WO2023053180A1 - 移動体の制御装置および制御方法 - Google Patents

移動体の制御装置および制御方法 Download PDF

Info

Publication number
WO2023053180A1
WO2023053180A1 PCT/JP2021/035578 JP2021035578W WO2023053180A1 WO 2023053180 A1 WO2023053180 A1 WO 2023053180A1 JP 2021035578 W JP2021035578 W JP 2021035578W WO 2023053180 A1 WO2023053180 A1 WO 2023053180A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
cargo handling
moving body
handling implement
transport robot
Prior art date
Application number
PCT/JP2021/035578
Other languages
English (en)
French (fr)
Inventor
琢也 小田
浩二 河口
寿人 澤浪
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to CN202180101813.8A priority Critical patent/CN117836223A/zh
Priority to EP21959231.8A priority patent/EP4410710A4/en
Priority to PCT/JP2021/035578 priority patent/WO2023053180A1/ja
Priority to JP2023550769A priority patent/JPWO2023053180A1/ja
Publication of WO2023053180A1 publication Critical patent/WO2023053180A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/243Means capturing signals occurring naturally from the environment, e.g. ambient optical, acoustic, gravitational or magnetic signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/244Arrangements for determining position or orientation using passive navigation aids external to the vehicle, e.g. markers, reflectors or magnetic means
    • G05D1/2446Arrangements for determining position or orientation using passive navigation aids external to the vehicle, e.g. markers, reflectors or magnetic means the passive navigation aids having encoded information, e.g. QR codes or ground control points
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/656Interaction with payloads or external entities
    • G05D1/667Delivering or retrieving payloads
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/69Coordinated control of the position or course of two or more vehicles
    • G05D1/698Control allocation
    • G05D1/6987Control allocation by centralised control off-board any of the vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2207/00Indexing codes relating to constructional details, configuration and additional features of a handling device, e.g. Conveyors
    • B65G2207/34Omni-directional rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G67/00Loading or unloading vehicles
    • B65G67/02Loading or unloading land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2105/00Specific applications of the controlled vehicles
    • G05D2105/20Specific applications of the controlled vehicles for transportation
    • G05D2105/28Specific applications of the controlled vehicles for transportation of freight
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2107/00Specific environments of the controlled vehicles
    • G05D2107/70Industrial sites, e.g. warehouses or factories
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2107/00Specific environments of the controlled vehicles
    • G05D2107/95Interior or surroundings of another vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2109/00Types of controlled vehicles
    • G05D2109/10Land vehicles
    • G05D2109/18Holonomic vehicles, e.g. with omni wheels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2111/00Details of signals used for control of position, course, altitude or attitude of land, water, air or space vehicles
    • G05D2111/10Optical signals

Definitions

  • the present disclosure relates to a control device and a control method of a moving body that can recognize and support cargo handling equipment on which cargo is placed, and move while estimating its own position.
  • a loading system in which goods are loaded onto a truck by means of a plurality of work trolleys each having a motor powered via a trolley wire and traveling on rails arranged along the bed of the truck (for example, see Patent Document 1).
  • this loading system at least the initial loading position of the leading work vehicle is notified to the subsequent work vehicles, and each work vehicle is notified of the number of the work vehicle from the top.
  • each work vehicle stores the initial loading position of the work vehicle, and derives the loading position from the second time onward based on the initial loading position.
  • the conventional loading system described above is dedicated equipment for loading onto trucks, and requires the laying of rails and trolley wires for power supply.
  • cargo handling equipment such as pallets and trolleys using autonomous mobile bodies such as AMRs (Autonomous Mobile Robots)
  • AMRs Autonomous Mobile Robots
  • laying of rails and trolley wires becomes unnecessary.
  • a certain amount of space is secured between adjacent cargo handling equipment in order to suppress interference between the cargo handling equipment.
  • the target position of the carriage must be set as described above, and it becomes impossible to arrange the cargo handling equipment at the arrangement place without gaps.
  • the main purpose of the present disclosure is to align and arrange a plurality of cargo handling implements at an arrangement location so that the gap is as small as possible by using a mobile body that can move while estimating its own position.
  • a control device for a mobile body is a control device for a mobile body that can recognize and support cargo handling equipment on which cargo is placed and move while estimating its own position.
  • the position of the previous cargo handling equipment placed prior to the arrangement location is acquired, and the next position is determined based on the acquired position of the previous cargo handling equipment. It controls the moving body so as to place the cargo handling equipment.
  • a control device for a mobile body is a mobile body that can move while estimating its own position. to get the position of the cargo handling equipment. Further, the control device controls the moving body to place the next cargo handling implement at the position determined based on the acquired position of the previous cargo handling implement. As a result, even if there is an error in estimating the self-position of the mobile body, the next cargo handling implement can be placed at the placement location while minimizing the gap from the preceding cargo handling implement. As a result, according to the control device of the present disclosure, it is possible to align and arrange a plurality of cargo handling implements at the arrangement location so that the gap between them is as small as possible.
  • a control method for a mobile body is a method for controlling a mobile body that can recognize and support cargo handling equipment on which cargo is placed and move while estimating its own position, wherein a plurality of cargo handling equipment are attached to the mobile body.
  • the position of the previous cargo handling equipment placed prior to the arrangement location is acquired, and the next position is determined based on the acquired position of the previous cargo handling equipment. It controls the moving body so as to place the cargo handling equipment.
  • the next cargo handling equipment can be placed at the placement location while minimizing the gap with the previous cargo handling equipment.
  • FIG. 1 is a schematic configuration diagram showing a distribution center to which mobile bodies including the control device of the present disclosure are applied;
  • FIG. 2 is a block diagram showing a physical distribution management system of the distribution center of FIG. 1;
  • FIG. FIG. 2 is a perspective view showing a truck used in the distribution center of FIG. 1;
  • 1 is a perspective view showing a moving object including a control device of the present disclosure;
  • FIG. FIG. 2 is a control block diagram of the mobile body control device of the present disclosure;
  • 4 is a flow chart for explaining a procedure for causing a moving body including the control device of the present disclosure to place a trolley as a cargo handling tool in a storage location;
  • FIG. 10 is a flowchart for explaining another procedure for causing a moving body including the control device of the present disclosure to place a truck as a cargo handling tool in a storage location;
  • FIG. 10 is a flowchart for explaining another procedure for causing a moving body including the control device of the present disclosure to place a truck as a cargo handling tool in a storage location;
  • FIG. 10 is a flowchart for explaining another procedure for causing a moving body including the control device of the present disclosure to place a truck as a cargo handling tool in a storage location;
  • FIG. 1 is a schematic configuration diagram showing a distribution center 1 to which a carrier robot (AMR: Autonomous Mobile Robot) 50 as an autonomously mobile body including the control device of the present disclosure is applied, and FIG. 1 is a block diagram showing a physical distribution management system 10 of No. 1.
  • FIG. A distribution center 1 shown in FIG. 1 is a facility for storing, transporting, handling, packaging, and distributing goods (products).
  • the distribution center 1 includes an entrance 2 for delivery vehicles T such as trucks, and a plurality of shipping gates 3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, A shipping area 3 having 3i, 3j, 3k, and 3l (hereinafter, the shipping gates are collectively referred to as "shipping gates 3x"), and a large number of packaged packages P are transported from a warehouse (not shown) to the shipping area 3. It includes a conveying conveyor 4 and a plurality of carriages 5 . In the distribution center 1 , the packages P are conveyed to the shipping area 3 by the conveyor 4 and transferred to the trolley 5 .
  • the trolley 5 as a material handling device carrying the load P is transported by the transport robot 50 to the corresponding shipping gate 3x. Then, the trolley 5 carrying the cargo P is loaded onto the corresponding delivery vehicle T at the shipping gate 3x, and transported by the delivery vehicle T to the shipping destination.
  • the entrance management device 25 is a computer including a CPU, a ROM, a RAM, a storage device, a communication module, etc., and acquires the ID of the delivery vehicle T that has arrived at the entrance 2 based on the imaging data (image data) of the entrance camera 20. . That is, the entrance camera 20 and the entrance management device 25 function as an ID acquisition device for the entrance 2 .
  • the ID of the delivery vehicle T is, for example, a number assigned in advance to the delivery vehicle T by the distribution center 1, and the ID is indicated on the delivery vehicle T so that it can be recognized from the entrance camera 20. No markers are affixed.
  • the ID of the delivery vehicle T may be the vehicle registration number of the delivery vehicle T, or may be the number of an in-vehicle device such as an ETC acquired via a communication device (not shown).
  • the entrance control device 25 causes the monitor 21 to display information to be provided to the driver.
  • each shipping gate 3a-3l is provided with a camera 30 for imaging the delivery vehicle T that has arrived at the shipping gate 3a-3l, and a truck detector 31 capable of imaging the truck 5 that passes when the delivery vehicle T is loaded.
  • the shipping gate management device 35 is a computer including a CPU, a ROM, a RAM, a storage device, a communication module, etc., and based on the image data (image data) of the camera 30, the delivery arrived at the shipping gates 3a, 3b, . . . or 3l. Get the ID of the car T. That is, the camera 30 and the shipping gate management device 35 function as a delivery vehicle ID acquisition device for each of the shipping gates 3a-3l.
  • the shipping gate management device 35 acquires the ID of the truck 5 loaded onto the delivery vehicle T based on the imaging data (image data) of the truck detector 31 . That is, the truck detector 31 and the shipping gate management device 35 function as a truck ID acquisition device for each of the shipping gates 3a-3l.
  • Conveyor 4 comprises a main transport line 40 and a plurality of shipping lines 4a, 4b, 4c, 4d, 4e, 4f, 4f, 4f, 4b, 4b, 4f, 4f, 4b, 4c, 4f, 4f, 4b, 4c, 4f, 4f, 4b, 4c, 4d, 4d, 4c, 4d, 4d, 4c, 4d, 4d, 4d, 4c, 4d, 4d, 4d, 4d, 4c, 4d, 4d, 4d, 4d, 4d, 4d, 4c, 4d, 4d, 4d, 4c, 4d, 4d, 4d, 4c, 4d, 4d, 4d, 4c, 4d, 4d, 4d, 4c, 4d, 4d, 4c, 4d, 4d, 4c, 4d, 4d, 4c, 4d, 4d, 4c, 4d, 4d, 4c, 4d, 4d, 4c,
  • the conveyor 4 is controlled by a conveyor control device 14 (see FIG. 2), which is a computer including a CPU, ROM, RAM, storage device, communication module, and the like.
  • a package P handled in the distribution center 1 is affixed with a bar code sticker indicating its ID. That is, the conveyor control device 14 acquires the ID of the package P on the main transfer line 40 via a barcode reader (not shown), and based on the acquired ID, the package P conveyed to the shipping area 3 by the main transfer line 40. to the corresponding shipping line 4x.
  • the trolley 5 is a so-called basket trolley as shown in FIG. 3, and includes markers 5m as recognition targets such as AR markers, QR codes (registered trademark), and bar codes that indicate the ID of the trolley 5.
  • the marker 5m is provided at least one location (two locations in the example of FIG. 3) on the carriage 5 so that it can be recognized by the transport robot 50 and the carriage detector 31.
  • FIG. Further, in the distribution center 1, as shown in FIG. Unused trucks 5 are arranged in line at the storage location 6, and the trucks 5 to be used are identified by the transport robot 50 and transported from the storage location 6 to a designated location. Furthermore, on the floor, pillars, etc. of the shipping area 3 in the building of the distribution center 1, there are a plurality of markers 3m as recognition objects such as AR markers and QR codes (registered trademark) for autonomously traveling the transport robots 50. affixed.
  • the physical distribution management system 10 includes a management server 11 as a management device and a storage device 12.
  • the management server 11 is a computer having a CPU, ROM, RAM, communication modules, and the like.
  • the management server 11 acquires various kinds of information from the entrance management device 25 and the shipping gate management devices 35 of the respective shipping gates 3a to 3l, and also receives information and command signals requested from the entrance management device 25 and the respective shipping gate management devices 35. to send. Furthermore, the management server 11 transmits information necessary for sorting the packages P, such as the ID of the packages P, to the conveyor control device 14 and exchanges information with the AMR management device 15 .
  • the AMR management device 15 is a computer including a CPU, a ROM, a RAM, a storage device, a communication module, etc., and manages the plurality of transfer robots 50 by exchanging information with the plurality of transfer robots 50 via wireless communication. is.
  • the storage device 12 of the physical distribution management system 10 stores a delivery database in which information related to the delivery of the package P is stored for each of a plurality of delivery vehicles T to which IDs have been assigned from the distribution center 1.
  • the delivery database contains the ID of the delivery vehicle T, the ID of the package P loaded on the delivery vehicle T, the destination of the package P, and the shipping gate 3x (hereinafter referred to as It is appropriately referred to as "loading gate 3z".) ID is linked (associated) and stored.
  • the storage device 12 includes the movable area and prohibited area for the transport robot 50 in the shipping area 3 (distribution center 1), identification sign information for each area, position information for the marker 3m, time zone during which movement is prohibited, and the like. Store area information.
  • FIG. 4 is a perspective view showing the transport robot 50
  • FIG. 5 is a control block diagram of the transport robot 50.
  • the transport robot 50 includes a plurality (four) of mecanum wheels 51, a plurality of (four) electric motors 52 that rotationally drive the corresponding mecanum wheels 51, and a carriage. It includes an elevating unit 53 for elevating the carriage 5 and is configured to be movable back and forth below the carriage 5 .
  • Each mecanum wheel 51 has a pair of support plates 51p and a plurality of wheels rotatable around an axis tilted at 45° with respect to the axle while being supported by the pair of support plates 51p so as to be arranged in a ring. and a roller 51r.
  • the elevating unit 53 includes a support member that supports the carriage 5 and lifts the support member with respect to the main body of the transport robot 50 so that each wheel of the carriage 5 is separated from the traveling road surface and grounded on the traveling road surface. and a drive that causes the
  • the transport robot 50 includes a camera 54 as an imaging device, a control device 55, a communication module 56 used for communication (wireless communication) with the AMR management device 15 and other transport robots 50, and a storage device 57.
  • the camera 54 captures an image of the surroundings of the transport robot 50 and transmits image data (image data) to the control device 55 .
  • the control device 55 is a computer including a CPU, ROM, RAM and the like.
  • an arithmetic processing unit 55G, a travel control unit 55D and an elevation control unit 55L are constructed by cooperation of hardware such as a CPU, ROM, and RAM and various pre-installed programs. be done.
  • the arithmetic processing unit 55G of the control device 55 utilizes VSLAM technology (self-localization technology), and while the transport robot 50 is running, at predetermined time intervals (minute time intervals), based on the imaging data of the camera 54, the relevant The self-position (three-dimensional coordinates) of the transport robot 50 in the shipping area 3 (distribution center 1 ) and the environment map are acquired and stored in the storage device 57 . Further, the arithmetic processing unit 55G recognizes (identifies) the marker 3m of the shipping area 3 and the marker 5m of the truck 5 (ID of the truck 5) from the imaging data of the camera 54, and also recognizes (identifies) the object itself such as the truck 5. identification).
  • VSLAM technology self-localization technology
  • the arithmetic processing unit 55G recognizes the marker 3m arranged in the shipping area 3 while the transport robot 50 is running, and corrects the estimated self-position and the environment map based on the previously known position of the marker 3m. do. Further, the arithmetic processing unit 55G can adjust the sensitivity of the camera 54 (gain of the imaging device) and the exposure time (shutter speed). Furthermore, the arithmetic processing unit 55G determines the imaging conditions of the camera 54 when the recognition targets such as the markers 3m and 5m can be normally recognized from the imaging data of the camera 54, that is, the sensitivity and the exposure time of the location (ID) of the marker 3m and the like. , the marker 3m, etc. are stored in the storage device 57 in association with the time period when the marker 3m or the like was imaged.
  • the traveling control unit 55D of the control device 55 controls the plurality of electric motors 52 based on the self-position (current position) and the environment map obtained by the arithmetic processing unit 55G. Further, the elevation control section 55L controls the elevation unit 53 so as to raise or lower the carriage 5 when the transport robot 50 is positioned below the carriage 5 in question.
  • the arithmetic processing unit 55G of the control device 55 may be configured to acquire the self-position and the environment map by SLAM technology using 2D or 3D LiDAR (laser sensor) or the like, and based only on the position of the marker It may be configured to estimate its own position, or it may be configured to acquire its own position and an environment map by indoor positioning technology using beacons or the like.
  • the transport robot 50 may include wheels other than Mecanum wheels, such as general wheels containing rubber tires and omni wheels (registered trademark).
  • Carriages 5 that are not used in the shipping area 3 of the distribution center 1 are stored in a storage location 6 within the shipping area 3.
  • the storage location 6 is It is required to arrange a plurality of trucks 5 in the storage place 6 as narrowly as possible without gaps.
  • the control device 55 of the transfer robot 50 is specified by the AMR management device 15 according to the procedures shown in FIGS.
  • the carrier robot 50 is controlled to store the cart 5 in the storage place 6 .
  • the storage location 6 is divided into a plurality of layout sections in which one truck 5 is arranged, and at least the first truck 5 is stored in the storage location 6 when the truck 5 is not stored. is stored (hereinafter referred to as "initial placement section"), a marker (not shown) is provided so that it can be imaged by the camera 54 of the transport robot 50 .
  • FIG. 6 is a flow chart showing the procedure for storing a plurality of carts 5 in an empty storage location 6 by a single transport robot 50.
  • the travel control unit 55D of the control device 55 of the single transport robot 50 moves up to the periphery of the carriage 5 to be the first storage object designated by the AMR management device 15 based on the self-position estimated by the arithmetic processing unit 55G.
  • a plurality of electric motors 52 are controlled so that the transport robot 50 moves.
  • the travel control unit 55D controls the electric motors 52 so that the transport robot 50 enters below the carriage 5.
  • the elevation control section 55L of the control device 55 controls the elevation unit 53 so as to raise the carriage 5 .
  • the first cart 5 is supported by the transport robot 50 (step S100).
  • the travel control unit 55D of the control device 55 reads the information of the initial placement section in which the first truck 5 is to be placed, received from the AMR management device 15.
  • the information of the initially placed section may be the coordinates of the initially placed section, the number (ID) of the placed section, or the like.
  • the travel control unit 55D of the control device 55 determines the location around the initially placed section based on the information on the initially placed section from the AMR management device 15 and the self-position estimated by the arithmetic processing unit 55G.
  • a plurality of electric motors 52 are controlled so that the transport robot 50 moves up to , and the arithmetic processing unit 55G recognizes the marker of the first placement section from the imaging data of the camera 54 (step S110).
  • the travel control unit 55D determines the stop position of the transport robot 50 based on the position of the marker of the first placement section recognized by the arithmetic processing unit 55G, and sets a plurality of electric motors so that the transport robot 50 moves to the stop position.
  • the motor 52 is controlled (step S120).
  • the arithmetic processing unit 55G of the control device 55 acquires the coordinates of the stop position of the transport robot 50, and stores the coordinates in the storage device 57 as the coordinates of the previous arrangement section (step S120).
  • the elevation control section 55L of the control device 55 controls the elevation unit 53 so as to lower the truck 5, and when the wheels of the truck 5 touch the ground, the travel control section 55D of the control device 55 causes the transport robot 50 to move to the truck 5.
  • the plurality of electric motors 52 are controlled to exit from below (step S130). As a result, the first truck 5 is stored in the initial placement section.
  • the traveling control unit 55D of the control device 55 determines whether or not the storage of the next truck 5 has been instructed by the AMR management device 15 (step S140).
  • the travel control unit 55D determines that there is no instruction to store the next carriage 5 (step S140: NO)
  • the travel control unit 55D controls the plurality of electric motors 52 so that the transport robot 50 moves to a predetermined standby position. (step S210), and the storage of the truck 5 in the storage place 6 is completed.
  • the travel control unit 55D causes the transport robot 50 to move to the vicinity of the designated next carriage 5.
  • a plurality of electric motors 52 are controlled as follows. Further, when the arithmetic processing unit 55G of the control device 55 recognizes the marker 5m of the next cart 5, the travel control unit 55D of the control device 55 controls the electric motors 52 so that the transport robot 50 enters below the cart 5. to control. Further, the elevation control section 55L of the control device 55 controls the elevation unit 53 so as to raise the carriage 5 . As a result, the next carriage 5 to be stored is supported by the transport robot 50 (step S150).
  • step S150 the travel control unit 55D of the control device 55 sets the coordinates of the initial arrangement section in which the first carriage 5 is arranged, in other words, the coordinates of the previous arrangement section of the storage place 6 in which the previous carriage 5 is arranged. is read from the storage device 57 . Further, the travel control unit 55D sets the coordinates of the current placement section in which the next carriage 5 should be placed based on the coordinates of the previous placement section (initial placement section) (step S160).
  • the travel control unit 55D of the control device 55 transports the vehicle to the periphery of the currently placed section based on the coordinates of the currently placed section where the next carriage 5 should be placed and the self-position estimated by the arithmetic processing section 55G.
  • a plurality of electric motors 52 are controlled so that the robot 50 moves, and the arithmetic processing unit 55G recognizes the marker of the cart 5 stored in the previous placement section (initial placement section) from the imaging data of the camera 54 (step S170).
  • the travel control unit 55D drives the plurality of electric motors 52 so that the transport robot 50 moves to the coordinates of the current placement section based on the position of the marker 5m of the carriage 5 of the previous placement section recognized by the arithmetic processing unit 55G. control (step S180).
  • the arithmetic processing unit 55G of the control device 55 acquires the coordinates of the stop position of the transport robot 50, and stores the coordinates in the storage device 57 as the coordinates of the current arrangement section (step S180).
  • the elevation control section 55L of the control device 55 controls the elevation unit 53 so as to lower the truck 5, and when the wheels of the truck 5 touch the ground, the travel control section 55D causes the transport robot 50 to leave from below the truck 5.
  • the plurality of electric motors 52 are controlled so as to do so (step S190). As a result, the next (second) truck 5 is stored in the current placement section.
  • step S200 the travel control unit 55D of the control device 55 determines whether or not the number of carts 5 specified by the AMR management device 15 has been stored in the storage location.
  • step S200: NO the processing from step S150 described above is executed.
  • step S150 the coordinates of the currently placed section stored in the most recent step S180 are read out as the coordinates of the previously placed section.
  • step S200: YES the plurality of electric motors 52 are operated to move the transport robot 50 to a predetermined standby position. (step S210), and the storage of the trolley 5 in the storage place 6 is completed.
  • FIG. 7 a procedure for storing a plurality of carts 5 in an empty storage location 6 by a plurality of transfer robots 50 will be described with reference to FIGS. 7 and 8.
  • FIG. 7 a procedure for storing a plurality of carts 5 in an empty storage location 6 by a plurality of transfer robots 50 will be described with reference to FIGS. 7 and 8.
  • the control device 55 (travel control unit 55D) of the first transport robot 50 specified by the AMR management device 15 moves the transport robot 50 to the vicinity of the carriage 5 to be first stored, which is specified by the AMR management device 15.
  • a plurality of electric motors 52 are controlled so that the Further, when the arithmetic processing unit 55G recognizes the marker 5m of the carriage 5, the control device 55 of the first transport robot 50 controls the plurality of electric motors 52 and the lifting unit 53 to move the transport robot 50 to the first carriage 5m. is supported (step S300). Also, in step S300, the control device 55 (running control unit 55D) of the first transport robot 50 reads the information received from the AMR management device 15 about the initial placement section in which the first carriage 5 should be placed.
  • the control device 55 (travel control unit 55D) of the first transport robot 50 controls the plurality of electric motors 52 so that the transport robot 50 moves to the periphery of the initial placement section, and
  • the control device 55 (arithmetic processing unit 55G) recognizes the marker of the first placement section from the imaging data of the camera 54 (step S310). Further, the control device 55 (running control unit 55D) of the first transport robot 50 determines the stop position of the transport robot 50 based on the position of the marker of the initial placement section recognized by the arithmetic processing unit 55G, and determines the stop position of the transport robot 50.
  • a plurality of electric motors 52 are controlled so that the transport robot 50 moves to the position (step S320).
  • the control device 55 acquires the coordinates of the stop position of the transport robot 50, and stores the coordinates in the storage device 57 as the coordinates of the previous placement section. (Step S320). Further, the control device 55 of the first transport robot 50 controls the lifting unit 53 so as to lower the carriage 5 , and after the wheels of the carriage 5 touch the ground, the transport robot 50 exits from below the carriage 5 . control the electric motor 52 (step S330). As a result, the first truck 5 is stored in the initial placement section.
  • the control device 55 (travel control unit 55D) of the first transport robot 50 determines whether or not the AMR management device 15 instructs to store another carriage 5. Determine (step S340).
  • the control device 55 determines that no further retraction of the carriage 5 has been instructed (step S340: NO)
  • the control device 55 moves the transport robot 50 to a predetermined standby position. control the electric motor 52 (S345), and the storage of the truck 5 in the storage place 6 is completed.
  • step S340 when the control device 55 (travel control unit 55D) of the first transport robot 50 determines that further storage of the carriage 5 is instructed (step S340: YES), the specified storage A plurality of electric motors 52 are controlled so that the transfer robot 50 moves to the vicinity of the target cart 5 (step S350). Further, in step S350, the control device 55 controls the plurality of electric motors 52 and the lifting units 53 to cause the carrier robot 50 to support the carriage 5, and temporarily causes the carrier robot 50 to wait there.
  • control device 55 (travel control unit 55D) of the second transport robot 50 specified by the AMR management device 15 carries the transport to the vicinity of the next carriage 5 to be stored specified by the AMR management device 15.
  • a plurality of electric motors 52 are controlled so that the robot 50 moves.
  • the control device 55 of the second transport robot 50 controls the plurality of electric motors 52 and the lifting units 53 to transport the robot as shown in FIG.
  • the robot 50 is made to support the next cart 5 (step S400).
  • step S400 the control device 55 (travel control unit 55D) of the second transport robot 50 determines the last placement section in which the first carriage 5 is stored in the first transport robot 50, i.e., the first placement section. A transmission of coordinates is requested, and the coordinates of the previous placement section (initial placement section) are acquired from the first transport robot 50 . Further, the control device 55 (running control unit 55D) sets the coordinates of the current placement section in which the next carriage 5 should be stored based on the coordinates of the previous placement section (initial placement section) (step S410).
  • control device 55 running control unit 55D of the second transport robot 50 controls the plurality of electric motors 52 so that the transport robot 50 moves to the periphery of the current placement section, and the second transport robot 50 is transported.
  • the arithmetic processing unit 55G of the control device 55 of the robot 50 recognizes the marker of the cart 5 stored in the previous placement section (first placement section) from the imaging data of the camera 54 (step S420). Further, the control device 55 (running control unit 55D) controls the transfer robot 50 to move to the coordinates of the current arrangement section based on the position of the marker 5m of the carriage 5 of the previous arrangement section recognized by the arithmetic processing section 55G.
  • a plurality of electric motors 52 are controlled (step S430).
  • the arithmetic processing unit 55G of the control device 55 acquires the coordinates of the stop position of the transport robot 50, and stores the coordinates in the storage device 57 as the coordinates of the current arrangement section (step S430). Furthermore, the control device 55 of the second transport robot 50 controls the lifting unit 53 to lower the cart 5, and after the wheels of the cart 5 touch the ground, the transport robot 50 exits from below the cart 5. control the electric motor 52 (step S440). As a result, the next (second) truck 5 is stored in the current placement section.
  • step S450 the control device 55 (travel control unit 55D) of the second transport robot 50 determines whether or not the AMR management device 15 has instructed to store the carriage 5 further (step S450). ).
  • the control device 55 determines that no further retraction of the carriage 5 has been instructed (step S450: NO)
  • step S450 NO
  • the control device 55 moves the transport robot 50 to a predetermined standby position. control the electric motor 52 (S455), and the storage of the truck 5 in the storage place 6 is completed.
  • step S450 determines that further storage of the carriage 5 has been instructed (step S450: YES)
  • step S450 determines that further storage of the carriage 5 has been instructed
  • step S460 the controller 55 controls the plurality of electric motors 52 and the lifting units 53 to cause the carrier robot 50 to support the carriage 5, and makes the carrier robot 50 temporarily stand by there.
  • step S400 the processing of steps S400 to S460 in FIG. 8 is executed by the first transport robot 50 .
  • the first transport robot 50 acquires the coordinates of the current placement section acquired by the second transport robot 50 in step S430 as the coordinates of the previous placement section.
  • steps S400 to S460 the processing of steps S400 to S460 in FIG.
  • the control device 55 of the transport robot 50 aligns a plurality of carts 5 (cargo handling equipment) in the storage place 6 for the transport robot 50, which is a moving body that can move while estimating its own position.
  • the position of the previous carriage 5 placed in the storage place 6 ahead of time that is, the coordinates of the previous placement section are acquired (step S150 in FIG. 6, step S400 in FIG. 8).
  • the control device 55 controls the transport robot 50 to place the next carriage 5 in the current placement section, which is the position determined based on the acquired coordinates of the previous placement section (position of the previous carriage 5) ( Steps S160-S190 in FIG. 6, Steps S410-S440 in FIG. 8).
  • the control device 55 recognizes the marker 5m of the previous truck 5 and moves the transport robot 50 based on the position of the marker 5m of the previous truck 5. (step S180 in FIG. 6, step S430 in FIG. 8). As a result, the gap between the front truck 5 and the next truck 5 can be made smaller.
  • control device 55 acquires the position of the previous truck 5, that is, the coordinates of the previously arranged section, and stores them in the storage device 57 (step S120 in FIG. 6), and also acquires the position of the next truck 5, that is, the coordinates of the currently arranged section. is acquired and stored in the storage device 57 (step S180 in FIG. 6).
  • the position of the previous carriage 5, that is, the coordinates of the previous placement section is the same as the transportation location where the previous carriage 5 was placed in the storage location 6.
  • the control device 55 of the transport robot 50 that transports the next carriage 5 obtained by the robot 50 (another moving body) controls the transport robot 50 that transported the previous carriage 5 (another moving object).
  • the coordinates of the previously placed section are obtained from the control device 55 of the body (step S400 in FIG. 8).
  • the position of the previous carriage 5, that is, the coordinates of the previous placement section does not necessarily need to be exchanged directly between the transport robots 50 as described above. Coordinates may be communicated indirectly. That is, in step S320 of FIG. 7, the coordinates of the previous placement section may be transmitted to the AMR management device 15 from the control device 55 of the transport robot 50 that transported the previous carriage 5, and in step S400 of FIG. The control device 55 of the transport robot 50 that transports the carriage 5 may acquire the coordinates of the previous arrangement section from the AMR management device 15 (other device).
  • control device 55 of the transport robot 50 recognizes the marker attached to the initial placement section in which the first carriage 5 is to be placed when arranging the first carriage 5 in the storage location 6, and determines the position of the marker.
  • the transport robot 50 is moved as a reference (step S120 in FIG. 6, step S320 in FIG. 7). This makes it possible to accurately place the first truck 5 in the initial placement section.
  • control device 55 of the transport robot 50 controls the transport robot 50 based on the coordinates (predetermined absolute position) of the initial placement section of the storage location 6 so as to place the first carriage 5 in the initial placement section. may be
  • the storage location of the cart 5 is not limited to that provided in the distribution center 1, and may be a storage location provided in a retail store such as a store, a shopping center, or a backyard of a retail store, for example. good.
  • the carriage 5 may be arranged around a production line such as a component mounting line.
  • the cargo handling equipment stored in the storage place (arrangement place) is not limited to the trolley 5, and may be a pallet without wheels.
  • the transport robot 50 includes a plurality of mecanum wheels 51 that are rotationally driven by corresponding electric motors 52 . As a result, the transfer robot 50 can be moved smoothly in all directions with a higher degree of freedom of movement.
  • the invention of the present disclosure can be used in the manufacturing industry of moving bodies that can recognize and support cargo handling equipment on which cargo is placed and move while estimating its own position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本開示の移動体の制御装置は、荷物を載せる荷役器具を認識して支持すると共に自己位置を推定しながら移動することができる移動体の制御装置でありて、移動体に複数の荷役器具を配置場所に整列して配置させる際に、配置場所に先行して置かれた前の荷役器具の位置を取得すると共に、取得した前の荷役器具の位置に基づいて定めた位置に次の荷役器具を置くように移動体を制御する。これにより、自己位置を推定しながら移動することができる移動体を利用して複数の荷役器具を隙間ができるだけ小さくなるように配置場所に整列して配置することができる。

Description

移動体の制御装置および制御方法
 本開示は、荷物を載せる荷役器具を認識して支持すると共に自己位置を推定しながら移動することができる移動体の制御装置および制御方法に関する。
 従来、それぞれトロリー線を介して給電されるモータを有すると共にトラックの荷台に沿って配設されたレール上を走行する複数の作業台車により当該トラックに物品を積み込む荷積みシステムが知られている(例えば、特許文献1参照)。この荷積みシステムでは、少なくとも先頭の作業台車の最初の積み込み位置が後続の作業台車に対して報知され、各作業台車には、当該作業台車が先頭から何台目であるかが通知される。また、各作業台車は、当該作業台車の最初の積み込み位置を記憶し、2回目以降に最初の積み込み位置を基準に積み込み位置を導出する。これにより、先頭の作業台車が何らかの事情で経路外へ取り除かれたり、作業台車の台数が途中で変動したりしても、残りの作業台車に基準位置を認識させて積み込みを続行することができる。
特開2001-301987号公報
 上記従来の荷積みシステムは、トラックへの荷積みのための専用設備であり、レールや給電用のトロリー線の敷設等を必要とするものである。これに対して、例えばAMR(Autonomous Mobile Robot)といった自律走行可能な移動体を用いてパレットや台車といった荷役器具の搬送を行うことで、レールやトロリー線の敷設等が不要となる。ただし、自律走行する移動体における自己位置の推定誤差を無くすことは困難であり、当該移動体を狙った位置に高精度に停止させるのは容易ではない。このため、自律走行可能な移動体により荷役器具を予め定められた配置場所に整列して配置する際には、荷役器具同士の干渉を抑制するために隣り合う荷役器具同士の間隔がある程度確保されるように搬送台車の目標位置を設定せざるを得ず、当該配置場所に荷役器具を隙間無く配置し得なくなってしまう。
 そこで、本開示は、自己位置を推定しながら移動することができる移動体を利用して複数の荷役器具を隙間ができるだけ小さくなるように配置場所に整列して配置することを主目的とする。
 本開示の移動体の制御装置は、荷物を載せる荷役器具を認識して支持すると共に自己位置を推定しながら移動することができる移動体の制御装置において、前記移動体に複数の前記荷役器具を配置場所に整列して配置させる際に、前記配置場所に先行して置かれた前の荷役器具の位置を取得すると共に、取得した前記前の荷役器具の位置に基づいて定めた位置に次の荷役器具を置くように前記移動体を制御するものである。
 本開示の移動体の制御装置は、自己位置を推定しながら移動することができる移動体に複数の荷役器具を配置場所に整列して配置させる際に、配置場所に先行して置かれた前の荷役器具の位置を取得する。更に、当該制御装置は、取得した前の荷役器具の位置に基づいて定めた位置に次の荷役器具を置くように移動体を制御する。これにより、移動体における自己位置の推定に誤差を生じたとしても、前の荷役器具との隙間をできるだけ小さくしながら次の荷役器具を配置場所に置くことができる。この結果、本開示の制御装置によれば、複数の荷役器具を隙間ができるだけ小さくなるように配置場所に整列して配置することが可能となる。
 本開示の移動体の制御方法は、荷物を載せる荷役器具を認識して支持すると共に自己位置を推定しながら移動することができる移動体の制御方法において、前記移動体に複数の前記荷役器具を配置場所に整列して配置させる際に、前記配置場所に先行して置かれた前の荷役器具の位置を取得すると共に、取得した前記前の荷役器具の位置に基づいて定めた位置に次の荷役器具を置くように前記移動体を制御するものである。
 かかる方法によれば、移動体における自己位置の推定に誤差を生じたとしても、前の荷役器具との隙間をできるだけ小さくしながら次の荷役器具を配置場所に置くことができる。この結果、複数の荷役器具を隙間ができるだけ小さくなるように配置場所に整列して配置することが可能となる。
本開示の制御装置を含む移動体が適用される物流センターを示す概略構成図である。 図1の物流センターの物流管理システムを示すブロック図である。 図1の物流センターで用いられる台車を示す斜視図である。 本開示の制御装置を含む移動体を示す斜視図である。 本開示の移動体の制御装置の制御ブロック図である。 本開示の制御装置を含む移動体に荷役器具としての台車を保管場所に配置させる手順を説明するためのフローチャートである。 本開示の制御装置を含む移動体に荷役器具としての台車を保管場所に配置させる他の手順を説明するためのフローチャートである。 本開示の制御装置を含む移動体に荷役器具としての台車を保管場所に配置させる他の手順を説明するためのフローチャートである。
 次に、図面を参照しながら、本開示の発明を実施するための形態について説明する。
 図1は、本開示の制御装置を含む自律走行可能な移動体としての搬送ロボット(AMR:Autonomous Mobile Robot)50が適用される物流センター1を示す概略構成図であり、図2は、物流センター1の物流管理システム10を示すブロック図である。図1に示す物流センター1は、荷物(商品)の保管、輸送、荷役、包装、流通加工等が行われる設備である。図示するように、物流センター1は、複数の搬送ロボット50に加えて、トラック等の配送車Tの入口2と、複数の出荷ゲート3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l(以下、適宜、出荷ゲートを総称して「出荷ゲート3x」という。)を有する出荷エリア3と、包装された多数の荷物Pを図示しない倉庫から出荷エリア3へと搬送するコンベヤ4と、複数の台車5とを含む。物流センター1において、荷物Pは、コンベヤ4により出荷エリア3まで搬送され、台車5に積み替えられる。また、荷物Pを載せた荷役器具としての台車5は、搬送ロボット50により該当する出荷ゲート3xまで搬送される。そして、荷物Pを載せた台車5は、出荷ゲート3xにおいて該当する配送車Tに積み込まれ、当該配送車Tにより出荷先まで搬送される。
 物流センター1の入口2には、当該入口2に到着した配送車Tを撮像する入口カメラ20と、配送車Tのドライバーに各種情報を視覚的に提供するためのモニタ21と、入口管理装置25(図2参照)が設置されている。入口管理装置25は、CPU,ROM,RAM、記憶装置、通信モジュール等を含むコンピュータであり、入口カメラ20の撮像データ(画像データ)に基づいて入口2に到着した配送車TのIDを取得する。すなわち、入口カメラ20および入口管理装置25は、入口2のID取得装置として機能する。本実施形態において、配送車TのIDは、例えば物流センター1から配送車Tに予め付与された番号であり、配送車Tには、入口カメラ20から認識可能となるように当該IDを示す図示しないマーカーが貼着されている。ただし、配送車TのIDは、当該配送車Tの自動車登録番号であってもよく、図示しない通信機器を介して取得されるETC等の車載機器の番号であってもよい。更に、入口管理装置25は、モニタ21にドライバーに対して提供すべき情報を表示させる。
 また、各出荷ゲート3a-3lには、当該出荷ゲート3a-3lに到着した配送車Tを撮像するカメラ30と、配送車Tへの積み込みに際して通過する台車5を撮像可能な台車検出器31と、出荷ゲート管理装置35(図2参照)とが設置されている。出荷ゲート管理装置35は、CPU,ROM,RAM、記憶装置、通信モジュール等を含むコンピュータであり、カメラ30の撮像データ(画像データ)に基づいて出荷ゲート3a,3b…、または3lに到着した配送車TのIDを取得する。すなわち、カメラ30および出荷ゲート管理装置35は、各出荷ゲート3a-3lにおける配送車ID取得装置として機能する。また、出荷ゲート管理装置35は、台車検出器31の撮像データ(画像データ)に基づいて配送車Tに積み込まれる台車5のIDを取得する。すなわち、台車検出器31および出荷ゲート管理装置35は、各出荷ゲート3a-3lにおける台車ID取得装置として機能する。
 コンベヤ4は、主搬送ライン40と、それぞれ出荷ゲート3a-3lの対応する1つと対向するように当該主搬送ライン40から分岐された複数の出荷ライン4a,4b,4c,4d,4e,4f,4g,4h,4i,4j,4k,4lを含む(以下、適宜、出荷ラインを総称して「出荷ライン4x」という。)。かかるコンベヤ4は、CPU,ROM,RAM、記憶装置、通信モジュール等を含むコンピュータであるコンベヤ制御装置14(図2参照)により制御される。物流センター1で取り扱われる荷物Pには、そのIDを示すバーコードシールが貼着されており、コンベヤ制御装置14は、荷物PのIDに基づいてコンベヤ4を制御する。すなわち、コンベヤ制御装置14は、図示しないバーコードリーダを介して主搬送ライン40上の荷物PのIDを取得し、取得したIDに基づいて主搬送ライン40により出荷エリア3まで搬送された荷物Pを該当する出荷ライン4xに仕分けるようにコンベヤ4を制御する。
 台車5は、図3に示すような、いわゆるカゴ台車であり、当該台車5のIDを示すARマーカーやQRコード(登録商標)、バーコードといった認識対象としてのマーカー5mを含む。マーカー5mは、搬送ロボット50や台車検出器31により認識され得るように台車5の少なくとも1箇所(図3の例では、2箇所)に設けられる。また、物流センター1では、図1に示すように、出荷エリア3内に保管場所(配置場所)6が確保されている。未使用の台車5は、保管場所6に整列して配置され、使用対象となる台車5は、搬送ロボット50により識別されて保管場所6から指定箇所へと搬送される。更に、物流センター1の建屋内の出荷エリア3の床面や柱等には、各搬送ロボット50を自律走行させるためのARマーカーやQRコード(登録商標)といった認識対象としての複数のマーカー3mが貼着されている。
 図2に示すように、物流管理システム10は、管理装置としての管理サーバ11と、記憶装置12とを含む。管理サーバ11は、CPU,ROM,RAM、通信モジュール等を有するコンピュータである。管理サーバ11は、入口管理装置25および各出荷ゲート3a-3lの出荷ゲート管理装置35から各種情報を取得すると共に、入口管理装置25、および各出荷ゲート管理装置35に要求された情報や指令信号を送信する。更に、管理サーバ11は、荷物PのIDといった荷物Pの仕分けに必要な情報をコンベヤ制御装置14に送信すると共に、AMR管理装置15と相互に情報をやり取りする。AMR管理装置15は、CPU,ROM,RAM、記憶装置、通信モジュール等を含むコンピュータであり、無線通信を介して複数の搬送ロボット50と情報をやり取りして当該複数の搬送ロボット50を管理するものである。
 また、物流管理システム10の記憶装置12は、荷物Pの配送に関する情報を物流センター1からIDが付与された複数の配送車Tごとに格納した配送データベースを記憶する。当該配送データベースは、配送車TのIDに、当該配送車Tに積載される荷物PのIDと、当該荷物Pの出荷先と、配送車Tへの荷積みが行われる出荷ゲート3x(以下、適宜「荷積みゲート3z」という。)のIDとを紐付けて(関連付けて)格納するものである。更に、記憶装置12は、出荷エリア3(物流センター1)における搬送ロボット50の移動可能領域および移動禁止領域、各領域の識別標識情報、マーカー3mの位置情報、移動禁止となる時間帯等を含むエリア情報を記憶する。
 図4は、搬送ロボット50を示す斜視図であり、図5は、搬送ロボット50の制御ブロック図である。図4および図5に示すように、搬送ロボット50は、複数(4つ)のメカナムホイール51と、それぞれ対応するメカナムホイール51を回転駆動する複数(4つ)の電動モータ52と、台車5を昇降させるための昇降ユニット53とを含み、台車5の下方に進退移動可能に構成されている。各メカナムホイール51は、一対の支持プレート51pと、当該一対の支持プレート51pによって、環状に並ぶように支持されると共に、それぞれ車軸に対して45°だけ傾斜した軸心周りに回転可能な複数のローラ51rとを含むものである。これにより、複数の電動モータ52の回転方向および回転速度を制御することで、搬送ロボット50を全方向に移動させると共に、搬送ロボット50を超信地旋回、信地旋回あるいは緩旋回させることが可能となる。昇降ユニット53は、台車5を支持する支持部材と、台車5の各車輪が走行路面から離間したり、当該走行路面に接地したりするように当該支持部材を搬送ロボット50の本体に対して昇降させる駆動装置とを含む。
 更に、搬送ロボット50は、撮像装置としてのカメラ54と、制御装置55と、AMR管理装置15や他の搬送ロボット50との通信(無線通信)に供される通信モジュール56と、記憶装置57とを含む。カメラ54は、搬送ロボット50の周囲を撮像し、撮像データ(画像データ)を制御装置55に送信する。制御装置55は、CPU,ROM,RAM等を含むコンピュータである。制御装置55には、図5に示すように、CPUやROM,RAMといったハードウエアと予めインストールされた各種プログラムとの協働により、演算処理部55G、走行制御部55Dおよび昇降制御部55Lが構築される。
 制御装置55の演算処理部55Gは、VSLAM技術(自己位置推定技術)を利用するものであり、搬送ロボット50の走行中、所定時間(微小時間)おきに、カメラ54の撮像データに基づいて当該搬送ロボット50の出荷エリア3(物流センター1)における自己位置(3次元座標)と環境地図とを取得し、記憶装置57に記憶させる。また、演算処理部55Gは、カメラ54の撮像データから出荷エリア3のマーカー3mや台車5のマーカー5m(台車5のID)を認識(識別)すると共に、台車5等の対象物自体を認識(識別)することができる。更に、演算処理部55Gは、搬送ロボット50の走行中に出荷エリア3に配設されたマーカー3mを認識し、予め判明しているマーカー3mの位置に基づいて推定した自己位置や環境地図を補正する。また、演算処理部55Gは、カメラ54の感度(撮像素子のゲイン)および露光時間(シャッタースピード)を調節可能である。更に、演算処理部55Gは、カメラ54の撮像データからマーカー3m,5mといった認識対象を正常に認識し得たときの当該カメラ54の撮像条件すなわち感度および露光時間をマーカー3m等の場所(ID)や当該マーカー3m等が撮像された時間帯に紐付けて記憶装置57に記憶させる。
 制御装置55の走行制御部55Dは、演算処理部55Gにより取得された自己位置(現在位置)や環境地図等に基づいて複数の電動モータ52を制御する。更に、昇降制御部55Lは、搬送ロボット50が該当する台車5の下方に位置する際に、当該台車5を上昇または下降させるように昇降ユニット53を制御する。なお、制御装置55の演算処理部55Gは、2Dまたは3DLiDAR(レーザーセンサ)等を用いたSLAM技術により自己位置と環境地図とを取得するように構成されてもよく、マーカーの位置のみに基づいて自己位置を推定するように構成されてもよく、ビーコン等を利用した屋内測位技術により自己位置と環境地図とを取得するように構成されてもよい。また、搬送ロボット50は、一般的なゴムタイヤを含む車輪、オムニホイール(登録商標)といったメカナムホイール以外の車輪を含むものであってもよい。
 ここで、物流センター1の出荷エリア3で使用されていない台車5は、出荷エリア3内の保管場所6に保管されるが、出荷エリア3のスペース効率を向上させるためには、保管場所6をできるだけ狭めて当該保管場所6に複数の台車5を隙間無く配置することが求められる。ただし、台車5を保管場所から出し入れする搬送ロボット50における自己位置の推定誤差を無くすことは困難であり、搬送ロボット50を狙った位置に高精度に停止させるのは容易ではない。このため、搬送ロボット50の制御装置55は、保管場所6で互い隣り合う台車5同士の間隔ができるだけ小さくなるように、図6、図7および図8に示す手順に従ってAMR管理装置15により指定された台車5を保管場所6に格納するように当該搬送ロボット50を制御する。なお、本実施形態において、保管場所6は、それぞれ1台の台車5が配置される複数の配置区画に区画されており、少なくとも保管場所6に台車5が格納されていない状態で最初の台車5が格納される配置区画(以下、「初回配置区画」という。)には、図示しないマーカーが搬送ロボット50のカメラ54により撮像可能となるように設けられている。
 図6は、単一の搬送ロボット50により複数の台車5を空の保管場所6に格納する手順を示すフローチャートである。当該単一の搬送ロボット50の制御装置55の走行制御部55Dは、演算処理部55Gにより推定される自己位置に基づいてAMR管理装置15から指定された最初の格納対象となる台車5の周辺まで当該搬送ロボット50が移動するように複数の電動モータ52を制御する。また、制御装置55の演算処理部55Gが台車5のマーカー5mを認識すると、走行制御部55Dは、搬送ロボット50が当該台車5の下方に入り込むように複数の電動モータ52を制御する。更に、制御装置55の昇降制御部55Lは、台車5を上昇させるように昇降ユニット53を制御する。これにより、最初の台車5が搬送ロボット50により支持される(ステップS100)。また、ステップS100において、制御装置55の走行制御部55Dは、AMR管理装置15から受信した最初の台車5を配置すべき初回配置区画の情報を読み出す。初回配置区画の情報は、当該初回配置区画の座標であってもよく、配置区画の番号(ID)等であってもよい。
 ステップS100の処理の後、制御装置55の走行制御部55Dは、AMR管理装置15からの初回配置区画の情報と、演算処理部55Gにより推定される自己位置とに基づいて、初回配置区画の周辺まで搬送ロボット50が移動するように複数の電動モータ52を制御し、演算処理部55Gは、カメラ54の撮像データから初回配置区画のマーカーを認識する(ステップS110)。更に、走行制御部55Dは、演算処理部55Gにより認識された初回配置区画のマーカーの位置を基準に搬送ロボット50の停止位置を定め、当該停止位置まで搬送ロボット50が移動するように複数の電動モータ52を制御する(ステップS120)。また、制御装置55の演算処理部55Gは、搬送ロボット50を停止させた後、搬送ロボット50の停止位置の座標を取得し、当該座標を前回配置区画の座標として記憶装置57に記憶させる(ステップS120)。また、制御装置55の昇降制御部55Lは、台車5を下降させるように昇降ユニット53を制御し、台車5の車輪が接地すると、制御装置55の走行制御部55Dは、搬送ロボット50が台車5の下方から退出するように複数の電動モータ52を制御する(ステップS130)。これにより、最初の台車5が初回配置区画に格納される。
 最初の台車5を初回配置区画に格納すると、制御装置55の走行制御部55Dは、AMR管理装置15から次の台車5の格納が指示されているか否かを判定する(ステップS140)。走行制御部55Dは、次の台車5の格納が指示されていないと判定した場合(ステップS140:NO)、予め定められた待機位置まで搬送ロボット50が移動するように複数の電動モータ52を制御し(ステップS210)、保管場所6への台車5の格納を終了させる。
 これに対して、次の台車5の格納が指示されていると判定した場合(ステップS140:YES)、走行制御部55Dは、指定された次の台車5の周辺まで当該搬送ロボット50が移動するように複数の電動モータ52を制御する。また、制御装置55の演算処理部55Gが次の台車5のマーカー5mを認識すると、制御装置55の走行制御部55Dは、搬送ロボット50が当該台車5の下方に入り込むように複数の電動モータ52を制御する。更に、制御装置55の昇降制御部55Lは、台車5を上昇させるように昇降ユニット53を制御する。これにより、次の格納対象の台車5が搬送ロボット50により支持される(ステップS150)。また、ステップS150において、制御装置55の走行制御部55Dは、最初の台車5が配置された初回配置区画の座標、言い換えれば、前の台車5が配置された保管場所6の前回配置区画の座標を記憶装置57から読み出す。更に、走行制御部55Dは、前回配置区画(初回配置区画)の座標に基づいて次の台車5を配置すべき今回配置区画の座標を設定する(ステップS160)。
 次いで、制御装置55の走行制御部55Dは、次の台車5を配置すべき今回配置区画の座標と、演算処理部55Gにより推定される自己位置とに基づいて、今回配置区画の周辺まで当該搬送ロボット50が移動するように複数の電動モータ52を制御し、演算処理部55Gは、カメラ54の撮像データから前回配置区画(初回配置区画)に格納されている台車5のマーカーを認識する(ステップS170)。更に、走行制御部55Dは、演算処理部55Gにより認識された前回配置区画の台車5のマーカー5mの位置を基準に今回配置区画の座標まで搬送ロボット50が移動するように複数の電動モータ52を制御する(ステップS180)。また、制御装置55の演算処理部55Gは、搬送ロボット50を停止させた後、当該搬送ロボット50の停止位置の座標を取得し、当該座標を今回配置区画の座標として記憶装置57に記憶させる(ステップS180)。更に、制御装置55の昇降制御部55Lは、台車5を下降させるように昇降ユニット53を制御し、台車5の車輪が接地すると、走行制御部55Dは、搬送ロボット50が台車5の下方から退出するように複数の電動モータ52を制御する(ステップS190)。これにより、次(2台目)の台車5が今回配置区画に格納される。
 ステップS190の処理の後、制御装置55の走行制御部55Dは、AMR管理装置15から指定された数の台車5が保管場所に格納されたか否かを判定する(ステップS200)。制御装置55は、指定された数の台車5が保管場所に格納されていないと判定した場合(ステップS200:NO)、上述のステップS150以降の処理を実行する。この場合、ステップS150では、直近のステップS180にて記憶された今回配置区画の座標が前回配置区画の座標として読み出される。そして、ステップS200にて指定された数の台車5が保管場所に格納されたと判定した場合(ステップS200:YES)、予め定められた待機位置まで搬送ロボット50が移動するように複数の電動モータ52を制御し(ステップS210)、保管場所6への台車5の格納を終了させる。
 続いて、図7および図8を参照しながら、複数の搬送ロボット50により複数の台車5を空の保管場所6に格納する手順について説明する。
 AMR管理装置15から指定された1台目の搬送ロボット50の制御装置55(走行制御部55D)は、AMR管理装置15から指定された最初の格納対象となる台車5の周辺まで当該搬送ロボット50が移動するように複数の電動モータ52を制御する。また、1台目の搬送ロボット50の制御装置55は、演算処理部55Gが台車5のマーカー5mを認識すると、複数の電動モータ52および昇降ユニット53を制御して搬送ロボット50に最初の台車5を支持させる(ステップS300)。また、ステップS300において、1台目の搬送ロボット50の制御装置55(走行制御部55D)は、AMR管理装置15から受信した最初の台車5を配置すべき初回配置区画の情報を読み出す。
 ステップS300の処理の後、1台目の搬送ロボット50の制御装置55(走行制御部55D)は、初回配置区画の周辺まで搬送ロボット50が移動するように複数の電動モータ52を制御し、当該制御装置55(演算処理部55G)は、カメラ54の撮像データから初回配置区画のマーカーを認識する(ステップS310)。更に、1台目の搬送ロボット50の制御装置55(走行制御部55D)は、演算処理部55Gにより認識された初回配置区画のマーカーの位置を基準に搬送ロボット50の停止位置を定め、当該停止位置まで搬送ロボット50が移動するように複数の電動モータ52を制御する(ステップS320)。また、当該制御装置55(演算処理部55G)は、搬送ロボット50が停止させた後、搬送ロボット50の停止位置の座標を取得し、当該座標を前回配置区画の座標として記憶装置57に記憶させる(ステップS320)。更に、1台目の搬送ロボット50の制御装置55は、台車5を下降させるように昇降ユニット53を制御し、台車5の車輪の接地後に搬送ロボット50が台車5の下方から退出するように複数の電動モータ52を制御する(ステップS330)。これにより、最初の台車5が初回配置区画に格納される。
 最初の台車5を初回配置区画に格納すると、1台目の搬送ロボット50の制御装置55(走行制御部55D)は、AMR管理装置15から更なる台車5の格納が指示されているか否かを判定する(ステップS340)。当該制御装置55(走行制御部55D)は、更なる台車5の格納が指示されていないと判定した場合(ステップS340:NO)、予め定められた待機位置まで搬送ロボット50が移動するように複数の電動モータ52を制御し(S345)、保管場所6への台車5の格納を終了させる。これに対して、1台目の搬送ロボット50の制御装置55(走行制御部55D)は、更なる台車5の格納が指示されていると判定した場合(ステップS340:YES)、指定された格納対象の台車5の周辺まで当該搬送ロボット50が移動するように複数の電動モータ52を制御する(ステップS350)。更に、ステップS350において、当該制御装置55は、複数の電動モータ52および昇降ユニット53を制御して搬送ロボット50に台車5を支持させ、そこで搬送ロボット50を一旦待機させる。
 また、AMR管理装置15から指定された2台目の搬送ロボット50の制御装置55(走行制御部55D)は、AMR管理装置15から指定された格納対象となる次の台車5の周辺まで当該搬送ロボット50が移動するように複数の電動モータ52を制御する。また、2台目の搬送ロボット50の制御装置55は、演算処理部55Gが台車5のマーカー5mを認識すると、図8に示すように、複数の電動モータ52および昇降ユニット53を制御して搬送ロボット50に次の台車5を支持させる(ステップS400)。更に、ステップS400において、2台目の搬送ロボット50の制御装置55(走行制御部55D)は、上記1台目の搬送ロボット50に最初の台車5が格納された前回配置区画すなわち初回配置区画の座標の送信を要求し、当該1台目の搬送ロボット50から前回配置区画(初回配置区画)の座標を取得する。また、制御装置55(走行制御部55D)は、前回配置区画(初回配置区画)の座標に基づいて次の台車5を格納すべき今回配置区画の座標を設定する(ステップS410)。
 次いで、2台目の搬送ロボット50の制御装置55(走行制御部55D)は、今回配置区画の周辺まで当該搬送ロボット50が移動するように複数の電動モータ52を制御し、2台目の搬送ロボット50の制御装置55の演算処理部55Gは、カメラ54の撮像データから前回配置区画(初回配置区画)に格納されている台車5のマーカーを認識する(ステップS420)。更に、当該制御装置55(走行制御部55D)は、演算処理部55Gにより認識された前回配置区画の台車5のマーカー5mの位置を基準に今回配置区画の座標まで搬送ロボット50が移動するように複数の電動モータ52を制御する(ステップS430)。また、当該制御装置55の演算処理部55Gは、搬送ロボット50を停止させた後、搬送ロボット50の停止位置の座標を取得し、当該座標を今回配置区画の座標として記憶装置57に記憶させる(ステップS430)。更に、2台目の搬送ロボット50の制御装置55は、台車5を下降させるように昇降ユニット53を制御し、台車5の車輪の接地後に搬送ロボット50が台車5の下方から退出するように複数の電動モータ52を制御する(ステップS440)。これにより、次(2台目)の台車5が今回配置区画に格納される。
 ステップS440の処理の後、2台目の搬送ロボット50の制御装置55(走行制御部55D)は、AMR管理装置15から更なる台車5の格納が指示されているか否かを判定する(ステップS450)。当該制御装置55(走行制御部55D)は、更なる台車5の格納が指示されていないと判定した場合(ステップS450:NO)、予め定められた待機位置まで搬送ロボット50が移動するように複数の電動モータ52を制御し(S455)、保管場所6への台車5の格納を終了させる。これに対して、2台目の搬送ロボット50の制御装置55(走行制御部55D)は、更なる台車5の格納が指示されていると判定した場合(ステップS450:YES)、指定された格納対象となる台車5の周辺まで当該搬送ロボット50が移動するように複数の電動モータ52を制御する(ステップS460)。更に、ステップS460において、当該制御装置55は、複数の電動モータ52および昇降ユニット53を制御して搬送ロボット50に台車5を支持させ、そこで搬送ロボット50を一旦待機させる。
 そして、例えば上記1台目および2台目の2台の搬送ロボット50により3台以上の台車5が保管場所6に格納される場合には、2台目の搬送ロボット50により図8のステップS400-S460の処理が実行された後、1台目の搬送ロボット50により図8のステップS400-S460の処理が実行されることになる。この場合、1台目の搬送ロボット50は、ステップS400において、上記2台目の搬送ロボット50によりステップS430にて取得された今回配置区画の座標を前回配置区画の座標として取得する。また、3台以上の搬送ロボット50により3台以上の台車5が保管場所6に格納される場合には、2台目の搬送ロボット50により図8のステップS400-S460の処理が実行された後、3台目の搬送ロボット50により図8のステップS400-S460の処理が実行されることになる。
 以上説明したように、搬送ロボット50の制御装置55は、自己位置を推定しながら移動することができる移動体である搬送ロボット50に複数の台車5(荷役器具)を保管場所6に整列して配置させる際に、保管場所6に先行して置かれた前の台車5の位置すなわち前回配置区画の座標を取得する(図6のステップS150、図8のステップS400)。更に、当該制御装置55は、取得した前回配置区画の座標(前の台車5の位置)に基づいて定めた位置である今回配置区画に次の台車5を置くように搬送ロボット50を制御する(図6のステップS160-S190、図8のステップS410-S440)。これにより、搬送ロボット50(演算処理部55G)における自己位置の推定に誤差を生じたとしても、前の台車5との隙間をできるだけ小さくしながら次の台車5を保管場所6の配置区画に置くことができる。この結果、複数の台車5を隙間ができるだけ小さくなるように保管場所6に整列して配置することが可能となる。
 また、制御装置55は、次の台車5を保管場所6に配置する際に、前の台車5のマーカー5mを認識すると共に当該前の台車5のマーカー5mの位置を基準に搬送ロボット50を移動させる(図6のステップS180、図8のステップS430)。これにより、前の台車5と次の台車5との隙間をより小さくすることが可能となる。
 更に、制御装置55は、前の台車5の位置すなわち前回配置区画の座標を取得して記憶装置57に記憶させると共に(図6のステップS120)、次の台車5の位置すなわち今回配置区画の座標を取得して記憶装置57に記憶させる(図6のステップS180)。これにより、単一の搬送ロボット50を利用して複数の台車5を隙間ができるだけ小さくなるように保管場所6に整列して配置していくことが可能となる。
 また、複数の搬送ロボット50を用いて複数の台車5を保管場所6に格納する場合、前の台車5の位置すなわち前回配置区画の座標は、当該前の台車5を保管場所6に置いた搬送ロボット50(他の移動体)により取得され(図7のステップS320)、次の台車5を搬送する搬送ロボット50の制御装置55は、当該前の台車5を搬送した搬送ロボット50(他の移動体)の制御装置55から前回配置区画の座標を取得する(図8のステップS400)。これにより、複数の搬送ロボット50を利用して複数の台車5を隙間ができるだけ小さくなるように保管場所6に順番に整列して配置していくことが可能となる。ただし、この場合、前の台車5の位置すなわち前回配置区画の座標は、必ずしも上述のように搬送ロボット50同士の間で直接やり取りされる必要はなく、搬送ロボット50同士の間で前回配置区画の座標が間接的にやり取りされてもよい。すなわち、図7のステップS320において、前の台車5を搬送した搬送ロボット50の制御装置55から前回配置区画の座標がAMR管理装置15に送信されてもよく、図8のステップS400において、次の台車5を搬送する搬送ロボット50の制御装置55は、AMR管理装置15(他の機器)から前回配置区画の座標を取得してもよい。
 更に、搬送ロボット50の制御装置55は、保管場所6に最初の台車5を配置する際に、最初の台車5を配置すべき初回配置区画に付されたマーカーを認識すると共に当該マーカーの位置を基準に搬送ロボット50を移動させる(図6のステップS120、図7のステップS320)。これにより、最初の台車5を初回配置区画に精度よく配置することが可能となる。ただし、搬送ロボット50の制御装置55は、保管場所6の初回配置区画の座標(予め指定された絶対位置)に基づいて、最初の台車5を当該初回配置区画に置くように搬送ロボット50を制御するものであってもよい
 また、台車5の保管場所は、物流センター1に設けられたものには限られず、例えば、、店舗、ショッピングセンター等の小売店、または小売店のバックヤードに設けられた保管場所であってもよい。更に、台車5の配置場所は、例えば部品実装ラインといった生産ラインの周辺に設けられものであってもよい。そして、保管場所(配置場所)に格納される荷役器具は、台車5に限られず、車輪をもたないパレットであってもよい。
 更に、搬送ロボット50は、それぞれ対応する電動モータ52により回転駆動される複数のメカナムホイール51を含むものである。これにより、搬送ロボット50の移動の自由度をより高くして全方向にスムースに移動させることが可能となる。
 また、本開示の発明は上記実施形態に何ら限定されるものではなく、本開示の外延の範囲内において様々な変更をなし得ることはいうまでもない。更に、上記実施形態は、あくまで発明の概要の欄に記載された発明の具体的な一形態に過ぎず、発明の概要の欄に記載された発明の要素を限定するものではない。
 本開示の発明は、荷物を載せる荷役器具を認識して支持すると共に自己位置を推定しながら移動することができる移動体の製造産業において利用可能である。
 1 物流センター、2 入口、3 出荷エリア、3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l,3x 出荷ゲート、3m マーカー、4 コンベヤ、4a,4b,4c,4d,4e,4f,4g,4h,4i,4j,4k,4l,4x 出荷ライン、40 主搬送ライン、5 台車、5m マーカー、6 保管場所、10 物流管理システム、11 管理サーバ、12 記憶装置、14 コンベヤ制御装置、15 AMR管理装置、20 入口カメラ、21 モニタ、25 入口管理装置、30 カメラ、31 台車検出器、35 出荷ゲート管理装置、50 搬送ロボット、51 メカナムホイール、51p 支持プレート、51r ローラ、52 電動モータ、53 昇降ユニット、54 カメラ、55 制御装置、55D 走行制御部、55G 演算処理部、55L 昇降制御部、56 通信モジュール、57 記憶装置、P 荷物、T 配送車。

Claims (10)

  1.  荷物を載せる荷役器具を認識して支持すると共に自己位置を推定しながら移動することができる移動体の制御装置において、
     前記移動体に複数の前記荷役器具を配置場所に整列して配置させる際に、前記配置場所に先行して置かれた前の荷役器具の位置を取得すると共に、取得した前記前の荷役器具の位置に基づいて定めた位置に次の荷役器具を置くように前記移動体を制御する移動体の制御装置。
  2.  請求項1に記載の移動体の制御装置において、
     前記次の荷役器具を前記配置場所に配置する際に、前記前の荷役器具を認識すると共に前記前の荷役器具の位置を基準に前記移動体を移動させる移動体の制御装置。
  3.  請求項1または2に記載の移動体の制御装置において、
     前記前の荷役器具の位置を取得して記憶装置に記憶させると共に、前記次の荷役器具の位置を取得して前記記憶装置に記憶させる移動体の制御装置。
  4.  請求項1または2に記載の移動体の制御装置において、
     前記前の荷役器具の位置は、前記前の荷役器具を前記配置場所に置いた他の移動体により取得され、
     前記前の荷役器具の位置を前記他の移動体から直接的または間接的に取得する移動体の制御装置。
  5.  請求項1から4の何れか一項に記載の移動体の制御装置において、
     前記配置場所に最初の荷役器具を配置する際に、前記最初の荷役器具を配置すべき位置に付されたマーカーを認識すると共に前記マーカーの位置を基準に前記移動体を移動させる移動体の制御装置。
  6.  請求項1から4の何れか一項に記載の移動体の制御装置において、
     前記配置場所の予め定められた位置に最初の荷役器具を配置するように前記移動体を制御する移動体の制御装置。
  7.  請求項1から6の何れか一項に記載の移動体の制御装置において、
     前記配置場所は、物流センター、店舗、小売店、小売店のバックヤード、あるいは生産ラインの周辺に設けられた前記荷役器具の保管場所である移動体の制御装置。
  8.  請求項1から6の何れか一項に記載の移動体の制御装置において、前記荷役器具は、台車またはパレットである移動体の制御装置。
  9.  請求項1から8の何れか一項に記載の移動体の制御装置において、
     前記移動体は、それぞれ対応する電動モータにより回転駆動される複数のホイールを含み、全方向に移動可能である移動体の制御装置。
  10.  荷物を載せる荷役器具を認識して支持すると共に自己位置を推定しながら移動することができる移動体の制御方法において、
     前記移動体に複数の前記荷役器具を配置場所に整列して配置させる際に、前記配置場所に先行して置かれた前の荷役器具の位置を取得すると共に、取得した前記前の荷役器具の位置に基づいて定めた位置に次の荷役器具を置くように前記移動体を制御する移動体の制御方法。
PCT/JP2021/035578 2021-09-28 2021-09-28 移動体の制御装置および制御方法 WO2023053180A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180101813.8A CN117836223A (zh) 2021-09-28 2021-09-28 移动体的控制装置及控制方法
EP21959231.8A EP4410710A4 (en) 2021-09-28 2021-09-28 CONTROL DEVICE AND CONTROL METHOD FOR MOVING BODY
PCT/JP2021/035578 WO2023053180A1 (ja) 2021-09-28 2021-09-28 移動体の制御装置および制御方法
JP2023550769A JPWO2023053180A1 (ja) 2021-09-28 2021-09-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/035578 WO2023053180A1 (ja) 2021-09-28 2021-09-28 移動体の制御装置および制御方法

Publications (1)

Publication Number Publication Date
WO2023053180A1 true WO2023053180A1 (ja) 2023-04-06

Family

ID=85781474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035578 WO2023053180A1 (ja) 2021-09-28 2021-09-28 移動体の制御装置および制御方法

Country Status (4)

Country Link
EP (1) EP4410710A4 (ja)
JP (1) JPWO2023053180A1 (ja)
CN (1) CN117836223A (ja)
WO (1) WO2023053180A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230933A (ja) * 1996-02-27 1997-09-05 Mitsubishi Electric Corp 自動搬送装置
JP2000159313A (ja) * 1998-11-27 2000-06-13 Amada Co Ltd 材料自動搬送システム
JP2001301987A (ja) 2000-04-25 2001-10-31 Murata Mach Ltd 荷積みシステム
WO2017090108A1 (ja) * 2015-11-25 2017-06-01 株式会社日立製作所 棚配置システム、搬送ロボット及び棚配置方法
JP2019169019A (ja) * 2018-03-26 2019-10-03 前田建設工業株式会社 走行装置の走行制御システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105593143B (zh) * 2013-10-11 2018-02-23 株式会社日立制作所 搬运机器人系统及搬运装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230933A (ja) * 1996-02-27 1997-09-05 Mitsubishi Electric Corp 自動搬送装置
JP2000159313A (ja) * 1998-11-27 2000-06-13 Amada Co Ltd 材料自動搬送システム
JP2001301987A (ja) 2000-04-25 2001-10-31 Murata Mach Ltd 荷積みシステム
WO2017090108A1 (ja) * 2015-11-25 2017-06-01 株式会社日立製作所 棚配置システム、搬送ロボット及び棚配置方法
JP2019169019A (ja) * 2018-03-26 2019-10-03 前田建設工業株式会社 走行装置の走行制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4410710A4

Also Published As

Publication number Publication date
EP4410710A4 (en) 2024-10-02
JPWO2023053180A1 (ja) 2023-04-06
EP4410710A1 (en) 2024-08-07
CN117836223A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
CN109987366B (zh) 一种无人化仓储系统及出入库方法
CN112805211B (zh) 商业物流设施、可配置模块化机器人自主引导车辆及其方法
KR102306091B1 (ko) 운반 방법, 운반 장치 및 운반시스템
CN109809334B (zh) 一种用于调动叉车运行以及升降的方法
JP5097650B2 (ja) ロボットシステム
KR20060050298A (ko) 물품 반송 장치 및 물품 반송 방법
CN109466903A (zh) 一种多托盘自动搬运车及其搬运方法
JP2022518012A (ja) 自動運転車用自律放送システム
JP2021062964A (ja) 自律走行フォークリフト及び自律走行無人搬送車を用いた物品の搬送システム
US20210354924A1 (en) Navigator for Intralogistics
CN111771175A (zh) 搬运车的行驶控制系统、以及搬运车的行驶控制方法
CN116745226A (zh) 输送车辆和用于将负载单元输送到车辆的方法
CN212314971U (zh) 一种转运设备以及集装箱运输系统
CN209554179U (zh) 一种多托盘自动搬运车
JP7095301B2 (ja) 搬送車の走行制御システム、及び、搬送車の走行制御方法
WO2023053180A1 (ja) 移動体の制御装置および制御方法
CN209765333U (zh) 一种agv物流运载系统
JPS61217404A (ja) 自動倉庫システム
EP3647896A1 (en) Virtual coupling
JP7518788B2 (ja) 搬送システム
JP5413285B2 (ja) 移動体とその旋回半径算出方法
WO2023047476A1 (ja) 移動体およびその制御方法
WO2023053159A1 (ja) 物流管理システムおよび物流管理方法
KR20190044898A (ko) 스마트 무인화물이동수단
JP2020128300A (ja) 移送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959231

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101813.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023550769

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18693291

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021959231

Country of ref document: EP

Effective date: 20240429