WO2023047451A1 - 電力用半導体装置および電力用半導体装置の製造方法 - Google Patents

電力用半導体装置および電力用半導体装置の製造方法 Download PDF

Info

Publication number
WO2023047451A1
WO2023047451A1 PCT/JP2021/034527 JP2021034527W WO2023047451A1 WO 2023047451 A1 WO2023047451 A1 WO 2023047451A1 JP 2021034527 W JP2021034527 W JP 2021034527W WO 2023047451 A1 WO2023047451 A1 WO 2023047451A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
power semiconductor
power
heat sink
region
Prior art date
Application number
PCT/JP2021/034527
Other languages
English (en)
French (fr)
Inventor
信義 木本
光徳 愛甲
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023549185A priority Critical patent/JPWO2023047451A1/ja
Priority to US18/576,203 priority patent/US20240234237A1/en
Priority to CN202180102427.0A priority patent/CN117957648A/zh
Priority to DE112021008251.5T priority patent/DE112021008251T5/de
Priority to PCT/JP2021/034527 priority patent/WO2023047451A1/ja
Publication of WO2023047451A1 publication Critical patent/WO2023047451A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4878Mechanical treatment, e.g. deforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • the present disclosure relates to a power semiconductor device and a method of manufacturing a power semiconductor device.
  • Patent Document 1 discloses a semiconductor device with a heat sink.
  • the heat sink is adhered onto the package containing the semiconductor by means of a polymer-based adhesive that is used to surround and cover the thermal conductive grease.
  • the present disclosure is intended to solve such problems, and aims to provide a power semiconductor device with high heat dissipation from a semiconductor element.
  • a power semiconductor device of the present disclosure includes a semiconductor device, a heat sink, grease, an adhesive, and a terminal block.
  • the semiconductor device includes a semiconductor element, a sealing material for sealing the semiconductor element, a semiconductor a power terminal electrically connected to the device, the first region being a selective region of the bottom surface of the semiconductor device is adhered to the heat sink by an adhesive;
  • the second region, which is a region other than the selective region, is in contact with the heat sink through grease, the terminal block has an electrode on the upper surface, the power terminal of the semiconductor device is fixed to the terminal block, and , are electrically connected to the electrodes of the terminal block.
  • a power semiconductor device with high heat dissipation from a semiconductor element is provided.
  • FIG. 1 shows a power semiconductor device according to a first embodiment
  • FIG. 1 illustrates a semiconductor device according to a first embodiment
  • FIG. 1 illustrates a semiconductor device according to a first embodiment
  • FIG. 1 is a top plan view of the power semiconductor device of Embodiment 1
  • FIG. 10 illustrates a power semiconductor device according to a second embodiment
  • FIG. 10 is a plan view showing an example of the state of the semiconductor device of Embodiment 2 as viewed from below
  • FIG. 10 is a plan view showing an example of the state of the semiconductor device of Embodiment 2 as viewed from below
  • FIG. 11 shows a power semiconductor device according to a third embodiment
  • FIG. 12 illustrates a power semiconductor device according to a fourth embodiment
  • FIG. 11 shows a power semiconductor device according to a fifth embodiment
  • FIG. 20 is a plan view showing an example of a state in which the semiconductor device of Embodiment 5 is viewed from below
  • FIG. 12 is a diagram showing a state in the middle of manufacturing the power semiconductor device of Embodiment 6
  • FIG. 12 illustrates a power semiconductor device according to a sixth embodiment
  • 14 is a flow chart showing a method of manufacturing a power semiconductor device according to Embodiment 7
  • FIG. 20 is a diagram showing a state in the middle of manufacturing the power semiconductor device in the method of manufacturing the power semiconductor device of Embodiment 7
  • FIG. 1 shows a power semiconductor device 1a according to a first embodiment.
  • the power semiconductor device 1a includes a printed board 2 which is a circuit board, a heat sink 3, a terminal block 4, a semiconductor device 10a, bolts 32, an adhesive 34, and grease 35.
  • FIG. 2 is a diagram showing the semiconductor device 10a.
  • FIG. 3 is a top plan view of the semiconductor device 10a.
  • FIG. 2 is a cross-sectional view, for example, taken along line AA of FIG.
  • the semiconductor device 10a includes a semiconductor element 11a, a semiconductor element 11b, a heat spreader 12, an insulating material 13, a metal foil 14, a sealing material 15, wires 16, a plurality of main terminals 17, and A plurality of signal terminals 18 are provided.
  • the insulating material 13 is plate-shaped.
  • a metal foil 14 is bonded onto the lower surface of the insulating material 13 .
  • the heat spreader 12 is bonded onto the upper surface of the insulating material 13 .
  • the metal foil 14 is exposed on the lower surface 20 of the semiconductor device 10a.
  • the semiconductor element 11a is, for example, a diode, and the semiconductor element 11b is, for example, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the semiconductor element 11a, the semiconductor element 11b, and the wire 16 are sealed with a sealing material 15.
  • the semiconductor device 10a is, for example, a transfer mold type semiconductor device.
  • the sealing material 15 is, for example, resin.
  • the main terminal 17 is partially sealed with the sealing material 15 .
  • the main terminal 17 protrudes from the encapsulant 15 at the side portion of the semiconductor device 10a.
  • the signal terminals 18 are partially sealed with the sealing material 15 .
  • the signal terminal 18 protrudes from the sealing material 15 at the side portion of the semiconductor device 10a.
  • the semiconductor element 11a and the semiconductor element 11b are each bonded onto the upper surface of the heat spreader 12 with a bonding material 30.
  • the bonding material 30 is, for example, a sintered metal material or solder.
  • the main terminal 17 is a power terminal.
  • the main terminals 17 shown in FIG. 2 are bonded to the semiconductor elements 11 a and 11 b with the bonding material 31 inside the sealing material 15 . Thereby, the main terminal 17 is electrically connected to the semiconductor element 11a and the semiconductor element 11b.
  • a main terminal 17 different from that shown in FIG. 2 is joined to, for example, the heat spreader 12 .
  • the bonding material 31 is, for example, a sintered metal material or solder.
  • the signal terminal 18 is electrically connected to the semiconductor element 11b through the wire 16 inside the sealing material 15 .
  • Each signal terminal 18 is connected via a wire 16 to a signal pad (for example, gate pad, current sense pad, or temperature sense pad) of the semiconductor element 11b.
  • a region 20a (an example of a first region), which is a selective region of the lower surface 20 of the semiconductor device 10a, is adhered to the heat sink 3 with an adhesive . Further, as shown in FIG. 1, the semiconductor device 10a is connected to the heat sink 3 via the grease 35 in a region 20b (an example of a second region) which is a region other than the region 20a on the lower surface 20 of the semiconductor device 10a. in contact with
  • the sealing material 15 is exposed on the surface of the semiconductor device 10a in the region 20a and part of the region 20b.
  • Metal foil 14 is exposed on the surface of semiconductor device 10a in region 20b.
  • the regions 20a and 20b are flush with each other.
  • the region 20b overlaps the semiconductor elements 11a and 11b in plan view, and overlaps the heat spreader 12 in plan view.
  • the region 20a is, for example, the peripheral region of the lower surface 20 of the semiconductor device 10a
  • the region 20b is, for example, the central region of the lower surface 20 of the semiconductor device 10a.
  • the region 20a may be, for example, the entire outer peripheral portion of the lower surface 20 of the semiconductor device 10a surrounding the region 20b, or may be a part of the outer peripheral portion of the lower surface 20 of the semiconductor device 10a.
  • the region 20b may include part of the outer peripheral portion of the lower surface 20 of the semiconductor device 10a.
  • the heat generated by the semiconductor elements 11a and 11b is transmitted to the heat sink 3 through the heat spreader 12, the insulating material 13, the metal foil 14, and the grease 35, for example.
  • Grease 35 has higher thermal conductivity than adhesive 34 . Since there is a heat dissipation path from the semiconductor elements 11a and 11b to the heat sink 3 and not through the adhesive 34 but through the grease 35, heat is easily conducted from the semiconductor elements 11a and 11b to the heat sink 3.
  • the signal terminals 18 of the semiconductor device 10a are connected to the printed circuit board 2 with a bonding material 33.
  • the joining material 33 is solder, for example.
  • the signal terminal 18 is electrically connected to an electric circuit (not shown) formed on the printed board 2 .
  • the terminal block 4 has an electrode 41 on the top surface of the terminal block 4 .
  • Terminal block 4 is fixed to heat sink 3 .
  • the main terminals 17 of the semiconductor device 10 a are fixed to the terminal block 4 with bolts 32 .
  • the main terminal 17 of the semiconductor device 10 a is electrically connected to the electrode 41 of the terminal block 4 .
  • the terminal block 4 includes, for example, an electrode (not shown) different from the electrode 41 to which the main terminal 17 of the semiconductor device 10a is connected. is configured to be energized.
  • FIG. 4 is a plan view of the power semiconductor device 1a viewed from above. However, in FIG. 4, the printed circuit board 2 is omitted for the sake of clarity. Although FIG. 4 shows a configuration in which power semiconductor device 1a includes three semiconductor devices 10a, power semiconductor device 1a may include one, two, or four semiconductor devices 10a. or more.
  • the power semiconductor device 1a of the present embodiment includes the semiconductor device 10a, the heat sink 3, the grease 35, and the adhesive .
  • the semiconductor device 10a includes a semiconductor element 11a, a semiconductor element 11b, and a sealing material 15 that seals the semiconductor element 11a and the semiconductor element 11b.
  • a region 20a which is a selective region of the lower surface 20 of the semiconductor device 10a, is adhered to the heat sink 3 with an adhesive .
  • the semiconductor device 10a is in contact with the heat sink 3 via grease 35 in a region 20b, which is a region other than the region 20a in the lower surface 20 of the semiconductor device 10a.
  • the semiconductor device 10a is adhered to the heat sink 3 with the adhesive 34. As shown in FIG. By bonding the semiconductor device 10a to the heat sink 3 with the adhesive 34, the post 51, the spring 52, and the presser plate in the power semiconductor device 1z (see ⁇ Z. Comparative Example>) of the comparative example described below. Parts such as 53 for fixing the semiconductor device 10a can be reduced. By reducing these components, the semiconductor device 10a can be made smaller and lighter, and the man-hours for assembly can be reduced. Furthermore, when the adhesive 34 surrounds the entire circumference of the grease 35 in a plan view, pumping out is suppressed and the life of the product is improved.
  • the power semiconductor device 1z of the comparative example has a pressing plate 53 and a spring 52 instead of bonding and fixing the semiconductor device 10a and the heat sink 3 with the adhesive 34. 1, the semiconductor device 10a is fixed to the heat sink 3. Power semiconductor device 1z is similar to power semiconductor device 1a of the first embodiment in other points.
  • FIG. 16 is a cross-sectional view of a power semiconductor device 1z of a comparative example.
  • 17 and 18 are plan views of a power semiconductor device 1z of a comparative example.
  • the holding plate 53 is fastened to the strut 51 and the bolt 54. As shown in FIG. The pressing plate 53 is fixed to the heat sink 3 via the support 51 .
  • the printed circuit board 2 is omitted in FIG. 17 for ease of viewing. In FIG. 18, printed circuit board 2 and pressing plate 53 are omitted for clarity.
  • a power semiconductor device 1b of the present embodiment differs from the power semiconductor device 1a of the first embodiment in that a semiconductor device 10b is provided instead of the semiconductor device 10a.
  • the power semiconductor device 1b is the same as the power semiconductor device 1a in other respects.
  • the semiconductor device 10b differs from the semiconductor device 10a in that the lower surface 20 protrudes downward (that is, toward the heat sink 3) in the region 20b than in the region 20a, as shown in FIG.
  • the semiconductor device 10b is otherwise similar to the semiconductor device 10a.
  • the region 20a of the lower surface 20 of the semiconductor device 10b is adhered to the heat sink 3 with an adhesive 34, as in the case of the power semiconductor device 1a. Also, the semiconductor device 10b is in contact with the heat sink 3 via the grease 35 in the region 20b of the lower surface 20 of the semiconductor device 10b. The metal foil 14 is exposed on the surface of the semiconductor device 10b in a region 20b of the lower surface 20. As shown in FIG.
  • FIG. 6 is a plan view showing an example of the semiconductor device 10b viewed from below.
  • FIG. 7 is a plan view showing another example of the semiconductor device 10b viewed from below.
  • the region 20a may be the entire outer peripheral portion of the lower surface 20 as shown in FIG. may be a part.
  • a region 20a is a region along two sides of the rectangular lower surface 20 that face each other.
  • a step exists between the regions 20a and 20b because the lower surface 20 protrudes downward in the region 20b than in the region 20a.
  • the step is formed by the sealing material 15 . That is, the side portion of the step between the regions 20a and 20b is covered with the portion 23 of the sealing material 15 that protrudes downward from the region 20a.
  • the lower surface of portion 23 of encapsulant 15 is included in region 20b. That is, the sealing material 15 is exposed in the region 20b.
  • the lower surface of the portion 23 of the encapsulant 15 is, for example, flush with the lower surface of the metal foil 14, and the region 20b including the lower surface of the portion 23 of the encapsulant 15 and the lower surface of the metal foil 14 is flat, for example.
  • the distance between the heat sink 3 and the lower surface 20 is secured to some extent in the region 20a of the lower surface 20 to ensure the strength of adhesion by the adhesive 34, In addition, the distance between the heat sink 3 and the lower surface 20 can be reduced in the area 20b of the lower surface 20, thereby enhancing heat dissipation.
  • a power semiconductor device 1c of the present embodiment differs from the power semiconductor device 1b of the second embodiment in that a semiconductor device 10c is provided instead of the semiconductor device 10b.
  • the power semiconductor device 1c is the same as the power semiconductor device 1b in other respects.
  • the semiconductor device 10c differs from the semiconductor device 10b in that a groove 230 is provided in the lower surface of the portion 23 of the encapsulant 15, that is, the portion of the region 20b where the encapsulant 15 is exposed. is different.
  • Semiconductor device 10c is otherwise similar to semiconductor device 10b.
  • FIG. 8 is a diagram showing the vicinity of the trench 230 in the power semiconductor device 1c.
  • the grease 35 enters the groove 230 in the power semiconductor device 1c.
  • the grease 35 enters the groove 230, thereby suppressing variation in the thickness of the grease 35 in the in-plane direction, thereby improving assembly accuracy.
  • Power semiconductor device 1c has been described as having a structure in which groove 230 is provided in contrast to power semiconductor device 1b of the second embodiment.
  • a structure in which a groove 230 is provided may be used.
  • the groove 230 is provided in the portion where the sealing material 15 is exposed in the region 20b of the lower surface 20 of the semiconductor device 10c.
  • variation in the thickness of the grease 35 in the in-plane direction is suppressed, thereby improving assembly accuracy.
  • a power semiconductor device 1d of the present embodiment differs from the power semiconductor device 1b of the second embodiment in that a semiconductor device 10d is provided instead of the semiconductor device 10b.
  • the power semiconductor device 1d is similar to the power semiconductor device 1b in other respects.
  • the semiconductor device 10d differs from the semiconductor device 10b in that a groove 210 is provided in the region 20a.
  • Semiconductor device 10d is otherwise similar to semiconductor device 10b.
  • FIG. 9 shows the vicinity of the trench 210 in the power semiconductor device 1d.
  • the region 20a is, for example, the surface of the sealing material 15 as a whole.
  • the groove 210 is provided, for example, in a portion of the region 20a where the sealing material 15 is exposed.
  • the adhesive 34 enters the grooves 210, the strength of bonding between the semiconductor device 10d and the heat sink 3 via the adhesive 34 is improved due to the anchor effect.
  • Power semiconductor device 1d has been described as having a structure in which groove 210 is provided in contrast to power semiconductor device 1b of the second embodiment.
  • a structure in which a groove 210 is provided in the region 20a or the region 20a of the power semiconductor device 1c of the third embodiment may be employed.
  • a power semiconductor device 1e of the present embodiment differs from the power semiconductor device 1b of the second embodiment in that a semiconductor device 10e is provided instead of the semiconductor device 10b.
  • Power semiconductor device 1e is similar to power semiconductor device 1b in other points.
  • the semiconductor device 10e differs from the semiconductor device 10b in that the sealing material 15 has a plurality of protrusions 211.
  • Semiconductor device 10e is otherwise similar to semiconductor device 10b.
  • FIG. 10 shows the vicinity of the projection 211 in the power semiconductor device 1e.
  • the protrusion 211 protrudes below the region 20b as shown in FIG.
  • the protrusion 211 is provided, for example, at the boundary between the regions 20a and 20b.
  • FIG. 11 is a plan view showing an example of the semiconductor device 10e viewed from below.
  • the protrusions 211 are provided at three locations, for example, as shown in FIG.
  • the protrusions 211 are provided at three or more locations so that the orientation of the semiconductor device 10e is stabilized when the semiconductor device 10e is pressed against the heat sink 3. is preferred.
  • the semiconductor device 10e is adhered and fixed to the heat sink 3 with an adhesive 34 with the protrusions 211 in contact with the heat sink 3.
  • the contact stress can be increased, and the semiconductor device can be stably fixed to the heat sink 3.
  • Power semiconductor device 1e has been described as having a structure in which projection 211 is provided in contrast to power semiconductor device 1b of the second embodiment.
  • a structure in which a protrusion 211 is provided on the semiconductor device 1a, 1c or 1d for semiconductor device may also be used.
  • the height of the upper surface of the electrode 41 of the terminal block 4 is relatively lower than that of the main terminal 17, as compared with the power semiconductor device 1b of the second embodiment.
  • the power semiconductor device 1f is similar to the power semiconductor device 1b in other respects.
  • the configuration of the semiconductor device 10f included in the power semiconductor device 1f is the same as the configuration of the semiconductor device 10b included in the power semiconductor device 1b.
  • the height of the lower surface of the main terminal 17 at the boundary of the portion not sealed with 15 is higher than the upper surface of the electrode 41 of the terminal block 4 .
  • FIG. 13 is a diagram showing the vicinity of the portion where the main terminal 17 of the semiconductor device 10f is fixed to the electrode 41 of the terminal block 4 in the power semiconductor device 1f.
  • FIG. 12 is a diagram showing the state after the semiconductor device 10f is placed on the heat sink 3 and before the main terminals 17 of the semiconductor device 10f are fixed to the electrodes 41 of the terminal block 4 during manufacture ( See the eighth embodiment for the method of manufacturing the power semiconductor device 1f).
  • the main terminals 17 and the terminal block 4 are fastened and fixed with the bolts 32 at the time of manufacturing the power semiconductor device 1f, for example, the main terminals 17 as shown in FIG. and the electrode 41 of the terminal block 4 .
  • the main terminal 17 is deformed downward and fixed to the terminal block 4 .
  • the height of the lower surface of the main terminal 17 of the semiconductor device 10f at the portion where the main terminal 17 protrudes from the sealing material 15 of the semiconductor device 10f is equal to the height of the electrode 41 of the terminal block 4. higher than the top.
  • the power semiconductor device 1f has been described as having a configuration in which the height of the upper surface of the electrode 41 of the terminal board 4 is relatively lower than the main terminal 17, from the configuration of the power semiconductor device 1b of the second embodiment.
  • the height of the upper surface of the electrode 41 of the terminal block 4 is the main terminal 17 It may be a configuration that is relatively low with respect to.
  • the semiconductor elements 11a and 11b are semiconductor elements having silicon semiconductors, for example.
  • a power semiconductor device of the present embodiment (hereinafter referred to as a power semiconductor device 1g) is the power semiconductor device of any one of the power semiconductor devices 1a to 1f of Embodiments 1 to 6, and It is a power semiconductor device in which at least one of semiconductor element 11a and semiconductor element 11b is a semiconductor element having a wide bandgap semiconductor. Both semiconductor element 11a and semiconductor element 11b may be semiconductor elements having a wide bandgap semiconductor.
  • the wide bandgap semiconductor is for example SiC, gallium nitride, gallium oxide or diamond.
  • a semiconductor element having a wide bandgap semiconductor is smaller in size than a semiconductor element having a Si semiconductor. Therefore, when a semiconductor device including a semiconductor element having a wide bandgap semiconductor is used, a large number of components such as the semiconductor devices 10a to 10f are often combined to form a power module.
  • the power semiconductor devices 1a to 1f are, for example, power modules or devices including the power modules.
  • the configurations of the power semiconductor devices 1a to 1f according to the first to sixth embodiments can reduce the number of parts when at least one of the semiconductor element 11a and the semiconductor element 11b is a semiconductor element having a wide bandgap semiconductor. more effective against
  • Embodiment 8 In this embodiment, a method for manufacturing the power semiconductor devices 1a to 1g of the first to seventh embodiments will be described.
  • FIG. 14 is a flow chart showing the method for manufacturing the power semiconductor device of this embodiment. In the following description, it is assumed that the power semiconductor device to be manufactured is the power semiconductor device 1a. good.
  • step S1 the semiconductor device 10a, the terminal block 4, and the heat sink 3 are prepared.
  • the terminal block 4 is preliminarily fixed to the heat sink 3, for example.
  • step S2 the grease 35 is applied to the region 20b of the lower surface 20 of the semiconductor device 10a by, for example, printing.
  • step S3 the adhesive 34 is applied to the region 20a of the lower surface 20 of the semiconductor device 10a.
  • step S4 the semiconductor device 10a is placed on the heat sink 3, and the semiconductor device 10a is fixed by the clamp jig 50.
  • step S4 the semiconductor device 10a is placed on the heat sink 3 while being fixed to the heat sink 3 by the clamp jig 50, as shown in FIG.
  • the semiconductor device 10 a is pressed against the heat sink 3 by a clamp jig 50 .
  • step S5 with the semiconductor device 10a fixed by the clamp jig 50, the bolts 32 are tightened to fasten the main terminals 17 to the terminal block 4, thereby fixing the main terminals 17 and the terminal block 4 together.
  • the main terminals 17 may be fixed to the terminal block 4 by welding.
  • step S6 while the semiconductor device 10a is fixed by the clamp jig 50, the adhesive 34 is thermally cured. Thereby, the semiconductor device 10a and the heat sink 3 are adhered and fixed to each other. After step S6, the fixing of the semiconductor device 10a by the clamp jig 50 is released.
  • step S7 the semiconductor device 10a fixed to the heat sink 3 is attached to the printed circuit board 2.
  • the power semiconductor device 1a is obtained through the above steps.
  • the grease 35 and the adhesive 34 may be applied to the heat sink 3 instead of the bottom surface 20 of the semiconductor device 10a.
  • the clamp jig for fixing the semiconductor device 10a in step S5 may be different from the clamp jig for fixing the semiconductor device 10a in step S6.
  • the semiconductor device 10a By performing steps S5 and S6 while the semiconductor device 10a is fixed by the clamping jig 50, the semiconductor device 10a is pressed against the heat sink 3 and the main terminals are clamped without being affected by variations in the amount of grease applied. 17 fastening and heat curing of the adhesive can be performed. Thereby, the semiconductor device 10a and the heat sink 3 can be firmly fixed.
  • the main terminals 17 and the terminal block 4 are fixed in step S5.
  • a gap W exists between the lower surface of the main terminal 17 and the electrode 41 of the terminal block 4 (see FIG. 12).
  • the lower surface of the main terminal 17 and the terminal block 4 are separated from each other.
  • the upper surfaces of the electrodes 41 may be at the same height.
  • the main terminals 17 and the terminal block 4 are fastened with bolts 32, for example, to fix the main terminals 17 and the terminal block 4, whereby the main terminals 17 are deformed downward and the semiconductor device 10f is mounted on the heat sink 3. pressed against.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

半導体素子からの放熱性の高い電力用半導体装置を提供する。電力用半導体装置は、半導体装置と、ヒートシンクと、グリスと、接着剤と、端子台と、を備え、半導体装置は、半導体素子と、半導体素子を封止する封止材と、半導体素子と電気的に接続されている電力端子と、を備え、半導体装置の下面の選択的な領域である第1の領域はヒートシンクと接着剤により接着されており、半導体装置は、半導体装置の下面のうち選択的な領域以外の領域である第2の領域において、グリスを介してヒートシンクと接しており、端子台は上面に電極を備え、半導体装置の電力端子は、端子台と固定され、かつ、端子台の電極と電気的に接続されている。

Description

電力用半導体装置および電力用半導体装置の製造方法
 本開示は電力用半導体装置および電力用半導体装置の製造方法に関する。
 特許文献1にヒートシンク付半導体装置が開示されている。特許文献1の構成では、ヒートシンクは、熱伝導グリスの周囲にこれを覆うように使用された高分子系接着剤により、半導体を内装したパッケージ上に接着されている。
実開平02-000737号公報
 ヒートシンクと熱伝導グリスの間に高分子系接着剤が介在している場合、接着剤は熱伝導度が低いため、半導体素子からの放熱性が悪化する。
 本開示は、このような問題点を解決するためのもので、半導体素子からの放熱性の高い電力用半導体装置を提供することを目的とする。
 本開示の電力用半導体装置は、半導体装置と、ヒートシンクと、グリスと、接着剤と、端子台と、を備え、半導体装置は、半導体素子と、半導体素子を封止する封止材と、半導体素子と電気的に接続されている電力端子と、を備え、半導体装置の下面の選択的な領域である第1の領域はヒートシンクと接着剤により接着されており、半導体装置は、半導体装置の下面のうち選択的な領域以外の領域である第2の領域において、グリスを介してヒートシンクと接しており、端子台は上面に電極を備え、半導体装置の電力端子は、端子台と固定され、かつ、端子台の電極と電気的に接続されている。
 本開示により、半導体素子からの放熱性の高い電力用半導体装置が提供される。
 また、本願明細書に開示される技術に関連する目的と、特徴と、局面と、利点とは、以下に示される詳細な説明と添付図面とによって、さらに明白となる。
実施の形態1の電力用半導体装置を示す図である。 実施の形態1の半導体装置を示す図である。 実施の形態1の半導体装置を示す図である。 実施の形態1の電力用半導体装置を上側から見た平面図である。 実施の形態2の電力用半導体装置を示す図である。 実施の形態2の半導体装置を下側から見た状態の一例を示す平面図である。 実施の形態2の半導体装置を下側から見た状態の一例を示す平面図である。 実施の形態3の電力用半導体装置を示す図である。 実施の形態4の電力用半導体装置を示す図である。 実施の形態5の電力用半導体装置を示す図である。 実施の形態5の半導体装置を下側から見た状態の一例を示す平面図である。 実施の形態6の電力用半導体装置の製造途中の状態を示す図である。 実施の形態6の電力用半導体装置を示す図である。 実施の形態7の電力用半導体装置の製造方法を示すフローチャートである。 実施の形態7の電力用半導体装置の製造方法における、電力用半導体装置の製造途中の状態を示す図である。 比較例の電力用半導体装置を示す図である。 比較例の電力用半導体装置を示す図である。 比較例の電力用半導体装置を示す図である。
 <A.実施の形態1>
 <A-1.構成>
 図1は実施の形態1の電力用半導体装置1aを示す図である。
 電力用半導体装置1aは、回路基板であるプリント基板2、ヒートシンク3、端子台4、半導体装置10a、ボルト32、接着剤34、およびグリス35を備える。
 図2は半導体装置10aを示す図である。図3は半導体装置10aを上側から見た平面図である。図2は例えば図3のA-A線における断面図である。
 図2および図3に示されるように、半導体装置10aは、半導体素子11a、半導体素子11b、ヒートスプレッダ12、絶縁材13、金属箔14、封止材15、ワイヤ16、複数の主端子17、および複数の信号端子18を備える。
 絶縁材13は板状である。金属箔14は絶縁材13の下面上に接合されている。ヒートスプレッダ12は絶縁材13の上面上に接合されている。金属箔14は半導体装置10aの下面20に露出している。
 半導体素子11aは例えばダイオードであり、半導体素子11bは例えばMOSFET(Metal Oxide Semiconductor Field Effect Transistor、金属酸化物半導体電界効果トランジスタ)である。
 半導体素子11a、半導体素子11b、およびワイヤ16は封止材15により封止されている。半導体装置10aは例えばトランスファーモールド型の半導体装置である。封止材15は例えば樹脂である。
 主端子17は部分的に封止材15に封止されている。主端子17は半導体装置10aの側面部分において封止材15から突出している。信号端子18は部分的に封止材15に封止されている。信号端子18は半導体装置10aの側面部分において封止材15から突出している。
 半導体素子11aおよび半導体素子11bはそれぞれ、ヒートスプレッダ12の上面上に接合材30により接合されている。接合材30は例えば焼結金属材またははんだである。
 主端子17は電力端子である。図2に示されている主端子17は、封止材15の内部において、半導体素子11aおよび半導体素子11bと接合材31により接合されている。これにより、当該主端子17は、半導体素子11aおよび半導体素子11bと電気的に接続されている。また、図2に示されているものと別の主端子17は例えばヒートスプレッダ12と接合されている。接合材31は例えば焼結金属材またははんだである。
 信号端子18は、封止材15の内部において、ワイヤ16を介して半導体素子11bと電気的に接続されている。各信号端子18はワイヤ16を介して、半導体素子11bの備える信号パッド(例えば、ゲートパッド、電流センスパッド、または温度センスパッド)と接続されている。
 図1に示されるように、半導体装置10aの下面20の選択的な領域である領域20a(第1の領域の一例)は、接着剤34によりヒートシンク3と接着されている。また、図1に示されるように、半導体装置10aは、半導体装置10aの下面20のうち領域20a以外の領域である領域20b(第2の領域の一例)において、グリス35を介してヒートシンク3と接している。
 封止材15は領域20aと領域20bの一部とにおいて半導体装置10aの表面に露出している。金属箔14は領域20bにおいて半導体装置10aの表面に露出している。
 領域20aと領域20bとは例えば面一である。
 領域20bは例えば、平面視で半導体素子11aおよび半導体素子11bと重なり、かつ、平面視でヒートスプレッダ12と重なる。領域20aは例えば半導体装置10aの下面20のうち外周部分の領域であり、領域20bは例えば半導体装置10aの下面20のうち中央部分の領域である。領域20aは例えば半導体装置10aの下面20のうち外周部分の全体であって領域20bを囲う領域であってもよいし、半導体装置10aの下面20のうち外周部分の一部であってもよい。領域20bは半導体装置10aの下面20のうち外周部分の一部を含んでいてもよい。
 電力用半導体装置1aにおいて、半導体素子11aおよび半導体素子11bが発した熱は、例えば、ヒートスプレッダ12、絶縁材13、金属箔14、およびグリス35を通って、ヒートシンク3へと伝わる。グリス35は接着剤34よりも熱伝導度が高い。半導体素子11aおよび半導体素子11bからヒートシンク3への、接着剤34を通らずグリス35を通る放熱経路があることにより、半導体素子11aおよび半導体素子11bからヒートシンク3へ熱が伝わりやすい。
 図1に示されるように、半導体装置10aの信号端子18はプリント基板2に接合材33により接続されている。接合材33は例えばはんだである。信号端子18は、プリント基板2に形成された電気回路(図示せず)に電気的に接続されている。
 図1に示されるように、端子台4は、端子台4の上面部分に電極41を備える。端子台4はヒートシンク3に固定されている。半導体装置10aの主端子17は、ボルト32により端子台4に固定されている。また、半導体装置10aの主端子17は、端子台4の電極41と電気的に接続されている。端子台4は例えば、半導体装置10aの主端子17が接続されている電極41とは別の電極(図示せず)を備え、当該別の電極を介して半導体装置10a外部の回路から半導体装置10aに通電可能なように構成されている。
 図4は電力用半導体装置1aを上側から見た平面図である。ただし、図4においては、見やすいように、プリント基板2は省略されている。図4においては電力用半導体装置1aが3つの半導体装置10aを備える構成が示されているが、電力用半導体装置1aが備える半導体装置10aは1つまたは2つであってもよいし、4つ以上であってもよい。
 以上説明したように、本実施の形態の電力用半導体装置1aは、半導体装置10aと、ヒートシンク3と、グリス35と、接着剤34と、を備える。半導体装置10aは、半導体素子11aおよび半導体素子11bと、半導体素子11aおよび半導体素子11bを封止する封止材15とを備える。半導体装置10aの下面20の選択的な領域である領域20aはヒートシンク3と接着剤34により接着されている。半導体装置10aは、半導体装置10aの下面20のうち領域20a以外の領域である領域20bにおいて、グリス35を介してヒートシンク3と接している。
 本実施の形態の電力用半導体装置1aは、半導体装置10aが領域20bにおいてグリス35を介してヒートシンク3と接していることにより、半導体素子11aおよび半導体素子11bからの放熱性が高い。
 本実施の形態の電力用半導体装置1aでは、半導体装置10aが接着剤34によりヒートシンク3と接着されている。半導体装置10aが接着剤34によりヒートシンク3と接着されていることで、以下に記述する比較例の電力用半導体装置1z(<Z.比較例>を参照)における支柱51、ばね52、および押え板53のような、半導体装置10aを固定するための部品を削減できる。これらを削減することにより、半導体装置10aを小型化および軽量化でき、また、組立の工数を削減できる。さらに、接着剤34が平面視でグリス35の周囲全体を囲っている場合、ポンピングアウトが抑制され、製品の寿命が向上する。
 <Z.比較例>
 比較例の電力用半導体装置1zは、実施の形態1の電力用半導体装置1aと比べると、半導体装置10aとヒートシンク3とが接着剤34で接着され固定される代わりに、押え板53およびばね52により半導体装置10aがヒートシンク3に対し固定されている点が異なる。電力用半導体装置1zは、その他の点では実施の形態1の電力用半導体装置1aと同様である。
 図16は比較例の電力用半導体装置1zの断面図である。図17および図18は比較例の電力用半導体装置1zの平面図である。
 図17および図18に示されるように、押え板53は支柱51とボルト54で締結されている。押え板53は支柱51を介してヒートシンク3に固定されている。
 図17においては、見やすさのため、プリント基板2は省略されている。図18においては、見やすさのため、プリント基板2および押え板53は省略されている。
 <B.実施の形態2>
 本実施の形態の電力用半導体装置1bは、実施の形態1の電力用半導体装置1aと比べると、半導体装置10aの代わりに半導体装置10bを備える点が異なる。電力用半導体装置1bはその他の点では電力用半導体装置1aと同様である。
 半導体装置10bは、半導体装置10aと比べると、図5に示されるように下面20が領域20bにおいて領域20aにおけるよりも下側(つまり、ヒートシンク3側)に突出している点が異なる。半導体装置10bは、その他の点では半導体装置10aと同様である。
 電力用半導体装置1bにおいても、電力用半導体装置1aの場合と同様、半導体装置10bの下面20の領域20aはヒートシンク3と接着剤34により接着されている。また、半導体装置10bは、半導体装置10bの下面20のうち領域20bにおいて、グリス35を介してヒートシンク3と接している。金属箔14は下面20のうち領域20bにおいて半導体装置10bの表面に露出している。
 図6は半導体装置10bを下側から見た状態の一例を示す平面図である。図7は半導体装置10bを下側から見た状態の別の一例を示す平面図である。領域20aは、図6に示されるように下面20の外周部の全体であって領域20bを平面視で囲っていてもよいし、図7に示されるように下面20の外周部のうちの一部であってもよい。図7において、領域20aは、矩形状の下面20のうち、互いに対向する2辺に沿った領域である。
 半導体装置10bにおいては、下面20が領域20bにおいて領域20aにおけるよりも下側に突出していることにより、領域20aと領域20bとの間に段差が存在する。当該段差は封止材15により形成されている。つまり、領域20aと領域20bとの間の段差の側面部分は、封止材15のうち領域20aよりも下側に突出した部分23により覆われている。封止材15の部分23の下面は、領域20bに含まれている。つまり、封止材15は領域20bに露出している。封止材15の部分23の下面は例えば金属箔14の下面と面一であり、封止材15の部分23の下面と金属箔14の下面を含む領域20bは例えば平坦である。
 領域20aと領域20bとの間に段差があることにより、下面20のうち領域20aの部分においてヒートシンク3と下面20との間の距離をある程度確保して接着剤34による接着の強度を確保し、かつ、下面20のうち領域20bの部分においてヒートシンク3と下面20との距離を小さくして放熱性を高めることができる。
 <C.実施の形態3>
 本実施の形態の電力用半導体装置1cは、実施の形態2の電力用半導体装置1bと比べると、半導体装置10bの代わりに半導体装置10cを備える点が異なる。電力用半導体装置1cはその他の点では電力用半導体装置1bと同様である。
 半導体装置10cは、半導体装置10bと比べると、封止材15の部分23の下側の面、つまり領域20bのうち封止材15が露出している部分、に溝230が設けられている点が異なる。半導体装置10cはその他の点では半導体装置10bと同様である。図8は、電力用半導体装置1cのうち、溝230の近傍を示す図である。
 電力用半導体装置1cにおいてはグリス35が溝230に入り込んでいる。電力用半導体装置1cの製造時にグリス35が溝230に入り込むことで、グリス35の厚みの面内方向のばらつきが抑制されるため、組み立ての精度が向上する。
 電力用半導体装置1cは実施の形態2の電力用半導体装置1bに対して溝230が設けられた構造であるとして説明したが、電力用半導体装置1cは実施の形態1の電力用半導体装置1aに対して溝230が設けられた構造であってもよい。この場合も、溝230は、半導体装置10cの下面20の領域20bのうち封止材15が露出している部分に設けられる。また、この場合も、電力用半導体装置1cの製造時にグリス35が溝230に入り込むことで、グリス35の厚みの面内方向のばらつきが抑制されるため、組み立ての精度が向上する。
 <D.実施の形態4>
 本実施の形態の電力用半導体装置1dは、実施の形態2の電力用半導体装置1bと比べると、半導体装置10bの代わりに半導体装置10dを備える点が異なる。電力用半導体装置1dはその他の点では電力用半導体装置1bと同様である。
 半導体装置10dは、半導体装置10bと比べると、領域20aに溝210が設けられている点が異なる。半導体装置10dはその他の点では半導体装置10bと同様である。図9は、電力用半導体装置1dのうち、溝210の近傍を示す図である。
 領域20aは例えば全体が封止材15の表面である。領域20aの一部に封止材15が露出している場合、溝210は例えば領域20aのうち封止材15が露出している部分に設けられる。
 電力用半導体装置1dにおいては、接着剤34が溝210に入り込んでいるので、アンカー効果によって、接着剤34を介した半導体装置10dとヒートシンク3との接着の強度が向上する。
 電力用半導体装置1dは実施の形態2の電力用半導体装置1bに対して溝210が設けられた構造であるとして説明したが、電力用半導体装置1dは実施の形態1の電力用半導体装置1aの領域20aまたは実施の形態3の電力用半導体装置1cの領域20aに溝210が設けられた構造であってもよい。
 <E.実施の形態5>
 本実施の形態の電力用半導体装置1eは、実施の形態2の電力用半導体装置1bと比べると、半導体装置10bの代わりに半導体装置10eを備える点が異なる。電力用半導体装置1eはその他の点では電力用半導体装置1bと同様である。
 半導体装置10eは、半導体装置10bと比べると、封止材15が複数の突起211を有する点が異なる。半導体装置10eはその他の点では半導体装置10bと同様である。図10は、電力用半導体装置1eのうち、突起211の近傍を示す図である。
 突起211は、図10に示されるように、領域20bよりも下側に突き出ている。突起211は、例えば、領域20aと領域20bの境界部分に設けられる。
 図11は半導体装置10eを下側から見た状態の一例を示す平面図である。突起211は例えば図11に示されるように3か所に設けられる。突起211が半導体装置10eの下面20に点状に設けられる場合、半導体装置10eがヒートシンク3に対して押し付けられた際に半導体装置10eの向きが安定するよう、突起211は3箇所以上に設けられることが好ましい。
 電力用半導体装置1eにおいて、半導体装置10eは、突起211がヒートシンク3と接触した状態で接着剤34によりヒートシンク3と接着されて固定されている。
 突起211がヒートシンク3と接触していることで、接触応力を高めることができ、半導体装置がヒートシンク3に対し安定的に固定できる。
 電力用半導体装置1eは実施の形態2の電力用半導体装置1bに対して突起211が設けられた構造であるとして説明したが、電力用半導体装置1eは実施の形態1、3、または4の電力用半導体装置1a、1cまたは1dに突起211が設けられた構造であってもよい。
 <F.実施の形態6>
 本実施の形態の電力用半導体装置1fは、実施の形態2の電力用半導体装置1bよりも、端子台4の電極41の上面の高さが主端子17に対して相対的に低くなっている。電力用半導体装置1fは、その他の点においては電力用半導体装置1bと同様である。電力用半導体装置1fが備える半導体装置10fの構成は電力用半導体装置1bが備える半導体装置10bの構成と同じである。
 電力用半導体装置1fでは、半導体装置10fの主端子17が半導体装置10fの封止材15から突出している箇所、つまり主端子17のうち封止材15に封止されている部分と封止材15に封止されていない部分の境界、における主端子17の下面の高さは、端子台4の電極41の上面よりも高い。
 図13は電力用半導体装置1fにおいて半導体装置10fの主端子17が端子台4の電極41と固定されている箇所の近傍を示す図である。また、図12は、製造時の、半導体装置10fがヒートシンク3上に配置された後かつ半導体装置10fの主端子17が端子台4の電極41と固定される前の状態を示す図である(電力用半導体装置1fの製造方法については、実施の形態8を参照)。
 図12に示されるように、電力用半導体装置1fの製造時に、主端子17と端子台4とをボルト32で締結して固定する前においては、例えば、図12に示されるように主端子17と端子台4の電極41との間に隙間Wがある。このような状態から主端子17をボルト32で端子台4と締結することで、主端子17が下向きに変形して端子台4に固定される。これにより、図13に示されるように、半導体装置10fの主端子17が半導体装置10fの封止材15から突出している箇所における主端子17の下面の高さは、端子台4の電極41の上面よりも高くなる。
 主端子17が下向きに変形して端子台4に固定されることで、半導体装置10fがヒートシンク3に対し押し付けられ、半導体装置10fとヒートシンク3との固定が強固になる。
 電力用半導体装置1fは、実施の形態2の電力用半導体装置1bの構成から、端子台4の電極41の上面の高さが主端子17に対して相対的に低くなった構成として説明したが、電力用半導体装置1fは、実施の形態1、3、4、または5の電力用半導体装置1a、1c、1dまたは1eの構成から、端子台4の電極41の上面の高さが主端子17に対して相対的に低くなった構成であってもよい。
 <G.実施の形態7>
 実施の形態1から6の電力用半導体装置1aから1fにおいて、半導体素子11aおよび半導体素子11bは例えばシリコン半導体を有する半導体素子である。
 本実施の形態の電力用半導体装置(以下、電力用半導体装置1gと呼ぶ)は、実施の形態1から6の電力用半導体装置1aから1fのいずれかの電力用半導体装置であって、かつ、半導体素子11aおよび半導体素子11bの少なくともいずれかがワイドバンドギャップ半導体を有する半導体素子である電力用半導体装置である。半導体素子11aおよび半導体素子11bの両方がワイドバンドギャップ半導体を有する半導体素子であってもよい。当該ワイドバンドギャップ半導体は例えばSiC、窒化ガリウム、酸化ガリウム、またはダイヤモンドである。
 ワイドバンドギャップ半導体を有する半導体素子はSi半導体を有する半導体素子に比べて素子のサイズが小さい。そのため、ワイドバンドギャップ半導体を有する半導体素子を備える半導体装置を用いる場合、半導体装置10aから半導体装置10fのような構成要素を多数個組み合わせて電力用のモジュールを構成することが多い。電力用半導体装置1aから1fは例えば当該電力用のモジュール、または当該電力用のモジュールを備える装置である。
 半導体装置10aから半導体装置10fのような構成要素を多数個組み合わせる場合、上述の<Z.比較例>の電力用半導体装置1zの構成においては支柱51、ばね52、および押え板53等の部品が増加しコストも増加するが、本実施の形態の電力用半導体装置1gにおいては、電力用半導体装置1zと比べ支柱51、ばね52、および押え板53等の部品が不要であり、部品の数を抑制でき、コストを削減できる。つまり、実施の形態1から6の電力用半導体装置1aから1fの構成は、半導体素子11aおよび半導体素子11bの少なくともいずれかがワイドバンドギャップ半導体を有する半導体素子である場合に、部品の数の抑制に対しより効果的である。
 <H.実施の形態8>
 本実施の形態では、実施の形態1から7の電力用半導体装置1aから1gの製造方法について説明する。
 図14は本実施の形態の電力用半導体装置の製造方法を示すフローチャートである。以下では製造される電力用半導体装置が電力用半導体装置1aである場合を想定して説明を行うが、電力用半導体装置1aを電力用半導体装置1bから電力用半導体装置1gのいずれかに置き換えてよい。
 まず、ステップS1において、半導体装置10a、端子台4、およびヒートシンク3を準備する。端子台4は例えばヒートシンク3にあらかじめ固定されている。
 次に、ステップS2において、半導体装置10aの下面20の領域20bにグリス35を例えば印刷により塗布する。
 次に、ステップS3において、半導体装置10aの下面20の領域20aに接着剤34を塗布する。
 次に、ステップS4において、ヒートシンク3上に半導体装置10aを配置し、クランプ治具50により半導体装置10aを固定する。ステップS4の終了後、半導体装置10aは、図15に示されるように、クランプ治具50によりヒートシンク3に対し固定された状態でヒートシンク3上に配置されている。半導体装置10aは、クランプ治具50により、ヒートシンク3に対して押し付けられている。
 次に、ステップS5において、半導体装置10aがクランプ治具50により固定された状態で、ボルト32を締めて主端子17を端子台4に締結し、主端子17と端子台4とを固定する。ボルト32を用いる代わりに、溶接により主端子17を端子台4に固定してもよい。
 次に、ステップS6において、半導体装置10aがクランプ治具50により固定された状態で、接着剤34を熱硬化させる。これにより、半導体装置10aとヒートシンク3とが接着され互いに固定される。ステップS6の後、クランプ治具50による半導体装置10aの固定を解除する。
 次に、ステップS7において、ヒートシンク3に固定された半導体装置10aを、プリント基板2に取り付ける。
 以上の工程を経て、電力用半導体装置1aが得られる。
 ステップS2およびステップS3においては、グリス35と接着剤34とを、半導体装置10aの下面20ではなくヒートシンク3に塗布してもよい。
 ステップS5において半導体装置10aを固定するクランプ治具とステップS6において半導体装置10aを固定するクランプ治具とは異なっていてもよい。
 半導体装置10aをクランプ治具50で固定した状態でステップS5およびステップS6を行うことで、グリス塗布量のばらつき等に左右されることなく、半導体装置10aがヒートシンク3に押し付けられた状態で主端子17の締結と接着剤の熱硬化を行うことができる。これにより、半導体装置10aとヒートシンク3とを強固に固定することができる。
 実施の形態6の電力用半導体装置1fの場合、ステップS4で半導体装置10fがヒートシンク3上への配置をされた後であって、ステップS5で主端子17と端子台4との固定がなされる前では、主端子17に外力が加えられていない状態では、例えば、主端子17の下面と端子台4の電極41の間には隙間Wが存在する(図12を参照)。この状態から、主端子17と端子台4との固定がなされることにより、主端子17が下方向に変形し半導体装置10fがヒートシンク3に押し付けられる。これにより、半導体装置10fとヒートシンク3とがより強固に固定される。
 ステップS4で半導体装置10fがヒートシンク3上への配置をされた後であって、ステップS5で主端子17と端子台4との固定がなされる前においては、主端子17の下面と端子台4の電極41の上面が同じ高さであってもよい。この場合も、主端子17と端子台4とが例えばボルト32で締結され主端子17と端子台4との固定がなされることにより、主端子17が下方向に変形し半導体装置10fがヒートシンク3に押し付けられる。
 なお、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 1a,1b,1c,1d,1e,1f,1g,1z 電力用半導体装置、2 プリント基板、3 ヒートシンク、4 端子台、10a,10b,10c,10d,10e,10f 半導体装置、11a,11b 半導体素子、12 ヒートスプレッダ、13 絶縁材、14 金属箔、15 封止材、16 ワイヤ、17 主端子、18 信号端子、20 下面、20a,20b 領域、30,31 接合材、32 ボルト、33 接合材、34 接着剤、35 グリス、41 電極、50 クランプ治具、51 支柱、52 ばね、53 押え板、54 ボルト、210,230 溝、211 突起、W 隙間。

Claims (18)

  1.  半導体装置と、
     ヒートシンクと、
     グリスと、
     接着剤と、
     端子台と、
     を備え、
     前記半導体装置は、半導体素子と、前記半導体素子を封止する封止材と、前記半導体素子と電気的に接続されている電力端子と、を備え、
     前記半導体装置の下面の選択的な領域である第1の領域は前記ヒートシンクと前記接着剤により接着されており、
     前記半導体装置は、前記半導体装置の下面のうち前記選択的な領域以外の領域である第2の領域において、前記グリスを介して前記ヒートシンクと接しており、
     前記端子台は上面に電極を備え、
     前記半導体装置の前記電力端子は、前記端子台と固定され、かつ、前記端子台の前記電極と電気的に接続されている、
     電力用半導体装置。
  2.  請求項1に記載の電力用半導体装置であって、
     前記第1の領域は前記半導体装置の下面の外周部分の領域である、
     電力用半導体装置。
  3.  請求項1または2に記載の電力用半導体装置であって、
     前記第1の領域は平面視において前記第2の領域の周囲全体を囲う領域である、
     電力用半導体装置。
  4.  請求項1から3のいずれか一項に記載の電力用半導体装置であって、
     回路基板を更に備え、
     前記半導体装置は前記半導体素子と電気的に接続されている信号端子を更に備え、
     前記信号端子は前記回路基板と接続されている、
     電力用半導体装置。
  5.  請求項1から4のいずれか1項に記載の電力用半導体装置であって、
     前記半導体装置の下面において、前記第2の領域は前記第1の領域よりも前記ヒートシンク側に突出しており、
     前記第1の領域と前記第2の領域の間の段差の側面部分は前記封止材により覆われている、
     電力用半導体装置。
  6.  請求項1から5のいずれか1項に記載の電力用半導体装置であって、
     前記第2の領域に前記封止材が露出しており、
     前記第2の領域のうち前記封止材が露出している部分に第1の溝が設けられており、前記第1の溝に前記グリスが進入している、
     電力用半導体装置。
  7.  請求項1から6のいずれか1項に記載の電力用半導体装置であって、
     前記第1の領域に前記封止材が露出しており、
     前記第1の領域のうち前記封止材が露出している部分に第2の溝が設けられており、前記第2の溝に前記接着剤が進入している、
     電力用半導体装置。
  8.  請求項1から7のいずれか1項に記載の電力用半導体装置であって、
     前記半導体素子はワイドバンドギャップ半導体を含む、
     電力用半導体装置。
  9.  請求項8に記載の電力用半導体装置であって、
     前記ワイドバンドギャップ半導体はSiC半導体である、
     電力用半導体装置。
  10.  請求項1から9のいずれか1項に記載の電力用半導体装置であって、
     前記端子台は前記ヒートシンクに固定されている、
     電力用半導体装置。
  11.  請求項1から10のいずれか1項に記載の電力用半導体装置であって、
     前記電力端子が前記封止材から突出している箇所における前記電力端子の下面の高さは、前記端子台の前記電極の上面より高い、
     電力用半導体装置。
  12.  請求項1から11のいずれか1項に記載の電力用半導体装置であって、
     前記半導体装置の前記電力端子が前記端子台の前記電極と固定されていることにより前記半導体装置が前記ヒートシンクに押し付けられている、
     電力用半導体装置。
  13.  請求項1から12のいずれか1項に記載の電力用半導体装置を製造する電力用半導体装置の製造方法であって、
     前記半導体装置と前記ヒートシンクとを準備し、
     クランプ治具により前記半導体装置を固定した状態で、前記接着剤を熱硬化させ前記半導体装置と前記ヒートシンクとを前記接着剤により接着する、
     電力用半導体装置の製造方法。
  14.  請求項1から12のいずれか1項に記載の電力用半導体装置を製造する電力用半導体装置の製造方法であって、
     前記半導体装置と前記端子台と前記ヒートシンクとを準備し、
     前記半導体装置の前記ヒートシンク上への配置をし、
     前記半導体装置の前記ヒートシンク上への前記配置がなされかつクランプ治具により前記半導体装置が固定された状態で、電力端子と前記端子台との固定をする、
     電力用半導体装置の製造方法。
  15.  請求項14に記載の電力用半導体装置の製造方法であって、
     前記半導体装置の前記ヒートシンク上への前記配置がなされかつ前記クランプ治具と同じまたは異なるクランプ治具により前記半導体装置が固定された状態で、前記接着剤を熱硬化させて前記半導体装置と前記ヒートシンクとを前記接着剤により接着する、
     電力用半導体装置の製造方法。
  16.  請求項14または15に記載の電力用半導体装置の製造方法であって、
     前記電力端子と前記端子台との前記固定がなされることにより、前記半導体装置が前記ヒートシンクに押し付けられる、
     電力用半導体装置の製造方法。
  17.  請求項1から12のいずれか1項に記載の電力用半導体装置を製造する電力用半導体装置の製造方法であって、
     前記半導体装置と前記端子台と前記ヒートシンクとを準備し、
     前記半導体装置の前記ヒートシンク上への配置をし、
     前記半導体装置の前記ヒートシンク上への前記配置がなされた状態において前記電力端子と前記端子台との固定をし、
     前記電力端子と前記端子台との前記固定がなされることにより、前記半導体装置が前記ヒートシンクに押し付けられる、
     電力用半導体装置の製造方法。
  18.  請求項16または17に記載の電力用半導体装置の製造方法であって、
     前記半導体装置が前記ヒートシンク上への前記配置をされた状態において、前記電力端子と前記端子台との前記固定がなされる前では、前記電力端子に外力が加えられていない状態では前記電力端子の下面と前記端子台の前記電極の間には隙間が存在する、
     電力用半導体装置の製造方法。
PCT/JP2021/034527 2021-09-21 2021-09-21 電力用半導体装置および電力用半導体装置の製造方法 WO2023047451A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023549185A JPWO2023047451A1 (ja) 2021-09-21 2021-09-21
US18/576,203 US20240234237A1 (en) 2021-09-21 2021-09-21 Power semiconductor device and method for manufacturing power semiconductor device
CN202180102427.0A CN117957648A (zh) 2021-09-21 2021-09-21 电力用半导体装置以及电力用半导体装置的制造方法
DE112021008251.5T DE112021008251T5 (de) 2021-09-21 2021-09-21 Leistungshalbleitervorrichtung und Verfahren zur Herstellung einer Leistungshalbleitervorrichtung
PCT/JP2021/034527 WO2023047451A1 (ja) 2021-09-21 2021-09-21 電力用半導体装置および電力用半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/034527 WO2023047451A1 (ja) 2021-09-21 2021-09-21 電力用半導体装置および電力用半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2023047451A1 true WO2023047451A1 (ja) 2023-03-30

Family

ID=85720238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034527 WO2023047451A1 (ja) 2021-09-21 2021-09-21 電力用半導体装置および電力用半導体装置の製造方法

Country Status (5)

Country Link
US (1) US20240234237A1 (ja)
JP (1) JPWO2023047451A1 (ja)
CN (1) CN117957648A (ja)
DE (1) DE112021008251T5 (ja)
WO (1) WO2023047451A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104642U (ja) * 1989-02-03 1990-08-20
JPH0831967A (ja) * 1994-07-19 1996-02-02 Fuji Electric Co Ltd 半導体装置のパッケージ構造
JP2009017751A (ja) * 2007-07-09 2009-01-22 Sumitomo Electric Ind Ltd コネクタユニット、回転電機のハウジングおよび回転電機
JP2012033872A (ja) * 2010-06-30 2012-02-16 Denso Corp 半導体装置
JP2014013884A (ja) * 2012-06-07 2014-01-23 Toyota Industries Corp 半導体装置
JP2015084609A (ja) * 2013-10-25 2015-04-30 三菱電機株式会社 接続導体の冷却装置及びそれを用いた電力変換装置
WO2015102046A1 (ja) * 2014-01-06 2015-07-09 三菱電機株式会社 半導体装置
WO2016006054A1 (ja) * 2014-07-09 2016-01-14 三菱電機株式会社 半導体装置
WO2017221730A1 (ja) * 2016-06-24 2017-12-28 三菱電機株式会社 電力用半導体装置および電力用半導体装置の製造方法
WO2019187125A1 (ja) * 2018-03-30 2019-10-03 三菱電機株式会社 半導体装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104642U (ja) * 1989-02-03 1990-08-20
JPH0831967A (ja) * 1994-07-19 1996-02-02 Fuji Electric Co Ltd 半導体装置のパッケージ構造
JP2009017751A (ja) * 2007-07-09 2009-01-22 Sumitomo Electric Ind Ltd コネクタユニット、回転電機のハウジングおよび回転電機
JP2012033872A (ja) * 2010-06-30 2012-02-16 Denso Corp 半導体装置
JP2014013884A (ja) * 2012-06-07 2014-01-23 Toyota Industries Corp 半導体装置
JP2015084609A (ja) * 2013-10-25 2015-04-30 三菱電機株式会社 接続導体の冷却装置及びそれを用いた電力変換装置
WO2015102046A1 (ja) * 2014-01-06 2015-07-09 三菱電機株式会社 半導体装置
WO2016006054A1 (ja) * 2014-07-09 2016-01-14 三菱電機株式会社 半導体装置
WO2017221730A1 (ja) * 2016-06-24 2017-12-28 三菱電機株式会社 電力用半導体装置および電力用半導体装置の製造方法
WO2019187125A1 (ja) * 2018-03-30 2019-10-03 三菱電機株式会社 半導体装置

Also Published As

Publication number Publication date
DE112021008251T5 (de) 2024-07-04
US20240234237A1 (en) 2024-07-11
CN117957648A (zh) 2024-04-30
JPWO2023047451A1 (ja) 2023-03-30

Similar Documents

Publication Publication Date Title
JP4569473B2 (ja) 樹脂封止型パワー半導体モジュール
TWI404177B (zh) 功率半導體電路裝置及其製造方法
US9673118B2 (en) Power module and method of manufacturing power module
US7239016B2 (en) Semiconductor device having heat radiation plate and bonding member
US20130015468A1 (en) Semiconductor device and method of manufacturing the same
JP2007311441A (ja) パワー半導体モジュール
JP6093455B2 (ja) 半導体モジュール
JP2009536458A (ja) 半導体モジュール及びその製造方法
US20220102249A1 (en) Dual side cooling power module and manufacturing method of the same
JP7352754B2 (ja) 半導体モジュール
US20140367842A1 (en) Power semiconductor device and method of manufacturing the same
US7229855B2 (en) Process for assembling a double-sided circuit component
WO2013118275A1 (ja) 半導体装置
JP4906650B2 (ja) パワー半導体モジュール及びその製法
US11735557B2 (en) Power module of double-faced cooling
US20130256920A1 (en) Semiconductor device
WO2023047451A1 (ja) 電力用半導体装置および電力用半導体装置の製造方法
CN108735614B (zh) 半导体装置及半导体装置的制造方法
JP2018046164A (ja) 半導体装置および半導体装置の製造方法
JP2012089563A (ja) 半導体モジュール
WO2020241239A1 (ja) 半導体装置
US20240194576A1 (en) Power module for a vehicle
JP6771581B2 (ja) 半導体モジュール及び半導体装置
JP2005217248A (ja) 半導体装置
JP2022152312A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958329

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023549185

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18576203

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180102427.0

Country of ref document: CN