WO2023045887A1 - Procédé de préparation d'un copolymère quaternaire à base de dioxyde de carbone - Google Patents

Procédé de préparation d'un copolymère quaternaire à base de dioxyde de carbone Download PDF

Info

Publication number
WO2023045887A1
WO2023045887A1 PCT/CN2022/119737 CN2022119737W WO2023045887A1 WO 2023045887 A1 WO2023045887 A1 WO 2023045887A1 CN 2022119737 W CN2022119737 W CN 2022119737W WO 2023045887 A1 WO2023045887 A1 WO 2023045887A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
tetra
carbon dioxide
acid anhydrides
reaction
Prior art date
Application number
PCT/CN2022/119737
Other languages
English (en)
Chinese (zh)
Inventor
魏怀建
李洪国
李宜格
高玉飞
傅海
董良
Original Assignee
山东联欣环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东联欣环保科技有限公司 filed Critical 山东联欣环保科技有限公司
Publication of WO2023045887A1 publication Critical patent/WO2023045887A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/32General preparatory processes using carbon dioxide
    • C08G64/34General preparatory processes using carbon dioxide and cyclic ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • C08G64/1608Aliphatic-aromatic or araliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • C08G64/183Block or graft polymers containing polyether sequences

Definitions

  • the invention belongs to the technical field of IPC classification number C08G64/16, and in particular relates to a preparation method of a carbon dioxide-based tetrapolymer.
  • the Chinese invention patent with application number 201210283571.1 discloses a degradable polymethylhexylene carbonate-based composite material and its preparation method. Carbonate, and then obtain a degradable composite material with polyvinyl formal.
  • polymethylethylene carbonate is prepared by using a zinc carboxylate catalyst to catalyze it.
  • the carboxylate carboxylate The reactivity of the zinc catalyst is low, and the whole preparation process takes a long time, resulting in relatively low production efficiency, which limits its use in specific industrial production.
  • the object of the present invention is to solve the above-mentioned technical problems.
  • a first aspect of the present invention provides a method for preparing a carbon dioxide-based tetrapolymer, comprising the following steps:
  • the preparation raw materials described in step 1) include acid anhydrides, and carbon dioxide; wherein, R represents one of hydrogen or alkyl.
  • the wherein R is hydrogen
  • the acid anhydrides are C4-C10 acid anhydrides.
  • said C4-C10 means: the number of carbon atoms is 4-10.
  • the acid anhydrides are C8 acid anhydrides.
  • the C8 acid anhydride substance is phthalic anhydride.
  • the Including ethylene oxide and/or propylene oxide Preferably, the Including ethylene oxide and/or propylene oxide.
  • the For ethylene oxide and propylene oxide Preferably, the For ethylene oxide and propylene oxide.
  • the pressure is controlled to be 0.1-4 MPa.
  • the pressure is controlled to be 0.8-2 MPa.
  • the pressure is controlled to be 1.0-1.5 MPa.
  • the present invention finds that in this system, controlling the pressure after the addition of carbon dioxide not only affects the conversion rate of the reaction, but also affects the purity and degradation performance of the prepared copolymer. It is speculated that in this system, along with the addition of carbon dioxide, the The pressure changes, and as the pressure increases, the chemical reaction can be guaranteed to move to the direction of forming a copolymer. As the chemical reaction proceeds, the amount of carbon dioxide is gradually consumed, and a structure containing a flexible segment is formed. It is easy to degrade under the conditions of microorganisms, microorganisms, etc., which ensures that the prepared materials have good degradation performance.
  • the present invention finds that controlling the pressure of the reactor after the addition of carbon dioxide is indeed an important factor affecting its purity.
  • the pressure of the reactor was greater than 2MPa, because the concentration of carbon dioxide increased, it was different from that in the system. Rapid ring-opening polymerization will occur, resulting in the possibility of chain transfer during the reaction process, and heterochain grafting will appear on the main chain of the prepared copolymer, which will affect the crystallization properties of the prepared material and affect its glass transition temperature. Not applicable in this system.
  • the heating temperature in step 1) is 30-100°C.
  • the heating temperature in step 1) is 60-80°C.
  • the heating temperature in step 1) is 60-70°C.
  • the present invention discovers through a large number of creative experiments that the control of the reaction temperature in the process of synthesizing carbon dioxide-based tetrapolymers of the present invention has a greater impact on the performance of the prepared copolymer.
  • the control of the reaction temperature in the process of synthesizing carbon dioxide-based tetrapolymers of the present invention has a greater impact on the performance of the prepared copolymer.
  • the reactivity in the system begins to increase.
  • the temperature is 60-80°C, the molecular weight distribution of the prepared tetrapolymer can be guaranteed to be narrow.
  • the present invention finds that when the reaction temperature is higher than 80° C. in this system, side reactions will be obvious and more small molecules will be produced.
  • the time for the four-membered ring-opening copolymerization reaction in step 1) is 4 to 20 hours.
  • the time for the four-membered ring-opening copolymerization reaction is 5-12 hours.
  • the catalyst includes component A and component B; the component A is triethylboron and/or tributylboron; the component B is tetra-n-butylammonium fluoride, tetra-n-butyl Ammonium chloride, tetra-n-butylammonium bromide, tetra-n-butylammonium iodide, tetra-n-propylammonium fluoride, tetra-n-propylammonium chloride, tetra-n-propylammonium bromide, tetra-n-propylammonium iodide ammonium chloride.
  • the component A is triethylboron and/or tributylboron
  • the component B is tetra-n-butylammonium fluoride, tetra-n-butyl Ammonium chloride, tetra-n-butylammonium bro
  • the weight ratio of component A to component B is 1:(0.1-5).
  • the catalyst is obtained by using triethylboron and/or tributylboron with tetra-n-butylammonium fluoride, tetra-n-butylammonium chloride, tetra-n-butylammonium bromide, tetra-n-butylammonium
  • a kind of composite use in ammonium iodide, tetra-n-propyl ammonium fluoride, tetra-n-propyl ammonium chloride, tetra-n-propyl ammonium bromide, tetra-n-propyl ammonium iodide is used as the catalyst in the present invention not only It solves the problem of residual degradation of traditional metal catalysts in this process, and also ensures that the prepared carbon dioxide-based quaternary copolymerization is under the condition that the weight ratio of component A to component B is 1: (0.1 ⁇ 5).
  • the compound can reach a higher molecular weight in a short time, reduce the reaction time, reduce energy consumption, and is suitable for industrial production.
  • the reason for this phenomenon is that when component A and component B are used at the same time, the synergy , which can ensure the formation of carbocations in phthalic anhydride, ethylene oxide and propylene oxide to react with the ortho-position of the anhydride, promote the rapid opening of the carbon chain, and embed ethylene oxide in the cross-linked network.
  • the ring-opening temperature of the copolymer is reduced, the activity of the reaction is improved, and the energy consumption is reduced.
  • the post-treatment in step 2) includes devolatilization, drying and granulation.
  • acid anhydrides and The order of addition includes the acid anhydrides and Mix first and then add to the reactor or add acid anhydrides to the reactor first, and then add One of.
  • the order of adding the raw materials phthalic anhydride, ethylene oxide and propylene oxide is different, which has a greater impact on the molecular segment of the prepared copolymer; Formic anhydride, ethylene oxide and propylene oxide are mixed and then added to the reactor.
  • the resulting molecular segments are generally random, but during the reaction, if the control of phthalic anhydride, ethylene oxide and ring
  • propylene oxide is added in stages, block copolymers will be formed, and the production of block copolymers will also improve the mechanical properties of carbon dioxide-based tetrapolymers, ensuring that they can be used not only as plastic packaging bags, but also in anti-corrosion pipelines, electrical appliances, etc. , electronic industry, toys and other fields have relatively large application prospects.
  • the present invention also provides the carbon dioxide-based tetrapolymer prepared by the preparation method described in the above technical solution, including polytrimethylene phthalate with a content of 10 to 70 wt%, and poly(trimethylene phthalate) with a content of 10 to 70 wt%. Ethylene glycol formate, polypropylene carbonate with a content of 10-60 wt%, and polyethylene carbonate with a content of 10-60 wt%.
  • the preparation method of the carbon dioxide-based tetrapolymer provided by the present invention has the following advantages compared with the methods in the prior art:
  • the carbon dioxide-based tetrapolymer prepared by the preparation method has a higher molecular weight, and can realize a narrower molecular weight distribution, so that the processability of the copolymer can be improved. improve;
  • the order in which the raw materials are added to the reactor is analyzed for the prepared product, which ensures that the copolymer with random structure and block structure can be prepared, and has a suitable melt mass flow rate, It provides the possibility for the application of copolymers in anti-corrosion pipelines, electrical, electronic industries, toys and other fields;
  • ammonium chloride, tetra-n-propyl ammonium fluoride, tetra-n-propyl ammonium chloride, tetra-n-propyl ammonium bromide, and tetra-n-propyl ammonium iodide catalyst can change the reactivity and reduce the used amount of prepared high molecular weight polymer. time, reduce energy consumption, and have a high reference value for applying it to large-scale industrial production.
  • a preparation method of carbon dioxide-based tetrapolymer comprising the following steps:
  • the preparation raw materials are phthalic anhydride, ethylene oxide, propylene oxide, carbon dioxide and catalyst;
  • the parts by weight are: 3 parts of phthalic anhydride, 9 parts of ethylene oxide, 12 parts of propylene oxide and 0.03 parts of catalyst.
  • Described catalyst is triethylboron and tetra-n-butylammonium bromide, and its weight ratio is 1:1;
  • a preparation method of carbon dioxide-based tetrapolymer comprising the following steps:
  • the preparation raw materials are phthalic anhydride, ethylene oxide, propylene oxide, carbon dioxide and catalyst;
  • the parts by weight are: 3 parts of phthalic anhydride, 9 parts of ethylene oxide, 12 parts of propylene oxide and 0.03 parts of catalyst.
  • the catalyst is triethylboron and tetra-n-butylammonium bromide in a weight ratio of 1:0.5;
  • a preparation method of carbon dioxide-based tetrapolymer comprising the following steps:
  • the preparation raw materials are phthalic anhydride, ethylene oxide, propylene oxide, carbon dioxide and catalyst;
  • the parts by weight are: 3 parts of phthalic anhydride, 9 parts of ethylene oxide, 12 parts of propylene oxide and 0.03 parts of catalyst.
  • Described catalyst is triethylboron and tetra-n-butylammonium bromide, and its weight ratio is 1:1;
  • a preparation method of carbon dioxide-based tetrapolymer comprising the following steps:
  • the preparation raw materials are phthalic anhydride, ethylene oxide, propylene oxide, carbon dioxide and catalyst;
  • the parts by weight are: 3 parts of phthalic anhydride, 9 parts of ethylene oxide, 12 parts of propylene oxide and 0.03 parts of catalyst.
  • Described catalyst is triethylboron and tetra-n-butylammonium bromide, and its weight ratio is 1:1;
  • a preparation method of carbon dioxide-based tetrapolymer comprising the following steps:
  • the preparation raw materials are phthalic anhydride, ethylene oxide, propylene oxide, carbon dioxide and catalyst;
  • the parts by weight are: 3 parts of phthalic anhydride, 9 parts of ethylene oxide, 12 parts of propylene oxide and 0.03 parts of catalyst.
  • Described catalyst is triethylboron and tetra-n-butylammonium bromide, and its weight ratio is 1:1;
  • a preparation method of carbon dioxide-based tetrapolymer comprising the following steps:
  • the preparation raw materials are phthalic anhydride, ethylene oxide, propylene oxide, carbon dioxide and catalyst;
  • the parts by weight are: 3 parts of phthalic anhydride, 9 parts of ethylene oxide, 12 parts of propylene oxide and 0.03 parts of catalyst.
  • Described catalyst is triethylboron and tetra-n-butylammonium bromide, and its weight ratio is 1:1;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

La présente invention appartient au domaine technique de la CIB C08G64/16 et concerne plus précisément un procédé de préparation d'un copolymère quaternaire à base de dioxyde de carbone. Le procédé de préparation d'un copolymère quaternaire à base de dioxyde de carbone comprend les étapes suivantes : 1) l'introduction des matières premières de la préparation dans un réacteur sous haute pression, puis l'ajout d'un catalyseur et leur chauffage pour une réaction de copolymérisation quaternaire par décyclisation ; et 2) après la fin de la réaction, la mise en œuvre d'un post-traitement pour obtenir le copolymère quaternaire à base de dioxyde de carbone. Selon le copolymère quaternaire à base de dioxyde de carbone de la présente invention, grâce à l'ajout d'oxyde d'éthylène et des catalyseurs de triéthylborane ou de tributylborane et de fluorure de tétra-n-butylammonium, de chlorure de tétra-n-butylammonium, de bromure de tétra-n-butylammonium, d'iodure de tétra-n-butylammonium, de fluorure de tétra-n-propylammonium, de chlorure de tétra-n-propylammonium, de bromure de tétra-n-propylammonium ou d'iodure de tétra-n-propylammonium, il est possible de modifier l'activité de la réaction, de raccourcir le temps de préparation du polymère à grande masse moléculaire, de réduire la consommation d'énergie, et le copolymère quaternaire à base de dioxyde de carbone présente une valeur de référence relativement élevée lorsqu'il est appliqué à une production industrielle à grande échelle.
PCT/CN2022/119737 2021-09-24 2022-09-20 Procédé de préparation d'un copolymère quaternaire à base de dioxyde de carbone WO2023045887A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111125515.0 2021-09-24
CN202111125515.0A CN114524929B (zh) 2021-09-24 2021-09-24 一种二氧化碳基四元共聚物的制备方法

Publications (1)

Publication Number Publication Date
WO2023045887A1 true WO2023045887A1 (fr) 2023-03-30

Family

ID=81619372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119737 WO2023045887A1 (fr) 2021-09-24 2022-09-20 Procédé de préparation d'un copolymère quaternaire à base de dioxyde de carbone

Country Status (2)

Country Link
CN (1) CN114524929B (fr)
WO (1) WO2023045887A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114524929B (zh) * 2021-09-24 2023-07-25 山东联欣环保科技有限公司 一种二氧化碳基四元共聚物的制备方法
CN114524930A (zh) * 2021-09-24 2022-05-24 山东联欣环保科技有限公司 一种含苯基酸酐类-环氧乙烷四元共聚物
CN116162233A (zh) * 2022-09-09 2023-05-26 中山大学 一种低分子量二氧化碳基聚碳酸酯多元醇的制备方法
CN115521591B (zh) * 2022-11-07 2023-01-31 山东联欣环保科技有限公司 一种二氧化碳基四元共聚物的高韧组合物及其制备方法
CN115772321A (zh) * 2023-02-10 2023-03-10 山东联欣环保科技有限公司 一种生物可降解复合膜及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280399A (ja) * 2007-05-09 2008-11-20 Tokyo Univ Of Science ブロック共重合体の製造方法及びブロック共重合体
CA2810559A1 (fr) * 2010-09-09 2012-03-15 Bayer Materialscience Ag Procede de production de polyethercarbonate polyols
CN103403060A (zh) * 2010-10-14 2013-11-20 拜耳知识产权有限责任公司 制备聚醚碳酸脂多元醇的方法
CN106083907A (zh) * 2016-06-24 2016-11-09 中国科学院长春应用化学研究所 一种席夫碱铝配合物及其制备方法和应用
CN110092900A (zh) * 2019-04-30 2019-08-06 华中科技大学 一种二氧化碳基嵌段共聚物的制备方法
CN111333825A (zh) * 2020-04-26 2020-06-26 中山大学 一种二氧化碳基聚酯-聚碳酸酯四元嵌段共聚物的制备方法
CN111378101A (zh) * 2020-04-26 2020-07-07 中山大学 一种生物可降解二氧化碳基聚酯-聚碳酸酯三元共聚物的制备方法
CN112126053A (zh) * 2020-09-22 2020-12-25 河北工业大学 一种双金属氰化物催化剂的制备方法及其应用
CN114524929A (zh) * 2021-09-24 2022-05-24 山东联欣环保科技有限公司 一种二氧化碳基四元共聚物的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280399A (ja) * 2007-05-09 2008-11-20 Tokyo Univ Of Science ブロック共重合体の製造方法及びブロック共重合体
CA2810559A1 (fr) * 2010-09-09 2012-03-15 Bayer Materialscience Ag Procede de production de polyethercarbonate polyols
CN103403060A (zh) * 2010-10-14 2013-11-20 拜耳知识产权有限责任公司 制备聚醚碳酸脂多元醇的方法
CN106083907A (zh) * 2016-06-24 2016-11-09 中国科学院长春应用化学研究所 一种席夫碱铝配合物及其制备方法和应用
CN110092900A (zh) * 2019-04-30 2019-08-06 华中科技大学 一种二氧化碳基嵌段共聚物的制备方法
CN111333825A (zh) * 2020-04-26 2020-06-26 中山大学 一种二氧化碳基聚酯-聚碳酸酯四元嵌段共聚物的制备方法
CN111378101A (zh) * 2020-04-26 2020-07-07 中山大学 一种生物可降解二氧化碳基聚酯-聚碳酸酯三元共聚物的制备方法
CN112126053A (zh) * 2020-09-22 2020-12-25 河北工业大学 一种双金属氰化物催化剂的制备方法及其应用
CN114524929A (zh) * 2021-09-24 2022-05-24 山东联欣环保科技有限公司 一种二氧化碳基四元共聚物的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JONG YEOB JEON ET AL.: "Copolymerization and Terpolymerization of Carbon Dioxide/Propylene Oxide/Phthalic Anhydride Using a (salen)Co(III) Complex Tethering Four Quaternary Ammonium Salts", BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY, vol. 10, 5 August 2014 (2014-08-05), XP055888017, ISSN: 1860-5397, DOI: 10.3762/bjoc.10.187 *
LIU, YULEI ET AL.: "Mechanism Studies of Terpolymerization of Phthalic Anhydride, Propylene Epoxide, and Carbon Dioxide Catalyzed by ZnGA", RSC ADVANCES, vol. 4, no. 19, 19 March 2014 (2014-03-19), XP093053558, ISSN: 2046-2069, DOI: 10.1039/C3RA46343E *
TAKAZO AIDA, MASAHIDE ISHIKAWA, SHOHEI INOUE: "Alternating copolymerization of carbon dioxide and epoxide catalyzed by the aluminum porphyrin-quaternary organic salt or -triphenylphosphine system. Synthesis of polycarbonate with well-controlled molecular weight", MACROMOLECULES, AMERICAN CHEMICAL SOCIETY, US, vol. 19, no. 1, 1 January 1986 (1986-01-01), US , pages 8 - 13, XP055296565, ISSN: 0024-9297, DOI: 10.1021/ma00155a002 *
YAJUN ZHAO; SHUAISHUAI ZHU; CAN LIAO; YONG WANG; JACKY W. Y. LAM; XINGPING ZHOU; XIANHONG WANG; XIAOLIN XIE; BEN ZHONG TANG: "Cobalt‐Mediated Switchable Catalysis for the One‐Pot Synthesis of Cyclic Polymers", ANGEWANDTE CHEMIE, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 133, no. 31, 24 June 2021 (2021-06-24), DE , pages 17111 - 17116, XP071384123, ISSN: 0044-8249, DOI: 10.1002/ange.202106285 *
YE SHUXIAN, WANG WENJING, LIANG JIAXIN, WANG SHUANJIN, XIAO MIN, MENG YUEZHONG: "Metal-Free Approach for a One-Pot Construction of Biodegradable Block Copolymers from Epoxides, Phthalic Anhydride, and CO 2", ACS SUSTAINABLE CHEMISTRY & ENGINEERING, AMERICAN CHEMICAL SOCIETY, US, vol. 8, no. 48, 7 December 2020 (2020-12-07), US , pages 17860 - 17867, XP093054888, ISSN: 2168-0485, DOI: 10.1021/acssuschemeng.0c07283 *

Also Published As

Publication number Publication date
CN114524929A (zh) 2022-05-24
CN114524929B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
WO2023045887A1 (fr) Procédé de préparation d'un copolymère quaternaire à base de dioxyde de carbone
WO2023045898A1 (fr) Copolymère quaternaire d'anhydride de phényle-oxyde d'éthylène
CN111499780B (zh) 一种聚乙烯醇缩丁醛树脂的合成方法
CN102336846A (zh) 一种负载型α-二亚胺钯及其催化制备超支化聚乙烯的方法
CN101020728A (zh) 高全同聚丁烯-1的本体沉淀合成方法
CN102532383B (zh) 一种乙烯-α烯烃-非共轭二烯烃三元共聚物胶液的凝胶抑制方法
CN117050218B (zh) 含有Nd-MIL-103的稀土催化剂以及基于该催化剂的制备顺式聚丁二烯的方法
CN111286014A (zh) 一种用于二氧化碳和环氧化物共聚的双金属氰化物催化剂及其制备方法
CN111116811B (zh) 一种1-丁烯/降冰片烯共聚物及其制备方法
CN111072824A (zh) 一种低灰分低醇解度聚乙烯醇的制备方法
CN109467625B (zh) 苯胺肟类催化剂及其制备方法
CN116333279A (zh) 一种聚碳酸酯类增韧树脂
CN108084312B (zh) 预聚合法制备高丁烯含量的丙烯—丁烯共聚物的方法
CN114044893B (zh) 一种用于二氧化碳和环氧化合物共聚的催化剂及其制备方法
CN113956513B (zh) 一种顺丁橡胶及其制备方法
CN102336850B (zh) 一种催化乙烯链穿梭聚合的催化剂及其应用
CN114479045B (zh) 一种二氧化碳基弹性体及其制备方法
CN105273111A (zh) 一种减少聚氯乙烯生产中汽提装置结垢的方法
CN110343216B (zh) 一种采用复合引发体系制备氯化马来酸酐改性聚乙烯材料的方法
CN113856727A (zh) 一种可再生反应氯乙烯合成用无汞催化剂及其制备方法
CN108976334B (zh) 一种三维交联可溶的聚二乙烯基苯微凝胶及其制备方法
CN111825726A (zh) 苯并咪唑类催化剂及其制备方法
CN109912739B (zh) 系列化特征黏度pmaptac的制备方法
CN104710613A (zh) 一种半芳香族聚酰胺的溶剂热制备方法
CN117362607A (zh) 一种聚对苯二甲酸乙二醇酯的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE