polymer C' and polypropylene CM, By comparing the absorbance before and after the reaction, the reaction rate C can be calculated using the following formula.
  • Reaction rate C (%) X C /Y C ⁇ 100
  • X C absorbance of the group that reacts with the carbodiimide group of the pre-reaction polymer C' - absorbance of the group that reacts with the carbodiimide group of the polypropylene CM after the reaction
  • Y C absorbance of the group that reacts with the carbodiimide group of the pre-reaction polymer C'
  • the reaction rate of polypropylene CM determined by the above method is preferably in the range of 20-100%, more preferably 25-100%, and even more preferably 40-100%.
  • a carbodiimide residue derived from the compound C present in the polymer C' may be present in the polymer C', which interacts with the reinforcing fibers and contributes to reinforcing properties and dispersibility.
  • the polypropylene CM may contain two or more types of polymer C' and may contain two or more types of compound C.
  • Polypropylene with groups reactive with carbodiimide groups (polymer C') Polypropylene (polymer C') having groups reactive with carbodiimide groups can be obtained by introducing a compound reactive with carbodiimide groups into polypropylene.
  • Compounds that react with carbodiimide groups include compounds having groups with active hydrogens that are reactive with carbodiimide groups. Specifically, compounds having groups derived from carboxylic acids, amines, alcohols, thiols, and the like. is. Among these, compounds having groups derived from carboxylic acids are preferably used, and unsaturated carboxylic acids and/or derivatives thereof are particularly preferred. In addition to the compounds having active hydrogen-containing groups, compounds having groups that can be easily converted to active hydrogen-containing groups with water or the like can also be preferably used. Specific examples include compounds having an epoxy group or a glycidyl group. In the present invention, the compounds that react with carbodiimide groups may be used singly or in combination of two or more.
  • examples include unsaturated compounds having one or more carboxylic acid groups, unsaturated compounds having one or more carboxylic anhydride groups, and derivatives thereof.
  • unsaturated groups include vinyl groups, vinylene groups, and unsaturated cyclic hydrocarbon groups. Specific examples include acrylic acid, methacrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, norbornenedicarboxylic acid, bicyclo[2,2,1]hept-2-ene.
  • Unsaturated carboxylic acids such as -5,6-dicarboxylic acid, acid anhydrides thereof, or derivatives thereof (eg, acid halides, amides, imides, esters, etc.).
  • specific compounds include malenyl chloride, malenylimide, maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, bicyclo[2,2,1]hept-2-ene-5,6-dicarboxylic acid.
  • Acid anhydride dimethyl maleate, monomethyl maleate, diethyl maleate, diethyl fumarate, dimethyl itaconate, diethyl citraconate, dimethyl tetrahydrophthalate, bicyclo[2,2,1]hept-2-ene-5,6 -dimethyl dicarboxylate, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, glycidyl (meth)acrylate, aminoethyl methacrylate and aminopropyl methacrylate.
  • maleic anhydride, (meth)acrylic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, bicyclo[2,2,1]hept-2-ene-5,6-dicarboxylic anhydride , hydroxyethyl (meth)acrylate, glycidyl methacrylate, aminopropyl methacrylate are preferred.
  • dicarboxylic acid anhydrides such as maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, and bicyclo[2,2,1]hept-2-ene-5,6-dicarboxylic anhydride. is particularly preferred.
  • maleic anhydride is most preferred as the compound that reacts with carbodiimide groups.
  • Graft Copolymerization Polymer C' can be obtained by graft copolymerizing a compound having a group reactive with a carbodiimide group onto a polypropylene main chain.
  • the polypropylene used as the polypropylene backbone is a homopolymer or copolymer based on propylene units.
  • the olefin units of the minor component may be C 2-20 -preferably C 2-10 , more preferably C 2-8 - aliphatic ⁇ -olefins other than propylene, cyclic olefins, non-conjugated dienes , aromatic olefins may be used.
  • the "main component” means that the content of propylene units in polypropylene is usually 50 mol% or more, preferably 60 mol% or more, and more preferably 70 mol% or more.
  • isotactic structure and syndiotactic structure can be used as the polypropylene, and stereoregularity is not particularly limited.
  • Density of polypropylene used for graft modification is preferably 0.8 to 1.1 g/cm 3 , more preferably 0.8 to 1.05 g/cm 3 , still more preferably 0.8 to 1 g/cm 3 .
  • the melt mass flow rate (MFR) of polypropylene at a temperature of 190° C. or 230° C. and a load of 2.16 kg according to ASTM D1238 is usually 0.01 to 500 g/10 minutes, preferably 0.05 to 300 g/10 minutes, more preferably 0 .1 to 100 g/10 min. If the density and MFR of the polypropylene are within this range, the density and MFR of the modified graft copolymer will also be about the same, making it easy to handle.
  • the crystallinity of the polypropylene used for graft modification is usually 2% or more, preferably 5% or more, and more preferably 10% or more. If the degree of crystallinity is within this range, the handling of the modified graft copolymer is excellent.
  • the number average molecular weight (Mn basePP ) measured by gel permeation chromatography (GPC) of the polypropylene used for graft modification is preferably 5,000 to 500,000, more preferably 10,000 to 100,000. If the Mn basePP is within this range, the handling is excellent.
  • the number average molecular weight is converted to polypropylene if the amount of comonomer (ethylene content) is less than 10 mol%, and converted to propylene-ethylene if it is 10 mol% or more (based on the propylene content of 70 mol% ).
  • polypropylene as described above can be carried out by any conventionally known method. For example, it can be polymerized using a titanium-based catalyst, a vanadium-based catalyst, a metallocene catalyst, or the like.
  • polypropylene may be in the form of either a resin or an elastomer, and both an isotactic structure and a syndiotactic structure can be used, and the stereoregularity is not particularly limited. It is also possible to use a commercially available resin as it is.
  • a radical initiator such as a compound that reacts with a carbodiimide group and, if necessary, other ethylenically unsaturated monomers is added to the polypropylene that serves as the graft main chain. is graft-copolymerized in the presence of
  • the method of grafting the compound that reacts with the carbodiimide group onto the polypropylene main chain is not particularly limited, and known graft polymerization methods such as the solution method and the melt-kneading method can be employed.
  • Radical Copolymerization Polymer C' can also be obtained by radical copolymerization of a compound that reacts with carbodiimide groups and an olefin such as propylene.
  • an olefin such as propylene.
  • the olefin it is possible to adopt the same olefin as the above-mentioned olefin used for forming the polyolefin to be the graft main chain.
  • Compounds that react with carbodiimide groups are also as described above.
  • the method of radically copolymerizing the compound that reacts with the carbodiimide group and the olefin is not particularly limited, and a known radical copolymerization method can be employed.
  • the polymer C' preferably satisfies the following conditions.
  • the content of the group that reacts with the carbodiimide group in the polymer C' is not particularly limited. 0.01% by weight or more is preferable in order to enhance reinforcing properties and dispersibility. Further, in order to suppress the cross-linking of the groups that react with the carbodiimide groups by the compound C and facilitate the production of the polypropylene CM, the content is preferably 10% by weight or less, more preferably 3% by weight or less, and even more preferably 3% by weight or less. is 2% by weight or less.
  • the polymer C' is obtained by graft polymerization
  • the polypropylene that becomes the graft main chain is a resin with a high ethylene content
  • a resin with a high ⁇ -olefin copolymerization amount such as an ethylene-butene copolymer. Then, it tends to be easily crosslinked during production. Therefore, in order to use a resin having a high ethylene content as a graft main chain and suppress cross-linking for production, it is necessary to have a single group that reacts with the carbodiimide group on one molecular chain of the polymer C' as much as possible. It is preferred to adjust to be present.
  • the polypropylene that serves as the graft main chain is a resin that tends to have a low molecular weight due to thermal decomposition, the phenomenon of high viscosity due to cross-linking is unlikely to occur. Therefore, when a resin that easily decomposes thermally is used as the main chain for grafting, even if a plurality of groups that react with carbodiimide groups are present on one molecular chain of the polymer C', the viscosity of the polypropylene CM does not increase without increasing the viscosity. may be manufactured.
  • the melt mass flow rate (MFR) at a temperature of 190°C or 230°C and a load of 2.16 kg according to ASTM D1238 of the polymer C' having a group that reacts with a carbodiimide group is preferably 0.01 to 500 g/10 minutes, more preferably 0.05 to 300 g/10 minutes.
  • MFR melt mass flow rate
  • the density of the polymer C' is preferably 0.8 to 1.1 g/cm 3 , more preferably 0.8 to 1.05 g/cm 3 , still more preferably 0.8 to 1 g/cm 3 .
  • polycarbodiimide can be synthesized by reacting an organic polyisocyanate in the presence of a catalyst that promotes the carbodiimidation reaction of isocyanate groups. can be done.
  • Polystyrene equivalent number average molecular weight (Mn C ) of compound C determined by gel permeation chromatography (GPC) is preferably 400 to 500,000, more preferably 1,000 to 10,000, and still more preferably 2,000. ⁇ 4,000.
  • MnC polystyrene equivalent number average molecular weight
  • a monocarbodiimide may be added to compound C, and it is also possible to use a single compound or a mixture of multiple carbodiimide group-containing compounds.
  • carbodiimide group-containing compound it is also possible to use a commercially available carbodiimide group-containing compound as it is.
  • Examples of commercially available carbodiimide group-containing compounds include Carbodilite (registered trademark) HMV-15CA, Carbodilite (registered trademark) HMV-8CA and Carbodilite (registered trademark) LA1 manufactured by Nisshinbo Co., Ltd., and stabaxol (registered trademark) P and stabaxol manufactured by Rhein Chemie. (registered trademark) P400 and the like.
  • the carbodiimide group content in the compound C and the obtained polypropylene CM can be measured by 13 C-NMR, IR, titration method, etc., and can be grasped as a carbodiimide equivalent.
  • a peak of 130 to 142 ppm is observed by 13 C-NMR and a peak of 2130 to 2140 cm ⁇ 1 is observed by IR.
  • 13 C-NMR measurement is performed, for example, as follows. That is, 0.35 g of the sample is heated and dissolved in 2.0 ml of hexachlorobutadiene. After filtering this solution with a glass filter (G2), 0.5 ml of deuterated benzene is added, and an NMR tube with an inner diameter of 10 mm is charged. Then, 13 C-NMR measurement is performed at 120° C. using a JEOL GX-500 type NMR spectrometer. The cumulative number of times shall be 10,000 or more.
  • IR measurement is performed, for example, as follows. That is, after hot pressing the sample at 250 ° C. for 3 minutes to prepare a sheet, the infrared of the sheet is measured by a transmission method using an infrared spectrophotometer (manufactured by JASCO Corporation, FT-IR 410 type). Measure the absorption spectrum. The measurement conditions are a resolution of 2 cm ⁇ 1 and 32 integration times.
  • the infrared absorption spectrum in the transmission method is inversely proportional to the sample thickness, as indicated by the Beer-Lambert law, and the absorbance itself does not represent the concentration of carbodiimide groups in the sample. Therefore, in order to measure the carbodiimide group content, it is necessary to uniform the thickness of the sample to be measured or standardize the peak intensity of the carbodiimide group using an internal standard peak.
  • IR measurement is performed using a sample whose carbodiimide group concentration is known in advance, and the absorbance of the peak appearing at 2130 to 2140 cm ⁇ 1 and the internal standard peak A calibration curve is prepared using the absorbance ratio, and the measured values of the sample are substituted into the calibration curve to determine the concentration.
  • a peak derived from the polypropylene skeleton may be used, or an internal standard substance may be mixed in advance so that the concentration in the sample is constant and used for measurement.
  • Epoxy modified polypropylene (Polypropylene EM) Epoxy-modified polypropylene (sometimes referred to as polypropylene EM) is a polypropylene having a group that reacts with an epoxy group (sometimes referred to as polymer E') and an epoxy group-containing compound (sometimes referred to as compound E). obtained by reacting Specifically, a method of melt-kneading the two may be used.
  • melt-kneading An example of melt-kneading is shown below.
  • a method of melt-kneading the polymer E' and the compound E the polymer E' and the compound E are simultaneously or sequentially charged into a Henschel mixer, a V-type blender, a tumbler blender, a ribbon blender, or the like.
  • a method of melt-kneading can be exemplified.
  • an apparatus having excellent kneading performance such as a multi-screw extruder, a kneader, and a Banbury mixer, since a polymer composition in which each component is more uniformly dispersed and reacted can be obtained.
  • the polymer E' and the compound E may be premixed and then fed from the hopper, or some components may be fed from the hopper and extruder tip near the hopper. You may supply other components from the supply port installed in the arbitrary parts between.
  • melt-kneading of the above components should be equal to or higher than the highest melting peak temperature among the melting peak temperatures of the components to be mixed. Specifically, melt-kneading is preferably carried out at 150 to 300°C, more preferably 200 to 280°C, still more preferably 230 to 270°C.
  • Polypropylene EM has excellent fluidity at 190°C or 230°C.
  • the melt mass flow rate (MFR) of polypropylene EM at a temperature of 190° C. or 230° C. and a load of 2.16 kg is preferably 0.01 to 400 g/10 minutes, more preferably 0.1 to 300 g/10 minutes, still more preferably It ranges from 1 to 200 g/10 minutes. Within such a range, the reinforcing properties and dispersibility of the reinforcing fibers are excellent, which is preferable.
  • the ratio of the number of moles of groups that react with epoxy groups in the polymer E' to the number of moles of the compound E is 1:0.2 to 10.0, preferably 1:0.4. 8.0, more preferably 1:2.0 to 8.0, the reaction efficiency of polymer E' and compound E is high, and polypropylene EM with excellent fluidity can be obtained. point is preferable.
  • the content of epoxy groups in polypropylene EM is not particularly limited to 100 g of polypropylene EM. More preferably, it is 10 mmol or more. Further, in order to improve molding processability, reinforcement effect of reinforcing fibers, dispersibility improvement effect, and economic efficiency, the content is preferably 200 mmol or less, more preferably 150 mmol or less, further preferably 100 mmol or less. From this point of view, when producing polypropylene EM, it is preferable to adjust the compounding amount of compound E so that the content of epoxy groups in polypropylene EM is within the above range.
  • the infrared absorption is measured using an infrared absorption spectrometer. From the obtained chart, the absorbance of the absorption band (1790 cm -1 when using maleic anhydride) resulting from the peak intensity of the compound having a group that reacts with the epoxy group in the polymer E' and polypropylene EM, By comparing the absorbance before and after the reaction, the reaction rate can be calculated using the following formula.
  • Reaction rate E (%) X E /Y E ⁇ 100
  • X E absorbance of the group that reacts with the epoxy group of the pre-reaction polymer E' - absorbance of the group that reacts with the epoxy group of the polypropylene EM after the reaction
  • Y E absorbance of the group that reacts with the epoxy group of the pre-reaction polymer E'
  • the reaction rate of polypropylene EM determined by the above method is preferably in the range of 20-100%, more preferably 25-100%, and even more preferably 40-100%.
  • polypropylene EM is produced by reacting the epoxy group of compound E with a group that reacts with the epoxy group in polymer E' as described above, and is derived from compound E bound to polypropylene.
  • Epoxy residues may be present in polymer E', which interact with reinforcing fibers and contribute to reinforcing properties and dispersibility. This amount of epoxy residues can be understood as the size of the peak due to contraction vibration of epoxy groups at 899 to 910 cm ⁇ 1 in IR measurement.
  • the polypropylene EM may contain two or more types of polymer E', and may contain two or more types of compound E.
  • Polypropylene with groups reactive with epoxy groups (polymer E') Polypropylene (polymer E') having groups reactive with epoxy groups can be obtained by introducing a compound reactive with epoxy groups into polypropylene.
  • Examples of the compound that reacts with the epoxy group include compounds having a group having an active hydrogen that is reactive with the epoxy group.
  • compounds having groups derived from carboxylic acids, amines, phenols, thiols, etc. is.
  • compounds having groups derived from carboxylic acids are preferably used, and unsaturated carboxylic acids and/or derivatives thereof are particularly preferred.
  • the compounds that react with epoxy groups may be used singly or in combination of two or more.
  • unsaturated carboxylic acid and/or a derivative thereof When an unsaturated carboxylic acid and/or a derivative thereof is used as a compound that reacts with an epoxy group, unsaturated compounds having one or more carboxylic acid groups, unsaturated compounds having one or more carboxylic anhydride groups, and derivatives thereof can be mentioned.
  • unsaturated groups include vinyl groups, vinylene groups, and unsaturated cyclic hydrocarbon groups. Specific examples include acrylic acid, methacrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, norbornenedicarboxylic acid, bicyclo[2,2,1]hept-2-ene.
  • Unsaturated carboxylic acids such as -5,6-dicarboxylic acid, acid anhydrides thereof, or derivatives thereof (eg, acid halides, amides, imides, esters, etc.).
  • specific compounds include malenyl chloride, malenylimide, maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, bicyclo[2,2,1]hept-2-ene-5,6-dicarboxylic acid.
  • Acid anhydride dimethyl maleate, monomethyl maleate, diethyl maleate, diethyl fumarate, dimethyl itaconate, diethyl citraconate, dimethyl tetrahydrophthalate, bicyclo[2,2,1]hept-2-ene-5,6 - dimethyl dicarboxylate, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, aminoethyl methacrylate and aminopropyl methacrylate.
  • maleic anhydride, (meth)acrylic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, bicyclo[2,2,1]hept-2-ene-5,6-dicarboxylic anhydride , hydroxyethyl (meth)acrylate and aminopropyl methacrylate are preferred.
  • dicarboxylic acid anhydrides such as maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, and bicyclo[2,2,1]hept-2-ene-5,6-dicarboxylic anhydride. is particularly preferred.
  • maleic anhydride is most preferred as the compound that reacts with epoxy groups.
  • Graft Copolymerization Polymer E' can be obtained by graft copolymerizing a compound having a group reactive with an epoxy group onto a polypropylene main chain.
  • the polypropylene used as the polypropylene backbone is a homopolymer or copolymer based on propylene units.
  • the olefin units of the minor component may be C 2-20 -preferably C 2-10 , more preferably C 2-8 - aliphatic ⁇ -olefins other than propylene, cyclic olefins, non-conjugated dienes , aromatic olefins may be used.
  • the "main component” means that the content of propylene units in polypropylene is usually 50 mol% or more, preferably 60 mol% or more, and more preferably 70 mol% or more.
  • isotactic structure and syndiotactic structure can be used as the polypropylene, and stereoregularity is not particularly limited.
  • Density of polypropylene used for graft modification is preferably 0.8 to 1.1 g/cm 3 , more preferably 0.8 to 1.05 g/cm 3 , still more preferably 0.8 to 1 g/cm 3 .
  • the melt mass flow rate (MFR) of polypropylene at a temperature of 190° C. or 230° C. and a load of 2.16 kg according to ASTM D1238 is usually 0.01 to 500 g/10 minutes, preferably 0.05 to 300 g/10 minutes, more preferably 0 .1 to 100 g/10 min. If the density and MFR of the polypropylene are within this range, the density and MFR of the modified graft copolymer will also be about the same, making it easy to handle.
  • the crystallinity of the polypropylene used for graft modification is usually 2% or more, preferably 5% or more, and more preferably 10% or more. If the degree of crystallinity is within this range, the handling of the modified graft copolymer is excellent.
  • the number average molecular weight (Mn) of the polypropylene used for graft modification as measured by gel permeation chromatography (GPC) is preferably 5,000 to 500,000, more preferably 10,000 to 100,000. If Mn is in this range, it is excellent in handling.
  • Mn is in this range, it is excellent in handling.
  • propylene-ethylene-based polyolefin the number average molecular weight is converted to polypropylene if the amount of comonomer (ethylene content) is less than 10 mol%, and converted to propylene-ethylene if it is 10 mol% or more (based on the propylene content of 70 mol% ).
  • polypropylene as described above can be carried out by any conventionally known method. For example, it can be polymerized using a titanium-based catalyst, a vanadium-based catalyst, a metallocene catalyst, or the like.
  • polypropylene may be in the form of either a resin or an elastomer, and both an isotactic structure and a syndiotactic structure can be used, and the stereoregularity is not particularly limited. It is also possible to use a commercially available resin as it is.
  • a radical initiator such as a compound that reacts with an epoxy group and, if necessary, other ethylenically unsaturated monomers is added to the polypropylene that serves as the graft main chain. is graft-copolymerized in the presence of
  • the method of grafting the epoxy group-reactive compound to the polypropylene main chain is not particularly limited, and known graft polymerization methods such as the solution method and the melt-kneading method can be employed.
  • the polymer E' can also be obtained by radical copolymerization of a compound that reacts with an epoxy group and an olefin such as propylene.
  • an olefin such as propylene.
  • the olefin it is possible to adopt the same olefin as the above-mentioned olefin used for forming the polyolefin to be the graft main chain.
  • the compound that reacts with the epoxy group is also as described above.
  • the method of radically copolymerizing the compound that reacts with the epoxy group and the olefin is not particularly limited, and a known radical copolymerization method can be employed.
  • the polymer E' preferably satisfies the following conditions.
  • the content of the group that reacts with the epoxy group in the polymer E′ is not particularly limited. 0.01% by weight or more is preferable in order to enhance reinforcing properties and dispersibility. Further, in order to suppress the crosslinking of the group that reacts with the epoxy group by the compound E and facilitate the production of the polypropylene EM, the content is preferably 10% by weight or less, more preferably 3% by weight or less, and still more preferably 3% by weight or less. is 2% by weight or less.
  • the number average molecular weight of the polymer E′ should be low, and (the number of moles of groups that react with epoxy groups)/(the number of moles of molecular chains of the polymer E′) is preferably small. That is, when the number of groups that react with the epoxy group is present on one molecular chain of the polymer E' as singularly as possible, the epoxy group of the compound E is the epoxy group of the polymer E'.
  • Reactive groups are meant to be able to bond without cross-linking and gelling when reacting with groups.
  • the polymer E' is obtained by graft polymerization
  • the polypropylene that becomes the graft main chain is a resin with a large ethylene content
  • a resin with a large ⁇ -olefin copolymerization amount such as an ethylene-butene copolymer. Then, it tends to be easily crosslinked during production. Therefore, in order to use a resin having a high ethylene content as a graft main chain and suppress cross-linking for production, it is necessary to have a single group that reacts with the epoxy group on one molecular chain of the polymer E′ as much as possible. It is preferred to adjust to be present.
  • the polypropylene that serves as the graft main chain is a resin that tends to have a low molecular weight due to thermal decomposition, the phenomenon of high viscosity due to cross-linking is unlikely to occur. Therefore, when a resin that easily decomposes thermally is used as the main chain for grafting, even if a plurality of groups that react with epoxy groups are present on one molecular chain of the polymer E′, the viscosity of the polypropylene EM does not increase without increasing the viscosity. may be manufactured.
  • the melt mass flow rate (MFR) at a temperature of 190°C or 230°C and a load of 2.16 kg according to ASTM D1238 of the polymer E' having a group that reacts with an epoxy group is preferably 0.01 to 500 g/10 minutes, more preferably 0.05 to 300 g/10 minutes.
  • MFR melt mass flow rate
  • the density of the polymer E' is preferably 0.8 to 1.1 g/cm 3 , more preferably 0.8 to 1.05 g/cm 3 , still more preferably 0.8 to 1 g/cm 3 .
  • Epoxy group-containing compound (compound E) is preferably a polyepoxide having repeating units represented by the following general formula.
  • R E1 represents a divalent organic group
  • R E2 and R E3 independently represent a monovalent organic group
  • the asymmetric carbon is any steric group provided that it does not interfere with the epoxide structure. shows the placement.
  • polyepoxide can be synthesized by reacting organic polyolefin in the presence of a catalyst that promotes the epoxidation reaction of double bonds.
  • Polystyrene equivalent number average molecular weight (Mn) obtained by gel permeation chromatography (GPC) of compound E is preferably 400 to 500,000, more preferably 1,000 to 10,000, and still more preferably 2,000 to 4,000.
  • Mn number average molecular weight
  • a monoepoxide may be added to compound E, and it is also possible to use a single compound or a mixture of multiple epoxy group-containing compounds.
  • the epoxy group content in the compound E and the obtained polypropylene EM can be measured by 13 C-NMR, IR, titration method, etc., and can be grasped as an epoxide equivalent.
  • a peak of 52 ppm is observed in 13 C-NMR and a peak of 899 to 910 cm -1 is observed in IR.
  • 13 C-NMR measurement is performed, for example, as follows. That is, 0.35 g of the sample is heated and dissolved in 2.0 ml of hexachlorobutadiene. After filtering this solution with a glass filter (G2), 0.5 ml of deuterated benzene is added, and an NMR tube with an inner diameter of 10 mm is charged. Then, 13 C-NMR measurement is performed at 120° C. using a JEOL GX-500 type NMR spectrometer. The cumulative number of times shall be 10,000 or more.
  • IR measurement is performed, for example, as follows. That is, after hot pressing the sample at 250 ° C. for 3 minutes to prepare a sheet, the infrared of the sheet is measured by a transmission method using an infrared spectrophotometer (manufactured by JASCO Corporation, FT-IR 410 type). Measure the absorption spectrum. The measurement conditions are a resolution of 2 cm ⁇ 1 and 32 integration times.
  • the infrared absorption spectrum in the transmission method is inversely proportional to the sample thickness, as indicated by the Beer-Lambert law, and the absorbance itself does not represent the concentration of epoxy groups in the sample. Therefore, in order to measure the epoxy group content, it is necessary to uniform the thickness of the sample to be measured or standardize the peak intensity of the epoxy group using an internal standard peak.
  • IR measurement is performed using a sample with a known epoxy group concentration in advance, and the absorbance of the peak appearing at 899 to 910 cm -1 and the internal standard peak A calibration curve is prepared using the absorbance ratio, and the measured values of the sample are substituted into the calibration curve to determine the concentration.
  • a peak derived from the polypropylene skeleton may be used, or an internal standard substance may be mixed in advance so that the concentration in the sample is constant and used for measurement.
  • Oxazoline-modified polypropylene means polypropylene modified with an oxazoline compound, having an oxazoline group
  • the oxazoline-modified polypropylene of the present invention satisfies the following requirements (1), (1-a), and (2): (1) oxazoline-modified polypropylene has an oxazoline group, (1-a) The content of oxazoline groups in 1 g of oxazoline-modified polypropylene is 0.1 ⁇ 10 ⁇ 2 to 100 ⁇ 10 ⁇ 2 mmol/g, and (2) the melt mass flow rate of oxazoline-modified polypropylpyrene is 0. .01 to 300 g/10 minutes.
  • oxazoline group may mean the oxazoline group itself, or may mean a ring-opened oxazoline group.
  • the oxazoline group may have a substituent.
  • the content of oxazoline groups in 1 g of oxazoline-modified polypropylene is in the range of 0.1 ⁇ 10 ⁇ 2 to 100 ⁇ 10 ⁇ 2 mmol/g, and the lower limit of the range is preferably 1.0 ⁇ 10 ⁇ 2 mmol/g, more preferably 2.5 ⁇ 10 ⁇ 2 mmol/g, and the upper limit of the range is preferably 25 ⁇ 10 ⁇ 2 mmol/g, more preferably 17 ⁇ 10 ⁇ 2 mmol/g. be.
  • the range is preferably from 1.0 ⁇ 10 ⁇ 2 to 25 ⁇ 10 ⁇ 2 mmol/g, more preferably from 2.5 ⁇ 10 ⁇ 2 to 17 ⁇ 10 ⁇ 2 mmol/g.
  • the content of oxazoline groups in 1 g of oxazoline-modified polypropylene is determined by infrared (IR) spectroscopy.
  • IR infrared
  • an oxazoline-modified polypropylene is produced by modifying a maleic anhydride-modified polypropylene with an oxazoline compound, the above content is determined, for example, by the following method.
  • the content of oxazoline groups in the oxazoline-containing polypropylene homopolymer was calculated from the content of the oxazoline compound in the obtained oxazoline-containing polypropylene homopolymer.
  • the obtained sample was preheated at 210° C. for 5 minutes, and a pressure of 5 MPa was applied for 5 minutes to prepare a sample having a thickness of 300 ⁇ m by press molding.
  • the transmission spectrum of the produced molded product was measured with a Fourier transform infrared spectrophotometer (FT/IR, 6200 manufactured by JASCO Corporation) at a wavenumber of 600 to 4000 cm ⁇ 1 .
  • FT/IR Fourier transform infrared spectrophotometer
  • the absorbance derived from the oxazoline group in the oxazoline-containing polypropylene homopolymer is calculated by the following equation (1). was normalized, and the normalized absorbance was taken as ⁇ A .
  • ⁇ A and the content of oxazoline groups in the oxazoline-containing polypropylene homopolymer a calibration curve for the content of ⁇ A and oxazoline groups was prepared. From the prepared calibration curve, ⁇ A and the oxazoline group content Xmmol/g were in the relationship of the following formula (2).
  • ⁇ A IA / IB (1)
  • X 0.3849 ⁇ A (2)
  • the obtained sample was preheated at 210° C. for 5 minutes, and a pressure of 5 MPa was applied for 5 minutes to prepare a sample having a thickness of 100 ⁇ m to 300 ⁇ m by press molding.
  • the transmission spectrum of the produced press-molded body was measured with a Fourier transform infrared spectrophotometer (FT/IR, 6200 manufactured by JASCO Corporation) at a wavenumber of 600 to 4000 cm ⁇ 1 .
  • the absorbance I C at the wave number of 1655 cm ⁇ 1 of the obtained spectrum was normalized by the following equation (3) using the absorbance I D at 841 cm ⁇ 1 , and the normalized absorbance was defined as ⁇ B .
  • a press-molded product was also produced from the oxazoline-modified polypropylene by the same procedure, and the transmission spectrum was measured using FT/IR.
  • the absorbance I E at the wave number of 1655 cm -1 of the obtained spectrum and the absorbance I F at 841 cm -1 the absorbance derived from the oxazoline group in the oxazoline-modified polypropylene is normalized according to the following formula (4), and normalized.
  • the obtained absorbance was defined as ⁇ C.
  • ⁇ B and ⁇ C the absorbance ⁇ D derived from the oxazoline groups in the oxazoline-modified polypropylene was calculated according to the following equation (5).
  • oxazoline group content Y mmol/g in 1 g of oxazoline-modified polypropylene was calculated from ⁇ D and the formula (2).
  • ⁇ B I C /I D (3)
  • ⁇ C IE / IF (4)
  • ⁇ D ⁇ C ⁇ B (5)
  • Y 0.3849 ⁇ ⁇ D (mmol/g) (6)
  • melt mass flow rate of the oxazoline-modified polypyrrolpyrene ranges from 0.01 to 300 g/10 min, preferably from 0.1 to 300 g/10 min, more preferably from 0.8 to 180 g. /10 minutes.
  • melt mass flow rate means a melt mass flow rate measured at a measurement temperature of 230°C and a load of 2.16 kg according to the method specified in JIS K 7210.
  • the oxazoline-modified polypropylene of the present invention may be produced by a method comprising the following steps: - a step of melt-kneading polypropylene, an organic peroxide, and maleic acid or maleic anhydride; A step of adding an oxazoline compound and melt-kneading.
  • polypropylene and/or at least one filler may be contained during the production of the oxazoline-modified polypropylene of the present invention.
  • Oxazoline compound examples include compounds represented by the following general formula having two oxazoline groups.
  • the kneading method is not particularly limited. After supplying to a blender, a ribbon blender, etc. and kneading, the method of melt-kneading with a single screw extruder, a multi-screw extruder, a kneader, a Banbury mixer, etc. is mentioned. Among these, it is preferable to use an apparatus with excellent kneading performance such as a single-screw extruder, a multi-screw extruder, a kneader, a Banbury mixer, etc., because each component can be dispersed more uniformly.
  • the extruder is equipped with two hoppers, and polypropylene, organic peroxide, and maleic acid or maleic anhydride are supplied together from the first hopper along the flow of the resin, and the organic peroxide is supplied from the second hopper.
  • a method of supplying an oxide, an oxazoline compound and maleic acid or maleic anhydride together It is also possible to adopt any method.
  • melt-kneading is preferably carried out at 120 to 300°C, more preferably 180 to 280°C, still more preferably 200 to 270°C.
  • the ethylene-based elastomer (component 4) used in the present invention is an ethylene-propylene copolymer or an ethylene- ⁇ -olefin copolymer containing a C4-12 ⁇ -olefin structural unit, and the content of the ethylene structural unit is is 51% by weight or more, preferably 55% by weight or more.
  • the ethylene structural unit content is preferably 95% by weight or less, more preferably 90% by weight or less.
  • the C 4-12 ⁇ -olefins are preferably 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene and 1-decene, more preferably 1-butene, 1- hexene and 1-octene.
  • the ethylene-based elastomer (component 4) used in the present invention is preferably an ethylene-propylene copolymer, an ethylene-1-butene copolymer, an ethylene-1-octene copolymer, more preferably an ethylene-1- They are butene copolymers and ethylene-1-octene copolymers.
  • ethylene structural units in ethylene elastomer (component 4) (unit: % by weight) Measurements were carried out by nuclear magnetic resonance spectroscopy (NMR) under the following conditions (1) to (7), and described in the literature (JMS-REV.MACROMOL.CHEM.PHYS., C29, 201-317 (1989)). The content of monomer units derived from ethylene in the ethylene copolymer was determined according to the method of No. 2 (provided that the total amount of the ethylene copolymer was 100% by weight).
  • the melt mass flow rate (MFR) of the ethylene- ⁇ -olefin copolymer used in the present invention at a temperature of 190° C. and a load of 2.16 kg is preferably in the range of 0.1 to 50 g/10 minutes, more preferably. is 0.1 to 40 g/10 min, more preferably 0.1 to 35 g/10 min, even more preferably 0.2 to 30 g/10 min.
  • the density (d) of the ethylene- ⁇ -olefin copolymer used in the present invention is preferably in the range of 850-890 kg/m 3 , more preferably 850-875 kg/m 3 .
  • Preferred methods for producing the ethylene- ⁇ -olefin copolymer used in the present invention include known polymerization methods using known olefin polymerization catalysts, such as Ziegler-Natta catalysts, metallocene complexes and non-metallocene complexes. Slurry polymerization method, solution polymerization method, bulk polymerization method, vapor phase polymerization method and the like using a complex catalyst such as
  • the weight of component 1 is 100 parts by weight
  • the weight of component 2 is in the range of 1 to 200 parts by weight, preferably in the range of 1 to 150 parts by weight, more preferably in the range of 1 to 80 parts by weight.
  • the weight of component 3 is in the range of 1 to 100 parts by weight, preferably in the range of 1 to 80 parts by weight, more preferably in the range of 1 to 30 parts by weight.
  • the weight of Component 4 ranges from 1 to 200 parts by weight, preferably from 1 to 150 parts by weight, more preferably from 1 to 80 parts by weight.
  • the content of the C—O bond is in the range of 1 to 26%, more preferably in the range of 4 to 20%, still more preferably in the range of 100% of the total spectral area of each of the C—C bond and the C—N bond. is in the range of 7-17%.
  • the total content of C ⁇ O bonds and OC ⁇ O bonds is preferably in the range of 2 to 15%, more preferably in the range of 4 to 11%, still more preferably in the range of 4 to 7%.
  • Each bond amount on the carbon fiber surface can be measured by an X-ray photoelectron spectroscopy device. If necessary, pretreatment such as removal of unreacted sizing agent may be performed before measurement. Characteristic X-rays such as monochromatic Al K ⁇ rays (1486.6 eV) and Mg K ⁇ rays (1253.6 eV) can be used as excitation sources. The resulting spectrum can be separated into individual bonds by known methods. For example, the amount of each binding component on the carbon fiber surface can be calculated by the method described in Examples.
  • the carbon fiber-containing polypropylene composition of the present invention is used, for example, to produce a molded article by the following method.
  • the method for producing a molded article include a method for producing a molded article having a step of melting the polypropylene composition and molding to obtain a molded article.
  • the molding method includes an extrusion molding method and an injection molding method. By extrusion molding, for example, a sheet-like molded body is obtained.
  • An injection molded article is obtained by injection molding.
  • injection molding methods include general injection molding, injection foam molding, supercritical injection foam molding, ultra-high speed injection molding, injection compression molding, gas-assisted injection molding, sandwich molding, and sandwich foam.
  • a molding method and an insert/outsert molding method can be mentioned.
  • the carbon fiber-containing polypropylene composition and molded article of the present invention can be used, for example, as automobile parts such as automobile interior parts and exterior parts.
  • the set temperature of the high-speed solvent extractor ASE-200 manufactured by Dionex was set to 80 ° C., 0.2 g of carbon fiber was placed in an extraction cell container with a volume of 11 ml, and installed in the high-speed solvent extractor ASE-200. . After 11 ml of tetrahydrofuran (Kanto Kagaku, special grade, containing no stabilizer) was injected into the extraction cell container, the pressure inside the extraction cell container was increased to 1000 psi and maintained for 15 minutes.
  • XPS X-Ray Photoelectron Spectroscopy
  • Polypropylene (Component 1) (1-1) Heterophagic polymerization material 1 (Noblen WPX5343 manufactured by Sumitomo Chemical Co., Ltd.) MFR: 60 g/10 minutes Melting peak temperature: 163.5°C [ ⁇ cxs]: 5.3dl/g [ ⁇ cxs]/[ ⁇ cxis]: 4.5 Isotactic pentad fraction: 0.98 Content of propylene homopolymer component (I): 87% by weight Content of ethylene-propylene copolymer component (II): 13% by weight Content of ethylene-derived monomer in ethylene-propylene copolymer component (II): 35% by weight Content of propylene-derived monomer in ethylene-propylene copolymer component (II): 65% by weight
  • Modified polypropylene (component 3) (3-1) Modified polypropylene 1: Maleic anhydride-modified polypropylene Maleic anhydride-modified polypropylene described in Synthesis Example 2 described in WO2020/009090
  • MFR 230° C., 2.16 kg load
  • Modified polypropylene 4 Oxazoline-modified polypropylene Synthesis example of oxazoline-modified polypropylene 100 parts by mass of the maleic anhydride-modified polypropylene (modified polypropylene 1) synthesized above and an oxazoline compound (manufactured by Mikuni Pharmaceutical Industry Co., Ltd., trade name 1.4 parts by mass of CP resin A 1,3-PBO), 0.2 parts by mass of antioxidant 1 (Sumilizer GA80 manufactured by Sumitomo Chemical Co., Ltd.), and antioxidant 2 (Sumilizer GP manufactured by Sumitomo Chemical Co., Ltd.
  • oxazoline-modified polypropylene 100 parts by mass of the maleic anhydride-modified polypropylene (modified polypropylene 1) synthesized above and an oxazoline compound (manufactured by Mikuni Pharmaceutical Industry Co., Ltd., trade name 1.4 parts by mass of CP resin A 1,3-PBO), 0.2 parts by mass of antioxidant
  • Ethylene- ⁇ -olefin copolymer (component 4) (4-1) Ethylene-1-octene copolymer 1 (EG8842 manufactured by Dow Chemical Co.) Density: 0.857g/ cm3 MFR: 1.0 g/10 min Content of ethylene structural unit: 59% by weight calculated according to the method.)
  • Ethylene-1-octene copolymer 2 (EG8100 manufactured by Dow Chemical Co.) Density: 0.870g/ cm3 MFR: 1.0 g/10 min Content of ethylene structural unit: 66% by weight calculated according to the method.)
  • Ethylene-1-butene copolymer 1 (EG7467 manufactured by Dow Chemical Co.) Density: 0.862g/ cm3 MFR: 1.0 g/10 min Content of ethylene structural unit: 69% by weight calculated according to the method.)
  • Antioxidant 3 (Irganox 1010 manufactured by BASF Japan Ltd.)
  • Antioxidant 4 (Irgafos 168 manufactured by BASF Japan Ltd.)
  • Example 1 Heterophagic polymerization material 1 100 parts by weight, modified polypropylene 1 9 parts by weight * 1 , carbon fiber 1 36 parts by weight * 1 , ethylene- ⁇ -olefin copolymer 1 36 parts by weight * 1 , antioxidant 3 0.2 parts by weight *2 and antioxidant 4 0.2 parts by weight *2 were mixed to obtain a mixture.
  • *1 is the weight per 100 parts by weight of the heterophasic polymer material
  • *2 is the total 100 weight of the heterophasic polymer material 1, the modified polypropylene 1, the carbon fiber 1, and the ethylene- ⁇ -olefin copolymer. It is the weight for the part.
  • the mixture is melt-kneaded with a 40 mm single screw extruder (VS40-28 type vent type extruder, manufactured by Tanabe Plastics Co., Ltd.) at a cylinder temperature of 220 ° C. and a screw rotation speed of 100 rpm, pelletized, and a carbon fiber-containing polypropylene composition. got stuff
  • the obtained carbon fiber-containing polypropylene composition is injection molded using an injection molding machine (M-70CSJ manufactured by Meiki Seisakusho Co., Ltd.) under the conditions of a cylinder temperature of 220 ° C., a mold temperature of 50 ° C., and an injection speed of 20 mm / sec. was performed to obtain an injection molded body of an ISO test piece.
  • Examples 2-11 and Comparative Examples 1-2 Carbon fiber-containing polypropylene compositions of Examples 2 to 11 and Comparative Examples 1 and 2 were produced in the same manner as in Example 1, except that the materials shown in Table 1 were used.
  • melt mass flow rate (unit: g/10 minutes) The melt mass flow rate was measured at a measurement temperature of 230° C. and a load of 2.16 kg according to the method specified in JIS K 7210.
  • Notched Charpy impact strength (unit: kJ/m 2 ) A molded body molded by the molding method described in the above "melt kneading and production of injection molded body" is cut into a size of 80 mm ⁇ 10 mm ⁇ 4 mm, notched and used as a test piece, ISO 179-1 Notched Charpy impact strength by edgewise impact was measured according to the method specified in . The shape of the notch was shape A described in ISO 179-1.
  • HDT Deflection temperature under load
  • the carbon fiber-containing polypropylene composition of the present invention and a molded article containing the composition exhibit good mechanical strength, and the composition exhibits good workability. , is preferably used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

軽量でありかつ力学強度及び加工性が向上された繊維強化ポリプロポレン組成物を提供する。ポリプロピレン(成分1)と炭素繊維(成分2)と変性ポリプロピレン(成分3)とエチレン系エラストマー(成分4)を所定の含有量で含む炭素繊維含有ポリプロポレン組成物であって、成分1が所定の融解ピーク温度を有し、成分2がC-O結合、C=O結合、O-C=O結合、C-C結合、及びC-N結合を含み、C-O結合、C=O結合、O-C=O結合、C-C結合、及びC-N結合の合計に対して、C-O結合を所定の量で含む、組成物。

Description

炭素繊維含有ポリプロピレン組成物
 本発明は、炭素繊維含有ポリプロピレン組成物及び該組成物を含む成形体に関する。
 自動車部材には、ポリプロピレン組成物からなる部材が用いられており、その部材の力学強度を向上させるために、ポリプロピレンにガラス繊維を混錬した組成物からなる部材が用いられている。
 しかし、自動車部材には軽量化が求められていることから、ガラス繊維より比重が小さい炭素繊維を利用すること、さらに最近は、リサイクル炭素繊維を利用することが注目されている。
 炭素繊維は、その1本は直径約7μmの繊維であり、通常、その表面にサイジング剤が付与されて数千本から数万本の束として用いられる。そして、その束を3~6mmの長さに切断して、ポリプロピレンに混錬して用いられる。そのサイジング剤としては、ポリプロピレン、エポキシ化合物やウレタン化合物が用いられている。
 リサイクル炭素繊維について、使用された炭素繊維(例えば、航空機に使用されたもの)は焼成した後、再利用されうる。
特開2016-160294号公報
 本発明は、繊維強化ポリプロピレン組成物の力学強度及び加工性を向上させるという課題を解決しようとするものである。
 本発明者は、炭素繊維を用いてポリプロピレン組成物を含む部材の力学強度、及びポリプロピレン組成物の加工性を向上させようとして、炭素繊維とポリプロピレンの界面に注目し、特に炭素繊維の表面を検討して本発明を見出した。
 具体的には、ポリプロピレン組成物を強化するために炭素繊維を用いることによって軽量化を図り、さらに、炭素繊維の表面に特定の結合とその含有量を有することを特徴とすることによって、組成物又はその組成物を含む成形体(自動車部材等)の引張強度、曲げ強度、シャルピー衝撃強さ及び荷重たわみ温度(HDT)及びポリプロピレン組成物の加工性の少なくとも1を高くすることを見出した。
 本発明は以下に関するが、それに限定されない。
[発明1]
 ポリプロピレン(成分1)と炭素繊維(成分2)と変性ポリプロピレン(成分3)とエチレン系エラストマー(成分4)を含み、以下の要件の全てを充足する炭素繊維含有ポリプロピレン組成物:
 要件1:成分1の重量を100重量部として、成分2の重量が1~200重量部の範囲であり、成分3の重量が1~100重量部の範囲であり、成分4の重量が1~200重量部であり;
 要件2:成分1は、融解ピーク温度が155℃以上であり、
 要件3:成分2は、C-O結合、C=O結合、O-C=O結合、C-C結合及びC-N結合を含み、C-O結合、C=O結合、O-C=O結合、C-C結合及びC-N結合のそれぞれのスペクトル面積の合計を100%として、C-O結合の含有量が1~26%の範囲である。
[発明2]
 成分1が、プロピレン単独重合部とエチレン-プロピレン共重合部とからなるヘテロファジック重合材料である、請求項1に記載の炭素繊維含有ポリプロピレン組成物。
[発明3]
 成分3が、無水マレイン酸変性ポリプロピレン、エポキシ変性ポリプロピレン、カルボジイミド変性ポリプロピレン、及びオキサゾリン変性ポリプロピレンからなる群から選ばれる少なくとも1種の変性ポリプロピレンである、請求項1または2に記載の炭素繊維含有ポリプロピレン組成物。
[発明4]
 成分4が、エチレン-プロピレン共重合体またはC4~12のα-オレフィン構造単位を含むエチレン-α-オレフィン共重合体であり、密度が0.85~0.90g/cmの範囲であり、メルトマスフローレイト(温度190℃、荷重2.16kg)が0.01~50g/10分の範囲である、請求項1~3のいずれかに記載の炭素繊維含有ポリプロピレン組成物。
[発明5]
 請求項1~4のいずれかに記載の炭素繊維含有ポリプロピレン組成物を含む成形体。
 ポリプロピレン組成物の製造に炭素繊維を用いることによって、繊維強化ポリプロピレン組成物及びその組成物を含む成形体の軽量化に成功し、さらに、ポリプロピレン組成物が本発明の特徴を備えることによって、繊維強化ポリプロピレン組成物及びその組成物を含む成形体の力学強度、及び繊維強化ポリプロピレン組成物の加工性の向上に成功した。
定義
 本明細書において開示されている全ての数は、「約」又は「概ね」という単語がそれと関連して使用されようとなかろうと、近似値である。それらは、1パーセント、2パーセント、5パーセント、又は時には10~20パーセントで変動してもよい。下限R及び上限Rを伴う数値の範囲が開示されている場合はいつも、範囲に含まれる任意の数が特に開示される。特に、範囲内の下記の数が特に開示される。R=R+k(R-R)(式中、kは、1パーセントずつ増加する1パーセント~100パーセントの範囲の変数であり、すなわち、kは、1パーセント、2パーセント、3パーセント、4パーセント、5パーセント、...、50パーセント、51パーセント、52パーセント、...、95パーセント、96パーセント、97パーセント、98パーセント、99パーセント、又は100パーセントである)。さらに、上記に記載の2つのRの数によって定義される任意の数値の範囲もまた、特に開示される。
 数値範囲を表す「下限~上限」の記載は、「下限以上、上限以下」を表し、「上限~下限」の記載は、「上限以下、下限以上」を表す。すなわち、これらの記載は、下限及び上限を含む数値範囲を表す。
 以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
炭素繊維含有ポリプロピレン組成物
 本発明の炭素繊維含有ポリプロピレン組成物は、ポリプロピレン(「成分1」と称することもある)と炭素繊維(「成分2」と称することもある)と変性ポリプロピレン(「成分3」と称することもある)とエチレン系エラストマー(「成分4」と称することもある)を含む。
ポリプロピレン(成分1)
 ポリプロピレン(成分1)とはプロピレンに由来する単量体単位を50重量%以上含有する重合体を意味し、例えば以下が挙げられる:
 プロピレン単独重合体、
 プロピレン-エチレンランダム共重合体、
 プロピレン-α-オレフィンランダム共重合体、
 プロピレン-エチレン-α-オレフィン共重合体、
 プロピレン単独重合体成分又は主にプロピレンからなる共重合体成分(以下、重合体成分Iと称することもある)と、エチレン及びα-オレフィンから選択されるモノマーの少なくとも1種とプロピレンとを共重合して得られる共重合体成分(以下、重合体成分IIと称することもある)とからなるヘテロファジックプロピレン重合材料。
 これらのポリプロピレンは単独で使用してもよく、少なくとも2種を併用してもよい。
 ポリプロピレン(成分1)の製造に用いられるα-オレフィンとして、好ましくは1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセンが挙げられ、より好ましくは1-ブテン、1-ヘキセン、1-オクテンが挙げられる。
 前記プロピレン-α-オレフィンランダム共重合体としては、例えば、プロピレン-1-ブテンランダム共重合体、プロピレン-1-ヘキセンランダム共重合体、プロピレン-1-オクテンランダム共重合体等が挙げられる。
 前記プロピレン-エチレン-α-オレフィン共重合体としては、例えば、プロピレン-エチレン-1-ブテン共重合体、プロピレン-エチレン-1-ヘキセン共重合体、プロピレン-エチレン-1-オクテン共重合体等が挙げられる。
 前記プロピレン-エチレンランダム共重合体、プロピレン-α-オレフィンランダム共重合体、プロピレン-エチレン-α-オレフィン共重合体に含有されるエチレン又はα-オレフィンの含有量は、通常0.01~30重量%であり、好ましくは0.1~20重量%である。ただし、前記共重合体の全量を100重量%とする。
 前記ヘテロファジックプロピレン重合材料の前記重合体成分Iが主にプロピレンからなる共重合体成分である場合、前記重合体成分Iには、エチレン及びC4~12(炭素原子数4~12)のα-オレフィンから選択される少なくとも1種のオレフィンが含有され、その含有量は、通常0.01~30重量%である。ただし、前記重合体成分Iの全量を100重量%とする。
 前記重合体成分Iが主にプロピレンからなる共重合体成分である場合、例えば、プロピレン-エチレン共重合体成分、プロピレン-1-ブテン共重合体成分、プロピレン-1-ヘキセン共重合体成分等が挙げられる。
 前記ヘテロファジックプロピレン重合材料の前記重合体成分IIとしては、例えば、プロピレン-エチレン共重合体成分、プロピレン-エチレン-1-ブテン共重合体成分、プロピレン-エチレン-1-ヘキセン共重合体成分、プロピレン-エチレン-1-オクテン共重合体成分、プロピレン-1-ブテン共重合体成分、プロピレン-1-ヘキセン共重合体成分、プロピレン-1-オクテン共重合体成分等が挙げられる。
 前記重合体成分IIに含有されるエチレン及びC4~12のα-オレフィンから選択される少なくとも1種のオレフィンの含有量は、通常1~50重量%であり、好ましくは10~40重量%、さらに好ましくは20~35重量%である。ただし、前記重合体成分IIの全量を100重量%とする。エチレン及びC4~12のα-オレフィンから選択される少なくとも1種のオレフィンの含有量は赤外分光法により求めることができる。
 前記ヘテロファジックプロピレン重合材料に含有される重合体成分IIの含有量は、通常1~70重量%であり、好ましくは5~50重量%、さらに好ましくは10~40重量%である。ただし、前記ヘテロファジックプロピレン重合材料の全量を100重量%とする。
 前記重合体成分Iと前記重合体成分IIからなるヘテロファジックプロピレン重合材料としては、例えば以下が挙げられる:
 (プロピレン)-(プロピレン-エチレン)重合材料、
 (プロピレン)-(プロピレン-エチレン-1-ブテン)重合材料、
 (プロピレン)-(プロピレン-エチレン-1-ヘキセン)重合材料、
 (プロピレン)-(プロピレン-1-ブテン)重合材料、
 (プロピレン)-(プロピレン-1-ヘキセン)重合材料、
 (プロピレン-エチレン)-(プロピレン-エチレン)重合材料、
 (プロピレン-エチレン)-(プロピレン-エチレン-1-ブテン)重合材料、
 (プロピレン-エチレン)-(プロピレン-エチレン-1-ヘキセン)重合材料、
 (プロピレン-エチレン)-(プロピレン-1-ブテン)重合材料、
 (プロピレン-エチレン)-(プロピレン-1-ヘキセン)重合材料、
 (プロピレン-1-ブテン)-(プロピレン-エチレン)重合材料、
 (プロピレン-1-ブテン)-(プロピレン-エチレン-1-ブテン)重合材料、
 (プロピレン-1-ブテン)-(プロピレン-エチレン-1-ヘキセン)重合材料、
 (プロピレン-1-ブテン)-(プロピレン-1-ブテン)重合材料、
 (プロピレン-1-ブテン)-(プロピレン-1-ヘキセン)重合材料。
 前記ヘテロファジックプロピレン重合材料は、20℃のキシレンに可溶の成分の固有粘度(135℃、テトラリン)[ηcxs]が2~10であり、4.5~8が好ましく、4.5~7がさらに好ましく、さらに、[ηcxs]と20℃のキシレンに不溶の成分の固有粘度(135℃、テトラリン)[ηcxis]との比([ηcxs]/[ηcxis])が2~10であるものが好ましく、該[ηcxs]/[ηcxis]が4~8であるものがより好ましい。固有粘度は、ウベローデ型粘度計を用いて、135℃のテトラリン中で還元粘度を測定し、「高分子溶液、高分子実験学11」(1982年共立出版株式会社刊)第491頁に記載の計算方法に従って外挿法によって求められる。ここで、20℃のキシレン可溶部(CXS部)と、20℃のキシレン不溶部(CXIS部)とは、次の方法により得ることができる。成分(A)約5gを沸騰キシレン500mlに完全に溶解した後、キシレン溶液を室温まで徐冷し、20℃で4時間以上状態調整し、析出物と溶液とをろ別する。析出物をCXIS部として得、CXS部は、溶液から溶媒を除去して、溶液中に溶解している重合体を回収することにより得ることができる。
 前記ヘテロファジックプロピレン重合材料の融解ピーク温度は、好ましくは155℃以上であり、より好ましくは160℃以上ある。また、該融解ピーク温度は、通常175℃以下である。融解ピーク温度は、示差走査熱量計により測定される昇温時の示差走査熱量曲線において、ピーク温度が最も大きい吸熱ピークのピーク温度である。示差走査熱量計による示差走査熱量曲線の測定は、次の条件で行い、昇温操作での示差走査熱量曲線から融解温度を求める。
<測定条件>
 降温操作:220℃で融解させ、次に、220℃から-90℃まで5℃/分の降温速度で降温した。
 昇温操作:降温の操作後、直ちに-90℃から200℃まで5℃/分で昇温する。
 ポリプロピレン(成分1)のメルトマスフローレイト(温度230℃、荷重2.16kg)は、得られる成形体の外観および引張破断伸びの観点から、好ましくは10~300g/10分であり、より好ましくは20~200g/10分である。前記メルトマスフローレイトは、JIS K7210に従って、温度230℃、荷重2.16kgの条件で測定される。
 ポリプロピレン(成分1)の製造方法としては、公知のオレフィン重合用触媒を用いた公知の重合方法が用いられる。例えば、チーグラー・ナッタ系触媒を用いた多段重合法をあげることができる。該多段重合法には、スラリー重合法、溶液重合法、塊状重合法、気相重合法等を用いることができ、これらを2種以上組み合わせてもよい。また、市販の該当品を用いることも可能である。
炭素繊維(成分2)
 炭素繊維(成分2)は、従来公知の種々の炭素繊維を使用することができる。具体的には、ポリアクリルニトリル系、レーヨン系、ピッチ系、ポリビニルアルコール系、再生セルロース系、メゾフェーズピッチから製造されたピッチ系等の炭素繊維が挙げられる。
 成分2の繊維径は特に限定されないが、繊維の強化、強化繊維束の生産性の向上、ペレットの連続製造の際の繊維束をつなぐ手間の低減及び生産性の向上のためには、好ましくは3μm以上、より好ましくは8μm以上である。また、ペレット長が決まっている場合における繊維のアスペクト比の向上のためには、前記繊維径は、好ましくは30μm以下、より好ましくは20μm以下である。
 成分2のアスペクト比は特に限定されないが、繊維の強化のためには、5以上が好ましい。また、成形性の向上のためには、前記アスペクト比は6000以下が好ましい。成分2のアスペクト比は、平均繊維径と平均繊維長から、(平均繊維長)÷(平均繊維径)によって求めることができる。
 成分2の原料としては、連続状繊維束が用いられ、これはトウとして市販されている。通常、その平均繊維径は3~30μm、フィラメント集束本数は500~24,000本である。好ましくは平均繊維径4~10μm、集束本数6,000~15,000本である。
 他に、成分2として、チョップドストランドを用いることもできる。このチョップドストランドの長さは通常1~20mm、径は3~30μm程度、好ましくは4~10μmである。
 本発明の炭素繊維含有ポリプロピレン組成物を構成する成分2の繊維長は、通常、0.05~200mm、好ましくは0.2~50mm、より好ましくは4~20mmである。
 成分2の平均アスペクト比(繊維長/繊維径)は、通常、5~6000、好ましくは10~3000、より好ましくは15~2000である。
 成分2の表面は、酸化エッチングや被覆などで表面処理を行ったものが好ましい。酸化エッチング処理としては、空気酸化処理、酸素処理、酸化性ガスによる処理、オゾンによる処理、コロナ処理、火炎処理、(大気圧)プラズマ処理、酸化性液体(硝酸、次亜塩素酸アルカリ金属塩の水溶液、重クロム酸カリウム-硫酸、過マンガン酸カリウム-硫酸)等が挙げられる。炭素繊維を被覆する物質としては、炭素、炭化珪素、二酸化珪素、珪素、プラズマモノマー、フェロセン、三塩化鉄等が挙げられる。
 また、必要に応じてウレタン系、オレフィン系(ポリプロピレンなど)、アクリル系、ナイロン系、ブタジエン系及びエポキシ系(特殊エポキシ含む)、ポリエステル系等のサイジング剤を使用してもよい。
 炭素繊維(バージン炭素繊維)を含む炭素繊維強化プラスチック(以下、CFRP)は、比強度や比弾性率といった力学的特性に優れていることから、航空・宇宙用途や、釣竿、ゴルフシャフト、テニスラケット等のスポーツ・レジャー用途、その他の用途において広く用いられている。炭素繊維(バージン炭素繊維)は、ポリアクリロニトリル繊維等のプリカーサー繊維を1000~3000℃で焼成して得られる。
 リサイクル炭素繊維は、CFRPのマトリックス樹脂を熱分解法により、約500℃で熱分解することで得られ、有効に再利用することができる。リサイクル炭素繊維の製造に必要なエネルギー(熱量)は、バージン炭素繊維の製造に必要なエネルギー(熱量)よりも小さい(少ない)ことから、リサイクル炭素繊維の利用は、環境負荷低減に大きく貢献できるという観点で好ましい。
変性ポリプロピレン(成分3)
 変性ポリプロピレン(成分3)としては、極性を付与するようポリプロピレンを変性したものであれば特に限定されないが、例えば(無水)カルボン酸、エポキシド、オキサゾリン、イソシアネート、カルボジイミド等で変性したポリプロピレンが挙げられ、好ましくは、無水マレイン酸変性ポリプロピレン、カルボジイミド変性ポリプロピレン、エポキシ変性ポリプロピレン、オキサゾリン変性ポリプロピレンが挙げられる。
無水マレイン酸変性ポリプロピレン(ポリプロピレンMM)
 成分2としての無水マレイン酸変性ポリプロピレン(ポリプロピレンMMと称することもある)としては、例えば以下の1~4が挙げられる:
1.プロピレンの単独重合体に、不飽和カルボン酸及び/又はその誘導体をグラフト重合して得られる変性ポリプロピレン、
2.少なくとも2種の単量体からなるプロピレン共重合体に、不飽和カルボン酸及び/又はその誘導体をグラフト重合して得られる変性ポリプロピレン、
3.プロピレンを単独重合した後に少なくとも2種のオレフィンを共重合して得られるブロック共重合体に、不飽和カルボン酸及び/又はその誘導体をグラフト重合して得られる変性プロピレン、
4.プロピレンと、任意で少なくとも1種のオレフィンと、不飽和カルボン酸及び/又はその誘導体をランダム共重合あるいはブロック共重合して得られる変性ポリプロピレン。
 ポリプロピレンMMの製造には、例えば、“実用 ポリマーアロイ設計”(井出文雄著、工業調査会(1996))、Prog. Polym. Sci.,24,81-142(1999)、特開2002-308947号公報等に記載されている方法など、種々の方法を用いることができる。すなわち、溶液法、バルク法、溶融混練法のいずれの方法を用いてもよい。また、これらの方法を組み合わせて用いてもよい。
 ポリプロピレンMMの製造に用いられる不飽和カルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸、アクリル酸、メタクリル酸等が挙げられる。また、不飽和カルボン酸の誘導体としては、前記の不飽和カルボン酸から誘導される酸無水物、エステル化合物、アミド化合物、イミド化合物、金属塩等が挙げられ、その具体例としては、無水マレイン酸、無水イタコン酸、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸グリシジル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸グリシジル、マレイン酸モノエチルエステル、マレイン酸ジエチルエステル、フマル酸モノメチルエステル、フマル酸ジメチルエステル、アクリルアミド、メタクリルアミド、マレイン酸モノアミド、マレイン酸ジアミド、フマル酸モノアミド、マレイミド、N-ブチルマレイミド、メタクリル酸ナトリウム等が挙げられる。また、クエン酸やリンゴ酸のように、ポリプロピレンにグラフト重合する工程で脱水して不飽和カルボン酸を生じる化合物を用いてもよい。
 不飽和カルボン酸及び/又はその誘導体として、好ましくはアクリル酸、メタクリル酸のグリシジルエステル、無水マレイン酸である。
 ポリプロピレンMMとして好ましくは、
(1)プロピレン単量体と、任意でエチレン単量体とを主な構成単位とするポリプロピレンに、無水マレイン酸をグラフト重合することによって得られる変性ポリプロピレン、
(2)プロピレン単量体と、任意でエチレン単量体とを主な成分とするオレフィンと、メタクリル酸グリシジルエステル又は無水マレイン酸とを共重合することによって得られる変性ポリプロピレン、
が挙げられる。
 また、繊維強化樹脂成形品の衝撃強度、疲労特性、剛性等の機械的強度の観点から、ポリプロピレンMMとして好ましくは、不飽和カルボン酸及び/又はその誘導体に由来する重合単量体単位を0.01~10重量%含有する無水マレイン酸変性ポリプロピレンである。特に、不飽和カルボン酸及び/又はその誘導体を用いて、ランダム共重合あるいはブロック共重合によって得られるポリプロピレンMMの場合には、不飽和カルボン酸及び/又はその誘導体に由来する重合単量体単位の含有量は3~10重量%が好ましく、グラフト重合によって得られるポリプロピレンMMの場合には、不飽和カルボン酸及び/又はその誘導体に由来する重合単量体単位の含有量は0.01~10重量%が好ましく、0.05~0.9重量%がより好ましい。
カルボジイミド変性ポリプロピレン(ポリプロピレンCM)
 カルボジイミド変性ポリプロピレン(ポリプロピレンCMと称することもある)は、カルボジイミド基と反応する基を有するポリプロピレン(重合体C´と称することもある)と、カルボジイミド基含有化合物(化合物Cと称することもある)とを反応させることにより得られる。具体的には、両者を溶融混練するなどの方法が挙げられる。
 以下に、溶融混練する場合の例を示す。重合体C´と、化合物Cとを溶融混練する方法としては、重合体C´と化合物Cを同時に、又は逐次的に、たとえばヘンシェルミキサー、V型ブレンダー、タンブラーブレンダー、リボンブレンダーなどに装入して混練した後、単軸押出機、多軸押出機、ニーダー、バンバリーミキサーなどで溶融混練する方法が例示できる。これらのうちでも、多軸押出機、ニーダー、バンバリーミキサーなどの混練性能に優れた装置を使用すると、各成分がより均一に分散・反応された重合体組成物を得ることができるため好ましい。
 押出機を用いて溶融混練を行う場合、重合体C´と化合物Cは、予め混合した後にホッパーから供給してもよいし、一部の成分をホッパーから供給し、ホッパー部付近から押出機先端の間の任意の部分に設置した供給口よりその他の成分を供給してもよい。
 上記各成分を溶融混練する際の温度は、混合する各成分の融解ピーク温度のうち、最も高い融解ピーク温度以上とする。具体的には、好ましくは150~300℃、より好ましくは200~280℃、更に好ましくは230~270℃の範囲で溶融混練を行う。
 ポリプロピレンCMは190℃又は230℃での流動性に優れるものである。ポリプロピレンCMの、温度190℃又は230℃、荷重2.16kgにおけるメルトマスフローレイト(MFR)は、好ましくは0.01~400g/10分、より好ましくは0.1~300g/10分、更に好ましくは1~200g/10分の範囲である。このような範囲にあると、強化繊維の補強性や分散性に優れ、好ましい。
 ポリプロピレンCMの製造には、例えば、“実用 ポリマーアロイ設計”(井出文雄著、工業調査会(1996))、Prog. Polym. Sci.,24,81-142(1999)など、種々の方法を用いることができる。すなわち、溶液法、バルク法、溶融混練法のいずれの方法を用いてもよい。また、これらの方法を組み合わせて用いてもよい。
 ポリプロピレンCMを製造するにあたり、重合体C´中のカルボジイミド基と反応する基のモル数と、化合物Cのモル数の比を、1:0.2~10.0、好ましくは1:0.4~8、更に好ましくは1:2~8を満たす配合比にすることで、重合体C´と化合物Cの反応効率が高く、かつ、流動性に優れるポリプロピレンCMが得られる点で好ましい。
 また、ポリプロピレンCMは、ポリプロピレンCM100gに対し、カルボジイミド基の含有量は特に限定されないが、強化繊維の補強効果や耐水劣化性の向上効果を高めるために、好ましくは1mmol以上、より好ましくは5mmol以上、さらに好ましくは10mmol以上である。また、成形加工性、強化繊維の補強効果、分散性の向上効果、経済性を高めるためには、前記含有量は、好ましくは200mmol以下、より好ましくは150mmol以下、さらに好ましくは100mmol以下である。かかる観点で、ポリプロピレンCMを製造する際には、ポリプロピレンCM中のカルボジイミド基の含有量が上記範囲となるように、化合物Cの配合量を調整するのが良い。
 さらに、ポリプロピレンCMを製造するにあたり、重合体C´中のカルボジイミド基と反応する基と、化合物C中のカルボジイミド基との反応の制御も重要である。重合体C´中のカルボジイミド基と反応する基と、化合物C中のカルボジイミド基との反応の進行度合いは、例えば、以下の方法により調査することが可能である。
 重合体C´、及び反応により得られたポリプロピレンCMの熱プレスシ-トをそれぞれ作製した後に、赤外吸収分析装置を用いて赤外線吸収を測定する。得られたチャートから、重合体C´及びポリプロピレンCM中のカルボジイミド基と反応する基を有する化合物のピーク強度に起因する吸収帯(無水マレイン酸を用いた場合は、1790cm-1)の吸光度の、反応前後の吸光度を比較して、下記式を用いて反応率を計算できる。
  反応率(%)=X/Y×100
   X=反応前重合体C´のカルボジイミド基と反応する基の吸光度-反応後ポリプロピレンCMのカルボジイミド基と反応する基の吸光度
   Y=反応前重合体C´のカルボジイミド基と反応する基の吸光度
 ポリプロピレンCMについて上記方法で求めた反応率は、好ましくは20~100%、より好ましくは25~100%、更に好ましくは40~100%の範囲にある。
 また、ポリプロピレンCMは、上記のように化合物Cのカルボジイミド基(N=C=N)が、重合体C´中のカルボジイミド基と反応する基と反応することで製造されるが、ポリプロピレンと結合している化合物Cに由来するカルボジイミド残基が重合体C´中に存在してもよく、それが強化繊維と相互作用し、補強性や分散性に寄与する。このカルボジイミド残基量は、IR測定で2130~2140cm-1にあるN=C=N基の収縮振動に起因するピークの大きさとして捉えることが可能である。
 ポリプロピレンCMは、2種以上の重合体C´を含んでいてもよく、2種以上の化合物Cを含んでいてもよい。
 また、ポリプロピレンCMには、本発明の目的を損なわない範囲で、公知のプロセス安定剤、耐熱安定剤、耐熱老化剤等を添加することも可能である。
カルボジイミド基と反応する基を有するポリプロピレン(重合体C´)
 カルボジイミド基と反応する基を有するポリプロピレン(重合体C´)は、ポリプロピレンに、カルボジイミド基と反応する化合物を導入することにより得ることができる。
 カルボジイミド基と反応する化合物としては、カルボジイミド基との反応性を有する活性水素を持つ基を有する化合物が挙げられ、具体的には、カルボン酸、アミン、アルコール、チオール等から由来する基を持つ化合物である。これらの中では、カルボン酸から由来する基を持つ化合物が好適に用いられ、中でも特に不飽和カルボン酸及び/又はその誘導体が好ましい。また、活性水素を持つ基を有する化合物以外でも、水などにより容易に活性水素を有する基に変換される基を有する化合物も好ましく使用することができる。具体的にはエポキシ基、グリシジル基を有する化合物が挙げられる。本発明において、カルボジイミド基と反応する化合物は、1種単独で用いても、2種以上を併用してもよい。
 カルボジイミド基と反応する化合物として不飽和カルボン酸及び/又はその誘導体を用いる場合、カルボン酸基を1以上有する不飽和化合物、無水カルボン酸基を1以上有する不飽和化合物及びそれらの誘導体を挙げることができる。不飽和基としては、ビニル基、ビニレン基、不飽和環状炭化水素基などを挙げることができる。具体例としては、アクリル酸、メタクリル酸、マレイン酸、フマル酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、ノルボルネンジカルボン酸、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸などの不飽和カルボン酸、又はこれらの酸無水物あるいはこれらの誘導体(例えば酸ハライド、アミド、イミド、エステルなど)が挙げられる。具体的な化合物の例としては、塩化マレニル、マレニルイミド、無水マレイン酸、無水イタコン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸無水物、マレイン酸ジメチル、マレイン酸モノメチル、マレイン酸ジエチル、フマル酸ジエチル、イタコン酸ジメチル、シトラコン酸ジエチル、テトラヒドロフタル酸ジメチル、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸ジメチル、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、グリシジル(メタ)アクリレ-ト、メタクリル酸アミノエチル及びメタクリル酸アミノプロピルなどを挙げることができる。
 これらの中で、無水マレイン酸、(メタ)アクリル酸、無水イタコン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸無水物、ヒドロキシエチル(メタ)アクリレート、グリシジルメタクリレート、メタクリル酸アミノプロピルが好ましい。更には、無水マレイン酸、無水イタコン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸無水物などのジカルボン酸無水物であることが特に好ましい。特に、本発明において、カルボジイミド基と反応する化合物としては、無水マレイン酸が最も好ましい。
 カルボジイミド基と反応する化合物をポリプロピレンに導入する方法としては、種々の方法を採用することが可能であるが、例えば、ポリプロピレン主鎖にカルボジイミド基と反応する化合物をグラフト共重合する方法や、プロピレン等のオレフィンとカルボジイミド基と反応する化合物をラジカル共重合する方法等を例示することができる。以下に、グラフト共重合する場合とラジカル共重合する場合に分けて、具体的に説明する。
グラフト共重合
 重合体C´は、ポリプロピレン主鎖に対し、カルボジイミド基と反応する基を有する化合物をグラフト共重合することによって得ることが可能である。
 ポリプロピレン主鎖として用いられるポリプロピレンは、プロピレン単位を主成分とする単独重合体又は共重合体である。副成分が存在する場合、副成分のオレフィン単位として、プロピレン以外のC2~20―好ましくはC2~10、より好ましくはC2~8―の脂肪族α-オレフィン、環状オレフィン、非共役ジエン、芳香族オレフィンが用いられてもよい。ここで、「主成分」とは、ポリプロピレン中のプロピレン単位の含有量が、通常50モル%以上であり、好ましくは60モル%以上、さらに好ましくは70モル%以上である。前記副成分となりうるオレフィンの好ましい例として、エチレン、1-ブテン、4-メチル-1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、1-オクテン、テトラシクロドデセン、ノルボルネン及びスチレンが挙げられる。また、当該ポリプロピレンとして、アイソタクチック構造、シンジオタクチック構造の両者ともに使用可能であり、立体規則性についても特段の制限はない。
 グラフト変性に用いるポリプロピレンの密度は、好ましくは、0.8~1.1g/cm3、より好ましくは0.8~1.05g/cm3、更に好ましくは0.8~1g/cm3である。ASTM D1238による温度190℃又は230℃、荷重2.16kgにおけるポリプロピレンのメルトマスフローレイト(MFR)は、通常0.01~500g/10分、好ましくは0.05~300g/10分、さらに好ましくは0.1~100g/10分である。ポリプロピレンの密度及びMFRがこの範囲にあれば、変性後のグラフト共重合体の密度、MFRも同程度となることからハンドリングしやすい。
 また、グラフト変性に用いられるポリプロピレンの結晶化度は、通常2%以上、好ましくは5%以上、さらに好ましくは10%以上である。結晶化度がこの範囲にあれば、変性後のグラフト共重合体のハンドリングに優れる。
 グラフト変性に用いられるポリプロピレンのゲルパーミエーションクロマトグラフィー(GPC)で測定した数平均分子量(MnbasePP)は、好ましくは5,000~500,000、さらに好ましくは10,000~100,000である。MnbasePPがこの範囲にあれば、ハンドリングに優れる。数平均分子量は、プロピレン-エチレン系ポリオレフィンにおいては、コモノマー量(エチレン量)が10モル%未満であればポリプロピレン換算、10モル%以上であればプロピレン-エチレン換算(プロピレン含有量70モル%を基準)で求めることが可能である。
 上記のようなポリプロピレンの製造は、従来から公知のいずれの方法によっても行うことができる。例えば、チタン系触媒、バナジウム系触媒、メタロセン触媒などを用いて重合することができる。また、ポリプロピレンは、樹脂及びエラストマーのいずれの形態でもよく、アイソタクチック構造、シンジオタクチック構造の両者ともに使用可能であり、立体規則性についても特段の制限はない。市販の樹脂をそのまま利用することも可能である。
 重合体C´をグラフト共重合により得る場合には、上記のグラフト主鎖となるポリプロピレンに、カルボジイミド基と反応する化合物、及び必要に応じてその他のエチレン性不飽和単量体等をラジカル開始剤の存在下、グラフト共重合する。
 カルボジイミド基と反応する化合物をポリプロピレン主鎖にグラフトさせる方法については特に限定されず、溶液法、溶融混練法等、公知のグラフト重合法を採用することができる。
ラジカル共重合
 重合体C´は、カルボジイミド基と反応する化合物と、プロピレン等のオレフィンとをラジカル共重合することによっても得ることが可能である。前記オレフィンとしては、上述のグラフト主鎖となるポリオレフィンを形成する場合のオレフィンと同一のものを採用することが可能である。また、カルボジイミド基と反応する化合物も上述の通りである。
 カルボジイミド基と反応する化合物とオレフィンとをラジカル共重合させる方法については特に限定されず、公知のラジカル共重合法を採用することができる。
 グラフト共重合及びラジカル共重合などのいずれの共重合方法を採用する場合であっても、重合体C´は、次のような条件を満たすものが良い。
 重合体C´中におけるカルボジイミド基と反応する基の含有量は特に限定されないが、ポリプロピレンCMの骨格となる化合物Cと重合体C´との結合部分を増やして繊維強化ポリプロピレン組成物における強化繊維の補強性や分散性を高めるために、0.01重量%以上が好ましい。また、カルボジイミド基と反応する基の、化合物Cによる架橋を抑制してポリプロピレンCMの製造を容易にするために、前記含有量は10重量%以下が好ましく、より好ましくは3重量%以下、さらに好ましくは2重量%以下である。
 重合体C´の架橋を防止するためには、重合体C´の数平均分子量が低いこと、また、(カルボジイミド基と反応する基のモル数)/(重合体C´分子鎖のモル数)のモル比が小さいことが好ましい。これは即ち、重合体C´の一つの分子鎖上にカルボジイミド基と反応する基が複数でなく、なるべく単数で存在している場合には、化合物Cのカルボジイミド基(N=C=N)が、重合体C´のカルボジイミド基と反応する基と反応する際、架橋及びゲル化することなく結合できることを意味している。
 重合体C´をグラフト重合により得る場合には、グラフト主鎖となるポリプロピレンがエチレン含有量の多い樹脂であると、エチレン-ブテン共重合体のようなα-オレフィン共重合量の多い樹脂に比較すると製造時に架橋しやすい傾向がある。そのため、エチレン含有量の多い樹脂をグラフト主鎖として用いて、かつ架橋を抑制して製造するためには、カルボジイミド基と反応する基が、重合体C´の一つの分子鎖上になるべく単数で存在するよう調整することが好ましい。
 また、グラフト主鎖となるポリプロピレンが熱分解により低分子量化しやすい樹脂である場合には、架橋による高粘度化の現象は起こりにくい。そのため、熱分解しやすい樹脂をグラフト主鎖として用いる場合には、カルボジイミド基と反応する基が、重合体C´の一つの分子鎖上に複数存在しても、高粘度化せずにポリプロピレンCMを製造できる場合がある。
 カルボジイミド基と反応する基を有する重合体C´のASTM D1238による温度190℃又は230℃、荷重2.16kgにおけるメルトマスフローレイト(MFR)は、好ましくは0.01~500g/10分、より好ましくは0.05~300g/10分である。上記範囲にあると、強化繊維の補強性や分散性の向上効果に優れたポリプロピレンCMが得られる。
 また、重合体C´の密度は、好ましくは0.8~1.1g/cm、より好ましくは0.8~1.05g/cm、更に好ましくは0.8~1g/cmである。
カルボジイミド基含有化合物(化合物C)
 カルボジイミド基含有化合物(化合物C)は、好ましくは下記一般式(4)で示される繰り返し単位を有するポリカルボジイミドである。
  -N=C=N-R-   (4)
(式中、Rは2価の有機基を示す。)
 ポリカルボジイミドの合成法は、特に限定されるものではないが、例えば有機ポリイソシアネ-トを、イソシアネ-ト基のカルボジイミド化反応を促進する触媒の存在下で反応させることにより、ポリカルボジイミドを合成することができる。
 化合物Cのゲルパーミエーションクロマトグラフィー(GPC)により求めたポリスチレン換算数平均分子量(Mn)は、好ましくは400~500,000、より好ましくは1,000~10,000、更に好ましくは2,000~4,000である。Mnがこの範囲にあると、強化繊維の補強性や分散性の向上効果に優れたポリプロピレンCMが得られるため好ましい。
 化合物Cには、モノカルボジイミドを添加してもよく、単独又は複数のカルボジイミド基含有化合物を混合して使用することも可能である。
 なお、市販のカルボジイミド基含有化合物をそのまま使用することも可能である。市販のカルボジイミド基含有化合物としては、日清紡績株式会社製 カルボジライト(登録商標)HMV-15CA、カルボジライト(登録商標)HMV-8CAやカルボジライト(登録商標)LA1、ラインケミー社製 スタバクゾール(登録商標)Pやスタバクゾール(登録商標)P400などが挙げられる。
 化合物C及び得られたポリプロピレンCMにおけるカルボジイミド基含有量は、13C-NMR、IR、滴定法等により測定でき、カルボジイミド当量として把握することが可能である。13C-NMRでは130~142ppm、IRでは2130~2140cm-1のピ-クを観察する。
 13C-NMR測定は、たとえば次のようにして行われる。すなわち、試料0.35gをヘキサクロロブタジエン2.0mlに加熱溶解させる。この溶液をグラスフィルター(G2)で濾過した後、重水素化ベンゼン0.5mlを加え、内径10mmのNMRチューブに装入する。そして日本電子製GX-500型NMR測定装置を用い、120℃で13C-NMR測定を行う。積算回数は、10,000回以上とする。
 IR測定は、例えば、次のようにして行われる。すなわち、試料を250℃、3分で熱プレスしてシ-トを作製した後に、赤外分光光度計(日本分光製、FT-IR 410型)を用いて透過法で、該シートの赤外吸収スペクトルを測定する。測定条件は、分解能を2cm-1、積算回数を32回とする。
 透過法での赤外吸収スペクトルは、ランベルト・ベールの法則で示されるように、サンプル厚みに反比例し、吸光度そのものがサンプル中のカルボジイミド基の濃度をあらわすものではない。そのため、カルボジイミド基含有量を測定するためには、測定するサンプルの厚みを揃えるか、内部標準ピークを用いてカルボジイミド基のピーク強度を規格化する必要がある。
 IR測定によりポリプロピレンCMのカルボジイミド基含有量を測定する場合には、あらかじめカルボジイミド基の濃度が既知のサンプルを用いて、IR測定を行ない、2130~2140cm-1に現われるピークの吸光度と内部標準ピークの吸光度の比を用いて検量線を作成しておき、サンプルの測定値を検量線に代入し、濃度を求める。
 内部標準ピークとしては、ポリプロピレン骨格に由来するピークを用いてもよいし、あらかじめ内部標準物質をサンプル中の濃度が一定となるように混合し、測定に用いてもよい。
エポキシ変性ポリプロピレン(ポリプロピレンEM)
 エポキシ変性ポリプロピレン(ポリプロピレンEMと称することもある)は、エポキシ基と反応する基を有するポリプロピレン(重合体E´と称することもある)と、エポキシ基含有化合物(化合物Eと称することもある)とを反応させることにより得られる。具体的には、両者を溶融混練するなどの方法が挙げられる。
 以下に、溶融混練する場合の例を示す。重合体E´と、化合物Eとを溶融混練する方法としては、重合体E´と化合物Eを同時に、又は逐次的に、たとえばヘンシェルミキサー、V型ブレンダー、タンブラーブレンダー、リボンブレンダーなどに装入して混練した後、単軸押出機、多軸押出機、ニーダー、バンバリーミキサーなどで溶融混練する方法が例示できる。これらのうちでも、多軸押出機、ニーダー、バンバリーミキサーなどの混練性能に優れた装置を使用すると、各成分がより均一に分散・反応された重合体組成物を得ることができるため好ましい。
 押出機を用いて溶融混練を行う場合、重合体E´と化合物Eは、予め混合した後にホッパーから供給してもよいし、一部の成分をホッパーから供給し、ホッパー部付近から押出機先端の間の任意の部分に設置した供給口よりその他の成分を供給してもよい。
 上記各成分を溶融混練する際の温度は、混合する各成分の融解ピーク温度のうち、最も高い融解ピーク温度以上とする。具体的には、好ましくは150~300℃、より好ましくは200~280℃、更に好ましくは230~270℃の範囲で溶融混練を行う。
 ポリプロピレンEMは190℃又は230℃での流動性に優れるものである。ポリプロピレンEMの、温度190℃又は230℃、荷重2.16kgにおけるメルトマスフローレイト(MFR)は、好ましくは0.01~400g/10分、より好ましくは0.1~300g/10分、更に好ましくは1~200g/10分の範囲である。このような範囲にあると、強化繊維の補強性や分散性に優れ、好ましい。
 ポリプロピレンEMの製造には、例えば、“実用 ポリマーアロイ設計”(井出文雄著、工業調査会(1996))、Prog. Polym. Sci.,24,81-142(1999)など、種々の方法を用いることができる。すなわち、溶液法、バルク法、溶融混練法のいずれの方法を用いてもよい。また、これらの方法を組み合わせて用いてもよい。
 ポリプロピレンEMを製造するにあたり、重合体E´中のエポキシ基と反応する基のモル数と、化合物Eのモル数の比を、1:0.2~10.0、好ましくは1:0.4~8.0、更に好ましくは1:2.0~8.0を満たす配合比にすることで、重合体E´と化合物Eの反応効率が高く、かつ、流動性に優れるポリプロピレンEMが得られる点で好ましい。
 また、ポリプロピレンEMは、ポリプロピレンEM100gに対し、エポキシ基の含有量は特に限定されないが、強化繊維の補強効果や耐水劣化性の向上効果を高めるために、好ましくは1mmol以上、より好ましくは5mmol以上、さらに好ましくは10mmol以上である。また、成形加工性、強化繊維の補強効果、分散性の向上効果、経済性を高めるためには、前記含有量は、好ましくは200mmol以下、より好ましくは150mmol以下、さらに好ましくは100mmol以下である。かかる観点で、ポリプロピレンEMを製造する際には、ポリプロピレンEM中のエポキシ基の含有量が上記範囲となるように、化合物Eの配合量を調整するのが良い。
 さらに、ポリプロピレンEMを製造するにあたり、重合体E´中のエポキシ基と反応する基と、化合物E中のエポキシ基との反応の制御も重要である。重合体E´中のエポキシ基と反応する基と、化合物E中のエポキシ基との反応の進行度合いは、例えば、以下の方法により調査することが可能である。
 重合体E´、及び反応により得られたポリプロピレンEMの熱プレスシ-トをそれぞれ作製した後に、赤外吸収分析装置を用いて赤外線吸収を測定する。得られたチャートから、重合体E´及びポリプロピレンEM中のエポキシ基と反応する基を有する化合物のピーク強度に起因する吸収帯(無水マレイン酸を用いた場合は、1790cm-1)の吸光度の、反応前後の吸光度を比較して、下記式を用いて反応率を計算できる。
  反応率(%)=X/Y×100
   X=反応前重合体E´のエポキシ基と反応する基の吸光度-反応後ポリプロピレンEMのエポキシ基と反応する基の吸光度
   Y=反応前重合体E´のエポキシ基と反応する基の吸光度
 ポリプロピレンEMについて上記方法で求めた反応率は、好ましくは20~100%、より好ましくは25~100%、更に好ましくは40~100%の範囲にある。
 また、ポリプロピレンEMは、上記のように化合物Eのエポキシ基が、重合体E´中のエポキシ基と反応する基と反応することで製造されるが、ポリプロピレンと結合している化合物Eに由来するエポキシ残基が重合体E´中に存在してもよく、それが強化繊維と相互作用し、補強性や分散性に寄与する。このエポキシ残基量は、IR測定で899~910cm-1にあるエポキシ基の収縮振動に起因するピークの大きさとして捉えることが可能である。
 ポリプロピレンEMは、2種以上の重合体E´を含んでいてもよく、2種以上の化合物Eを含んでいてもよい。
 また、ポリプロピレンEMには、本発明の目的を損なわない範囲で、公知のプロセス安定剤、耐熱安定剤、耐熱老化剤等を添加することも可能である。
エポキシ基と反応する基を有するポリプロピレン(重合体E´)
 エポキシ基と反応する基を有するポリプロピレン(重合体E´)は、ポリプロピレンに、エポキシ基と反応する化合物を導入することにより得ることができる。
 エポキシ基と反応する化合物としては、エポキシ基との反応性を有する活性水素を持つ基を有する化合物が挙げられ、具体的には、カルボン酸、アミン、フェノール、チオール等から由来する基を持つ化合物である。これらの中では、カルボン酸から由来する基を持つ化合物が好適に用いられ、中でも特に不飽和カルボン酸及び/又はその誘導体が好ましい。本発明において、エポキシ基と反応する化合物は、1種単独で用いても、2種以上を併用してもよい。
 エポキシ基と反応する化合物として不飽和カルボン酸及び/又はその誘導体を用いる場合、カルボン酸基を1以上有する不飽和化合物、無水カルボン酸基を1以上有する不飽和化合物及びそれらの誘導体を挙げることができる。不飽和基としては、ビニル基、ビニレン基、不飽和環状炭化水素基などを挙げることができる。具体例としては、アクリル酸、メタクリル酸、マレイン酸、フマル酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、ノルボルネンジカルボン酸、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸などの不飽和カルボン酸、又はこれらの酸無水物あるいはこれらの誘導体(例えば酸ハライド、アミド、イミド、エステルなど)が挙げられる。具体的な化合物の例としては、塩化マレニル、マレニルイミド、無水マレイン酸、無水イタコン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸無水物、マレイン酸ジメチル、マレイン酸モノメチル、マレイン酸ジエチル、フマル酸ジエチル、イタコン酸ジメチル、シトラコン酸ジエチル、テトラヒドロフタル酸ジメチル、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸ジメチル、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、メタクリル酸アミノエチル及びメタクリル酸アミノプロピルなどを挙げることができる。
 これらの中で、無水マレイン酸、(メタ)アクリル酸、無水イタコン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸無水物、ヒドロキシエチル(メタ)アクリレート、メタクリル酸アミノプロピルが好ましい。更には、無水マレイン酸、無水イタコン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸無水物などのジカルボン酸無水物であることが特に好ましい。特に、本発明において、エポキシ基と反応する化合物としては、無水マレイン酸が最も好ましい。
 エポキシ基と反応する化合物をポリプロピレンに導入する方法としては、種々の方法を採用することが可能であるが、例えば、ポリプロピレン主鎖にエポキシ基と反応する化合物をグラフト共重合する方法や、プロピレン等のオレフィンとエポキシ基と反応する化合物をラジカル共重合する方法等を例示することができる。以下に、グラフト共重合する場合とラジカル共重合する場合に分けて、具体的に説明する。
グラフト共重合
 重合体E´は、ポリプロピレン主鎖に対し、エポキシ基と反応する基を有する化合物をグラフト共重合することによって得ることが可能である。
 ポリプロピレン主鎖として用いられるポリプロピレンは、プロピレン単位を主成分とする単独重合体又は共重合体である。副成分が存在する場合、副成分のオレフィン単位として、プロピレン以外のC2~20―好ましくはC2~10、より好ましくはC2~8―の脂肪族α-オレフィン、環状オレフィン、非共役ジエン、芳香族オレフィンが用いられてもよい。ここで、「主成分」とは、ポリプロピレン中のプロピレン単位の含有量が、通常50モル%以上であり、好ましくは60モル%以上、さらに好ましくは70モル%以上である。前記副成分となりうるオレフィンの好ましい例として、エチレン、1-ブテン、4-メチル-1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、1-オクテン、テトラシクロドデセン、ノルボルネン及びスチレンが挙げられる。また、当該ポリプロピレンとして、アイソタクチック構造、シンジオタクチック構造の両者ともに使用可能であり、立体規則性についても特段の制限はない。
 グラフト変性に用いるポリプロピレンの密度は、好ましくは、0.8~1.1g/cm3、より好ましくは0.8~1.05g/cm3、更に好ましくは0.8~1g/cm3である。ASTM D1238による温度190℃又は230℃、荷重2.16kgにおけるポリプロピレンのメルトマスフローレイト(MFR)は、通常0.01~500g/10分、好ましくは0.05~300g/10分、さらに好ましくは0.1~100g/10分である。ポリプロピレンの密度及びMFRがこの範囲にあれば、変性後のグラフト共重合体の密度、MFRも同程度となることからハンドリングしやすい。
 また、グラフト変性に用いられるポリプロピレンの結晶化度は、通常2%以上、好ましくは5%以上、さらに好ましくは10%以上である。結晶化度がこの範囲にあれば、変性後のグラフト共重合体のハンドリングに優れる。
 グラフト変性に用いられるポリプロピレンのゲルパーミエーションクロマトグラフィー(GPC)で測定した数平均分子量(Mn)は、好ましくは5,000~500,000、さらに好ましくは10,000~100,000である。Mnがこの範囲にあれば、ハンドリングに優れる。数平均分子量は、プロピレン-エチレン系ポリオレフィンにおいては、コモノマー量(エチレン量)が10モル%未満であればポリプロピレン換算、10モル%以上であればプロピレン-エチレン換算(プロピレン含有量70モル%を基準)で求めることが可能である。
 上記のようなポリプロピレンの製造は、従来から公知のいずれの方法によっても行うことができる。例えば、チタン系触媒、バナジウム系触媒、メタロセン触媒などを用いて重合することができる。また、ポリプロピレンは、樹脂及びエラストマーのいずれの形態でもよく、アイソタクチック構造、シンジオタクチック構造の両者ともに使用可能であり、立体規則性についても特段の制限はない。市販の樹脂をそのまま利用することも可能である。
 重合体E´をグラフト共重合により得る場合には、上記のグラフト主鎖となるポリプロピレンに、エポキシ基と反応する化合物、及び必要に応じてその他のエチレン性不飽和単量体等をラジカル開始剤の存在下、グラフト共重合する。
 エポキシ基と反応する化合物をポリプロピレン主鎖にグラフトさせる方法については特に限定されず、溶液法、溶融混練法等、公知のグラフト重合法を採用することができる。
ラジカル共重合
 重合体E´は、エポキシ基と反応する化合物と、プロピレン等のオレフィンとをラジカル共重合することによっても得ることが可能である。前記オレフィンとしては、上述のグラフト主鎖となるポリオレフィンを形成する場合のオレフィンと同一のものを採用することが可能である。また、エポキシ基と反応する化合物も上述の通りである。
 エポキシ基と反応する化合物とオレフィンとをラジカル共重合させる方法については特に限定されず、公知のラジカル共重合法を採用することができる。
 グラフト共重合及びラジカル共重合などのいずれの共重合方法を採用する場合であっても、重合体E´は、次のような条件を満たすものが良い。
 重合体E´中におけるエポキシ基と反応する基の含有量は特に限定されないが、ポリプロピレンEMの骨格となる化合物Eと重合体E´との結合部分を増やして繊維強化ポリプロピレン組成物における強化繊維の補強性や分散性を高めるために、0.01重量%以上が好ましい。また、エポキシ基と反応する基の、化合物Eによる架橋を抑制してポリプロピレンEMの製造を容易にするために、前記含有量は10重量%以下が好ましく、より好ましくは3重量%以下、さらに好ましくは2重量%以下である。
 重合体E´の架橋を防止するためには、重合体E´の数平均分子量が低いこと、また、(エポキシ基と反応する基のモル数)/(重合体E´分子鎖のモル数)のモル比が小さいことが好ましい。これは即ち、重合体E´の一つの分子鎖上にエポキシ基と反応する基が複数でなく、なるべく単数で存在している場合には、化合物Eのエポキシ基が、重合体E´のエポキシ基と反応する基と反応する際、架橋及びゲル化することなく結合できることを意味している。
 重合体E´をグラフト重合により得る場合には、グラフト主鎖となるポリプロピレンがエチレン含有量の多い樹脂であると、エチレン-ブテン共重合体のようなα-オレフィン共重合量の多い樹脂に比較すると製造時に架橋しやすい傾向がある。そのため、エチレン含有量の多い樹脂をグラフト主鎖として用いて、かつ架橋を抑制して製造するためには、エポキシ基と反応する基が、重合体E´の一つの分子鎖上になるべく単数で存在するよう調整することが好ましい。
 また、グラフト主鎖となるポリプロピレンが熱分解により低分子量化しやすい樹脂である場合には、架橋による高粘度化の現象は起こりにくい。そのため、熱分解しやすい樹脂をグラフト主鎖として用いる場合には、エポキシ基と反応する基が、重合体E´の一つの分子鎖上に複数存在しても、高粘度化せずにポリプロピレンEMを製造できる場合がある。
 エポキシ基と反応する基を有する重合体E´のASTM D1238による温度190℃又は230℃、荷重2.16kgにおけるメルトマスフローレイト(MFR)は、好ましくは0.01~500g/10分、より好ましくは0.05~300g/10分である。上記範囲にあると、強化繊維の補強性や分散性の向上効果に優れたポリプロピレンEMが得られる。
 また、重合体E´の密度は、好ましくは0.8~1.1g/cm、より好ましくは0.8~1.05g/cm、更に好ましくは0.8~1g/cmである。
エポキシ基含有化合物(化合物E)
 エポキシ基含有化合物(化合物E)は、好ましくは下記一般式で示される繰り返し単位を有するポリエポキシドである。
Figure JPOXMLDOC01-appb-C000001
(式中、RE1は2価の有機基を示し、RE2及びRE3は互いに独立して1価の有機基を示し、不斉炭素はエポキシド構造に反さないことを条件として任意の立体配置を示す。)
 ポリエポキシドの合成法は、特に限定されるものではないが、例えば有機ポリオレフィンを、二重結合のエポキシ化反応を促進する触媒の存在下で反応させることにより、ポリエポキシドを合成することができる。
 化合物Eのゲルパーミエーションクロマトグラフィー(GPC)により求めたポリスチレン換算数平均分子量(Mn)は、好ましくは400~500,000、より好ましくは1,000~10,000、更に好ましくは2,000~4,000である。数平均分子量(Mn)がこの範囲にあると、強化繊維の補強性や分散性の向上効果に優れたポリプロピレンEMが得られるため好ましい。
 化合物Eには、モノエポキシドを添加してもよく、単独又は複数のエポキシ基含有化合物を混合して使用することも可能である。
 なお、市販のエポキシ基含有化合物をそのまま使用することも可能である。市販のエポキシ基含有化合物としては、日産工業株式会社製 TEPIC-S、TEPIC-LやTEPIC-HPなどが挙げられる。
 化合物E及び得られたポリプロピレンEMにおけるエポキシ基含有量は、13C-NMR、IR、滴定法等により測定でき、エポキシド当量として把握することが可能である。13C-NMRでは52ppm、IRでは899~910cm-1のピ-クを観察する。
 13C-NMR測定は、たとえば次のようにして行われる。すなわち、試料0.35gをヘキサクロロブタジエン2.0mlに加熱溶解させる。この溶液をグラスフィルター(G2)で濾過した後、重水素化ベンゼン0.5mlを加え、内径10mmのNMRチューブに装入する。そして日本電子製GX-500型NMR測定装置を用い、120℃で13C-NMR測定を行う。積算回数は、10,000回以上とする。
 IR測定は、例えば、次のようにして行われる。すなわち、試料を250℃、3分で熱プレスしてシ-トを作製した後に、赤外分光光度計(日本分光製、FT-IR 410型)を用いて透過法で、該シートの赤外吸収スペクトルを測定する。測定条件は、分解能を2cm-1、積算回数を32回とする。
 透過法での赤外吸収スペクトルは、ランベルト・ベールの法則で示されるように、サンプル厚みに反比例し、吸光度そのものがサンプル中のエポキシ基の濃度をあらわすものではない。そのため、エポキシ基含有量を測定するためには、測定するサンプルの厚みを揃えるか、内部標準ピークを用いてエポキシ基のピーク強度を規格化する必要がある。
 IR測定によりポリプロピレンEMのエポキシ基含有量を測定する場合には、あらかじめエポキシ基の濃度が既知のサンプルを用いて、IR測定を行ない、899~910cm-1に現われるピークの吸光度と内部標準ピークの吸光度の比を用いて検量線を作成しておき、サンプルの測定値を検量線に代入し、濃度を求める。
 内部標準ピークとしては、ポリプロピレン骨格に由来するピークを用いてもよいし、あらかじめ内部標準物質をサンプル中の濃度が一定となるように混合し、測定に用いてもよい。
オキサゾリン変性ポリプロピレン
 「オキサゾリン変性ポリプロピレン」とは、オキサゾリン化合物で変性したポリプロピレンを意味し、オキサゾリン基を有する、
 本発明のオキサゾリン変性ポリプロピレンは以下の要件(1)、(1-a)、及び(2)を満たす:
(1)オキサゾリン変性ポリプロピレンがオキサゾリン基を有する、
(1-a)オキサゾリン変性ポリプロピレン1gにおけるオキサゾリン基の含有量が0.1×10-2~100×10-2mmol/gである、及び
(2)オキサゾリン変性ポリプリロピレンのメルトマスフローレイトが0.01~300g/10分である。
 上記「オキサゾリン基」とは、オキサゾリン基自体を意味してもよく、オキサゾリン基が開環したものを意味してもよい。オキサゾリン基は置換基を有してもよい。
 上記の通り、オキサゾリン変性ポリプロピレン1gにおけるオキサゾリン基の含有量は0.1×10-2~100×10-2mmol/gの範囲であり、該範囲の下限値として好ましくは1.0×10-2mmol/g、より好ましくは2.5×10-2mmol/gであり、該範囲の上限値として好ましくは25×10-2mmol/g、より好ましくは17×10-2mmol/gである。該範囲として好ましくは1.0×10-2~25×10-2mmol/gの範囲であり、より好ましくは2.5×10-2~17×10-2mmol/gの範囲である。
 オキサゾリン変性ポリプロピレン1gにおけるオキサゾリン基の含有量は、赤外(IR)分光法により求められる。例えば、無水マレイン酸変性ポリプロピレンをオキサゾリン化合物で変性することによりオキサゾリン変性ポリプロピレンが製造される場合、例えば以下の方法により前記含有量が求められる。
オキサゾリン含有ポリプロピレン単独重合体中におけるオキサゾリン基由来の規格化した吸光度とオキサゾリン基の含有量の関係
 オキサゾリン化合物(三國製薬工業株式会社製、商品名CPレジンA 1,3-PBO)とポリプロピレン単独重合体1(住友化学株式会社製ノーブレンHR100EG)を、混練機(東洋精機社製ラボプラストミル)を用いて、溶融混練した。オキサゾリン化合物とポリプロピレン単独重合体1の配合比を変えて、複数のオキサゾリン含有ポリプロピレン単独重合体を得た。得られたオキサゾリン含有ポリプロピレン単独重合体中のオキサゾリン化合物の含有量から、オキサゾリン含有ポリプロピレン単独重合体中のオキサゾリン基の含有量を算出した。次に、得られたサンプルを210℃下で5分間予熱し、圧力5MPaを5分間加えて厚みが300μmのサンプルをプレス成形により作製した。作製した成形品について、フーリエ変換赤外分光光度計(FT/IR、日本分光株式会社製6200)を用いて波数が600~4000cm-1の透過スペクトルを測定した。得られたIRスペクトルのオキサゾリン基に由来する1655cm-1の吸光度Iを841cm-1の吸光度Iを用いて、次の(1)式によりオキサゾリン含有ポリプロピレン単独重合体中におけるオキサゾリン基由来の吸光度を規格化し、規格化した吸光度をαとした。αとオキサゾリン含有ポリプロピレン単独重合体中のオキサゾリン基の含有量を用いて、αとオキサゾリン基の含有量の検量線を作成した。作成した検量線からαとオキサゾリン基の含有量Xmmol/gは、次の(2)式の関係にあった。
  α=I/I       (1)
  X=0.3849×α   (2)
オキサゾリン変性ポリプロピレン1gにおけるオキサゾリン基の含有量の算出方法
 オキサゾリン変性ポリプロピレンを合成する際に使用した無水マレイン酸変性ポリプロピレンを190℃下で5分間予熱し、圧力5MPaを5分間加えて厚みが100μmのサンプルをプレス成形により作製した。作製したプレス成形体から0.3gを切り出し、切り出した成形体を30mlのエタノールに投入した。次いで、30℃下で60時間静置し、ろ過により試料を回収し、風乾させた後、室温下で少なくとも18時間真空乾燥した。得られた試料を210℃下で5分間予熱し、圧力5MPaを5分間加えて厚みが100μm~300μmのサンプルをプレス成形により作製した。作製したプレス成形体を、フーリエ変換赤外分光光度計(FT/IR、日本分光株式会社製6200)を用いて波数が600~4000cm-1の透過スペクトルを測定した。得られたスペクトルの波数が1655cm-1の吸光度Iを841cm-1の吸光度Iを用いて、次の(3)式により規格化し、規格化した吸光度をαとした。
 オキサゾリン変性ポリプロピレンにおいても同様の手順でプレス成形体を作製し、FT/IRを用いて透過スペクトルを測定した。得られたスペクトルの波数が1655cm-1の吸光度Iを841cm-1の吸光度Iを用いて、次の(4)式によりオキサゾリン酸変性ポリプロピレン中におけるオキサゾリン基由来の吸光度を規格化し、規格化した吸光度をαとした。αとαを用いて次の(5)式でオキサゾリン変性ポリプロピレン中におけるオキサゾリン基由来の吸光度αを算出した。αと(2)式から、オキサゾリン変性ポリプロピレン1gにおけるオキサゾリン基の含有量Ymmol/gを算出した。
  α=I/I                (3)
  α=I/I                (4)
  α=α-α                (5)
  Y=0.3849×α (mmol/g)   (6)
 上記の通り、オキサゾリン変性ポリプリロピレンのメルトマスフローレイトは0.01~300g/10分の範囲であり、好ましくは0.1~300g/10分の範囲であり、より好ましくは0.8~180g/10分の範囲である。上記「メルトマスフローレイト」とは、JIS K 7210に規定された方法に従って、測定温度230℃で、荷重2.16kgで測定されるメルトマスフローレイトを意味する。
オキサゾリン変性ポリプロピレンの製造方法
 本発明のオキサゾリン変性ポリプロピレンは、以下の工程を備える方法により製造されてもよい:
 ・ポリプロピレンと、有機過酸化物と、マレイン酸又は無水マレイン酸とを溶融混練する工程、及び
 ・得られたポリプロピレンと、有機過酸化物と、マレイン酸又は無水マレイン酸との溶融混練物に、オキサゾリン化合物を加えて溶融混錬する工程。
 また、本発明のオキサゾリン変性ポリプロピレンの製造時に、ポリプロピレン、及び/又は、少なくとも1種のフィラーが含有されていてもよい。
オキサゾリン化合物
 オキサゾリン化合物としては、例えば、オキサゾリン基を2つ有する下記一般式で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 Rは二価の有機基を表し、例えば、
 メチレン基(-CH-)、エチレン基(-CHCH-)、プロピレン基(-CHCHCH-)などのアルキレン基、
 エテニレン基(-CH=CH-)、プロペニレン基(-CH=CH-CH-)などのアルケニレン基、
 1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基などのフェニレン基、
Figure JPOXMLDOC01-appb-C000003
 等が挙げられる。
 上記混練方法は、特に限定はされないが、例えば、ポリプロピレンと、有機過酸化物と、マレイン酸又は無水マレイン酸と、オキサゾリン化合物とを同時に、又は逐次的に、例えばヘンシェルミキサー、V型ブレンダー、タンブラーブレンダー、リボンブレンダーなどに供給して混練した後、単軸押出機、多軸押出機、ニーダー、バンバリーミキサーなどで溶融混練する方法が挙げられる。これらのうちでも、単軸押出機、多軸押出機、ニーダー、バンバリーミキサーなどの混練性能に優れた装置を使用することは、各成分がより均一に分散するため好ましい。
 ポリプロピレンと、有機過酸化物と、マレイン酸又は無水マレイン酸と、オキサゾリン化合物の、押出機への供給としては、
1)押出機に3つのホッパーを備え、樹脂の流れに沿って、第1のホッパーからポリプロピレンを供給し、第2のホッパーから有機過酸化物と、マレイン酸又は無水マレイン酸を一緒に供給し、第3のホッパーからオキサゾリン化合物を供給する方法、
2)押出機に2つのホッパーを備え、樹脂の流れに沿って、第1のホッパーからポリプロピレンと有機過酸化物と、マレイン酸又は無水マレイン酸を一緒に供給し、第2のホッパーからオキサゾリン化合物を供給する方法、
3)押出機に2つのホッパーを備え、樹脂の流れに沿って、第1のホッパーからポリプロピレンと有機過酸化物と、マレイン酸又は無水マレイン酸を一緒に供給し、第2のホッパーから有機過酸化物と、オキサゾリン化合物とマレイン酸又は無水マレイン酸を一緒に供給する方法、
 のいずれの方法を採用することも可能である。
 上記各成分を溶融混練する際の温度については、混合する各成分の融解ピーク温度のうち、最も高い融解ピーク温度以上で各成分を溶融混練することが好ましい。具体的には、好ましくは120~300℃、より好ましくは180~280℃、さらに好ましくは200℃~270℃の範囲で溶融混練を行う。
エチレン系エラストマー(成分4)
 本発明で用いられるエチレン系エラストマー(成分4)は、エチレン-プロピレン共重合体またはC4~12のα-オレフィン構造単位を含むエチレン-α-オレフィン共重合体であり、エチレン構造単位の含有率は51重量%以上であり、好ましく55重量%以上である。該エチレン構造単位の含有率は好ましくは95重量%以下であり、より好ましくは90重量%以下である。
 該C4~12のα-オレフィンとして好ましくは、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、および1-デセンであり、より好ましくは、1-ブテン、1-ヘキセンおよび1-オクテンである。
 本発明で用いられるエチレン系エラストマー(成分4)として、好ましくはエチレン-プロピレン共重合体、エチレン-1-ブテン共重合体、エチレン-1-オクテン共重合体であり、より好ましくはエチレン-1-ブテン共重合体、エチレン-1-オクテン共重合体である。
エチレン系エラストマー(成分4)におけるエチレン構造単位の含有量(単位:重量%)
 核磁気共鳴分光法(NMR)によって、下記の条件(1)~(7)で、測定を実施し、文献(JMS-REV.MACROMOL.CHEM.PHYS.,C29,201-317(1989))記載の方法に従って、エチレン共重合体におけるエチレンに由来する単量体単位の含有量を求めた(但し、該エチレン共重合体の全量を100重量%とした)。
 (1)機器:BRUKER社製 AvanceIII HD600
    (10mmクライオプローブ)
 (2)測定溶媒:1,1,2,2-テトラクロロエタン-d2/1,2-ジクロロベンゼン(15/85容積比)
 (3)測定温度:135℃
 (4)測定方法:プロトンデカップリング法
 (5)パルス幅:45度
 (6)パルス繰り返し時間:4秒
 (7)化学シフト値基準:テトラメチルシラン
 本発明で用いられるエチレン-α-オレフィン共重合体の、温度190℃、荷重2.16kgにおけるメルトマスフローレイト(MFR)は、0.1~50g/10分の範囲にあることが好ましく、さらに好ましくは0.1~40g/10分、より好ましくは0.1~35g/10分、さらにより好ましくは0.2~30g/10分である。
 本発明で用いられるエチレン-α-オレフィン共重合体の密度(d)は好ましくは850~890kg/mの範囲にあり、さらに好ましくは850~875kg/mである。
 本発明で用いられるエチレン-α-オレフィン共重合体の好ましい製造方法としては、公知のオレフィン重合用触媒を用いた公知の重合方法、例えば、チーグラー・ナッタ系触媒、メタロセン系錯体や非メタロセン系錯体などの錯体系触媒を用いた、スラリー重合法、溶液重合法、塊状重合法、気相重合法等が挙げられる。
含有量
 本発明の炭素繊維含有ポリプロピレン組成物に含まれるポリプロピレン(成分1)、炭素繊維(成分2)、変性ポリプロピレン(成分3)及びエチレン系エラストマー(成分4)の含有量について、成分1の重量を100重量部として、成分2の重量は1~200重量部の範囲、好ましくは1~150重量部の範囲、より好ましくは1~80重量部の範囲である。成分3の重量は1~100重量部の範囲、好ましくは1~80重量部の範囲、より好ましくは1~30重量部の範囲である。成分4の重量は1~200重量部、好ましくは1~150重量部の範囲、より好ましくは1~80重量部の範囲である。
炭素繊維表面
 本発明の炭素繊維含有ポリプロピレン組成物に含まれる炭素繊維(成分2)はその表面に、前記ポリプロピレン組成物の力学強度及び加工性が高まるように、C-O結合、C=O結合、O-C=O結合、C-C結合、及びC-N結合を所定の量で含む。なお、前記及び下記態様のいずれでも、「C-O結合」は「O-C=O結合」中のC-O結合を含めず、「C=O結合」は「O-C=O結合」中のC=O結合を含めない。
 成分2は、C-O結合、C=O結合、O-C=O結合、C-C結合及びC-N結合を含み、C-O結合、C=O結合、O-C=O結合、C-C結合及びC-N結合のそれぞれのスペクトル面積の合計を100%として、C-O結合の含有量は1~26%の範囲であり、より好ましくは4~20%の範囲、さらに好ましくは7~17%の範囲である。
 C=O結合及びO-C=O結合のそれぞれの含有量の合計は2~15%の範囲が好ましく、より好ましくは4~11%の範囲、さらに好ましくは4~7%の範囲である。
炭素繊維表面における結合成分の算出方法
 炭素繊維表面の各結合量は、X線光電子分光法装置により測定され得る。必要に応じ、測定前に、未反応のサイジング剤を除去する等の前処理を行ってもよい。
 励起源として、単色化したAl Kα線(1486.6eV)やMg Kα線(1253.6eV)などの特性X線を用いることができる。
 得られるスペクトルは、公知の方法で各結合に波形分離できる。
 例えば、実施例に記載の方法で炭素繊維表面における各結合成分量を算出できる。
成形体
 本発明の炭素繊維含有ポリプロピレン組成物は、例えば、下記方法により成形体を製造するために使用される。
 成形体の製造方法としては、前記ポリプロピレン組成物を溶融し、成形して成形体を得る工程を有する成形体の製造方法が挙げられる。
 成形方法としては、押出成形法、及び射出成形法が挙げられる。押出成形により、例えばシート状の成形体が得られる。射出成形により、射出成形体が得られる。
 射出成形法としては、例えば、一般的な射出成形法、射出発泡成形法、超臨界射出発泡成形法、超高速射出成形法、射出圧縮成形法、ガスアシスト射出成形法、サンドイッチ成形法、サンドイッチ発泡成形法、及びインサート・アウトサート成形法が挙げられる。
用途
 本発明の炭素繊維含有ポリプロピレン組成物及び成形体は、例えば、自動車内装部品及び外装部品等の自動車部材として使用できる。
 以下、実施例及び比較例によって本発明をより詳細に説明するが、本発明はそれに限定されない。
炭素繊維表面における結合成分の算出方法
サイジング剤の除去
 ダイオネクス社製の高速溶媒抽出装置ASE-200の設定温度を80℃とし、炭素繊維0.2gを容積が11mlの抽出セル容器にいれて、高速溶媒抽出装置ASE-200に設置した。テトラヒドロフラン(関東化学、特級、安定剤不含)11mlを抽出セル容器に注入後、抽出セル容器内の圧力を1000psiに加圧し、15分間保持した。窒素を用いて、抽出セル容器の排出口からテトラヒドロフランを約半分ほど追い出し、再び抽出セル容器内のテトラヒドロフランが11mlになるまで注入後、抽出セル容器内の圧力を1000psiに加圧し、10分間保持した。さらにもう一度、窒素を用いて、抽出セル容器の排出口からテトラヒドロフランを約半分ほど追い出し、再び抽出セル容器内のテトラヒドロフランが11mlになるまで注入後、抽出セル容器内の圧力を1000psiに加圧し、10分間保持した。その後、抽出セル容器に窒素を2分間注入し、抽出セル容器の排出口からテトラヒドロフランを追い出した。抽出セル容器から炭素繊維を取り出し、40℃で少なくとも15時間真空乾燥した。
X線光電子分光法(XPS)分析
 次いで、上述の作業を施した炭素繊維をX線光電子分光法装置(島津/KRATOS社製AXIS ULTRA DLD)に設置した。X線源として、単色化したAl Kα(1486.6eV)を用いてこれを励起光とした。出力は、管電流を10mA、管電圧を15 kVにそれぞれ設定し、試料法線と光電子取り出し方向とのなす角度で定義される光電子取り出し角度を0°として測定した。得られた炭素1sスペクトルのバックグラウンドをShirley法により除去した。
 バックグラウンドを除去した炭素1sスペクトルに対して、Lorentz関数の割合を30%としたGauss-Lorentz複合関数を用い、Composites: Part A 90 (2016) 653-661 (Bo Gao et al.)に記載されている方法に従い、C-C結合成分、C-N結合成分、C-O結合成分、C=O結合成分、O-C=O結合成分に由来するピークにそれぞれ波形分離した。
 波形分離により得られたC-C結合成分、C-N結合成分、C-O結合成分、C=O結合成分、O-C=O結合成分それぞれのスペクトル面積を求め、C-C結合成分、C-N結合成分、C-O結合成分、C=O結合成分、O-C=O結合成分の合計量100%に対する、C-O結合成分のスペクトルの面積が占める割合及びC=O結合成分のスペクトルの面積とO-C=O結合成分のスペクトルの面積の合計量が占める割合を算出した。
使用した材料
 実施例及び比較例では、以下の材料を使用した。
1.ポリプロピレン(成分1)
(1-1)ヘテロファジック重合材料1(住友化学株式会社製 ノーブレンWPX5343)
MFR:60g/10分
融解ピーク温度:163.5℃
[ηcxs]:5.3dl/g
[ηcxs]/[ηcxis]:4.5
アイソタクチック・ペンタッド分率:0.98
プロピレン単独重合体成分(I)の含有量:87重量%
エチレン-プロピレン共重合体成分(II)の含有量:13重量%
エチレン-プロピレン共重合体成分(II)のエチレンに由来する単量体の含有量:35重量%
エチレン-プロピレン共重合体成分(II)のプロピレンに由来する単量体の含有量:65重量%
(1-2)プロピレン-エチレンランダム共重合体1(住友化学株式会社製ノーブレンRW140EG)
 MFR(230℃、荷重21.2N):6g/10分
 融解ピーク温度:138℃
 エチレンに由来する単量体単位の含量:4重量%
2.炭素繊維(成分2)
(2-1)炭素繊維1(カーボンファイバーリサイクル工業社製CFRI T8S103C、リサイクル炭素繊維)
 C-O結合:5.2%、C=O結合及びO-C=O結合の合計:5.8%
(2-2)炭素繊維2(帝人株式会社製Tenax-A PCS171200、バージン炭素繊維)
 C-O結合:14.2%、C=O結合及びO-C=O結合の合計:7.3%
(2-3)炭素繊維3(帝人株式会社製Tenax-J IM C443、バージン炭素繊維)
 C-O結合:24.7%、C=O結合及びO-C=O結合の合計:2.7%
(2-4)炭素繊維4(SGLカーボンジャパン株式会社製SIGRAFIL C C6―4.0/240-T130、バージン炭素繊維)
 C-O結合:27.4%、C=O結合及びO-C=O結合の合計:3.1%
(2-5)炭素繊維5(炭素繊維-1を500℃で1時間加熱処理、リサイクル炭素繊維)
 C-O結合:19.3%、C=O結合及びO-C=O結合の合計:11.3%
(2-6)炭素繊維6(カーボンファイバーリサイクル工業株式会社製T8S103CD0E、リサイクル炭素繊維)
 C-O結合:15.0%、C=O結合及びO-C=O結合の合計:4.9%
(2-7)炭素繊維7(東レ株式会社製リサイクル炭素繊維 I3J-D01000C010-1、リサイクル炭素繊維)
 C-O結合:10.4%、C=O結合及びO-C=O結合の合計:5.4%
炭素繊維5の調整方法
 カーボンファイバーリサイクル工業社製CFRI T8S103C(炭素繊維1)を100mLの磁性るつぼに約10g量り取り、電気炉(株式会社東京技術研究所製TFD-20C-Z)内に入れた。電気炉を室温から500℃まで約65℃/minで昇温し、500℃下で1時間静置し、炭素繊維5を得た。
 得られた炭素繊維5を上述に記載の方法でサイジング剤の除去を行い、上述に記載の方法でC-O結合の含有量とC=O結合及びO-C=O結合のそれぞれの含有量の合計を測定したところ、C-O結合の含有量は19.3%であり、C=O結合及びO-C=O結合のそれぞれの含有量の合計は11.3%であった。
3.変性ポリプロピレン(成分3)
(3-1)変性ポリプロピレン1:無水マレイン酸変性ポリプロピレン
 WO2020/009090に記載の合成例2に記載の無水マレイン酸変性ポリプロピレン
(3-2)変性ポリプロピレン2:カルボジイミド変性ポリプロピレン
 カルボジイミド変性ポリプロピレンの合成例
 上記で合成した無水マレイン酸変性ポリプロピレン(変性ポリプロピレン1)を100重量%と、カルボジイミド基含有化合物(日清紡社製、商品名カルボジライト(登録商標)HMV-15CA(カルボジイミド当量262g/モル)を1.7重量%と、酸化防止剤1(住友化学株式会社製 スミライザーGA80)を0.2重量%と、酸化防止剤2(住友化学株式会社製 スミライザーGP)を0.2重量%混合し、二軸混練機(KZW12TW-60/75mg-NH、スクリュー径12mm、L/D=75、シリンダー温度250℃、回転数300rpm、吐出2kg/hr)にて溶融混練し、カルボジイミド変性ポリプロピレン(変性ポリプロピレン2)を得た。得られたカルボジイミド変性ポリプロピレン(変性ポリプロピレン2)のMFR(230℃、2.16kg荷重)は11g/10分であった。
(3-3)変性ポリプロピレン3:エポキシ変性ポリプロピレン
 エポキシ変性ポリプロピレンの合成例
 上記で合成した無水マレイン酸変性ポリプロピレン(変性ポリプロピレン1)を100重量%と、エポキシ基含有化合物(日産化学工業株式会社製、商品名TEPIC―S(エポキシ当量105g/eq)を1.4重量%と、酸化防止剤1を0.2重量%と、酸化防止剤2を0.2重量%混合し、二軸混練機(KZW12TW-60/75mg-NH、スクリュー径12mm、L/D=75、シリンダー温度250℃、回転数300rpm、吐出2kg/hr)にて溶融混練し、エポキシ変性ポリプロピレン(変性ポリプロピレン3)を得た。得られたエポキシ変性ポリプロピレン(変性ポリプロピレン3)のMFR(230℃、2.16kg荷重)は1g/10分であった。
(3-4)変性ポリプロピレン4:オキサゾリン変性ポリプロピレン
 オキサゾリン変性ポリプロピレンの合成例
 上記で合成した無水マレイン酸変性ポリプロピレン(変性ポリプロピレン1)を100質量部と、オキサゾリン化合物(三國製薬工業株式会社製、商品名CPレジンA 1,3-PBO)を1.4質量部と、酸化防止剤1(住友化学株式会社製 スミライザーGA80)を0.2質量部と、酸化防止剤2(住友化学株式会社製 スミライザーGP)を0.2質量部混合し、二軸混練機(株式会社テクノベル製、KZW12TW-60/75mg-NH、スクリュー径12mm、L/D=75、シリンダー温度250℃、回転数300rpm、吐出2kg/hr)にて真空ベントから脱気しながら、溶融混練し、オキサゾリン変性ポリプロピレン(変性ポリプロピレン4)を得た。得られたオキサゾリン変性ポリプロピレン(変性ポリプロピレン4)のMFR(230℃、2.16kg荷重)は41g/10分であった。
4.エチレン-α-オレフィン共重合体(成分4)
(4-1)エチレン-1-オクテン共重合体1(ダウケミカル株式会社製EG8842)
 密度:0.857g/cm
 MFR:1.0g/10分
 エチレン構造単位の含有量:59重量%(エチレン構造単位の含有量は前述のエチレン系エラストマー(成分4)におけるエチレン構造単位の含有量(単位:重量%)の測定方法にしたがって求めた。)
(4-2)エチレン-1-オクテン共重合体2(ダウケミカル株式会社製EG8100)
 密度:0.870g/cm
 MFR:1.0g/10分
 エチレン構造単位の含有量:66重量%(エチレン構造単位の含有量は前述のエチレン系エラストマー(成分4)におけるエチレン構造単位の含有量(単位:重量%)の測定方法にしたがって求めた。)
(4-3)エチレン-1-ブテン共重合体1(ダウケミカル株式会社製EG7467)
 密度:0.862g/cm
 MFR:1.0g/10分
 エチレン構造単位の含有量:69重量%(エチレン構造単位の含有量は前述のエチレン系エラストマー(成分4)におけるエチレン構造単位の含有量(単位:重量%)の測定方法にしたがって求めた。)
5.その他の材料
 酸化防止剤3(BASFジャパン株式会社製 イルガノックス1010)
 酸化防止剤4(BASFジャパン株式会社製 イルガフォス168)
溶融混錬及び射出成形体の製造
実施例1
 ヘテロファジック重合材料1 100重量部と、変性ポリプロピレン1 9重量部*1と、炭素繊維1 36重量部*1と、エチレン-α-オレフィン共重合体1 36重量部*1と、酸化防止剤3 0.2重量部*2と、酸化防止剤4 0.2重量部*2とを混合し、混合物を得た。上記において、*1はヘテロファジック重合材料1 100重量部に対する重量であり、*2はヘテロファジック重合材料1と変性ポリプロピレン1と炭素繊維1とエチレン-α-オレフィン共重合体の合計100重量部に対する重量である。混合物を40mm単軸押出機(VS40-28型ベント式押出機、田辺プラスチックス社製)により、シリンダー温度220℃、スクリュー回転数100rpmにて溶融混錬を行い、ペレット化し、炭素繊維含有ポリプロピレン組成物を得た。得られた炭素繊維含有ポリプロピレン組成物を、射出成形機(株式会社名機製作所製M-70CSJ)を用いて、シリンダー温度220℃、金型温度50℃、射出速度20mm/秒の条件で射出成形を行い、ISO試験片の射出成形体を得た。
実施例2~11及び比較例1~2
 表1に示した材料を用いた以外は、実施例1と同様にして、実施例2~11及び比較例1~2の炭素繊維含有ポリプロピレン組成物を製造した。
物性の評価
1.メルトマスフローレイト(単位:g/10分)
 JIS K 7210に規定された方法に従って、測定温度230℃で、荷重2.16kgで、メルトマスフローレイトを測定した。
2.密度(単位:g/cm
 上記の「溶融混錬及び射出成形体の製造」に記載の成形方法によって成形された成形体を80mm×10mm×4mmのサイズに切り出したものを試験片として用いて、JIS K7112に規定のA法である水中置換法に従って、密度を測定した。
3.引張り破断強度(単位:MPa)
 上記の「溶融混錬及び射出成形体の製造」に記載の成形方法によって成形された厚みが4mmである試験片を用いて、ISO 527-2に規定された方法に従って、引張り速度50mm/分で、引張り破断強度(US)を測定した。
4.曲げ強度(単位:MPa)
 上記の「溶融混錬及び射出成形体の製造」に記載の成形方法によって成形された厚みが4mmである試験片を用いて、ISO 178に規定された方法に従って、荷重速度2.0mm/分で、曲げ強度(FS)を測定した。
5.ノッチ付きシャルピー衝撃強さ(単位:kJ/m
 上記の「溶融混錬及び射出成形体の製造」に記載の成形方法によって成形された成形体を80mm×10mm×4mmのサイズに切り出し、ノッチ加工したものを試験片として用いて、ISO 179-1に規定された方法に従って、エッジワイズ打撃によるノッチ付きシャルピー衝撃強さを測定した。ノッチの形状は、ISO 179-1に記載の形状Aとした。
6.荷重たわみ温度(HDT)(単位:℃)
 上記の「溶融混錬及び射出成形体の製造」に記載の成形方法によって成形された成形体を80mm×10mm×4mmのサイズに切り出したものを試験片として用いて、JIS K 7191-2に規定のA法に従って、HDTを測定した。
加工性の評価
 混合物を溶融混練する際に、混合物の40mm単軸押出機への入りやすさを目視にて評価した。
 〇:押出機内に入っていきやすい
 △:押出機内に入っていきにくい
 ×:押出機内に入っていかない
Figure JPOXMLDOC01-appb-T000004
 本発明の炭素繊維含有ポリプロピレン組成物及びその組成物を含む成形体は良好な力学強度を示し、また、その組成物は良好な加工性を示すので、自動車部材、例えば、自動車内装部品や外装部品に、好適に用いられる。

Claims (5)

  1.  ポリプロピレン(成分1)と炭素繊維(成分2)と変性ポリプロピレン(成分3)とエチレン系エラストマー(成分4)を含み、以下の要件の全てを充足する炭素繊維含有ポリプロピレン組成物:
     要件1:成分1の重量を100重量部として、成分2の重量が1~200重量部の範囲であり、成分3の重量が1~100重量部の範囲であり、成分4の重量が1~200重量部であり;
     要件2:成分1は、融解ピーク温度が155℃以上であり、
     要件3:成分2は、C-O結合、C=O結合、O-C=O結合、C-C結合及びC-N結合を含み、C-O結合、C=O結合、O-C=O結合、C-C結合及びC-N結合のそれぞれのスペクトル面積の合計を100%として、C-O結合の含有量が1~26%の範囲である。
  2.  成分1が、プロピレン単独重合部とエチレン-プロピレン共重合部とからなるヘテロファジック重合材料である、請求項1に記載の炭素繊維含有ポリプロピレン組成物。
  3.  成分3が、無水マレイン酸変性ポリプロピレン、エポキシ変性ポリプロピレン及びカルボジイミド変性ポリプロピレン、オキサゾリン変性ポリプロピレンからなる群から選ばれる少なくとも1種の変性ポリプロピレンである、請求項1または2に記載の炭素繊維含有ポリプロピレン組成物。
  4.  成分4が、エチレン-プロピレン共重合体またはC4~12のα-オレフィン構造単位を含むエチレン-α-オレフィン共重合体であり、密度が0.85~0.90g/cmの範囲であり、メルトマスフローレイト(温度190℃、荷重2.16kg)が0.01~50g/10分の範囲である、請求項1~3のいずれかに記載の炭素繊維含有ポリプロピレン組成物。
  5.  請求項1~4のいずれかに記載の炭素繊維含有ポリプロピレン組成物を含む成形体。
PCT/JP2022/033229 2021-09-30 2022-09-05 炭素繊維含有ポリプロピレン組成物 WO2023053852A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023537217A JPWO2023053852A1 (ja) 2021-09-30 2022-09-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-160936 2021-09-30
JP2021160936 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023053852A1 true WO2023053852A1 (ja) 2023-04-06

Family

ID=85782347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033229 WO2023053852A1 (ja) 2021-09-30 2022-09-05 炭素繊維含有ポリプロピレン組成物

Country Status (2)

Country Link
JP (1) JPWO2023053852A1 (ja)
WO (1) WO2023053852A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144064A (ja) * 2007-12-14 2009-07-02 Sumitomo Chemical Co Ltd 成形体の製造方法
JP2010174196A (ja) * 2009-01-30 2010-08-12 Umg Abs Ltd 熱可塑性樹脂組成物および成形品
JP2010248482A (ja) * 2009-03-26 2010-11-04 Toray Ind Inc 繊維強化プロピレン系樹脂組成物
JP2010280777A (ja) * 2009-06-03 2010-12-16 Mitsui Chemicals Inc ゴム組成物およびゴム成形体
JP2012116916A (ja) * 2010-11-30 2012-06-21 Toray Ind Inc 炭素繊維強化ポリプロピレン樹脂成形品
JP2013166922A (ja) * 2012-01-20 2013-08-29 Toray Ind Inc 成形材料
WO2016076411A1 (ja) * 2014-11-13 2016-05-19 三井化学株式会社 炭素繊維強化樹脂組成物及びそれから得られる成形品
JP2018024766A (ja) * 2016-08-10 2018-02-15 東レ株式会社 成形材料
JP2018521146A (ja) * 2015-05-22 2018-08-02 ボレアリス エージー ポリプロピレン炭素繊維複合材
JP2021102747A (ja) * 2019-12-24 2021-07-15 住友化学株式会社 ヘテロファジックプロピレン重合材料およびその利用
JP2021161375A (ja) * 2020-03-30 2021-10-11 住友化学株式会社 炭素繊維含有ポリプロピレン組成物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144064A (ja) * 2007-12-14 2009-07-02 Sumitomo Chemical Co Ltd 成形体の製造方法
JP2010174196A (ja) * 2009-01-30 2010-08-12 Umg Abs Ltd 熱可塑性樹脂組成物および成形品
JP2010248482A (ja) * 2009-03-26 2010-11-04 Toray Ind Inc 繊維強化プロピレン系樹脂組成物
JP2010280777A (ja) * 2009-06-03 2010-12-16 Mitsui Chemicals Inc ゴム組成物およびゴム成形体
JP2012116916A (ja) * 2010-11-30 2012-06-21 Toray Ind Inc 炭素繊維強化ポリプロピレン樹脂成形品
JP2013166922A (ja) * 2012-01-20 2013-08-29 Toray Ind Inc 成形材料
WO2016076411A1 (ja) * 2014-11-13 2016-05-19 三井化学株式会社 炭素繊維強化樹脂組成物及びそれから得られる成形品
JP2018521146A (ja) * 2015-05-22 2018-08-02 ボレアリス エージー ポリプロピレン炭素繊維複合材
JP2018024766A (ja) * 2016-08-10 2018-02-15 東レ株式会社 成形材料
JP2021102747A (ja) * 2019-12-24 2021-07-15 住友化学株式会社 ヘテロファジックプロピレン重合材料およびその利用
JP2021161375A (ja) * 2020-03-30 2021-10-11 住友化学株式会社 炭素繊維含有ポリプロピレン組成物

Also Published As

Publication number Publication date
JPWO2023053852A1 (ja) 2023-04-06

Similar Documents

Publication Publication Date Title
US8519044B2 (en) Glass fiber reinforced polypropylene
JP6155652B2 (ja) 繊維強化ポリプロピレン系樹脂組成物
EP3017003B1 (en) Polypropylene compositions containing glass fiber fillers
CN107709445B (zh) 具有高断裂应变的纤维增强聚丙烯组合物
WO2009088033A1 (ja) 変性プロピレン樹脂
JP5134594B2 (ja) 炭素繊維強化プロピレン系複合材料およびその成形体
JP7422637B2 (ja) 炭素繊維含有ポリプロピレン組成物
JP5683379B2 (ja) 樹脂組成物
JP2018024766A (ja) 成形材料
JP6142539B2 (ja) 成形材料
JP5794157B2 (ja) ポリプロピレン樹脂組成物、成形体、自動車用インナーパネル用部品、自動車用エンジンカバー、および自動車用ファンシュラウド
JP4742211B2 (ja) 長繊維強化ポリプロピレン樹脂組成物および成形品
WO2023053852A1 (ja) 炭素繊維含有ポリプロピレン組成物
US12037471B2 (en) Carbon fiber-containing polypropylene composition
JP2018024765A (ja) 繊維強化ポリプロピレン系樹脂組成物
EP3604426A1 (en) Filler-reinforced resin structure
JP2022103043A (ja) オキサゾリン変性ポリプロピレン
CN114685732A (zh) 噁唑啉改性聚丙烯
JP2011252113A (ja) 炭素繊維強化ポリ−4−メチル−1−ペンテン複合材料およびその成形体
JP2018027999A (ja) フィラー強化樹脂用助剤、フィラー強化ポリプロピレン樹脂組成物およびその成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875724

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023537217

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22875724

Country of ref document: EP

Kind code of ref document: A1