WO2023050316A1 - 生物基微胶囊化mfapp阻燃剂及其制备方法和应用 - Google Patents

生物基微胶囊化mfapp阻燃剂及其制备方法和应用 Download PDF

Info

Publication number
WO2023050316A1
WO2023050316A1 PCT/CN2021/122192 CN2021122192W WO2023050316A1 WO 2023050316 A1 WO2023050316 A1 WO 2023050316A1 CN 2021122192 W CN2021122192 W CN 2021122192W WO 2023050316 A1 WO2023050316 A1 WO 2023050316A1
Authority
WO
WIPO (PCT)
Prior art keywords
mfapp
preparation
flame retardant
bio
microencapsulated
Prior art date
Application number
PCT/CN2021/122192
Other languages
English (en)
French (fr)
Inventor
刘治田
石遒
王成
Original Assignee
武汉工程大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉工程大学 filed Critical 武汉工程大学
Publication of WO2023050316A1 publication Critical patent/WO2023050316A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L87/00Compositions of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • C08L87/005Block or graft polymers not provided for in groups C08L1/00 - C08L85/04
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/001Macromolecular compounds containing organic and inorganic sequences, e.g. organic polymers grafted onto silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08L61/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08L61/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/322Ammonium phosphate
    • C08K2003/323Ammonium polyphosphate

Definitions

  • the invention belongs to the technical field of flame-retardant and smoke-suppressing materials, and in particular relates to a bio-based microencapsulated MFAPP flame retardant and its preparation method and application.
  • flame-retardant nanocomposites have become one of the research hotspots in the field of nanocomposites.
  • One-dimensional nanomaterials have the characteristics of small size effect and macroscopic tunnel effect because of their special structure (such as tubular fillable structure); at the same time, they can exert barrier effect and tortuous path effect, and have synergistic effects with other flame retardants, so they are widely used in Flame retardant field.
  • Halloysite is a 1:1 aluminosilicate mineral with a layered structure. It is a hydrated polytype mineral of kaolinite, and its tubular shape is the most common.
  • the halloysite produced in the form of nanotubes has various shapes and sizes (such as long tubes, short tubes, partially expanded tubes and casings). Due to the characteristics of abundant reserves, cheap and easy to obtain, good environmental compatibility, large specific surface area, rich surface groups and high adsorption efficiency, as well as unique mesoporous tubular inner cavity and inner and outer surfaces with different charges, this special The tubular structure is often used in the field of environmental pollution remediation, flame retardant materials, and composite materials. However, the current method of its application is often relatively simple, and it is usually used as a reinforcing agent or filler in the formula and directly added to the material, and usually only simple surface modification is performed, or even no modification.
  • one part uses its tubular structure to load ions, small molecules, etc. in the tube, which involves complex processes, high costs, and is difficult to realize; the other part is similar to ordinary fillers.
  • Surface modification such as the use of surface modifiers, silane coupling agents, etc., cannot make good use of the characteristics of its nanostructure, and the flame retardant effect is not ideal (poor char formation quality, low carbon layer density). How to adopt a simple manufacturing process to retain its nanostructure and further obtain a more ideal flame retardant performance has important practical application value and research significance.
  • the main purpose of the present invention is to provide a tannic acid complexed halloysite-coated MFAPP for the problems of poor char formation quality and low charcoal layer density existing in the existing halloysite nanotube-based flame retardants.
  • the Al-OH in the halloysite nanotubes reacts with the catechol groups of tannic acid, and uses its adsorption and the reaction between tannic acid and melamine-formaldehyde resin to construct it in melamine
  • the surface of ammonium polyphosphate (MFAPP) is microencapsulated with formaldehyde resin; the obtained flame retardant integrates acid source, carbon source, gas source and nano-filler, and the introduced tannic acid complex can further promote the matrix to form carbon
  • the invention has good effect, does not contain halogen, and is environmentally friendly; and the involved preparation method is simple and easy to popularize and apply.
  • a preparation method of bio-based microencapsulated MFAPP flame retardant comprising the steps of:
  • step 2) Add the melamine-formaldehyde resin microencapsulated ammonium polyphosphate (MFAPP) into the tannic acid-halloysite composite dispersion liquid obtained in step 1), stir, and heat the reaction. Under heating conditions, the halloysite nanotubes are further promoted.
  • the reaction with tannic acid and its reaction and adsorption with melamine-formaldehyde resin microencapsulated ammonium polyphosphate can realize the effective coating of tannic acid halloysite complex on the surface of MFAPP; finally filter, After drying, the bio-based microencapsulated MFAPP flame retardant is obtained.
  • the halloysite nanotubes have an outer diameter of 10-50 nm, an inner diameter of 15-20 nm, and a length of 100-1500 nm.
  • the mass ratio of the tannic acid powder to the halloysite nanotube is 3:1 ⁇ 1:2.
  • the mass ratio of the MFAPP to the halloysite nanotubes is 10:1 ⁇ 1:2.
  • the time for the first ultrasonic treatment is 1-2 hours; the time for the second ultrasonic treatment is 6-12 hours.
  • the particle diameter of the ammonium polyphosphate microencapsulated by the melamine formaldehyde resin is 50-200 microns.
  • the heating reaction temperature is 40-50° C.
  • the time is 24-48 hours.
  • Bio-based microencapsulated MFAPP flame retardant prepared according to the above protocol.
  • the bio-based microencapsulated MFAPP flame retardant obtained in the above scheme is applied to the preparation of intumescent fireproof coatings. ⁇ 60%, pentaerythritol 10 ⁇ 20%, titanium dioxide 1 ⁇ 5%, hydroxyethyl cellulose 0.5 ⁇ 1%, dispersant 0.5 ⁇ 1%, defoamer 0.5 ⁇ 1%, n-octanol 0.5 ⁇ 1%, the rest for water.
  • the film former is one or more of styrene-acrylic emulsion, acrylic emulsion, and epoxy resin.
  • the dispersant is wetting and dispersing agent 5040 and the like.
  • the defoamer is silicone defoamer 470 and the like.
  • the intumescent fireproof coating prepared according to the above scheme has the advantages of excellent fireproof performance, excellent water and weather resistance, simple manufacturing process, low cost, environmental protection and wide applicability.
  • the present invention utilizes the electrostatic adsorption of halloysite to coat the surface of MFAPP, and then raises the temperature (heating reaction conditions described in step 1) to make the catechol group and the amine group on the surface of halloysite and MFAPP outer layer melamine formaldehyde resin
  • the reaction is sufficient, so that tannic acid and halloysite form a complex to coat the surface of MFAPP, so that the core-shell with the MFAPP gas source (melamine formaldehyde resin) as the shell and the acid source (ammonium polyphosphate) as the core
  • the structure is covered with a core-shell structure covered by carbon source tannic acid and nano-filler halloysite; the acid source, carbon source, gas source and nano-filler are unified in the same core-shell composite structure;
  • the scale exerts the synergistic effect of acid source, carbon source and gas source.
  • the present invention utilizes tannic acid complexed halloysite to microencapsulate the MFAPP flame retardant, and brings into play the synergistic effect of acid source, carbon source and gas source on the micron scale, which can effectively improve the fireproof performance of the fireproof coating;
  • the present invention uses biomass tannic acid as a partial substitute of carbon source, which is environmentally friendly;
  • the synthetic solvent that flame retardant of the present invention adopts is water, compares with other organic solvents, and cost is lower, and environmental pollution is less, more green environmental protection; Solvent, no pollution to the environment, green and environmental protection.
  • Fig. 1 is the back temperature curve of the slab combustion method of the intumescent fireproof coating obtained in Examples 1-3 and Comparative Examples 1-3.
  • the halloysite nanotubes used have an outer diameter of 10-50 nm, an inner diameter of 15-20 nm, and a length of 100-1500 nm.
  • MFAPP melamine-formaldehyde resin microencapsulated ammonium polyphosphate
  • a kind of bio-based microencapsulated MFAPP flame retardant, its preparation method comprises the steps:
  • step 2) Add 20g of MFAPP into the tannic acid-halloysite composite dispersion obtained in step 1), stir, heat to 40-50°C for 24 hours; filter and dry to obtain the bio-based microencapsulated MFAPP flame retardant .
  • the bio-based microencapsulated MFAPP flame retardant obtained in Example 1 is applied to the preparation of intumescent fireproof coatings.
  • the components and their mass percentages are: 20% of acrylic acid emulsion, 44% of the bio-based microencapsulated MFAPP flame retardant, Pentaerythritol 20%, titanium dioxide 3%, hydroxyethyl cellulose 0.5%, dispersant 0.5%, defoamer 0.5%, n-octanol 0.5%, water 11%;
  • the specific preparation method comprises the following steps: grinding the weighed bio-based microencapsulated MFAPP flame retardant, pentaerythritol, titanium dioxide, and hydroxyethyl cellulose into powder, then adding water to fully grind and mix uniformly; then adding defoamer and dispersant , continue to fully grind; finally add acrylic acid emulsion and n-octanol to fully grind and mix evenly to obtain the fireproof coating.
  • Application example 2 is roughly the same as the preparation method of the intumescent fireproof coating described in application example 1, the difference is that the mass percentage of each component is: 20% of acrylic acid emulsion, 48% of bio-based microencapsulated MFAPP flame retardant, pentaerythritol 16%, titanium dioxide 3%, hydroxyethyl cellulose 0.5%, dispersant 0.5%, defoamer 0.5%, n-octanol 0.5%, water 11%.
  • Application Example 3 is roughly the same as the preparation method of the intumescent fireproof coating described in Application Example 1, except that the mass percentage of each component is: 20% of acrylic acid emulsion, 52% of bio-based microencapsulated MFAPP flame retardant, pentaerythritol 12%, titanium dioxide 3%, hydroxyethyl cellulose 0.5%, dispersant 0.5%, defoamer 0.5%, n-octanol 0.5%, water 11%.
  • a fireproof coating the components and their mass percentages are: 20% acrylic emulsion, 48% MFAPP flame retardant, 16% pentaerythritol, 3% titanium dioxide, 0.5% hydroxyethyl cellulose, 0.5% dispersant, disinfectant Foaming agent 0.5%, n-octanol 0.5%, water 11%;
  • the specific preparation method comprises the steps of: grinding the weighed MFAPP flame retardant, pentaerythritol, titanium dioxide, and hydroxyethyl cellulose into powder, then adding water and fully grinding and mixing; then adding defoamer and dispersant, and continuing to fully grind; Finally, add acrylic acid emulsion and n-octanol to thoroughly grind and mix evenly to obtain the fireproof coating.
  • Figure 1 is the back temperature curve of the intumescent fireproof coating obtained in Examples 1-3 and Comparative Examples 1-3. The results show that the modified MFAPP can greatly improve the flame-retardant performance of the coating.
  • the bio-based microencapsulated MFAPP flame retardant obtained in the present invention has a good flame retardant effect (long fire resistance limit, thick, dense and high strength carbon layer) when applied to fireproof coatings, is environmentally friendly and pollution-free, and is water-resistant and weather-resistant Good performance (long storage time), compatibility with the substrate, good adsorption, and can effectively take into account other properties of the substrate.
  • the preparation method involved in the invention is simple and effective, and has wide application fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Fireproofing Substances (AREA)

Abstract

一种生物基微胶囊化MFAPP阻燃剂及其在防火涂料中的应用。首先利用单宁酸与埃洛石纳米管在MFAPP核壳结构的基础上进一步形成第二层壳,得到所述生物基微胶囊化MFAPP阻燃剂;该阻燃剂可使酸源、碳源、气源与纳米填料统一在同一个核壳复合结构中,在微米尺度发挥酸源碳源气源协同作用;将其应用于制备防火涂料,可有效发挥P-C-N的阻燃协同效应,成炭效果好,耐水耐候性好,不含卤素,环境友好;且涉及的制备方法简便,适合推广应用。

Description

一种生物基微胶囊化MFAPP阻燃剂及其制备方法和应用 技术领域
本发明属于阻燃抑烟材料技术领域,具体涉及一种生物基微胶囊化MFAPP阻燃剂及其制备方法和应用。
背景技术
近年来,阻燃纳米复合材料成为纳米复合材料领域的研究热点之一。一维纳米材料因其特殊结构(如管状可填充结构)拥有小尺寸效应、宏观隧道效应等特性;同时可以发挥阻隔效应和曲折路径效应,并与其他阻燃剂有协同作用,被广泛应用在阻燃领域。埃洛石是一种具层状结构的1:1型铝硅酸盐矿物,是高岭石的水合多型矿物,以管状形貌最为常见。这种以纳米管状形态产出的埃洛石(以下简称为HNT)的形态和尺寸各异(如长管、短管、部分展开管和套管)。由于具有储量丰富、廉价易得、环境相容性好、比表面积大、表面基团丰富和吸附效率高等特点,以及独特介孔型管状内腔和带不同电荷的内、外表面,这种特殊的管状结构常常被应用在环境污染修复领域,阻燃材料领域,复合材料领域。但目前其应用的方法往往比较单一,通常用作配方的增强剂或填充剂直接添加进材料中,且通常仅对其简单的进行表面改性,甚至不改性。
在对埃洛石进行的阻燃改性的方法中,一部分利用其管状结构在管内负载离子、小分子等,涉及的工艺复杂,成本较高,较难实现;另一部分则类似于普通的填料的表面改性,如使用表面改性剂、硅烷偶联剂等,不能很好利用其纳米结构的特性,阻燃效果不理想(成炭质量不佳、炭层致密度低)。如何采用简单的制作工艺保留其纳米结构,并进一步获得更为理想的阻燃性能,具有重要的实际应用价值与研究意义。
发明内容
本发明的主要目的在于针对现有埃洛石纳米管基阻燃剂存在的成炭质量不佳、炭层致密度低等问题,提供一种单宁酸络合埃洛石包覆MFAPP,利用埃洛石纳米管中的Al-OH与单宁酸的儿茶酚基团之间反应络合作用,并利用其吸附作用以及单宁酸与三聚氰胺甲醛树脂之间的反应,将其构建在三聚氰胺甲醛树脂微胶囊化多聚磷酸铵(MFAPP)表面;所得阻燃剂集酸源、炭源、气源与纳米填料于一体,引入的单宁酸络合物可进一步促进基体成炭,成炭效果好,不含卤素,环境友好;且涉及的制备方法简便,易于推广应用。
为实现上述目的,本发明采用的技术方案为:
一种生物基微胶囊化MFAPP阻燃剂的制备方法,包括如下步骤:
1)在搅拌条件下,将埃洛石纳米管加入水中进行一次超声处理;然后加入单宁酸粉末,在室温搅拌条件下,进行二次超声处理,得单宁酸-埃洛石复合分散液;
2)将三聚氰胺甲醛树脂微胶囊化多聚磷酸铵(MFAPP)加入步骤1)所得单宁酸-埃洛石复合分散液中,搅拌,加热反应,在加热条件下,进一步促进埃洛石纳米管与单宁酸之间的反应并利用其与三聚氰胺甲醛树脂微胶囊化多聚磷酸铵的反应和吸附作用,实现单宁酸埃洛石络合物在MFAPP表面的有效包覆;最后进行过滤,干燥,即得到所述生物基微胶囊化MFAPP阻燃剂。
上述方案中,所述埃洛石纳米管的外径为10~50nm,内径为15~20nm,长度为100~1500nm。
上述方案中,所述单宁酸粉末与埃洛石纳米管的质量比为3:1~1:2。
上述方案中,所述MFAPP与埃洛石纳米管的质量比为10:1~1:2。
上述方案中,所述一次超声处理时间为1~2h;二次超声处理时间为6~12h。
上述方案中,所述三聚氰胺甲醛树脂微胶囊化多聚磷酸铵的粒径为50~200微米。
上述方案中,所述加热反应温度为40-50℃,时间为24~48h。
根据上述方案制备的生物基微胶囊化MFAPP阻燃剂。
将上述方案所得生物基微胶囊化MFAPP阻燃剂应用于制备膨胀型防火涂料,各组分及其所占质量百分比包括:成膜物20~30%,生物基微胶囊化MFAPP阻燃剂40~60%,季戊四醇10~20%,二氧化钛1~5%,羟乙基纤维素0.5~1%,分散剂0.5~1%,消泡剂0.5~1%,正辛醇0.5~1%,其余为水。
上述方案中,所述成膜物为苯丙乳液、丙烯酸乳液、环氧树脂中的一种或几种。
上述方案中,所述分散剂为润湿分散剂5040等。
上述方案中,所述消泡剂为有机硅消泡剂470等。
根据上述方案制备的膨胀型防火涂料,具有防火性能优异,耐水耐候性优异,制作工艺简单,成本低,环保且适用性广泛等优点。
本发明的原理为:
本发明利用埃洛石的静电吸附作用包覆在MFAPP的表面,再升高温度(步骤1)所述加热反应条件)使儿茶酚基与埃洛石和MFAPP外层三聚氰胺甲醛树脂表面的胺基反应充分,使得单宁酸与埃洛石形成络合物包覆在MFAPP的表面上,从而在以MFAPP气源(三聚氰胺甲醛树脂)为壳,酸源(多聚磷酸铵)为核的核壳结构外面再包覆一层由碳源单宁酸和纳米填料埃洛石包覆的核壳结构;使酸源、碳源、气源与纳米填料统一在同一个核壳复合结构中;在微米尺度发挥酸源碳源气源协同作用。
与现有技术相比,本发明的有益效果为:
1)本发明利用单宁酸络合埃洛石对MFAPP阻燃剂进行微胶囊化,在微米尺度发挥酸源 碳源气源协同作用,可有效提高防火涂料的防火性能;
2)本发明使用生物质单宁酸作为碳源的部分替代物,绿色环保;
3)本发明所述阻燃剂采用的合成溶剂为水,与其他有机溶剂相比,成本更低,对环境污染较小,更绿色环保;利用该阻燃剂制备的防火涂料同样以水为溶剂,对环境无污染,绿色环保。
附图说明
图1为实施例1~3及对比例1~3所得膨胀型防火涂料的大板燃烧法背温曲线图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
以下实施例中,采用的埃洛石纳米管的外径为10~50nm,内径为15~20nm,长度为100~1500nm。
以下实施例中,采用的三聚氰胺甲醛树脂微胶囊化多聚磷酸铵(MFAPP)由杭州捷尔思阻燃化工有限公司提供,其粒径为50~200微米。
实施例1
一种生物基微胶囊化MFAPP阻燃剂,其制备方法包括如下步骤:
1)在搅拌条件下,将5g埃洛石纳米管加入100ml水中超声处理1~2h,然后加入5g单宁酸粉末,室温搅拌超声6~12h,得单宁酸-埃洛石复合分散液;
2)将20g MFAPP加入步骤1)所得单宁酸-埃洛石复合分散液中,搅拌,加热至40-50℃反应24h;过滤,干燥,即得所述生物基微胶囊化MFAPP阻燃剂。
应用例1
将实施例1所得生物基微胶囊化MFAPP阻燃剂应用于制备膨胀型防火涂料,各组分及其所占质量百分比为:丙烯酸乳液20%,生物基微胶囊化MFAPP阻燃剂44%,季戊四醇20%,二氧化钛3%,羟乙基纤维素0.5%,分散剂0.5%,消泡剂0.5%,正辛醇0.5%,水11%;
具体制备方法包括如下步骤:将称取的生物基微胶囊化MFAPP阻燃剂、季戊四醇、二氧化钛、羟乙基纤维素研磨成粉状,然后加水充分研磨混合均匀;再加入消泡剂和分散剂,继续充分研磨;最后加入丙烯酸乳液和正辛醇充分研磨混合均匀,即得所述防火涂料。
应用例2
应用例2与应用例1所述膨胀型防火涂料的制备方法大致相同,不同之处在于各组分所占质量百分比为:丙烯酸乳液20%,生物基微胶囊化MFAPP阻燃剂48%,季戊四醇16%, 二氧化钛3%,羟乙基纤维素0.5%,分散剂0.5%,消泡剂0.5%,正辛醇0.5%,水11%。
应用例3
应用例3与应用例1所述膨胀型防火涂料的制备方法大致相同,不同之处在于各组分所占质量百分比为:丙烯酸乳液20%,生物基微胶囊化MFAPP阻燃剂52%,季戊四醇12%,二氧化钛3%,羟乙基纤维素0.5%,分散剂0.5%,消泡剂0.5%,正辛醇0.5%,水11%。
对比例1
一种防火涂料,各组分及其所占质量百分比为:丙烯酸乳液20%,MFAPP阻燃剂48%,季戊四醇16%,二氧化钛3%,羟乙基纤维素0.5%,分散剂0.5%,消泡剂0.5%,正辛醇0.5%,水11%;
具体制备方法包括如下步骤:将称取的MFAPP阻燃剂、季戊四醇、二氧化钛、羟乙基纤维素研磨成粉状,然后加水充分研磨混合均匀;再加入消泡剂和分散剂,继续充分研磨;最后加入丙烯酸乳液和正辛醇充分研磨混合均匀,即得所述防火涂料。
将应用例1~3和对比例1所得膨胀型防火涂料分别进行相关性能测试,结果见表1
表1应用例1~3和对比例1所得膨胀型防火涂料的相关性能性能测试
Figure PCTCN2021122192-appb-000001
图1为实施例1~3及对比例1~3所得膨胀型防火涂料的大板燃烧法背温曲线图,结果表明改性后的MFAPP能够极大提升涂料的阻燃性能。
上述结果表明:本发明所得生物基微胶囊化MFAPP阻燃剂应用于防火涂料中具有很好 的阻燃效果(耐火极限长,碳层厚、致密且强度较高),环保无污染,耐水耐候性好(储存时间长),与基材的相容性,吸附性良好,可有效兼顾基材的其他性能。
本发明涉及的制备方法简单有效,适用领域广泛。
上述实施例仅是为了清楚地说明所做的实例,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或者变动,这里无需也无法对所有的实施方式予以穷举,因此所引申的显而易见的变化或变动仍处于本发明创造的保护范围之内。

Claims (9)

  1. 一种生物基微胶囊化MFAPP阻燃剂的制备方法,其特征在于,包括如下步骤:
    1)在搅拌条件下,将埃洛石纳米管加入水中进行一次超声处理;然后加入单宁酸粉末,在室温搅拌条件下,进行二次超声处理,得单宁酸-埃洛石复合分散液;
    2)将三聚氰胺甲醛树脂微胶囊化多聚磷酸铵加入步骤1)所得单宁酸-埃洛石复合分散液中,搅拌,加热反应,过滤,干燥;即得到所述生物基微胶囊化MFAPP阻燃剂。
  2. 根据权利要求1所述的制备方法,其特征在于,所述埃洛石纳米管的外径为10~50nm,内径为15~20nm,长度为100~1500nm。
  3. 根据权利要求1所述的制备方法,其特征在于,所述单宁酸粉末与埃洛石纳米管的质量比为3:1~1:2。
  4. 根据权利要求1所述的制备方法,其特征在于,所述MFAPP与埃洛石纳米管的质量比为10:1~1:2。
  5. 根据权利要求1所述的制备方法,其特征在于,所述一次超声处理时间为1~2h;二次超声处理时间为6~12h。
  6. 根据权利要求1所述的制备方法,其特征在于,所述加热反应温度为40-50℃,时间为24~48h。
  7. 权利要求1~6任一项所述制备方法制备的生物基微胶囊化MFAPP阻燃剂。
  8. 一种基于权利要求7所述生物基微胶囊化MFAPP阻燃剂的膨胀型防火涂料,其特征在于,各组分及其所占质量百分比包括:成膜物20~30%,生物基微胶囊化MFAPP阻燃剂40~60%,季戊四醇10~20%,二氧化钛1~5%,羟乙基纤维素0.5~1%,分散剂0.5~1%,消泡剂0.5~1%,正辛醇0.5~1%,其余为水。
  9. 根据权利要求8所述的膨胀型防火涂料,其特征在于,所述成膜物为苯丙乳液、丙烯酸乳液、环氧树脂中的一种或几种。
PCT/CN2021/122192 2021-09-29 2021-09-30 生物基微胶囊化mfapp阻燃剂及其制备方法和应用 WO2023050316A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111149704.1A CN113801482B (zh) 2021-09-29 2021-09-29 一种生物基微胶囊化mfapp阻燃剂及其制备方法和应用
CN202111149704.1 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023050316A1 true WO2023050316A1 (zh) 2023-04-06

Family

ID=78938961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122192 WO2023050316A1 (zh) 2021-09-29 2021-09-30 生物基微胶囊化mfapp阻燃剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113801482B (zh)
WO (1) WO2023050316A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116231067A (zh) * 2023-05-09 2023-06-06 西北工业大学 一种阻燃超薄peo基固态电解质的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115785719A (zh) * 2022-07-27 2023-03-14 重庆清徽节能环保科技有限公司 一种鞣酸金属氢氧化物改性核壳阻燃剂及其膨胀阻燃涂料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040110870A1 (en) * 2002-12-04 2004-06-10 Liu Matthew T. Fire protection coating composition
EP3239229A1 (en) * 2016-04-28 2017-11-01 Infingent AB Flame retardant composition and process for preparation thereof
CN107778530A (zh) * 2017-10-27 2018-03-09 华北科技学院 一种仿贻贝材料微胶囊化表面改性阻燃剂的制备方法
CN112375369A (zh) * 2020-11-27 2021-02-19 四川大学 一种界面超分子增强纳米复合材料及其制备方法
CN113150390A (zh) * 2021-02-09 2021-07-23 武汉工程大学 一种埃洛石纳米管改性聚磷酸铵基阻燃剂及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2409827A (en) * 2004-01-09 2005-07-13 Stephenson Group Ltd Fire retardant for fabrics, comprising melamine coated ammonium polyphosphate
CN103980541B (zh) * 2014-05-23 2016-06-15 华东理工大学 一种聚磷酸铵的蜜胺甲醛树脂包覆改性方法
CN107955418A (zh) * 2017-11-21 2018-04-24 北京林业大学 一种基于儿茶酚化学改性的疏水埃洛石及其制备方法
CN112778864A (zh) * 2021-01-08 2021-05-11 武汉工程大学 一种基于埃洛石的水性膨胀型防火涂料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040110870A1 (en) * 2002-12-04 2004-06-10 Liu Matthew T. Fire protection coating composition
EP3239229A1 (en) * 2016-04-28 2017-11-01 Infingent AB Flame retardant composition and process for preparation thereof
CN107778530A (zh) * 2017-10-27 2018-03-09 华北科技学院 一种仿贻贝材料微胶囊化表面改性阻燃剂的制备方法
CN112375369A (zh) * 2020-11-27 2021-02-19 四川大学 一种界面超分子增强纳米复合材料及其制备方法
CN113150390A (zh) * 2021-02-09 2021-07-23 武汉工程大学 一种埃洛石纳米管改性聚磷酸铵基阻燃剂及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116231067A (zh) * 2023-05-09 2023-06-06 西北工业大学 一种阻燃超薄peo基固态电解质的制备方法
CN116231067B (zh) * 2023-05-09 2023-08-04 西北工业大学 一种阻燃超薄peo基固态电解质的制备方法

Also Published As

Publication number Publication date
CN113801482B (zh) 2023-03-17
CN113801482A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
WO2023050316A1 (zh) 生物基微胶囊化mfapp阻燃剂及其制备方法和应用
CN106957454B (zh) 一种纳米材料包裹型阻燃剂及其制备方法
CN108641551B (zh) 一种耐高温防火涂料及其制备方法
CN113150390B (zh) 一种埃洛石纳米管改性聚磷酸铵基阻燃剂及其制备方法和应用
WO2022148018A1 (zh) 一种基于埃洛石的水性膨胀型防火涂料及其制备方法
CN109486348A (zh) 一种防火防腐涂料制备方法
CN105885564A (zh) 全有机多重氟化环氧超疏水复合涂料及其制备方法和使用方法
Yu et al. Interfacial engineering to construct P-loaded hollow nanohybrids for flame-retardant and high-performance epoxy resins
CN113769783B (zh) 一种竹节状核壳光热催化剂的制备方法
CN101864215B (zh) 环保型钢结构防火涂料及其制备方法
CN111286252A (zh) 一种抗辐射防腐涂料及其制备方法
CN114055580B (zh) 一种溶胶凝胶-层层自组装二氧化硅防火膜包覆木材的制备方法
CN105478083A (zh) 一种多孔金属与有机框架化合物的复合化方法及其应用
CN105505116A (zh) SiO2包覆多壁碳纳米管-环氧树脂复合涂层的制备方法
CN110938322A (zh) 一种无机涂料及其制备方法
CN107858050A (zh) 一种SiO2气凝胶隔热保温涂料及其制备方法
CN114058242A (zh) 一种碳纳米管高导热防腐涂料
CN112280341B (zh) 一种外墙涂料
CN111978037B (zh) 一种环保轻质全装修地暖砂浆
CN113060744A (zh) 一种普鲁士蓝复合纳米材料及其制备方法
CN102295473A (zh) 凹凸棒石镀镍复合材料及其制备方法
CN109181680B (zh) 一种二氧化硅-稀土-二氧化钛杂化材料及其制备方法
CN110092612A (zh) 一种负离子石墨烯节油装置及其制备方法
CN116285478A (zh) 一种玄武岩无机长晶鳞片防火涂料及其制备方法
CN114574026A (zh) 一种改性沸石及基于改性沸石的水性膨胀型防火涂料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958888

Country of ref document: EP

Kind code of ref document: A1