WO2023045070A1 - 石脑油和二氧化碳耦合转化制苯、甲苯和对二甲苯的方法 - Google Patents

石脑油和二氧化碳耦合转化制苯、甲苯和对二甲苯的方法 Download PDF

Info

Publication number
WO2023045070A1
WO2023045070A1 PCT/CN2021/133888 CN2021133888W WO2023045070A1 WO 2023045070 A1 WO2023045070 A1 WO 2023045070A1 CN 2021133888 W CN2021133888 W CN 2021133888W WO 2023045070 A1 WO2023045070 A1 WO 2023045070A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
naphtha
reactor
modified
reaction
Prior art date
Application number
PCT/CN2021/133888
Other languages
English (en)
French (fr)
Inventor
刘中民
于政锡
杨越
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2023045070A1 publication Critical patent/WO2023045070A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/04Benzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/06Toluene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/08Xylenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to the field of petrochemical industry, in particular to a method for coupling conversion of naphtha and CO to produce benzene, toluene and p-xylene, in particular to a modified zeolite molecular sieve catalyst that catalyzes the coupling conversion of naphtha and CO to produce benzene, Toluene and p-xylene methods.
  • BTPX benzene, toluene and xylene
  • the inventors of the present application have creatively found that using naphtha as a raw material, coupled with CO as a raw material to produce benzene, toluene and p-xylene is to utilize CO to produce aromatic benzene, toluene and p-xylene
  • the new technology route provides a new way for the production of benzene, toluene and p-xylene and the large-scale utilization of CO2 .
  • the application provides a kind of preparation method of the modified molecular sieve catalyst that is used to catalyze naphtha and CO coupled conversion to produce benzene, toluene and p-xylene, it is characterized in that, described method comprises adopting high-temperature hydrothermal method Molecular sieve is carried out metal modification, and it comprises the steps:
  • step (3) Draining and roasting the molecular sieve obtained in step (2) to obtain the modified molecular sieve catalyst.
  • the solid-to-liquid ratio of the zeolite molecular sieve to be metal-modified to the soluble metal salt solution is 1/10-1/1, and the mass concentration of the metal salt in the soluble metal salt solution is 10%-30% %; the immersion time is 2-10 hours; the drying step is carried out under the condition of air atmosphere and 100-150°C; the roasting step is carried out under the condition of air atmosphere and 500-700°C.
  • step (1) the soluble metal salt solution is heated to any value or a range determined by any two values in the following temperatures: 60°C, 70°C, 80°C, 90°C and 100°C.
  • the immersion time is any value or a range value determined by any two values in the following times: 2 hours, 4 hours, 6 hours, 8 hours and 10 hours.
  • the metal used for the metal modification is at least one selected from La, Zn, Ga, Fe, Mo, and Cr metals.
  • the metal modification adopts Zn and Ga bimetal for modification.
  • the modified zeolite molecular sieve catalyst is composed of modified HZSM-5 zeolite molecular sieve.
  • the modified zeolite molecular sieve catalyst includes a modified HZSM-5 zeolite molecular sieve and a binder.
  • the method further includes performing silanization modification on the molecular sieve after the metal modification.
  • the silylation modification adopts an in-situ chemical vapor deposition method, which includes the following steps:
  • step (6) the temperature of the reactor is raised to 400° C. to 550° C. and the air is introduced into the roasting
  • the silylation modification adopts an in-situ chemical vapor deposition method, which includes the following steps:
  • the silylation modification adopts an in-situ vapor phase atomic layer deposition method, which includes the following steps:
  • the silylation modification adopts an in-situ vapor phase atomic layer deposition method, which includes the following steps:
  • Nitrogen as a carrier gas is passed through a saturated bottle filled with a silylating agent, and then the carrier gas carries the silylating agent into the reactor for a predetermined time; and under high temperature conditions (for example, 450 to 550 °C) with nitrogen for activation treatment, and then lower the temperature to the silanization modification temperature in a nitrogen atmosphere (this temperature ensures that the silylating agent is in a gas phase state in the reactor);
  • the "in-situ” involved in “in-situ chemical vapor deposition” and “in-situ vapor-phase atomic layer deposition” both refer to the silanization and modification of molecular sieves in the reactor, without removal and modification.
  • the characteristic molecular sieve step is used in the same reactor to catalyze the coupled conversion reaction of naphtha and CO2 .
  • This in-situ gas-phase silanization method reduces the steps of catalyst transportation, loading, washing, etc., and greatly reduces the cost.
  • the silylating agent used in the silanization modification is selected from at least one of the compounds of the following chemical formula:
  • R 1 , R 2 , R 3 and R 4 are each independently selected from C 1-10 alkyl and C 1-10 alkoxy.
  • At least one of R 1 , R 2 , R 3 and R 4 is selected from C 1-10 alkoxy groups.
  • the silylating agent is selected from at least one of tetraethyl silicate and tetramethyl silicate.
  • the application provides a kind of naphtha and CO Coupled conversion method for producing benzene, toluene and p-xylene, said method includes (a) preparing modified molecular sieve catalyst according to the above method; (b) containing The raw materials of naphtha and CO2 are contacted with the modified molecular sieve catalyst in the reactor to react to generate benzene, toluene and p-xylene.
  • the modified zeolite molecular sieve is a metal-modified and silanized-modified zeolite molecular sieve.
  • the modified zeolite molecular sieve is a zeolite molecular sieve obtained through metal modification and then silanization modification.
  • the modified zeolite molecular sieve is a zeolite molecular sieve modified only by silanization.
  • the zeolite molecular sieve catalyst consists of modified zeolite molecular sieves.
  • the modified zeolite molecular sieve is a zeolite molecular sieve that has undergone metal modification, silanization modification and in-situ steam modification in sequence.
  • the steam modification is carried out through the following steps: feed water steam into the reactor where the in-situ silylation-modified molecular sieve is located, and raise the temperature to 700-900° C. for a predetermined period of time under a nitrogen atmosphere.
  • the feedstock consists of naphtha and CO2 .
  • the naphtha is selected from at least one of hydrocracked naphtha, catalytic cracked naphtha, raffinate, top oil, and direct coal liquefaction naphtha.
  • the carbon number distribution range of the hydrocarbons in the naphtha is C 4 -C 12 .
  • the reactor is one of a fixed bed reactor, a fluidized bed reactor or a moving bed reactor.
  • the conditions for the reaction between naphtha and CO 2 are as follows: the reaction temperature is 450-650° C., the reaction pressure is 0.1-3 MPa, the naphtha has a weight space velocity of 0.1-5 h -1 , and the CO 2 weight space Speed 0.1 ⁇ 5h -1 .
  • reaction temperature is selected from any value among 450°C, 500°C, 550°C and 650°C, or a range defined by any two values.
  • reaction pressure is selected from any value among 0.1MPa, 1MPa and 3MPa, or a range determined by the two values.
  • the weight space velocity of the naphtha is selected from any value among 0.1h ⁇ 1 , 1h ⁇ 1 and 5h ⁇ 1 , or a range determined by any two values.
  • the CO 2 weight space velocity is selected from any value among 0.1h ⁇ 1 , 0.3h ⁇ 1 and 5h ⁇ 1 , or a range value determined by any two values.
  • the reaction time is 30 minutes to 120 minutes.
  • the mass ratio of CO and naphtha is 0.8:0.27 ⁇ 0.8:1;
  • the mass ratio of CO 2 and naphtha is any value among 0.8:0.27, 0.8:1 and 1:1, or a range value determined by any two values.
  • the zeolite molecular sieve catalyst further includes a binder.
  • the preparation method of the zeolite molecular sieve catalyst for fluidized bed is as follows: the metal-modified zeolite molecular sieve is mixed uniformly with the binder in water, and the slurry is obtained through beating, rubber milling, and defoaming.
  • the zeolite molecular sieve for a fluidized bed is obtained through conventional spray-drying molding and calcination; wherein the binder includes an amorphous binder containing aluminum or silicon, preferably pseudo-boehmite or silica sol.
  • the zeolite molecular sieve catalyst is loaded into the reactor, first pretreated at a predetermined temperature by an inert gas such as nitrogen, and adjusted to the reaction temperature under a nitrogen atmosphere;
  • hydrocracking naphtha in this application refers to the heavy naphtha produced by hydrocracking reaction of heavy oil.
  • catalytically cracked naphtha in the present application refers to naphtha produced by catalytic cracking of vacuum gas oil and atmospheric residue.
  • the "raffinate” in the present application refers to the distillate remaining after the aromatics-rich catalytic reforming product is extracted.
  • top oil in the present application refers to the light fraction with a boiling point lower than 60°C obtained during distillation of straight-run gasoline.
  • coal direct liquefaction naphtha in this application refers to the naphtha produced by the coal direct liquefaction device.
  • the coupled conversion of naphtha and CO2 to produce aromatics refers to the reaction of CO2 as a raw material with naphtha to produce aromatics.
  • the application provides a method for silylation of a modified molecular sieve catalyst, the method comprising the steps of:
  • the silylation modification adopts an in-situ vapor phase atomic layer deposition method, which includes the following steps:
  • the application provides a method for modifying a molecular sieve catalyst, the method comprising the steps of:
  • the solid-to-liquid ratio of the modified zeolite molecular sieve to the soluble metal salt aqueous solution is 1/10 to 1/1 (mass ratio), and the mass concentration of the metal salt in the soluble metal salt aqueous solution is 10 % to 30%;
  • the immersion time is 2 to 10 hours;
  • the drying step is carried out under the condition of air atmosphere and 100-150°C;
  • the roasting step is carried out under the condition of air atmosphere and 500-700°C.
  • step (1) the soluble metal salt solution is heated to any value or a range determined by any two values in the following temperatures: 60°C, 70°C, 80°C, 90°C and 100°C.
  • the immersion time is any value or a range value determined by any two values in the following times: 2 hours, 4 hours, 6 hours, 8 hours and 10 hours.
  • the zeolite molecular sieve is HZSM-5 hydrogen type molecular sieve.
  • the metal in the metal-modified zeolite molecular sieve is selected from at least one of La, Zn, Ga, Fe, Mo, and Cr metals.
  • the silylating agent used in the silanization modification is selected from at least one of the compounds of the following chemical formula:
  • R 1 , R 2 , R 3 and R 4 are each independently selected from C 1-10 alkyl and C 1-10 alkoxy.
  • At least one of R 1 , R 2 , R 3 and R 4 is selected from C 1-10 alkoxy.
  • the silylating agent is selected from at least one of tetraethyl silicate and tetramethyl silicate.
  • This application provides a new technology route for large-scale production of benzene, toluene and p-xylene (i.e. BTPX) using CO2 , which overcomes the defects of limited hydrogen resources and high cost in the prior art.
  • the in-situ vapor phase atomic layer deposition method is used for silanization modification, so that the modified HZSM-5 molecular sieve can be used as an active ingredient.
  • the raw materials in the examples of the present application are purchased from commercial sources or prepared by known methods.
  • the HZSM-5 zeolite molecular sieve in the examples was purchased from Nankai University Catalyst Factory.
  • the analysis method in the embodiment all adopts the routine setting of instrument or equipment and routine analysis method.
  • the type of naphtha is coal direct liquefaction naphtha, and its specific composition is as shown in the following table:
  • the inner diameter of the fixed bed reactor is 1.5 cm; the inner diameter of the fixed fluidized bed reactor is 3 cm.
  • HZSM-5 zeolite molecular sieve and gallium nitrate aqueous solution is 1 /10, impregnated at 80°C for 6 hours, drained and dried in air atmosphere at 120°C for 4 hours, then calcined in air atmosphere at 550°C for 4 hours, [Ga]HZSM-5 molecular sieve samples were pressed into tablets Then crush and sieve to obtain shaped molecular sieve particles with a particle size of 40-60 meshes, which are recorded as FX-[Ga]HZSM-5.
  • HZSM-5 zeolite molecular sieve and lanthanum nitrate aqueous solution is 1 /10, impregnated at 90°C for 4 hours, drained and dried in air atmosphere at 120°C for 4 hours, then calcined in air atmosphere at 550°C for 4 hours, [La]HZSM-5 molecular sieve samples were pressed into tablets Then crush and sieve to obtain shaped molecular sieve particles with a particle size of 40-60 meshes, which are denoted as FX-[La]HZSM-5.
  • HZSM-5 zeolite molecular sieve and ferric nitrate aqueous solution is 1 /10, impregnated at 70°C for 8 hours, drained and dried in air atmosphere at 120°C for 4 hours, then calcined in air atmosphere at 550°C for 4 hours, [Fe]HZSM-5 molecular sieve samples were pressed into tablets Then crush and sieve to obtain shaped molecular sieve particles with a particle size of 40-60 meshes, which are recorded as FX-[Fe]HZSM-5.
  • HZSM-5 zeolite molecular sieve and chromium nitrate aqueous solution are 1 /10, impregnated at 70°C for 8 hours, drained and dried in air atmosphere at 120°C for 4 hours, then calcined in air atmosphere at 550°C for 4 hours, [Cr]HZSM-5 molecular sieve samples were pressed into tablets Then crush and sieve to obtain shaped molecular sieve particles with a particle size of 40-60 meshes, which are recorded as FX-[Cr]HZSM-5.
  • the 100g [Zn]HZSM-5 molecular sieve sample prepared in Example 1 is mixed with an amorphous binder containing aluminum or silicon and spray-dried to form, the specific steps are:
  • [Zn]HZSM-5 molecular sieve sample, pseudo-boehmite, silica sol, xanthan gum (biological glue) and water are mixed evenly, and slurry is obtained through beating, rubber milling, and defoaming; each component in the slurry
  • the parts by weight are:
  • the resulting slurry was spray-dried to obtain a microsphere particle sample with a particle size distribution of 20-100 ⁇ m; after the microsphere particle sample was roasted in a muffle furnace at 550°C for 3 hours, [Zn]HZSM-5 with a wear index of 1.2 was obtained Formed molecular sieves are denoted as FL-[Zn]HZSM-5.
  • Example 7 Preparation of molded samples of zinc and gallium composite modified HZSM-5 molecular sieves for fixed bed
  • Catalysts for on-line preparation of naphtha and CO2 coupled conversion to benzene, toluene and p-xylene in a micro-fixed bed reactor The conditions for preparing the catalyst on-line are as follows: 5 grams of the FX-[Zn]HZSM-5 catalyst prepared in Example 1 were packed into a fixed-bed reactor, treated with 50 mL/min nitrogen at 550° C. for 1 hour, and then The atmosphere was cooled down to 300°C. Under nitrogen atmosphere (mass flow meter control, 100mL/min), tetraethyl silicate was pumped into the reactor, the weight space velocity of tetraethyl silicate was 0.2h -1 , normal pressure.
  • the feed rate of tetraethyl silicate is 0.2g/g of the above catalyst, purging with nitrogen, raising the temperature to 550°C, and roasting in the air atmosphere for 4 hours to obtain naphtha and CO 2 Coupling transformation of benzene, toluene and p-xylene fixed bed catalyst, named FXNCC-1.
  • the performance of the catalyst for the coupled conversion reaction of naphtha and CO2 was evaluated in a micro-fixed-bed reactor unit.
  • the evaluation conditions are as follows: put 5 grams of FX-[Zn]HZSM-5 prepared in Example 1 into a fixed-bed reactor, and first treat it with 50 mL/min nitrogen at 550° C. for 1 hour.
  • the gravimetric space velocity of naphtha 0.8h -1
  • the gravimetric space velocity of naphtha 1.0h -1
  • the reaction pressure is 0.1MPa.
  • the reaction products were analyzed by online Agilent7890 gas chromatography, and samples were taken for analysis after 30 minutes of reaction. The reaction results are shown in Table 1-1.
  • Example 10 By comparing Example 10 and Example 10-1, it can be seen that compared with the HZSM-5 molecular sieve that adopts only metal modification as the catalyst active component, the HZSM-5 molecular sieve that adopts metal modification and silanization modification can be used as the catalyst active component. Achieves higher selectivity to BTPX and selectivity to para-xylene in xylenes.
  • Catalysts for on-line preparation of naphtha and CO2 coupled conversion to benzene, toluene and p-xylene in a micro-fixed bed reactor The conditions for preparing the catalyst on-line are as follows: 5 grams of the FX-[Ga]HZSM-5 catalyst prepared in Example 2 were loaded into a fixed-bed reactor, and treated with 50 mL/min nitrogen at 550° C. for 1 hour, and then under nitrogen The atmosphere was cooled down to 300°C. Under nitrogen atmosphere (mass flow meter control, 100mL/min), tetraethyl silicate was pumped into the reactor, the weight space velocity of tetraethyl silicate was 0.2h -1 , normal pressure.
  • Catalysts for on-line preparation of naphtha and CO2 coupled conversion to benzene, toluene and p-xylene in a micro-fixed bed reactor The conditions for preparing the catalyst on-line are as follows: 5 grams of the FX-[La]HZSM-5 catalyst prepared in Example 3 were loaded into a fixed-bed reactor, treated with 50 mL/min nitrogen at 550° C. for 1 hour, and then The atmosphere was cooled down to 300°C. Under nitrogen atmosphere (mass flow meter control, 100mL/min), tetraethyl silicate was pumped into the reactor, the weight space velocity of tetraethyl silicate was 0.2h -1 , normal pressure.
  • Catalysts for on-line preparation of naphtha and CO2 coupled conversion to benzene, toluene and p-xylene in a micro-fixed bed reactor The conditions for preparing the catalyst online are as follows: 5 grams of the FX-[Fe]HZSM-5 catalyst prepared in Example 4 were loaded into a fixed-bed reactor, first treated with 50 mL/min nitrogen at 550° C. for 1 hour, and then The atmosphere was cooled down to 300°C. Under nitrogen atmosphere (mass flow meter control, 100mL/min), tetraethyl silicate was pumped into the reactor, the weight space velocity of tetraethyl silicate was 0.2h -1 , normal pressure.
  • Catalysts for on-line preparation of naphtha and CO2 coupled conversion to benzene, toluene and p-xylene in a micro-fixed bed reactor The conditions for preparing the catalyst on-line are as follows: 5 grams of the FX-[Cr]HZSM-5 catalyst prepared in Example 5 were loaded into a fixed-bed reactor, treated with 50 mL/min nitrogen at 550° C. for 1 hour, and then under nitrogen The atmosphere was cooled down to 300°C. Under nitrogen atmosphere (mass flow meter control, 100mL/min), tetraethyl silicate was pumped into the reactor, the weight space velocity of tetraethyl silicate was 0.2h -1 , normal pressure.
  • Catalysts for on-line preparation of naphtha and CO2 coupled conversion to benzene, toluene and p-xylene in a miniature fixed fluidized bed reactor The conditions for preparing the catalyst on-line are as follows: 10 grams of the FL-[Zn]HZSM-5 catalyst prepared in Example 6 were packed into a fixed fluidized bed reactor, and treated with 50 mL/min nitrogen at 550° C. for 1 hour, and then The temperature was lowered to 300° C. under a nitrogen atmosphere. Under nitrogen atmosphere (mass flow meter control, 200mL/min), tetraethyl silicate was pumped into the reactor, the weight space velocity of tetraethyl silicate was 0.2h -1 , normal pressure.
  • Feed was stopped after 75 min, and the amount of tetraethyl silicate introduced was 1.25 times that of Example 9, purged with nitrogen, heated to 550 ° C, and roasted for 4 hours in an air atmosphere to obtain naphtha and CO 2 Coupling transformation of benzene, toluene and p-xylene fixed bed catalyst, named FLNCC-1.
  • the purpose of using the 10g molding molecular sieve sample FL-[Zn]HZSM-5 in this embodiment is only in order to meet the requirements of the miniature fixed fluidized bed reactor, and the catalyst can be made to be in a fluidized state under this amount (10g). When it is 5g, it cannot guarantee that the catalyst is in a fluidized state.
  • the feed time for silanization modification is 75 minutes only for the same degree of silanization modification as in Example 9.
  • Catalysts for on-line preparation of naphtha and CO2 coupled conversion to benzene, toluene and p-xylene in a micro-fixed bed reactor The conditions for preparing the catalyst on-line are as follows: 5 grams of the FX-[Zn]HZSM-5 catalyst prepared in Example 1 were packed into a fixed-bed reactor, treated with 50 mL/min nitrogen at 550° C. for 1 hour, and then The atmosphere was cooled down to 300°C.
  • Catalysts for on-line preparation of naphtha and CO2 coupled conversion to benzene, toluene and p-xylene in a micro-fixed bed reactor The conditions for preparing the catalyst online are as follows: 5 grams of the FX-[Zn,Ga]HZSM-5 catalyst prepared in Example 7 were loaded into a fixed-bed reactor, and treated with 50 mL/min nitrogen at 550°C for 1 hour, and then The temperature was lowered to 300° C. under a nitrogen atmosphere. Under nitrogen atmosphere (mass flow meter control, 100mL/min), tetraethyl silicate was pumped into the reactor, the weight space velocity of tetraethyl silicate was 0.2h -1 , normal pressure.
  • Catalysts for on-line preparation of naphtha and CO2 coupled conversion to benzene, toluene and p-xylene in a micro-fixed bed reactor The conditions for preparing the catalyst online are as follows: 5 grams of the FX-[Zn]HZSM-5-R catalyst prepared in Example 8 were loaded into a fixed-bed reactor, and treated with 50 mL/min nitrogen at 550° C. for 1 hour, and then The temperature was lowered to 300° C. under a nitrogen atmosphere. Under nitrogen atmosphere (mass flow meter control, 100mL/min), tetraethyl silicate was pumped into the reactor, the weight space velocity of tetraethyl silicate was 0.2h -1 , normal pressure.
  • the HZSM-5 molecular sieve that undergoes metal modification by high temperature hydrothermal method can achieve higher BTPX selectivity than the HZSM-5 molecular sieve that undergoes metal modification by room temperature impregnation method.
  • Catalysts for on-line preparation of naphtha and CO2 coupled conversion to benzene, toluene and p-xylene in a micro-fixed bed reactor The conditions for online catalyst preparation are as follows: put 5 grams of 40-60 mesh HZSM-5 molecular sieve catalyst into a fixed-bed reactor, first treat it with 50mL/min nitrogen at 550°C for 1 hour, and then lower the temperature to 300°C in a nitrogen atmosphere . Under nitrogen atmosphere (mass flow meter control, 100mL/min), tetraethyl silicate was pumped into the reactor, the weight space velocity of tetraethyl silicate was 0.2h -1 , normal pressure.
  • the FXNCC-9 catalyst that 5g embodiment 19 makes is placed in the lanthanum nitrate solution of 10wt%. Immerse for 4 hours, drain and dry in air atmosphere at 120°C for 4 hours, and then bake in air atmosphere at 550°C for 4 hours to obtain a catalyst sample, which is designated as FXNCC-10.
  • the reaction products were analyzed by online Agilent7890 gas chromatography, and samples were taken for analysis after 30 minutes of reaction. The reaction results are shown in Table 10.
  • Example 12 Compared with Example 12, the selectivity of BTPX and the selectivity of p-xylene in xylene realized by the catalyst of this example are lower. This shows that when using La for metal modification, compared with first silanization modification and then metal modification, the molecular sieve obtained by first metal modification and then silylation modification can achieve higher BTPX selectivity and xylene selectivity to p-xylene.
  • On-line preparation of catalysts for naphtha conversion to benzene, toluene and p-xylene in a miniature fixed-bed reactor The conditions for preparing the catalyst on-line are as follows: 5 grams of the FX-[Zn]HZSM-5 catalyst prepared in Example 1 were packed into a fixed-bed reactor, treated with 50 mL/min nitrogen at 550° C. for 1 hour, and then The atmosphere was cooled down to 300°C. Under nitrogen atmosphere (mass flow meter control, 100mL/min), tetraethyl silicate was pumped into the reactor, the weight space velocity of tetraethyl silicate was 0.2h -1 , normal pressure.
  • the amount of tetraethyl silicate introduced is the same as in Example 10, purging with nitrogen, raising the temperature to 550°C, and roasting for 4 hours in an air atmosphere to obtain naphtha converted to benzene and toluene And p-xylene fixed bed catalyst, named FXNCC-1.
  • Example 21 N2 was used as diluent; while in Example 10, CO2 was used as feedstock for reaction with naphtha, which can be reflected by comparing the aromatics selectivity and BTPX selectivity of Examples 10 and 21 . Specifically, both the aromatics selectivity and the BTPX selectivity in Example 10 were significantly higher than those in Example 21.
  • Embodiment 22 Catalyst hydrothermal stability evaluation
  • Catalysts for on-line preparation of naphtha and CO2 coupled conversion to benzene, toluene and p-xylene in a micro-fixed bed reactor The conditions for preparing the catalyst on-line are as follows: 5 grams of the FX-[Zn]HZSM-5 catalyst prepared in Example 1 were packed into a fixed-bed reactor, treated with 50 mL/min nitrogen at 550° C. for 1 hour, and then The atmosphere was cooled down to 300°C. Under nitrogen atmosphere (mass flow meter control, 100mL/min), tetraethyl silicate was pumped into the reactor, the weight space velocity of tetraethyl silicate was 0.2h -1 , normal pressure.
  • Catalysts for on-line preparation of naphtha and CO2 coupled conversion to benzene, toluene and p-xylene in a micro-fixed bed reactor The conditions for preparing the catalyst online are as follows: 5 grams of the FX-[Zn]HZSM-5-R catalyst prepared in Example 8 were loaded into a fixed-bed reactor, and treated with 50 mL/min nitrogen at 550° C. for 1 hour, and then The temperature was lowered to 300° C. under a nitrogen atmosphere. Under nitrogen atmosphere (mass flow meter control, 100mL/min), tetraethyl silicate was pumped into the reactor, the weight space velocity of tetraethyl silicate was 0.2h -1 , normal pressure.
  • Example 22 By comparison of Examples 22 and 23, it can be seen that the catalyst after hydrothermal treatment in Example 22 is significantly better than the catalyst after hydrothermal treatment in Example 23 in terms of aromatics selectivity and BTPX selectivity. Therefore, the catalyst prepared by high temperature hydrothermal method The hydrothermal stability of metal-modified HZSM-5 is significantly better than that of metal-modified HZSM-5 prepared by impregnation at room temperature.
  • Catalyst FXNCC-1 was prepared by the method of Example 10.
  • Catalyst FXNCC-1 was prepared by the method of Example 10.
  • Catalysts for on-line preparation of naphtha and CO2 coupled conversion to benzene, toluene and p-xylene in a micro-fixed bed reactor The conditions for preparing the catalyst online are as follows: 5 grams of the FX-[Zn]HZSM-5-B catalyst prepared in Example 1 were packed into a fixed-bed reactor, and treated with 50 mL/min nitrogen at 550° C. for 1 hour, and then The temperature was lowered to 300° C. under a nitrogen atmosphere. Under nitrogen atmosphere (mass flow meter control, 100mL/min), tetraethyl silicate was pumped into the reactor, the weight space velocity of tetraethyl silicate was 0.2h -1 , normal pressure.
  • the feed rate of tetraethyl silicate is 0.2g/g of the above catalyst, purging with nitrogen, raising the temperature to 550°C, and roasting in the air atmosphere for 4 hours to obtain naphtha and CO 2 Coupling transformation of benzene, toluene and p-xylene fixed bed catalyst, named FXNCC-13.
  • Catalyst FXNCC-1 was prepared by the method of Example 10.
  • Catalysts for on-line preparation of naphtha and CO2 coupled conversion to benzene, toluene and p-xylene in a micro-fixed bed reactor The conditions for preparing the catalyst on-line are as follows: 5 grams of the FX-[Zn]HZSM-5 catalyst prepared in Example 1 were packed into a fixed-bed reactor, treated with 50 mL/min nitrogen at 550° C. for 1 hour, and then The atmosphere was cooled down to 300°C.
  • the gas-phase atomic layer deposition method was used to modify the silylating agent, and the specific steps were as follows: (1) Nitrogen (controlled by a mass flow meter, 200mL/min) was passed through a saturated bottle (temperature 10°C) filled with tetraethyl silicate Then enter the reactor, that is, carry tetraethyl silicate into the reactor through nitrogen, and stop feeding after 5 minutes of feeding; (2) purging with nitrogen, and raising the temperature to 550 ° C, and roasting under air atmosphere for 1 hour; (3) ) repeat steps (1) and (2) 5 times, wherein the amount of tetraethyl silicate that 6 passes through is suitable with the amount that embodiment 10 passes through once, makes naphtha and CO Coupling conversion makes benzene, Toluene and p-xylene fixed bed catalyst, named FXNCC-14.
  • the present application can also use any naphtha selected from hydrocracking naphtha, catalytic cracking naphtha, raffinate, top oil or any mixture thereof .

Abstract

改性分子筛催化剂的制备方法以及石脑油和CO 2耦合转化制苯、甲苯和对二甲苯的方法。改性分子筛催化剂的制备方法包括采用高温水热法对分子筛进行金属改性,其包括如下步骤:(1)配制可溶性金属盐水溶液;(2)将待金属改性的沸石分子筛置于所述可溶性金属盐水溶液中,于60~100℃温度下浸渍;以及(3)将步骤(2)得到的分子筛沥干后进行干燥、焙烧。石脑油和CO 2耦合转化制苯、甲苯和对二甲苯的方法包括:(a)制备改性分子筛催化剂;(b)将含有石脑油和CO 2的原料与改性分子筛催化剂在反应器中接触,以发生反应生成苯、甲苯和对二甲苯;该方法克服了现有技术中氢气资源受限、成本高的缺陷。

Description

石脑油和二氧化碳耦合转化制苯、甲苯和对二甲苯的方法 技术领域
本发明属于石油化工领域,具体涉及一种石脑油和CO 2耦合转化制苯、甲苯和对二甲苯的方法,尤其涉及改性的沸石分子筛催化剂催化石脑油和CO 2耦合转化制苯、甲苯和对二甲苯的方法。
背景技术
随着工业的发展,二氧化碳(CO 2)在大气中的含量与日俱增,从而导致温室效应越来越严重。响应国际上“碳中和”的理念,回收并利用CO 2成为科研人员研究的焦点。
另外,苯、甲苯和二甲苯(以下称为BTPX)是基础化工品,其市场消耗量很大,但是在我国它们需要大量进口。当前生产BTPX的技术路线主要涉及石脑油的催化重整,但是这种技术路线依然无法满足我国的需求。
虽然研究者发现二氧化碳在氢气作用下进行加氢能够用来制备BTPX。但是这种路线均是通过二氧化碳加氢制备液态烃或BTPX,其技术指标难以达到,而且氢气的来源也成为限制工业应用的关键问题。
发明内容
为了解决上述技术问题,本申请的发明人创造性地发现,利用石脑油作为原料,与作为原料的CO 2耦合制苯、甲苯和对二甲苯是利用CO 2制芳苯、甲苯和对二甲苯的新技术路线,为苯、甲苯和对二甲苯生产和CO 2大规模利用提供了新的途径。
一方面,本申请提供了一种用于催化石脑油和CO 2耦合转化制苯、甲苯和对二甲苯的改性分子筛催化剂的制备方法,其特征在于,所述方法包括采用高温水热法对分子筛进行金属改性,其包括如下步骤:
(1)配制可溶性金属盐水溶液;
(2)将待金属改性的沸石分子筛置于所述可溶性金属盐水溶液中,于60~100℃温度下浸渍;以及
(3)将步骤(2)得到的分子筛沥干后进行干燥、焙烧以得到所述改性分子筛催化剂。
可选地,所述待金属改性的沸石分子筛与所述可溶性金属盐水溶液的固液比为1/10~1/1,金属盐在所述可溶性金属盐水溶液的质量浓度为10%~30%;浸渍时间为2~10小时;在空气气氛、100~150℃条件下进行干燥步骤;在空气气氛以及500~700℃条件下进行焙烧步骤。
可选地,在步骤(1)中,将可溶性金属盐水溶液加热至如下温度中的任意值或任意两数值确定的范围值:60℃、70℃、80℃、90℃和100℃。
可选地,在步骤(2)中,浸渍时间为如下时间中的任意值或任意两数值确定的范围值:2小时、4小时、6小时、8小时和10小时。
可选地,所述金属改性使用的金属选自La、Zn、Ga、Fe、Mo、Cr金属中的至少一种。
可选地,所述金属改性采用Zn和Ga的双金属进行改性。
可选地,所述改性沸石分子筛催化剂由改性的HZSM-5沸石分子筛组成。
可选地,所述改性沸石分子筛催化剂包括改性的HZSM-5沸石分子筛和粘结剂。
可选地,所述方法还包括在对所述分子筛进行所述金属改性后还进行硅烷化改性。
可选地,所述硅烷化改性采用原位化学气相沉积法,其包括如下步骤:
(4)将经过金属改性的沸石分子筛置于反应器中;
(5)向所述反应器中一次性通入含有硅烷化试剂的物料A,其中,硅烷化试剂的通入量为0.2~0.3g/g固体,所述硅烷化试剂在所述反应器中呈气态;以及
(6)停止向反应器中通入物料A,将反应器温度升至400℃以上并通入空气焙烧。
可选地,在步骤(6)中,将反应器温度升至400℃~550℃并通入空气焙烧
具体地,所述硅烷化改性采用原位化学气相沉积法,其包括如下步骤:
(4-1)将经过金属改性的沸石分子筛置于反应器中,并在高温条件下(例如450~550℃)条件下用氮气进行活化处理,然后在氮气气氛下降温至硅烷化改性温度(该温度保证硅烷化试剂在反应器中处于气相状态);
(5-1)向所述反应器中一次性通入含有全部硅烷化试剂的物料A并持续预定时间,其中该物料A为以氮气作为载气的硅烷化试剂;
(6-1)停止向反应器中通入物料A,将反应器温度升至400℃以上(例如550℃)并通入空气焙烧以完成沸石 分子筛的硅烷化改性。
可选地,所述硅烷化改性采用原位气相原子层沉积法,其包括如下步骤:
(4’)将经过金属改性的沸石分子筛置于反应器中;
(5’)向所述反应器中分n次通入含有硅烷化试剂的物料A,其中每次硅烷化试剂的通入量为0.03~0.06g/g固体,所述硅烷化试剂在所述反应器中呈气态,其中n的数值范围为3~6;以及
(6’)停止向反应器中通入物料A,将反应器温度升至400℃以上并通入空气焙烧。
具体地,所述硅烷化改性采用原位气相原子层沉积法,其包括如下步骤:
(4’-1)将经过金属改性的沸石分子筛置于反应器中;
(5’-1)将作为载气的氮气通过装有硅烷化试剂的饱和瓶中,随后该载气携带硅烷化试剂进入反应器中并持续预定时间;并在高温条件下(例如450~550℃)条件下用氮气进行活化处理,然后在氮气气氛下降温至硅烷化改性温度(该温度保证硅烷化试剂在反应器中处于气相状态);
(6’-1)停止向反应器中通入硅烷化试剂和作为载气的氮气,将反应器温度升至400℃以上(例如550℃)并通入空气焙烧以完成沸石分子筛的一次硅烷化改性;
(7)重复步骤(2)和(3)n次。
可选地,“原位化学气相沉积法”和“原位气相原子层沉积法”涉及的“原位”均指的是将分子筛在反应器中进行硅烷化改性后,不经过移除改性的分子筛的步骤,在相同的反应器中用于催化石脑油和CO 2的耦合转化反应。这种原位气相硅烷化的方式减少了催化剂的运输、装填、洗涤等步骤,大大降低了成本。
可选地,所述硅烷化改性使用的硅烷化试剂选自以下化学式的化合物中的至少一种:
Figure PCTCN2021133888-appb-000001
其中R 1、R 2、R 3和R 4各自独立地选自C 1-10的烷基、C 1-10的烷氧基。
可选地,所述硅烷化改性使用的硅烷化试剂,R 1、R 2、R 3和R 4中的至少一个选自C 1-10的烷氧基。
可选地,所述硅烷化试剂选自硅酸四乙酯和硅酸四甲酯中的至少一种。
另一方面,本申请提供了一种石脑油和CO 2耦合转化制苯、甲苯和对二甲苯的方法,所述方法包(a)根据上述方法制备改性分子筛催化剂;(b)将含有石脑油和CO 2的原料与所述改性分子筛催化剂在反应器中接触,以发生反应生成苯、甲苯和对二甲苯。
可选地,所述改性的沸石分子筛为经金属改性和硅烷化改性的沸石分子筛。
可选地,所述改性的沸石分子筛为先经过金属改性再经过硅烷化改性获得的沸石分子筛。
可选地,所述改性的沸石分子筛为仅经硅烷化改性的沸石分子筛。
可选地,所述沸石分子筛催化剂由改性的沸石分子筛组成。
可选地,所述改性的沸石分子筛为依次经过金属改性、硅烷化改性和原位水蒸气改性的沸石分子筛。
具体地,水蒸汽改性通过如下步骤实施:向经过原位硅烷化改性的分子筛所在的反应器通入水蒸汽,并在氮气气氛下升温至700~900℃处理预定时间段。
可选地,所述原料由石脑油和CO 2组成。
可选地,所述石脑油选自加氢裂化石脑油、催化裂化石脑油、抽余油、拔头油、煤直接液化石脑油中的至少一种。
可选地,所述石脑油中的烃类的碳数分布范围为C 4-C 12
可选地,所述反应器为固定床反应器、流化床反应器或移动床反应器中的一种。
可选地,石脑油和CO 2发生反应的条件为:反应温度为450~650℃,反应压力为0.1~3MPa,所述石脑油的重量空速0.1~5h -1,CO 2重量空速0.1~5h -1
可选地,反应温度选自450℃、500℃、550℃和650℃中的任意值,或者任意两数值确定的范围值。
可选地,所述反应压力选自0.1MPa、1MPa和3MPa中的任意值,或者两数值确定的范围值。
可选地,所述石脑油的重量空速选自0.1h -1、1h -1和5h -1中的任意值,或者任意两数值确定的范围值。
可选地,CO 2重量空速选自0.1h -1、0.3h -1和5h -1中的任意值,或者任意两数值确定的范围值。
可选地,反应时间为30分钟~120分钟。
可选地,CO 2和石脑油的质量比为0.8:0.27~0.8:1;
可选地,CO 2和石脑油的质量比为0.8:0.27、0.8:1和1:1中的任意值,或者任意两数值确定的范围值。
可选地,所述沸石分子筛催化剂还包括粘结剂。
在本申请中,流化床用沸石分子筛催化剂的制备方法如下:将经过金属改性的沸石分子筛在与粘结剂在水中混合均匀,经过打浆、胶磨、去泡得到浆料,所得浆料经过常规的喷雾干燥成型、焙烧得到所述流化床用沸石分子筛;其中所述粘结剂包括含铝或硅的无定形粘结剂,优选为拟薄水铝石或硅溶胶。
具体而言,上述石脑油和CO 2耦合转化制BTPX的方法如下:
(i)将沸石分子筛催化剂装入反应器内,先经诸如氮气的惰性气体在预定温度下进行预处理,在氮气气氛下调节至反应温度;
(ii)进料石脑油和CO 2,其中石脑油使用微量进料泵进料,CO 2用流量用流量计控制进料量,将反应压力控制在预定范围内;
(iii)石脑油和CO 2反应预定时间后,采用气相色谱分析产物。
本申请的“加氢裂化石脑油”指的是重质油经过加氢裂化反应生成的重石脑油。
本申请的“催化裂化石脑油”指的是减压蜡油和常压渣油催化裂化产生的石脑油。
本申请的“抽余油”指的是富含芳烃的催化重整产物经抽提芳烃后剩余的馏分油。
本申请的“拔头油”指的是直馏汽油在蒸馏时所得到的沸点低于60℃的轻质馏分。
本申请的“煤直接液化石脑油”指的是煤直接液化装置生产的石脑油。
在本申请中,石脑油和CO 2耦合转化制芳烃,指的是CO 2作为原料与石脑油发生反应制备芳烃。
再一方面,本申请提供了一种硅烷化改性分子筛催化剂的方法,该方法包括如下步骤:
(1-1)将含有经过金属改性或未改性的沸石分子筛的固体置于反应器中;
(2-1)向所述反应器中分n次通入含有硅烷化试剂的物料A,其中每次硅烷化试剂的通入量为0.03~0.06g/g固体,所述硅烷化试剂在所述反应器中呈气态,其中n的数值范围为3~6;
(3-1)停止向反应器中通入物料A,将反应器温度升至400℃以上并通入空气焙烧。
具体地,所述硅烷化改性采用原位气相原子层沉积法,其包括如下步骤:
(1-1’)将含有经过金属改性或未改性的沸石分子筛的固体置于反应器中;
(2-1’)将作为载气的氮气通过装有硅烷化试剂的饱和瓶中,随后该载气携带硅烷化试剂进入反应器中并持续预定时间;并在高温条件下(例如450~550℃)条件下用氮气进行活化处理,然后在氮气气氛下降温至硅烷化改性温度(该温度保证硅烷化试剂在反应器中处于气相状态);
(3-1’)停止向反应器中通入硅烷化试剂和作为载气的氮气,将反应器温度升至400℃以上(例如550℃)并通入空气焙烧以完成沸石分子筛的一次硅烷化改性;
(4-1’)重复步骤(2)和(3)n次。
又一方面,本申请提供了一种改性分子筛催化剂的方法,该方法包括如下步骤:
(1’-1)配制可溶性金属盐水溶液;
(2’-1)将沸石分子筛置于所述可溶性金属盐水溶液中,于60~100℃温度下浸渍一定时间;以及
(3’-1)将步骤(2)得到的改性分子筛沥干后进行干燥、焙烧;
(4’-1)将步骤(3)获得的金属改性的分子筛置于反应器中;
(5’-1)向所述反应器中分n次通入含有硅烷化试剂的物料A,其中每次硅烷化试剂的通入量为0.03~0.06g/g固体,所述硅烷化试剂在所述反应器中呈气态,其中n的数值范围为3~6;
(6’-1)停止向反应器中通入物料A,将反应器温度升至400℃以上并通入空气焙烧以得到先金属改性后气相 硅烷化改性的分子筛。
可选地,所述该改性的沸石分子筛与所述可溶性金属盐水溶液的固液比为1/10~1/1(质量比),金属盐在所述可溶性金属盐水溶液的质量浓度为10%~30%;浸渍时间为2~10小时;在空气气氛、100~150℃条件下进行干燥步骤;在空气气氛以及500~700℃条件下进行焙烧步骤。
可选地,在步骤(1)中,将可溶性金属盐水溶液加热至如下温度中的任意值或任意两数值确定的范围值:60℃、70℃、80℃、90℃和100℃。
可选地,在步骤(2)中,浸渍时间为如下时间中的任意值或任意两数值确定的范围值:2小时、4小时、6小时、8小时和10小时。
可选地,所述沸石分子筛为HZSM-5氢型分子筛。
可选地,所述金属改性的沸石分子筛中的金属选自La、Zn、Ga、Fe、Mo、Cr金属中的至少一种。
可选地,所述硅烷化改性使用的硅烷化试剂选自以下化学式的化合物中的至少一种:
Figure PCTCN2021133888-appb-000002
其中R 1、R 2、R 3和R 4各自独立地选自C 1-10的烷基、C 1-10的烷氧基。
可选地,R 1、R 2、R 3和R 4中的至少一个选自C 1-10的烷氧基。
可选地,所述硅烷化试剂选自硅酸四乙酯和硅酸四甲酯中的至少一种。
本申请能产生的有益效果包括:
1)本申请提供了一种利用CO 2来大规模生产苯、甲苯和对二甲苯(即BTPX)的新技术路线,该方法克服了现有技术中氢气资源受限、成本高的缺陷。
2)在本申请中,以改性的HZSM-5分子筛为催化剂活性成分,BTPX在烃类产物中的选择性高达75.08%,对二甲苯在二甲苯中的选择性均在92%以上;
3)在本申请中,相较于采用仅仅金属改性的HZSM-5分子筛为催化剂活性成分,采用金属改性和硅烷化改性的HZSM-5分子筛为催化剂活性成分能够实现更高的BTPX选择性以及二甲苯中对二甲苯的选择性;
4)在本申请中,相较于采用原位化学气相沉积法进行硅烷化,采用原位气相原子层沉积法进行硅烷化改性,使得改性的HZSM-5分子筛为活性成分时能够实现更高的BTPX选择性以及二甲苯中对二甲苯的选择性。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
在本申请中所公开的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解包括接近这些范围或值。对于数值范围而言,各个范围的端点值和单独的点值之间,可以彼此组合而得到一个或多个新的数值范围,这些数值范围应该被视为在本文中具体公开。
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买或者通过已知的方法制备得到。实施例中的HZSM-5沸石分子筛购自南开大学催化剂厂。
如无特别说明,实施例中的分析方法均采用仪器或设备的常规设置和常规分析方法。
在本申请的实施例中,石脑油的类型为煤直接液化石脑油,其具体组成为如下表所示:
煤直接液化石脑油的组成
碳数 正构烷烃 异构烷烃 环烷烃 芳烃
6 0.03 0.00 0.00 0.00
7 3.76 0.71 31.85 1.60
8 9.36 2.62 27.53 1.94
9 2.03 2.44 13.88 0.40
10 0.15 0.75 0.74 0.07
11 0.01 0.03 0.10 0.00
总计 15.34 6.55 74.10 4.01
在本申请的实施例中,固定床反应器内径为1.5cm;固定流化床反应器内径为3cm。
在本申请的实施例产物中,仅仅列出了烃类产物,而没有列举出石脑油和,CO 2反应产生的其他产物。
实施例1 固定床用锌改性HZSM-5分子筛成型样品的制备
将100g HZSM-5沸石分子筛(南开大学催化剂厂,Si/Al=15)置于10wt%的硝酸锌水溶液中,其中HZSM-5沸石分子筛与硝酸锌水溶液的质量比(即固液比)为1/10,在80℃条件浸渍6小时,沥干后在空气气氛、120℃条件下干燥4小时,然后在空气气氛、550℃下焙烧4小时后制得[Zn]HZSM-5分子筛样品,压片成型并破碎、筛分得到40~60目粒径的成型分子筛颗粒,记为FX-[Zn]HZSM-5。
实施例2 固定床用镓改性HZSM-5分子筛成型样品的制备
将100g HZSM-5沸石分子筛(南开大学催化剂厂,Si/Al=15)置于10wt%的硝酸镓水溶液中,其中HZSM-5沸石分子筛与硝酸镓水溶液的质量比(即固液比)为1/10,在80℃条件浸渍6小时,沥干后在空气气氛、120℃条件下干燥4小时,然后在空气气氛、550℃下焙烧4小时后[Ga]HZSM-5分子筛样品,压片成型并破碎、筛分得到40~60目粒径的成型分子筛颗粒,记为FX-[Ga]HZSM-5。
实施例3 固定床用镧改性HZSM-5分子筛成型样品的制备
将100g HZSM-5沸石分子筛(南开大学催化剂厂,Si/Al=15)置于10wt%的硝酸镧水溶液中,其中HZSM-5沸石分子筛与硝酸镧水溶液的质量比(即固液比)为1/10,在90℃条件浸渍4小时,沥干后在空气气氛、120℃条件下干燥4小时,然后在空气气氛、550℃下焙烧4小时后[La]HZSM-5分子筛样品,压片成型并破碎、筛分得到40~60目粒径的成型分子筛颗粒,记为FX-[La]HZSM-5。
实施例4 固定床用铁改性HZSM-5分子筛成型样品的制备
将100g HZSM-5沸石分子筛(南开大学催化剂厂,Si/Al=15)置于10wt%的硝酸铁水溶液中,其中HZSM-5沸石分子筛与硝酸铁水溶液的质量比(即固液比)为1/10,在70℃条件浸渍8小时,沥干后在空气气氛、120℃条件下干燥4小时,然后在空气气氛、550℃下焙烧4小时后[Fe]HZSM-5分子筛样品,压片成型并破碎、筛分得到40~60目粒径的成型分子筛颗粒,记为FX-[Fe]HZSM-5。
实施例5 固定床用铬改性HZSM-5分子筛成型样品的制备
将100g HZSM-5沸石分子筛(南开大学催化剂厂,Si/Al=15)置于10wt%的硝酸铬水溶液中,其中HZSM-5沸石分子筛与硝酸铬水溶液的质量比(即固液比)为1/10,在70℃条件浸渍8小时,沥干后在空气气氛、120℃条件下干燥4小时,然后在空气气氛、550℃下焙烧4小时后[Cr]HZSM-5分子筛样品,压片成型并破碎、筛分得到40~60目粒径的成型分子筛颗粒,记为FX-[Cr]HZSM-5。
实施例6 流化床用锌改性HZSM-5成型分子筛样品的制备
将实施例1制备的100g[Zn]HZSM-5分子筛样品与含铝或硅的无定形粘结剂混合喷雾干燥成型,具体步骤为:
将[Zn]HZSM-5分子筛样品、拟薄水铝石、硅溶胶、黄原胶(生物胶)和水混合均匀,经过打浆、胶磨、去泡得到浆料;浆料中各组分的重量份数为:
Figure PCTCN2021133888-appb-000003
所得浆料经喷雾干燥成型,得到粒径分布20~100μm的微球颗粒样品;将微球颗粒样品在马弗炉中550℃焙烧3小时后,得到磨损指数为1.2的[Zn]HZSM-5成型分子筛,记为FL-[Zn]HZSM-5。
实施例7 固定床用锌、镓复合改性HZSM-5分子筛成型样品的制备
将100g HZSM-5沸石分子筛(南开大学催化剂厂,Si/Al=15)置于10wt%的硝酸锌和硝酸镓混合水溶液中,其 中硝酸锌和硝酸镓两者的质量比为1/1,其中HZSM-5沸石分子筛与硝酸锌和硝酸镓混合水溶液的质量比(即固液比)为1/10,在80℃条件浸渍6小时,沥干后在空气气氛、120℃条件下干燥4小时,然后在空气气氛、550℃下焙烧4小时后[Zn,Ga]HZSM-5分子筛样品,压片成型并破碎、筛分得到40~60目粒径的成型分子筛颗粒,记为FX-[Zn,Ga]HZSM-5。
实施例8 固定床用锌改性HZSM-5分子筛成型样品的制备
将100g HZSM-5沸石分子筛(南开大学催化剂厂,Si/Al=15)置于10wt%的硝酸锌水溶液中,其中HZSM-5沸石分子筛与硝酸锌水溶液的质量比(即固液比)同实施例1,在室温(20℃)浸渍6小时,沥干后在空气气氛、120℃条件下干燥4小时,然后在空气气氛、550℃下焙烧4小时后制得[Zn]HZSM-5分子筛样品,压片成型并破碎、筛分得到40~60目粒径的成型分子筛颗粒,记为FX-[Zn]HZSM-5-R。
实施例9 固定床用锌改性HZSM-5分子筛成型样品的制备
将100g HZSM-5沸石分子筛(南开大学催化剂厂,Si/Al=15)置于10wt%的硝酸锌水溶液中,其中HZSM-5沸石分子筛与硝酸锌水溶液的质量比(即固液比)为1/1,在80℃条件浸渍6小时,沥干后在空气气氛、120℃条件下干燥4小时,然后在空气气氛、550℃下焙烧4小时后制得[Zn]HZSM-5分子筛样品,压片成型并破碎、筛分得到40~60目粒径的成型分子筛颗粒,记为FX-[Zn]HZSM-5-A。
实施例10 制备苯、甲苯和对二甲苯催化剂的制备和反应评价
在微型固定床反应装置内在线制备石脑油和CO 2耦合转化制苯、甲苯和对二甲苯催化剂。在线制备催化剂的条件如下:将5克实施例1中制备的FX-[Zn]HZSM-5催化剂装入固定床反应器中,先经50mL/min氮气在550℃下处理1小时,然后在氮气气氛下降温至300℃。在氮气气氛下(质量流量计控制,100mL/min),将硅酸四乙酯泵入反应器,硅酸四乙酯的重量空速为0.2h -1,常压。进料60min后停止进料,硅酸四乙酯的通入量为0.2g/g上述催化剂,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,制得石脑油和CO 2耦合转化制苯、甲苯和对二甲苯固定床催化剂,命名为FXNCC-1。
然后,在氮气气氛下调节温度至反应温度550℃;石脑油原料用微量进料泵进料,CO 2流量用质量流量计控制,原料CO 2:石脑油(质量比)=0.8:1,CO 2的重量空速为=0.8h -1,石脑油重量空速1.0h -1,反应压力0.1MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应30min时取样分析。反应结果如表1所示。
表1 实施例10催化剂的反应性能评价
Figure PCTCN2021133888-appb-000004
Figure PCTCN2021133888-appb-000005
实施例10-1 制备苯、甲苯和对二甲苯催化剂的制备和反应评价
在微型固定床反应装置内对催化剂的石脑油和CO 2耦合转化反应性能进行评价。评价条件如下:将5克实施例1中制备的FX-[Zn]HZSM-5装入固定床反应器,先经50mL/min氮气在550℃下处理1小时。
然后在氮气气氛下反应温度为550℃;石脑油原料用微量进料泵进料,CO 2流量用质量流量计控制,原料CO 2:石脑油(质量比)=0.8:1,CO 2的重量空速为=0.8h -1,石脑油重量空速1.0h -1,反应压力0.1MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应30min时取样分析。反应结果如表1-1所示。
表1-1 实施例10-1催化剂的反应性能评价
Figure PCTCN2021133888-appb-000006
通过比较实施例10和实施例10-1可知,相较于采用仅仅金属改性的HZSM-5分子筛为催化剂活性成分,采用金属改性和硅烷化改性的HZSM-5分子筛为催化剂活性成分能够实现更高的BTPX选择性以及二甲苯中对二甲苯的选择性。
实施例11 制备苯、甲苯和对二甲苯催化剂的制备和反应评价
在微型固定床反应装置内在线制备石脑油和CO 2耦合转化制苯、甲苯和对二甲苯催化剂。在线制备催化剂的条件如下:将5克实施例2中制备的FX-[Ga]HZSM-5催化剂装入固定床反应器中,先经50mL/min氮气在550℃下处理1小时,然后在氮气气氛下降温至300℃。在氮气气氛下(质量流量计控制,100mL/min),将硅酸四乙酯泵入反应器,硅酸四乙酯的重量空速为0.2h -1,常压。进料60min后停止进料,硅酸四乙酯的通入量同实施例10,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,制得石脑油和CO 2耦合转化制苯、甲苯和对二甲苯固定床催化剂,命名为FXNCC-2。
然后,在氮气气氛下调节温度至反应温度550℃;石脑油原料用微量进料泵进料,CO 2流量用质量流量计控制,原料CO 2:石脑油(质量比)=0.8:1,CO 2的重量空速为=0.8h -1,石脑油重量空速1.0h -1,反应压力0.1MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应30min时取样分析。反应结果如表2所示。
表2 实施例11催化剂的反应性能评价
Figure PCTCN2021133888-appb-000007
Figure PCTCN2021133888-appb-000008
实施例12 制备苯、甲苯和对二甲苯催化剂的制备和反应评价
在微型固定床反应装置内在线制备石脑油和CO 2耦合转化制苯、甲苯和对二甲苯催化剂。在线制备催化剂的条件如下:将5克实施例3中制备的FX-[La]HZSM-5催化剂装入固定床反应器中,先经50mL/min氮气在550℃下处理1小时,然后在氮气气氛下降温至300℃。在氮气气氛下(质量流量计控制,100mL/min),将硅酸四乙酯泵入反应器,硅酸四乙酯的重量空速为0.2h -1,常压。进料60min后停止进料,硅酸四乙酯的通入量同实施例10,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,制得石脑油和CO 2耦合转化制苯、甲苯和对二甲苯固定床催化剂,命名为FXNCC-3。
然后,在氮气气氛下调节温度至反应温度550℃;石脑油原料用微量进料泵进料,CO 2流量用质量流量计控制,原料CO 2:石脑油(质量比)=0.8:1,CO 2的重量空速为=0.8h -1,石脑油重量空速1.0h -1,反应压力0.1MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应30min时取样分析。反应结果如表3所示。
表3 实施例12催化剂的反应性能评价
Figure PCTCN2021133888-appb-000009
实施例13 制备苯、甲苯和对二甲苯催化剂的制备和反应评价
在微型固定床反应装置内在线制备石脑油和CO 2耦合转化制苯、甲苯和对二甲苯催化剂。在线制备催化剂的条件如下:将5克实施例4中制备的FX-[Fe]HZSM-5催化剂装入固定床反应器中,先经50mL/min氮气在550℃下处理1小时,然后在氮气气氛下降温至300℃。在氮气气氛下(质量流量计控制,100mL/min),将硅酸四乙酯泵入反应器,硅酸四乙酯的重量空速为0.2h -1,常压。进料60min后停止进料,硅酸四乙酯的通入量同实施例10,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,制得石脑油和CO 2耦合转化制苯、甲苯和对二甲苯固定床催化剂,命名为FXNCC-4。
然后,在氮气气氛下调节温度至反应温度550℃;石脑油原料用微量进料泵进料,CO 2流量用质量流量计控制,原料CO 2:石脑油(质量比)=0.8:1,CO 2的重量空速为=0.8h -1,石脑油重量空速1.0h -1,反应压力0.1MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应30min时取样分析。反应结果如表4所示。
表4 实施例13催化剂的反应性能评价
Figure PCTCN2021133888-appb-000010
实施例14 制备苯、甲苯和对二甲苯催化剂的制备和反应评价
在微型固定床反应装置内在线制备石脑油和CO 2耦合转化制苯、甲苯和对二甲苯催化剂。在线制备催化剂的条件如下:将5克实施例5中制备的FX-[Cr]HZSM-5催化剂装入固定床反应器中,先经50mL/min氮气在550℃下处理1小时,然后在氮气气氛下降温至300℃。在氮气气氛下(质量流量计控制,100mL/min),将硅酸四乙酯泵入反应器,硅酸四乙酯的重量空速为0.2h -1,常压。进料60min后停止进料,硅酸四乙酯的通入量同实施例10,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,制得石脑油和CO 2耦合转化制苯、甲苯和对二甲苯固定床催化剂,命名为FXNCC-5。
然后,在氮气气氛下调节温度至反应温度550℃;石脑油原料用微量进料泵进料,CO 2流量用质量流量计控制,原料CO 2:石脑油(质量比)=0.8:1,CO 2的重量空速为=0.8h -1,石脑油重量空速1.0h -1,反应压力0.1MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应30min时取样分析。反应结果如表5所示。
表5 实施例14催化剂的反应性能评价
Figure PCTCN2021133888-appb-000011
Figure PCTCN2021133888-appb-000012
实施例15 制备苯、甲苯和对二甲苯催化剂的制备和反应评价
在微型固定流化床反应装置内在线制备石脑油和CO 2耦合转化制苯、甲苯和对二甲苯催化剂。在线制备催化剂的条件如下:将10克实施例6中制备的FL-[Zn]HZSM-5催化剂装入固定流化床反应器中,先经50mL/min氮气在550℃下处理1小时,然后在氮气气氛下降温至300℃。在氮气气氛下(质量流量计控制,200mL/min),将硅酸四乙酯泵入反应器,硅酸四乙酯的重量空速为0.2h -1,常压。进料75min后停止进料,硅酸四乙酯的通入量为实施例9的1.25倍,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,制得石脑油和CO 2耦合转化制苯、甲苯和对二甲苯固定床催化剂,命名为FLNCC-1。该实施例中使用10g成型分子筛样品FL-[Zn]HZSM-5的目的仅仅是为了满足微型固定流化床反应装置的要求,在该量(10g)下能使得催化剂处于流化状态,在含量为5g时不能保证催化剂处于流化状态。在使用微型固定流化床反应装置的情况下,进行硅烷化改性的进料时间为75min也仅仅是为了与实施例9进行相同程度的硅烷化改性。
然后,在氮气气氛下调节温度至反应温度550℃;石脑油原料用微量进料泵进料,CO 2流量用质量流量计控制,原料CO 2:石脑油(质量比)=0.8:1,CO 2的重量空速为=0.8h -1,石脑油重量空速1.0h -1,反应压力0.1MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应30min时取样分析。反应结果如表6所示。
表6 实施例15催化剂的反应性能评价
Figure PCTCN2021133888-appb-000013
实施例16 制备苯、甲苯和对二甲苯催化剂的制备和反应评价
在微型固定床反应装置内在线制备石脑油和CO 2耦合转化制苯、甲苯和对二甲苯催化剂。在线制备催化剂的条 件如下:将5克实施例1中制备的FX-[Zn]HZSM-5催化剂装入固定床反应器中,先经50mL/min氮气在550℃下处理1小时,然后在氮气气氛下降温至300℃。然后,采用气相原子层沉积法进行硅烷化试剂改性,具体步骤如下:(1)将氮气(质量流量计控制,200mL/min)通过装有硅酸四乙酯的饱和瓶(温度15℃)后进入反应器,即通过氮气携带硅酸四乙酯进入反应器,进料5min后停止进料;(2)用氮气吹扫,并升温至550℃,在空气气氛下焙烧1小时;(3)重复步骤(1)和(2)3次,其中4次通入的硅酸四乙酯的量与实施例10一次通入的量相当,制得石脑油和CO 2耦合转化制苯、甲苯和对二甲苯固定床催化剂,命名为FXNCC-6。
然后,在氮气气氛下调节温度至反应温度550℃;石脑油原料用微量进料泵进料,CO 2流量用质量流量计控制,原料CO 2:石脑油(质量比)=0.8:1,石脑油重量空速1.0h -1,反应压力0.1MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应30min时取样分析。反应结果如表7所示。
表7 实施例16催化剂的反应性能评价
Figure PCTCN2021133888-appb-000014
实施例17 制备苯、甲苯和对二甲苯催化剂的制备和反应评价
在微型固定床反应装置内在线制备石脑油和CO 2耦合转化制苯、甲苯和对二甲苯催化剂。在线制备催化剂的条件如下:将5克实施例7中制备的FX-[Zn,Ga]HZSM-5催化剂装入固定床反应器中,先经50mL/min氮气在550℃下处理1小时,然后在氮气气氛下降温至300℃。在氮气气氛下(质量流量计控制,100mL/min),将硅酸四乙酯泵入反应器,硅酸四乙酯的重量空速为0.2h -1,常压。进料60min后停止进料,硅酸四乙酯的通入量同实施例10,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,制得石脑油和CO 2耦合转化制苯、甲苯和对二甲苯固定床催化剂,命名为FXNCC-7。
然后,在氮气气氛下调节温度至反应温度550℃;石脑油原料用微量进料泵进料,CO 2流量用质量流量计控制,原料CO 2:石脑油(质量比)=0.8:1,CO 2的重量空速为=0.8h -1,石脑油重量空速1.0h -1,反应压力0.1MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应30min时取样分析。反应结果如表8所示。
表8 实施例17催化剂的反应性能评价
Figure PCTCN2021133888-appb-000015
Figure PCTCN2021133888-appb-000016
实施例18 制备苯、甲苯和对二甲苯催化剂的制备和反应评价
在微型固定床反应装置内在线制备石脑油和CO 2耦合转化制苯、甲苯和对二甲苯催化剂。在线制备催化剂的条件如下:将5克实施例8中制备的FX-[Zn]HZSM-5-R催化剂装入固定床反应器中,先经50mL/min氮气在550℃下处理1小时,然后在氮气气氛下降温至300℃。在氮气气氛下(质量流量计控制,100mL/min),将硅酸四乙酯泵入反应器,硅酸四乙酯的重量空速为0.2h -1,常压。进料60min后停止进料,硅酸四乙酯的通入量同实施例10,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,制得石脑油和CO 2耦合转化制苯、甲苯和对二甲苯固定床催化剂,命名为FXNCC-8。
然后,在氮气气氛下调节温度至反应温度550℃;石脑油原料用微量进料泵进料,CO 2流量用质量流量计控制,原料CO 2:石脑油(质量比)=0.8:1,CO 2的重量空速为=0.8h -1,石脑油重量空速1.0h -1,反应压力0.1MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应30min时取样分析。反应结果如表9所示。
表9 实施例18催化剂的反应性能评价
Figure PCTCN2021133888-appb-000017
通过与实施例10的BTPX的选择性相比,经过高温水热法进行金属改性能比经过室温浸渍法进行金属改性的HZSM-5分子筛能够实现更高的BTPX选择性。
实施例19 固定床用硅烷化试剂改性ZSM-5催化剂的制备
在微型固定床反应装置内在线制备石脑油和CO 2耦合转化制苯、甲苯和对二甲苯催化剂。在线制备催化剂的条件如下:将5克40~60目的HZSM-5分子筛催化剂装入固定床反应器中,先经50mL/min氮气在550℃下处理1小 时,然后在氮气气氛下降温至300℃。在氮气气氛下(质量流量计控制,100mL/min),将硅酸四乙酯泵入反应器,硅酸四乙酯的重量空速为0.2h -1,常压。进料60min后停止进料,硅酸四乙酯的通入量同实施例10,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,制得石脑油和CO 2耦合转化制苯、甲苯和对二甲苯固定床催化剂,命名为FXNCC-9。
然后,在氮气气氛下调节温度至反应温度550℃;石脑油原料用微量进料泵进料,CO 2流量用质量流量计控制,原料CO 2:石脑油(质量比)=0.8:1,CO 2的重量空速为=0.8h -1,石脑油重量空速1.0h -1,反应压力0.1MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应30min时取样分析。反应结果如表9-1所示。
表9-1 实施例19催化剂的反应性能评价
Figure PCTCN2021133888-appb-000018
实施例20 制备苯、甲苯和对二甲苯催化剂的制备和反应评价
将5g实施例19制得的FXNCC-9催化剂置于10wt%的硝酸镧溶液中,FXNCC-9催化剂所用的HZSM-5沸石分子筛与硝酸镧水溶液的固液比同实施例3,在90℃条件浸渍4小时,沥干后在空气气氛、120℃条件下干燥4小时,然后在空气气氛、550℃下焙烧4小时后制得催化剂样品,记为FXNCC-10。
在微型固定床反应装置内对催化剂的石脑油和CO 2耦合转化反应性能进行评价。评价条件如下:将5g(40~60目)成型催化剂样品FXNCC-11装入固定床反应器,在氮气气氛下升温至反应温度550℃;石脑油原料用微量进料泵进料,CO 2流量用质量流量计控制,原料CO 2:石脑油(质量比)=0.8:1,CO 2的重量空速为=0.8h -1,石脑油重量空速1.0h -1,反应压力0.1MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应30min时取样分析。反应结果如表10所示。
表10 实施例19催化剂的反应性能评价
Figure PCTCN2021133888-appb-000019
Figure PCTCN2021133888-appb-000020
通过与实施例12相比较,该实施例的催化剂所实现的BTPX的选择性以及二甲苯中的对二甲苯的选择性较低。这说明,当使用La进行金属改性时候,与先硅烷化改性后金属改性相比,先金属改性后硅烷化改性获得的分子筛能够实现更高的BTPX的选择性以及二甲苯中的对二甲苯的选择性。
实施例21 制备苯、甲苯和对二甲苯催化剂的制备和反应评价
在微型固定床反应装置内在线制备石脑油转化制苯、甲苯和对二甲苯催化剂。在线制备催化剂的条件如下:将5克实施例1中制备的FX-[Zn]HZSM-5催化剂装入固定床反应器中,先经50mL/min氮气在550℃下处理1小时,然后在氮气气氛下降温至300℃。在氮气气氛下(质量流量计控制,100mL/min),将硅酸四乙酯泵入反应器,硅酸四乙酯的重量空速为0.2h -1,常压。进料60min后停止进料,硅酸四乙酯的通入量同实施例10,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,制得石脑油转化制苯、甲苯和对二甲苯固定床催化剂,命名为FXNCC-1。
然后,在氮气气氛下调节温度至反应温度550℃;石脑油原料用微量进料泵进料,N 2流量用质量流量计控制,原料N 2:石脑油(质量比)=0.51:1(即在该实施例中使用等摩尔量的N 2替代实施例10中的CO 2),石脑油重量空速1.0h -1,N 2的重量空速为=0.51h -1,反应压力0.1MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应30min时取样分析。反应结果如表11所示。
表11 实施例21催化剂的反应性能评价
Figure PCTCN2021133888-appb-000021
在实施例21中,N 2用作稀释剂;而在实施例10中CO 2用作与石脑油反应的原料,这可通过比较实施例10和21的芳烃选择性和BTPX选择性方面体现。具体而言,实施例10中的芳烃选择性以及BTPX选择性均明显高于实施例21中的芳烃选择性。
实施例22 催化剂水热稳定性评价
在微型固定床反应装置内在线制备石脑油和CO 2耦合转化制苯、甲苯和对二甲苯催化剂。在线制备催化剂的条 件如下:将5克实施例1中制备的FX-[Zn]HZSM-5催化剂装入固定床反应器中,先经50mL/min氮气在550℃下处理1小时,然后在氮气气氛下降温至300℃。在氮气气氛下(质量流量计控制,100mL/min),将硅酸四乙酯泵入反应器,硅酸四乙酯的重量空速为0.2h -1,常压。进料60min后停止进料,硅酸四乙酯的通入量同实施例10,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时。然后,在氮气气氛下升至900℃,在100%水蒸气(水WHSV=2h - 1)气氛下处理1小时,制得石脑油和CO 2耦合转化制苯、甲苯和对二甲苯固定床催化剂,命名为FXNCC-11。
然后,在氮气气氛下调节温度至反应温度550℃;石脑油原料用微量进料泵进料,CO 2流量用质量流量计控制,原料CO 2:石脑油(质量比)=0.8:1,石脑油重量空速1.0h -1,反应压力0.1MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应30min时取样分析。反应结果如表12所示。
表12 实施例22催化剂的反应性能评价
Figure PCTCN2021133888-appb-000022
实施例23 制备苯、甲苯和对二甲苯催化剂的制备和反应评价
在微型固定床反应装置内在线制备石脑油和CO 2耦合转化制苯、甲苯和对二甲苯催化剂。在线制备催化剂的条件如下:将5克实施例8中制备的FX-[Zn]HZSM-5-R催化剂装入固定床反应器中,先经50mL/min氮气在550℃下处理1小时,然后在氮气气氛下降温至300℃。在氮气气氛下(质量流量计控制,100mL/min),将硅酸四乙酯泵入反应器,硅酸四乙酯的重量空速为0.2h -1,常压。进料60min后停止进料,硅酸四乙酯的通入量同实施例10,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时。然后,在氮气气氛下升至900℃,在100%水蒸气(水WHSV=2h - 1)气氛下处理1小时,制得石脑油和CO 2耦合转化制苯、甲苯和对二甲苯固定床催化剂,命名为FXNCC-12。
然后,在氮气气氛下调节温度至反应温度550℃;石脑油原料用微量进料泵进料,CO 2流量用质量流量计控制,原料CO 2:石脑油(质量比)=0.8:1,石脑油重量空速1.0h -1,反应压力0.1MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应30min时取样分析。反应结果如表13所示。
表13 实施例23催化剂的反应性能评价
Figure PCTCN2021133888-appb-000023
Figure PCTCN2021133888-appb-000024
通过实施例22和23比较可知,实施例22中水热处理后的催化剂在芳烃选择性和BTPX选择性方面均明显优于实施例23中水热处理后的催化剂,因此,采用高温水热法制备的金属改性的HZSM-5的水热稳定性明显优于采用室温浸渍法制备的金属改性的HZSM-5的水热稳定性。
实施例24 制备苯、甲苯和对二甲苯催化剂的制备和反应评价
采用与实施例10的方法制备得到催化剂FXNCC-1。
然后,在氮气气氛下调节温度至反应温度550℃;石脑油原料用微量进料泵进料,CO 2流量用质量流量计控制,原料CO 2:石脑油(质量比)=1:1,CO 2的重量空速为=5h -1,石脑油重量空速5h -1,反应压力1MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应30min时取样分析。反应结果如表14所示。
表14 实施例24催化剂的反应性能评价
Figure PCTCN2021133888-appb-000025
实施例25 制备苯、甲苯和对二甲苯催化剂的制备和反应评价
采用与实施例10的方法制备得到催化剂FXNCC-1。
然后,在氮气气氛下调节温度至反应温度550℃;石脑油原料用微量进料泵进料,CO 2流量用质量流量计控制,原料CO 2:石脑油(质量比)=1:1,CO 2的重量空速为=0.1h -1,石脑油重量空速0.1h -1,反应压力0.1MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应30min时取样分析。反应结果如表15所示。
表15 实施例25催化剂的反应性能评价
Figure PCTCN2021133888-appb-000026
Figure PCTCN2021133888-appb-000027
实施例26 固定床用锌改性HZSM-5分子筛成型样品的制备
将100g HZSM-5沸石分子筛(南开大学催化剂厂,Si/Al=15)置于30wt%的硝酸锌水溶液中,其中HZSM-5沸石分子筛与硝酸锌水溶液的质量比(即固液比)为1/10,在80℃条件浸渍4小时,沥干后在空气气氛、120℃条件下干燥4小时,然后在空气气氛、550℃下焙烧4小时后制得[Zn]HZSM-5分子筛样品,压片成型并破碎、筛分得到40~60目粒径的成型分子筛颗粒,记为FX-[Zn]HZSM-5-B。
实施例27 制备苯、甲苯和对二甲苯催化剂的制备和反应评价
在微型固定床反应装置内在线制备石脑油和CO 2耦合转化制苯、甲苯和对二甲苯催化剂。在线制备催化剂的条件如下:将5克实施例1中制备的FX-[Zn]HZSM-5-B催化剂装入固定床反应器中,先经50mL/min氮气在550℃下处理1小时,然后在氮气气氛下降温至300℃。在氮气气氛下(质量流量计控制,100mL/min),将硅酸四乙酯泵入反应器,硅酸四乙酯的重量空速为0.2h -1,常压。进料60min后停止进料,硅酸四乙酯的通入量为0.2g/g上述催化剂,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,制得石脑油和CO 2耦合转化制苯、甲苯和对二甲苯固定床催化剂,命名为FXNCC-13。
然后,在氮气气氛下调节温度至反应温度550℃;石脑油原料用微量进料泵进料,CO 2流量用质量流量计控制,原料CO 2:石脑油(质量比)=0.8:1,CO 2的重量空速为=0.8h -1,石脑油重量空速1.0h -1,反应压力0.1MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应30min时取样分析。反应结果如表16所示。
表16 实施例27催化剂的反应性能评价
Figure PCTCN2021133888-appb-000028
Figure PCTCN2021133888-appb-000029
实施例28 制备苯、甲苯和对二甲苯催化剂的制备和反应评价
采用与实施例10的方法制备得到催化剂FXNCC-1。
然后,在氮气气氛下调节温度至反应温度550℃;石脑油原料用微量进料泵进料,CO 2流量用质量流量计控制,原料CO 2:石脑油(质量比)=0.8:0.27,CO 2的重量空速为=0.8h -1,石脑油重量空速0.27h -1,反应压力0.1MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应30min时取样分析。反应结果如表17所示。
表17 实施例28催化剂的反应性能评价
Figure PCTCN2021133888-appb-000030
实施例29 制备苯、甲苯和对二甲苯催化剂的制备和反应评价
在微型固定床反应装置内在线制备石脑油和CO 2耦合转化制苯、甲苯和对二甲苯催化剂。在线制备催化剂的条件如下:将5克实施例1中制备的FX-[Zn]HZSM-5催化剂装入固定床反应器中,先经50mL/min氮气在550℃下处理1小时,然后在氮气气氛下降温至300℃。然后,采用气相原子层沉积法进行硅烷化试剂改性,具体步骤如下:(1)将氮气(质量流量计控制,200mL/min)通过装有硅酸四乙酯的饱和瓶(温度10℃)后进入反应器,即通过氮气携带硅酸四乙酯进入反应器,进料5min后停止进料;(2)用氮气吹扫,并升温至550℃,在空气气氛下焙烧1小时;(3)重复步骤(1)和(2)5次,其中6次通入的硅酸四乙酯的量与实施例10一次通入的量相当,制得石脑油和CO 2耦合转化制苯、甲苯和对二甲苯固定床催化剂,命名为FXNCC-14。
然后,在氮气气氛下调节温度至反应温度550℃;石脑油原料用微量进料泵进料,CO 2流量用质量流量计控制,原料CO 2:石脑油(质量比)=0.8:1,石脑油重量空速1.0h -1,反应压力0.1MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应30min时取样分析。反应结果如表18所示。
表18 实施例29催化剂的反应性能评价
Figure PCTCN2021133888-appb-000031
Figure PCTCN2021133888-appb-000032
除了以上实施例所使用的石脑油之外,本申请还可以使用选自加氢裂化石脑油、催化裂化石脑油、抽余油、拔头油中的任意石脑油或其任何混合物。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (15)

  1. 一种用于催化石脑油和CO 2耦合转化制苯、甲苯和对二甲苯的改性分子筛催化剂的制备方法,其特征在于,所述方法包括采用高温水热法对分子筛进行金属改性,其包括如下步骤:
    (1)配制可溶性金属盐水溶液;
    (2)将待金属改性的沸石分子筛置于所述可溶性金属盐水溶液中,于60~100℃温度下浸渍;以及
    (3)将步骤(2)得到的分子筛沥干后进行干燥、焙烧以得到所述改性分子筛催化剂。
  2. 根据权利要求1所述的方法,其特征在于,所述待金属改性的沸石分子筛与所述可溶性金属盐水溶液的固液比为1/10~1/1,金属盐在所述可溶性金属盐水溶液的质量浓度为10%~30%;浸渍时间为2~10小时;在空气气氛、100~150℃条件下进行干燥步骤;在空气气氛以及500~700℃条件下进行焙烧步骤。
  3. 根据权利要求1所述的方法,其特征在于,所述金属改性使用的金属选自La、Zn、Ga、Fe、Mo、Cr金属中的至少一种。
  4. 根据权利要求1所述的方法,其特征在于,所述改性沸石分子筛催化剂由改性的HZSM-5沸石分子筛组成。
  5. 根据权利要求1所述的方法,其特征在于,所述改性沸石分子筛催化剂包括改性的HZSM-5沸石分子筛和粘结剂。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括在对所述分子筛进行所述金属改性后还进行硅烷化改性。
  7. 根据权利要求6所述的方法,其特征在于,所述硅烷化改性采用原位化学气相沉积法,其包括如下步骤:
    (4)将经过金属改性的沸石分子筛置于反应器中;
    (5)向所述反应器中一次性通入含有硅烷化试剂的物料A,其中,硅烷化试剂的通入量为0.2~0.3g/g固体,所述硅烷化试剂在所述反应器中呈气态;以及
    (6)停止向反应器中通入物料A,将反应器温度升至400℃以上并通入空气焙烧;优选地,将反应器温度升至400℃~550℃并通入空气焙烧。
  8. 根据权利要求6所述的方法,其特征在于,所述硅烷化改性采用原位气相原子层沉积法,其包括如下步骤:
    (4’)将经过金属改性的沸石分子筛置于反应器中;
    (5’)向所述反应器中分n次通入含有硅烷化试剂的物料A,其中每次硅烷化试剂的通入量为0.03~0.06g/g固体,所述硅烷化试剂在所述反应器中呈气态,其中n的数值范围为3~6;以及
    (6’)停止向反应器中通入物料A,将反应器温度升至400℃以上并通入空气焙烧;优选地,将反应器温度升至400℃~550℃并通入空气焙烧。
  9. 根据权利要求6所述的方法,其特征在于,所述硅烷化改性使用的硅烷化试剂选自以下化学式的化合物中的至少一种:
    Figure PCTCN2021133888-appb-100001
    其中R 1、R 2、R 3和R 4各自独立地选自C 1-10的烷基、C 1-10的烷氧基。
  10. 根据权利要求9所述的方法,其特征在于,所述硅烷化改性使用的硅烷化试剂,R 1、R 2、R 3和R 4中的至少一个选自C 1-10的烷氧基。
  11. 根据权利要求9所述的方法,其特征在于,所述硅烷化试剂选自硅酸四乙酯和硅酸四甲酯中的至少一种。
  12. 一种石脑油和CO 2耦合转化制苯、甲苯和对二甲苯的方法,其特征在于,所述方法包括如下步骤:
    (a)根据权利要求1至11任一项所述的方法制备改性分子筛催化剂;
    (b)将含有石脑油和CO 2的原料与所述改性分子筛催化剂在反应器中接触,以发生反应生成苯、甲苯和对二甲苯。
  13. 根据权利要求12所述的方法,其特征在于,所述原料由石脑油和CO 2组成。
  14. 根据权利要求12所述的方法,其特征在于,所述石脑油选自加氢裂化石脑油、催化裂化石脑油、抽余油、拔头油、煤直接液化石脑油中的至少一种;
    优选地,所述石脑油中的烃类的碳数分布范围为C 4-C 12
    优选地,所述反应器为固定床反应器、流化床反应器或移动床反应器中的一种;
  15. 根据权利要求12所述的方法,其特征在于,石脑油和CO 2发生反应的条件为:反应温度为450~650℃,反应压力为0.1~3MPa,所述石脑油的重量空速0.1~5h -1,CO 2重量空速0.1~5h -1
PCT/CN2021/133888 2021-09-24 2021-11-29 石脑油和二氧化碳耦合转化制苯、甲苯和对二甲苯的方法 WO2023045070A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111124097.3 2021-09-24
CN202111124097.3A CN115845908A (zh) 2021-09-24 2021-09-24 石脑油和二氧化碳耦合转化制苯、甲苯和对二甲苯的方法

Publications (1)

Publication Number Publication Date
WO2023045070A1 true WO2023045070A1 (zh) 2023-03-30

Family

ID=85652622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133888 WO2023045070A1 (zh) 2021-09-24 2021-11-29 石脑油和二氧化碳耦合转化制苯、甲苯和对二甲苯的方法

Country Status (2)

Country Link
CN (1) CN115845908A (zh)
WO (1) WO2023045070A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101417233A (zh) * 2007-10-24 2009-04-29 中国科学院大连化学物理研究所 甲苯甲醇烷基化制对二甲苯和低碳烯烃固定床催化剂及应用
CN101767038A (zh) * 2010-02-05 2010-07-07 中国海洋石油总公司 一种甲醇转化制备对二甲苯的催化剂及其制备方法与应用
CN101780417A (zh) * 2010-02-10 2010-07-21 中国海洋石油总公司 一种甲醇转化制备对二甲苯和低碳烯烃的催化剂及其制备方法与应用
US20170233308A1 (en) * 2016-02-17 2017-08-17 The King Abdulaziz City For Science And Technology Method of preparing a modified zeolite catalyst and preparing ethylbenzene using one cycle process
CN107840778A (zh) * 2016-09-19 2018-03-27 中国科学院大连化学物理研究所 一种二氧化碳加氢制取芳烃的方法
CN111187132A (zh) * 2018-11-15 2020-05-22 中国科学院大连化学物理研究所 一种由甲醇和/或二甲醚制备汽油联产对二甲苯的方法
WO2020155145A1 (zh) * 2019-02-02 2020-08-06 中国科学院大连化学物理研究所 一种制备酮类有机物的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101417233A (zh) * 2007-10-24 2009-04-29 中国科学院大连化学物理研究所 甲苯甲醇烷基化制对二甲苯和低碳烯烃固定床催化剂及应用
CN101767038A (zh) * 2010-02-05 2010-07-07 中国海洋石油总公司 一种甲醇转化制备对二甲苯的催化剂及其制备方法与应用
CN101780417A (zh) * 2010-02-10 2010-07-21 中国海洋石油总公司 一种甲醇转化制备对二甲苯和低碳烯烃的催化剂及其制备方法与应用
US20170233308A1 (en) * 2016-02-17 2017-08-17 The King Abdulaziz City For Science And Technology Method of preparing a modified zeolite catalyst and preparing ethylbenzene using one cycle process
CN107840778A (zh) * 2016-09-19 2018-03-27 中国科学院大连化学物理研究所 一种二氧化碳加氢制取芳烃的方法
CN111187132A (zh) * 2018-11-15 2020-05-22 中国科学院大连化学物理研究所 一种由甲醇和/或二甲醚制备汽油联产对二甲苯的方法
WO2020155145A1 (zh) * 2019-02-02 2020-08-06 中国科学院大连化学物理研究所 一种制备酮类有机物的方法

Also Published As

Publication number Publication date
CN115845908A (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
JP4828680B2 (ja) 低炭素数の脂肪族炭化水素をより高い炭素数の炭化水素へ転化する方法及び触媒
CN101773850B (zh) 一种低碳烷烃脱氢制烯烃催化剂及其应用
CN101563162A (zh) 铂-锗沸石催化剂的再生
CN102190551B (zh) 一种由含氧化合物制取丙烯的方法
CN101348733A (zh) 利用烃类原料生产轻质芳烃和轻质烷烃的方法
CN106215970B (zh) Hzsm-5分子筛催化剂的改性处理方法及应用
CN101530813A (zh) 用于碳四液化气芳构化反应的分子筛催化剂的制备方法
CN100526430C (zh) 一种生产清洁汽油的方法
Xu et al. Effects of silylation on Ga/HZSM-5 for improved propane dehydroaromatization
CN101081799A (zh) 一种由含氧化合物制取小分子烯烃的方法
US6682650B2 (en) Zeolite catalyst carrier and hydrogenation catalyst using same
CN112745932A (zh) 一种生产轻质芳烃的方法
CN101081997B (zh) 催化裂化汽油非临氢芳构化改质催化剂及其制备方法
Wu et al. The investigation into the dehydroaromatization of ethane over cobalt-modified ZSM-5 catalyst
US20110253596A1 (en) Regenerable Composite Catalysts for Paraffin Aromatization
CN101209947A (zh) 一种低碳烷烃芳构化方法
US11459283B2 (en) Method for producing xylene
WO2023045070A1 (zh) 石脑油和二氧化碳耦合转化制苯、甲苯和对二甲苯的方法
CN109569703B (zh) 由石脑油和甲醇生产汽油组分的催化剂及制备方法与应用
RU2751703C1 (ru) Цеолитный катализатор дегидрирования пропана и способ получения пропилена с использованием этого катализатора
CN103539619B (zh) 混合碳四芳构化制备芳烃的方法
Yang et al. Boosted production of aromatics by catalyzing upgrade pyrolysis vapors from lignite over Sn-Ga/HZSM‑5 catalysts
CN106179492B (zh) Mtp失活催化剂的复活剂及复活方法和用途
CN111073687B (zh) 一种清洁汽油的制备方法
CN112745189A (zh) 一种正己烷羰基化生产芳烃的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958182

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021958182

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021958182

Country of ref document: EP

Effective date: 20240325

WWE Wipo information: entry into national phase

Ref document number: 2024108218

Country of ref document: RU