WO2023042837A1 - Ledモジュール、ledモジュールの製造方法及びled表示装置 - Google Patents

Ledモジュール、ledモジュールの製造方法及びled表示装置 Download PDF

Info

Publication number
WO2023042837A1
WO2023042837A1 PCT/JP2022/034332 JP2022034332W WO2023042837A1 WO 2023042837 A1 WO2023042837 A1 WO 2023042837A1 JP 2022034332 W JP2022034332 W JP 2022034332W WO 2023042837 A1 WO2023042837 A1 WO 2023042837A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
colored layer
led
led module
light transmission
Prior art date
Application number
PCT/JP2022/034332
Other languages
English (en)
French (fr)
Inventor
孝徳 井上
貴志 渡邉
倫久 上田
満帆 黒須
義人 藤田
大地 濱田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2023042837A1 publication Critical patent/WO2023042837A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to an LED module comprising a light emitting diode (LED) chip.
  • the present invention also relates to a method for manufacturing the LED module and an LED display device including the LED module.
  • LED chips are used in various electronic device applications.
  • an LED package is widely used in which a lead frame and an LED chip are arranged on a substrate and the lead frame and the LED chip are sealed with resin.
  • a display device in which a plurality of LED packages are arranged to form a small-sized LED module, and then the LED modules are joined together.
  • LEDs can be lit for display.
  • Patent Document 1 describes an optical device in which an optical element such as an LED is sealed with a highly transparent silicone material.
  • Patent Document 2 describes a self-luminous display that includes a light-emitting module in which a plurality of light-emitting elements are mounted on a wiring board, a black sealing material sheet, and a transparent optical layer.
  • the black encapsulant sheet is laminated on the light emitting module so as to cover the surfaces of the light emitting element and the wiring substrate, and the transparent optical layer is the black encapsulant. Laminated in sheets.
  • the inventors tried to arrange a layer containing a coloring agent (colored layer) between the LED chips in order to improve the wiring hiding property while maintaining high luminance.
  • a coloring agent colored layer
  • simply arranging a colored layer between LED chips tends to cause discoloration when an LED module in which the LEDs are lit is viewed obliquely.
  • an LED module includes a substrate having a plurality of LED chips on its upper surface, a colored layer, and a light-transmitting layer, wherein the material of the colored layer contains a coloring agent, and the light-transmitting
  • An LED module is provided, wherein a layer is disposed above the LED chip, and wherein the LED module comprises at least one configuration of configuration A, configuration B, and configuration C below.
  • the colored layer is arranged in the gaps between the plurality of LED chips, and the height position of the upper surface of the colored layer arranged in the gaps between the plurality of LED chips is the height of the upper surface of the LED chip. is equal to or less than
  • Configuration B The colored layer is arranged above the light-transmitting layer, and the thickness of the colored layer arranged above the light-transmitting layer is 50 ⁇ m or less
  • Each of a plurality of pixels is composed of a plurality of the LED chips, and the gaps between the plurality of LED chips are a first gap Ga between the adjacent pixels and a second gap Gb within the pixel. wherein the colored layer is arranged in the first gap Ga, and a gap is formed between the colored layer arranged in the first gap Ga and the LED chip next to the colored layer there is
  • the material of the colored layer further contains a photocurable compound and a photopolymerization initiator.
  • the LED module includes at least the configuration A.
  • the LED module includes at least the configuration B.
  • the LED module includes at least the configuration C.
  • the configuration A satisfies the following configuration Aa.
  • Configuration Aa The distance between the height position of the upper surface of the colored layer arranged between the plurality of LED chips and the height position of the upper surface of the LED chip is 50% or more of the height of the LED chip.
  • the configuration C satisfies the following configuration Ca.
  • the gap Sa between the colored layer arranged in the first gap Ga and the LED chip adjacent to the colored layer is equal to or greater than the gap Sb of the second gap Gb.
  • the thickness of the colored layer is 30 ⁇ m or less.
  • the colored layer in configuration A, has a tapered shape, and in configuration C, the colored layer has a tapered shape.
  • the material for the colored layer further includes a photocurable compound and a photopolymerization initiator, and the photocurable compound contained in the material for the colored layer is Contains polyfunctional (meth)acrylate compounds.
  • the light transmission layer contains resin or glass.
  • the light transmission layer contains a filler having an average particle size of 10 ⁇ m or less.
  • the LED module further includes a light reflecting layer between the side surface of the LED chip and the side surface of the colored layer.
  • the light transmission layer has unevenness on its upper surface.
  • the LED module further includes an adhesive layer between the substrate and the colored layer.
  • the method for manufacturing the LED module described above wherein the material of the colored layer further includes a photocurable compound and a photopolymerization initiator, and the method for manufacturing the LED module comprises the A step of applying a material for the colored layer by an inkjet method, a step of irradiating the material of the colored layer with light to cure the material of the colored layer to form the colored layer, and a step of forming the colored layer above the LED chip and forming the light transmissive layer.
  • a method for manufacturing the above-described LED module comprising the step of preparing a structure having a glass member, the light transmission layer, and the colored layer, and having a plurality of the LED chips on the top surface.
  • a method for manufacturing an LED module comprising: preparing the substrate, and bonding the structure and the substrate such that the light transmission layer is disposed above the LED chip.
  • an LED display device comprising a plurality of LED modules, the plurality of LED modules being linked, and the LED modules being the LED modules described above.
  • An LED module according to the present invention includes a substrate having a plurality of LED chips on its upper surface, a colored layer, and a light-transmitting layer, the material of the colored layer contains a coloring agent, and the light-transmitting layer includes the LED Located above the chip.
  • the LED module according to the present invention comprises at least one of the configurations A, B and C described above. Since the LED module according to the present invention has the above configuration, it is possible to improve both the luminance and the wiring concealability, and furthermore, it is possible to suppress discoloration when viewed obliquely.
  • FIG. 1 is a cross-sectional view schematically showing an LED module according to a first embodiment of the invention.
  • FIG. 2 is a cross-sectional view schematically showing an LED module according to a second embodiment of the invention.
  • FIG. 3 is a cross-sectional view schematically showing an LED module according to a third embodiment of the invention.
  • FIG. 4 is a cross-sectional view schematically showing an LED module according to a fourth embodiment of the invention.
  • FIG. 5 is a cross-sectional view schematically showing an LED module according to a fifth embodiment of the invention.
  • FIG. 6 is a cross-sectional view schematically showing an LED module according to a sixth embodiment of the invention.
  • FIG. 7 is a cross-sectional view schematically showing an LED module according to a seventh embodiment of the invention.
  • FIG. 1 is a cross-sectional view schematically showing an LED module according to a first embodiment of the invention.
  • FIG. 2 is a cross-sectional view schematically showing an LED module according to a second
  • FIG. 8 is a cross-sectional view schematically showing an LED module according to an eighth embodiment of the invention.
  • FIG. 9 is a cross-sectional view schematically showing an LED module according to a ninth embodiment of the invention.
  • FIG. 10 is a cross-sectional view schematically showing an LED module according to the tenth embodiment of the invention.
  • FIG. 11 is a cross-sectional view schematically showing an LED module according to the eleventh embodiment of the invention.
  • FIG. 12 is a cross-sectional view schematically showing an LED module according to a twelfth embodiment of the invention.
  • FIG. 13 is a partially cutaway cross-sectional view schematically showing an LED display device obtained using the LED module according to one embodiment of the present invention.
  • FIG. 14 is a cross-sectional view schematically showing an LED module produced in Comparative Example 1.
  • FIG. 15 is a cross-sectional view schematically showing an LED module produced in Comparative Example 2.
  • FIG. 16 is a cross-sectional view schematically showing an LED module produced in Comparative Example 3.
  • FIG. 17 is a cross-sectional view schematically showing an LED module produced in Comparative Example 4.
  • FIG. 18 is a cross-sectional view schematically showing an LED module produced in Comparative Example 5.
  • An LED module according to the present invention includes a substrate having a plurality of LED chips on its upper surface, a colored layer, and a light transmission layer.
  • the material of the colored layer contains a coloring agent.
  • the light transmission layer is arranged above the LED chip.
  • the LED module according to the present invention has at least one configuration among configuration A, configuration B, and configuration C below.
  • Configuration A The colored layer is arranged in the gaps between the plurality of LED chips, and the height position of the upper surface of the colored layer arranged in the gaps between the plurality of LED chips is the height of the upper surface of the LED chip. It is equal to or less than the height position.
  • Configuration B The colored layer is arranged above the light-transmitting layer, and the thickness of the colored layer arranged above the light-transmitting layer is 50 ⁇ m or less.
  • Each of a plurality of pixels is composed of a plurality of the LED chips, and the gaps between the plurality of LED chips are a first gap Ga between the adjacent pixels and a second gap Gb within the pixel. and the colored layer is arranged in the first gap Ga, and a gap is formed between the colored layer arranged in the first gap Ga and the LED chip adjacent to the colored layer there is
  • the LED module according to the present invention has the above configuration, it is possible to improve both the luminance and the wiring hiding property, and furthermore, it is possible to suppress discoloration when viewed from an oblique direction.
  • the brightness can be increased when the LED is lit.
  • the wiring arranged between the LED chips can be satisfactorily hidden.
  • the color tone is less likely to change.
  • the thickness of the colored layer is relatively thin at 50 ⁇ m or less, even when the LED module is viewed obliquely, the color tone hardly changes. Therefore, the color tone when the LED module is viewed obliquely and the color tone when viewed from the front can be the same.
  • the light transmission layer is arranged above the LED chip.
  • the light transmission layer is preferably arranged on the top surface of the LED chip, and the light transmission layer and the top surface of the LED chip are preferably in contact with each other.
  • another layer may exist between the light transmission layer and the upper surface of the LED chip.
  • the distance between the upper surface of the light transmission layer and the upper surface of the LED chip is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, still more preferably 30 ⁇ m or more, and preferably 100 ⁇ m or less. It is preferably 90 ⁇ m or less, more preferably 80 ⁇ m or less.
  • the distance is equal to or greater than the lower limit, the protection performance of the LED chip can be enhanced.
  • the thickness of the LED module can be effectively reduced, and the size of the LED module can be reduced.
  • a distance between the top surface of the light transmission layer and the top surface of the LED chip may exceed 0 ⁇ m.
  • the upper surfaces of the plurality of LED chips have the same height position.
  • the LED module according to the present invention may have the above configuration A, may have the above configuration B, or may have the above configuration C.
  • the LED module according to the present invention preferably includes at least the configuration A, preferably includes at least the configuration B, and preferably includes at least the configuration C.
  • the LED module according to the present invention may comprise at least two configurations among the configurations A, B, and C.
  • the LED module according to the present invention may include the configuration A and the configuration B, may include the configuration A and the configuration C, or may include the configuration B and the configuration C. good too.
  • the LED module according to the present invention may include at least the configuration A and the configuration B, may include at least the configuration A and the configuration C, and may include at least the configuration B and the configuration C. may be provided.
  • the LED module according to the present invention may include the configuration A, the configuration B, and the configuration C described above.
  • the configuration A, the configuration B, and the configuration C will be described in detail below.
  • the height direction of the LED chip and the thickness direction of the colored layer are the same direction.
  • Configuration A (configuration i) is as follows.
  • Configuration A The colored layer is arranged in the gaps between the plurality of LED chips, and the height position of the upper surface of the colored layer arranged in the gaps between the plurality of LED chips is the height of the upper surface of the LED chip. equal to or less than the height position.
  • the colored layers may be in direct contact with the side surfaces of the LED chips as long as they are arranged in the gaps between the plurality of LED chips, and there is a gap between the colored layers and the side surfaces of the LED chips.
  • the height position of the upper surface of the colored layer arranged in the gaps between the plurality of LED chips may be the same as the height position of the upper surface of the LED chip.
  • a height position of the upper surface of the colored layer arranged between the plurality of LED chips may be lower than a height position of the upper surface of the LED chip.
  • the height position of the upper surface of the colored layer arranged in the gaps between the plurality of LED chips is lower than the height position of the upper surface of the LED chip. .
  • the brightness can be further increased, and discoloration when viewed obliquely can be further suppressed.
  • the above configuration A preferably satisfies the following configuration Aa.
  • Configuration Aa (Configuration i-2): The distance between the height position of the upper surface of the colored layer arranged in the gaps between the plurality of LED chips and the height position of the upper surface of the LED chip is the height of the LED chip. 50% or more of
  • the distance between the height position of the upper surface of the colored layer arranged in the gap between the plurality of LED chips and the height position of the upper surface of the LED chip is equal to the height of the LED chip. It is preferably 50% or more, more preferably 60% or more, even more preferably 70% or more. In this case, the brightness can be further increased, and discoloration when viewed obliquely can be further suppressed.
  • the distance between the height position of the upper surface of the colored layer arranged in the gap between the plurality of LED chips and the height position of the upper surface of the LED chip is equal to the height position of the LED chip It may be 100% or less, 90% or less, 80% or less, or 75% or less of the height. Further, in the LED module having the configuration A, the distance between the height position of the upper surface of the colored layer arranged in the gap between the plurality of LED chips and the height position of the upper surface of the LED chip is equal to the height position of the LED chip It may be 0% or more of the height of, may be more than 0%, or may be less than 50%.
  • the distance between the height position of the upper surface of the colored layer arranged in the gap between the plurality of LED chips and the height position of the upper surface of the LED chip is preferably is 10 ⁇ m or more, more preferably 30 ⁇ m or more, still more preferably 40 ⁇ m or more, and particularly preferably 50 ⁇ m or more.
  • the brightness can be further increased, and discoloration when viewed obliquely can be further suppressed.
  • the distance between the height position of the upper surface of the colored layer arranged in the gap between the plurality of LED chips and the height position of the upper surface of the LED chip is , 30 ⁇ m or less, 20 ⁇ m or less, or 10 ⁇ m or less.
  • the thickness of the colored layer disposed between the plurality of LED chips is preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, and still more preferably 40 ⁇ m or more, It is preferably 80 ⁇ m or less, more preferably 70 ⁇ m or less, and still more preferably 60 ⁇ m or less.
  • the thickness of the colored layer disposed between the plurality of LED chips is equal to or greater than the lower limit, the wiring hiding property can be further enhanced.
  • the thickness of the colored layer disposed between the plurality of LED chips is equal to or less than the upper limit, luminance can be further increased, and discoloration when viewed obliquely can be further suppressed.
  • the shape of the colored layer is not particularly limited. From the viewpoint of further increasing luminance, in Structure A, the colored layer preferably has a tapered shape, and preferably has a shape in which the width narrows from the bottom to the top. In configuration A, the LED module may include an antireflection layer disposed above the light transmission layer.
  • Configuration B (configuration ii) is as follows.
  • Configuration B The colored layer is arranged above the light-transmitting layer, and the thickness of the colored layer arranged above the light-transmitting layer is 50 ⁇ m or less.
  • above the light-transmitting layer means the height direction of the light-transmitting layer on the opposite side of the light-transmitting layer to the substrate.
  • the colored layer is arranged on the upper surface of the light transmission layer.
  • the bottom surface of the colored layer and the top surface of the light transmission layer are in contact with each other.
  • another layer may exist between the colored layer and the light transmission layer.
  • the colored layer may cover the entire upper surface of the light transmission layer, or may cover only a part of the upper surface.
  • the shape of the surface of the colored layer is not particularly limited. The surface of the colored layer may be flat, and the colored layer may have an uneven surface.
  • the thickness of the colored layer disposed above the light-transmitting layer is preferably 1.0 ⁇ m or more, more preferably 3.0 ⁇ m or more, still more preferably 5.0 ⁇ m or more, It is preferably less than 50 ⁇ m, more preferably 30 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the thickness of the colored layer disposed above the light-transmitting layer is equal to or greater than the lower limit, the wiring hiding property can be further enhanced.
  • the thickness of the colored layer disposed above the light-transmitting layer is less than the upper limit or equal to or less than the upper limit, the transmittance of the light-transmitting layer and the colored layer can be appropriately controlled, so that the brightness can be improved. It is possible to further increase it, and it is possible to suppress discoloration when viewed obliquely.
  • Configuration C (configuration iii) is:
  • Each of a plurality of pixels is composed of a plurality of the LED chips, and the gaps between the plurality of LED chips are a first gap Ga between the adjacent pixels and a second gap Gb within the pixel. and the colored layer is arranged in the first gap Ga, and a gap is formed between the colored layer arranged in the first gap Ga and the LED chip adjacent to the colored layer there is
  • One pixel is usually composed of three (three colors) LED chips (red (R), green (G), and blue (B)).
  • the above configuration C preferably satisfies the following configuration Ca.
  • Structure Ca (structure iii-2): the gap Sa between the colored layer arranged in the first gap Ga and the LED chip adjacent to the colored layer is equal to the gap Sb of the second gap Gb. Equal or better.
  • the spacing Sa is preferably larger than the spacing Sb. In this case, the brightness can be further increased, and discoloration when viewed obliquely can be further suppressed.
  • the interval Sa may be the same as the interval Sb.
  • the spacing Sa is preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more, still more preferably 120 ⁇ m or more, and preferably 300 ⁇ m or less, more preferably 250 ⁇ m or less, and still more preferably 200 ⁇ m or less.
  • the interval Sa is equal to or greater than the lower limit, luminance can be further increased, and discoloration when viewed obliquely can be further suppressed. Wiring hiding property can be improved further as said space
  • the interval Sb is preferably 50 ⁇ m or more, more preferably 75 ⁇ m or more, still more preferably 100 ⁇ m or more, and preferably 200 ⁇ m or less, more preferably 190 ⁇ m or less, and still more preferably 180 ⁇ m or less.
  • luminance can be further increased, and discoloration when viewed obliquely can be further suppressed.
  • Wiring hiding property can be improved further as the said space
  • the absolute value of the difference between the spacing Sa and the spacing Sb is preferably 5.0 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 15 ⁇ m or more, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and even more preferably 90 ⁇ m or less, particularly preferably 80 ⁇ m or less.
  • the absolute value of the difference is equal to or more than the lower limit and equal to or less than the upper limit, the effects of the present invention can be exhibited more effectively.
  • the thickness of the colored layer disposed in the first gap Ga is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, still more preferably 20 ⁇ m or more, preferably It is 200 ⁇ m or less, more preferably 190 ⁇ m or less, still more preferably 180 ⁇ m or less, particularly preferably 100 ⁇ m or less, and most preferably 30 ⁇ m or less.
  • the thickness of the colored layer disposed in the first gap Ga is equal to or greater than the lower limit, the wiring hiding property can be further enhanced.
  • the thickness of the colored layer arranged in the first gap Ga is equal to or less than the upper limit, luminance can be further increased.
  • a thickness of the colored layer arranged in the first gap Ga may be 30 ⁇ m or more.
  • the shape of the colored layer is not particularly limited. From the viewpoint of further increasing luminance, in Structure C, the colored layer preferably has a tapered shape, and preferably has a shape in which the width narrows from the bottom to the top. In configuration C, the LED module may include an antireflection layer disposed above the light transmission layer.
  • a layer different from the colored layer and the light-transmitting layer may be laminated on another layer (light-transmitting layer, etc.) within the scope of the effect of the present invention.
  • a layer different from the colored layer and the light transmissive layer may be located on the top surface of the LED module.
  • the layer different from the colored layer and the light-transmitting layer include a resin layer and a glass layer, and specific examples include an antireflection layer.
  • the antireflection layer may be an antireflection film.
  • the resin layer or the glass layer preferably has an uneven surface.
  • the method for forming the uneven shape is not particularly limited, the uneven shape can be formed by performing anti-glare treatment on the surface of the resin layer or the glass layer.
  • the height (thickness) of the LED chip may be 30 ⁇ m or more, may exceed 30 ⁇ m, may be 50 ⁇ m or more, may exceed 50 ⁇ m, or may be 55 ⁇ m or more. , 60 ⁇ m or more, 65 ⁇ m or more, 70 ⁇ m or more, 75 ⁇ m or more, or 80 ⁇ m or more.
  • the height (thickness) of the LED chip may be 1000 ⁇ m or less, 500 ⁇ m or less, 450 ⁇ m or less, 400 ⁇ m or less, or 350 ⁇ m or less. , 300 ⁇ m or less, or 250 ⁇ m or less.
  • the height (thickness) of the LED chip may be 200 ⁇ m or less, 190 ⁇ m or less, 180 ⁇ m or less, 170 ⁇ m or less, or 160 ⁇ m or less. may be 150 ⁇ m or less.
  • FIG. 1 is a cross-sectional view schematically showing an LED module according to the first embodiment of the invention.
  • the LED module 1 shown in FIG. 1 is an LED module having the configuration A.
  • the LED module 1 includes a substrate 11, a colored layer 21, and a light transmission layer 22.
  • the substrate 11 includes a substrate body 11X, a plurality of LED chips 11Y, and wiring 11Z.
  • the substrate 11 has a plurality of LED chips 11Y on its upper surface.
  • the LED chip 11Y has an LED chip body and an electrode portion.
  • the LED chip main body is mounted on the substrate main body 11X via the electrode portion.
  • a plurality of LED chips 11Y are arranged side by side on the substrate 11 at intervals.
  • a plurality of LED chips 11Y are arranged on the substrate main body 11X.
  • the substrate 11 has wiring 11Z on its upper surface.
  • wirings 11Z are arranged between the plurality of LED chips 11Y.
  • electrode portions of the LED chip 11Y are electrically connected by wiring 11Z.
  • a plurality of pixels are each composed of a plurality of LED chips 11Y.
  • two pixels (the first pixel P1 and the second pixel P2) are each composed of three LED chips 11Y.
  • the three LED chips 11Y forming the first pixel P1 and the second pixel P2 are a red (R) LED chip, a green (G) LED chip, and a blue (B) LED chip, respectively.
  • the gap between the plurality of LED chips 11Y has a first gap Ga between adjacent pixels and a second gap Gb within the pixel.
  • the first gap Ga is the gap between the first pixel P1 and the second pixel P2 in the gap between the plurality of LED chips 11Y.
  • the second gap Gb is the gap in the first pixel P1 and the gap in the second pixel P2 in the gaps between the LED chips 11Y (however, in FIG. 1, the gap in the first pixel P1 Only the sign of the second gap Gb, which is a gap, is shown).
  • the colored layer 21 is arranged between the plurality of LED chips 11Y.
  • the colored layer 21 is arranged in all the gaps between the plurality of LED chips 11Y.
  • the colored layer 21 is arranged in both the first gap Ga and the second gap Gb.
  • the colored layer 21 is in contact with the LED chip 11Y and in contact with the wiring 11Z.
  • the height position of the upper surface 21a of the colored layer 21 arranged between the plurality of LED chips 11Y is lower than the height position of the upper surface 11Ya of the LED chips 11Y.
  • the distance L between the height position of the upper surface 21a of the colored layer 21 arranged between the plurality of LED chips 11Y and the height position of the upper surface 11Ya of the LED chip 11Y is smaller than the height H of the LED chip 11Y. Distance L is less than 100% of height H.
  • the distance L is 50% or more of the height H in the LED module having the configuration Aa.
  • the light transmission layer 22 is arranged above the LED chip 11Y.
  • the light transmission layer 22 is arranged across the plurality of LED chips 11Y.
  • the light transmission layer 22 covers the plurality of LED chips 11Y.
  • the light transmission layer 22 is also arranged on the side of the LED chip 11Y.
  • the light transmission layer 22 is arranged on the upper surface 11Ya and side surfaces of the LED chip 11Y.
  • the light transmission layer 22 is in contact with the LED chip 11Y.
  • the light transmission layer 22 is in contact with the upper surface 11Ya and side surfaces of the LED chip 11Y.
  • the light transmission layer 22 is not in contact with the wiring 11Z.
  • the light transmission layer 22 is arranged between the LED chips 11Y.
  • the light transmission layer 22 is arranged in all gaps between the plurality of LED chips 11Y.
  • the light transmission layer 22 is arranged in both the first gap Ga and the second gap Gb.
  • the light transmission layer 22 is arranged above the colored layer 21 .
  • the light transmission layer 22 is arranged on the upper surface 21 a of the colored layer 21 .
  • the light transmission layer 22 is in contact with the colored layer 21 .
  • the light transmission layer 22 is in contact with the upper surface 21 a of the colored layer 21 .
  • the light transmission layer 22 covers the colored layer 21 .
  • the configuration of the substrate 11 is the same as that of the substrate 11 in the LED module 1 of FIG.
  • FIG. 2 is a cross-sectional view schematically showing an LED module according to the second embodiment of the invention.
  • the LED module 1A shown in FIG. 2 is an LED module having the configuration B.
  • the LED module 1A includes a substrate 11, a colored layer 21A, and a light transmission layer 22A.
  • a plurality of pixels are each composed of a plurality of LED chips 11Y.
  • two pixels (the first pixel P1 and the second pixel P2) are each composed of three LED chips 11Y.
  • the three LED chips 11Y forming the first pixel P1 and the second pixel P2 are a red (R) LED chip, a green (G) LED chip, and a blue (B) LED chip, respectively.
  • the gap between the plurality of LED chips 11Y has a first gap Ga between adjacent pixels and a second gap Gb within the pixel.
  • the first gap Ga is the gap between the first pixel P1 and the second pixel P2 in the gap between the plurality of LED chips 11Y.
  • the second gap Gb is the gap in the first pixel P1 and the gap in the second pixel P2 in the gaps between the LED chips 11Y (however, in FIG. 2, the gap in the first pixel P1 is Only the sign of the second gap Gb, which is a gap, is shown).
  • the light transmission layer 22A is arranged above the LED chip 11Y.
  • the light transmission layer 22A is arranged across the plurality of LED chips 11Y.
  • the light transmission layer 22A covers the plurality of LED chips 11Y.
  • the light transmission layer 22A is also arranged on the side of the LED chip 11Y.
  • the light transmission layer 22A is arranged on the upper surface 11Ya and side surfaces of the LED chip 11Y.
  • the light transmission layer 22A is in contact with the LED chip 11Y. Specifically, the light transmission layer 22A is in contact with the upper surface 11Ya and side surfaces of the LED chip 11Y.
  • the light transmission layer 22A is arranged above the wiring 11Z.
  • the light transmission layer 22A is arranged on the upper surface of the wiring 11Z.
  • the light transmission layer 22A is in contact with the wiring 11Z.
  • the light transmission layer 22A is in contact with the upper surface of the wiring 11Z.
  • the light transmission layer 22A is arranged in the gaps between the plurality of LED chips 11Y.
  • the light transmission layer 22A is arranged in all gaps between the plurality of LED chips 11Y.
  • the light transmission layer 22A is arranged in both the first gap Ga and the second gap Gb.
  • the colored layer 21A is arranged above the light transmission layer 22A.
  • 21 A of colored layers are arrange
  • the colored layer 21A is in contact with the light transmission layer 22A.
  • the lower surface of the colored layer 21A is in contact with the upper surface of the light transmission layer 22A.
  • the colored layer 21A covers the light transmission layer 22A.
  • the colored layer 21A is not in contact with the LED chip 11Y and is not in contact with the wiring 11Z.
  • the thickness of the colored layer 21A arranged above the light transmission layer 22A is 50 ⁇ m or less.
  • FIG. 3 is a cross-sectional view schematically showing an LED module according to a third embodiment of the invention.
  • the LED module 1B shown in FIG. 3 is an LED module having the configuration C.
  • the LED module 1B includes a substrate 11, a colored layer 21B, and a light transmission layer 22B.
  • a plurality of pixels are each composed of a plurality of LED chips 11Y.
  • two pixels (the first pixel P1 and the second pixel P2) are each composed of three LED chips 11Y.
  • the three LED chips 11Y forming the first pixel P1 and the second pixel P2 are a red (R) LED chip, a green (G) LED chip, and a blue (B) LED chip, respectively.
  • the gap between the plurality of LED chips 11Y has a first gap Ga between adjacent pixels and a second gap Gb within the pixel.
  • the first gap Ga is the gap between the first pixel P1 and the second pixel P2 in the gap between the plurality of LED chips 11Y.
  • the second gap Gb is a gap within the first pixel P1 and a gap within the second pixel P2 among the gaps between the plurality of LED chips 11Y (however, in FIG. 3, the gap within the first pixel P1 (only the sign of the second gap Gb is shown).
  • the colored layer 21B is arranged between the plurality of LED chips 11Y.
  • the colored layer 21B is arranged in some gaps between the plurality of LED chips 11Y.
  • the colored layer 21B is arranged in the first gap Ga.
  • the colored layer 21B is not arranged in the second gap Gb.
  • the colored layer 21B arranged in the first gap Ga is not in contact with the LED chip 11Y next to the colored layer 21B.
  • the colored layer 21B is not in contact with the LED chip 11Y, but is in contact with the wiring 11Z.
  • the height position of the upper surface of the colored layer 21B arranged in the first gap Ga is higher than the height position of the upper surface 11Ya of the LED chip 11Y.
  • the gap Sa between the colored layer 21B arranged in the first gap Ga and the LED chip 11Y adjacent to the colored layer 21B is the same as the gap Sb of the second gap Gb. Equal or better.
  • the light transmission layer 22B is arranged above the LED chip 11Y.
  • the light transmission layer 22B is arranged across the plurality of LED chips 11Y.
  • the light transmission layer 22B covers the plurality of LED chips 11Y.
  • the light transmission layer 22B is also arranged on the side of the LED chip 11Y.
  • the light transmission layer 22B is arranged on the top surface 11Ya and side surfaces of the LED chip 11Y.
  • the light transmission layer 22B is in contact with the LED chip 11Y.
  • the light transmission layer 22B is in contact with the upper surface 11Ya and side surfaces of the LED chip 11Y.
  • the light transmission layer 22B is arranged above the wiring 11Z.
  • the light transmission layer 22B is arranged above the wiring 11Z.
  • the light transmission layer 22B is arranged on the upper surface of the wiring 11Z.
  • the light transmission layer 22B is in contact with the wiring 11Z. Specifically, the light transmission layer 22B is in contact with the upper surface of the wiring 11Z.
  • the light transmission layer 22B is arranged in the gaps between the plurality of LED chips 11Y.
  • the light transmission layer 22B is arranged in all gaps between the plurality of LED chips 11Y.
  • the light transmission layer 22B is arranged in both the first gap Ga and the second gap Gb.
  • the light transmission layer 22B is arranged above the colored layer 21B. Moreover, the light transmission layer 22B is also arranged on the side of the colored layer 21B. The light transmission layer 22B is arranged on the upper surface and side surfaces of the colored layer 21B. The light transmission layer 22B is in contact with the colored layer 21B. Specifically, the light transmission layer 22B is in contact with the upper surface and side surfaces of the colored layer 21B. The light transmission layer 22B is arranged above the wiring 11Z. The light transmission layer 22B is arranged on the upper surface of the wiring 11Z. The light transmission layer 22B is in contact with the wiring 11Z. Specifically, the light transmission layer 22B is in contact with the upper surface and side surfaces of the colored layer 21B.
  • FIG. 4 is a cross-sectional view schematically showing an LED module according to a fourth embodiment of the invention.
  • An LED module 1C shown in FIG. 4 is an LED module having a configuration A and a configuration B.
  • the LED module 1C includes a substrate 11, a first colored layer 21CA, a second colored layer 21CB, and a light transmission layer 22C.
  • the LED module 1C includes a first colored layer 21CA arranged between the plurality of LED chips 11Y and a second colored layer 21CB arranged above the light transmission layer 22C.
  • the first colored layer 21CA is arranged between the plurality of LED chips 11Y.
  • the first colored layer 21CA is arranged in all gaps between the plurality of LED chips 11Y.
  • the first colored layer 21CA is arranged in both the first gap Ga and the second gap Gb.
  • the first colored layer 21CA is in contact with the LED chip 11Y and in contact with the wiring 11Z.
  • the height position of the upper surface 21CAa of the first colored layer 21CA arranged between the plurality of LED chips 11Y is lower than the height position of the upper surface 11Ya of the LED chips 11Y.
  • the distance L between the height position of the upper surface 21CAa of the first colored layer 21CA arranged between the plurality of LED chips 11Y and the height position of the upper surface 11Ya of the LED chip 11Y is greater than the height H of the LED chip 11Y. small. Distance L is less than 100% of height H.
  • the distance L is 50% or more of the height H in the LED module having the configuration Aa.
  • the light transmission layer 22C is arranged above the LED chip 11Y.
  • the light transmission layer 22C is arranged across the plurality of LED chips 11Y.
  • the light transmission layer 22C covers the plurality of LED chips 11Y.
  • the light transmission layer 22C is also arranged on the side of the LED chip 11Y.
  • the light transmission layer 22C is arranged on the upper surface 11Ya and side surfaces of the LED chip 11Y.
  • the light transmission layer 22C is in contact with the LED chip 11Y.
  • the light transmission layer 22C is in contact with the upper surface 11Ya and side surfaces of the LED chip 11Y.
  • the light transmission layer 22C is not in contact with the wiring 11Z.
  • 22 C of light transmission layers are arrange
  • 22 C of light transmission layers are arrange
  • the light transmission layer 22C is arranged in both the first gap Ga and the second gap Gb.
  • the light transmission layer 22C is arranged above the first colored layer 21CA.
  • the light transmission layer 22C is arranged on the upper surface 21CAa of the first colored layer 21CA.
  • the light transmission layer 22C is in contact with the first colored layer 21CA.
  • the light transmission layer 22C is in contact with the upper surface 21CAa of the first colored layer 21CA.
  • the light transmission layer 22C covers the first colored layer 21CA.
  • the second colored layer 21CB is arranged above the light transmission layer 22C.
  • the second colored layer 21CB is arranged on the upper surface of the light transmission layer 22C.
  • the second colored layer 21CB is in contact with the light transmission layer 22C.
  • the second colored layer 21CB is in contact with the upper surface of the light transmissive layer 22C.
  • the second colored layer 21CB covers the light transmission layer 22C.
  • the second colored layer 21CB is not in contact with the first colored layer 21CA, is not in contact with the LED chip 11Y, and is not in contact with the wiring 11Z.
  • the thickness of the second colored layer 21CB arranged above the light transmission layer 22C is 50 ⁇ m or less.
  • FIG. 5 is a cross-sectional view schematically showing an LED module according to the fifth embodiment of the invention.
  • An LED module 1D shown in FIG. 5 is an LED module having a configuration A and a configuration C.
  • the LED module 1D includes a substrate 11, a colored layer 21D, and a light transmission layer 22D.
  • the LED module 1D shown in FIG. 5 and the LED module 1B shown in FIG. 3 differ only in the thickness (height) of the colored layer arranged in the first gap Ga.
  • the colored layer 21D is arranged between the plurality of LED chips 11Y.
  • the colored layer 21D is arranged in some gaps between the plurality of LED chips 11Y.
  • the colored layer 21D is arranged in the first gap Ga.
  • the colored layer 21D is not arranged in the second gap Gb.
  • the colored layer 21D arranged in the first gap Ga is not in contact with the LED chip 11Y next to the colored layer 21D.
  • the colored layer 21D is not in contact with the LED chip 11Y, but is in contact with the wiring 11Z.
  • the height position of the upper surface 21Da of the colored layer 21D arranged between the plurality of LED chips 11Y is lower than the height position of the upper surface 11Ya of the LED chips 11Y.
  • the distance L between the height position of the upper surface 21Da of the colored layer 21D arranged between the plurality of LED chips 11Y and the height position of the upper surface 11Ya of the LED chip 11Y is smaller than the height H of the LED chip 11Y. Distance L is less than 100% of height H.
  • the distance L is 50% or more of the height H in the LED module having the configuration Aa.
  • the gap Sa between the colored layer 21D arranged in the first gap Ga and the LED chip 11Y adjacent to the colored layer 21D is the same as the gap Sb of the second gap Gb. Equal or better.
  • the light transmission layer 22D is arranged above the LED chip 11Y.
  • the light transmission layer 22D is arranged across the plurality of LED chips 11Y.
  • the light transmission layer 22D covers the plurality of LED chips 11Y.
  • the light transmission layer 22D is also arranged on the side of the LED chip 11Y.
  • the light transmission layer 22D is arranged on the upper surface 11Ya and side surfaces of the LED chip 11Y.
  • the light transmission layer 22D is in contact with the LED chip 11Y.
  • the light transmission layer 22D is in contact with the upper surface 11Ya and side surfaces of the LED chip 11Y.
  • the light transmission layer 22D is arranged above the wiring 11Z.
  • the light transmission layer 22D is arranged on the upper surface of the wiring 11Z.
  • the light transmission layer 22D is in contact with the wiring 11Z. Specifically, the light transmission layer 22D is in contact with the upper surface of the wiring 11Z.
  • the light transmission layer 22D is arranged in the gaps between the plurality of LED chips 11Y.
  • the light transmission layer 22D is arranged in all gaps between the plurality of LED chips 11Y.
  • the light transmission layer 22D is arranged in both the first gap Ga and the second gap Gb.
  • the light transmission layer 22D is arranged above the colored layer 21D. In addition, the light transmission layer 22D is also arranged on the side of the colored layer 21D. The light transmission layer 22D is arranged on the top surface 21Da and side surfaces of the colored layer 21D. The light transmission layer 22D is in contact with the colored layer 21D. Specifically, the light transmission layer 22D is in contact with the upper surface 21Da and side surfaces of the colored layer 21D.
  • FIG. 6 is a cross-sectional view schematically showing an LED module according to the sixth embodiment of the invention.
  • the LED module 1E shown in FIG. 6 is an LED module having configuration A, configuration B, and configuration C.
  • the LED module 1E includes a substrate 11, a first colored layer 21EA, a second colored layer 21EB, and a light transmission layer 22E.
  • the presence or absence of the second colored layer differs between the LED module 1E shown in FIG. 6 and the LED module 1D shown in FIG.
  • the first colored layer 21EA is arranged between the plurality of LED chips 11Y.
  • the first colored layer 21EA is arranged in some gaps between the plurality of LED chips 11Y.
  • the first colored layer 21EA is arranged in the first gap Ga.
  • the first colored layer 21EA is not arranged in the second gap Gb.
  • the first colored layer 21EA arranged in the first gap Ga is not in contact with the LED chip 11Y next to the first colored layer 21EA.
  • the first colored layer 21EA is not in contact with the LED chip 11Y, but is in contact with the wiring 11Z.
  • the height position of the upper surface 21EAa of the first colored layer 21EA arranged between the plurality of LED chips 11Y is lower than the height position of the upper surface 11Ya of the LED chips 11Y.
  • the distance L between the height position of the upper surface 21Ea of the first colored layer 21EA arranged between the plurality of LED chips 11Y and the height position of the upper surface 11Ya of the LED chip 11Y is greater than the height H of the LED chip 11Y. small. Distance L is less than 100% of height H.
  • the distance L is 50% or more of the height H in the LED module having the configuration Aa.
  • the gap Sa between the first colored layer 21EA arranged in the first gap Ga and the LED chip 11Y adjacent to the first colored layer 21EA is the second It is equal to or greater than the gap Sb of the gap Gb.
  • the light transmission layer 22E is arranged above the LED chip 11Y.
  • the light transmission layer 22E is arranged across the plurality of LED chips 11Y.
  • the light transmission layer 22E covers the plurality of LED chips 11Y.
  • the light transmission layer 22E is also arranged on the side of the LED chip 11Y.
  • the light transmission layer 22E is arranged on the upper surface 11Ya and side surfaces of the LED chip 11Y.
  • the light transmission layer 22E is in contact with the LED chip 11Y.
  • the light transmission layer 22E is in contact with the upper surface 11Ya and side surfaces of the LED chip 11Y.
  • the light transmission layer 22E is arranged above the wiring 11Z.
  • the light transmission layer 22E is arranged on the upper surface of the wiring 11Z.
  • the light transmission layer 22E is in contact with the wiring 11Z. Specifically, the light transmission layer 22E is in contact with the upper surface of the wiring 11Z.
  • the light transmission layer 22E is arranged in the gaps between the plurality of LED chips 11Y.
  • the light transmission layer 22E is arranged in all gaps between the plurality of LED chips 11Y.
  • the light transmission layer 22E is arranged in both the first gap Ga and the second gap Gb.
  • the light transmission layer 22E is arranged above the first colored layer 21EA.
  • the light transmission layer 22E is also arranged on the side of the first colored layer 21EA.
  • the light transmission layer 22E is arranged on the upper surface 21EAa and the side surface of the first colored layer 21EA.
  • the light transmission layer 22E is in contact with the first colored layer 21EA. Specifically, the light transmission layer 22E is in contact with the upper surface 21EAa and side surfaces of the first colored layer 21EA.
  • the second colored layer 21EB is arranged above the first colored layer 21EA.
  • the second colored layer 21EB is arranged above the first gap Ga.
  • the second colored layer 21EB is not arranged above the second gap Gb.
  • the height position of the bottom surface of the second colored layer 21EB is located above the height positions of the top surfaces 11Ya of the plurality of LED chips.
  • the height position of the upper surface of the second colored layer 21EB is the same as the height position of the upper surface of the light transmission layer 22E.
  • the second colored layer 21EB is arranged above the light transmission layer 22E.
  • the second colored layer 21EB is arranged on the upper surface of the light transmission layer 22E.
  • the second colored layer 21EB is in contact with the light transmission layer 22E.
  • the bottom surface of the second colored layer 21EB is in contact with the top surface of the light transmissive layer 22E, and the side surface of the second colored layer 21EB is in contact with the inner side surface of the light transmissive layer 22E.
  • the second colored layer 21EB is not in contact with the first colored layer 21EA, is not in contact with the LED chip 11Y, and is not in contact with the wiring 11Z.
  • the thickness of the second colored layer 21EB arranged above the light transmission layer 22E is 50 ⁇ m or less.
  • FIG. 7 is a cross-sectional view schematically showing an LED module according to the seventh embodiment of the invention.
  • the LED module 1F shown in FIG. 7 is an LED module having configuration A, configuration B, and configuration C.
  • the LED module 1F includes a substrate 11, a first colored layer 21FA, a second colored layer 21FB, and a light transmission layer 22F.
  • the LED module 1F shown in FIG. 7 and the LED module 1D shown in FIG. 5 differ only in the presence or absence of the second colored layer.
  • the first colored layer 21FA is arranged between the plurality of LED chips 11Y.
  • the first colored layer 21FA is arranged in some gaps between the plurality of LED chips 11Y.
  • the first colored layer 21FA is arranged in the first gap Ga.
  • the first colored layer 21FA is not arranged in the second gap Gb.
  • the first colored layer 21FA arranged in the first gap Ga is not in contact with the LED chip 11Y next to the first colored layer 21FA.
  • the first colored layer 21FA is not in contact with the LED chip 11Y, but is in contact with the wiring 11Z.
  • the height position of the upper surface 21FAa of the first colored layer 21FA arranged between the plurality of LED chips 11Y is lower than the height position of the upper surface 11Ya of the LED chips 11Y.
  • the distance L between the height position of the upper surface 21FAa of the first colored layer 21FA arranged between the plurality of LED chips 11Y and the height position of the upper surface 11Ya of the LED chip 11Y is greater than the height H of the LED chip 11Y. small. Distance L is less than 100% of height H.
  • the distance L is 50% or more of the height H in the LED module having the configuration Aa.
  • the gap Sa between the first colored layer 21FA arranged in the first gap Ga and the LED chip 11Y adjacent to the first colored layer 21FA is the second It is equal to or greater than the gap Sb of the gap Gb.
  • the light transmission layer 22F is arranged above the LED chip 11Y.
  • the light transmission layer 22F is arranged across the plurality of LED chips 11Y.
  • the light transmission layer 22F covers the plurality of LED chips 11Y.
  • the light transmission layer 22F is also arranged on the side of the LED chip 11Y.
  • the light transmission layer 22F is arranged on the upper surface 11Ya and side surfaces of the LED chip 11Y.
  • the light transmission layer 22F is in contact with the LED chip 11Y.
  • the light transmission layer 22F is in contact with the upper surface 11Ya and side surfaces of the LED chip 11Y.
  • the light transmission layer 22F is arranged above the wiring 11Z.
  • the light transmission layer 22F is arranged on the upper surface of the wiring 11Z.
  • the light transmission layer 22F is in contact with the wiring 11Z. Specifically, the light transmission layer 22F is in contact with the upper surface of the wiring 11Z.
  • the light transmission layer 22F is arranged in the gaps between the plurality of LED chips 11Y.
  • the light transmission layer 22F is arranged in all gaps between the plurality of LED chips 11Y.
  • the light transmission layer 22F is arranged in both the first gap Ga and the second gap Gb.
  • the light transmission layer 22F is arranged above the first colored layer 21FA. In addition, the light transmission layer 22F is also arranged on the side of the first colored layer 21FA. The light transmission layer 22F is arranged on the upper surface 21FAa and the side surface of the first colored layer 21FA. The light transmission layer 22F is in contact with the first colored layer 21FA. Specifically, the light transmission layer 22F is in contact with the top surface 21FAa and side surfaces of the first colored layer 21FA.
  • the second colored layer 21FB is arranged above the light transmission layer 22F.
  • the second colored layer 21FB is arranged on the upper surface of the light transmission layer 22F.
  • the second colored layer 21FB is in contact with the light transmission layer 22F.
  • the bottom surface of the second colored layer 21FB is in contact with the top surface of the light transmission layer 22F.
  • the second colored layer 21FB covers the light transmission layer 22F.
  • the second colored layer 21FB is not in contact with the first colored layer 21FA, is not in contact with the LED chip 11Y, and is not in contact with the wiring 11Z.
  • the thickness of the second colored layer 21FB arranged above the light transmission layer 22F is 50 ⁇ m or less.
  • FIG. 8 is a cross-sectional view schematically showing an LED module according to the eighth embodiment of the invention.
  • the LED module 1G shown in FIG. 8 is an LED module having the configuration A.
  • the LED module 1G includes a substrate 11, a colored layer 21G, a light transmission layer 22G, and an adhesive layer 25G.
  • the LED module 1G shown in FIG. 8 differs from the LED module 1 shown in FIG. 1 in the presence or absence of an adhesive layer.
  • the colored layer 21G is arranged between the plurality of LED chips 11Y.
  • the colored layer 21G is arranged in all gaps between the plurality of LED chips 11Y.
  • the colored layer 21G is arranged in both the first gap Ga and the second gap Gb.
  • the colored layer 21G is in contact with the LED chip 11Y.
  • the height position of the upper surface 21Ga of the colored layer 21G arranged between the plurality of LED chips 11Y is lower than the height position of the upper surface 11Ya of the LED chips 11Y.
  • the distance L between the height position of the upper surface 21Ga of the colored layer 21G arranged between the plurality of LED chips 11Y and the height position of the upper surface 11Ya of the LED chip 11Y is smaller than the height H of the LED chip 11Y. Distance L is less than 100% of height H.
  • the distance L is 50% or more of the height H in the LED module having the configuration Aa.
  • the LED module 1G has an adhesive layer 25G between the substrate 11 and the colored layer 21G.
  • the adhesive layer 25G is arranged between the plurality of LED chips 11Y.
  • the adhesive layer 25G is arranged in all the gaps between the plurality of LED chips 11Y.
  • the adhesive layer 25G is arranged on the top surface of the wiring 11Z on the surface of the substrate 11 .
  • the adhesive layer 25G is in contact with the upper surface of the wiring 11Z on the surface of the substrate 11. As shown in FIG.
  • the adhesive layer 25G is in contact with the colored layer 21G.
  • the light transmission layer 22G is arranged above the LED chip 11Y.
  • the light transmission layer 22G is arranged across the plurality of LED chips 11Y.
  • the light transmission layer 22G covers the plurality of LED chips 11Y.
  • the light transmission layer 22G is also arranged on the side of the LED chip 11Y.
  • the light transmission layer 22G is arranged on the upper surface 11Ya and side surfaces of the LED chip 11Y.
  • the light transmission layer 22G is in contact with the LED chip 11Y.
  • the light transmission layer 22G is in contact with the upper surface 11Ya and side surfaces of the LED chip 11Y.
  • the light transmission layer 22G is not in contact with the wiring 11Z.
  • the light transmission layer 22G is arranged between the LED chips 11Y.
  • the light transmission layer 22G is arranged in all gaps between the plurality of LED chips 11Y.
  • the light transmission layer 22G is arranged in both the first gap Ga and the second gap Gb.
  • the light transmission layer 22G is arranged above the colored layer 21G.
  • the light transmission layer 22G is arranged on the upper surface 21Ga of the colored layer 21G.
  • the light transmission layer 22G is in contact with the colored layer 21G.
  • the light transmission layer 22G is in contact with the upper surface 21Ga of the colored layer 21G.
  • the light transmission layer 22 covers the colored layer 21 .
  • FIG. 9 is a cross-sectional view schematically showing an LED module according to the ninth embodiment of the present invention.
  • the LED module 1H shown in FIG. 9 is an LED module having the configuration A and the configuration C.
  • the LED module 1H includes a substrate 11, a colored layer 21H, a light transmission layer 22H, and a light reflection layer 26H.
  • the LED module 1H shown in FIG. 9 differs from the LED module 1 shown in FIG. 1 in the presence or absence of a light reflecting layer.
  • the colored layer 21H is arranged between the plurality of LED chips 11Y.
  • the colored layer 21H is arranged in all gaps between the plurality of LED chips 11Y.
  • the colored layer 21H is arranged in both the first gap Ga and the second gap Gb. There is a gap between the colored layer 21H and the LED chip 11Y next to the colored layer 21H.
  • the colored layer 21H and the LED chip 11Y next to the colored layer 21H are not in contact with each other.
  • the colored layer 21H is in contact with the LED chip 11Y and in contact with the wiring 11Z.
  • the height position of the upper surface 21Ha of the colored layer 21H arranged between the plurality of LED chips 11Y is lower than the height position of the upper surface 11Ya of the LED chips 11Y.
  • the distance L between the height position of the upper surface 21Ha of the colored layer 21H arranged between the plurality of LED chips 11Y and the height position of the upper surface 11Ya of the LED chip 11Y is smaller than the height H of the LED chip 11Y. Distance L is less than 100% of height H.
  • the distance L is 50% or more of the height H in the LED module having the configuration Aa.
  • the LED module 1H includes a light reflecting layer 26H between the side surface of the LED chip 11Y and the side surface of the colored layer 21H.
  • a light reflecting layer 26H is arranged in the gap between the colored layer 21H and the LED chip 11Y adjacent to the colored layer 21H.
  • the light reflecting layer 26H is arranged on the side surfaces of all the LED chips 11Y.
  • the light reflecting layer 26H is in contact with the LED chip 11Y and the colored layer 21H.
  • the side surface of the light reflecting layer 26H is in contact with the side surface of the LED chip 11Y and the side surface of the colored layer 21H.
  • the height position of the upper surface of the light reflecting layer 26H is higher than the height position of the upper surface 21Ha of the colored layer 21H arranged between the plurality of LED chips 11Y.
  • the height position of the upper surface of the light reflecting layer 26H is lower than the height position of the upper surface 11Ya of the LED chip 11Y.
  • the light transmission layer 22H is arranged above the LED chip 11Y.
  • the light transmission layer 22H is arranged across the plurality of LED chips 11Y.
  • the light transmission layer 22H covers the plurality of LED chips 11Y.
  • the light transmission layer 22H is also arranged on the side of the LED chip 11Y.
  • the light transmission layer 22H is arranged on the top surface 11Ya and side surfaces of the LED chip 11Y.
  • the light transmission layer 22H is in contact with the LED chip 11Y.
  • the light transmission layer 22H is in contact with the upper surface 11Ya and side surfaces of the LED chip 11Y.
  • the light transmission layer 22H is not in contact with the wiring 11Z.
  • the light transmission layer 22H is arranged in the gaps between the plurality of LED chips 11Y.
  • the light transmission layer 22H is arranged in all gaps between the plurality of LED chips 11Y.
  • the light transmission layer 22H is arranged in both the first gap Ga and the second gap Gb.
  • the light transmission layer 22H is arranged above the colored layer 21H.
  • the light transmission layer 22H is arranged on the upper surface 21Ha of the colored layer 21H.
  • the light transmission layer 22H is in contact with the colored layer 21H.
  • the light transmission layer 22H is in contact with the upper surface 21Ha of the colored layer 21H.
  • the light transmission layer 22H covers the colored layer 21H.
  • FIG. 10 is a cross-sectional view schematically showing an LED module according to the tenth embodiment of the invention.
  • the LED module 1I shown in FIG. 10 is an LED module having configurations B and C.
  • the LED module 1I includes a substrate 11, a first colored layer 21IA, a second colored layer 21IB, and a light transmission layer 22I.
  • the LED module 1I shown in FIG. 10 and the LED module 1F shown in FIG. 7 differ only in the thickness (height) of the colored layer arranged in the first gap Ga.
  • the first colored layer 21IA is arranged between the plurality of LED chips 11Y.
  • the first colored layer 21IA is arranged in some gaps between the plurality of LED chips 11Y.
  • the first colored layer 21IA is arranged in the first gap Ga.
  • the first colored layer 21IA is not arranged in the second gap Gb.
  • the first colored layer 21IA arranged in the first gap Ga is not in contact with the LED chip 11Y next to the first colored layer 21IA.
  • the first colored layer 21IA is not in contact with the LED chip 11Y, but is in contact with the wiring 11Z.
  • the height position of the upper surface of the first colored layer 21IA arranged in the first gap Ga is higher than the height position of the upper surface 11Ya of the LED chip 11Y.
  • the gap Sa between the first colored layer 21IA arranged in the first gap Ga and the LED chip 11Y adjacent to the first colored layer 21IA is the second It is equal to or greater than the gap Sb of the gap Gb.
  • the light transmission layer 22I is arranged above the LED chip 11Y.
  • the light transmission layer 22I is arranged across the plurality of LED chips 11Y.
  • the light transmission layer 22I covers the plurality of LED chips 11Y.
  • the light transmission layer 22I is also arranged on the side of the LED chip 11Y.
  • the light transmission layer 22I is arranged on the upper surface 11Ya and side surfaces of the LED chip 11Y.
  • the light transmission layer 22I is in contact with the LED chip 11Y.
  • the light transmission layer 22I is in contact with the upper surface 11Ya and side surfaces of the LED chip 11Y.
  • the light transmission layer 22I is arranged above the wiring 11Z.
  • the light transmission layer 22I is arranged on the upper surface of the wiring 11Z.
  • the light transmission layer 22I is in contact with the wiring 11Z. Specifically, the light transmission layer 22I is in contact with the upper surface of the wiring 11Z.
  • the light transmission layer 22I is arranged in the gaps between the plurality of LED chips 11Y.
  • the light transmission layer 22I is arranged in all gaps between the plurality of LED chips 11Y.
  • the light transmission layer 22I is arranged in both the first gap Ga and the second gap Gb.
  • the light transmission layer 22I is arranged above the first colored layer 21IA.
  • the light transmission layer 22I is also arranged on the side of the first colored layer 21IA.
  • the light transmission layer 22I is arranged on the upper surface and side surfaces of the first colored layer 21IA.
  • the light transmission layer 22I is in contact with the first colored layer 21IA. Specifically, the light transmission layer 22I is in contact with the top surface and side surface of the first colored layer 21IA.
  • the second colored layer 21IB is arranged above the light transmission layer 22I.
  • the second colored layer 21IB is arranged on the upper surface of the light transmission layer 22I.
  • the second colored layer 21IB is in contact with the light transmission layer 22I.
  • the bottom surface of the second colored layer 21IB is in contact with the top surface of the light transmission layer 22I.
  • the second colored layer 21IB covers the light transmission layer 22I.
  • the second colored layer 21IB is not in contact with the first colored layer 21IA, is not in contact with the LED chip 11Y, and is not in contact with the wiring 11Z.
  • the thickness of the second colored layer 21IB arranged above the light transmission layer 22I is 50 ⁇ m or less.
  • FIG. 11 is a cross-sectional view schematically showing an LED module according to the eleventh embodiment of the invention.
  • the LED module 31 shown in FIG. 11 is an LED module having the configuration A.
  • the LED module 31 includes the LED module 1 shown in FIG. 1 and an antireflection layer 32 arranged above the light transmission layer 22 in the LED module 1 .
  • FIG. 12 is a cross-sectional view schematically showing an LED module according to the twelfth embodiment of the invention.
  • An LED module 31D shown in FIG. 12 is an LED module having a configuration A and a configuration C.
  • the LED module 31D includes the LED module 1D shown in FIG. 5 and an antireflection layer 32D arranged above the light transmission layer 22D in the LED module 1D.
  • (meth)acryloyl means one or both of “acryloyl” and “methacryloyl”
  • (meth)acrylate means one or both of “acrylate” and “methacrylate”. means.
  • the LED module includes a colored layer and a light transmission layer.
  • the material of the colored layer contains a coloring agent. Therefore, the colored layer contains a coloring agent. From the viewpoint of forming a colored layer with a good shape and increasing the formation efficiency of the colored layer, the material of the colored layer may contain a photocurable compound, a photopolymerization initiator, and a coloring agent. preferable.
  • the colored layer preferably contains a cured product of a photocurable composition containing a photocurable compound, a photopolymerization initiator, and a colorant.
  • the material of the light transmission layer preferably contains a photocurable compound and a photopolymerization initiator, and contains the photocurable compound, the photopolymerization initiator, and a filler having an average particle size of 10 ⁇ m or less. is more preferred.
  • the light transmission layer preferably contains resin or glass.
  • the light transmission layer preferably contains a cured product of a photocurable composition containing a photocurable compound and a photopolymerization initiator, or contains glass.
  • the light transmission layer contains a cured product of a photocurable composition containing a photocurable compound, a photopolymerization initiator, and a filler having an average particle size of 10 ⁇ m or less, or more preferably contains glass. preferable.
  • the colored layer is a layer colored in a color other than white, and having a total light transmittance of less than 40% at a wavelength of 650 nm with a thickness of 30 ⁇ m.
  • the light-transmitting layer is a colorless layer or a white layer (a layer colored white), and has a total light transmittance of 40% or more at a wavelength of 650 nm with a thickness of 30 ⁇ m.
  • the light transmission layer may be a colorless layer or a white layer.
  • a measurement sample (thickness of 30 ⁇ m) for measuring the total light transmittance may be obtained by cutting from the LED module, preparing a material for the colored layer or a material for the light transmission layer, and It may be obtained by forming a permeable layer.
  • the material of the colored layer is a photocurable composition.
  • the colored layer is formed, and the total light transmittance is measured, a cured product layer (measurement sample) having a thickness of 30 ⁇ m is prepared under the photocuring conditions for forming the colored layer in the LED module.
  • the material of the colored layer is irradiated with an illuminance so that the integrated light amount at a wavelength of 365 nm is 1000 mJ / cm 2
  • a cured product layer (measurement sample) having a thickness of 30 ⁇ m may be obtained by irradiating light of 1000 mW/cm 2 .
  • a light transmission layer (measurement sample) having a thickness of 30 ⁇ m is obtained under the conditions for forming the light transmission layer in the LED module. is preferred.
  • the material of the light-transmitting layer is a photocurable composition, it is preferable to obtain a cured product layer (measurement sample) having a thickness of 30 ⁇ m under the photo-curing conditions for forming the light-transmitting layer in the LED module.
  • the material of the light transmission layer is a photocurable composition and is cured to the same extent as the light transmission layer in the LED module or to the extent that it does not affect the value of the total light transmittance, the material of the light transmission layer Then, a cured product layer (measurement sample) having a thickness of 30 ⁇ m may be obtained by irradiating light with an illuminance of 1000 mW/cm 2 so that the integrated amount of light at a wavelength of 365 nm is 1000 mJ/cm 2 .
  • the above total light transmittance is measured according to JIS K7361-1.
  • the LED module is arranged above the first colored layer arranged between the plurality of LED chips and the light transmission layer, like the LED module having the configuration B and the configuration A or the configuration C. and a second colored layer.
  • the material of the first colored layer and the material of the second colored layer may be the same or different.
  • the material for the colored layer is preferably liquid at 25°C.
  • the material for the light transmission layer is preferably liquid at 25° C. from the viewpoint of good application of the material for the light transmission layer by an inkjet method.
  • the liquid form also includes a paste form.
  • the viscosity of the material of the colored layer at 25° C. and 10 rpm is preferably 3 mPa ⁇ s or more, more preferably 5 mPa ⁇ s or more, still more preferably 10 mPa ⁇ s or more, and still more preferably 160 mPa ⁇ s or more. is 2000 mPa ⁇ s or less, more preferably 1600 mPa ⁇ s or less, and still more preferably 1500 mPa ⁇ s or less.
  • the viscosity is equal to or higher than the lower limit and equal to or lower than the upper limit, the material for the colored layer can be applied even more satisfactorily by an inkjet method.
  • the viscosity of the material of the light transmission layer at 25° C. and 10 rpm is preferably 3 mPa ⁇ s or more, more preferably 5 mPa ⁇ s or more, still more preferably 10 mPa ⁇ s or more, still more preferably 160 mPa ⁇ s or more, It is preferably 2000 mPa ⁇ s or less, more preferably 1600 mPa ⁇ s or less, and still more preferably 1500 mPa ⁇ s or less.
  • the viscosity is equal to or higher than the lower limit and equal to or lower than the upper limit, the material for the light transmission layer can be applied even more satisfactorily by an inkjet method.
  • the above viscosity is measured at 25°C using an E-type viscometer (for example, "TVE22L” manufactured by Toki Sangyo Co., Ltd.) in accordance with JIS K2283.
  • E-type viscometer for example, "TVE22L” manufactured by Toki Sangyo Co., Ltd.
  • the material of the colored layer contains a photocurable compound.
  • the material of the light transmission layer preferably contains a photocurable compound.
  • the photocurable compound is a curable compound that can be cured by irradiation with light.
  • the photocurable compound is a compound having a photocurable reactive group. As for the said photocurable compound, only 1 type may be used and 2 or more types may be used together.
  • photocurable compound examples include (meth)acrylate compounds, vinyl compounds and maleimide compounds.
  • the (meth)acrylate compound may be a monofunctional (meth)acrylate compound or a polyfunctional (meth)acrylate compound, and the monofunctional (meth)acrylate compound and the polyfunctional (meth)acrylate compound may be both.
  • a monofunctional (meth)acrylate compound has one (meth)acryloyl group.
  • a polyfunctional (meth)acrylate compound has two or more (meth)acryloyl groups.
  • the photocurable compound contained in the material of the colored layer preferably contains a (meth) acrylate compound, including a polyfunctional (meth) acrylate compound. is more preferred.
  • the polyfunctional (meth)acrylate compound contained in the material for the colored layer may be a bifunctional (meth)acrylate compound, may be a trifunctional (meth)acrylate compound, or may be a tetrafunctional or higher It may be a (meth)acrylate compound.
  • the photocurable compound contained in the material of the light-transmitting layer preferably contains a (meth)acrylate compound, and a polyfunctional (meth)acrylate compound. It is more preferable to include
  • the polyfunctional (meth)acrylate compound contained in the material of the light transmission layer may be a bifunctional (meth)acrylate compound, a trifunctional (meth)acrylate compound, or a tetrafunctional or higher may be a (meth)acrylate compound of
  • Examples of the monofunctional (meth)acrylate compounds include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, i-propyl (meth)acrylate, n-butyl (meth)acrylate, i-butyl (meth) acrylate, sec-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2- Hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, allyl (meth)acrylate, benzyl (meth)acrylate, cyclohexyl (meth)acrylate, phenyl (meth)acrylate, 2 - methoxyethyl (meth)acrylate,
  • bifunctional (meth)acrylate compound examples include 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanedi(meth)acrylate, 1,10- Decanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 2,4-dimethyl-1,5-pentanediol di(meth)acrylate, butylethylpropanediol di(meth)acrylate, ethoxylated cyclohexanemethanol di(meth)acrylate (Meth)acrylate, polyethylene glycol di(meth)acrylate, oligoethylene glycol di(meth)acrylate, ethylene glycol di(meth)acrylate, 2-ethyl-2-butylbutanediol di(meth)acrylate, 2-ethyl-2 -Butylpropanedi
  • trifunctional (meth)acrylate compound examples include trimethylolpropane tri(meth)acrylate, trimethylolethane tri(meth)acrylate, alkylene oxide-modified tri(meth)acrylate of trimethylolpropane, and pentaerythritol tri(meth)acrylate.
  • dipentaerythritol tri(meth)acrylate trimethylolpropane tri((meth)acryloyloxypropyl) ether, alkylene oxide-modified tri(meth)acrylate isocyanurate, dipentaerythritol tri(meth)acrylate propionate, tri((meth) ) acryloyloxyethyl) isocyanurate, and sorbitol tri(meth)acrylate.
  • Tetrafunctional (meth)acrylate compounds include pentaerythritol tetra(meth)acrylate, sorbitol tetra(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, dipentaerythritol propionate tetra(meth)acrylate, and the like. .
  • Pentafunctional (meth)acrylate compounds include sorbitol penta(meth)acrylate and dipentaerythritol penta(meth)acrylate.
  • Hexafunctional (meth)acrylate compounds include dipentaerythritol hexa(meth)acrylate, sorbitol hexa(meth)acrylate, and alkylene oxide-modified hexa(meth)acrylate of phosphazene.
  • vinyl compounds examples include vinyl ethers, ethylene derivatives, styrene, chloromethylstyrene, ⁇ -methylstyrene, maleic anhydride, dicyclopentadiene, N-vinylpyrrolidone, and N-vinylformamide.
  • the content of the photocurable compound in 100% by weight of the material for the colored layer is preferably 20% by weight or more, more preferably 30% by weight or more, still more preferably 40% by weight or more, and preferably 90% by weight. Below, more preferably 80% by weight or less, still more preferably 70% by weight or less.
  • the content of the photocurable compound is equal to or more than the lower limit and equal to or less than the upper limit, the photocuring performance of the material of the colored layer can be enhanced, and the colored layer can be formed with even higher accuracy.
  • the content of the photocurable compound in 100% by weight of the material of the light transmission layer is preferably 40% by weight or more, more preferably 50% by weight or more, still more preferably 60% by weight or more, and preferably 99% by weight. % or less, more preferably 97 wt % or less, and still more preferably 95 wt % or less.
  • the content of the photocurable compound is equal to or more than the lower limit and equal to or less than the upper limit, the photocuring performance of the material of the light transmission layer can be enhanced, and the light transmission layer can be formed with even higher accuracy.
  • the material for the colored layer contains a photopolymerization initiator.
  • the material of the light transmission layer preferably contains a photopolymerization initiator. Only one kind of the photopolymerization initiator may be used, or two or more kinds thereof may be used in combination.
  • photopolymerization initiator examples include photoradical polymerization initiators and photocationic polymerization initiators.
  • the photopolymerization initiator is preferably a radical photopolymerization initiator.
  • the photoradical polymerization initiator is a compound that generates radicals upon exposure to light and initiates a radical polymerization reaction.
  • the radical photopolymerization initiator include benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether; alkylphenone compounds such as 1-hydroxycyclohexylphenyl ketone and 2-hydroxy-2-methylpropiophenone; Acetophenone compounds such as acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone; 2-methyl-1-[4-(methylthio)phenyl]- 2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinopheny
  • a photopolymerization initiation aid may be used together with the photoradical polymerization initiator.
  • the photopolymerization initiation aid include N,N-dimethylaminobenzoic acid ethyl ester, N,N-dimethylaminobenzoic acid isoamyl ester, pentyl-4-dimethylaminobenzoate, triethylamine and triethanolamine.
  • Photopolymerization initiation aids other than these may be used. Only one type of the photopolymerization initiation aid may be used, or two or more types may be used in combination.
  • a titanocene compound such as CGI-784 (manufactured by Ciba Specialty Chemicals) that absorbs in the visible light region may be used to promote the photoreaction.
  • photocationic polymerization initiator examples include sulfonium salts, iodonium salts, metallocene compounds, and benzoin tosylate. Only one kind of the photocationic polymerization initiator may be used, or two or more kinds thereof may be used in combination.
  • the content of the photopolymerization initiator in 100% by weight of the material for the colored layer is preferably 0.1% by weight or more, more preferably 0.5% by weight or more, and still more preferably 1.0% by weight or more. , preferably 30% by weight or less, more preferably 20% by weight or less, and even more preferably 10% by weight or less.
  • the content of the photopolymerization initiator is equal to or more than the lower limit and equal to or less than the upper limit, the photocuring performance of the material of the colored layer can be enhanced, and the colored layer can be formed with even higher accuracy.
  • the content of the photopolymerization initiator in 100% by weight of the material of the light transmission layer is preferably 0.1% by weight or more, more preferably 0.5% by weight or more, and still more preferably 1.0% by weight or more. Yes, preferably 30% by weight or less, more preferably 20% by weight or less, and even more preferably 10% by weight or less.
  • the content of the photopolymerization initiator is equal to or more than the lower limit and equal to or less than the upper limit, the photocuring performance of the material of the light transmission layer can be enhanced, and the light transmission layer can be formed with even higher accuracy.
  • the material of the colored layer contains a coloring agent.
  • the coloring agent By using the coloring agent, the total light transmittance (in particular, visible light transmittance) of the colored layer can be lowered.
  • the material of the light-transmitting layer does not contain a coloring agent. Only one kind of the coloring agent may be used, or two or more kinds thereof may be used in combination.
  • the coloring agent is preferably a pigment or a dye, preferably a black pigment or a black dye, from the viewpoint of further enhancing the wiring hiding property and further suppressing discoloration when viewed from an angle.
  • the pigment examples include carbon black, titanium black, aniline black, iron oxide, lamp black, graphite, copper-chromium composite oxide, and copper-chromium-zinc composite oxide. From the viewpoint of increasing the degree of blackness and suppressing the occurrence of light leakage, the pigment is preferably carbon black.
  • the dye examples include pyrazole azo dyes, anilinoazo dyes, triphenylmethane dyes, anthraquinone dyes, anthrapyridone dyes, benzylidene dyes, oxole dyes, pyrazolotriazole azo dyes, pyridone azo dyes, cyanine dyes.
  • the above dyes are acid dyes, direct dyes, basic dyes, mordant dyes such as acid mordant dyes, azoic dyes, disperse dyes, oil-soluble dyes, food dyes, and black by mixing two or more of these derivatives. It may be a dye or the like that has been diluted.
  • the content of the coloring agent in 100% by weight of the material for the colored layer is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, and more preferably 3.0% by weight or less. is 2.0% by weight or less.
  • the content of the coloring agent is equal to or more than the lower limit and equal to or less than the upper limit, the wiring hiding property can be further enhanced, and discoloration when viewed obliquely can be further suppressed.
  • the material of the light transmission layer preferably contains a filler.
  • the light transmission layer preferably contains a filler.
  • a filler By including a filler in the light-transmitting layer, light diffusion can be enhanced, and luminance can be further enhanced. Only one kind of the filler may be used, or two or more kinds thereof may be used in combination.
  • the filler may be an organic filler or an inorganic filler.
  • organic filler examples include polyethylene particles, polypropylene particles, polyvinyl alcohol particles, polyvinyl butyral particles, polyvinyl chloride particles, polyvinylidene chloride particles, polyvinylidene fluoride particles, acrylonitrile particles, acrylic rubber particles, polystyrene particles, divinylbenzene particles, and polyethylene.
  • examples include terephthalate particles, polyimide particles, polyamide particles, and cellulose particles.
  • inorganic fillers examples include talc, mica, montmorillonite, diatomaceous earth, alumina, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, ferrites, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, bases.
  • the filler is preferably an inorganic filler, more preferably silica, titanium oxide or calcium oxide.
  • the average particle size of the filler is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, still more preferably 0.1 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 7.0 ⁇ m or less, and still more preferably 5 ⁇ m or less. 0 ⁇ m or less.
  • the average particle size of the filler is equal to or more than the lower limit and equal to or less than the upper limit, light diffusion can be further enhanced, and luminance can be further enhanced.
  • the average particle size of the filler is preferably the volume average particle size (D50).
  • the volume average particle diameter of the filler is the average diameter measured on a volume basis, and is the value of the median diameter (D50) at 50%.
  • the volume average particle size (D50) can be measured by a laser diffraction/scattering method, an image analysis method, a Coulter method, a centrifugal sedimentation method, or the like.
  • the volume average particle size (D50) of the filler is preferably obtained by measurement using a laser diffraction/scattering method.
  • the content of the filler in 100% by weight of the material of the light transmission layer is preferably 0.1% by weight or more, more preferably 1.0% by weight or more, and preferably 10% by weight or less, more preferably 8% by weight. 0% by weight or less.
  • the content of the filler is equal to or more than the lower limit and equal to or less than the upper limit, diffusion of light can be enhanced in the light transmission layer, and luminance can be further enhanced.
  • the light transmission layer may be a glass layer.
  • the glass layer contains glass.
  • a glass layer having recesses corresponding to the shape of the LED chip it is possible to obtain an LED module with a light-transmitting layer that is a glass layer.
  • Examples of the glass include inorganic glass and organic glass.
  • the material for the colored layer and the material for the light-transmitting layer may each contain components other than the components described above.
  • Other components include thermosetting compounds, thermosetting agents, coupling agents, antifoaming agents, curing accelerators, release agents, surface treatment agents, flame retardants, viscosity modifiers, dispersants, dispersing aids, Examples include surface modifiers, plasticizers, antibacterial agents, antifungal agents, leveling agents, stabilizers, anti-sagging agents, and fluorescent substances. Only one of the other components may be used, or two or more thereof may be used in combination.
  • thermosetting compounds examples include oxetane compounds, epoxy compounds, episulfide compounds, phenol compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds and polyimide compounds.
  • the thermosetting compound may be used alone, or two or more may be used in combination.
  • the material of the colored layer contains the thermosetting compound
  • the material of the light-transmitting layer contains the thermosetting compound
  • the material of the light-transmitting layer is preferably cured by heating after being cured by light irradiation.
  • the light-transmitting layer preferably has unevenness on its upper surface.
  • a light-transmitting layer having an uneven upper surface can be obtained by using a material for the light-transmitting layer containing the above-described filler, or by performing a surface treatment after curing the material for the light-transmitting layer.
  • diffusion of light can be enhanced, and luminance can be further enhanced.
  • discoloration when viewed obliquely can be suppressed.
  • Examples of the surface treatment method include anti-glare treatment.
  • the ten-point average roughness Rz of the upper surface of the light transmission layer is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and preferably 10 ⁇ m or less, more preferably 5.0 ⁇ m or less.
  • the ten-point average roughness Rz is equal to or more than the lower limit and equal to or less than the upper limit, diffusion of light can be enhanced, and luminance can be further enhanced.
  • the ten-point average roughness Rz of the upper surface of the light transmission layer is measured with a laser microscope (for example, "OLS4100” manufactured by Olympus).
  • the ten-point average roughness Rz is measured according to JIS B0601:1994.
  • the LED module includes a substrate having a plurality of LED chips on its top surface.
  • the substrate preferably has a substrate body, a plurality of LED chips, and wiring.
  • the LED chip is usually a combination of a red LED chip, a blue LED chip and a green LED chip.
  • the number of LED chips per substrate is preferably 10,000 or more, more preferably 20,000 or more, and preferably 80,000 or less, more preferably 60,000 or less.
  • the LED module preferably includes an adhesive layer between the substrate and the colored layer. In this case, peeling of the colored layer can be made difficult to occur.
  • Examples of materials for the adhesive layer include epoxy resin, acrylic resin, and polyester resin.
  • the thickness of the adhesive layer is preferably 1.0 ⁇ m or more, more preferably 3.0 ⁇ m or more, and preferably 10.0 ⁇ m or less, more preferably 5.0 ⁇ m or less.
  • peeling of the colored layer can be made more difficult to occur.
  • the LED module preferably includes a light reflecting layer between the side surface of the LED chip and the side surface of the colored layer.
  • the light reflecting layer is preferably arranged on the side surface of the LED chip. In this case, luminance can be further increased.
  • the light reflecting layer preferably has a higher light reflectance than the colored layer.
  • the light reflecting layer preferably has a higher light reflectance than the light transmitting layer.
  • Materials for the light reflection layer include white reflectors, conductive inkjet materials, and metal 3D printer materials.
  • a method for manufacturing an LED module according to the present invention is the above-described method for manufacturing an LED module.
  • the method for manufacturing an LED module according to the present invention comprises the steps of (1) applying the material for the colored layer by an inkjet method, and (2) irradiating the material for the colored layer with light to cure the material for the colored layer. and (3) forming the light transmission layer above the LED chip.
  • the step of forming the light-transmitting layer above the LED chip includes (3A) preparing a light-transmitting layer material containing a photocurable compound and a photopolymerization initiator, It is preferable to include a step of applying the material of the light transmission layer above by an inkjet method ((3A)-1).
  • the step of forming the light-transmitting layer above the LED chip includes (3B) irradiating the material of the light-transmitting layer with light to cure the material of the light-transmitting layer, thereby Preferably, the step of forming a layer is included.
  • the step of (3) forming the light-transmitting layer above the LED chip includes (3C) the glass layer above the LED chip. It is preferable that the step is a step of arranging a light transmission layer.
  • the step of forming the light-transmitting layer above the LED chip is preferably a step of arranging the light-transmitting layer, which is a film, above the LED chip.
  • the light transmission layer a material for the light transmission layer containing a photocurable compound and a photopolymerization initiator is prepared, and the material for the light transmission layer is molded above the LED chip. can be applied.
  • the step of forming the light transmission layer above the LED chip is preferably a step of arranging the light transmission layer above the LED chip by a molding method.
  • steps (1), (2), (3), (3A) and (3B) are respectively referred to as (1) step, (2) step, (3) step, (3A ) step and (3B) step.
  • the method for manufacturing the LED module may be performed in the order of the step (1), the step (2) and the step (3), and the step (3), the step (1) and the step (2) may be performed in this order.
  • the material for the colored layer can be applied by an inkjet method.
  • the material for the light transmission layer can be applied by an inkjet method.
  • An inkjet device is used when applying the above materials by an inkjet method.
  • the inkjet device has an inkjet head.
  • the inkjet head has inkjet nozzles.
  • the colored layer can be formed by irradiating the applied material of the colored layer with light to cure the material of the colored layer.
  • the light-transmitting layer can be formed by irradiating the applied material of the light-transmitting layer with light to cure the material of the light-transmitting layer.
  • Examples of the light source used for photocuring the material of the colored layer and the material of the light-transmitting layer include an irradiation device that emits active energy rays such as ultraviolet light or visible light.
  • Examples of the light source include ultra-high pressure mercury lamps, deep UV lamps, high pressure mercury lamps, low pressure mercury lamps, metal halide lamps and excimer lasers. These light sources are appropriately selected according to the photosensitive wavelength of the constituent components of the material of the colored layer and the material of the light transmission layer.
  • the irradiation energy of the light is appropriately selected depending on the desired layer thickness or the constituent components of the material of the colored layer and the material of the light transmitting layer.
  • the irradiation energy of light is generally within the range of 10 mJ/cm 2 to 3000 mJ/cm 2 .
  • the entire coated material for the colored layer is irradiated with light to form the colored layer.
  • the colored layer may be formed by irradiating the applied colored layer material with light every time a plurality of drops of the colored layer material are applied. good.
  • the application of the material for the colored layer and the irradiation of light may be performed multiple times.
  • the entire coated material for the light transmission layer is irradiated with light to transmit the light. Layers may be formed.
  • the above step (1) may be performed only once in the thickness direction of the substrate so that the materials of the colored layers do not overlap in the thickness direction of the substrate.
  • the step (1) may be performed multiple times in the thickness direction of the substrate so that the materials of the colored layers overlap in the thickness direction of the substrate.
  • the step (3A) may be performed only once in the thickness direction of the substrate so that the material of the light transmission layer does not overlap in the thickness direction of the substrate.
  • the step (3A) may be performed multiple times in the thickness direction of the substrate so that the material of the light transmission layer overlaps in the thickness direction of the substrate.
  • Another method for manufacturing an LED module according to the present invention includes the following steps. (1X) A step of preparing a structure having a glass member, the light transmission layer, and the colored layer. (2X) preparing the substrate having a plurality of the LED chips on the upper surface thereof, and bonding the structure and the substrate so that the light transmission layer is arranged above the LED chips;
  • the step of preparing a structure having a glass member, the light-transmitting layer, and the colored layer preferably includes the following steps.
  • the step of preparing a structure having a (1X) glass member, the light-transmitting layer, and the colored layer preferably includes the following steps.
  • steps (1X), (1XA), (1XB), (1XC), (1XD) and (2X) are respectively referred to as (1X), (1XA), and (1XB).
  • step, (1XC) step, (1XD) step and (2X) step are respectively referred to as (1X), (1XA), and (1XB).
  • the method for manufacturing the LED module may be performed in the order of the (1XA) step, the (1XB) step, the (1XC) step and the (1XD) step, or the (1XC) step and the (1XD) step.
  • the above (1XA) step and the above (1XB) step may be performed in this order.
  • the material for the light transmission layer can be applied by an inkjet method.
  • the material for the light transmission layer may be applied to one surface side of the glass member.
  • the material for the colored layer can be applied by an inkjet method.
  • the material for the colored layer may be applied to one surface side of the glass member.
  • the material of the light transmission layer may be applied to the side of the light transmission layer opposite to the glass member side.
  • the material for the light transmission layer is applied by an ink jet device when the material is applied by the light transmission layer ink jet method.
  • the inkjet device has an inkjet head.
  • the inkjet head has inkjet nozzles.
  • the material for the light-transmitting layer that has been applied can be irradiated with light to cure the material for the light-transmitting layer, thereby forming the light-transmitting layer.
  • the colored layer can be formed by irradiating the applied colored layer material with light to cure the colored layer material.
  • the light-transmitting layer and the colored layer are located on one surface side of the glass member.
  • Examples of the light source used for photocuring the material of the colored layer and the material of the light-transmitting layer include an irradiation device that emits active energy rays such as ultraviolet light or visible light.
  • Examples of the light source include ultra-high pressure mercury lamps, deep UV lamps, high pressure mercury lamps, low pressure mercury lamps, metal halide lamps and excimer lasers. These light sources are appropriately selected according to the photosensitive wavelength of the constituent components of the material of the colored layer and the material of the light transmission layer.
  • the irradiation energy of the light is appropriately selected depending on the desired layer thickness or the constituent components of the material of the colored layer and the material of the light transmitting layer.
  • the irradiation energy of light is generally within the range of 10 mJ/cm 2 to 3000 mJ/cm 2 .
  • the entire coated material of the light transmission layer is irradiated with light to thereby transmit the light. Layers may be formed.
  • every time a plurality of drops of the material for the light transmission layer are applied the light is irradiated to the coated material for the light transmission layer to form the light transmission layer. You may In the method for manufacturing an LED module, the application of the material for the light transmission layer and the irradiation of light may be performed multiple times.
  • the entire coated material for the colored layer is irradiated with light to form the colored layer.
  • the colored layer may be formed by irradiating the applied colored layer material with light every time a plurality of drops of the colored layer material are applied. good.
  • the application of the material for the colored layer and the irradiation of light may be performed multiple times.
  • the above (1XA) step may be performed only once in the thickness direction of the glass member so that the material of the light transmission layer does not overlap in the thickness direction of the glass member.
  • the (1XA) step may be performed multiple times in the thickness direction of the glass member so that the material of the light transmission layer overlaps in the thickness direction of the glass member.
  • the (1XC) step may be performed only once in the thickness direction of the glass member so that the materials of the colored layers do not overlap in the thickness direction of the glass member.
  • the (1XD) step may be performed multiple times in the thickness direction of the glass member so that the materials of the colored layers overlap in the thickness direction of the glass member.
  • the structure and the substrate are bonded together so that the light transmission layer is arranged above the LED chip. Also, the light transmission layer and the colored layer are arranged above the substrate. It is preferable that the light transmission layer and the colored layer are positioned between the glass member and the substrate after the step (2X).
  • the structure and the substrate are arranged such that the light-transmitting layer and the colored layer in the structure face the substrate. It is preferable to stick together.
  • the glass member may be a glass plate.
  • the material of the glass member the glass described in the column of the light transmission layer can be used.
  • the shape of the LED module is not particularly limited.
  • the shape of the LED module may be round, rectangular, or triangular in plan view.
  • LED display device An LED display device according to the present invention comprises a plurality of LED modules as described above. In the LED display device according to the present invention, a plurality of the LED modules described above are connected.
  • FIG. 13 is a partially cutaway cross-sectional view schematically showing an LED display device obtained using an LED module according to one embodiment of the present invention.
  • the LED display device 50 shown in FIG. 13 includes a plurality of LED modules 1.
  • a plurality of LED modules 1 are connected.
  • a plurality of LED modules 1 are connected at the side surfaces.
  • a plurality of LED modules 1 are arranged side by side in the horizontal direction and connected.
  • a plurality of LED modules 1 may be arranged side by side and connected in the front-to-back direction. In this case, the size of the LED display device 50 can be increased.
  • the electrodes on the substrate body 11X of the connected LED modules 1 are electrically connected to each other by the wiring 11Z.
  • a method of obtaining an LED display device by connecting the LED modules there is a method of arranging a plurality of manufactured modules.
  • the method for connecting the LED modules include a method using an adhesive, a method using a connector, and a method of fitting the LED modules in a row.
  • the number of connected LED modules is preferably 3 or more, more preferably 5 or more. When the number of LED modules is equal to or greater than the lower limit, the size of the LED display device can be further increased. In the LED display device, the number of connected LED modules is preferably 35 or less, more preferably 30 or less. When the number of LED modules is equal to or less than the upper limit, the LED display device can be made lightweight.
  • LED modules having the same structure may be connected, or LED modules having different structures may be connected.
  • the LED module having the configuration A may be connected, or the LED module having the configuration A and the LED module having the configuration B may be connected.
  • the LED module having the configuration A, the LED module having the configuration B, and the LED module having the configuration C may be connected.
  • the shape of the LED display device is not particularly limited.
  • the shape of the LED display device may be round, rectangular, or triangular in plan view. By connecting a plurality of LED modules, various shapes of LED display devices can be obtained.
  • the following materials for the colored layer were prepared.
  • Photocurable compound Tricyclodecane dimethanol diacrylate ("IRR-214K” manufactured by Daicel Allnex Co., Ltd.
  • Photoinitiator 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]1-butanone ("Omnirad 379EG" manufactured by IGM Resins)
  • Carbon black (“MA220” manufactured by Mitsubishi Chemical Corporation)
  • Colored layer material (1) 89 parts by weight of a photocurable compound, 9 parts by weight of a photopolymerization initiator, 1 part by weight of a coloring agent, and 1 part by weight of a dispersant were mixed to prepare a colored layer material (1). .
  • Colored layer material (2) 90 parts by weight of a photocurable compound, 9 parts by weight of a photopolymerization initiator, 0.1 parts by weight of a coloring agent, and 0.1 parts by weight of a dispersant are mixed to obtain a colored layer material (2 ) was made.
  • the materials (1) and (2) of the colored layer were irradiated with light having an illuminance of 1000 mW/cm 2 so that the integrated amount of light at a wavelength of 365 nm was 1000 mJ/cm 2 , and the cured product layer (1) having a thickness of 30 ⁇ m was irradiated. ) and (2), the total light transmittance of the resulting cured product layers (1) and (2) was less than 40%, respectively.
  • the following materials for the light transmission layer were prepared.
  • Photocurable compound Tricyclodecane dimethanol diacrylate ("IRR-214K” manufactured by Daicel Allnex Co., Ltd.
  • Photoinitiator 1-hydroxycyclohexyl phenyl ketone ("Omnirad184" manufactured by IGM Resins)
  • Material of light transmission layer (1) 92 parts by weight of a photocurable compound and 8 parts by weight of a photopolymerization initiator were mixed to prepare material (1) for a light transmission layer.
  • Material of light transmission layer (2) 89 parts by weight of a photocurable compound, 8 parts by weight of a photopolymerization initiator, 3 parts by weight of a filler, and 1 part by weight of a dispersant were mixed to prepare a material (2) for a light transmission layer. .
  • the materials (1) and (2) of the light transmission layer were irradiated with light with an illuminance of 1000 mW/cm 2 so that the integrated amount of light at a wavelength of 365 nm was 1000 mJ/cm 2 , and a cured product layer with a thickness of 30 ⁇ m ( When 1) and (2) were obtained, the total light transmittance of the obtained cured product layers (1) and (2) was 40% or more, respectively.
  • a PF adhesive (“Resitop PL-360" manufactured by Gun Ei Chemical Industry Co., Ltd.) was diluted with water and adjusted to double the weight to prepare a material for an adhesive layer.
  • a substrate comprising a plurality of LED chips (100 ⁇ m in height) and wiring on the surface of a substrate body (made of glass)
  • Example 1 As the material for the colored layer, the material (1) for the colored layer was used. As the material for the light-transmitting layer, the material (1) for the light-transmitting layer was used. A colored layer was formed in the gaps between the plurality of LED chips on the substrate by repeating ejection of the colored layer material from the inkjet head of a piezo inkjet printer equipped with an ultraviolet irradiation device and curing by ultraviolet irradiation. Next, on the upper side of the formed colored layer, a light transmission layer was formed by repeating ejection of the material for the light transmission layer from the inkjet head of a piezo inkjet printer equipped with an ultraviolet irradiation device and curing by ultraviolet irradiation. . In this manner, an LED module having configuration A (the cross-sectional shape is shown in FIG. 1) was produced.
  • A the cross-sectional shape is shown in FIG. 1
  • Example 2 An LED module having structure A (the cross-sectional shape is shown in FIG. 1) was fabricated in the same manner as in Example 1, except that the material (2) for the light-transmitting layer was used as the material for the light-transmitting layer.
  • Example 3 An LED module having configuration A (the cross-sectional shape is shown in FIG. 1) was produced in the same manner as in Example 1, except that the thickness of the colored layer was changed.
  • Example 4 An adhesive layer material was applied by an inkjet device to form an adhesive layer in the gaps between the plurality of LED chips on the substrate. Next, a colored layer was formed on the upper side of the formed adhesive layer and in the gaps between the plurality of LED chips on the substrate.
  • An LED module having the configuration A (the cross-sectional shape is shown in FIG. 8) was manufactured in the same manner as in Example 1 except for these.
  • Example 5 A light reflecting layer was formed by applying silver nano ink to the side surface of the LED chip with an inkjet device.
  • An LED module (cross-sectional shape is shown in FIG. 9) having structure A and structure C was produced in the same manner as in Example 1, except that a substrate having a light reflecting layer disposed on the side surface of the LED chip was used.
  • Example 6 An LED module was produced in the same manner as in Example 1, except that the thickness of the colored layer was changed, and the upper surface of the light-transmitting layer of the LED module was subjected to anti-glare treatment to form unevenness on the upper surface of the light-transmitting layer. was made.
  • the ten-point average roughness Rz of the upper surface of the light transmission layer was 2.0 ⁇ m.
  • an LED module having configuration A (the cross-sectional shape is shown in FIG. 1 (the unevenness of the upper surface of the light-transmitting layer is not shown)) was produced.
  • Example 7 The material (1) for the colored layer was used as the material for the first colored layer and the material for the second colored layer. As the material for the light-transmitting layer, the material (1) for the light-transmitting layer was used. Repeatedly ejecting the material for the first colored layer from the inkjet head of a piezo inkjet printer equipped with an ultraviolet irradiation device and curing by ultraviolet irradiation, the first coloring is applied to the gaps between the plurality of LED chips on the substrate. formed a layer.
  • LED modules (the cross-sectional shape is shown in FIG. 4) having the configurations A and B were produced.
  • Colored layer material (1) was used as the colored layer material.
  • the material (2) for the light transmission layer was used as the material for the light transmission layer.
  • a colored layer was formed in the gaps between the plurality of LED chips on the substrate by repeating ejection of the colored layer material from the inkjet head of a piezo inkjet printer equipped with an ultraviolet irradiation device and curing by ultraviolet irradiation. The material of the colored layer was applied to the first gap Ga between adjacent pixels, but not applied to the second gap Gb within the pixel. Further, the colored layer was formed so that there was a gap between the colored layer arranged in the first gap Ga and the LED chip adjacent to the colored layer.
  • a light transmission layer was formed by repeating ejection of the material for the light transmission layer from an inkjet head of a piezo inkjet printer equipped with an ultraviolet irradiation device and curing by ultraviolet irradiation.
  • LED modules (the cross-sectional shape is shown in FIG. 5) having the configurations A and C were produced.
  • Example 9 The material (1) for the colored layer was used as the material for the first colored layer and the material for the second colored layer. As the material for the light-transmitting layer, the material (1) for the light-transmitting layer was used. The material of the first colored layer was applied in the first gap Ga between adjacent pixels and not applied in the second gap Gb within the pixel. Also, the first colored layer was formed so that there was a gap between the first colored layer arranged in the first gap Ga and the LED chip adjacent to the first colored layer. Next, a light transmission layer was formed by repeating ejection of the material for the light transmission layer from an inkjet head of a piezo inkjet printer equipped with an ultraviolet irradiation device and curing by ultraviolet irradiation.
  • LED modules (the cross-sectional shape is shown in FIG. 6) having configurations A, B, and C were produced.
  • Example 10 An LED module having configuration C (cross section The shape is shown in Fig. 3).
  • the material (1) for the colored layer was used as the material for the first colored layer and the material for the second colored layer.
  • the material for the light-transmitting layer the material (1) for the light-transmitting layer was used.
  • the material of the first colored layer was applied in the first gap Ga between adjacent pixels and not applied in the second gap Gb within the pixel.
  • the first colored layer was formed so that there was a gap between the first colored layer arranged in the first gap Ga and the LED chip adjacent to the first colored layer.
  • a light transmission layer was formed by repeating ejection of the material for the light transmission layer from an inkjet head of a piezo inkjet printer equipped with an ultraviolet irradiation device and curing by ultraviolet irradiation.
  • a second colored layer is formed on the upper side of the light transmission layer by repeating ejection of the material for the light transmission layer from the inkjet head of a piezo inkjet printer equipped with an ultraviolet irradiation device and curing by ultraviolet irradiation. bottom.
  • LED modules (the cross-sectional shape is shown in FIG. 7) having configurations A, B, and C were produced.
  • Colored layer material (1) was used as the colored layer material.
  • the material (1) for the light transmission layer was used as the material for the light transmission layer. Ejection of the material for the light transmission layer from the inkjet head of a piezo inkjet printer equipped with an ultraviolet irradiation device and curing by ultraviolet irradiation are repeated to form a light transmission layer in the gaps and above the plurality of LED chips on the substrate. formed.
  • a colored layer was formed on the upper side of the formed light-transmitting layer by repeating ejection of the material for the colored layer from an inkjet head of a piezo inkjet printer equipped with an ultraviolet irradiation device and curing by ultraviolet irradiation. In this way, an LED module having configuration B (the cross-sectional shape is shown in FIG. 2) was produced.
  • Example 13 Structures A and C were prepared in the same manner as in Example 8, except that the light-transmitting layer material (1) was used as the material for the light-transmitting layer, and the position of the colored layer material was adjusted. An LED module (the cross-sectional shape is shown in FIG. 5) was produced.
  • Example 14 The material (2) for the light transmission layer is used as the material for the light transmission layer, the upper surface of the second colored layer is anti-glare treated to form unevenness on the upper surface of the second colored layer, and An LED module was produced in the same manner as in Example 11, except that the thickness of the second colored layer was increased. An LED module having configuration A, configuration B, and configuration C (the cross-sectional shape is shown in FIG. 7 (the unevenness of the upper surface of the second colored layer is not shown)) was produced. The ten-point average roughness Rz of the upper surface of the colored layer was 2.0 ⁇ m.
  • Example 15 The material (2) for the light-transmitting layer is used as the material for the light-transmitting layer, the upper surface of the second colored layer is antiglare-treated to form irregularities on the upper surface of the second colored layer, and the second An LED module was produced in the same manner as in Example 11, except that the thickness of the colored layer was increased and the shape of the first colored layer was tapered.
  • An LED module having configuration A, configuration B, and configuration C (the cross-sectional shape is shown in FIG. 7 except that the colored layer has a tapered shape (the unevenness on the upper surface of the second colored layer is not shown)) was manufactured.
  • the ten-point average roughness Rz of the upper surface of the second colored layer was 2.0 ⁇ m.
  • Example 16 The material (2) for the light-transmitting layer is used as the material for the light-transmitting layer, the upper surface of the second colored layer is antiglare-treated to form irregularities on the upper surface of the second colored layer, and the second The LED module was manufactured in the same manner as in Example 11 except that the thickness of the colored layer was increased, the shape of the first colored layer was tapered, and the thickness of the second colored layer was increased. made.
  • An LED module having configuration A, configuration B, and configuration C (the cross-sectional shape is shown in FIG. 7 except that the colored layer has a tapered shape (the unevenness on the upper surface of the second colored layer is not shown)) was manufactured.
  • the ten-point average roughness Rz of the upper surface of the second colored layer was 2.0 ⁇ m.
  • Example 17 A film made of material (1) for the light-transmitting layer is prepared as the light-transmitting layer, the light-transmitting layer is disposed above the colored layer, and an antireflection film is disposed above the light-transmitting layer.
  • An LED module was produced in the same manner as in Example 8, except for the above.
  • An LED module (the cross-sectional shape is shown in FIG. 12) having the configuration A and the configuration C was produced.
  • Example 18 A film made of material (1) for the light-transmitting layer is prepared as the light-transmitting layer, the light-transmitting layer is disposed above the colored layer, and an antireflection film is disposed above the light-transmitting layer.
  • An LED module was produced in the same manner as in Example 1, except for the above.
  • An LED module having configuration A (the cross-sectional shape is shown in FIG. 11) was fabricated.
  • Example 19 A film made of material (1) for the light-transmitting layer is prepared as the light-transmitting layer, the light-transmitting layer is disposed above the colored layer, and an antireflection film is disposed above the light-transmitting layer.
  • An LED module was produced in the same manner as in Example 8, except that the shape of the colored layer was tapered.
  • An LED module having configuration A and configuration C (the cross-sectional shape is shown in FIG. 12, except that the colored layer has a tapered shape) was produced.
  • Example 20 An LED module was produced in the same manner as in Example 8, except that the upper side of the light transmission layer was subjected to anti-glare treatment using an anti-glare coating agent to form unevenness on the upper surface of the light transmission layer. An LED module was produced. An LED module having the configuration A and the configuration C (the cross-sectional shape is shown in FIG. 5) was produced. The ten-point average roughness Rz of the upper surface of the light transmission layer was 2.0 ⁇ m.
  • Example 21 A film made of material (1) for the light transmission layer is prepared as the light transmission layer, the light transmission layer is arranged above the colored layer, and an antireflection film is arranged above the light transmission layer. , and the shape of the colored layer was tapered, in the same manner as in Example 1 to produce an LED module.
  • An LED module having configuration A (the cross-sectional shape is shown in FIG. 11, except that the colored layer has a tapered shape) was fabricated.
  • Example 22 An LED module was produced in the same manner as in Example 11, except that the material (2) for the light-transmitting layer was used as the material for the light-transmitting layer, and the light-transmitting layer was formed on the upper side of the formed colored layer by molding. .
  • An LED module (the cross-sectional shape is shown in FIG. 7) having configuration A, configuration B, and configuration C was fabricated.
  • FIG. 14 is a cross-sectional view schematically showing an LED module produced in Comparative Example 1.
  • the LED module 101 produced in Comparative Example 1 includes a substrate 11 and a colored layer 121 .
  • FIG. 15 is a cross-sectional view schematically showing an LED module produced in Comparative Example 2.
  • the LED module 101A manufactured in Comparative Example 2 includes a substrate 11 and a light transmission layer 122. As shown in FIG.
  • FIG. 16 is a cross-sectional view schematically showing an LED module produced in Comparative Example 3.
  • the LED module 101B produced in Comparative Example 3 includes a substrate 11, a colored layer 121B, and a light transmission layer 122B.
  • FIG. 17 is a cross-sectional view schematically showing an LED module produced in Comparative Example 4.
  • an LED module 101C manufactured in Comparative Example 4 includes a substrate 11, a colored layer 121C, and a light transmission layer 122C.
  • FIG. 18 is a cross-sectional view schematically showing an LED module produced in Comparative Example 5.
  • the LED module 101D manufactured in Comparative Example 5 includes a substrate 11, a colored layer 121D, and a light transmission layer 122D.
  • ratio (luminance (2) / luminance (1)) is 0.8 or more ⁇ : ratio (luminance (2) / luminance (1)) is 0.6 or more and less than 0.8 ⁇ : ratio (luminance (2)/luminance (1)) is 0.3 or more and less than 0.6 ⁇ : ratio (luminance (2)/luminance (1)) is less than 0.3
  • the luminance is measured from directly above the wiring using a luminance meter ("LS-150" manufactured by Konica Minolta Co., Ltd.), and the obtained measured value is luminance (3) and The wiring hiding property of the obtained LED module was judged according to the following criteria.
  • luminance (3) is less than 0.1 ⁇ : luminance (3) is 0.1 or more and less than 0.15 ⁇ : luminance (3) is 0.15 or more and less than 0.2 ⁇ : luminance (3) is 0.2 or more

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)

Abstract

輝度と配線隠蔽性との双方を高めることができ、さらに、斜めから見たときの変色を抑えることができるLEDモジュールを提供する。 本発明に係るLEDモジュールは、複数のLEDチップを上面に有する基板と、着色層と、光透過層とを備え、前記着色層の材料が、着色剤を含み、前記光透過層が、前記LEDチップの上方に配置されており、特定の構成A、構成B、及び構成Cのうちの少なくとも1つの構成を備える。

Description

LEDモジュール、LEDモジュールの製造方法及びLED表示装置
 本発明は、発光ダイオード(LED)チップを備えるLEDモジュールに関する。また、本発明は、上記LEDモジュールの製造方法、及び上記LEDモジュールを備えるLED表示装置に関する。
 様々な電子機器用途において、発光ダイオード(LED)チップが用いられている。例えば、基板上にリードフレーム及びLEDチップが配置されており、かつ該リードフレーム及びLEDチップが樹脂により封止されているLEDパッケージが広く用いられている。
 近年、広告や案内板等に、大型の表示装置が用いられている。大型の表示装置として、複数の上記LEDパッケージを配列して小型のLEDモジュールを作製した後、該LEDモジュールをつなぎ合わせた表示装置が知られている。上記表示装置では、例えば、白、赤、青、緑等にLEDを点灯させて、表示を行うことができる。
 下記の特許文献1には、透明度の高いシリコーン材料により、LED等の光素子が封止された光デバイスが記載されている。
 下記の特許文献2には、複数の発光素子が配線基板に実装された発光モジュールと、黒色封止材シートと、透明光学層とを備える自発光型表示体が記載されている。この自発光型表示体では、上記黒色封止材シートが、上記発光素子及び上記配線基板の表面を被覆するように上記発光モジュールに積層されており、上記透明光学層が、上記黒色封止材シートに積層されている。
特開2016-191038号公報 特開2019-204905号公報
 特許文献1に記載のような透明度の高い材料によりLEDチップが封止された光デバイス(LEDモジュール)では、LEDを点灯させたときに、輝度を高くすることができる。しかしながら、透明度の高い材料が単に用いられた光デバイスでは、LEDチップ間に配置された配線を隠蔽することは困難である。
 一方、特許文献2に記載の光デバイス(LEDモジュール)では、黒色封止材シートが用いられているので、配線隠蔽性をある程度高めることができる。しかしながら、特許文献2に記載の光デバイスでは、黒色封止材シートがLEDチップを覆うように配置されているので、輝度を十分に高くすることは困難である。
 従来のLEDモジュールでは、輝度を高く維持したままで、配線隠蔽性を高めることは困難である。
 本発明者らは、輝度を高く維持したまま配線隠蔽性を高めるために、LEDチップ間に着色剤を含む層(着色層)を配置することを試みた。しかしながら、本発明者らは、LEDチップ間に着色層を単に配置しただけでは、LEDを点灯させたLEDモジュールを斜めから見たときに変色が生じやすいことを見出した。
 本発明の目的は、輝度と配線隠蔽性との双方を高めることができ、さらに、斜めから見たときの変色を抑えることができるLEDモジュールを提供することである。また、本発明は、上記LEDモジュールの製造方法、及び上記LEDモジュールを備えるLED表示装置を提供することも目的とする。
 本発明の広い局面によれば、LEDモジュールは、複数のLEDチップを上面に有する基板と、着色層と、光透過層とを備え、前記着色層の材料が、着色剤を含み、前記光透過層が、前記LEDチップの上方に配置されており、前記LEDモジュールは、以下の構成A、構成B、及び構成Cのうちの少なくとも1つの構成を備える、LEDモジュールが提供される。
 構成A:前記着色層が、複数の前記LEDチップの間隙に配置されており、複数の前記LEDチップの間隙に配置された前記着色層の上面の高さ位置が、前記LEDチップの上面の高さ位置と同等以下である
 構成B:前記着色層が、前記光透過層の上方に配置されており、前記光透過層の上方に配置された前記着色層の厚みが、50μm以下である
 構成C:複数の画素がそれぞれ、複数の前記LEDチップにより構成されており、複数の前記LEDチップの間隙が、隣り合う前記画素間の第1の間隙Gaと前記画素内の第2の間隙Gbとを有し、前記着色層が、前記第1の間隙Gaに配置されており、前記第1の間隙Gaに配置された前記着色層と該着色層の隣の前記LEDチップとの間に間隙がある
 本発明に係るLEDモジュールのある特定の局面では、前記着色層の材料が、光硬化性化合物と、光重合開始剤とをさらに含む。
 本発明に係るLEDモジュールのある特定の局面では、前記LEDモジュールは、前記構成Aを少なくとも備える。
 本発明に係るLEDモジュールのある特定の局面では、前記LEDモジュールは、前記構成Bを少なくとも備える。
 本発明に係るLEDモジュールのある特定の局面では、前記LEDモジュールは、前記構成Cを少なくとも備える。
 本発明に係るLEDモジュールのある特定の局面では、前記構成Aが、以下の構成Aaを満たす。
 構成Aa:複数の前記LEDチップの間隙に配置された前記着色層の上面の高さ位置と前記LEDチップの上面の高さ位置との距離が、前記LEDチップの高さの50%以上である
 本発明に係るLEDモジュールのある特定の局面では、前記構成Cが、以下の構成Caを満たす。
 構成Ca:前記第1の間隙Gaに配置された前記着色層と該着色層の隣の前記LEDチップとの間隙の間隔Saが、前記第2の間隙Gbの間隔Sbと同等以上である
 本発明に係るLEDモジュールのある特定の局面では、前記構成Cにおいて、前記着色層の厚みが30μm以下である。
 本発明に係るLEDモジュールのある特定の局面では、前記構成Aにおいて、前記着色層がテーパー形状を有し、前記構成Cにおいて、前記着色層がテーパー形状を有する。
 本発明に係るLEDモジュールのある特定の局面では、前記着色層の材料が、光硬化性化合物と、光重合開始剤とをさらに含み、前記着色層の材料に含まれる前記光硬化性化合物が、多官能(メタ)アクリレート化合物を含む。
 本発明に係るLEDモジュールのある特定の局面では、前記光透過層が、樹脂又はガラスを含む。
 本発明に係るLEDモジュールのある特定の局面では、前記光透過層が、平均粒子径が10μm以下であるフィラーを含む。
 本発明に係るLEDモジュールのある特定の局面では、前記LEDモジュールは、前記LEDチップの側面と前記着色層の側面との間に、光反射層をさらに備える。
 本発明に係るLEDモジュールのある特定の局面では、前記光透過層が、上面に凹凸を有する。
 本発明に係るLEDモジュールのある特定の局面では、前記LEDモジュールは、前記基板と前記着色層との間に、接着層をさらに備える。
 本発明の広い局面によれば、上述したLEDモジュールの製造方法であり、前記着色層の材料が、光硬化性化合物と、光重合開始剤とをさらに含み、前記LEDモジュールの製造方法は、前記着色層の材料をインクジェット方式で塗布する工程と、前記着色層の材料に光を照射して、前記着色層の材料を硬化させて、前記着色層を形成する工程と、前記LEDチップの上方に、前記光透過層を形成する工程とを備える、LEDモジュールの製造方法が提供される。
 本発明の広い局面によれば、上述したLEDモジュールの製造方法であり、ガラス部材と前記光透過層と前記着色層とを有する構造体を用意する工程と、複数の前記LEDチップを上面に有する前記基板を用意して、前記光透過層が、前記LEDチップの上方に配置されるように、前記構造体と前記基板とを貼り合わせる工程とを備える、LEDモジュールの製造方法が提供される。
 本発明の広い局面によれば、複数のLEDモジュールを備え、複数の前記LEDモジュールが連結されており、前記LEDモジュールが、上述したLEDモジュールである、LED表示装置が提供される。
 本発明に係るLEDモジュールは、複数のLEDチップを上面に有する基板と、着色層と、光透過層とを備え、上記着色層の材料が、着色剤を含み、上記光透過層が、上記LEDチップの上方に配置されている。本発明に係るLEDモジュールは、上記の構成A、構成B、及び構成Cのうちの少なくとも1つの構成を備える。本発明に係るLEDモジュールでは、上記の構成が備えられているので、輝度と配線隠蔽性との双方を高めることができ、さらに、斜めから見たときの変色を抑えることができる。
図1は、本発明の第1の実施形態に係るLEDモジュールを模式的に示す断面図である。 図2は、本発明の第2の実施形態に係るLEDモジュールを模式的に示す断面図である。 図3は、本発明の第3の実施形態に係るLEDモジュールを模式的に示す断面図である。 図4は、本発明の第4の実施形態に係るLEDモジュールを模式的に示す断面図である。 図5は、本発明の第5の実施形態に係るLEDモジュールを模式的に示す断面図である。 図6は、本発明の第6の実施形態に係るLEDモジュールを模式的に示す断面図である。 図7は、本発明の第7の実施形態に係るLEDモジュールを模式的に示す断面図である。 図8は、本発明の第8の実施形態に係るLEDモジュールを模式的に示す断面図である。 図9は、本発明の第9の実施形態に係るLEDモジュールを模式的に示す断面図である。 図10は、本発明の第10の実施形態に係るLEDモジュールを模式的に示す断面図である。 図11は、本発明の第11の実施形態に係るLEDモジュールを模式的に示す断面図である。 図12は、本発明の第12の実施形態に係るLEDモジュールを模式的に示す断面図である。 図13は、本発明の一実施形態に係るLEDモジュールを用いて得られるLED表示装置を模式的に示す部分切欠断面図である。 図14は、比較例1で作製したLEDモジュールを模式的に示す断面図である。 図15は、比較例2で作製したLEDモジュールを模式的に示す断面図である。 図16は、比較例3で作製したLEDモジュールを模式的に示す断面図である。 図17は、比較例4で作製したLEDモジュールを模式的に示す断面図である。 図18は、比較例5で作製したLEDモジュールを模式的に示す断面図である。
 以下、本発明を詳細に説明する。
 (LEDモジュール)
 本発明に係るLEDモジュールは、複数のLEDチップを上面に有する基板と、着色層と、光透過層とを備える。本発明に係るLEDモジュールでは、上記着色層の材料が、着色剤を含む。本発明に係るLEDモジュールでは、上記光透過層が、上記LEDチップの上方に配置されている。本発明に係るLEDモジュールは、以下の構成A、構成B、及び構成Cのうちの少なくとも1つの構成を備える。
 構成A:上記着色層が、複数の上記LEDチップの間隙に配置されており、複数の上記LEDチップの間隙に配置された上記着色層の上面の高さ位置が、上記LEDチップの上面の高さ位置と同等以下である。
 構成B:上記着色層が、上記光透過層の上方に配置されており、上記光透過層の上方に配置された上記着色層の厚みが、50μm以下である。
 構成C:複数の画素がそれぞれ、複数の上記LEDチップにより構成されており、複数の上記LEDチップの間隙が、隣り合う上記画素間の第1の間隙Gaと上記画素内の第2の間隙Gbとを有し、上記着色層が、上記第1の間隙Gaに配置されており、上記第1の間隙Gaに配置された上記着色層と該着色層の隣の上記LEDチップとの間に間隙がある。
 本発明に係るLEDモジュールでは、上記の構成が備えられているので、輝度と配線隠蔽性との双方を高めることができ、さらに、斜めから見たときの変色を抑えることができる。
 本発明に係るLEDモジュールでは、LEDを点灯させたときに、輝度を高めることができる。
 また、本発明に係るLEDモジュールでは、LEDチップ間に配置された配線を良好に隠蔽することができる。
 さらに、本発明に係るLEDモジュールでは、LEDモジュールを斜めから見たときでも、色調の変化が生じにくい。特に、上記構成Bの場合に、着色層の厚みを50μm以下と比較的薄くしているため、LEDモジュールを斜めから見たときでも、色調の変化が生じにくい。そのため、LEDモジュールを斜めから見たときの色調と、正面から見たときの色調とを同様の色調とすることができる。
 本発明に係るLEDモジュールでは、上記光透過層が上記LEDチップの上方に配置されている。本発明に係るLEDモジュールでは、上記光透過層が上記LEDチップの上面に配置されていることが好ましく、上記光透過層と上記LEDチップの上面とが接していることが好ましい。ただし、本発明に係るLEDモジュールでは、上記光透過層と上記LEDチップの上面との間に他の層が存在してもよい。
 本発明に係るLEDモジュールでは、上記光透過層の上面と上記LEDチップの上面との距離は、好ましくは10μm以上、より好ましくは20μm以上、更に好ましくは30μm以上であり、好ましくは100μm以下、より好ましくは90μm以下、更に好ましくは80μm以下である。上記距離が上記下限以上であると、LEDチップの保護性能を高めることができる。上記距離が上記上限以下であると、LEDモジュールの厚みを効果的に小さくすることができ、LEDモジュールを小型化することができる。上記光透過層の上面と上記LEDチップの上面との距離は、0μmを超えていてもよい。
 本発明に係るLEDモジュールでは、複数の上記LEDチップの上面の高さ位置は、互いに同じ位置であることが好ましい。
 本発明に係るLEDモジュールは、上記構成Aを備えていてもよく、上記構成Bを備えていてもよく、上記構成Cを備えていてもよい。本発明に係るLEDモジュールは、上記構成Aを少なくとも備えることが好ましく、上記構成Bを少なくとも備えることが好ましく、上記構成Cを少なくとも備えることが好ましい。本発明に係るLEDモジュールは、上記構成A、上記構成B、及び上記構成Cのうちの少なくとも2つの構成を備えていてもよい。本発明に係るLEDモジュールは、上記構成Aと上記構成Bとを備えていてもよく、上記構成Aと上記構成Cとを備えていてもよく、上記構成Bと上記構成Cとを備えていてもよい。本発明に係るLEDモジュールは、上記構成Aと上記構成Bとを少なくとも備えていてもよく、上記構成Aと上記構成Cとを少なくとも備えていてもよく、上記構成Bと上記構成Cとを少なくとも備えていてもよい。本発明に係るLEDモジュールは、上記構成Aと、上記構成Bと、上記構成Cとを備えていてもよい。
 以下、上記構成A、上記構成B、及び上記構成Cについて詳細に説明する。なお、本明細書において、LEDチップの高さ方向と、着色層の厚み方向とは同じ方向である。
 [構成A]
 構成A(構成i)は以下である。
 構成A:上記着色層が、複数の上記LEDチップの間隙に配置されており、複数の上記LEDチップの間隙に配置された上記着色層の上面の高さ位置が、上記LEDチップの上面の高さ位置と同等以下である。
 なお、上記着色層は、複数の上記LEDチップの間隙に配置されていれば、上記LEDチップの側面に直接接していてもよく、上記着色層と上記LEDチップの側面との間に隙間があってもよい。
 上記構成Aを備える上記LEDモジュールでは、複数の上記LEDチップの間隙に配置された上記着色層の上面の高さ位置が、上記LEDチップの上面の高さ位置と同じであってもよい。上記構成Aを備える上記LEDモジュールでは、複数の上記LEDチップの間隙に配置された上記着色層の上面の高さ位置が、上記LEDチップの上面の高さ位置よりも低い位置であってもよい。
 上記構成Aを備える上記LEDモジュールでは、複数の上記LEDチップの間隙に配置された上記着色層の上面の高さ位置が、上記LEDチップの上面の高さ位置よりも低い位置であることが好ましい。この場合には、輝度をより一層高めることができ、また、斜めから見たときの変色をより一層抑えることができる。
 輝度をより一層高める観点及び斜めから見たときの変色をより一層抑える観点からは、上記構成Aは、以下の構成Aaを満たすことが好ましい。
 構成Aa(構成i-2):複数の上記LEDチップの間隙に配置された上記着色層の上面の高さ位置と上記LEDチップの上面の高さ位置との距離が、上記LEDチップの高さの50%以上である。
 上記構成Aaを備える上記LEDモジュールでは、複数の上記LEDチップの間隙に配置された上記着色層の上面の高さ位置と上記LEDチップの上面の高さ位置との距離は、上記LEDチップの高さの50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることが更に好ましい。この場合には、輝度をより一層高めることができ、また、斜めから見たときの変色をより一層抑えることができる。なお、上記構成Aaを備える上記LEDモジュールでは、複数の上記LEDチップの間隙に配置された上記着色層の上面の高さ位置と上記LEDチップの上面の高さ位置との距離は、上記LEDチップの高さの100%以下であってもよく、90%以下であってもよく、80%以下であってもよく、75%以下であってもよい。また、上記構成Aを備える上記LEDモジュールでは、複数の上記LEDチップの間隙に配置された上記着色層の上面の高さ位置と上記LEDチップの上面の高さ位置との距離は、上記LEDチップの高さの0%以上であってもよく、0%を超えていてもよく、50%未満であってもよい。
 上記構成A又は上記構成Aaを備える上記LEDモジュールでは、複数の上記LEDチップの間隙に配置された上記着色層の上面の高さ位置と上記LEDチップの上面の高さ位置との距離は、好ましくは10μm以上、より好ましくは30μm以上、更に好ましくは40μm以上、特に好ましくは50μm以上である。この場合には、輝度をより一層高めることができ、また、斜めから見たときの変色をより一層抑えることができる。なお、上記構成A又は上記構成Aaを備える上記LEDモジュールでは、複数の上記LEDチップの間隙に配置された上記着色層の上面の高さ位置と上記LEDチップの上面の高さ位置との距離は、30μm以下であってもよく、20μm以下であってもよく、10μm以下であってもよい。
 上記構成A又は上記構成Aaを備える上記LEDモジュールでは、複数のLEDチップの間隙に配置された上記着色層の厚みは、好ましくは20μm以上、より好ましくは30μm以上、更に好ましくは40μm以上であり、好ましくは80μm以下、より好ましくは70μm以下、更に好ましくは60μm以下である。複数のLEDチップの間隙に配置された上記着色層の厚みが上記下限以上であると、配線隠蔽性をより一層高めることができる。複数のLEDチップの間隙に配置された上記着色層の厚みが上記上限以下であると、輝度をより一層高めることができ、また、斜めから見たときの変色をより一層抑えることができる。
 上記構成Aにおいて、着色層の形状は特に限定されない。輝度をより一層高める観点からは、上記構成Aにおいて、上記着色層は、テーパー形状を有することが好ましく、下方から上方に向けて幅が狭くなる形状を有することが好ましい。上記構成Aにおいて、上記LEDモジュールは、上記光透過層の上方に配置された反射防止層を備えていてもよい。
 [構成B]
 構成B(構成ii)は以下である。
 構成B:上記着色層が、上記光透過層の上方に配置されており、上記光透過層の上方に配置された上記着色層の厚みが、50μm以下である。
 なお、上記光透過層の上方とは、上記光透過層の上記基板と反対側の、上記光透過層の高さ方向を意味する。
 上記構成Bを備える上記LEDモジュールでは、上記着色層が、上記光透過層の上面に配置されていることが好ましい。上記構成Bを備える上記LEDモジュールでは、上記着色層の下面と上記光透過層の上面とが接していることが好ましい。ただし、上記構成Bを備える上記LEDモジュールでは、上記着色層と上記光透過層との間に他の層が存在してもよい。また、上記構成Bを備える上記LEDモジュールでは、上記着色層が上記光透過層の上面の全体を覆っていてもよく、上面の一部のみを覆っていてもよい。上記着色層の表面の形状は特に限定されない。上記着色層の表面は、平面であってもよく、上記着色層は表面に、凹凸形状を有していてもよい。
 上記構成Bを備える上記LEDモジュールでは、上記光透過層の上方に配置された上記着色層の厚みは、好ましくは1.0μm以上、より好ましくは3.0μm以上、更に好ましくは5.0μm以上、好ましくは50μm未満、より好ましくは30μm以下、更に好ましくは10μm以下である。上記光透過層の上方に配置された上記着色層の厚みが上記下限以上であると、配線隠蔽性をより一層高めることができる。上記光透過層の上方に配置された上記着色層の厚みが上記上限未満又は上記上限以下であると、上記光透過層及び上記着色層の透過率を適切に制御することができるため、輝度をより一層高めることができ、また、斜めから見たときの変色を抑えることができる。
 [構成C]
 構成C(構成iii)は以下である。
 構成C:複数の画素がそれぞれ、複数の上記LEDチップにより構成されており、複数の上記LEDチップの間隙が、隣り合う上記画素間の第1の間隙Gaと上記画素内の第2の間隙Gbとを有し、上記着色層が、上記第1の間隙Gaに配置されており、上記第1の間隙Gaに配置された上記着色層と該着色層の隣の上記LEDチップとの間に間隙がある。
 1つの画素は、通常、3個(3色)のLEDチップ(赤(R)、緑(G)、青(B))により構成される。
 輝度をより一層高める観点及び斜めから見たときの変色をより一層抑える観点からは、上記構成Cは、以下の構成Caを満たすことが好ましい。
 構成Ca(構成iii-2):上記第1の間隙Gaに配置された上記着色層と該着色層の隣の上記LEDチップとの間隙の間隔Saが、上記第2の間隙Gbの間隔Sbと同等以上である。
 上記構成Caを備える上記LEDモジュールでは、上記間隔Saが上記間隔Sbよりも大きいことが好ましい。この場合には、輝度をより一層高めることができ、また、斜めから見たときの変色をより一層抑えることができる。なお、上記構成Caを備える上記LEDモジュールでは、上記間隔Saが上記間隔Sbと同じであってもよい。
 上記間隔Saは、好ましくは50μm以上、より好ましくは100μm以上、更に好ましくは120μm以上であり、好ましくは300μm以下、より好ましくは250μm以下、更に好ましくは200μm以下である。上記間隔Saが上記下限以上であると、輝度をより一層高めることができ、また、斜めから見たときの変色をより一層抑えることができる。上記間隔Saが上記上限以下であると、配線隠蔽性をより一層高めることができる。
 上記間隔Sbは、好ましくは50μm以上、より好ましくは75μm以上、更に好ましくは100μm以上であり、好ましくは200μm以下、より好ましくは190μm以下、更に好ましくは180μm以下である。上記間隔Sbが上記下限以上であると、輝度をより一層高めることができ、また、斜めから見たときの変色をより一層抑えることができる。上記間隔Sbが上記上限以下であると、配線隠蔽性をより一層高めることができる。
 上記間隔Saと上記間隔Sbとの差の絶対値は、好ましくは5.0μm以上、より好ましくは10μm以上、更に好ましくは15μm以上であり、好ましくは200μm以下、より好ましくは100μm以下、更に好ましくは90μm以下、特に好ましくは80μm以下である。上記差の絶対値が上記下限以上及び上記上限以下であると、本発明の効果をより一層効果的に発揮することができる。
 上記構成C又は上記構成Caを備える上記LEDモジュールでは、上記第1の間隙Gaに配置された上記着色層の厚みは、好ましくは10μm以上、より好ましくは15μm以上、更に好ましくは20μm以上、好ましくは200μm以下、より好ましくは190μm以下、更に好ましくは180μm以下、特に好ましくは100μm以下、最も好ましくは30μm以下である。上記第1の間隙Gaに配置された上記着色層の厚みが上記下限以上であると、配線隠蔽性をより一層高めることができる。上記第1の間隙Gaに配置された上記着色層の厚みが上記上限以下であると、輝度をより一層高めることができる。上記第1の間隙Gaに配置された上記着色層の厚みは、30μm以上であってもよい。
 上記構成Cにおいて、着色層の形状は特に限定されない。輝度をより一層高める観点からは、上記構成Cにおいて、上記着色層は、テーパー形状を有することが好ましく、下方から上方に向けて幅が狭くなる形状を有することが好ましい。上記構成Cにおいて、上記LEDモジュールは、上記光透過層の上方に配置された反射防止層を備えていてもよい。
 また、本発明の効果を奏する範囲で、上記着色層及び上記光透過層とは異なる層を、他の層(光透過層等)に積層させてもよい。上記着色層及び上記光透過層とは異なる層は、LEDモジュールの最上面に位置していてもよい。上記着色層及び上記光透過層とは異なる層としては、例えば、樹脂層やガラス層などが挙げられ、具体的には反射防止層等が挙げられる。上記反射防止層は、反射防止フィルムであってもよい。斜めから見たときの変色をより一層抑える観点からは、上記樹脂層やガラス層は、表面に凹凸形状を有することが好ましい。上記凹凸形状を形成する方法は特に限定されないが、樹脂層やガラス層の表面にアンチグレア処理を行うことで、凹凸形状を形成することができる。
 上記LEDチップの高さ(厚み)は、30μm以上であってもよく、30μmを超えていてもよく、50μm以上であってもよく、50μmを超えていてもよく、55μm以上であってもよく、60μm以上であってもよく、65μm以上であってもよく、70μm以上であってもよく、75μm以上であってもよく、80μm以上であってもよい。上記LEDチップの高さ(厚み)は、1000μm以下であってもよく、500μm以下であってもよく、450μm以下であってもよく、400μm以下であってもよく、350μm以下であってもよく、300μm以下であってもよく、250μm以下であってもよい。さらに、上記LEDチップの高さ(厚み)は、200μm以下であってもよく、190μm以下であってもよく、180μm以下であってもよく、170μm以下であってもよく、160μm以下であってもよく、150μm以下であってもよい。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。なお、以下の図面において、大きさ、厚み及び形状等は、図示の便宜上、実際の大きさ、厚み及び形状等と異なる場合がある。なお、以下の図において、LEDチップの高さ方向に沿うLEDモジュールの断面図が示されている。
 図1は、本発明の第1の実施形態に係るLEDモジュールを模式的に示す断面図である。
 図1に示すLEDモジュール1は、構成Aを備えるLEDモジュールである。
 LEDモジュール1は、基板11と、着色層21と、光透過層22とを備える。
 基板11は、基板本体11Xと、複数のLEDチップ11Yと、配線11Zとを備える。基板11は、複数のLEDチップ11Yを上面に有する。LEDチップ11Yは、LEDチップ本体と電極部とを有する。LEDチップ本体は、電極部を介して、基板本体11X上に搭載されている。基板11では、複数のLEDチップ11Yが間隔を隔てて並んで配置されている。基板11では、複数のLEDチップ11Yが、基板本体11X上に配列している。基板11は、配線11Zを上面に有する。基板11では、複数のLEDチップ11Yの間隙に、配線11Zが配置されている。基板11では、LEDチップ11Yの電極部が、配線11Zにより電気的に接続されている。
 基板11において、複数の画素がそれぞれ、複数のLEDチップ11Yにより構成されている。具体的には、LEDモジュール1では、2個の画素(第1の画素P1及び第2の画素P2)がそれぞれ、3個のLEDチップ11Yにより構成されている。第1の画素P1及び第2の画素P2を構成する3個のLEDチップ11Yはそれぞれ、赤(R)のLEDチップ、緑(G)のLEDチップ及び青(B)のLEDチップである。
 複数のLEDチップ11Yの間隙は、隣り合う画素間の第1の間隙Gaと該画素内の第2の間隙Gbとを有する。第1の間隙Gaは、複数のLEDチップ11Yの間隙における第1の画素P1と第2の画素P2との間隙である。第2の間隙Gbは、複数のLEDチップ11Yの間隙における第1の画素P1内の間隙、及び、第2の画素P2内の間隙である(但し、図1においては第1の画素P1内の間隙である第2の間隙Gbの符号のみを図示している)。
 着色層21は、複数のLEDチップ11Yの間隙に配置されている。着色層21は、複数のLEDチップ11Yの全ての間隙に配置されている。着色層21は、第1の間隙Gaと第2の間隙Gbとの双方に配置されている。着色層21は、LEDチップ11Yと接しており、配線11Zと接している。
 複数のLEDチップ11Yの間隙に配置された着色層21の上面21aの高さ位置は、LEDチップ11Yの上面11Yaの高さ位置よりも低い位置である。
 複数のLEDチップ11Yの間隙に配置された着色層21の上面21aの高さ位置とLEDチップ11Yの上面11Yaの高さ位置との距離Lは、LEDチップ11Yの高さHよりも小さい。距離Lは、高さHの100%未満である。
 なお、構成Aaを備えるLEDモジュールでは、距離Lが、高さHの50%以上である。
 光透過層22は、LEDチップ11Yの上方に配置されている。光透過層22は、複数のLEDチップ11Yに跨って配置されている。光透過層22は、複数のLEDチップ11Yを覆っている。また、光透過層22は、LEDチップ11Yの側方にも配置されている。光透過層22は、LEDチップ11Yの上面11Ya及び側面に配置されている。光透過層22は、LEDチップ11Yと接している。具体的には、光透過層22は、LEDチップ11Yの上面11Ya及び側面と接している。光透過層22は、配線11Zと接していない。光透過層22は、複数のLEDチップ11Yの間隙に配置されている。光透過層22は、複数のLEDチップ11Yの全ての間隙に配置されている。光透過層22は、第1の間隙Gaと第2の間隙Gbとの双方に配置されている。
 光透過層22は、着色層21の上方に配置されている。光透過層22は、着色層21の上面21aに配置されている。光透過層22は、着色層21と接している。具体的には、光透過層22は、着色層21の上面21aと接している。光透過層22は、着色層21を覆っている。
 なお、後述する図において、基板11の構成は、図1のLEDモジュール1における基板11と同一である。
 図2は、本発明の第2の実施形態に係るLEDモジュールを模式的に示す断面図である。
 図2に示すLEDモジュール1Aは、構成Bを備えるLEDモジュールである。
 LEDモジュール1Aは、基板11と、着色層21Aと、光透過層22Aとを備える。
 上記したように、基板11において、複数の画素がそれぞれ、複数のLEDチップ11Yにより構成されている。具体的には、LEDモジュール1Aでは、2個の画素(第1の画素P1及び第2の画素P2)がそれぞれ、3個のLEDチップ11Yにより構成されている。第1の画素P1及び第2の画素P2を構成する3個のLEDチップ11Yはそれぞれ、赤(R)のLEDチップ、緑(G)のLEDチップ及び青(B)のLEDチップである。
 複数のLEDチップ11Yの間隙は、隣り合う画素間の第1の間隙Gaと該画素内の第2の間隙Gbとを有する。第1の間隙Gaは、複数のLEDチップ11Yの間隙における第1の画素P1と第2の画素P2との間隙である。第2の間隙Gbは、複数のLEDチップ11Yの間隙における第1の画素P1内の間隙、及び、第2の画素P2内の間隙である(但し、図2においては第1の画素P1内の間隙である第2の間隙Gbの符号のみを図示している)。
 光透過層22Aは、LEDチップ11Yの上方に配置されている。光透過層22Aは、複数のLEDチップ11Yに跨って配置されている。光透過層22Aは、複数のLEDチップ11Yを覆っている。また、光透過層22Aは、LEDチップ11Yの側方にも配置されている。光透過層22Aは、LEDチップ11Yの上面11Ya及び側面に配置されている。光透過層22Aは、LEDチップ11Yと接している。具体的には、光透過層22Aは、LEDチップ11Yの上面11Ya及び側面と接している。光透過層22Aは、配線11Zの上方に配置されている。光透過層22Aは、配線11Zの上面に配置されている。光透過層22Aは、配線11Zと接している。具体的には、光透過層22Aは、配線11Zの上面と接している。光透過層22Aは、複数のLEDチップ11Yの間隙に配置されている。光透過層22Aは、複数のLEDチップ11Yの全ての間隙に配置されている。光透過層22Aは、第1の間隙Gaと第2の間隙Gbとの双方に配置されている。
 着色層21Aは、光透過層22Aの上方に配置されている。着色層21Aは、光透過層22Aの上面に配置されている。着色層21Aは、光透過層22Aと接している。具体的には、着色層21Aの下面は、光透過層22Aの上面と接している。着色層21Aは、光透過層22Aを覆っている。着色層21Aは、LEDチップ11Yと接しておらず、配線11Zと接していない。
 光透過層22Aの上方に配置された着色層21Aの厚みは50μm以下である。
 図3は、本発明の第3の実施形態に係るLEDモジュールを模式的に示す断面図である。
 図3に示すLEDモジュール1Bは、構成Cを備えるLEDモジュールである。
 LEDモジュール1Bは、基板11と、着色層21Bと、光透過層22Bとを備える。
 上記したように、基板11において、複数の画素がそれぞれ、複数のLEDチップ11Yにより構成されている。具体的には、LEDモジュール1Bでは、2個の画素(第1の画素P1及び第2の画素P2)がそれぞれ、3個のLEDチップ11Yにより構成されている。第1の画素P1及び第2の画素P2を構成する3個のLEDチップ11Yはそれぞれ、赤(R)のLEDチップ、緑(G)のLEDチップ及び青(B)のLEDチップである。
 複数のLEDチップ11Yの間隙は、隣り合う画素間の第1の間隙Gaと該画素内の第2の間隙Gbとを有する。第1の間隙Gaは、複数のLEDチップ11Yの間隙における、第1の画素P1と第2の画素P2との間隙である。第2の間隙Gbは、複数のLEDチップ11Yの間隙における、第1の画素P1内の間隙、及び、第2の画素P2内の間隙である(但し、図3においては第1の画素P1内の間隙である第2の間隙Gbの符号のみを図示している)。
 着色層21Bは、複数のLEDチップ11Yの間隙に配置されている。着色層21Bは、複数のLEDチップ11Yの一部の間隙に配置されている。着色層21Bは、第1の間隙Gaに配置されている。着色層21Bは、第2の間隙Gbには配置されていない。第1の間隙Gaに配置された着色層21Bと該着色層21Bの隣のLEDチップ11Yとの間には、間隙がある。第1の間隙Gaに配置された着色層21Bと該着色層21Bの隣のLEDチップ11Yとは接していない。着色層21Bは、LEDチップ11Yと接しておらず、配線11Zとは接している。第1の間隙Gaに配置された着色層21Bの上面の高さ位置は、LEDチップ11Yの上面11Yaの高さ位置よりも高い位置である。
 なお、構成Caを備えるLEDモジュールでは、第1の間隙Gaに配置された着色層21Bと該着色層21Bの隣のLEDチップ11Yとの間隙の間隔Saが、第2の間隙Gbの間隔Sbと同等以上である。
 光透過層22Bは、LEDチップ11Yの上方に配置されている。光透過層22Bは、複数のLEDチップ11Yに跨って配置されている。光透過層22Bは、複数のLEDチップ11Yを覆っている。また、光透過層22Bは、LEDチップ11Yの側方にも配置されている。光透過層22Bは、LEDチップ11Yの上面11Ya及び側面に配置されている。光透過層22Bは、LEDチップ11Yと接している。具体的には、光透過層22Bは、LEDチップ11Yの上面11Ya及び側面と接している。光透過層22Bは、配線11Zの上方に配置されている。光透過層22Bは、配線11Zの上方に配置されている。光透過層22Bは、配線11Zの上面に配置されている。光透過層22Bは、配線11Zと接している。具体的には、光透過層22Bは、配線11Zの上面と接している。光透過層22Bは、複数のLEDチップ11Yの間隙に配置されている。光透過層22Bは、複数のLEDチップ11Yの全ての間隙に配置されている。光透過層22Bは、第1の間隙Gaと第2の間隙Gbとの双方に配置されている。
 光透過層22Bは、着色層21Bの上方に配置されている。また、光透過層22Bは、着色層21Bの側方にも配置されている。光透過層22Bは、着色層21Bの上面及び側面に配置されている。光透過層22Bは、着色層21Bと接している。具体的には、光透過層22Bは、着色層21Bの上面及び側面と接している。光透過層22Bは、配線11Zの上方に配置されている。光透過層22Bは、配線11Zの上面に配置されている。光透過層22Bは、配線11Zと接している。具体的には、光透過層22Bは、着色層21Bの上面及び側面と接している。
 図4は、本発明の第4の実施形態に係るLEDモジュールを模式的に示す断面図である。
 図4に示すLEDモジュール1Cは、構成A及び構成Bを備えるLEDモジュールである。
 LEDモジュール1Cは、基板11と、第1の着色層21CAと、第2の着色層21CBと、光透過層22Cとを備える。
 LEDモジュール1Cは、複数のLEDチップ11Yの間隙に配置された第1の着色層21CAと、光透過層22Cの上方に配置された第2の着色層21CBとを備える。
 第1の着色層21CAは、複数のLEDチップ11Yの間隙に配置されている。第1の着色層21CAは、複数のLEDチップ11Yの全ての間隙に配置されている。第1の着色層21CAは、第1の間隙Gaと第2の間隙Gbとの双方に配置されている。第1の着色層21CAは、LEDチップ11Yと接しており、配線11Zと接している。
 複数のLEDチップ11Yの間隙に配置された第1の着色層21CAの上面21CAaの高さ位置は、LEDチップ11Yの上面11Yaの高さ位置よりも低い位置である。
 複数のLEDチップ11Yの間隙に配置された第1の着色層21CAの上面21CAaの高さ位置とLEDチップ11Yの上面11Yaの高さ位置との距離Lは、LEDチップ11Yの高さHよりも小さい。距離Lは、高さHの100%未満である。
 なお、構成Aaを備えるLEDモジュールでは、距離Lが、高さHの50%以上である。
 光透過層22Cは、LEDチップ11Yの上方に配置されている。光透過層22Cは、複数のLEDチップ11Yに跨って配置されている。光透過層22Cは、複数のLEDチップ11Yを覆っている。また、光透過層22Cは、LEDチップ11Yの側方にも配置されている。光透過層22Cは、LEDチップ11Yの上面11Ya及び側面に配置されている。光透過層22Cは、LEDチップ11Yと接している。具体的には、光透過層22Cは、LEDチップ11Yの上面11Ya及び側面と接している。光透過層22Cは、配線11Zと接していない。光透過層22Cは、複数のLEDチップ11Yの間隙に配置されている。光透過層22Cは、複数のLEDチップ11Yの全ての間隙に配置されている。光透過層22Cは、第1の間隙Gaと第2の間隙Gbとの双方に配置されている。
 光透過層22Cは、第1の着色層21CAの上方に配置されている。光透過層22Cは、第1の着色層21CAの上面21CAaに配置されている。光透過層22Cは、第1の着色層21CAと接している。具体的には、光透過層22Cは、第1の着色層21CAの上面21CAaと接している。光透過層22Cは、第1の着色層21CAを覆っている。
 第2の着色層21CBは、光透過層22Cの上方に配置されている。第2の着色層21CBは、光透過層22Cの上面に配置されている。第2の着色層21CBは、光透過層22Cと接している。具体的には、第2の着色層21CBは、光透過層22Cの上面と接している。第2の着色層21CBは、光透過層22Cを覆っている。第2の着色層21CBは、第1の着色層21CAと接しておらず、LEDチップ11Yと接しておらず、配線11Zと接していない。
 光透過層22Cの上方に配置された第2の着色層21CBの厚みは50μm以下である。
 図5は、本発明の第5の実施形態に係るLEDモジュールを模式的に示す断面図である。
 図5に示すLEDモジュール1Dは、構成A及び構成Cを備えるLEDモジュールである。
 LEDモジュール1Dは、基板11と、着色層21Dと、光透過層22Dとを備える。
 図5に示すLEDモジュール1Dと、図3に示すLEDモジュール1Bとでは、第1の間隙Gaに配置された着色層の厚み(高さ)のみが異なる。
 着色層21Dは、複数のLEDチップ11Yの間隙に配置されている。着色層21Dは、複数のLEDチップ11Yの一部の間隙に配置されている。着色層21Dは、第1の間隙Gaに配置されている。着色層21Dは、第2の間隙Gbには配置されていない。第1の間隙Gaに配置された着色層21Dと該着色層21Dの隣のLEDチップ11Yとの間には、間隙がある。第1の間隙Gaに配置された着色層21Dと該着色層21Dの隣のLEDチップ11Yとは接していない。着色層21Dは、LEDチップ11Yと接しておらず、配線11Zとは接している。
 複数のLEDチップ11Yの間隙に配置された着色層21Dの上面21Daの高さ位置は、LEDチップ11Yの上面11Yaの高さ位置よりも低い位置である。
 複数のLEDチップ11Yの間隙に配置された着色層21Dの上面21Daの高さ位置とLEDチップ11Yの上面11Yaの高さ位置との距離Lは、LEDチップ11Yの高さHよりも小さい。距離Lは、高さHの100%未満である。
 なお、構成Aaを備えるLEDモジュールでは、距離Lが、高さHの50%以上である。また、構成Caを備えるLEDモジュールでは、第1の間隙Gaに配置された着色層21Dと該着色層21Dの隣のLEDチップ11Yとの間隙の間隔Saが、第2の間隙Gbの間隔Sbと同等以上である。
 光透過層22Dは、LEDチップ11Yの上方に配置されている。光透過層22Dは、複数のLEDチップ11Yに跨って配置されている。光透過層22Dは、複数のLEDチップ11Yを覆っている。また、光透過層22Dは、LEDチップ11Yの側方にも配置されている。光透過層22Dは、LEDチップ11Yの上面11Ya及び側面に配置されている。光透過層22Dは、LEDチップ11Yと接している。具体的には、光透過層22Dは、LEDチップ11Yの上面11Ya及び側面と接している。光透過層22Dは、配線11Zの上方に配置されている。光透過層22Dは、配線11Zの上面に配置されている。光透過層22Dは、配線11Zと接している。具体的には、光透過層22Dは、配線11Zの上面と接している。光透過層22Dは、複数のLEDチップ11Yの間隙に配置されている。光透過層22Dは、複数のLEDチップ11Yの全ての間隙に配置されている。光透過層22Dは、第1の間隙Gaと第2の間隙Gbとの双方に配置されている。
 光透過層22Dは、着色層21Dの上方に配置されている。また、光透過層22Dは、着色層21Dの側方にも配置されている。光透過層22Dは、着色層21Dの上面21Da及び側面に配置されている。光透過層22Dは、着色層21Dと接している。具体的には、光透過層22Dは、着色層21Dの上面21Da及び側面と接している。
 図6は、本発明の第6の実施形態に係るLEDモジュールを模式的に示す断面図である。
 図6に示すLEDモジュール1Eは、構成A、構成B及び構成Cを備えるLEDモジュールである。
 LEDモジュール1Eは、基板11と、第1の着色層21EAと、第2の着色層21EBと、光透過層22Eとを備える。
 図6に示すLEDモジュール1Eと、図5に示すLEDモジュール1Dとでは、第2の着色層の有無が異なる。
 第1の着色層21EAは、複数のLEDチップ11Yの間隙に配置されている。第1の着色層21EAは、複数のLEDチップ11Yの一部の間隙に配置されている。第1の着色層21EAは、第1の間隙Gaに配置されている。第1の着色層21EAは、第2の間隙Gbには配置されていない。第1の間隙Gaに配置された第1の着色層21EAと該第1の着色層21EAの隣のLEDチップ11Yとの間には、間隙がある。第1の間隙Gaに配置された第1の着色層21EAと該第1の着色層21EAの隣のLEDチップ11Yとは接していない。第1の着色層21EAは、LEDチップ11Yと接しておらず、配線11Zとは接している。
 複数のLEDチップ11Yの間隙に配置された第1の着色層21EAの上面21EAaの高さ位置は、LEDチップ11Yの上面11Yaの高さ位置よりも低い位置である。
 複数のLEDチップ11Yの間隙に配置された第1の着色層21EAの上面21Eaの高さ位置とLEDチップ11Yの上面11Yaの高さ位置との距離Lは、LEDチップ11Yの高さHよりも小さい。距離Lは、高さHの100%未満である。
 なお、構成Aaを備えるLEDモジュールでは、距離Lが、高さHの50%以上である。また、構成Caを備えるLEDモジュールでは、第1の間隙Gaに配置された第1の着色層21EAと該第1の着色層21EAの隣のLEDチップ11Yとの間隙の間隔Saが、第2の間隙Gbの間隔Sbと同等以上である。
 光透過層22Eは、LEDチップ11Yの上方に配置されている。光透過層22Eは、複数のLEDチップ11Yに跨って配置されている。光透過層22Eは、複数のLEDチップ11Yを覆っている。また、光透過層22Eは、LEDチップ11Yの側方にも配置されている。光透過層22Eは、LEDチップ11Yの上面11Ya及び側面に配置されている。光透過層22Eは、LEDチップ11Yと接している。具体的には、光透過層22Eは、LEDチップ11Yの上面11Ya及び側面と接している。光透過層22Eは、配線11Zの上方に配置されている。光透過層22Eは、配線11Zの上面に配置されている。光透過層22Eは、配線11Zと接している。具体的には、光透過層22Eは、配線11Zの上面と接している。光透過層22Eは、複数のLEDチップ11Yの間隙に配置されている。光透過層22Eは、複数のLEDチップ11Yの全ての間隙に配置されている。光透過層22Eは、第1の間隙Gaと第2の間隙Gbとの双方に配置されている。
 光透過層22Eは、第1の着色層21EAの上方に配置されている。また、光透過層22Eは、第1の着色層21EAの側方にも配置されている。光透過層22Eは、第1の着色層21EAの上面21EAa及び側面に配置されている。光透過層22Eは、第1の着色層21EAと接している。具体的には、光透過層22Eは、第1の着色層21EAの上面21EAa及び側面と接している。
 第2の着色層21EBは、第1の着色層21EAよりも上方に配置されている。第2の着色層21EBは、第1の間隙Gaの上方に配置されている。第2の着色層21EBは、第2の間隙Gbの上方には配置されていない。第2の着色層21EBの下面の高さ位置は、複数のLEDチップの上面11Yaの高さ位置よりも上方に位置する。第2の着色層21EBの上面の高さ位置は、光透過層22Eの上面の高さ位置と同じ位置である。
 第2の着色層21EBは、光透過層22Eの上方に配置されている。第2の着色層21EBは、光透過層22Eの上面に配置されている。第2の着色層21EBは、光透過層22Eと接している。具体的には、第2の着色層21EBの下面は、光透過層22Eの上面と接しており、第2の着色層21EBの側面は、光透過層22Eの内側面と接している。第2の着色層21EBは、第1の着色層21EAと接しておらず、LEDチップ11Yと接しておらず、配線11Zと接していない。
 光透過層22Eの上方に配置された第2の着色層21EBの厚みは50μm以下である。
 図7は、本発明の第7の実施形態に係るLEDモジュールを模式的に示す断面図である。
 図7に示すLEDモジュール1Fは、構成A、構成B及び構成Cを備えるLEDモジュールである。
 LEDモジュール1Fは、基板11と、第1の着色層21FAと、第2の着色層21FBと、光透過層22Fとを備える。
 図7に示すLEDモジュール1Fと、図5に示すLEDモジュール1Dとでは、第2の着色層の有無のみが異なる。
 第1の着色層21FAは、複数のLEDチップ11Yの間隙に配置されている。第1の着色層21FAは、複数のLEDチップ11Yの一部の間隙に配置されている。第1の着色層21FAは、第1の間隙Gaに配置されている。第1の着色層21FAは、第2の間隙Gbには配置されていない。第1の間隙Gaに配置された第1の着色層21FAと該第1の着色層21FAの隣のLEDチップ11Yとの間には、間隙がある。第1の間隙Gaに配置された第1の着色層21FAと該第1の着色層21FAの隣のLEDチップ11Yとは接していない。第1の着色層21FAは、LEDチップ11Yと接しておらず、配線11Zとは接している。
 複数のLEDチップ11Yの間隙に配置された第1の着色層21FAの上面21FAaの高さ位置は、LEDチップ11Yの上面11Yaの高さ位置よりも低い位置である。
 複数のLEDチップ11Yの間隙に配置された第1の着色層21FAの上面21FAaの高さ位置とLEDチップ11Yの上面11Yaの高さ位置との距離Lは、LEDチップ11Yの高さHよりも小さい。距離Lは、高さHの100%未満である。
 なお、構成Aaを備えるLEDモジュールでは、距離Lが、高さHの50%以上である。また、構成Caを備えるLEDモジュールでは、第1の間隙Gaに配置された第1の着色層21FAと該第1の着色層21FAの隣のLEDチップ11Yとの間隙の間隔Saが、第2の間隙Gbの間隔Sbと同等以上である。
 光透過層22Fは、LEDチップ11Yの上方に配置されている。光透過層22Fは、複数のLEDチップ11Yに跨って配置されている。光透過層22Fは、複数のLEDチップ11Yを覆っている。また、光透過層22Fは、LEDチップ11Yの側方にも配置されている。光透過層22Fは、LEDチップ11Yの上面11Ya及び側面に配置されている。光透過層22Fは、LEDチップ11Yと接している。具体的には、光透過層22Fは、LEDチップ11Yの上面11Ya及び側面と接している。光透過層22Fは、配線11Zの上方に配置されている。光透過層22Fは、配線11Zの上面に配置されている。光透過層22Fは、配線11Zと接している。具体的には、光透過層22Fは、配線11Zの上面と接している。光透過層22Fは、複数のLEDチップ11Yの間隙に配置されている。光透過層22Fは、複数のLEDチップ11Yの全ての間隙に配置されている。光透過層22Fは、第1の間隙Gaと第2の間隙Gbとの双方に配置されている。
 光透過層22Fは、第1の着色層21FAの上方に配置されている。また、光透過層22Fは、第1の着色層21FAの側方にも配置されている。光透過層22Fは、第1の着色層21FAの上面21FAa及び側面に配置されている。光透過層22Fは、第1の着色層21FAと接している。具体的には、光透過層22Fは、第1の着色層21FAの上面21FAa及び側面と接している。
 第2の着色層21FBは、光透過層22Fの上方に配置されている。第2の着色層21FBは、光透過層22Fの上面に配置されている。第2の着色層21FBは、光透過層22Fと接している。具体的には、第2の着色層21FBの下面は、光透過層22Fの上面と接している。第2の着色層21FBは、光透過層22Fを覆っている。第2の着色層21FBは、第1の着色層21FAと接しておらず、LEDチップ11Yと接しておらず、配線11Zと接していない。
 光透過層22Fの上方に配置された第2の着色層21FBの厚みは50μm以下である。
 図8は、本発明の第8の実施形態に係るLEDモジュールを模式的に示す断面図である。
 図8に示すLEDモジュール1Gは、構成Aを備えるLEDモジュールである。
 LEDモジュール1Gは、基板11と、着色層21Gと、光透過層22Gと、接着層25Gとを備える。
 図8に示すLEDモジュール1Gと、図1に示すLEDモジュール1とでは、接着層の有無が異なる。
 着色層21Gは、複数のLEDチップ11Yの間隙に配置されている。着色層21Gは、複数のLEDチップ11Yの全ての間隙に配置されている。着色層21Gは、第1の間隙Gaと第2の間隙Gbとの双方に配置されている。着色層21Gは、LEDチップ11Yと接している。
 複数のLEDチップ11Yの間隙に配置された着色層21Gの上面21Gaの高さ位置は、LEDチップ11Yの上面11Yaの高さ位置よりも低い位置である。
 複数のLEDチップ11Yの間隙に配置された着色層21Gの上面21Gaの高さ位置とLEDチップ11Yの上面11Yaの高さ位置との距離Lは、LEDチップ11Yの高さHよりも小さい。距離Lは、高さHの100%未満である。
 なお、構成Aaを備えるLEDモジュールでは、距離Lが、高さHの50%以上である。
 LEDモジュール1Gは、基板11と着色層21Gとの間に、接着層25Gを備える。接着層25Gは、複数のLEDチップ11Yの間隙に配置されている。接着層25Gは、複数のLEDチップ11Yの全ての間隙に配置されている。接着層25Gは、基板11の表面の配線11Zの上面に配置されている。接着層25Gは、基板11の表面の配線11Zの上面と接している。接着層25Gは、着色層21Gと接している。接着層25Gが備えられることにより、着色層21Gの剥離を生じ難くすることができる。
 光透過層22Gは、LEDチップ11Yの上方に配置されている。光透過層22Gは、複数のLEDチップ11Yに跨って配置されている。光透過層22Gは、複数のLEDチップ11Yを覆っている。また、光透過層22Gは、LEDチップ11Yの側方にも配置されている。光透過層22Gは、LEDチップ11Yの上面11Ya及び側面に配置されている。光透過層22Gは、LEDチップ11Yと接している。具体的には、光透過層22Gは、LEDチップ11Yの上面11Ya及び側面と接している。光透過層22Gは、配線11Zと接していない。光透過層22Gは、複数のLEDチップ11Yの間隙に配置されている。光透過層22Gは、複数のLEDチップ11Yの全ての間隙に配置されている。光透過層22Gは、第1の間隙Gaと第2の間隙Gbとの双方に配置されている。
 光透過層22Gは、着色層21Gの上方に配置されている。光透過層22Gは、着色層21Gの上面21Gaに配置されている。光透過層22Gは、着色層21Gと接している。具体的には、光透過層22Gは、着色層21Gの上面21Gaと接している。光透過層22は、着色層21を覆っている。
 図9は、本発明の第9の実施形態に係るLEDモジュールを模式的に示す断面図である。
 図9に示すLEDモジュール1Hは、構成A及び構成Cを備えるLEDモジュールである。
 LEDモジュール1Hは、基板11と、着色層21Hと、光透過層22Hと、光反射層26Hとを備える。
 図9に示すLEDモジュール1Hと、図1に示すLEDモジュール1とでは、光反射層の有無が異なる。
 着色層21Hは、複数のLEDチップ11Yの間隙に配置されている。着色層21Hは、複数のLEDチップ11Yの全ての間隙に配置されている。着色層21Hは、第1の間隙Gaと第2の間隙Gbとの双方に配置されている。着色層21Hと該着色層21Hの隣のLEDチップ11Yとの間には、間隙がある。着色層21Hと該着色層21Hの隣のLEDチップ11Yとは接していない。着色層21Hは、LEDチップ11Yと接しており、配線11Zと接している。
 複数のLEDチップ11Yの間隙に配置された着色層21Hの上面21Haの高さ位置は、LEDチップ11Yの上面11Yaの高さ位置よりも低い位置である。
 複数のLEDチップ11Yの間隙に配置された着色層21Hの上面21Haの高さ位置とLEDチップ11Yの上面11Yaの高さ位置との距離Lは、LEDチップ11Yの高さHよりも小さい。距離Lは、高さHの100%未満である。
 なお、構成Aaを備えるLEDモジュールでは、距離Lが、高さHの50%以上である。
 LEDモジュール1Hは、LEDチップ11Yの側面と着色層21Hの側面との間に、光反射層26Hを備える。着色層21Hと該着色層21Hの隣のLEDチップ11Yとの間の間隙に、光反射層26Hが配置されている。光反射層26Hは、全てのLEDチップ11Yの側面に配置されている。光反射層26Hは、LEDチップ11Y及び着色層21Hと接している。具体的には、光反射層26Hの側面は、LEDチップ11Yの側面及び着色層21Hの側面と接している。光反射層26Hの上面の高さ位置は、複数のLEDチップ11Yの間隙に配置された着色層21Hの上面21Haの高さ位置よりも高い位置である。光反射層26Hの上面の高さ位置は、LEDチップ11Yの上面11Yaの高さ位置よりも低い位置である。光反射層26Hが備えられることにより、輝度をより一層高めることができる。
 光透過層22Hは、LEDチップ11Yの上方に配置されている。光透過層22Hは、複数のLEDチップ11Yに跨って配置されている。光透過層22Hは、複数のLEDチップ11Yを覆っている。また、光透過層22Hは、LEDチップ11Yの側方にも配置されている。光透過層22Hは、LEDチップ11Yの上面11Ya及び側面に配置されている。光透過層22Hは、LEDチップ11Yと接している。具体的には、光透過層22Hは、LEDチップ11Yの上面11Ya及び側面と接している。光透過層22Hは、配線11Zと接していない。光透過層22Hは、複数のLEDチップ11Yの間隙に配置されている。光透過層22Hは、複数のLEDチップ11Yの全ての間隙に配置されている。光透過層22Hは、第1の間隙Gaと第2の間隙Gbとの双方に配置されている。
 光透過層22Hは、着色層21Hの上方に配置されている。光透過層22Hは、着色層21Hの上面21Haに配置されている。光透過層22Hは、着色層21Hと接している。具体的には、光透過層22Hは、着色層21Hの上面21Haと接している。光透過層22Hは、着色層21Hを覆っている。
 図10は、本発明の第10の実施形態に係るLEDモジュールを模式的に示す断面図である。
 図10に示すLEDモジュール1Iは、構成B及び構成Cを備えるLEDモジュールである。
 LEDモジュール1Iは、基板11と、第1の着色層21IAと、第2の着色層21IBと、光透過層22Iとを備える。
 図10に示すLEDモジュール1Iと、図7に示すLEDモジュール1Fとでは、第1の間隙Gaに配置された着色層の厚み(高さ)のみが異なる。
 第1の着色層21IAは、複数のLEDチップ11Yの間隙に配置されている。第1の着色層21IAは、複数のLEDチップ11Yの一部の間隙に配置されている。第1の着色層21IAは、第1の間隙Gaに配置されている。第1の着色層21IAは、第2の間隙Gbには配置されていない。第1の間隙Gaに配置された第1の着色層21IAと該第1の着色層21IAの隣のLEDチップ11Yとの間には、間隙がある。第1の間隙Gaに配置された第1の着色層21IAと該第1の着色層21IAの隣のLEDチップ11Yとは接していない。第1の着色層21IAは、LEDチップ11Yと接しておらず、配線11Zとは接している。第1の間隙Gaに配置された第1の着色層21IAの上面の高さ位置は、LEDチップ11Yの上面11Yaの高さ位置よりも高い位置である。
 なお、構成Caを備えるLEDモジュールでは、第1の間隙Gaに配置された第1の着色層21IAと該第1の着色層21IAの隣のLEDチップ11Yとの間隙の間隔Saが、第2の間隙Gbの間隔Sbと同等以上である。
 光透過層22Iは、LEDチップ11Yの上方に配置されている。光透過層22Iは、複数のLEDチップ11Yに跨って配置されている。光透過層22Iは、複数のLEDチップ11Yを覆っている。また、光透過層22Iは、LEDチップ11Yの側方にも配置されている。光透過層22Iは、LEDチップ11Yの上面11Ya及び側面に配置されている。光透過層22Iは、LEDチップ11Yと接している。具体的には、光透過層22Iは、LEDチップ11Yの上面11Ya及び側面と接している。光透過層22Iは、配線11Zの上方に配置されている。光透過層22Iは、配線11Zの上面に配置されている。光透過層22Iは、配線11Zと接している。具体的には、光透過層22Iは、配線11Zの上面と接している。光透過層22Iは、複数のLEDチップ11Yの間隙に配置されている。光透過層22Iは、複数のLEDチップ11Yの全ての間隙に配置されている。光透過層22Iは、第1の間隙Gaと第2の間隙Gbとの双方に配置されている。
 光透過層22Iは、第1の着色層21IAの上方に配置されている。また、光透過層22Iは、第1の着色層21IAの側方にも配置されている。光透過層22Iは、第1の着色層21IAの上面及び側面に配置されている。光透過層22Iは、第1の着色層21IAと接している。具体的には、光透過層22Iは、第1の着色層21IAの上面及び側面と接している。
 第2の着色層21IBは、光透過層22Iの上方に配置されている。第2の着色層21IBは、光透過層22Iの上面に配置されている。第2の着色層21IBは、光透過層22Iと接している。具体的には、第2の着色層21IBの下面は、光透過層22Iの上面と接している。第2の着色層21IBは、光透過層22Iを覆っている。第2の着色層21IBは、第1の着色層21IAと接しておらず、LEDチップ11Yと接しておらず、配線11Zと接していない。
 光透過層22Iの上方に配置された第2の着色層21IBの厚みは50μm以下である。
 図11は、本発明の第11の実施形態に係るLEDモジュールを模式的に示す断面図である。
 図11に示すLEDモジュール31は、構成Aを備えるLEDモジュールである。LEDモジュール31は、図1に示すLEDモジュール1と、LEDモジュール1における光透過層22の上方に配置された反射防止層32とを備える。
 図12は、本発明の第12の実施形態に係るLEDモジュールを模式的に示す断面図である。
 図12に示すLEDモジュール31Dは、構成A及び構成Cを備えるLEDモジュールである。LEDモジュール31Dは、図5に示すLEDモジュール1Dと、LEDモジュール1Dにおける光透過層22Dの上方に配置された反射防止層32Dとを備える。
 以下、本発明に係るLEDモジュールの各構成について詳細に説明する。なお、本明細書において、「(メタ)アクリロイル」は「アクリロイル」と「メタクリロイル」との一方又は双方を意味し、「(メタ)アクリレート」は「アクリレート」と「メタクリレート」との一方又は双方を意味する。
 (着色層及び光透過層)
 上記LEDモジュールは、着色層及び光透過層を備える。
 上記着色層の材料は、着色剤を含む。したがって、上記着色層は、着色剤を含む。良好な形状の着色層を形成したり、着色層の形成効率を高めたりする観点からは、上記着色層の材料は、光硬化性化合物と、光重合開始剤と、着色剤とを含むことが好ましい。上記着色層は、光硬化性化合物と、光重合開始剤と、着色剤とを含む光硬化性組成物の硬化物を含むことが好ましい。
 上記光透過層の材料は、光硬化性化合物と、光重合開始剤とを含むことが好ましく、光硬化性化合物と、光重合開始剤と、平均粒子径が10μm以下であるフィラーとを含むことがより好ましい。上記光透過層は、樹脂又はガラスを含むことが好ましい。上記光透過層は、光硬化性化合物と、光重合開始剤とを含む光硬化性組成物の硬化物を含むか、又は、ガラスを含むことが好ましい。上記光透過層は、光硬化性化合物と、光重合開始剤と、平均粒子径が10μm以下であるフィラーとを含む光硬化性組成物の硬化物を含むか、又は、ガラスを含むことがより好ましい。
 上記着色層は、白色以外の色に着色された層であり、かつ、厚み30μmでの波長650nmにおける全光線透過率が40%未満である層である。
 上記光透過層は、無色の層又は白色層(白色に着色された層)であり、かつ、厚み30μmでの波長650nmにおける全光線透過率が40%以上である層である。上記光透過層は、無色の層であってもよく、白色層であってもよい。
 全光線透過率を測定するための測定サンプル(厚み30μm)は、LEDモジュールから切削することにより得てもよく、着色層の材料又は光透過層の材料を用意し、厚み30μmの着色層又は光透過層を形成させることにより得てもよい。
 着色層の材料は、光硬化性組成物である。着色層の材料を用意し、着色層を形成して上記全光線透過率を測定する場合に、LEDモジュールにおける着色層の形成時の光硬化条件で、厚み30μmの硬化物層(測定サンプル)を得ることが好ましい。LEDモジュールにおける着色層と同程度又は全光線透過率の値に影響しない程度の硬化状態となる場合には、着色層の材料に、波長365nmでの積算光量が1000mJ/cmになるように照度1000mW/cmの光を照射して、厚み30μmの硬化物層(測定サンプル)を得てもよい。
 光透過層の材料を用意し、光透過層を形成して上記全光線透過率を測定する場合に、LEDモジュールにおける光透過層の形成条件で、厚み30μmの光透過層(測定サンプル)を得ることが好ましい。光透過層の材料が、光硬化性組成物である場合に、LEDモジュールにおける光透過層の形成時の光硬化条件で、厚み30μmの硬化物層(測定サンプル)を得ることが好ましい。光透過層の材料が、光硬化性組成物であって、LEDモジュールにおける光透過層と同程度又は全光線透過率の値に影響しない程度の硬化状態となる場合には、光透過層の材料に、波長365nmでの積算光量が1000mJ/cmになるように照度1000mW/cmの光を照射して、厚み30μmの硬化物層(測定サンプル)を得てもよい。
 上記全光線透過率は、JIS K7361-1に準拠して測定される。
 上記LEDモジュールは、上記構成Bと、上記構成A又は上記構成Cとを備えるLEDモジュールのように、複数のLEDチップの間隙に配置された第1の着色層と、光透過層の上方に配置された第2の着色層とを備えていてもよい。この場合に、上記第1の着色層の材料と上記第2の着色層の材料とは、同一であってもよく、異なっていてもよい。
 インクジェット方式により上記着色層の材料を良好に塗布する観点から、上記着色層の材料は、25℃で液状であることが好ましい。インクジェット方式により上記光透過層の材料を良好に塗布する観点から、上記光透過層の材料は、25℃で液状であることが好ましい。液状には、ペースト状も含まれる。
 上記着色層の材料の25℃及び10rpmでの粘度は、好ましくは3mPa・s以上、より好ましくは5mPa・s以上、より一層好ましくは10mPa・s以上、更に好ましくは160mPa・s以上であり、好ましくは2000mPa・s以下、より好ましくは1600mPa・s以下、更に好ましくは1500mPa・s以下である。上記粘度が上記下限以上及び上記上限以下であると、インクジェット方式により上記着色層の材料をより一層良好に塗布することができる。
 上記光透過層の材料の25℃及び10rpmでの粘度は、好ましくは3mPa・s以上、より好ましくは5mPa・s以上、より一層好ましくは10mPa・s以上、更に好ましくは160mPa・s以上であり、好ましくは2000mPa・s以下、より好ましくは1600mPa・s以下、更に好ましくは1500mPa・s以下である。上記粘度が上記下限以上及び上記上限以下であると、インクジェット方式により上記光透過層の材料をより一層良好に塗布することができる。
 上記粘度は、JIS K2283に準拠して、E型粘度計(例えば、東機産業社製「TVE22L」)を用いて、25℃で測定される。
 以下、上記着色層の材料及び光透過層の材料に用いることができる各成分を詳細に説明する。
 <光硬化性化合物>
 上記着色層の材料は、光硬化性化合物を含む。上記光透過層の材料は、光硬化性化合物を含むことが好ましい。上記光硬化性化合物は、光の照射により硬化可能な硬化性化合物である。上記光硬化性化合物は、光硬化反応基を有する化合物である。上記光硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記光硬化性化合物としては、(メタ)アクリレート化合物、ビニル化合物及びマレイミド化合物等が挙げられる。
 上記(メタ)アクリレート化合物は、単官能(メタ)アクリレート化合物であってもよく、多官能(メタ)アクリレート化合物であってもよく、単官能(メタ)アクリレート化合物と多官能(メタ)アクリレート化合物との双方であってもよい。単官能(メタ)アクリレート化合物は、(メタ)アクリロイル基を1個有する。多官能(メタ)アクリレート化合物は、(メタ)アクリロイル基を2個以上有する。
 着色層をより一層高精度に形成する観点からは、上記着色層の材料に含まれる上記光硬化性化合物は、(メタ)アクリレート化合物を含むことが好ましく、多官能(メタ)アクリレート化合物を含むことがより好ましい。上記着色層の材料に含まれる上記多官能(メタ)アクリレート化合物は、二官能の(メタ)アクリレート化合物であってもよく、三官能の(メタ)アクリレート化合物であってもよく、四官能以上の(メタ)アクリレート化合物であってもよい。
 光透過層をより一層高精度に形成する観点からは、上記光透過層の材料に含まれる上記光硬化性化合物は、(メタ)アクリレート化合物を含むことが好ましく、多官能(メタ)アクリレート化合物を含むことがより好ましい。上記光透過層の材料に含まれる上記多官能(メタ)アクリレート化合物は、二官能の(メタ)アクリレート化合物であってもよく、三官能の(メタ)アクリレート化合物であってもよく、四官能以上の(メタ)アクリレート化合物であってもよい。
 上記単官能(メタ)アクリレート化合物としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、アリル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、フェニル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシプロピレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、イソデシル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタジエニル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ジヒドロキシシクロペンタジエニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ナフチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ドデシル(メタ)アクリレート、及びステアリル(メタ)アクリレート等が挙げられる。
 上記二官能の(メタ)アクリレート化合物としては、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、2,4-ジメチル-1,5-ペンタンジオールジ(メタ)アクリレート、ブチルエチルプロパンジオールジ(メタ)アクリレート、エトキシ化シクロヘキサンメタノールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、オリゴエチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、2-エチル-2-ブチルブタンジオールジ(メタ)アクリレート、2-エチル-2-ブチルプロパンジオールジ(メタ)アクリレート、トリシクロデカンジ(メタ)アクリレート、及びジプロピレングリコールジ(メタ)アクリレート等が挙げられる。
 上記三官能の(メタ)アクリレート化合物としては、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパンのアルキレンオキシド変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ((メタ)アクリロイルオキシプロピル)エーテル、イソシアヌル酸アルキレンオキシド変性トリ(メタ)アクリレート、プロピオン酸ジペンタエリスリトールトリ(メタ)アクリレート、トリ((メタ)アクリロイルオキシエチル)イソシアヌレート、及びソルビトールトリ(メタ)アクリレート等が挙げられる。
 四官能の(メタ)アクリレート化合物としては、ペンタエリスリトールテトラ(メタ)アクリレート、ソルビトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、及びプロピオン酸ジペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。
 五官能の(メタ)アクリレート化合物としては、ソルビトールペンタ(メタ)アクリレート、及びジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。
 六官能の(メタ)アクリレート化合物としては、ジペンタエリスリトールヘキサ(メタ)アクリレート、ソルビトールヘキサ(メタ)アクリレート、及びフォスファゼンのアルキレンオキシド変性ヘキサ(メタ)アクリレート等が挙げられる。
 上記ビニル化合物としては、ビニルエーテル類、エチレン誘導体、スチレン、クロロメチルスチレン、α-メチルスチレン、無水マレイン酸、ジシクロペンタジエン、N-ビニルピロリドン、及びN-ビニルホルムアミド等が挙げられる。
 上記着色層の材料100重量%中、上記光硬化性化合物の含有量は、好ましくは20重量%以上、より好ましくは30重量%以上、更に好ましくは40重量%以上であり、好ましくは90重量%以下、より好ましくは80重量%以下、更に好ましくは70重量%以下である。上記光硬化性化合物の含有量が上記下限以上及び上記上限以下であると、着色層の材料の光硬化性能を高めることができ、着色層をより一層高精度に形成することができる。
 上記光透過層の材料100重量%中、上記光硬化性化合物の含有量は、好ましくは40重量%以上、より好ましくは50重量%以上、更に好ましくは60重量%以上であり、好ましくは99重量%以下、より好ましくは97重量%以下、更に好ましくは95重量%以下である。上記光硬化性化合物の含有量が上記下限以上及び上記上限以下であると、光透過層の材料の光硬化性能を高めることができ、光透過層をより一層高精度に形成することができる。
 <光重合開始剤>
 上記着色層の材料は、光重合開始剤を含む。上記光透過層の材料は、光重合開始剤を含むことが好ましい。上記光重合開始剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記光重合開始剤としては、光ラジカル重合開始剤及び光カチオン重合開始剤等が挙げられる。上記光重合開始剤は、光ラジカル重合開始剤であることが好ましい。
 上記光ラジカル重合開始剤は、光の照射によりラジカルを発生し、ラジカル重合反応を開始するための化合物である。上記光ラジカル重合開始剤としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン化合物;1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチルプロピオフェノン等のアルキルフェノン化合物;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン等のアセトフェノン化合物;2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、2-(ジメチルアミノ)-1-(4-モルホリノフェニル)-2-ベンジル-1-ブタノン、フェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド、N,N-ジメチルアミノアセトフェノン等のアミノアセトフェノン化合物;2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン等のアントラキノン化合物;2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン化合物;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール化合物;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のアシルフォスフィンオキサイド化合物;1,2-オクタンジオン、1-[4-(フェニルチオ)-2-(o-ベンゾイルオキシム)]、エタノン、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(o-アセチルオキシム)等のオキシムエステル化合物;ビス(シクロペンタジエニル)-ジ-フェニル-チタニウム、ビス(シクロペンタジエニル)-ジ-クロロ-チタニウム、ビス(シクロペンタジエニル)-ビス(2,3,4,5,6-ペンタフルオロフェニル)チタニウム、ビス(シクロペンタジエニル)-ビス(2,6-ジフルオロ-3-(ピロール-1-イル)フェニル)チタニウムなどのチタノセン化合物等が挙げられる。上記光ラジカル重合開始剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記光ラジカル重合開始剤とともに、光重合開始助剤を用いてもよい。該光重合開始助剤としては、N,N-ジメチルアミノ安息香酸エチルエステル、N,N-ジメチルアミノ安息香酸イソアミルエステル、ペンチル-4-ジメチルアミノベンゾエート、トリエチルアミン及びトリエタノールアミン等が挙げられる。これら以外の光重合開始助剤を用いてもよい。上記光重合開始助剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 また、可視光領域に吸収があるCGI-784等(チバ・スペシャルティ・ケミカルズ社製)のチタノセン化合物などを、光反応を促進するために用いてもよい。
 上記光カチオン重合開始剤としては、スルホニウム塩、ヨードニウム塩、メタロセン化合物、及びベンゾイントシレート等が挙げられる。上記光カチオン重合開始剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記着色層の材料100重量%中、上記光重合開始剤の含有量は、好ましくは0.1重量%以上、より好ましくは0.5重量%以上、更に好ましくは1.0重量%以上であり、好ましくは30重量%以下、より好ましくは20重量%以下、更に好ましくは10重量%以下である。上記光重合開始剤の含有量が上記下限以上及び上記上限以下であると、着色層の材料の光硬化性能を高めることができ、着色層をより一層高精度に形成することができる。
 上記光透過層の材料100重量%中、上記光重合開始剤の含有量は、好ましくは0.1重量%以上、より好ましくは0.5重量%以上、更に好ましくは1.0重量%以上であり、好ましくは30重量%以下、より好ましくは20重量%以下、更に好ましくは10重量%以下である。上記光重合開始剤の含有量が上記下限以上及び上記上限以下であると、光透過層の材料の光硬化性能を高めることができ、光透過層をより一層高精度に形成することができる。
 <着色剤>
 上記着色層の材料は、着色剤を含む。上記着色剤を用いることにより、着色層の全光線透過率(特に、可視光線透過率)を低くすることができる。なお、上記光透過層の材料は、着色剤を含まないことが好ましい。上記着色剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 配線隠蔽性をより一層高める観点及び斜めから見たときの変色をより一層抑える観点から、上記着色剤は、顔料又は染料であることが好ましく、黒色顔料又は黒色染料であることが好ましい。
 上記顔料としては、カーボンブラック、チタンブラック、アニリンブラック、酸化鉄、ランプブラック、グラファイト、銅-クロムの複合酸化物、及び銅-クロム-亜鉛の複合酸化物等が挙げられる。黒色度を高め、光抜けの発生を抑制する観点からは、上記顔料は、カーボンブラックであることが好ましい。
 上記染料としては、ピラゾールアゾ系染料、アニリノアゾ系染料、トリフェニルメタン系染料、アントラキノン系染料、アンスラピリドン系染料、ベンジリデン系染料、オキソール系染料、ピラゾロトリアゾールアゾ系染料、ピリドンアゾ系染料、シアニン系染料、フェノチアジン系染料、ピロロピラゾールアゾメチン系染料、キサテン系染料、フタロシアニン系染料、ベンゾピラン系染料、インジゴ系染料、ピロメテン系染料、トリアリールメタン系染料、アゾメチン系染料、ベリレン系染料、ペリノン系染料、クオタリレン系染料、及びキノフタロン系染料等が挙げられる。上記染料は、酸性染料、直接染料、塩基性染料、酸性媒染染料などの媒染染料、アゾイック染料、分散染料、油溶染料、食品染料及びこれらの誘導体の内の2種以上を混合することにより黒色にされた染料等であってもよい。
 上記着色層の材料100重量%中、上記着色剤の含有量は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上であり、好ましくは3.0重量%以下、より好ましくは2.0重量%以下である。上記着色剤の含有量が上記下限以上及び上記上限以下であると、配線隠蔽性をより一層高めることができ、また、斜めから見たときの変色をより一層抑えることができる。
 <フィラー>
 上記光透過層の材料は、フィラーを含むことが好ましい。上記光透過層は、フィラーを含むことが好ましい。上記光透過層にフィラーを含ませることにより、光の拡散を高めることができ、輝度をより一層高めることができる。上記フィラーは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記フィラーは、有機フィラーであってもよく、無機フィラーであってもよい。
 上記有機フィラーとしては、ポリエチレン粒子、ポリプロピレン粒子、ポリビニルアルコール粒子、ポリビニルブチラール粒子、ポリ塩化ビニル粒子、ポリ塩化ビニリデン粒子、ポリフッ化ビニリデン粒子、アクリロニトリル粒子、アクリルゴム粒子、ポリスチレン粒子、ジビニルベンゼン粒子、ポリエチレンテレフタレート粒子、ポリイミド粒子、ポリアミド粒子、及びセルロース粒子等が挙げられる。
 上記無機フィラーとしては、タルク、マイカ、モンモリロナイト、珪藻土、アルミナ、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、フェライト類、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ドーソナイト、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、石膏繊維、カリウム塩、粘土鉱物、ガラス繊維、ガラスビーズ、窒化アルミニウム、窒化ホウ素、カーボンブラック、グラファイト、炭素繊維、炭素バルン、木炭粉末、金属粉、チタン酸カリウム、硫酸マグネシウム、チタン酸ジルコン酸鉛、アルミニウムボレート、硫化モリブデン、ステンレス繊維、ホウ酸亜鉛、磁性粉、スラグ繊維、フライアッシュ、シリカアルミナ繊維、アルミナ繊維、シリカ繊維、及びジルコニア繊維等が挙げられる。
 輝度をより一層高める観点からは、上記フィラーは、無機フィラーであることが好ましく、シリカ、酸化チタン又は酸化カルシウムであることがより好ましい。
 上記フィラーの平均粒子径は、好ましくは0.01μm以上、より好ましくは0.05μm以上、更に好ましくは0.1μm以上であり、好ましくは10μm以下、より好ましくは7.0μm以下、更に好ましくは5.0μm以下である。上記フィラーの平均粒子径が上記下限以上及び上記上限以下であると、光の拡散をより一層高めることができ、輝度をより一層高めることができる。
 上記フィラーの平均粒子径は、体積平均粒子径(D50)であることが好ましい。上記フィラーの体積平均粒子径は、体積基準で測定される平均径であり、50%となるメディアン径(D50)の値である。上記体積平均粒子径(D50)は、レーザー回折・散乱法、画像解析法、コールター法、及び遠心沈降法等により測定可能である。上記フィラーの体積平均粒子径(D50)は、レーザー回折・散乱法による測定により求めることが好ましい。
 上記光透過層の材料100重量%中、上記フィラーの含有量は、好ましくは0.1重量%以上、より好ましくは1.0重量%以上であり、好ましくは10重量%以下、より好ましくは8.0重量%以下である。上記フィラーの含有量が上記下限以上及び上記上限以下であると、光透過層において光の拡散を高めることができ、輝度をより一層高めることができる。
 <ガラス>
 上記光透過層は、ガラス層であってもよい。ガラス層は、ガラスを含む。例えば、LEDチップの形状に対応する凹部を有するガラス層の使用により、ガラス層である光透過層を備えるLEDモジュールを得ることができる。
 上記ガラスとしては、無機ガラス及び有機ガラスが挙げられる。
 <他の成分>
 上記着色層の材料及び上記光透過層の材料はそれぞれ、上述した成分以外の他の成分を含んでいてもよい。上記他の成分としては、熱硬化性化合物、熱硬化剤、カップリング剤、消泡剤、硬化促進剤、離型剤、表面処理剤、難燃剤、粘度調節剤、分散剤、分散助剤、表面改質剤、可塑剤、抗菌剤、防黴剤、レベリング剤、安定剤、タレ防止剤又は蛍光体等が挙げられる。上記他の成分は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記熱硬化性化合物としては、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。上記熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい
 上記着色層の材料が上記熱硬化性化合物を含む場合には、上記着色層の材料は、光の照射により硬化を進行させた後に加熱により硬化させて用いられることが好ましい。上記光透過層の材料が上記熱硬化性化合物を含む場合には、上記光透過層の材料は、光の照射により硬化を進行させた後に加熱により硬化させて用いられることが好ましい。
 <光透過層の他の詳細>
 上記光透過層は、上面に凹凸を有することが好ましい。例えば、上記フィラーを含む光透過層の材料を用いたり、光透過層の材料を硬化させた後に表面処理を行ったりすることにより、上面に凹凸を有する光透過層を得ることができる。上面に凹凸を有する光透過層を用いることで、光の拡散を高めることができ、輝度をより一層高めることができる。また、斜めから見たときの変色を抑えることができる。
 上記表面処理の方法としては、アンチグレア処理等が挙げられる。
 上記光透過層の上面の十点平均粗さRzは、好ましくは0.1μm以上、より好ましくは0.2μm以上であり、好ましくは10μm以下、より好ましくは5.0μm以下である。上記十点平均粗さRzが上記下限以上及び上記上限以下であると、光の拡散を高めることができ、輝度をより一層高めることができる。
 上記光透過層の上面の十点平均粗さRzは、レーザー顕微鏡(例えば、オリンパス社製「OLS4100」)により測定される。上記十点平均粗さRzは、JIS B0601:1994に準拠して測定される。
 (基板)
 上記LEDモジュールは、複数のLEDチップを上面に有する基板を備える。上記基板は、基板本体と、複数のLEDチップと、配線とを有することが好ましい。上記LEDチップは、通常、赤色のLEDチップと、青色のLEDチップと、緑色のLEDチップとの組み合わせである。
 基板1つあたりの上記LEDチップの数は、好ましくは10000個以上、より好ましくは20000個以上であり、好ましくは80000個以下、より好ましくは60000個以下である。
 (接着層)
 上記LEDモジュールは、上記基板と上記着色層との間に、接着層を備えることが好ましい。この場合には、着色層の剥離を生じ難くすることができる。
 上記接着層の材料としては、エポキシ樹脂、アクリル樹脂、及びポリエステル樹脂等が挙げられる。
 上記接着層の厚みは、好ましくは1.0μm以上、より好ましくは3.0μm以上であり、好ましくは10.0μm以下、より好ましくは5.0μm以下である。上記接着層の厚みが上記下限以上及び上記上限以下であると、着色層の剥離をより一層生じ難くすることができる。
 (光反射層)
 上記LEDモジュールは、上記LEDチップの側面と上記着色層の側面との間に、光反射層を備えることが好ましい。上記光反射層は、LEDチップの側面上に配置されていることが好ましい。この場合には、輝度をより一層高めることができる。上記光反射層は、上記着色層よりも高い光反射率を有することが好ましい。上記光反射層は、上記光透過層よりも高い光反射率を有することが好ましい。
 上記光反射層の材料としては、白色リフレクター、導電性インクジェット材料、及び金属3Dプリンター材料等が挙げられる。
 (LEDモジュールの製造方法)
 本発明に係るLEDモジュールの製造方法は、上述したLEDモジュールの製造方法である。本発明に係るLEDモジュールの製造方法は、(1)上記着色層の材料をインクジェット方式で塗布する工程と、(2)上記着色層の材料に光を照射して、上記着色層の材料を硬化させて、上記着色層を形成する工程と、(3)上記LEDチップの上方に、上記光透過層を形成する工程とを備える。
 (3)上記LEDチップの上方に、上記光透過層を形成する工程は、(3A)光硬化性化合物と、光重合開始剤とを含む光透過層の材料を用意して、上記LEDチップの上方に、上記光透過層の材料をインクジェット方式で塗布する工程を含むことが好ましい((3A)-1)。(3)上記LEDチップの上方に、上記光透過層を形成する工程は、(3B)上記光透過層の材料に光を照射して、上記光透過層の材料を硬化させて、上記光透過層を形成する工程を含むことが好ましい。
 なお、上記光透過層として、上記ガラス層を用いる場合、(3)上記LEDチップの上方に、上記光透過層を形成する工程は、(3C)上記LEDチップの上方に、ガラス層である上記光透過層を配置する工程であることが好ましい。
 別法として、上記光透過層として、光硬化性化合物と、光重合開始剤とを含む光透過層の材料により形成されたフィルムを用いることができる。上記フィルムを用いる場合、(3)上記LEDチップの上方に、上記光透過層を形成する工程は、上記LEDチップの上方に、フィルムである上記光透過層を配置する工程であることが好ましい。
 別法として、上記光透過層として、光硬化性化合物と、光重合開始剤とを含む光透過層の材料を用意して、上記LEDチップの上方に、上記光透過層の材料をモールド方式で塗布することができる。(3)上記LEDチップの上方に、上記光透過層を形成する工程は、上記LEDチップの上方に、上記光透過層をモールド方式により配置する工程であることが好ましい。
 なお、本明細書において、上記の(1),(2),(3),(3A)及び(3B)の工程をそれぞれ、(1)工程、(2)工程、(3)工程,(3A)工程及び(3B)工程と記載することがある。
 上記LEDモジュールの製造方法は、上記(1)工程、上記(2)工程及び上記(3)工程の順に行われてもよく、上記(3)工程、上記(1)工程及び上記(2)工程の順に行われてもよい。
 上記(1)工程において、上記着色層の材料は、インクジェット方式により塗布することができる。上記(3A)工程において、上記光透過層の材料は、インクジェット方式により塗布することができる。インクジェット方式により上記の材料を塗布する際に、インクジェット装置が用いられる。上記インクジェット装置は、インクジェットヘッドを有する。上記インクジェットヘッドは、インクジェットノズルを有する。
 上記(2)工程において、塗布された上記着色層の材料に光を照射して、上記着色層の材料を硬化させて、上記着色層を形成することができる。上記(3B)工程において、塗布された上記光透過層の材料に光を照射して、上記光透過層の材料を硬化させて、上記光透過層を形成することができる。
 上記着色層の材料及び上記光透過層の材料を光硬化させるために用いられる光源としては、紫外線又は可視光線等の活性エネルギー線を発光する照射装置が挙げられる。上記光源としては、例えば、超高圧水銀灯、Deep UV ランプ、高圧水銀灯、低圧水銀灯、メタルハライドランプ及びエキシマレーザーが挙げられる。これらの光源は、上記着色層の材料及び上記光透過層の材料の構成成分の感光波長に応じて適宜選択される。光の照射エネルギーは、所望とする層厚又は上記着色層の材料及び上記光透過層の材料の構成成分により適宜選択される。光の照射エネルギーは、一般に、10mJ/cm~3000mJ/cmの範囲内である。
 上記(1)工程及び上記(2)工程では、特定の領域に上記着色層の材料を塗布した後、塗布された上記着色層の材料の全体に対して光を照射して上記着色層を形成してもよい。上記(1)工程及び上記(2)工程では、上記着色層の材料を複数滴塗布するごとに、塗布された上記着色層の材料に対して光を照射して上記着色層を形成してもよい。上記LEDモジュールの製造方法では、上記着色層の材料の塗布と、光の照射とを複数回行ってもよい。
 上記(3A)工程及び上記(3B)工程では、特定の領域に上記光透過層の材料を塗布した後、塗布された上記光透過層の材料の全体に対して光を照射して上記光透過層を形成してもよい。上記(3A)工程及び上記(3B)工程では、上記光透過層の材料を複数滴塗布するごとに、塗布された上記光透過層の材料に対して光を照射して上記光透過層を形成してもよい。上記LEDモジュールの製造方法では、上記光透過層の材料の塗布と、光の照射とを複数回行ってもよい。
 上記(1)工程は、基板の厚み方向にて上記着色層の材料が重ならないように、基板の厚み方向にて、1回のみ行われてもよい。上記(1)工程は、基板の厚み方向にて上記着色層の材料が重なるように、基板の厚み方向にて、複数回行われてもよい。上記(3A)工程は、基板の厚み方向にて上記光透過層の材料が重ならないように、基板の厚み方向にて、1回のみ行われてもよい。上記(3A)工程は、基板の厚み方向にて上記光透過層の材料が重なるように、基板の厚み方向にて、複数回行われてもよい。上記(1)工程及び上記(3A)工程が、基板の厚み方向にて、複数回行われることにより、上記着色層又は上記光透過層の厚みを大きくすることができる。
 また、本発明に係るLEDモジュールのもう一つの製造方法は、以下の工程を備える。(1X)ガラス部材と上記光透過層と上記着色層とを有する構造体を用意する工程。(2X)複数の上記LEDチップを上面に有する上記基板を用意して、上記光透過層が、上記LEDチップの上方に配置されるように、上記構造体と上記基板とを貼り合わせる工程。
 (1X)ガラス部材と上記光透過層と上記着色層とを有する構造体を用意する工程は、以下の工程を含むことが好ましい。(1XA)光硬化性化合物と、光重合開始剤とを含む光透過層の材料を用意して、上記光透過層の材料をインクジェット方式で塗布する工程。(1XB)上記光透過層の材料に光を照射して、上記光透過層の材料を硬化させて、上記光透過層を形成する工程。
 さらに、(1X)ガラス部材と上記光透過層と上記着色層とを有する構造体を用意する工程は、以下の工程を含むことが好ましい。(1XC)上記着色層の材料をインクジェット方式で塗布する工程。(1XD)上記着色層の材料に光を照射して、上記着色層の材料を硬化させて、上記着色層を形成する工程。
 なお、本明細書において、上記の(1X),(1XA),(1XB),(1XC),(1XD)及び(2X)の工程をそれぞれ、(1X)工程、(1XA)工程、(1XB)工程、(1XC)工程,(1XD)工程及び(2X)工程と記載することがある。
 上記LEDモジュールの製造方法は、上記(1XA)工程、上記(1XB)工程、上記(1XC)工程及び上記(1XD)工程の順に行われてもよく、上記(1XC)工程、上記(1XD)工程、上記(1XA)工程及び上記(1XB)工程の順に行われてもよい。
 上記(1XA)工程において、上記光透過層の材料は、インクジェット方式により塗布することができる。上記光透過層の材料は、上記ガラス部材の一方の表面側に塗布されてもよい。上記(1XC)工程において、上記着色層の材料は、インクジェット方式により塗布することができる。上記着色層の材料は、上記ガラス部材の一方の表面側に塗布されてもよい。また、上記光透過層の材料は、上記光透過層の上記ガラス部材側とは反対側に塗布されてもよい。上記光透過層の材料は、上記光透過層インクジェット方式により上記の材料を塗布する際に、インクジェット装置が用いられる。上記インクジェット装置は、インクジェットヘッドを有する。上記インクジェットヘッドは、インクジェットノズルを有する。
 上記(1XB)工程において、塗布された上記光透過層の材料に光を照射して、上記光透過層の材料を硬化させて、上記光透過層を形成することができる。上記(1XD)工程において、塗布された上記着色層の材料に光を照射して、上記着色層の材料を硬化させて、上記着色層を形成することができる。上記構造体において、上記ガラス部材の一方の表面側に、上記光透過層及び上記着色層が位置することが好ましい。
 上記着色層の材料及び上記光透過層の材料を光硬化させるために用いられる光源としては、紫外線又は可視光線等の活性エネルギー線を発光する照射装置が挙げられる。上記光源としては、例えば、超高圧水銀灯、Deep UV ランプ、高圧水銀灯、低圧水銀灯、メタルハライドランプ及びエキシマレーザーが挙げられる。これらの光源は、上記着色層の材料及び上記光透過層の材料の構成成分の感光波長に応じて適宜選択される。光の照射エネルギーは、所望とする層厚又は上記着色層の材料及び上記光透過層の材料の構成成分により適宜選択される。光の照射エネルギーは、一般に、10mJ/cm~3000mJ/cmの範囲内である。
 上記(1XA)工程及び上記(1XB)工程では、特定の領域に上記光透過層の材料を塗布した後、塗布された上記光透過層の材料の全体に対して光を照射して上記光透過層を形成してもよい。上記(1XA)工程及び上記(1XB)工程では、上記光透過層の材料を複数滴塗布するごとに、塗布された上記光透過層の材料に対して光を照射して上記光透過層を形成してもよい。上記LEDモジュールの製造方法では、上記光透過層の材料の塗布と、光の照射とを複数回行ってもよい。
 上記(1XC)工程及び上記(1XD)工程では、特定の領域に上記着色層の材料を塗布した後、塗布された上記着色層の材料の全体に対して光を照射して上記着色層を形成してもよい。上記(1XC)工程及び上記(1XD)工程では、上記着色層の材料を複数滴塗布するごとに、塗布された上記着色層の材料に対して光を照射して上記着色層を形成してもよい。上記LEDモジュールの製造方法では、上記着色層の材料の塗布と、光の照射とを複数回行ってもよい。
 上記(1XA)工程は、ガラス部材の厚み方向にて上記光透過層の材料が重ならないように、ガラス部材の厚み方向にて、1回のみ行われてもよい。上記(1XA)工程は、ガラス部材の厚み方向にて上記光透過層の材料が重なるように、ガラス部材の厚み方向にて、複数回行われてもよい。上記(1XC)工程は、ガラス部材の厚み方向にて上記着色層の材料が重ならないように、ガラス部材の厚み方向にて、1回のみ行われてもよい。上記(1XD)工程は、ガラス部材の厚み方向にて上記着色層の材料が重なるように、ガラス部材の厚み方向にて、複数回行われてもよい。上記(1XA)工程及び上記(1XC)工程が、ガラス部材の厚み方向にて、複数回行われることにより、上記着色層又は上記光透過層の厚みを大きくすることができる。
 上記(2X)工程では、上記光透過層が、上記LEDチップの上方に配置されるように、上記構造体と上記基板とを貼り合わせる。また、上記光透過層及び上記着色層が、上記基板の上方に配置される。上記(2X)工程後に、上記ガラス部材と上記基板との間に、上記光透過層及び上記着色層が位置することが好ましい。上記ガラス部材の一方の表面側に、上記光透過層及び上記着色層が位置する場合に、上記構造体における上記光透過層及び上記着色層側を上記基板に向けて、上記構造体と上記基板とを貼り合わせることが好ましい。
 上記ガラス部材は、ガラス板であってもよい。上記ガラス部材の材料としては、光透過層の欄に記載のガラスを用いることができる。
 上記LEDモジュールの形状は、特に限定されない。上記LEDモジュールの形状は、平面視にて、丸型であってもよく、矩形型であってもよく、三角形型であってもよい。
 (LED表示装置)
 本発明に係るLED表示装置は、複数の上述したLEDモジュールを備える。本発明に係るLED表示装置では、複数の上述したLEDモジュールが連結されている。
 図13は、本発明の一実施形態に係るLEDモジュールを用いて得られるLED表示装置を模式的に示す部分切欠断面図である。
 図13に示すLED表示装置50は、複数のLEDモジュール1を備える。複数のLEDモジュール1が、連結されている。複数のLEDモジュール1が側面にて、連結されている。図13では、左右方向に複数のLEDモジュール1が並んで連結されている。図13において、手前-奥方向にも、複数のLEDモジュール1が並んで連結されていてもよい。この場合には、LED表示装置50を大型化することができる。
 LED表示装置50では、連結されるLEDモジュール1において、基板本体11X上の電極が配線11Zにより互いに電気的に接続されている。
 上記LEDモジュールを連結させて、LED表示装置を得る方法としては、製造した複数のモジュールを並べる方法等が挙げられる。上記LEDモジュールを連結させる方法としては、接着剤を用いる方法、連結具を用いる方法、及び、並んだLEDモジュールを嵌合させる方法等が挙げられる。
 上記LED表示装置において、連結された上記LEDモジュールの数は、好ましくは3個以上、より好ましくは5個以上である。上記LEDモジュールの数が上記下限以上であると、LED表示装置をより一層大型化することができる。上記LED表示装置において、連結された上記LEDモジュールの数は、好ましくは35個以下、より好ましくは30個以下である。上記LEDモジュールの数が上記上限以下であると、LED表示装置を軽量にすることができる。
 上記LED表示装置では、同一の構造を有するLEDモジュールが連結されていてもよく、異なる構造を有するLEDモジュールが連結されていてもよい。例えば、上記LED表示装置では、上記構成Aを備えるLEDモジュールが連結されていてもよく、上記構成Aを備えるLEDモジュールと、上記構成Bを備えるLEDモジュールとが連結されていてもよい。また例えば、上記LED表示装置では、上記構成Aを備えるLEDモジュールと、上記構成Bを備えるLEDモジュールと、上記構成Cを備えるLEDモジュールとが連結されていてもよい。
 上記LED表示装置の形状は、特に限定されない。上記LED表示装置の形状は、平面視にて、丸型であってもよく、矩形型であってもよく、三角形型であってもよい。複数のLEDモジュールを連結させることで、様々な形状のLED表示装置を得ることができる。
 以下に実施例を掲げて本発明をさらに詳しく説明する。なお、本発明はこれら実施例のみに限定されない。
 以下の着色層の材料を用意した。
 光硬化性化合物:
 トリシクロデカンジメタノールジアクリレート(ダイセル・オルネクス社製「IRR-214K」
 光重合開始剤:
 2-(ジメチルアミノ)ー2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]1-ブタノン(IGM Resins社製「Omnirad379EG」)
 着色剤:
 カーボンブラック(三菱化学社製「MA220」)
 分散剤:
 湿潤分散剤(BYK社製「BYK9076」)
 (着色層の材料の作製)
 着色層の材料(1):
 89重量部の光硬化性化合物と、9重量部の光重合開始剤と、1重量部の着色剤と、1重量部の分散剤とを混合して、着色層の材料(1)を作製した。
 着色層の材料(2):
 90重量部の光硬化性化合物と、9重量部の光重合開始剤と、0.1重量部の着色剤と、0.1重量部の分散剤とを混合して、着色層の材料(2)を作製した。
 なお、着色層の材料(1),(2)に、波長365nmでの積算光量が1000mJ/cmになるように照度1000mW/cmの光を照射して、厚み30μmの硬化物層(1),(2)を得たときに、得られた硬化物層(1),(2)の全光線透過率はそれぞれ、40%未満であった。
 以下の光透過層の材料を用意した。
 光硬化性化合物:
 トリシクロデカンジメタノールジアクリレート(ダイセル・オルネクス社製「IRR-214K」
 光重合開始剤:
 1-ヒドロキシシクロヘキシルフェニルケトン(IGM Resins社製「Omnirad184」)
 フィラー:
 シリカ微粒子(信越シリコーン社製「QSG-100」、平均粒子径0.11μm)
 分散剤:
 湿潤分散剤(BYK社製「BYK9076」)
 (光透過層の材料の作製)
 光透過層の材料(1):
 92重量部の光硬化性化合物と、8重量部の光重合開始剤とを混合して、光透過層の材料(1)を作製した。
 光透過層の材料(2):
 89重量部の光硬化性化合物と、8重量部の光重合開始剤と、3重量部のフィラーと、1重量部の分散剤とを混合して、光透過層の材料(2)を作製した。
 なお、光透過層の材料(1),(2)に、波長365nmでの積算光量が1000mJ/cmになるように照度1000mW/cmの光を照射して、厚み30μmの硬化物層(1),(2)を得たときに、得られた硬化物層(1),(2)の全光線透過率はそれぞれ、40%以上であった。
 (接着層の材料の作製)
 PF接着剤(群栄化学工業社製「レヂトップPL-360」)を水で希釈して重量が2倍になるよう調整し、接着層の材料を作製した。
 以下の光反射層を用意した。
 銀ナノインク(GenesInk社製「Smart Jet I(S-CS01520)」)
 以下の基板を用意した。
 基板本体(ガラス製)の表面上に、複数のLEDチップ(高さ100μm)と、配線とを備える基板
 (実施例1)
 着色層の材料として、着色層の材料(1)を用いた。光透過層の材料として、光透過層の材料(1)を用いた。紫外線照射装置が搭載されたピエゾ方式インクジェットプリンタのインクジェットヘッドからの着色層の材料の吐出と、紫外線照射による硬化とを繰り返して、基板における複数のLEDチップの間隙に、着色層を形成した。次いで、形成した着色層の上側に、紫外線照射装置が搭載されたピエゾ方式インクジェットプリンタのインクジェットヘッドからの光透過層の材料の吐出と、紫外線照射による硬化とを繰り返して、光透過層を形成した。このようにして、構成Aを備えるLEDモジュール(断面形状は図1)を作製した。
 (実施例2)
 光透過層の材料として光透過層の材料(2)を用いたこと以外は、実施例1と同様にして、構成Aを備えるLEDモジュール(断面形状は図1)を作製した。
 (実施例3)
 着色層の厚みを変更したこと以外は、実施例1と同様にして、構成Aを備えるLEDモジュール(断面形状は図1)を作製した。
 (実施例4)
 接着層の材料をインクジェット装置にて塗布して、基板における複数のLEDチップの間隙に、接着層を形成した。次いで、形成した接着層の上側かつ基板における複数のLEDチップの間隙に、着色層を形成した。これら以外は実施例1と同様にして、構成Aを備えるLEDモジュール(断面形状は図8)を作製した。
 (実施例5)
 LEDチップの側面に、銀ナノインクをインクジェット装置にて塗布して、光反射層を形成した。LEDチップの側面に光反射層が配置された基板を用いたこと以外は、実施例1と同様にして、構成A及び構成Cを備えるLEDモジュール(断面形状は図9)を作製した。
 (実施例6)
 着色層の厚みを変更したこと、及びLEDモジュールの光透過層の上面を、アンチグレア処理して、光透過層の上面に凹凸を形成させたこと以外は、実施例1と同様にして、LEDモジュールを作製した。光透過層の上面の十点平均粗さRzは、2.0μmであった。このようにして、構成Aを備えるLEDモジュール(断面形状は図1(光透過層の上面の凹凸は図示せず))を作製した。
 (実施例7)
 第1の着色層の材料及び第2の着色層の材料としてそれぞれ、着色層の材料(1)を用いた。光透過層の材料として、光透過層の材料(1)を用いた。紫外線照射装置が搭載されたピエゾ方式インクジェットプリンタのインクジェットヘッドからの第1の着色層の材料の吐出と、紫外線照射による硬化とを繰り返して、基板における複数のLEDチップの間隙に、第1の着色層を形成した。次いで、形成した第1の着色層の上側に、紫外線照射装置が搭載されたピエゾ方式インクジェットプリンタのインクジェットヘッドからの光透過層の材料の吐出と、紫外線照射による硬化とを繰り返して、光透過層を形成した。次いで、形成された光透過層の上側に、紫外線照射装置が搭載されたピエゾ方式インクジェットプリンタのインクジェットヘッドからの第2の着色層の材料の吐出と、紫外線照射による硬化とを繰り返して、第2の着色層を形成した。このようにして、構成A及び構成Bを備えるLEDモジュール(断面形状は図4)を作製した。
 (実施例8)
 着色層の材料として着色層の材料(1)を用いた。光透過層の材料として光透過層の材料(2)を用いた。紫外線照射装置が搭載されたピエゾ方式インクジェットプリンタのインクジェットヘッドからの着色層の材料の吐出と、紫外線照射による硬化とを繰り返して、基板における複数のLEDチップの間隙に、着色層を形成した。なお、着色層の材料は、隣り合う画素間の第1の間隙Gaには塗布し、かつ画素内の第2の間隙Gbには塗布しなかった。また、第1の間隙Gaに配置された着色層と該着色層の隣の上記LEDチップとの間に間隙があるように着色層を形成した。次いで、紫外線照射装置が搭載されたピエゾ方式インクジェットプリンタのインクジェットヘッドからの光透過層の材料の吐出と、紫外線照射による硬化とを繰り返して、光透過層を形成した。このようにして、構成A及び構成Cを備えるLEDモジュール(断面形状は図5)を作製した。
 (実施例9)
 第1の着色層の材料及び第2の着色層の材料としてそれぞれ、着色層の材料(1)を用いた。光透過層の材料として、光透過層の材料(1)を用いた。第1の着色層の材料を、隣り合う画素間の第1の間隙Gaには塗布し、かつ画素内の第2の間隙Gbには塗布しなかった。また、第1の間隙Gaに配置された第1の着色層と該第1の着色層の隣の上記LEDチップとの間に間隙があるように第1の着色層を形成した。次いで、紫外線照射装置が搭載されたピエゾ方式インクジェットプリンタのインクジェットヘッドからの光透過層の材料の吐出と、紫外線照射による硬化とを繰り返して、光透過層を形成した。さらに、紫外線照射装置が搭載されたピエゾ方式インクジェットプリンタのインクジェットヘッドからの光透過層の材料の吐出と、紫外線照射による硬化とを繰り返して、第1の着色層の上側の位置する光透過層の上側に、第2の着色層を配置した。このようにして、構成A、構成B及び構成Cを備えるLEDモジュール(断面形状は図6)を作製した。
 (実施例10)
 光透過層の材料として光透過層の材料(1)を用いたこと、着色層の厚み(高さ)を大きくしたこと以外は、実施例8と同様にして、構成Cを備えるLEDモジュール(断面形状は図3)を作製した。
 (実施例11)
 第1の着色層の材料及び第2の着色層の材料としてそれぞれ、着色層の材料(1)を用いた。光透過層の材料として、光透過層の材料(1)を用いた。第1の着色層の材料を、隣り合う画素間の第1の間隙Gaには塗布し、かつ画素内の第2の間隙Gbには塗布しなかった。また、第1の間隙Gaに配置された第1の着色層と該第1の着色層の隣の上記LEDチップとの間に間隙があるように第1の着色層を形成した。次いで、紫外線照射装置が搭載されたピエゾ方式インクジェットプリンタのインクジェットヘッドからの光透過層の材料の吐出と、紫外線照射による硬化とを繰り返して、光透過層を形成した。さらに、紫外線照射装置が搭載されたピエゾ方式インクジェットプリンタのインクジェットヘッドからの光透過層の材料の吐出と、紫外線照射による硬化とを繰り返して、光透過層の上側に、第2の着色層を形成した。このようにして、構成A、構成B及び構成Cを備えるLEDモジュール(断面形状は図7)を作製した。
 (実施例12)
 着色層の材料として着色層の材料(1)を用いた。光透過層の材料として光透過層の材料(1)を用いた。紫外線照射装置が搭載されたピエゾ方式インクジェットプリンタのインクジェットヘッドからの光透過層の材料の吐出と、紫外線照射による硬化とを繰り返して、基板における複数のLEDチップの間隙及び上方に、光透過層を形成した。次いで、形成した光透過層の上側に、紫外線照射装置が搭載されたピエゾ方式インクジェットプリンタのインクジェットヘッドからの着色層の材料の吐出と、紫外線照射による硬化とを繰り返して、着色層を形成した。このようにして、構成Bを備えるLEDモジュール(断面形状は図2)を作製した。
 (実施例13)
 光透過層の材料として光透過層の材料(1)を用いたこと、及び、着色層の材料の配置する位置を調整したこと以外は、実施例8と同様にして、構成A及び構成Cを備えるLEDモジュール(断面形状は図5)を作製した。
 (実施例14)
 光透過層の材料として光透過層の材料(2)を用いたこと、第2の着色層の上面を、アンチグレア処理して、第2の着色層の上面に凹凸を形成させたこと、及び、第2の着色層の厚みを大きくしたこと以外は、実施例11と同様にしてLEDモジュールを作製した。構成A、構成B及び構成Cを備えるLEDモジュール(断面形状は図7(第2の着色層の上面の凹凸は図示せず))を作製した。なお、着色層の上面の十点平均粗さRzは、2.0μmであった。
 (実施例15)
 光透過層の材料として光透過層の材料(2)を用いたこと、第2の着色層の上面を、アンチグレア処理して、第2の着色層の上面に凹凸を形成させたこと、第2の着色層の厚みを大きくしたこと、及び第1の着色層の形状をテーパー形状にしたこと以外は、実施例11と同様にして、LEDモジュールを作製した。構成A、構成B及び構成Cを備えるLEDモジュール(着色層がテーパー形状を有することを除いて、断面形状は図7(第2の着色層の上面に凹凸は図示せず))を作製した。なお、第2の着色層の上面の十点平均粗さRzは、2.0μmであった。
 (実施例16)
 光透過層の材料として光透過層の材料(2)を用いたこと、第2の着色層の上面を、アンチグレア処理して、第2の着色層の上面に凹凸を形成させたこと、第2の着色層の厚みを大きくしたこと、第1の着色層の形状をテーパー形状にしたこと、及び第2の着色層の厚みを大きくしたこと以外は、実施例11と同様にして、LEDモジュールを作製した。構成A、構成B及び構成Cを備えるLEDモジュール(着色層がテーパー形状を有することを除いて、断面形状は図7(第2の着色層の上面に凹凸は図示せず))を作製した。なお、第2の着色層の上面の十点平均粗さRzは、2.0μmであった。
 (実施例17)
 光透過層として、光透過層の材料(1)により形成されたフィルムを作製し、該光透過層を着色層の上側に配置したこと、及び、上記光透過層の上側に反射防止フィルムを配置したこと以外は、実施例8と同様にして、LEDモジュールを作製した。構成A、及び構成Cを備えるLEDモジュール(断面形状は図12)を作製した。
 (実施例18)
 光透過層として、光透過層の材料(1)により形成されたフィルムを作製し、該光透過層を着色層の上側に配置したこと、及び、上記光透過層の上側に反射防止フィルムを配置したこと以外は、実施例1と同様にして、LEDモジュールを作製した。構成Aを備えるLEDモジュール(断面形状は図11)を作製した。
 (実施例19)
 光透過層として、光透過層の材料(1)により形成されたフィルムを作製し、該光透過層を着色層の上側に配置したこと、及び、上記光透過層の上側に反射防止フィルムを配置したこと、及び着色層の形状をテーパー形状にしたこと以外は、実施例8と同様にして、LEDモジュールを作製した。構成A、及び構成Cを備えるLEDモジュール(着色層がテーパー形状を有することを除いて、断面形状は図12)を作製した。
 (実施例20)
 光透過層の上側にアンチグレアコーティング剤を用いてアンチグレア処理をして、光透過層の上面に凹凸を形成させたこと以外は、実施例8と同様にして、LEDモジュールを作製した。LEDモジュールを作製した。構成A、及び構成Cを備えるLEDモジュール(断面形状は図5)を作製した。なお、光透過層の上面の十点平均粗さRzは、2.0μmであった。
 (実施例21)
 光透過層として、光透過層の材料(1)により形成されたフィルムを作製し、該光透過層を着色層の上側に配置したこと、上記光透過層の上側に反射防止フィルムを配置したこと、及び着色層の形状をテーパー形状にしたこと以外は、実施例1と同様にして、LEDモジュールを作製した。構成Aを備えるLEDモジュール(着色層がテーパー形状を有することを除いて、断面形状は図11)を作製した。
 (実施例22)
 光透過層の材料として光透過層の材料(2)を用い、形成した着色層の上側に、モールドにより光透過層を形成したこと以外は、実施例11と同様にして、LEDモジュールを作製した。構成A、構成B及び構成Cを備えるLEDモジュール(断面形状は図7)を作製した。
 (比較例1)
 光透過層を形成せずに、LEDチップの側方及び上面が着色層で覆われるようにしたこと以外は、実施例1と同様にして、LEDモジュールを作製した。図14は、比較例1で作製したLEDモジュールを模式的に示す断面図である。図14に示すように、比較例1で作製したLEDモジュール101は、基板11と、着色層121とを備える。
 (比較例2)
 着色層を形成せずに、LEDチップの側方及び上面が光透過層で覆われるようにしたこと以外は、実施例1と同様にして、LEDモジュールを作製した。図15は、比較例2で作製したLEDモジュールを模式的に示す断面図である。図15に示すように、比較例2で作製したLEDモジュール101Aは、基板11と、光透過層122とを備える。
 (比較例3)
 LEDチップの側方及び上面が着色層で覆われるようにした後、着色層の上面に光透過層を配置したこと以外は、実施例1と同様にして、LEDモジュールを作製した。図16は、比較例3で作製したLEDモジュールを模式的に示す断面図である。図16に示すように、比較例3で作製したLEDモジュール101Bは、基板11と、着色層121Bと、光透過層122Bとを備える。
 (比較例4)
 光透過層の上面に配置される着色層の厚みを大きくしたこと以外は実施例12と同様にして、LEDモジュールを作製した。図17は、比較例4で作製したLEDモジュールを模式的に示す断面図である。図17に示すように、比較例4で作製したLEDモジュール101Cは、基板11と、着色層121Cと、光透過層122Cとを備える。
 (比較例5)
 着色層とLEDチップとの間の間隙をなくしたこと、及び、着色層の厚みを大きくしたこと以外は実施例13と同様にして、LEDモジュールを作製した。図18は、比較例5で作製したLEDモジュールを模式的に示す断面図である。図18に示すように、比較例5で作製したLEDモジュール101Dは、基板11と、着色層121Dと、光透過層122Dとを備える。
 (評価)
 (1)輝度
 基板(着色層及び光透過層が配置される前の基板)におけるLEDチップを点灯させて、輝度を測定し、輝度(1)とした。また、得られたLEDモジュールにおけるLEDチップを点灯させて、輝度を測定し、輝度(2)とした。輝度は、輝度計(コニカミノルタ社製「LS-150」)を用いて、LEDチップの真上から測定した。得られた輝度から、輝度(2)の輝度(1)に対する比(輝度(2)/輝度(1))を求めた。輝度を以下の基準で判定した。
 [輝度の判定基準]
 ○○○:比(輝度(2)/輝度(1))が0.8以上
 ○○:比(輝度(2)/輝度(1))が0.6以上0.8未満
 ○:比(輝度(2)/輝度(1))が0.3以上0.6未満
 ×:比(輝度(2)/輝度(1))が0.3未満
 (2)配線隠蔽性
 得られたLEDモジュールにおいて、輝度計(コニカミノルタ社製「LS-150」)を用いて、配線の真上から輝度を測定し、得られた測定値を輝度(3)とした。得られたLEDモジュールの配線隠蔽性を、以下の基準で判定した。
 [配線隠蔽性の判定基準]
 ○○○:輝度(3)が0.1未満
 ○○:輝度(3)が0.1以上0.15未満
 ○:輝度(3)が0.15以上0.2未満
 ×:輝度(3)が0.2以上
 (3)斜めから見たときの変色
 得られたLEDモジュールを、白色に点灯し、LEDモジュールの真上から、LEDモジュールの上面のL*a*b*表色系におけるL*、a*、b*を求めた。また、得られたLEDモジュールを、白色に点灯し、LEDモジュールを傾けて、LEDモジュールの上面に対して120°の位置から、LEDモジュールの上面のL*a*b*表色系におけるL*、a*、b*を求めた。なお、L*、a*、b*は、分光光度計(日立ハイテク社製「U-4100」)を用いて、JIS Z8781-4:2013に準拠して測定した。これら2つの測定から、L*a*b*表色系における色差ΔE*abを求めた。斜めから観察した際の変色を、以下の基準で判定した。
 [斜めから見たときの変色の判定基準]
 ○○:色差ΔE*abが1.0未満
 ○:色差ΔE*abが1.0以上2.0未満
 ×:色差ΔE*abが2.0以上
 LEDモジュールの構成及び結果を、以下の表1~6に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 1,1A,1B,1C,1D,1E,1F,1G,1H,1I…LEDモジュール
 11…基板
 11X…基板本体
 11Y…LEDチップ
 11Ya…上面
 11Z…配線
 21,21A,21B,21D,21G,21H…着色層
 21CA,21EA,21FA,21IA…第1の着色層
 21CB,21EB,21FB,21IB…第2の着色層
 21a,21CAa,21Da,21EAa,21FAa,21Ga,21Ha…上面
 22,22A,22B,22C,22D,22E,22F,22G,22H,22I…光透過層
 25G…接着層
 26H…光反射層
 31,31D…LEDモジュール
 32,32D…反射防止層
 50…LED表示装置
 Ga…第1の間隙
 Gb…第2の間隙
 H…高さ
 L…距離
 P1…第1の画素
 P2…第2の画素
 Sa…間隔
 Sb…間隔

Claims (18)

  1.  LEDモジュールは、複数のLEDチップを上面に有する基板と、着色層と、光透過層とを備え、
     前記着色層の材料が、着色剤を含み、
     前記光透過層が、前記LEDチップの上方に配置されており、
     前記LEDモジュールは、以下の構成A、構成B、及び構成Cのうちの少なくとも1つの構成を備える、LEDモジュール。
     構成A:前記着色層が、複数の前記LEDチップの間隙に配置されており、複数の前記LEDチップの間隙に配置された前記着色層の上面の高さ位置が、前記LEDチップの上面の高さ位置と同等以下である
     構成B:前記着色層が、前記光透過層の上方に配置されており、前記光透過層の上方に配置された前記着色層の厚みが、50μm以下である
     構成C:複数の画素がそれぞれ、複数の前記LEDチップにより構成されており、複数の前記LEDチップの間隙が、隣り合う前記画素間の第1の間隙Gaと前記画素内の第2の間隙Gbとを有し、前記着色層が、前記第1の間隙Gaに配置されており、前記第1の間隙Gaに配置された前記着色層と該着色層の隣の前記LEDチップとの間に間隙がある
  2.  前記着色層の材料が、光硬化性化合物と、光重合開始剤とをさらに含む、請求項1に記載のLEDモジュール。
  3.  前記LEDモジュールは、前記構成Aを少なくとも備える、請求項1又は2に記載のLEDモジュール。
  4.  前記LEDモジュールは、前記構成Bを少なくとも備える、請求項1~3のいずれか1項に記載のLEDモジュール。
  5.  前記LEDモジュールは、前記構成Cを少なくとも備える、請求項1~4のいずれか1項に記載のLEDモジュール。
  6.  前記構成Aが、以下の構成Aaを満たす、請求項1~5のいずれか1項に記載のLEDモジュール。
     構成Aa:複数の前記LEDチップの間隙に配置された前記着色層の上面の高さ位置と前記LEDチップの上面の高さ位置との距離が、前記LEDチップの高さの50%以上である
  7.  前記構成Cが、以下の構成Caを満たす、請求項1~6のいずれか1項に記載のLEDモジュール。
     構成Ca:前記第1の間隙Gaに配置された前記着色層と該着色層の隣の前記LEDチップとの間隙の間隔Saが、前記第2の間隙Gbの間隔Sbと同等以上である
  8.  前記構成Cにおいて、前記着色層の厚みが30μm以下である、請求項1~7のいずれか1項に記載のLEDモジュール。
  9.  前記構成Aにおいて、前記着色層がテーパー形状を有し、
     前記構成Cにおいて、前記着色層がテーパー形状を有する、請求項1~8のいずれか1項に記載のLEDモジュール。
  10.  前記着色層の材料が、光硬化性化合物と、光重合開始剤とをさらに含み、
     前記着色層の材料に含まれる前記光硬化性化合物が、多官能(メタ)アクリレート化合物を含む、請求項1~9のいずれか1項に記載のLEDモジュール。
  11.  前記光透過層が、樹脂又はガラスを含む、請求項1~10のいずれか1項に記載のLEDモジュール。
  12.  前記光透過層が、平均粒子径が10μm以下であるフィラーを含む、請求項1~11のいずれか1項に記載のLEDモジュール。
  13.  前記LEDチップの側面と前記着色層の側面との間に、光反射層をさらに備える、請求項1~12のいずれか1項に記載のLEDモジュール。
  14.  前記光透過層が、上面に凹凸を有する、請求項1~13のいずれか1項に記載のLEDモジュール。
  15.  前記基板と前記着色層との間に、接着層をさらに備える、請求項1~14のいずれか1項に記載のLEDモジュール。
  16.  請求項1~15のいずれか1項に記載のLEDモジュールの製造方法であり、
     前記着色層の材料が、光硬化性化合物と、光重合開始剤とをさらに含み、
     前記LEDモジュールの製造方法は、
     前記着色層の材料をインクジェット方式で塗布する工程と、
     前記着色層の材料に光を照射して、前記着色層の材料を硬化させて、前記着色層を形成する工程と、
     前記LEDチップの上方に、前記光透過層を形成する工程とを備える、LEDモジュールの製造方法。
  17.  請求項1~15のいずれか1項に記載のLEDモジュールの製造方法であり、
     ガラス部材と前記光透過層と前記着色層とを有する構造体を用意する工程と、
     複数の前記LEDチップを上面に有する前記基板を用意して、前記光透過層が、前記LEDチップの上方に配置されるように、前記構造体と前記基板とを貼り合わせる工程とを備える、LEDモジュールの製造方法。
  18.  複数のLEDモジュールを備え、
     複数の前記LEDモジュールが連結されており、
     前記LEDモジュールが、請求項1~15のいずれか1項に記載のLEDモジュールである、LED表示装置。
PCT/JP2022/034332 2021-09-17 2022-09-14 Ledモジュール、ledモジュールの製造方法及びled表示装置 WO2023042837A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021152445 2021-09-17
JP2021-152445 2021-09-17

Publications (1)

Publication Number Publication Date
WO2023042837A1 true WO2023042837A1 (ja) 2023-03-23

Family

ID=85602888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034332 WO2023042837A1 (ja) 2021-09-17 2022-09-14 Ledモジュール、ledモジュールの製造方法及びled表示装置

Country Status (2)

Country Link
TW (1) TW202332701A (ja)
WO (1) WO2023042837A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233960A (ja) * 2011-04-28 2012-11-29 Dainippon Printing Co Ltd 白色発光ダイオード光源用のカラーフィルタおよびそれを用いた液晶表示装置
JP2015191686A (ja) * 2014-03-27 2015-11-02 凸版印刷株式会社 導光体、エッジライト型照明装置および画像表示装置
WO2017203826A1 (ja) * 2016-05-27 2017-11-30 ソニー株式会社 発光素子及び表示装置
CN111599909A (zh) * 2020-05-21 2020-08-28 东莞市中麒光电技术有限公司 一种led显示屏模块及其制备方法
US20200328197A1 (en) * 2019-04-12 2020-10-15 Samsung Electronics Co., Ltd. Display apparatus and method of manufacturing thereof
CN211879404U (zh) * 2020-03-27 2020-11-06 京东方科技集团股份有限公司 显示基板及显示装置
CN112018226A (zh) * 2020-09-11 2020-12-01 东莞市中麒光电技术有限公司 一种led显示模块及其制作方法
JP2020205417A (ja) * 2019-06-12 2020-12-24 東レ株式会社 マイクロledディスプレイ装置
US20210091138A1 (en) * 2019-09-23 2021-03-25 Samsung Electronics Co., Ltd. Display apparatus and manufacturing method thereof
US20210111324A1 (en) * 2019-10-11 2021-04-15 Samsung Electronics Co., Ltd. Display module and manufacturing method thereof
WO2021149234A1 (ja) * 2020-01-24 2021-07-29 三菱電機株式会社 Led表示パネルおよびled表示パネルの製造方法
CN113206180A (zh) * 2021-04-28 2021-08-03 深圳市艾比森光电股份有限公司 Led显示模组及led显示屏
JP2021140077A (ja) * 2020-03-06 2021-09-16 凸版印刷株式会社 ブラックマトリクス基板及び表示装置、ブラックマトリクス基板の製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233960A (ja) * 2011-04-28 2012-11-29 Dainippon Printing Co Ltd 白色発光ダイオード光源用のカラーフィルタおよびそれを用いた液晶表示装置
JP2015191686A (ja) * 2014-03-27 2015-11-02 凸版印刷株式会社 導光体、エッジライト型照明装置および画像表示装置
WO2017203826A1 (ja) * 2016-05-27 2017-11-30 ソニー株式会社 発光素子及び表示装置
US20200328197A1 (en) * 2019-04-12 2020-10-15 Samsung Electronics Co., Ltd. Display apparatus and method of manufacturing thereof
JP2020205417A (ja) * 2019-06-12 2020-12-24 東レ株式会社 マイクロledディスプレイ装置
US20210091138A1 (en) * 2019-09-23 2021-03-25 Samsung Electronics Co., Ltd. Display apparatus and manufacturing method thereof
US20210111324A1 (en) * 2019-10-11 2021-04-15 Samsung Electronics Co., Ltd. Display module and manufacturing method thereof
WO2021149234A1 (ja) * 2020-01-24 2021-07-29 三菱電機株式会社 Led表示パネルおよびled表示パネルの製造方法
JP2021140077A (ja) * 2020-03-06 2021-09-16 凸版印刷株式会社 ブラックマトリクス基板及び表示装置、ブラックマトリクス基板の製造方法
CN211879404U (zh) * 2020-03-27 2020-11-06 京东方科技集团股份有限公司 显示基板及显示装置
CN111599909A (zh) * 2020-05-21 2020-08-28 东莞市中麒光电技术有限公司 一种led显示屏模块及其制备方法
CN112018226A (zh) * 2020-09-11 2020-12-01 东莞市中麒光电技术有限公司 一种led显示模块及其制作方法
CN113206180A (zh) * 2021-04-28 2021-08-03 深圳市艾比森光电股份有限公司 Led显示模组及led显示屏

Also Published As

Publication number Publication date
TW202332701A (zh) 2023-08-16

Similar Documents

Publication Publication Date Title
TW201835254A (zh) 墨水組成物、光轉換層及彩色濾光片
JP5519317B2 (ja) ライトユニット及びこれを備える表示装置
CN1825140A (zh) 低反射率亮度增强多层光学膜及有机发光二极管显示器
KR100954476B1 (ko) 광선 지향 제어 광학시트
JP6221442B2 (ja) 光散乱層用樹脂組成物、光散乱層、および有機エレクトロルミネッセンス装置
KR102205622B1 (ko) 광학 적층체 및 면광원 장치
JP2010201821A (ja) 光重合性樹脂積層体、並びにこれを用いた表面撥液性パターン基板、カラーフィルタ、有機エレクトロルミネッセンス素子及び電子ペーパーの製造方法
JP2012083411A (ja) カラーフィルタ用樹脂組成物、カラーフィルタ、並びに、有機発光表示装置及び液晶表示装置
US20190270291A1 (en) Decorative film and decorative molded body
WO2023042837A1 (ja) Ledモジュール、ledモジュールの製造方法及びled表示装置
US10688763B2 (en) Decorative film and decorative molded body
JP6972656B2 (ja) インク組成物及びその製造方法、光変換層並びにカラーフィルタ
JP6931740B2 (ja) 黒色構造体、ならびにそれを備えた自発光画像表示装置
WO2022131363A1 (ja) 波長変換部材、発光装置および液晶表示装置
JP2022135603A (ja) インクジェット塗布用及びled用硬化性組成物、ledモジュール、ledモジュールの製造方法及びled表示装置
JP2024013387A (ja) 光学フィルムおよび表示装置
TWI728669B (zh) 偏光板及包括所述偏光板的光學顯示裝置
WO2017081948A1 (ja) タッチセンサ用導電積層体およびその製造方法
CN114153091A (zh) 层叠体、层叠体的制造方法及包含层叠体的图像显示装置
TW202147030A (zh) 感光性樹脂組成物、隔壁、光轉換層以及光發射裝置
WO2022050421A1 (ja) インクジェット塗布用及びled保護用硬化性組成物、ledモジュール、ledモジュールの製造方法及びled表示装置
WO2024101359A1 (ja) インクジェット用硬化性組成物、ledモジュール、及びledモジュールの製造方法
WO2021162024A1 (ja) 波長変換基板の製造方法、波長変換基板、およびディスプレイ
JP6614226B2 (ja) カラーフィルターの製造方法及び透明保護膜形成用樹脂組成物
JP2024013386A (ja) 光学フィルムおよび表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869984

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023548476

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE