WO2023042726A1 - 補強フィルム、デバイスの製造方法および補強方法 - Google Patents

補強フィルム、デバイスの製造方法および補強方法 Download PDF

Info

Publication number
WO2023042726A1
WO2023042726A1 PCT/JP2022/033585 JP2022033585W WO2023042726A1 WO 2023042726 A1 WO2023042726 A1 WO 2023042726A1 JP 2022033585 W JP2022033585 W JP 2022033585W WO 2023042726 A1 WO2023042726 A1 WO 2023042726A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
pressure
weight
sensitive adhesive
reinforcing film
Prior art date
Application number
PCT/JP2022/033585
Other languages
English (en)
French (fr)
Inventor
翔悟 佐々木
良介 荒井
千尋 舟木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020247008092A priority Critical patent/KR20240065076A/ko
Priority to JP2023548432A priority patent/JPWO2023042726A1/ja
Priority to CN202280062332.5A priority patent/CN117957293A/zh
Publication of WO2023042726A1 publication Critical patent/WO2023042726A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • C08F222/1063Esters of polycondensation macromers of alcohol terminated polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation

Definitions

  • the present invention relates to a reinforcing film in which a film substrate and a photocurable pressure-sensitive adhesive layer are adhered and laminated. Furthermore, the present invention relates to a method for manufacturing a device having a reinforcing film laminated on its surface, and a reinforcing method for fixing and laminating a reinforcing film on the surface of an adherend.
  • Adhesive films are sometimes attached to the surfaces of optical devices such as displays and electronic devices for the purpose of protecting the surfaces and imparting impact resistance.
  • Such an adhesive film usually has an adhesive layer fixedly laminated on the main surface of the film substrate, and is attached to the device surface via the adhesive layer.
  • Patent Literature 1 discloses a reinforcing film having a pressure-sensitive adhesive layer made of a photocurable pressure-sensitive adhesive composition on a film substrate.
  • the adhesive of this reinforcing film has low adhesiveness immediately after being attached to the adherend, so it can be easily removed from the adherend. Therefore, reworking from the adherend is possible, and it is also possible to selectively remove the reinforcing film from a portion of the adherend that does not require reinforcement. Since the adhesive of the reinforcing film strongly adheres to the adherend by photocuring, the film base material is permanently adhered to the surface of the adherend, and can be used as a reinforcing material that protects the surface of the device. .
  • the present invention can be easily peeled off immediately after bonding with the adherend, and can be firmly adhered to the adherend by photocuring the adhesive after bonding with the adherend,
  • An object of the present invention is to provide a reinforcing film having excellent impact resistance.
  • the present inventors found that the use of a photocurable pressure-sensitive adhesive having a predetermined composition improves the impact resistance of the adherend.
  • the reinforcing film of the present invention comprises an adhesive layer fixedly laminated on one main surface of the film substrate.
  • the pressure-sensitive adhesive layer is composed of a photocurable composition containing a base polymer as a high molecular weight component (polymer), a photocuring agent, and a photopolymerization initiator.
  • An acrylic polymer is used as the base polymer.
  • the photocurable composition constituting the pressure-sensitive adhesive layer may contain, as a high-molecular-weight component, an acrylic oligomer having a weight-average molecular weight smaller than that of the base polymer.
  • At least one of the acrylic base polymer and the acrylic oligomer as the high-molecular-weight component contains a monomer unit having an alicyclic structure.
  • the monomer unit having an alicyclic structure may have a homopolymer glass transition temperature of 150° C. or lower.
  • the adhesive layer After temporarily adhering the reinforcing film to the surface of the adherend, the adhesive layer is irradiated with actinic rays to photo-cure the adhesive layer, thereby increasing the adhesive strength between the reinforcing film and the adherend.
  • a device is obtained in which the reinforcing film is fixedly laminated on the surface of the body.
  • the adherend is a polyimide film
  • the adhesive strength between the adhesive layer and the polyimide film is preferably 1 N/25 mm or less before the adhesive layer is photocured (temporarily attached state).
  • the adhesive strength to the polyimide film after photocuring the pressure-sensitive adhesive layer is preferably 30 times or more that before photocuring the pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive layer is made of a photocurable composition, and before the pressure-sensitive adhesive layer is photocured, the adhesion to the adherend is small, so that it can be easily peeled off from the adherend. .
  • the adhesive strength to the adherend increases.
  • the adherend is provided with excellent impact resistance, so that the adherend can be prevented from being damaged due to an external impact or the like.
  • FIG. 3 is a cross-sectional view showing a laminated structure of reinforcing films
  • FIG. 3 is a cross-sectional view showing a laminated structure of reinforcing films
  • FIG. 4 is a cross-sectional view showing a device to which a reinforcing film is attached;
  • FIG. 1 is a cross-sectional view showing one embodiment of the reinforcing film.
  • the reinforcing film 10 has an adhesive layer 2 on one main surface of the film substrate 1 .
  • the adhesive layer 2 is fixedly laminated on one main surface of the film substrate 1 .
  • the pressure-sensitive adhesive layer 2 is a photo-curable pressure-sensitive adhesive made of a photo-curable composition, and is cured by irradiation with actinic rays such as ultraviolet rays to increase the adhesive force to the adherend.
  • FIG. 2 is a cross-sectional view of a reinforcing film in which a release liner 5 is temporarily attached to the main surface of the pressure-sensitive adhesive layer 2.
  • FIG. FIG. 3 is a cross-sectional view showing a state in which the reinforcing film 10 is pasted on the surface of the device 20. As shown in FIG.
  • the reinforcing film 10 is attached to the surface of the device 20 .
  • the adhesive layer 2 has not yet been photocured, and the reinforcing film 10 (adhesive layer 2 ) is temporarily attached to the device 20 .
  • the adhesive strength at the interface between the device 20 and the adhesive layer 2 is increased, and the device 20 and the reinforcing film 10 are fixed.
  • “Fixation” is a state in which two laminated layers are firmly adhered, and it is impossible or difficult to separate them at the interface between them. "Temporarily attached” is a state in which the adhesive strength between two laminated layers is small and the layers can be easily separated at the interface between the two layers.
  • the film substrate 1 and the pressure-sensitive adhesive layer 2 are adhered together, and the release liner 5 is temporarily adhered to the pressure-sensitive adhesive layer 2 .
  • the film substrate 1 and the release liner 5 are separated, separation occurs at the interface between the adhesive layer 2 and the release liner 5 , and the adhesive layer 2 is kept fixed on the film substrate 1 .
  • the adhesive does not remain on the release liner 5 after being removed.
  • the device 20 and the adhesive layer 2 are temporarily attached before the adhesive layer 2 is photocured.
  • peeling occurs at the interface between the adhesive layer 2 and the device 20 , and the adhesive layer 2 is kept fixed on the film substrate 1 . Since no adhesive remains on the device 20, rework is easy.
  • the adhesive layer 2 is photo-cured, the adhesive strength between the adhesive layer 2 and the device 20 increases, making it difficult to separate the film 1 from the device 20. When the two are separated, the adhesive layer 2 aggregates. Destruction may occur.
  • the thickness of the film substrate is, for example, about 4 to 500 ⁇ m.
  • the thickness of the film substrate 1 is preferably 12 ⁇ m or more, more preferably 30 ⁇ m or more, and even more preferably 45 ⁇ m or more, from the viewpoint of reinforcing the device by imparting rigidity, absorbing impact, or the like.
  • the thickness of the film substrate 1 is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, from the viewpoint of imparting flexibility to the reinforcing film and improving handling properties.
  • the compressive strength of the film substrate 1 is preferably 100 to 3000 kg/cm 2 , more preferably 200 to 2900 kg/cm 2 and even more preferably 300 to 2800 kg/cm 2 .
  • 400 to 2700 kg/cm 2 is particularly preferred.
  • the plastic material forming the film substrate 1 examples include polyester-based resins, polyolefin-based resins, cyclic polyolefin-based resins, polyamide-based resins, polyimide-based resins, and the like.
  • the film substrate 1 is preferably a transparent film.
  • the adhesive layer 2 is photocured by irradiating actinic rays from the film substrate 1 side
  • the film substrate 1 preferably has transparency to the actinic rays used for curing the adhesive layer.
  • Polyester-based resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate are preferably used because they have both mechanical strength and transparency.
  • the adherend should be transparent to actinic rays, and the film substrate 1 should not be transparent to actinic rays. good too.
  • the surface of the film substrate 1 may be provided with functional coatings such as an easy adhesion layer, an easy slip layer, a release layer, an antistatic layer, a hard coat layer, and an antireflection layer. As described above, in order to fix the film substrate 1 and the adhesive layer 2 together, it is preferable that the adhesive layer 2-attached surface of the film substrate 1 is not provided with a release layer.
  • the adhesive layer 2 fixedly laminated on the film substrate 1 is made of a photocurable composition containing a base polymer as a high molecular weight component, a photocuring agent, and a photopolymerization initiator.
  • the photocurable composition constituting the pressure-sensitive adhesive layer may contain an oligomer having a weight average molecular weight smaller than that of the base polymer as a high molecular weight component.
  • the pressure-sensitive adhesive layer 2 is easy to rework because it has a low adhesive strength to adherends such as devices and device parts before being photocured. Since the pressure-sensitive adhesive layer 2 has improved adhesion to the adherend by photocuring, the reinforcing film is difficult to separate from the device surface even when the device is in use, and has excellent adhesion reliability.
  • the total light transmittance of the pressure-sensitive adhesive layer 2 is preferably 80% or higher, more preferably 85% or higher, even more preferably 90% or higher.
  • the haze of the adhesive layer 2 is preferably 2% or less, more preferably 1% or less, still more preferably 0.7% or less, and particularly preferably 0.5% or less.
  • the adhesive layer contains a base polymer as a high molecular weight component.
  • the base polymer is the main constituent of the adhesive composition.
  • an oligomer which is a polymer with a lower molecular weight than the base polymer, may be included.
  • the pressure-sensitive adhesive composition contains an acrylic polymer as a base polymer because it has excellent optical transparency and adhesiveness, is easy to control adhesiveness, and has excellent compatibility with oligomers and photocuring agents. is preferred, and 50% by weight or more of the pressure-sensitive adhesive composition is preferably acrylic polymer.
  • acrylic polymer one containing (meth)acrylic acid alkyl ester as a main monomer component is preferably used.
  • (meth)acryl means acryl and/or methacryl.
  • the (meth)acrylic acid alkyl ester a (meth)acrylic acid alkyl ester in which the alkyl group has 1 to 20 carbon atoms is preferably used.
  • the (meth)acrylic acid alkyl ester may have a branched alkyl group or a cyclic alkyl group (alicyclic alkyl group).
  • (meth)acrylic acid alkyl esters having a chain alkyl group examples include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, and (meth)acrylate.
  • (meth)acrylic acid alkyl esters having an alicyclic alkyl group include cyclopentyl (meth)acrylate, cyclohexyl (meth)acrylate, cycloheptyl (meth)acrylate, and cyclooctyl (meth)acrylate.
  • (meth) acrylic acid cycloalkyl ester (meth) acrylic acid ester having a bicyclic aliphatic hydrocarbon ring such as isobornyl (meth) acrylate; dicyclopentanyl (meth) acrylate, dicyclopentanyloxy Tricyclics such as ethyl (meth)acrylate, tricyclopentanyl (meth)acrylate, 1-adamantyl (meth)acrylate, 2-methyl-2-adamantyl (meth)acrylate, 2-ethyl-2-adamantyl (meth)acrylate (Meth)acrylic acid esters having the above aliphatic hydrocarbon ring can be mentioned.
  • the (meth)acrylic acid alkyl ester having an alicyclic alkyl group may have a substituent on the ring such as 3,3,5-trimethylcyclohexyl (meth)acrylate.
  • the (meth)acrylic acid alkyl ester having an alicyclic alkyl group is a (meth)acrylic acid containing a condensed ring of an alicyclic structure and a ring structure having an unsaturated bond, such as dicyclopentenyl (meth)acrylate. It may be an ester.
  • the content of the (meth)acrylic acid alkyl ester is preferably 40% by weight or more, more preferably 50% by weight or more, and even more preferably 55% by weight or more, relative to the total amount of the monomer components constituting the base polymer.
  • the acrylic base polymer preferably contains a monomer component having a crosslinkable functional group as a copolymer component.
  • Examples of monomers having crosslinkable functional groups include hydroxy group-containing monomers and carboxy group-containing monomers.
  • a hydroxyl group and a carboxy group of the base polymer serve as reaction points with a cross-linking agent, which will be described later.
  • a cross-linking agent which will be described later.
  • an isocyanate-based cross-linking agent it is preferable to contain a hydroxy group-containing monomer as a copolymerization component of the base polymer.
  • an epoxy-based cross-linking agent it is preferable to contain a carboxy group-containing monomer as a copolymerization component of the base polymer.
  • hydroxy group-containing monomers examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, and (meth)acrylate. 8-hydroxyoctyl acrylate, 10-hydroxydecyl (meth)acrylate, 12-hydroxylauryl (meth)acrylate, 4-(hydroxymethyl)cyclohexylmethyl (meth)acrylate and the like.
  • Carboxy group-containing monomers include (meth)acrylic acid, 2-carboxyethyl (meth)acrylate, carboxypentyl (meth)acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid and the like.
  • the total amount of the hydroxy group-containing monomer and the carboxy group-containing monomer relative to the total amount of constituent monomer components is preferably 1 to 30% by weight, more preferably 2 to 25% by weight, and 3 to 3%. More preferably 20% by weight. In particular, it is preferable that the content of the carboxy group-containing monomer is within the above range.
  • the acrylic base polymer contains N-vinylpyrrolidone, methylvinylpyrrolidone, vinylpyridine, vinylpiperidone, vinylpyrimidine, vinylpiperazine, vinylpyrazine, vinylpyrrole, vinylimidazole, vinyloxazole, vinylmorpholine, and N-acryloylmorpholine as monomer components. , N-vinylcarboxylic acid amides, and N-vinylcaprolactam.
  • the acrylic base polymer may contain monomer components other than the above.
  • the acrylic base polymer contains monomer components such as vinyl ester monomers, aromatic vinyl monomers, epoxy group-containing monomers, vinyl ether monomers, sulfo group-containing monomers, phosphoric acid group-containing monomers, and acid anhydride group-containing monomers. You can
  • the base polymer may be substantially free of nitrogen atoms.
  • the proportion of nitrogen in the constituent elements of the base polymer is 0.1 mol% or less, 0.05 mol% or less, 0.01 mol% or less, 0.005 mol% or less, 0.001 mol% or less, or 0. There may be.
  • the base polymer is substantially free of nitrogen atoms. can get.
  • nitrogen atom-containing monomers such as cyano group-containing monomers, lactam structure-containing monomers, amide group-containing monomers, and morpholine ring-containing monomers
  • the base polymer is substantially free of nitrogen atoms. can get.
  • the crosslinking agent may contain nitrogen atoms.
  • the base polymer does not substantially contain nitrogen atoms
  • the base polymer preferably contains a carboxy group-containing monomer as a monomer component from the viewpoint of enhancing cohesiveness of the pressure-sensitive adhesive.
  • the glass transition temperature of the acrylic base polymer is preferably -10°C or lower, more preferably -15°C or lower, and even more preferably -20°C or lower.
  • the glass transition temperature of the acrylic base polymer may be -25°C or lower or -30°C or lower.
  • the glass transition temperature of the acrylic base polymer is generally -100°C or higher, and may be -80°C or higher or -70°C or higher.
  • the glass transition temperature is the temperature (peak top temperature) at which the loss tangent tan ⁇ in viscoelasticity measurement becomes maximum.
  • the theoretical Tg may be applied instead of the viscoelasticity measurement glass transition temperature.
  • Tg is the glass transition temperature of the polymer (unit: K)
  • W i is the weight fraction of the monomer component i constituting the segment (copolymerization ratio based on weight)
  • Tg i is the glass transition temperature of the homopolymer of the monomer component i ( Unit: K).
  • the glass transition temperature of the homopolymer the numerical value described in Polymer Handbook 3rd Edition (John Wiley & Sons, Inc., 1989) can be used.
  • the peak top temperature of tan ⁇ measured by dynamic viscoelasticity measurement may be adopted.
  • a high Tg monomer means a monomer with a high homopolymer glass transition temperature (Tg).
  • Tg homopolymer glass transition temperature
  • monomers having a homopolymer Tg of 40°C or higher include cyclohexyl methacrylate (Tg: 83°C), tetrahydrofurfuryl methacrylate (Tg: 60°C), dicyclopentanyl methacrylate (Tg: 175°C), and dicyclopentanyl acrylate.
  • Tg: 120°C isobornyl methacrylate (Tg: 155°C), isobornyl acrylate (Tg: 97°C), methyl methacrylate (Tg: 105°C), 1-adamantyl methacrylate (Tg: 250°C), 1 - (meth)acrylic acid esters such as adamantyl acrylate (Tg: 153°C); acid monomers such as methacrylic acid (Tg: 228°C) and acrylic acid (Tg: 106°C);
  • the content of a monomer having a homopolymer Tg of 40°C or higher is preferably 1% by weight or more, more preferably 2% by weight or more, based on the total amount of constituent monomer components. % by weight or more is more preferable.
  • the monomer component of the base polymer contains a monomer component having a homopolymer Tg of 80° C. or higher. It is more preferable to contain a monomer component having a temperature of 100° C. or higher.
  • the content of a monomer having a homopolymer Tg of 100°C or higher is preferably 0.1% by weight or more, more preferably 0.5% by weight or more, relative to the total amount of constituent monomer components. , more preferably 1% by weight or more, and particularly preferably 2% by weight or more.
  • the content of the monomer having a homopolymer Tg of 40° C. or higher is preferably 50% by weight or less, and preferably 40% by weight or less, based on the total amount of the constituent monomer components. It is more preferably 30% by weight or less, and may be 20% by weight or less or 10% by weight or less.
  • the content of the monomer whose Tg of the homopolymer is 80° C. or higher is preferably 30% by weight or less, more preferably 25% by weight or less, and even more preferably 20% by weight or less, relative to the total amount of the constituent monomer components. , 15 wt % or less, 10 wt % or less, or 5 wt % or less.
  • An acrylic polymer as a base polymer can be obtained by polymerizing the above monomer components by various known methods such as solution polymerization, emulsion polymerization, and bulk polymerization.
  • a solution polymerization method is preferable from the viewpoint of the balance of properties such as the adhesive strength and holding power of the pressure-sensitive adhesive and the cost.
  • Ethyl acetate, toluene and the like are used as solvents for solution polymerization.
  • the solution concentration is usually about 20 to 80% by weight.
  • As the polymerization initiator used for solution polymerization various known initiators such as azo-based and peroxide-based initiators can be used.
  • a chain transfer agent may be used to control molecular weight.
  • the reaction temperature is generally about 50-80° C., and the reaction time is generally about 1-8 hours.
  • the weight average molecular weight of the acrylic base polymer is preferably 100,000 to 2,000,000, more preferably 200,000 to 1,500,000, and even more preferably 300,000 to 1,000,000.
  • the molecular weight of the base polymer refers to the molecular weight before the introduction of the crosslinked structure.
  • the pressure-sensitive adhesive composition may contain an oligomer in addition to the base polymer as a high molecular weight component.
  • an acrylic oligomer is preferable because of its excellent compatibility with the acrylic base polymer.
  • the acrylic oligomer contains a (meth)acrylic acid alkyl ester as a main constituent monomer component, and is a component with a weight average molecular weight smaller than that of the above acrylic base polymer.
  • the acrylic oligomer has a weight molecular weight of about 1,000 to 30,000, and may be 2,000 or more, 2,500 or more, or 3,000 or more, and may be 20,000 or less, 15,000 or less, or 10,000 or less.
  • the acrylic oligomer one containing (meth)acrylic acid alkyl ester as a main monomer component is preferably used.
  • monomer components constituting the acrylic oligomer include the monomers exemplified above as the monomer components constituting the acrylic base polymer.
  • the content of the (meth)acrylic acid alkyl ester in the constituent monomer components of the acrylic oligomer is preferably 40% by weight or more, more preferably 50% by weight or more, and 55% by weight or more relative to the total amount of the monomer components constituting the base polymer. is more preferred. From the viewpoint of increasing the glass transition temperature of the oligomer, it is preferable to include a monomer having a homopolymer Tg of 40° C. or higher as the monomer component.
  • the glass transition temperature of the acrylic oligomer is preferably 40°C or higher, more preferably 50°C or higher, and even more preferably 60°C or higher.
  • the glass transition temperature of the acrylic oligomer is preferably higher than the glass transition temperature of the acrylic base polymer.
  • the glass transition temperature of acrylic oligomers is generally 200° C. or less, and may be 160° C. or less, 140° C. or less, or 120° C. or less.
  • the acrylic oligomer may contain crosslinkable functional groups, similar to the acrylic base polymer.
  • crosslinkable functional groups similar to the acrylic base polymer.
  • an epoxy-based cross-linking agent if used, if the acrylic oligomer has a carboxy group, a cross-linked structure may be introduced by reaction between the carboxy group of the acrylic oligomer and the epoxy group of the cross-linking agent.
  • the acrylic oligomer may be substantially free of nitrogen atoms.
  • the proportion of nitrogen in the constituent elements of the oligomer is 0.1 mol% or less, 0.05 mol% or less, 0.01 mol% or less, 0.005 mol% or less, 0.001 mol% or less, or 0. may
  • the acrylic oligomer can be obtained by polymerizing the above monomer components by various polymerization methods.
  • Various polymerization initiators may be used in the polymerization of the acrylic oligomer.
  • a chain transfer agent may also be used for the purpose of adjusting the molecular weight.
  • the content of the acrylic oligomer in the adhesive composition is not particularly limited. From the viewpoint of adjusting the adhesive strength of the pressure-sensitive adhesive layer to an appropriate range and increasing the impact resistance, the amount of the oligomer with respect to 100 parts by weight of the base polymer is preferably 0.1 to 20 parts by weight, and 0.5 to 15 parts by weight. more preferably 1 to 10 parts by weight, and may be 2 to 8 parts by weight, or 3 to 7 parts by weight.
  • the adhesive composition preferably contains at least one type of monomer having an alicyclic structure as the monomer unit of the high molecular weight component.
  • the pressure-sensitive adhesive composition contains an acrylic base polymer and an acrylic oligomer as high-molecular-weight components, one or both of the base polymer and the oligomer contain one or more monomers having an alicyclic structure as monomer units. is preferred.
  • the acrylic base polymer preferably contains at least one monomer having an alicyclic structure as a monomer unit.
  • the high-molecular-weight component contains a monomer unit having an alicyclic structure, the impact resistance of the reinforcing film tends to be improved.
  • the glass transition temperature of the homopolymer is preferably 150° C. or less, and the number of rings in the alicyclic structure is preferably 3 or less, and 2 or less. is more preferred, and it is particularly preferred that the alicyclic ring is monocyclic.
  • the glass transition temperature of the homopolymer of the monomer having an alicyclic structure is preferably 40-120°C, more preferably 50-105°C, and may be 55-100°C.
  • the monomer unit having an alicyclic structure may be contained in either the base polymer or the oligomer, but from the viewpoint of keeping the glass transition temperature of the pressure-sensitive adhesive low and achieving both adhesion and impact resistance. Therefore, the acrylic oligomer preferably contains a monomer unit having an alicyclic structure.
  • the content of a monomer having an alicyclic structure is preferably 40% by weight or more relative to the total amount of constituent monomer components, It is more preferably 50% by weight or more, and may be 60% by weight or more, 70% by weight or more, 80% by weight or more, or 90% by weight or more.
  • the acrylic base polymer contains a monomer unit having an alicyclic structure
  • it is preferably 30% by weight or less, more preferably 20% by weight or less, even more preferably 10% by weight or less, and 5% by weight, based on the total amount of the constituent monomer components. It may be below.
  • the amount of the monomer having an alicyclic structure relative to the total amount of constituent monomer components of the acrylic base polymer may be 1% by weight or more or 3% by weight or more.
  • the amount of the monomer unit having an alicyclic structure is preferably 0.3 to 25% by weight, more preferably 0.5 to 20% by weight, and further preferably 1 to 15% by weight with respect to the total amount of constituent monomer components of the entire high molecular weight component. Preferably, it may be 2-10% by weight or 2.5-8% by weight. When the ratio of the monomer unit having an alicyclic structure to the total high molecular weight component is within the above range, the impact resistance of the reinforcing film tends to be particularly good.
  • crosslinking agent From the viewpoint of imparting an appropriate cohesive force to the pressure-sensitive adhesive, it is preferable to introduce a crosslinked structure into the base polymer.
  • a cross-linked structure is introduced by adding a cross-linking agent to the solution after polymerization of the base polymer, and heating if necessary.
  • the cross-linking agent has two or more cross-linkable functional groups in one molecule.
  • the cross-linking agent may have 3 or more cross-linkable functional groups in one molecule.
  • cross-linking agents examples include isocyanate-based cross-linking agents, epoxy-based cross-linking agents, oxazoline-based cross-linking agents, aziridine-based cross-linking agents, carbodiimide-based cross-linking agents, and metal chelate-based cross-linking agents. These cross-linking agents react with functional groups such as hydroxy groups and carboxy groups introduced into the base polymer to form a cross-linked structure. Isocyanate-based cross-linking agents and epoxy-based cross-linking agents are preferred because they have high reactivity with the hydroxy groups and carboxy groups of the base polymer and facilitate the introduction of a cross-linked structure.
  • a polyisocyanate having two or more isocyanate groups in one molecule is used as the isocyanate-based cross-linking agent.
  • the isocyanate-based cross-linking agent may have 3 or more isocyanate groups in one molecule.
  • isocyanate-based cross-linking agents include lower aliphatic polyisocyanates such as butylene diisocyanate and hexamethylene diisocyanate; alicyclic isocyanates such as cyclopentylene diisocyanate, cyclohexylene diisocyanate and isophorone diisocyanate; Aromatic isocyanates such as isocyanate, 4,4′-diphenylmethane diisocyanate, and xylylene diisocyanate; trimethylolpropane/tolylene diisocyanate trimer adduct (for example, “Coronate L” manufactured by Tosoh), trimethylolpropane/hexamethylene Diisocyanate trim
  • a polyfunctional epoxy compound having two or more epoxy groups in one molecule is used as the epoxy-based cross-linking agent.
  • the epoxy-based cross-linking agent may have 3 or more or 4 or more epoxy groups in one molecule.
  • the epoxy group of the epoxy-based cross-linking agent may be a glycidyl group.
  • epoxy-based cross-linking agents examples include N,N,N',N'-tetraglycidyl-m-xylenediamine, diglycidylaniline, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, 1, 6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, penta erythritol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitan polyglycidyl ether, trimethylolpropane polyglycidyl ether, adipate diglycidy
  • the cross-linking agent may contain nitrogen atoms even if the base polymer does not substantially contain nitrogen atoms.
  • a base polymer containing substantially no nitrogen atoms may be crosslinked with an isocyanate crosslinking agent.
  • an isocyanate crosslinking agent When the base polymer does not substantially contain nitrogen atoms, the use of a cross-linking agent that does not contain nitrogen atoms, such as an epoxy-based cross-linking agent, suppresses the increase in initial adhesive strength due to surface activation treatment such as plasma treatment. Tend.
  • the amount of cross-linking agent used may be adjusted as appropriate according to the composition, molecular weight, etc. of the base polymer.
  • the amount of the cross-linking agent used is about 0.01 to 10 parts by weight, preferably 0.1 to 5 parts by weight, more preferably 0.2 to 3 parts by weight, and still more preferably 100 parts by weight of the base polymer. is 0.3 to 2 parts by weight, and may be 0.4 to 1.5 parts by weight or 0.5 to 1 part by weight.
  • the adhesive composition forming the adhesive layer 2 contains a photocuring agent in addition to the base polymer.
  • the pressure-sensitive adhesive layer 2 made of a photo-curable pressure-sensitive adhesive composition improves its adhesive strength to the adherend when it is photocured after being attached to the adherend.
  • a photocuring agent has two or more polymerizable functional groups in one molecule.
  • the polymerizable functional group those having polymerizability by photoradical reaction are preferable, and as the photocuring agent, a compound having two or more ethylenically unsaturated bonds in one molecule is preferable.
  • the photo-curing agent is preferably a compound exhibiting compatibility with the base polymer.
  • the photo-curing agent is preferably liquid at room temperature because it exhibits appropriate compatibility with the base polymer. Since the photo-curing agent is compatible with the base polymer and uniformly dispersed in the composition, it is possible to secure a contact area with the adherend and form a highly transparent pressure-sensitive adhesive layer 2 .
  • the base polymer and the photocuring agent exhibit moderate compatibility, the crosslinked structure by the photocuring agent is easily introduced uniformly into the pressure-sensitive adhesive layer 2 after photocuring, and the adhesive strength with the adherend is increased. It tends to rise appropriately.
  • polyfunctional (meth)acrylate As a photocuring agent because of its high compatibility with the acrylic base polymer.
  • Polyfunctional (meth)acrylates include polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, polytetramethylene glycol di(meth)acrylate, bisphenol A ethylene oxide-modified di(meth)acrylate, bisphenol A propylene oxide modified di(meth)acrylate, alkanediol di(meth)acrylate, tricyclodecanedimethanol di(meth)acrylate, ethoxylated isocyanuric acid tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol di( meth)acrylate, trimethylolpropane tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, ethoxylated pentaerythritol
  • the photocuring agent is preferably a compound having a polyether chain such as polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, etc., and polyethylene glycol di(meth)acrylate is particularly preferred. preferable. Two or more photocuring agents may be used in combination.
  • the molecular weight of the photocuring agent is preferably 1500 or less, more preferably 1000 or less, even more preferably 500 or less, and particularly preferably 400 or less.
  • the functional group equivalent (g/eq) of the photocuring agent is preferably 500 or less, more preferably 400 or less, and even more preferably 300 or less. , 200 or less are particularly preferred.
  • the functional group equivalent weight of the photo-curing agent is preferably 80 or more, more preferably 100 or more, and even more preferably 130 or more.
  • the content of the photocuring agent in the adhesive composition is preferably 3 to 100 parts by weight with respect to 100 parts by weight of the base polymer.
  • the content of the photocuring agent is more preferably 10 to 80 parts by weight, still more preferably 20 to 70 parts by weight, particularly preferably 30 to 65 parts by weight, or 35 to 60 parts by weight with respect to 100 parts by weight of the base polymer. It may be 40 to 55 parts by weight.
  • the resistance of the pressure-sensitive adhesive tends to decrease as the amount of the photo-curing agent increases.
  • the amount of the photocuring agent is excessively large, the viscosity of the pressure-sensitive adhesive after photocuring is lost, which may cause deterioration in adhesion and impact resistance.
  • the photopolymerization initiator generates active species upon exposure to actinic rays and accelerates the curing reaction of the photocuring agent.
  • a photocationic initiator photoacid generator
  • a photoradical initiator photoradical initiator
  • a photoanion initiator photobase generator
  • an ethylenically unsaturated compound such as a polyfunctional acrylate
  • the photo-radical initiator generates radicals upon irradiation with actinic rays, and the radical transfer from the photo-radical initiator to the photo-curing agent accelerates the radical polymerization reaction of the photo-curing agent.
  • the photoradical initiator (photoradical generator) preferably generates radicals by irradiation with visible light or ultraviolet light having a wavelength shorter than 450 nm, such as hydroxyketones, benzyldimethylketals, aminoketones, and acylphosphines. Oxides, benzophenones, trichloromethyl group-containing triazine derivatives, and the like.
  • a photoradical initiator may be used individually and may be used in mixture of 2 or more types.
  • the content of the photopolymerization initiator in the adhesive layer 2 is preferably 0.01 to 5 parts by weight, more preferably 0.02 to 3 parts by weight, and 0.03 to 2 parts by weight with respect to 100 parts by weight of the base polymer. Part is more preferred.
  • the content of the photopolymerization initiator in the pressure-sensitive adhesive layer 2 is preferably 0.02 to 20 parts by weight, more preferably 0.05 to 10 parts by weight, and 0.1 to 7 parts by weight with respect to 100 parts by weight of the photocuring agent. Parts by weight are more preferred.
  • the pressure-sensitive adhesive layer contains a silane coupling agent, a tackifier, a cross-linking accelerator, a cross-linking retarder, a plasticizer, a softening agent, an antioxidant, an anti-degradation agent, a filler, and a colorant.
  • a silane coupling agent e.g., a silane coupling agent, a tackifier, a cross-linking accelerator, a cross-linking retarder, a plasticizer, a softening agent, an antioxidant, an anti-degradation agent, a filler, and a colorant.
  • an ultraviolet absorber, a surfactant, an antistatic agent, and the like may be contained within a range that does not impair the characteristics of the present invention.
  • Cross-linking accelerators include organometallic compounds such as organometallic complexes (chelates), compounds of metals and alkoxy groups, and compounds of metals and acyloxy groups; and tertiary amines.
  • organometallic compounds such as organometallic complexes (chelates), compounds of metals and alkoxy groups, and compounds of metals and acyloxy groups; and tertiary amines.
  • An organometallic compound is preferable from the viewpoint of suppressing the progress of the cross-linking reaction in a solution state at room temperature and securing the pot life of the pressure-sensitive adhesive composition.
  • an organometallic compound that is liquid at room temperature is preferable as the cross-linking accelerator because it is easy to introduce a uniform cross-linked structure over the entire thickness direction of the pressure-sensitive adhesive layer.
  • Metals of the organometallic compounds include iron, tin, aluminum, zirconium, zinc, titanium, lead, cobalt, zinc and the like.
  • crosslinking retarders examples include ⁇ -ketoesters such as methyl acetoacetate, ethyl acetoacetate, octyl acetoacetate, oleyl acetoacetate, lauryl acetoacetate, and stearyl acetoacetate; diketones; and alcohols such as tert-butyl alcohol.
  • a reinforcing film is obtained by laminating a photocurable pressure-sensitive adhesive layer 2 on a film substrate 1 .
  • the pressure-sensitive adhesive layer 2 may be directly formed on the film substrate 1 , or may be transferred onto the film substrate 1 from a pressure-sensitive adhesive layer formed in a sheet form on another substrate.
  • the above pressure-sensitive adhesive composition is coated by roll coating, kiss roll coating, gravure coating, reverse coating, roll brushing, spray coating, dip roll coating, bar coating, knife coating, air knife coating, curtain coating, lip coating, die coating, etc.
  • the pressure-sensitive adhesive layer is formed by coating on a substrate and removing the solvent by drying if necessary.
  • a drying method an appropriate method can be adopted as appropriate.
  • the heat drying temperature is preferably 40°C to 200°C, more preferably 50°C to 180°C, still more preferably 70°C to 170°C.
  • the drying time is preferably 5 seconds to 20 minutes, more preferably 5 seconds to 15 minutes, even more preferably 10 seconds to 10 minutes.
  • the thickness of the adhesive layer 2 is, for example, about 1 to 300 ⁇ m. As the thickness of the pressure-sensitive adhesive layer 2 increases, the adhesiveness to the adherend tends to improve. On the other hand, when the thickness of the pressure-sensitive adhesive layer 2 is excessively large, the fluidity before photocuring is high, and handling may become difficult. Therefore, the thickness of the adhesive layer 2 is preferably 5 to 100 ⁇ m, more preferably 8 to 50 ⁇ m, even more preferably 10 to 40 ⁇ m.
  • the pressure-sensitive adhesive composition contains a cross-linking agent
  • the heating temperature and heating time are appropriately set according to the type of cross-linking agent used, and generally cross-linking is carried out by heating in the range of 20° C. to 160° C. for about 1 minute to 7 days.
  • the heating for removing the solvent by drying may also serve as the heating for cross-linking.
  • the photo-curing agent remains unreacted even after the cross-linking structure is introduced into the polymer by the cross-linking agent. Therefore, a photocurable pressure-sensitive adhesive layer 2 containing a high molecular weight component and a photocurable agent is formed.
  • a release liner 5 on the pressure-sensitive adhesive layer 2 for the purpose of protecting the pressure-sensitive adhesive layer 2 and the like. Crosslinking may be performed after the release liner 5 is attached on the pressure-sensitive adhesive layer 2 .
  • the reinforcing film can be obtained by transferring the pressure-sensitive adhesive layer 2 onto the film substrate 1 after drying the solvent.
  • the base material used for forming the pressure-sensitive adhesive layer may be used as the release liner 5 as it is.
  • release liner 5 plastic films such as polyethylene, polypropylene, polyethylene terephthalate and polyester films are preferably used.
  • the thickness of the release liner is usually about 3-200 ⁇ m, preferably about 10-100 ⁇ m.
  • the contact surface of the release liner 5 with the pressure-sensitive adhesive layer 2 is treated with a release agent such as a silicone, fluorine, long-chain alkyl, or fatty acid amide release agent, silica powder, or the like. is preferred. Since the surface of the release liner 5 is subjected to release treatment, separation occurs at the interface between the adhesive layer 2 and the release liner 5, and the state in which the adhesive layer 2 adheres to the film substrate 1 is maintained.
  • a release agent such as a silicone, fluorine, long-chain alkyl, or fatty acid amide release agent, silica powder, or the like.
  • the release liner 5 may be subjected to antistatic treatment on either or both of the release-treated surface and the non-treated surface. By subjecting the release liner 5 to antistatic treatment, it is possible to suppress charging when the release liner is separated from the pressure-sensitive adhesive layer.
  • the reinforcing film of the present invention is used by adhering it to a device or device component.
  • the pressure-sensitive adhesive layer 2 is fixed to the film substrate 1, and the adhesive force to the adherend is small after bonding with the adherend and before photocuring. Therefore, the reinforcing film can be easily peeled from the adherend before photocuring.
  • the adherend to which the reinforcing film is attached is not particularly limited, and includes various electronic devices, optical devices and their constituent parts.
  • the reinforcing film may be adhered to the entire surface of the adherend, or may be selectively adhered only to the portion requiring reinforcement (region to be reinforced).
  • the reinforcing film attached to the non-reinforcement target area is cut. may be removed.
  • the reinforcing film is temporarily attached to the surface of the adherend, so that the reinforcing film can be easily peeled off and removed from the surface of the adherend.
  • a reinforcing film is attached to the area to be reinforced and the area not to be reinforced, and the area to be reinforced is selectively irradiated with light to cure the adhesive. It may be selectively stripped.
  • the reinforcing film By attaching the reinforcing film, moderate rigidity is given, so it is expected to improve handling and prevent damage.
  • the reinforcing film may be attached to a large-sized in-process product before being cut into product sizes.
  • the reinforcing film may be roll-to-roll laminated to the mother roll of the device manufactured by the roll-to-roll process.
  • the adhesive strength (initial adhesive strength) between the adhesive layer 2 and the adherend before photocuring is preferably 1 N/25 mm or less, more preferably 0.5 N/25 mm or less, even more preferably 0.3 N/25 mm or less, and may be 0.1 N/25 mm or less, or 0.05 N/25 mm or less.
  • the adhesive strength between the adhesive layer 2 and the adherend before photocuring is preferably 0.005 N/25 mm or more, and 0.01 N/25 mm or more. more preferred.
  • the adhesive strength is determined by a peel test using a polyimide film as an adherend at a tensile speed of 300 mm/min and a peel angle of 180°. Adhesion is measured at 25° C. unless otherwise specified. The adhesive force between the pressure-sensitive adhesive layer and the adherend before photocuring is measured using a sample left at 25° C. for 30 minutes after lamination.
  • the adherend such as the polyimide film on the surface of the device may be subjected to an activation treatment for the purpose of cleaning.
  • the surface-activated adherend contains many active groups such as hydroxy, carbonyl, and carboxyl groups. easy to rise.
  • the activation treatment activates amic acid, terminal amino groups and carboxy groups (or carboxylic acid anhydride groups), etc., and interacts with the polar functional groups of the base polymer. Due to its strong action, the activation treatment may significantly increase initial adhesion.
  • the adhesive strength between the surface-activated adherend and the adhesive layer before photocuring is 2.5 times the adhesive strength between the adherend without surface-activation treatment and the adhesive layer before photocuring. below is preferable, 2 times or less is more preferable, and 1.5 times or less is even more preferable.
  • the surface resistance of the adhesive layer 2 before photocuring is preferably 1 ⁇ 10 12 ⁇ or less, more preferably 5 ⁇ 10 11 ⁇ or less. Since the pressure-sensitive adhesive layer before photocuring has a low resistance, it is possible to suppress electrical damage to the adherend due to static electricity or the like when the reinforcing film is peeled off from the adherend.
  • the adhesive layer 2 preferably has a surface resistance of 1 ⁇ 10 12 ⁇ or less, more preferably 5 ⁇ 10 11 ⁇ or less, even after photocuring. In general, the surface resistance of the pressure-sensitive adhesive layer hardly changes before and after photocuring. As described above, the use of a compound having a polyether chain as a photo-curing agent tends to lower the resistance of the pressure-sensitive adhesive layer.
  • the adhesive layer 2 is photocured by irradiating the adhesive layer 2 with actinic rays.
  • Actinic rays include ultraviolet rays, visible light, infrared rays, X-rays, ⁇ -rays, ⁇ -rays, ⁇ -rays, and the like. Ultraviolet rays are preferable as actinic rays because they can suppress curing of the pressure-sensitive adhesive layer in a storage state and can be easily cured.
  • the irradiation intensity and irradiation time of actinic rays may be appropriately set according to the composition, thickness, etc. of the pressure-sensitive adhesive layer. Irradiation of actinic rays to the pressure-sensitive adhesive layer 2 may be performed from either the film substrate 1 side or the adherend side, or may be performed from both sides.
  • the adhesive strength of the adhesive layer to the adherend increases with photocuring.
  • the adhesive strength between the adhesive layer 2 and the adherend after photocuring is preferably 2 N/25 mm or more, more preferably 3 N/25 mm or more, and 5 N/25 mm or more. More preferred.
  • the adhesive strength between the reinforcing film and the adherend after photocuring the pressure-sensitive adhesive layer may be 6 N/25 mm or more, 8 N/25 mm or more, 10 N/25 mm or more, 13 N/25 mm or more, or 15 N/25 mm or more.
  • the pressure-sensitive adhesive layer after photocuring preferably has adhesive strength within the above range to the polyimide film.
  • the adhesive strength between the adhesive layer 2 and the adherend after photocuring is preferably 30 times or more, more preferably 60 times or more, and 100 times the adhesive strength between the adhesive layer 2 and the adherend before photocuring. more preferably 150 times or more, particularly preferably 180 times or more, or 200 times or more.
  • the reinforcing film is attached even if an external force is unexpectedly applied due to dropping the device, placing a heavy object on the device, or hitting the device with a flying object. Thus, damage to the device can be prevented.
  • the high-molecular-weight component of the pressure-sensitive adhesive composition contains a monomer unit having an alicyclic structure, the impact resistance tends to be improved.
  • the impact resistance of the reinforcing film can be evaluated by the indentation energy.
  • the energy required to apply a predetermined load to the adherend 20 bonded to the pressure-sensitive adhesive layer 2 when the indenter is pressed from the film substrate 1 side of the reinforcing film 10 is the indentation energy.
  • the pressing energy when applying a load of 20 N to the adherend is preferably 280 ⁇ J or more, more preferably 300 ⁇ J or more, still more preferably 320 ⁇ J or more, and particularly preferably 330 ⁇ J or more.
  • the adherend is provided with appropriate rigidity and the stress is relieved and dispersed. and improve yield. Since the reinforcing film can be easily peeled off from the adherend before the adhesive layer is photocured, reworking is easy even when lamination or bonding failure occurs. Further, processing such as selectively removing the reinforcing film from areas other than the area to be reinforced is also easy. After the adhesive layer is photocured, it exhibits high adhesive strength to the adherend, and the reinforcing film is difficult to peel off from the device surface, providing excellent adhesion reliability and high impact resistance. It is possible to prevent damage to the device due to the impact of the
  • Base polymer A A reaction vessel equipped with a thermometer, a stirrer, a reflux condenser and a nitrogen gas inlet tube was charged with 94 parts by weight of butyl acrylate (BA) and 6 parts by weight of acrylic acid (AA) as monomers, and azobisisobutyl as a thermal polymerization initiator. 0.2 parts by weight of lonitrile (AIBN) and 233 parts by weight of ethyl acetate as a solvent were added, nitrogen gas was flowed, and nitrogen substitution was performed for about 1 hour while stirring. Then, it was heated to 60° C. and reacted for 7 hours to obtain a solution of acrylic polymer A.
  • BA butyl acrylate
  • AA acrylic acid
  • AIBN lonitrile
  • ethyl acetate a thermal polymerization initiator
  • ⁇ Base polymer B> As monomers, 65 parts by weight of 2-ethylhexyl acrylate (2EHA), 15 parts by weight of N-vinyl-2-pyrrolidone (NVP), 12 parts by weight of 2-hydroxyethyl acrylate (HEA) and methyl methacrylate (MMA) Polymerization was carried out in the same manner as in the preparation of base polymer A above, except that 8 parts by weight was used, to obtain a solution of acrylic polymer B.
  • 2EHA 2-ethylhexyl acrylate
  • NDP N-vinyl-2-pyrrolidone
  • HOA 2-hydroxyethyl acrylate
  • MMA methyl methacrylate
  • ⁇ Base polymer C to F> As monomers, in addition to butyl acrylate (BA) and acrylic acid (AA), cyclohexyl methacrylate (CHMA) was used at the ratio shown in Table 1, and the amount of the solvent (ethyl acetate) was changed to 256 parts by weight. were polymerized in the same manner as in the preparation of base polymer A above to obtain solutions of acrylic polymers C to F.
  • BA butyl acrylate
  • AA acrylic acid
  • CHMA cyclohexyl methacrylate
  • ⁇ Oligomer P> A reaction vessel equipped with a thermometer, a stirrer, a reflux condenser and a nitrogen gas inlet tube was charged with 96 parts by weight of cyclohexyl methacrylate (CHMA) and 4 parts by weight of acrylic acid (AA) as monomers, and 2-mercaptoethanol as a chain transfer agent. 3 parts by weight, 0.2 parts by weight of AIBN as a thermal polymerization initiator, and 103 parts by weight of toluene as a solvent were added, nitrogen gas was supplied, and nitrogen substitution was performed for about 1 hour while stirring. After that, the solution was heated to 70° C., reacted for 3 hours, and further reacted at 75° C. for 2 hours to obtain a solution of acrylic oligomer P.
  • CHMA cyclohexyl methacrylate
  • AA acrylic acid
  • 2-mercaptoethanol 2-mercaptoethanol
  • ⁇ Oligomer Q> A reaction vessel equipped with a thermometer, a stirrer, a reflux condenser and a nitrogen gas inlet tube was charged with 62 parts by weight of dicyclopentanyl methacrylate (DCPMA) and 38 parts by weight of methyl methacrylate (MMA) as monomers and a chain transfer agent. 3.5 parts by weight of methyl thioglycolate, 0.2 parts by weight of AIBN as a thermal polymerization initiator, and 100 parts by weight of toluene as a solvent were added, nitrogen gas was supplied, and nitrogen substitution was performed for about 1 hour while stirring. After that, the mixture was heated to 70° C. and reacted for 2 hours, further reacted at 80° C. for 4 hours, and reacted at 90° C. for 1 hour to obtain an acrylic oligomer Q solution.
  • DCPMA dicyclopentanyl methacrylate
  • MMA methyl methacrylate
  • Oligomer Q was prepared in the same manner as above except that 25 parts by weight of 2-ethylhexyl acrylate (2EHA), 70 parts by weight of methyl methacrylate (MMA) and 5 parts by weight of methacrylic acid (MAA) were used as the monomers. Polymerization was carried out by using a solvent, and a solution of acrylic oligomer R was obtained.
  • 2EHA 2-ethylhexyl acrylate
  • MMA methyl methacrylate
  • MAA methacrylic acid
  • the glass transition temperatures of the base polymer and oligomer were calculated based on the Fox formula from the monomer composition.
  • the weight average molecular weight (converted to polystyrene) was measured using GPC (“HLC-8220GPC” manufactured by Tosoh) under the following conditions. Sample concentration: 0.2% by weight (tetrahydrofuran solution) Sample injection volume: 10 ⁇ L Eluent: THF Flow rate: 0.6ml/min Measurement temperature: 40°C Sample column: TSKguardcolumn SuperHZ-H (1) + TSKgel SuperHZM-H (2) Reference column: TSKgel SuperH-RC (1 column)
  • Table 1 lists the monomer ratios, weight average molecular weights (Mw), and glass transition temperatures (Tg) of acrylic polymers A, B, C, D, E, and F and acrylic oligomers P, Q, and R.
  • crosslinking agent Mitsubishi Gas Chemical "Tetrad C” (tetrafunctional epoxy compound)
  • D110N Mitsui Chemicals "Takenate D-110N” (trifunctional isocyanate compound)
  • ⁇ Indentation energy> A temperature indentation test (measurement temperature: 25 ° C., indentation speed: 5 ⁇ m / min) was performed according to the following procedures (1) and (2) using a surface/interface physical property analyzer (SAICAS DN-20 type) manufactured by Daipla Wintes. The indentation energy was measured when a load of 20 N was applied to the adherend.
  • SAICAS DN-20 type surface/interface physical property analyzer
  • the pressure-sensitive adhesive layer was photocured by irradiating ultraviolet light with an integrated light amount of 4000 mJ/cm 2 from the film substrate side of the reinforcing film.
  • the release liner was peeled off from the surface of the pressure-sensitive adhesive layer after photocuring, and the layer was attached to a stainless steel flat indenter.
  • a spherical indenter (radius of 0.5 mm) was indented into the surface of the reinforcing film on the film substrate side, and indentation depth H was obtained when a load of 20 N was detected by the flat indenter.
  • the load F(x) is the load at the indentation depth x (x is 0 to H).
  • the indentation energy W is the energy until a load of 20 N is applied to the surface of the reinforcing film on the pressure-sensitive adhesive layer side, that is, the adherend to which the reinforcing film is attached. ing.
  • Adhesive strength before photocuring> Adhesive strength with polyimide film without plasma treatment
  • a polyimide film having a thickness of 25 ⁇ m (“Uplex S” manufactured by Ube Industries) was attached to a glass plate via a double-sided adhesive tape ("No. 531" manufactured by Nitto Denko) to obtain a polyimide film substrate for measurement.
  • the release liner was peeled off from the surface of the reinforcement film cut into a size of 25 mm in width and 100 mm in length, and the film was attached to a polyimide film substrate for measurement using a hand roller.
  • Adhesive strength with plasma-treated polyimide film While transporting the polyimide film substrate for measurement at a transport speed of 3 m/min, the surface of the polyimide film was subjected to plasma treatment at an electrode voltage of 160 V using an atmospheric plasma processor. A reinforcing film was attached to the polyimide film after the plasma treatment using a hand roller, and the adhesive force was measured by the 180° peel test in the same manner as described above.
  • each reinforcing film type of base polymer, type and amount of oligomer added, type and amount of cross-linking agent, type and amount of photocuring agent
  • evaluation results are shown in Tables 2 and 3. show.
  • Sample 43 in which the adhesive does not have photocurability, the adhesive force after photocuring was not measured, and the indentation energy was measured using a sample that was not photocured.
  • samples 43 to 48 in which the adhesive does not contain an oligomer, and oligomers that do not contain an alicyclic monomer unit Samples 49-51 with R had indentation energies of less than 280 ⁇ J. Samples 1 to 34 using oligomers P and Q containing an alicyclic monomer unit all had an indentation energy of 280 ⁇ J or more and excellent impact resistance.
  • Samples 30 to 34 using polymer B and oligomer P also exhibited high indentation energy and excellent impact resistance. On the other hand, these samples exhibited greater initial adhesion to the plasma-treated polyimide film.
  • Samples 35 to 42 using base polymers C, D, E or F containing alicyclic monomer units did not contain oligomers, but had an indentation energy of 280 ⁇ J or more, similar to samples 1 to 34, and had good impact resistance. was excellent.
  • Sample 4 and sample 35 have substantially the same ratio of alicyclic monomer units (CHMA) to the total amount of constituent monomer components of the entire high molecular weight component (base polymer and oligomer) (sample 4 is 4.6% by weight, sample 35 is 4.8% by weight), and although the types and blending amounts of the cross-linking agent and the photo-curing agent are the same, Sample 4, which contains an acrylic oligomer containing an alicyclic monomer unit, has a larger indentation energy and a higher resistance. Excellent impact resistance. A similar tendency was observed in comparing Sample 12 and Sample 36 as well. These results show that the impact resistance of the reinforcing film is particularly good when the pressure-sensitive adhesive composition contains an acrylic base polymer and an acrylic oligomer, and the acrylic oligomer contains an alicyclic monomer unit. .
  • CHMA alicyclic monomer units

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)

Abstract

補強フィルム(10)は、フィルム基材と、フィルム基材の一主面上に固着積層された粘着剤層(2)とを備える。粘着剤層は、光硬化性組成物からなる。粘着剤層を構成する光硬化性組成物は、アクリル系ベースポリマー、光硬化剤、および光重合開始剤を含む。光硬化性組成物は、さらにアクリル系ベースポリマーよりも重量平均分子量が小さいアクリル系オリゴマーを含んでいてもよい。アクリル系ベースポリマーおよびアクリル系オリゴマーの少なくとも一方は、脂環構造を有するモノマーユニットを含む。

Description

補強フィルム、デバイスの製造方法および補強方法
 本発明は、フィルム基材と光硬化性の粘着剤層とが固着積層された補強フィルムに関する。さらに、本発明は、補強フィルムが表面に貼り合わせられたデバイスの製造方法、および被着体の表面に補強フィルムを固着積層する補強方法に関する。
 ディスプレイ等の光学デバイスや電子デバイスの表面には、表面保護や耐衝撃性付与等を目的として、粘着性フィルムが貼着される場合がある。このような粘着性フィルムは、通常、フィルム基材の主面に粘着剤層が固着積層されており、この粘着剤層を介してデバイス表面に貼り合わせられる。
 デバイスの組み立て、加工、輸送等の使用前の状態において、デバイスまたはデバイス構成部品の表面に粘着性フィルムを仮着することにより、被着体の傷つきや破損を抑制できる。特許文献1には、フィルム基材上に光硬化性の粘着剤組成物からなる粘着剤層を備える補強フィルムが開示されている。
 この補強フィルムの粘着剤は、被着体との貼り合わせ直後は低粘着性であるため、被着体からのはく離が容易である。そのため、被着体からのリワークが可能であるとともに、被着体の補強を必要としない箇所から補強フィルムを位置選択的にはく離除去することも可能である。補強フィルムの粘着剤は、光硬化により被着体と強固に接着するため、被着体の表面にフィルム基材が永久接着した状態となり、デバイスの表面保護等を担う補強材として利用可能である。
特開2020-41113号公報
 近年では、フィルム基板を用いたフレキシブルディスプレイが実用化されており、補強フィルムに、さらなる耐衝撃性が要求されている。
 上記に鑑み、本発明は、被着体との貼り合わせ直後ははく離が容易であり、被着体との貼り合わせ後に粘着剤を光硬化することにより被着体と強固に接着可能であり、かつ耐衝撃性に優れる補強フィルムの提供を目的とする。
 上記課題に鑑みて本発明者らが検討の結果、所定の組成を有する光硬化性粘着剤を用いることにより、被着体に対する耐衝撃性が向上することを見出した。
 本発明の補強フィルムは、フィルム基材の一主面上に固着積層された粘着剤層を備える。粘着剤層は、高分子量成分(重合体)としてのベースポリマー、光硬化剤、および光重合開始剤を含む光硬化性組成物からなる。ベースポリマーとしては、アクリル系ポリマーが用いられる。粘着剤層を構成する光硬化性組成物は、高分子量成分として、ベースポリマーよりも重量平均分子量が小さいアクリル系オリゴマーを含んでいてもよい。
 高分子量成分としてのアクリル系ベースポリマーおよびアクリル系オリゴマーの少なくとも一方は、脂環構造を有するモノマーユニットを含む。脂環式構造を有するモノマーユニットは、ホモポリマーのガラス転移温度が150℃以下であってもよい。
 補強フィルムを被着体の表面に仮着した後、粘着剤層に活性光線を照射して粘着剤層を光硬化することにより、補強フィルムと被着体との接着力が上昇し、被着体の表面に補強フィルムが固着積層されたデバイスが得られる。被着体がポリイミドフィルムである場合、粘着剤層を光硬化する前(仮着状態)では、粘着剤層とポリイミドフィルムとの接着力が1N/25mm以下であることが好ましい。粘着剤層を光硬化した後のポリイミドフィルムとの接着力は、粘着剤層を光硬化する前の30倍以上が好ましい。
 本発明の補強フィルムは、粘着剤層が光硬化性組成物からなり、粘着剤層を光硬化する前は、被着体との接着力が小さいため、被着体からのはく離が容易である。被着体との接着後に粘着剤層を光硬化することにより、被着体との接着力が上昇する。補強フィルムを貼り合わせることにより、被着体に対して優れた耐衝撃性が付与されるため、外部からの衝撃等に起因する被着体の破損を防止できる。
補強フィルムの積層構成を示す断面図である。 補強フィルムの積層構成を示す断面図である。 補強フィルムが貼設されたデバイスを示す断面図である。
 図1は、補強フィルムの一実施形態を表す断面図である。補強フィルム10は、フィルム基材1の一主面上に粘着剤層2を備える。粘着剤層2は、フィルム基材1の一主面上に固着積層されている。粘着剤層2は光硬化性組成物からなる光硬化性粘着剤であり、紫外線等の活性光線の照射により硬化して、被着体との接着力が上昇する。
 図2は、粘着剤層2の主面上にはく離ライナー5が仮着された補強フィルムの断面図である。図3は、デバイス20の表面に補強フィルム10が貼設された状態を示す断面図である。
 粘着剤層2の表面からはく離ライナー5をはく離除去し、粘着剤層2の露出面をデバイス20の表面に貼り合わせることにより、デバイス20の表面に補強フィルム10が貼設される。この状態では、粘着剤層2は光硬化前であり、デバイス20上に補強フィルム10(粘着剤層2)が仮着された状態である。粘着剤層2を光硬化することにより、デバイス20と粘着剤層2との界面での接着力が上昇し、デバイス20と補強フィルム10とが固着される。
 「固着」とは積層された2つの層が強固に接着しており、両者の界面でのはく離が不可能または困難な状態である。「仮着」とは、積層された2つの層間の接着力が小さく、両者の界面で容易にはく離できる状態である。
 図2に示す補強フィルムでは、フィルム基材1と粘着剤層2とが固着しており、はく離ライナー5は粘着剤層2に仮着されている。フィルム基材1とはく離ライナー5をはく離すると、粘着剤層2とはく離ライナー5との界面ではく離が生じ、フィルム基材1上に粘着剤層2が固着した状態が維持される。はく離後のはく離ライナー5上には粘着剤は残存しない。
 図3に示す補強フィルム10が貼設されたデバイスは、粘着剤層2の光硬化前においては、デバイス20と粘着剤層2とが仮着状態である。デバイス20からフィルム基材1をはく離する際には、粘着剤層2とデバイス20との界面ではく離が生じ、フィルム基材1上に粘着剤層2が固着した状態が維持される。デバイス20上には粘着剤が残存しないため、リワークが容易である。粘着剤層2を光硬化後は、粘着剤層2とデバイス20との接着力が上昇するため、デバイス20からフィルム1をはく離することは困難であり、両者をはく離すると粘着剤層2の凝集破壊が生じる場合がある。
[補強フィルムの構成]
<フィルム基材>
 フィルム基材1としては、プラスチックフィルムが用いられる。フィルム基材1と粘着剤層2とを固着するために、フィルム基材1の粘着剤層2付設面は離型処理が施されていないことが好ましい。
 フィルム基材の厚みは、例えば4~500μm程度である。剛性付与や衝撃緩和等によりデバイスを補強する観点から、フィルム基材1の厚みは12μm以上が好ましく、30μm以上がより好ましく、45μm以上がさらに好ましい。補強フィルムに可撓性を持たせハンドリング性を高める観点から、フィルム基材1の厚みは300μm以下が好ましく、200μm以下がより好ましい。機械強度と可撓性とを両立する観点から、フィルム基材1の圧縮強さは、100~3000kg/cmが好ましく、200~2900kg/cmがより好ましく、300~2800kg/cmがさらに好ましく、400~2700kg/cmが特に好ましい。
 フィルム基材1を構成するプラスチック材料としては、ポリエステル系樹脂、ポリオレフィン系樹脂、環状ポリオレフィン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂等が挙げられる。ディスプレイ等の光学デバイス用の補強フィルムにおいては、フィルム基材1は透明フィルムであることが好ましい。また、フィルム基材1側から活性光線を照射して粘着剤層2の光硬化を行う場合、フィルム基材1は、粘着剤層の硬化に用いられる活性光線に対する透明性を有することが好ましい。機械強度と透明性とを兼ね備えることから、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂が好適に用いられる。被着体側から活性光線を照射して粘着剤層を硬化する場合は、被着体が活性光線に対する透明性を有していればよく、フィルム基材1は活性光線に対して透明でなくてもよい。
 フィルム基材1の表面には、易接着層、易滑層、離型層、帯電防止層、ハードコート層、反射防止層等の機能性コーティングが設けられていてもよい。なお、前述のように、フィルム基材1と粘着剤層2とを固着するために、フィルム基材1の粘着剤層2付設面には離型層が設けられていないことが好ましい。
<粘着剤層>
 フィルム基材1上に固着積層される粘着剤層2は、高分子量成分としてのベースポリマー、光硬化剤、および光重合開始剤を含む光硬化性組成物からなる。粘着剤層を構成する光硬化性組成物は、高分子量成分として、ベースポリマーよりも重量平均分子量が小さいオリゴマーを含んでいてもよい。
 粘着剤層2は、光硬化前はデバイスやデバイス部品等の被着体との接着力が小さいため、リワークが容易である。粘着剤層2は、光硬化により被着体との接着力が向上するため、デバイスの使用時においても補強フィルムがデバイス表面からはく離し難く、接着信頼性に優れる。
 補強フィルムが、ディスプレイ等の光学デバイスに用いられる場合、粘着剤層2の全光線透過率は80%以上が好ましく、85%以上がより好ましく、90%以上がさらに好ましい。粘着剤層2のヘイズは、2%以下が好ましく、1%以下がより好ましく、0.7%以下がさらに好ましく、0.5%以下が特に好ましい。
(高分子量成分)
 粘着剤層は、高分子量成分として、ベースポリマーを含む。ベースポリマーは粘着剤組成物の主構成成分である。高分子量成分として、ベースポリマーに加えて、ベースポリマーよりも低分子量の重合体であるオリゴマーを含んでいてもよい。
 光学的透明性および接着性に優れ、かつ接着性の制御が容易であり、オリゴマーや光硬化剤との相溶性に優れることから、粘着剤組成物は、ベースポリマーとしてアクリル系ポリマーを含有するものが好ましく、粘着剤組成物の50重量%以上がアクリル系ポリマーであることが好ましい。
 アクリル系ポリマーとしては、主たるモノマー成分として(メタ)アクリル酸アルキルエステルを含むものが好適に用いられる。なお、本明細書において、「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。
 (メタ)アクリル酸アルキルエステルとしては、アルキル基の炭素数が1~20である(メタ)アクリル酸アルキルエステルが好適に用いられる。(メタ)アクリル酸アルキルエステルは、アルキル基が分枝を有していてもよく、環状アルキル基(脂環式アルキル基)を有していてもよい。
 鎖状アルキル基を有する(メタ)アクリル酸アルキルエステルの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸イソペンチル、(メタ)アクリル酸ネオペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸イソトリデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸イソテトラデシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸セチル、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸イソオクタデシル、(メタ)アクリル酸ノナデシル、(メタ)アクリル酸エイコシル等が挙げられる。
 脂環式アルキル基を有する(メタ)アクリル酸アルキルエステルの具体例としては、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸シクロヘプチル、(メタ)アクリル酸シクロオクチル等の(メタ)アクリル酸シクロアルキルエステル;(メタ)アクリル酸イソボルニル等の二環式の脂肪族炭化水素環を有する(メタ)アクリル酸エステル;ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、トリシクロペンタニル(メタ)アクリレート、1-アダマンチル(メタ)アクリレート、2-メチル-2-アダマンチル(メタ)アクリレート、2-エチル-2-アダマンチル(メタ)アクリレート等の三環以上の脂肪族炭化水素環を有する(メタ)アクリル酸エステルが挙げられる。脂環式アルキル基を有する(メタ)アクリル酸アルキルエステルは、3,3,5-トリメチルシクロヘキシル(メタ)アクリレート等の環上に置換基を有するものであってもよい。また、脂環式アルキル基を有する(メタ)アクリル酸アルキルエステルは、ジシクロペンテニル(メタ)アクリレート等の、脂環構造と不飽和結合を有する環構造との縮合環を含む(メタ)アクリル酸エステルであってもよい。
 (メタ)アクリル酸アルキルエステルの含有量は、ベースポリマーを構成するモノマー成分全量に対して40重量%以上が好ましく、50重量%以上がより好ましく、55重量%以上がさらに好ましい。
 アクリル系ベースポリマーは、共重合成分として、架橋可能な官能基を有するモノマー成分を含有することが好ましい。ベースポリマーに架橋構造が導入されることにより、凝集力が向上し、粘着剤層2の接着力が向上するとともに、リワークの際の被着体への糊残りが低減する傾向がある。
 架橋可能な官能基を有するモノマーとしてはヒドロキシ基含有モノマーや、カルボキシ基含有モノマーが挙げられる。ベースポリマーのヒドロキシ基やカルボキシ基は、後述の架橋剤との反応点となる。例えば、イソシアネート系架橋剤を用いる場合は、ベースポリマーの共重合成分として、ヒドロキシ基含有モノマーを含有することが好ましい。エポキシ系架橋剤を用いる場合は、ベースポリマーの共重合成分として、カルボキシ基含有モノマーを含有することが好ましい。
 ヒドロキシ基含有モノマーとしては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、(メタ)アクリル酸4-(ヒドロキシメチル)シクロヘキシルメチル等が挙げられる。カルボキシ基含有モノマーとしては、(メタ)アクリル酸、(メタ)アクリル酸2-カルボキシエチル、(メタ)アクリル酸カルボキシペンチル、イタコン酸、マレイン酸、フマル酸、クロトン酸等が挙げられる。
 アクリル系ベースポリマーは、構成モノマー成分全量に対するヒドロキシ基含有モノマーとカルボキシ基含有モノマーの合計量が、1~30重量%であることが好ましく、2~25重量%であることがより好ましく、3~20重量%であることがさらに好ましい。特に、カルボキシ基含有モノマーの含有量が上記範囲であることが好ましい。
 アクリル系ベースポリマーは、構成モノマー成分として、N-ビニルピロリドン、メチルビニルピロリドン、ビニルピリジン、ビニルピペリドン、ビニルピリミジン、ビニルピペラジン、ビニルピラジン、ビニルピロール、ビニルイミダゾール、ビニルオキサゾール、ビニルモルホリン、N-アクリロイルモルホリン、N-ビニルカルボン酸アミド類、N-ビニルカプロラクタム等の窒素含有モノマーを含有していてもよい。
 アクリル系ベースポリマーは、上記以外のモノマー成分を含んでいてもよい。アクリル系ベースポリマーは、モノマー成分として、例えば、ビニルエステルモノマー、芳香族ビニルモノマー、エポキシ基含有モノマー、ビニルエーテルモノマー、スルホ基含有モノマー、リン酸基含有モノマー、酸無水物基含有モノマー等を含んでいてもよい。
 ベースポリマーは、窒素原子を実質的に含まないものであってもよい。ベースポリマーの構成元素中の窒素の割合は、0.1モル%以下、0.05モル%以下、0.01モル%以下、0.005モル%以下、0.001モル%以下、または0であってもよい。窒素原子を実質的に含まないベースポリマーを用いることにより、被着体にプラズマ処理等の表面活性化処理を行った場合の、光硬化前の粘着剤層の接着力(初期接着力)の上昇が抑制される傾向がある。
 ベースポリマーの構成モノマー成分として、シアノ基含有モノマー、ラクタム構造含有モノマー、アミド基含有モノマー、モルホリン環含有モノマー等の窒素原子含有モノマーを含まないことにより、窒素原子を実質的に含まないベースポリマーが得られる。なお、ベースポリマーに架橋構造が導入されている場合は、架橋構造導入前のポリマーが窒素原子を実質的に含まないものであればよく、架橋剤は窒素原子を含んでいてもよい。ベースポリマーが窒素原子を実質的に含まない場合は、粘着剤の凝集性を高める観点から、ベースポリマーはモノマー成分としてカルボキシ基含有モノマーを含むことが好ましい。
 粘着剤に優れた接着性を持たせる観点から、アクリル系ベースポリマーのガラス転移温度は、-10℃以下が好ましく、-15℃以下がより好ましく、-20℃以下がさらに好ましい。アクリル系ベースポリマーのガラス転移温度は、-25℃以下または-30℃以下であってもよい。アクリル系ベースポリマーのガラス転移温度は、一般に-100℃以上であり、-80℃以上または-70℃以上であってもよい。
 ガラス転移温度は、粘弾性測定における損失正接tanδが極大となる温度(ピークトップ温度)である。粘弾性測定によるガラス転移温度に代えて、理論Tgを適用してもよい。理論Tgは、アクリル系ベースポリマーの構成モノマー成分のホモポリマーのガラス転移温度Tgと、各モノマー成分の重量分率Wから、下記のFoxの式により算出される。
    1/Tg=Σ(W/Tg
 Tgはポリマーのガラス転移温度(単位:K)、Wはセグメントを構成するモノマー成分iの重量分率(重量基準の共重合割合)、Tgはモノマー成分iのホモポリマーのガラス転移温度(単位:K)である。ホモポリマーのガラス転移温度としては、Polymer Handbook 第3版(John Wiley & Sons, Inc., 1989年)に記載の数値を採用できる。上記文献に記載されていないモノマーのホモポリマーのTgは、動的粘弾性測定によるtanδのピークトップ温度を採用すればよい。
 ベースポリマーが構成モノマー成分として、高Tgモノマーを含むことにより、粘着剤の凝集力が向上し、光硬化前はリワーク性に優れ、光硬化後は高い接着信頼性を示す傾向がある。高Tgモノマーとは、ホモポリマーのガラス転移温度(Tg)が高いモノマーを意味する。ホモポリマーのTgが40℃以上のモノマーとしては、シクロヘキシルメタクリレート(Tg:83℃)、テトラヒドロフルフリルメタクリレート(Tg:60℃)、ジシクロペンタニルメタクリレート(Tg:175℃)、ジシクロペンタニルアクリレート(Tg:120℃)、イソボルニルメタクリレート(Tg:155℃)、イソボルニルアクリレート(Tg:97℃)、メチルメタクリレート(Tg:105℃)、1-アダマンチルメタクリレート(Tg:250℃)、1-アダマンチルアクリレート(Tg:153℃)等の(メタ)アクリル酸エステル;メタクリル酸(Tg:228℃)、アクリル酸(Tg:106℃)等の酸モノマー等が挙げられる。
 アクリル系ベースポリマーは、ホモポリマーのTgが40℃以上のモノマーの含有量が、構成モノマー成分全量に対して1重量%以上であることが好ましく、2重量%以上であることがより好ましく、3重量%以上であることがさらに好ましい。適度な硬さを有しリワーク性に優れる粘着剤層を形成するためには、ベースポリマーのモノマー成分として、ホモポリマーのTgが80℃以上のモノマー成分を含むことが好ましく、ホモポリマーのTgが100℃以上のモノマー成分を含むことがより好ましい。アクリル系ベースポリマーは、構成モノマー成分全量に対するホモポリマーのTgが100℃以上のモノマーの含有量が、0.1重量%以上であることが好ましく、0.5重量%以上であることがより好ましく、1重量%以上であることがさらに好ましく、2重量%以上であることが特に好ましい。一方、粘着剤に適度の柔軟性を持たせる観点から、ホモポリマーのTgが40℃以上のモノマーの含有量は、構成モノマー成分全量に対して、50重量%以下が好ましく、40重量%以下がより好ましく、30重量%以下がさらに好ましく、20重量%以下または10重量%以下でもよい。同様の観点から、ホモポリマーのTgが80℃以上のモノマーの含有量は、構成モノマー成分全量に対して、30重量%以下が好ましく、25重量%以下がより好ましく、20重量%以下がさらに好ましく、15重量%以下、10重量%以下または5重量%以下であってもよい。
 上記モノマー成分を、溶液重合、乳化重合、塊状重合等の各種公知の方法により重合することによりベースポリマーとしてのアクリル系ポリマーが得られる。粘着剤の接着力、保持力等の特性のバランスや、コスト等の観点から、溶液重合法が好ましい。溶液重合の溶媒としては、酢酸エチル、トルエン等が用いられる。溶液濃度は通常20~80重量%程度である。溶液重合に用いられる重合開始剤としては、アゾ系、過酸化物系等の各種公知のものを使用できる。分子量を調整するために、連鎖移動剤が用いられていてもよい。反応温度は通常50~80℃程度、反応時間は通常1~8時間程度である。
 アクリル系ベースポリマーの重量平均分子量は、10万~200万が好ましく、20万~150万がより好ましく、30万~100万がさらに好ましい。なお、ベースポリマーに架橋構造が導入される場合、ベースポリマーの分子量とは、架橋構造導入前の分子量を指す。
 前述のように、粘着剤組成物は、高分子量成分として、ベースポリマーに加えて、オリゴマーを含んでいてもよい。アクリル系ベースポリマーとの相溶性に優れることから、オリゴマーとしてはアクリル系オリゴマーが好ましい。
 アクリル系オリゴマーは、主たる構成モノマー成分として(メタ)アクリル酸アルキルエステルを含有し、上記のアクリル系ベースポリマーよりも重量平均分子量が小さい成分である。アクリル系オリゴマーの重量分子量は、1000~30000程度であり、2000以上、2500以上または3000以上であってもよく、20000以下、15000以下または10000以下であってもよい。
 アクリル系オリゴマーとしては、主たるモノマー成分として(メタ)アクリル酸アルキルエステルを含むものが好適に用いられる。アクリル系オリゴマーの構成モノマー成分としては、アクリル系ベースポリマーを構成するモノマー成分として先に例示したモノマーが挙げられる。アクリル系オリゴマーの構成モノマー成分における(メタ)アクリル酸アルキルエステルの含有量は、ベースポリマーを構成するモノマー成分全量に対して40重量%以上が好ましく、50重量%以上がより好ましく、55重量%以上がさらに好ましい。オリゴマーのガラス転移温度を高める観点から、モノマー成分として、ホモポリマーのTgが40℃以上のモノマーを含むことが好ましい。
 粘着剤層を光硬化後の補強フィルムの耐衝撃性を高める観点から、アクリル系オリゴマーのガラス転移温度は、40℃以上が好ましく、50℃以上がより好ましく、60℃以上がさらに好ましい。アクリル系オリゴマーのガラス転移温度は、アクリル系ベースポリマーのガラス転移温度よりも高いことが好ましい。アクリル系オリゴマーのガラス転移温度は、一般に200℃以下であり、160℃以下、140℃以下、または120℃以下であってもよい。
 アクリル系オリゴマーは、アクリル系ベースポリマーと同様に、架橋可能な官能基を含んでいてもよい。例えば、エポキシ系架橋剤を用いる場合、アクリル系オリゴマーがカルボキシ基を有していれば、アクリル系オリゴマーのカルボキシ基と架橋剤のエポキシ基との反応により架橋構造が導入される場合がある。
 アクリル系オリゴマーは、窒素原子を実質的に含まないものであってもよい。オリゴマーの構成元素中の窒素の割合は、0.1モル%以下、0.05モル%以下、0.01モル%以下、0.005モル%以下、0.001モル%以下、または0であってもよい。
 アクリル系オリゴマーは、上記モノマー成分を各種の重合方法により重合することにより得られる。アクリル系オリゴマーの重合に際しては、各種の重合開始剤を用いてもよい。また、分子量の調整を目的として連鎖移動剤を用いてもよい。
 粘着剤組成物におけるアクリル系オリゴマーの含有量は特に限定されない。粘着剤層の接着力を適切な範囲に調整するとともに、耐衝撃性を高める観点から、ベースポリマー100重量部に対するオリゴマーの量は、0.1~20重量部が好ましく、0.5~15重量部がより好ましく、1~10重量部がさらに好ましく、2~8重量部、または3~7重量部であってもよい。
 粘着剤組成物は、高分子量成分のモノマーユニットとして、脂環構造を有するモノマーを1種以上含有することが好ましい。粘着剤組成物が、高分子量成分としてアクリル系ベースポリマーおよびアクリル系オリゴマーを含む場合は、ベースポリマーおよびオリゴマーのいずれか一方または両方が、モノマーユニットとして脂環構造を有するモノマーを1種以上含有することが好ましい。粘着剤組成物がアクリル系オリゴマーを含まない場合は、アクリル系ベースポリマーが、モノマーユニットとして脂環構造を有するモノマーを1種以上含有することが好ましい。高分子量成分が脂環構造を有するモノマーユニットを含むことにより、補強フィルムの耐衝撃性が向上する傾向がある。
 脂環構造を有するモノマーの具体例としては、前述の脂環式アルキル基を有する(メタ)アクリル酸アルキルエステルが挙げられる。中でも、粘着剤のガラス転移温度の過度の上昇を抑制する観点からは、ホモポリマーのガラス転移温度が150℃以下であるものが好ましく、脂環構造の環の数は3以下が好ましく、2以下がより好ましく、脂環が単環であることが特に好ましい。脂環構造を有するモノマーのホモポリマーのガラス転移温度は、40~120℃が好ましく、50~105℃がより好ましく、55~100℃であってもよい。
 上記のように、脂環構造を有するモノマーユニットは、ベースポリマーおよびオリゴマーのいずれに含まれていてもよいが、粘着剤のガラス転移温度を低く保ち、接着性と耐衝撃性とを両立する観点から、アクリル系オリゴマーが脂環構造を有するモノマーユニットを含むことが好ましい。アクリル系オリゴマーは、脂環構造を有するモノマー(脂環式アルキル基を有する(メタ)アクリル酸アルキルエステル)の含有量が、構成モノマー成分全量に対して、40重量%以上であることが好ましく、50重量%以上であることがより好ましく、60重量%以上、70重量%以上、80重量%以上または90重量%以上であってもよい。
 アクリル系ベースポリマーが脂環構造を有するモノマーユニットを含む場合、構成モノマー成分全量に対して、30重量%以下が好ましく、20重量%以下がより好ましく、10重量%以下がさらに好ましく、5重量%以下であってもよい。アクリル系ベースポリマーの構成モノマー成分全量に対する脂環構造を有するモノマーの量は、1重量%以上または3重量%以上であってもよい。
 高分子量成分全体の構成モノマー成分の総量に対する脂環構造を有するモノマーユニットの量は、0.3~25重量%が好ましく、0.5~20重量%がより好ましく、1~15重量%がさらに好ましく、2~10重量%または2.5~8重量%であってもよい。高分子量成分の全体に対する脂環構造を有するモノマーユニットの比率が上記範囲である場合に、補強フィルムの耐衝撃性が特に良好となる傾向がある。
(架橋剤)
 粘着剤に適度の凝集力を持たせる観点から、ベースポリマーには架橋構造が導入されることが好ましい。例えば、ベースポリマーを重合後の溶液に架橋剤を添加し、必要に応じて加熱を行うことにより、架橋構造が導入される。架橋剤は、1分子中に2個以上の架橋性官能基を有する。架橋剤は1分子中に3個以上の架橋性官能基を有するものであってもよい。
 架橋剤としては、イソシアネート系架橋剤、エポキシ系架橋剤、オキサゾリン系架橋剤、アジリジン系架橋剤、カルボジイミド系架橋剤、金属キレート系架橋剤等が挙げられる。これらの架橋剤は、ベースポリマー中に導入されたヒドロキシ基やカルボキシ基等の官能基と反応して架橋構造を形成する。ベースポリマーのヒドロキシ基やカルボキシ基との反応性が高く、架橋構造の導入が容易であることから、イソシアネート系架橋剤およびエポキシ系架橋剤が好ましい。
 イソシアネート系架橋剤としては、1分子中に2個以上のイソシアネート基を有するポリイソシアネートが用いられる。イソシアネート系架橋剤は、1分子中に3個以上のイソシアネート基を有するものであってもよい。イソシアネート系架橋剤としては、例えば、ブチレンジイソシアネート、ヘキサメチレンジイソシアネート等の低級脂肪族ポリイソシアネート類;シクロペンチレンジイソシアネート、シクロへキシレンジイソシアネート、イソホロンジイソシアネート等の脂環式イソシアネート類;2,4-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族イソシアネート類;トリメチロールプロパン/トリレンジイソシアネート3量体付加物(例えば、東ソー製「コロネートL」)、トリメチロールプロパン/へキサメチレンジイソシアネート3量体付加物(例えば、東ソー製「コロネートHL」)、キシリレンジイソシアネートのトリメチロールプロパン付加物(例えば、三井化学製「タケネートD110N」)、ヘキサメチレンジイソシアネートのイソシアヌレート体(例えば、東ソー製「コロネートHX」)等のイソシアネート付加物等が挙げられる。
 エポキシ系架橋剤としては、1分子中に2個以上のエポキシ基を有する多官能エポキシ化合物が用いられる。エポキシ系架橋剤は、1分子中に3個以上または4個以上のエポキシ基を有するものであってもよい。エポキシ系架橋剤のエポキシ基はグリシジル基であってもよい。エポキシ系架橋剤としては、例えば、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、ジグリシジルアニリン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ソルビトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビタンポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、アジピン酸ジグリシジルエステル、o-フタル酸ジグリシジルエステル、トリグリシジル-トリス(2-ヒドロキシエチル)イソシアヌレート、レゾルシンジグリシジルエーテル、ビスフェノール-S-ジグリシジルエーテル等が挙げられる。エポキシ系架橋剤として、ナガセケムテックス製の「デナコール」、三菱ガス化学製の「テトラッドX」「テトラッドC」等の市販品を用いてもよい。
 ベースポリマーが窒素原子を実質的に含まない場合であっても、架橋剤は窒素原子を含んでいてもよい。例えば、窒素原子を実質的に含まないベースポリマーに、イソシアネート架橋剤により架橋構造を導入してもよい。ベースポリマーが窒素原子を実質的に含まない場合は、エポキシ系架橋剤等の窒素原子を含まない架橋剤を用いることにより、プラズマ処理等の表面活性化処理による初期接着力の上昇が抑制される傾向がある。
 架橋剤の使用量は、ベースポリマーの組成や分子量等に応じて適宜に調整すればよい。架橋剤の使用量は、ベースポリマー100重量部に対して、0.01~10重量部程度であり、好ましくは0.1~5重量部、より好ましくは0.2~3重量部、さらに好ましくは0.3~2重量部であり、0.4~1.5重量部または0.5~1重量部であってもよい。ベースポリマーに、架橋剤による架橋構造を導入して粘着剤に適度な硬さを持たせることにより、光硬化前の粘着剤の被着体に対する接着力が小さくなり、はく離時の被着体への糊残りが抑制される傾向がある。
(光硬化剤)
 粘着剤層2を構成する粘着剤組成物は、ベースポリマーに加えて光硬化剤を含有する。光硬化性の粘着剤組成物からなる粘着剤層2は、被着体との貼り合わせ後に光硬化を行うと、被着体との接着力が向上する。
 光硬化剤は、1分子中に2個以上の重合性官能基を有する。重合性官能基としては、光ラジカル反応による重合性を有するものが好ましく、光硬化剤としては1分子中に2個以上のエチレン性不飽和結合を有する化合物が好ましい。また、光硬化剤は、ベースポリマーとの相溶性を示す化合物が好ましい。ベースポリマーとの適度な相溶性を示すことから、光硬化剤は常温で液体であるものが好ましい。光硬化剤がベースポリマーと相溶し、組成物中で均一に分散することにより、被着体との接触面積を確保可能であり、かつ透明性の高い粘着剤層2を形成できる。また、ベースポリマーと光硬化剤とが適度な相溶性を示すことにより、光硬化後の粘着剤層2内に光硬化剤による架橋構造が均一に導入されやすく、被着体との接着力が適切に上昇する傾向がある。
 アクリル系ベースポリマーとの相溶性が高いことから、光硬化剤として多官能(メタ)アクリレートを用いることが好ましい。多官能(メタ)アクリレートとしては、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド変性ジ(メタ)アクリレート、ビスフェノールAプロピレンオキサイド変性ジ(メタ)アクリレート、アルカンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、ペンタエリストールトリ(メタ)アクリレート、ペンタエリストールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、エトキシ化ペンタエリストールテトラ(メタ)アクリレート、ペンタエリストールテトラ(メタ)アクリレート、ジペンタエリストールポリ(メタ)アクリレート、ジペンタエリストールヘキサ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ブタジエン(メタ)アクリレート、イソプレン(メタ)アクリレート等が挙げられる。
 粘着剤を低抵抗化する観点から、光硬化剤は、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリエーテル鎖を有する化合物が好ましく、ポリエチレングリコールジ(メタ)アクリレートが特に好ましい。光硬化剤は、2種以上を併用してもよい。
 ベースポリマーとの相溶性の観点から、光硬化剤の分子量は1500以下が好ましく、1000以下がより好ましく、500以下がさらに好ましく、400以下が特に好ましい。ベースポリマーとの相溶性と光硬化後の接着力向上とを両立する観点から、光硬化剤の官能基当量(g/eq)は500以下が好ましく、400以下がより好ましく、300以下がさらに好ましく、200以下が特に好ましい。一方、光硬化剤の官能基当量が過度に小さいと、光硬化後の粘着剤層の架橋点密度が高くなり、接着性が低下する場合がある。そのため、光硬化剤の官能基当量は80以上が好ましく、100以上がより好ましく、130以上がさらに好ましい。
 粘着剤組成物における光硬化剤の含有量は、ベースポリマー100重量部に対して、3~100重量部が好ましい。光硬化剤の配合量を上記範囲とすることにより、光硬化後の粘着剤層と被着体との接着性を適切な範囲に調整できる。光硬化剤の含有量は、ベースポリマー100重量部に対して、10~80重量部がより好ましく、20~70重量部がさらに好ましく、30~65重量部が特に好ましく、35~60重量部または40~55重量部であってもよい。
 光硬化剤の量が多いほど、光硬化後の粘着剤層における高弾性成分(ハードセグメント)の比率が高められ、耐衝撃性が向上する傾向がある。また、光硬化剤としてポリエーテル鎖を有する化合物を用いる場合、光硬化剤の量が多いほど粘着剤の抵抗が小さくなる傾向がある。一方、光硬化剤の量が過度に多い場合は、光硬化後の粘着剤の粘性が失われ、接着性の低下や耐衝撃性の低下の原因となり得る。
(光重合開始剤)
 光重合開始剤は、活性光線の照射により活性種を発生し、光硬化剤の硬化反応を促進する。光重合開始剤としては、光硬化剤の種類等に応じて、光カチオン開始剤(光酸発生剤)、光ラジカル開始剤、光アニオン開始剤(光塩基発生剤)等が用いられる。光硬化剤として多官能アクリレート等のエチレン性不飽和化合物が用いられる場合は、重合開始剤として光ラジカル開始剤を用いることが好ましい。
 光ラジカル開始剤は、活性光線の照射によりラジカルを生成し、光ラジカル開始剤から光硬化剤へのラジカル移動により、光硬化剤のラジカル重合反応を促進する。光ラジカル開始剤(光ラジカル発生剤)としては、波長450nmよりも短波長の可視光または紫外線の照射によりラジカルを生成するものが好ましく、ヒドロキシケトン類、ベンジルジメチルケタール類、アミノケトン類、アシルフォスフィンオキサイド類、ベンゾフェノン類、トリクロロメチル基含有トリアジン誘導体等が挙げられる。光ラジカル開始剤は、単独で使用してもよく、2種以上を混合して使用してもよい。
 粘着剤層2における光重合開始剤の含有量は、ベースポリマー100重量部に対して、0.01~5重量部が好ましく、0.02~3重量部がより好ましく、0.03~2重量部がさらに好ましい。粘着剤層2における光重合開始剤の含有量は、光硬化剤100重量部に対して、0.02~20重量部が好ましく、0.05~10重量部がより好ましく、0.1~7重量部がさらに好ましい。
(その他の添加剤)
 上記例示の各成分の他、粘着剤層は、シランカップリング剤、粘着性付与剤、架橋促進剤、架橋遅延剤、可塑剤、軟化剤、酸化防止剤、劣化防止剤、充填剤、着色剤、紫外線吸収剤界面活性剤、帯電防止剤等の添加剤を、本発明の特性を損なわない範囲で含有していてもよい。
 架橋促進剤としては、有機金属錯体(キレート)、金属とアルコキシ基との化合物、および金属とアシルオキシ基との化合物等の有機金属化合物;ならびに第三級アミン等が挙げられる。常温の溶液状態での架橋反応の進行を抑制して粘着剤組成物のポットライフを確保する観点から、有機金属化合物が好ましい。また、粘着剤層の厚み方向全体にわたって均一な架橋構造を導入しやすいことから、架橋促進剤としては常温で液体である有機金属化合物が好ましい。有機金属化合物の金属としては、鉄、錫、アルミニウム、ジルコニウム、亜鉛、チタン、鉛、コバルト、亜鉛等が挙げられる。
 架橋遅延剤としては、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸オクチル、アセト酢酸オレイル、アセト酢酸ラウリル、アセト酢酸ステアリル等のβ-ケトエステル;アセチルアセトン、2,4-ヘキサンジオン、ベンゾイルアセトン等のβ-ジケトン;tert-ブチルアルコール等のアルコール類が挙げられる。
[補強フィルムの作製]
 フィルム基材1上に光硬化性の粘着剤層2を積層することにより、補強フィルムが得られる。粘着剤層2は、フィルム基材1上に直接形成してもよく、他の基材上でシート状に形成された粘着剤層をフィルム基材1上に転写してもよい。
 上記の粘着剤組成物を、ロールコート、キスロールコート、グラビアコート、リバースコート、ロールブラッシュ、スプレーコート、ディップロールコート、バーコート、ナイフコート、エアーナイフコート、カーテンコート、リップコート、ダイコート等により、基材上に塗布し、必要に応じて溶媒を乾燥除去することにより粘着剤層が形成される。乾燥方法としては、適宜、適切な方法が採用され得る。加熱乾燥温度は、好ましくは40℃~200℃、より好ましくは50℃~180℃、さらに好ましくは70℃~170℃である。乾燥時間は、好ましくは5秒~20分、より好ましくは5秒~15分、さらに好ましくは10秒~10分である。
 粘着剤層2の厚みは、例えば、1~300μm程度である。粘着剤層2の厚みが大きいほど被着体との接着性が向上する傾向がある。一方、粘着剤層2の厚みが過度に大きい場合は、光硬化前の流動性が高く、ハンドリングが困難となる場合がある。そのため、粘着剤層2の厚みは5~100μmが好ましく、8~50μmがより好ましく、10~40μmがさらに好ましい。
 粘着剤組成物が架橋剤を含有する場合は、溶媒の乾燥と同時、または溶媒の乾燥後に、加熱またはエージングにより架橋を進行させることが好ましい。加熱温度や加熱時間は、使用する架橋剤の種類によって適宜設定され、通常、20℃~160℃の範囲で、1分から7日程度の加熱により架橋が行われる。溶媒を乾燥除去するための加熱が、架橋のための加熱を兼ねていてもよい。
 架橋剤によりポリマーに架橋構造を導入後も、光硬化剤は未反応の状態を維持している。そのため、高分子量成分と光硬化剤とを含む光硬化性の粘着剤層2が形成される。フィルム基材1上に粘着剤層2を形成する場合は、粘着剤層2の保護等を目的として、粘着剤層2上にはく離ライナー5を付設することが好ましい。粘着剤層2上にはく離ライナー5を付設後に架橋を行ってもよい。
 他の基材上に粘着剤層2を形成する場合は、溶媒を乾燥後に、フィルム基材1上に粘着剤層2を転写することにより補強フィルムが得られる。粘着剤層の形成に用いた基材を、そのままはく離ライナー5としてもよい。
 はく離ライナー5としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリエステルフィルム等のプラスチックフィルムが好ましく用いられる。はく離ライナーの厚みは、通常3~200μm、好ましくは10~100μm程度である。はく離ライナー5の粘着剤層2との接触面には、シリコーン系、フッ素系、長鎖アルキル系、もしくは脂肪酸アミド系等の離型剤、またなシリカ粉等による離型処理が施されていることが好ましい。はく離ライナー5の表面が離型処理されていることにより、粘着剤層2とはく離ライナー5との界面ではく離が生じ、フィルム基材1上に粘着剤層2が固着した状態が維持される。はく離ライナー5は、離型処理面および非処理面のいずれか一方または両方に帯電防止処理が施されていてもよい。はく離ライナー5に帯電防止処理が施されていることにより、粘着剤層からはく離ライナーをはく離した際の帯電を抑制できる。
[補強フィルムの特性および補強フィルムの使用]
 本発明の補強フィルムは、デバイスまたはデバイス構成部品に貼り合わせて用いられる。補強フィルム10は、粘着剤層2がフィルム基材1と固着されており、被着体との貼り合わせ後光硬化前は、被着体への接着力が小さい。そのため、光硬化前は被着体からの補強フィルムのはく離が容易である。
 補強フィルムが貼り合わせられる被着体は特に限定されず、各種の電子デバイス、光学デバイスおよびその構成部品等が挙げられる。補強フィルムは被着体の全面に貼り合わせられてもよく、補強を必要とする部分(補強対象領域)にのみ選択的に貼り合わせられてもよい。また、補強を必要とする部分(補強対象領域)と補強を必要としない領域(非補強対象領域)の全体に補強フィルムを貼り合わせた後、非補強対象領域に貼り合わせられた補強フィルムを切断除去してもよい。粘着剤が光硬化前であれば、補強フィルムは被着体表面に仮着された状態であるため、被着体の表面から補強フィルムを容易にはく離除去できる。補強対象領域と非補強対象領域に補強フィルムを貼り合わせ、補強対象領域に選択的に光を照射して粘着剤を光硬化した後、粘着剤が未硬化である非補強対象領域の補強フィルムを選択的にはく離除去してもよい。
 補強フィルムを貼り合わせることにより、適度な剛性が付与されるため、ハンドリング性向上や破損防止効果が期待される。デバイスの製造工程において、仕掛品に補強フィルムが貼り合わせられる場合は、製品サイズに切断される前の大判の仕掛品に補強フィルムを貼り合わせてもよい。ロールトゥーロールプロセスにより製造されるデバイスのマザーロールに、補強フィルムをロールトゥーロールで貼り合わせてもよい。
 被着体からのはく離を容易とし、補強フィルムをはく離後の被着体への糊残りを防止する観点から、光硬化前の粘着剤層2と被着体との接着力(初期接着力)は、1N/25mm以下が好ましく、0.5N/25mm以下がより好ましく、0.3N/25mm以下がさらに好ましく、0.1N/25mm以下、または0.05N/25mm以下であってもよい。保管やハンドリングの際の補強フィルムのはく離を防止する観点から、光硬化前の粘着剤層2と被着体との接着力は、0.005N/25mm以上が好ましく、0.01N/25mm以上がより好ましい。接着力は、ポリイミドフィルムを被着体として、引張速度300mm/分、はく離角度180°のピール試験により求められる。特に断りがない限り、接着力は25℃での測定値である。光硬化前の粘着剤層と被着体との接着力は、貼り合わせ後、25℃で30分静置した試料を用いて測定する。
 補強フィルムを貼り合わせる前に、清浄化等を目的として、デバイス表面のポリイミドフィルム等の被着体に活性化処理を行ってもよい。表面が活性化処理された被着体は、ヒドロキシ基、カルボニル基、カルボキシル基等の活性基を多く含んでおり、粘着剤のベースポリマーの極性官能基との分子間相互作用により、接着力が上昇しやすい。特に、被着体がポリイミドである場合は、活性化処理により、アミド酸、末端のアミノ基やカルボキシ基(またはカルボン酸無水物基)等が活性化され、ベースポリマーの極性官能基との相互作用が強いため、活性化処理により初期接着力が大幅に上昇する場合がある。
 初期接着力が過度に大きくなると、リワーク等のはく離作業が困難となる場合がある。前述のように、ベースポリマーが窒素原子を実質的に含まないことにより、表面が活性化処理された被着体に対する初期接着力の過度の上昇を抑制できる。表面活性化処理を行った被着体と光硬化前の粘着剤層の接着力は、表面活性化処理を行っていない被着体と光硬化前の粘着剤層の接着力の2.5倍以下が好ましく、2倍以下がより好ましく、1.5倍以下がさらに好ましい。
 光硬化前の粘着剤層2の表面抵抗は、1×1012Ω以下が好ましく、5×1011Ω以下がより好ましい。光硬化前の粘着剤層が低抵抗であることにより、被着体から補強フィルムをはく離した際の静電気等による被着体への電気的なダメージを抑制できる。粘着剤層2は、光硬化後においても、表面抵抗が1×1012Ω以下であることが好ましく、5×1011Ω以下であることがより好ましい。一般には、光硬化前後で粘着剤層の表面抵抗はほとんど変化しない。前述のように、光硬化剤としてポリエーテル鎖を有する化合物を用いることにより、粘着剤層が低抵抗化される傾向がある。
 被着体に補強フィルムを貼り合わせた後、粘着剤層2に活性光線を照射することにより、粘着剤層を光硬化させる。活性光線としては、紫外線、可視光、赤外線、X線、α線、β線、およびγ線等が挙げられる。保管状態における粘着剤層の硬化を抑制可能であり、かつ硬化が容易であることから、活性光線としては紫外線が好ましい。活性光線の照射強度や照射時間は、粘着剤層の組成や厚み等に応じて適宜設定すればよい。粘着剤層2への活性光線の照射は、フィルム基材1側および被着体側のいずれの面から実施してもよく、両方の面から活性光線の照射を行ってもよい。
 光硬化に伴って、粘着剤層の被着体に対する接着力が上昇する。デバイスの実用時の接着信頼性の観点から、光硬化後の粘着剤層2と被着体との接着力は、2N/25mm以上が好ましく、3N/25mm以上がより好ましく、5N/25mm以上がさらに好ましい。粘着剤層を光硬化後の補強フィルムと被着体との接着力は、6N/25mm以上、8N/25mm以上、10N/25mm以上、13N/25mm以上または15N/25mm以上であってもよい。補強フィルムは、光硬化後の粘着剤層が、ポリイミドフィルムに対して上記範囲の接着力を有することが好ましい。光硬化後の粘着剤層2と被着体との接着力は、光硬化前の粘着剤層2と被着体との接着力の30倍以上が好ましく、60倍以上がより好ましく、100倍以上がさらに好ましく、150倍以上が特に好ましく、180倍以上または200倍以上であってもよい。
 完成後のデバイスの使用において、デバイスの落下、デバイス上への重量物の載置、デバイスへの飛来物の衝突等により、不意に外力が負荷された場合でも、補強フィルムが貼り合わせられていることにより、デバイスの破損を防止できる。上記の様に、粘着剤組成物の高分子量成分が脂環構造を有するモノマーユニットを含むことにより、耐衝撃性が向上する傾向がある。
 補強フィルムの耐衝撃性は、押込みエネルギーにより評価できる。補強フィルム10のフィルム基材1側から圧子を押し込んだ際に、粘着剤層2に貼り合わせられた被着体20に所定の荷重が付与されるまでに要するエネルギーが押込みエネルギーであり、押込みエネルギーが大きいほど耐衝撃性に優れる。被着体に20Nの荷重を負荷する際の押込みエネルギーは、280μJ以上が好ましく、300μJ以上がより好ましく、320μJ以上がさらに好ましく、330μJ以上が特に好ましい。
 上記の様に、補強フィルムを貼り合わせることにより、被着体に適度な剛性が付与されるとともに、応力が緩和・分散されるため、製造工程において生じ得る種々の不具合を抑制し、生産効率を向上し、歩留まりを改善できる。補強フィルムは、粘着剤層を光硬化する前は、被着体からのはく離が容易であるため、積層や貼り合わせ不良が生じた場合もリワークが容易である。また、補強対象領域以外から選択的に補強フィルムを除去する等の加工も容易である。粘着剤層を光硬化後は、被着体に対して高い接着力を示し、補強フィルムがデバイス表面からはく離し難く、接着信頼性に優れるとともに、高い耐衝撃性が付与されるため、外部からの衝撃によるデバイスの破損を防止できる。
 以下に実施例を挙げてさらに説明するが、本発明は、これらの実施例に限定されるものではない。
[ベースポリマーおよびオリゴマーの調製]
<ベースポリマーA>
 温度計、攪拌機、還流冷却管および窒素ガス導入管を備えた反応容器に、モノマーとして、ブチルアクリレート(BA)94重量部およびアクリル酸(AA)6重量部、熱重合開始剤としてアゾビスイソブチロニトリル(AIBN)0.2重量部、ならびに溶媒として酢酸エチル233重量部を投入し、窒素ガスを流し、攪拌しながら約1時間窒素置換を行った。その後、60℃に加熱し、7時間反応させて、アクリル系ポリマーAの溶液を得た。
<ベースポリマーB>
 モノマーとして、アクリル酸-2-エチルヘキシル(2EHA)65重量部、N-ビニル-2-ピロリドン(NVP)15重量部、アクリル酸-2-ヒドロキシエチル(HEA)12重量部およびメタクリル酸メチル(MMA)8重量部を用いたこと以外は、上記のベースポリマーAの調製と同様にして重合を行い、アクリル系ポリマーBの溶液を得た。
<ベースポリマーC~F>
 モノマーとして、表1に示す比率で、ブチルアクリレート(BA)およびアクリル酸(AA)に加えて、メタクリル酸シクロヘキシル(CHMA)を用い、溶媒(酢酸エチル)の量を256重量部に変更したこと以外は、上記のベースポリマーAの調製と同様にして重合を行い、アクリル系ポリマーC~Fの溶液を得た。
<オリゴマーP>
 温度計、攪拌機、還流冷却管および窒素ガス導入管を備えた反応容器に、モノマーとして、メタクリル酸シクロヘキシル(CHMA)96重量部およびアクリル酸(AA)4重量部、連鎖移動剤として2-メルカプトエタノール3重量部、熱重合開始剤としてAIBN0.2重量部、ならびに溶媒としてトルエン103重量部を投入し、窒素ガスを流し、攪拌しながら約1時間窒素置換を行った。その後、70℃に加熱し、3時間反応させ、さらに、75℃で2時間反応させて、アクリル系オリゴマーPの溶液を得た。
<オリゴマーQ>
 温度計、攪拌機、還流冷却管および窒素ガス導入管を備えた反応容器に、モノマーとして、メタクリル酸ジシクロペンタニル(DCPMA)62重量部およびメタクリル酸メチル(MMA)38重量部、連鎖移動剤としてチオグリコール酸メチル3.5重量部、熱重合開始剤としてAIBN0.2重量部、ならびに溶媒としてトルエン100重量部を投入し、窒素ガスを流し、攪拌しながら約1時間窒素置換を行った。その後、70℃に加熱し、2時間反応させ、さらに、80℃で4時間反応、90℃で1時間反応させ、アクリル系オリゴマーQの溶液を得た。
<オリゴマーR>
 モノマーとして、アクリル酸-2-エチルヘキシル(2EHA)25重量部、メタクリル酸メチル(MMA)70重量部およびメタクリル酸(MAA)5重量部を用いたこと以外は、上記のオリゴマーQの調製と同様にして重合を行い、アクリル系オリゴマーRの溶液を得た。
 ベースポリマーおよびオリゴマーのガラス転移温度は、モノマー組成からFox式に基づいて算出した。重量平均分子量(ポリスチレン換算)は、GPC(東ソー製「HLC-8220GPC」)を用い下記の条件により測定した。
  サンプル濃度:0.2重量%(テトラヒドロフラン溶液)
  サンプル注入量:10μL
  溶離液:THF
  流速:0.6ml/min
  測定温度:40℃
  サンプルカラム: TSKguardcolumn SuperHZ-H(1本)+TSKgel SuperHZM-H(2本)
  参照カラム: TSKgel SuperH-RC(1本)
 アクリル系ポリマーA,B,C,D,E,Fおよびアクリル系オリゴマーP,Q,Rのモノマー比率、重量平均分子量(Mw)、ならびにガラス転移温度(Tg)を表1に一覧で示す。
Figure JPOXMLDOC01-appb-T000001
[補強フィルムの作製]
<粘着剤組成物の調製>
 アクリル系ポリマー溶液に、オリゴマー、架橋剤、光硬化剤(多官能アクリレート)、および光重合開始剤を添加し、均一に混合して、表2および表3に示す試料1~51の粘着剤成物を調製した。光重合開始剤としては、IGM Resins製「Omnirad 651」をアクリル系ポリマーの固形分100重量部に対して0.1重量部添加した。オリゴマー、架橋剤および光硬化剤は、表2および表3に示す組成となるように添加した。表2および表3における添加量は、ベースポリマー100重量部に対する添加量(固形分の重量部)である。架橋剤および光硬化剤の詳細は下記の通りである。
(架橋剤)
 T-C: 三菱ガス化学製「テトラッドC」(4官能エポキシ系化合物)
 D110N: 三井化学製「タケネートD-110N」(3官能イソシアネート系化合物)
(光硬化剤)
 A200: 新中村化学工業製「NKエステル A200」(ポリエチレングリコール#200(n=4)ジアクリレート;分子量308、官能基当量154g/eq)
 A600: 新中村化学工業製「NKエステル A600」(ポリエチレングリコール#600(n=14)ジアクリレート;分子量708、官能基当量354g/eq)
<粘着剤溶液の塗布および架橋>
 表面処理がされていない厚み75μmのポリエチレンテレフタレートフィルム基材(東レ製「ルミラーS10」)上に、上記の粘着剤組成物を、乾燥後の厚みが15μmとなるように、ファウンテンロールを用いて塗布した。130℃で1分間乾燥して溶媒を除去後、粘着剤の塗布面に、はく離ライナー(表面がシリコーン離型処理された厚み25μmのポリエチレンテレフタレートフィルム)の離型処理面を貼り合わせた。その後、25℃の雰囲気で4日間のエージング処理を行い、架橋を進行させ、フィルム基材A上に粘着シートが固着積層され、その上にはく離ライナーが仮着された補強フィルムを得た。
[評価]
<粘着剤層の表面抵抗>
 補強フィルムからはく離ライナーをはく離して粘着剤層(光硬化前)を露出させ、温度23℃、相対湿度50%の環境下で、粘着剤層の表面に、プローブ(TREK製「Model 152P-2P」)を接触させ、抵抗率計(TREK製「Model 152-1」)を用いて、印加電圧10V、電圧印加時間10秒の条件で、表面抵抗を測定した。
<押込みエネルギー>
 ダイプラ・ウィンテス製の表面・界面物性解析装置(SAICAS DN-20型)を用い、下記(1)(2)の手順に従って、温度押込み試験(測定温度:25℃、押し込み速度:5μm/分)を行い、被着体に20Nの荷重を負荷する際の押込みエネルギーを測定した。
(1)押込み深さの決定
 波長365nmのLED光源を用いて、補強フィルムのフィルム基材側から、積算光量4000mJ/cmの紫外線を照射して粘着剤層を光硬化した。光硬化後の粘着剤層の表面からはく離ライナーをはく離除去し、ステンレス製のフラット圧子に貼り付けた。補強フィルムのフィルム基材側の面に、球形圧子(半径0.5mm)を押し込み、フラット圧子で20Nの荷重が検出された時の押し込み深さHを求めた。
(2)押込みエネルギーの測定
 補強フィルムの粘着剤層の表面からはく離ライナーをはく離除去し、粘着剤層をスライドガラスに貼り合わせた後、フィルム基材側から、積算光量4000mJ/cmの紫外線を照射して粘着剤層を光硬化した。補強フィルムのフィルム基材側の面に、球形圧子を、上記(1)で求めた深さHまで押込み、試験中の圧子の荷重F(x)から、下記式に基づいて押込みエネルギーWを算出した。
Figure JPOXMLDOC01-appb-M000002
 荷重F(x)は、押込み深さx(xは0~H)における荷重である。押込みエネルギーWは、補強フィルムの粘着剤層側の面、すなわち補強フィルムが貼り合わせられた被着体に、20Nの荷重が負荷されるまでのエネルギーであり、Wが大きいほど耐衝撃性に優れている。
[ポリイミドフィルムに対する接着力の測定]
<光硬化前の接着力>
(プラズマ処理なしのポリイミドフィルムとの接着力)
 厚み25μmのポリイミドフィルム(宇部興産製「ユープレックスS」)を、両面接着テープ(日東電工製「No.531」)を介してガラス板に貼付し、測定用ポリイミドフィルム基板を得た。幅25mm×長さ100mmに切り出した補強フィルムの表面からはく離ライナーをはく離除去し、測定用ポリイミドフィルム基板にハンドローラを用いて貼り合わせた。
 この試料を25℃で30分静置した後、補強フィルムのフィルム基材の端部をチャックで保持して、引張速度300mm/分で、180°ピール試験を行い、ピール強度(補強フィルムの接着力)を測定した。
(プラズマ処理ありのポリイミドフィルムとの接着力)
 測定用ポリイミドフィルム基板を、搬送速度3m/分で搬送しながら、常圧式プラズマ処理機を用い、電極電圧160Vの条件でポリイミドフィルムの表面にプラズマ処理を実施した。プラズマ処理後のポリイミドフィルムに、ハンドローラを用いて補強フィルムを貼り合わせ、上記と同様に、180°ピール試験により接着力を測定した。
 得られた結果から、プラズマ処理なしの場合の接着力に対するプラズマ処理ありの場合の接着力の比(プラズマ処理による接着力の増加率)を算出した。
<光硬化後の接着力>
 測定用ポリイミドフィルム基板(プラズマ処理なし)に補強フィルムを貼り合わせた後、補強フィルム側(フィルム基材側)から、波長365nmのLED光源を用いて積算光量4000mJ/cmの紫外線を照射して粘着剤層を光硬化した。この試験サンプルを用い、上記と同様に、180°ピール試験により接着力を測定した。
 得られた結果から、光硬化後と光硬化前の接着力の比(光硬化に伴う粘着力の増加率)を算出した。
 それぞれの補強フィルムの粘着剤の組成(ベースポリマーの種類、オリゴマーの種類および添加量、架橋剤の種類および添加量、光硬化剤の種類および添加量)、および評価結果を表2および表3に示す。なお、粘着剤が光硬化性を有していない試料43については、光硬化後の接着力の測定は行わず、押込みエネルギーについては光硬化していない試料を用いて測定を行った。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 脂環構造を有するモノマーユニット(脂環式モノマーユニット)を含まないベースポリマーAまたはBを用いた例について、粘着剤がオリゴマーを含まない試料43~48、および脂環式モノマーユニットを含まないオリゴマーRを用いた試料49~51では、押込みエネルギーが280μJ未満であった。脂環式モノマーユニットを含むオリゴマーP,Qを用いた試料1~34は、いずれも押込みエネルギーが280μJ以上であり、耐衝撃性に優れていた。
 試料1,2,4,7,12の対比から、光硬化剤の量が大きいほど、粘着剤層の表面抵抗が小さく、かつ、押込みエネルギーが大きくなる(耐衝撃性に優れる)傾向があることが分かる。後述の試料35~42においても、同様の傾向が見られた。
 試料10~16の対比から、オリゴマーの量がベースポリマーに対して6重量部までの範囲では、オリゴマーの量の増加に伴って押込みエネルギーが大きくなる傾向があるものの、オリゴマーの量がさらに増加すると、押込みエネルギーが小さくなる傾向があることが分かる。
 ガラス転移温度が高いオリゴマーQを用いた試料23~29においても、光硬化剤およびオリゴマーの使用量の増加に伴って押込みエネルギーが大きくなる傾向がみられた。一方。これらの試料では、オリゴマーPを用いた場合に比べて、光硬化による接着力の上昇率が低くなっていた。
 ポリマーBとオリゴマーPを用いた試料30~34も、押込みエネルギーが大きく、優れた耐衝撃性を示した。一方、これらの試料では、プラズマ処理したポリイミドフィルムに対する初期接着力が大きくなっていた。
 脂環式モノマーユニットを含むベースポリマーC,D,EまたはFを用いた試料35~42は、オリゴマーを含んでいないが、試料1~34と同様、押込みエネルギーが280μJ以上であり、耐衝撃性に優れていた。
 これらの結果から、高分子量成分が脂環式モノマーユニットを含むことにより耐衝撃性を向上できるとともに、粘着剤の組成を調整することにより、所望の接着特性や表面抵抗を有する補強フィルムが得られることが分かる。
 試料35,37,39,41の対比、および試料36,38,40,42の対比から、から、ベースポリマーにおける脂環式モノマーユニットの量が増加すると、押込みエネルギーが小さくなる傾向があることが分かる。これらの結果、および前述の試料10~16の対比結果から、高分子量成分(ベースポリマーおよび/またはオリゴマー)が脂環式モノマーユニットを含むことにより、押込みエネルギーが大きくなり耐衝撃性が向上するものの、高分子量成分全体に対する脂環式モノマーユニットの量が過度に大きい場合は、耐衝撃性の向上効果が小さくなる傾向があるといえる。
 試料4と試料35は、高分子量成分全体(ベースポリマーおよびオリゴマー)の構成モノマー成分の総量に対する脂環式モノマーユニット(CHMA)の比率が略同じであり(試料4は4.6重量%、試料35は4.8重量%)、架橋剤および光硬化剤の種類および配合量が同一であるが、脂環式モノマーユニットを含むアクリル系オリゴマーを含む試料4の方が、押込みエネルギーが大きく、耐衝撃性に優れていた。試料12と試料36の対比においても同様の傾向がみられた。これらの結果から、粘着剤組成物がアクリル系ベースポリマーおよびアクリル系オリゴマーを含み、アクリル系オリゴマーが脂環式モノマーユニットを含有する場合に、補強フィルムの耐衝撃性が特に良好であることが分かる。
  1  フィルム基材
  2   粘着剤層
  10  補強フィルム
  5   はく離ライナー
  20   被着体

Claims (13)

  1.  フィルム基材と、前記フィルム基材の一主面上に固着積層された粘着剤層とを備え、
     前記粘着剤層は、アクリル系ベースポリマー、光硬化剤、および光重合開始剤を含む光硬化性組成物からなり、
     前記光硬化性組成物は、
      前記アクリル系ベースポリマーよりも重量平均分子量が小さいアクリル系オリゴマーを含み、前記アクリル系オリゴマーが脂環構造を有するモノマーユニットを含む、または
      前記アクリル系ベースポリマーが脂環構造を有するモノマーユニットを含む、
     補強フィルム。
  2.  前記光硬化性組成物は、前記アクリル系ベースポリマー100重量部に対して、脂環構造を有するモノマーユニットを含む前記アクリル系オリゴマーを、0.1~20重量部含有する、請求項1に記載の補強フィルム。
  3.  前記脂環構造を有するモノマーユニットは、ホモポリマーのガラス転移温度が150℃以下である、請求項1または2に記載の補強フィルム。
  4.  前記光硬化性組成物は、前記ベースポリマー100重量部に対して、前記光硬化剤を3~100重量部含有する、請求項1または2に記載の補強フィルム。
  5.  前記光硬化剤が多官能(メタ)アクリレートである、請求項1または2に記載の補強フィルム。
  6.  前記光硬化剤がポリエーテル鎖を有する化合物である、請求項1または2に記載の補強フィルム。
  7.  前記粘着剤層の表面抵抗が1×1012Ω以下である、請求項1または2に記載の補強フィルム。
  8.  前記アクリル系ベースポリマーは、構成元素中の窒素の割合が0.1モル%以下である、請求項1または2に記載の補強フィルム。
  9.  前記粘着剤層を光硬化する前のポリイミドフィルムとの接着力が1N/25mm以下である、請求項1または2に記載の補強フィルム。
  10.  前記粘着剤層を光硬化する前において、プラズマ処理が施されたポリイミドフィルムに対する接着力が、プラズマ処理が施されていないポリイミドフィルムに対する接着力の2.5倍以下である、請求項1または2に記載の補強フィルム。
  11.  前記粘着剤層を光硬化した後のポリイミドフィルムとの接着力が、前記粘着剤層を光硬化する前のポリイミドフィルムとの接着力の30倍以上である、請求項1または2に記載の補強フィルム。
  12.  表面に補強フィルムが貼り合わせられたデバイスの製造方法であって、
     請求項1または2に記載の補強フィルムの前記粘着剤層を被着体の表面に仮着した後、
     前記粘着剤層に活性光線を照射して、前記粘着剤層を光硬化することにより、前記補強フィルムと前記被着体との接着力を上昇させる、デバイスの製造方法。
  13.  被着体の表面に補強フィルムを貼り合わせる補強方法であって、
     被着体の表面に、請求項1または2に記載の補強フィルムの前記粘着剤層を仮着し、
     前記粘着剤層に活性光線を照射して、前記粘着剤層を光硬化することにより、前記補強フィルムと前記被着体との接着力を上昇させる、補強方法。
PCT/JP2022/033585 2021-09-16 2022-09-07 補強フィルム、デバイスの製造方法および補強方法 WO2023042726A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247008092A KR20240065076A (ko) 2021-09-16 2022-09-07 보강 필름, 디바이스의 제조 방법 및 보강 방법
JP2023548432A JPWO2023042726A1 (ja) 2021-09-16 2022-09-07
CN202280062332.5A CN117957293A (zh) 2021-09-16 2022-09-07 增强薄膜、器件的制造方法及增强方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-151377 2021-09-16
JP2021151377 2021-09-16

Publications (1)

Publication Number Publication Date
WO2023042726A1 true WO2023042726A1 (ja) 2023-03-23

Family

ID=85602152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033585 WO2023042726A1 (ja) 2021-09-16 2022-09-07 補強フィルム、デバイスの製造方法および補強方法

Country Status (5)

Country Link
JP (1) JPWO2023042726A1 (ja)
KR (1) KR20240065076A (ja)
CN (1) CN117957293A (ja)
TW (1) TW202323040A (ja)
WO (1) WO2023042726A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10245533A (ja) * 1997-03-06 1998-09-14 Sekisui Chem Co Ltd 硬化型粘接着シート
JP2000109544A (ja) * 2000-02-14 2000-04-18 Sekisui Chem Co Ltd 光硬化性組成物、光硬化性組成物の製造方法、光硬化型粘接着シート、光硬化型粘接着シートの製造方法及び接合方法
JP2016520138A (ja) * 2013-07-19 2016-07-11 エルジー・ケム・リミテッド 封止組成物
JP2017066322A (ja) * 2015-10-01 2017-04-06 東亞合成株式会社 絶縁性に優れる活性エネルギー線硬化型粘接着剤組成物
JP2020132658A (ja) * 2019-02-12 2020-08-31 日東電工株式会社 補強フィルム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876092B (zh) 2017-09-28 2022-05-27 日东电工株式会社 增强薄膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10245533A (ja) * 1997-03-06 1998-09-14 Sekisui Chem Co Ltd 硬化型粘接着シート
JP2000109544A (ja) * 2000-02-14 2000-04-18 Sekisui Chem Co Ltd 光硬化性組成物、光硬化性組成物の製造方法、光硬化型粘接着シート、光硬化型粘接着シートの製造方法及び接合方法
JP2016520138A (ja) * 2013-07-19 2016-07-11 エルジー・ケム・リミテッド 封止組成物
JP2017066322A (ja) * 2015-10-01 2017-04-06 東亞合成株式会社 絶縁性に優れる活性エネルギー線硬化型粘接着剤組成物
JP2020132658A (ja) * 2019-02-12 2020-08-31 日東電工株式会社 補強フィルム

Also Published As

Publication number Publication date
KR20240065076A (ko) 2024-05-14
JPWO2023042726A1 (ja) 2023-03-23
CN117957293A (zh) 2024-04-30
TW202323040A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
JP7265350B2 (ja) 補強フィルムおよび補強フィルム付きデバイスの製造方法
US11492520B2 (en) Reinforcing film
JP7369583B2 (ja) 補強フィルム、デバイスの製造方法および補強方法
TWI837300B (zh) 補強膜
JP6995033B2 (ja) 補強フィルム
KR20230060518A (ko) 보강 필름, 보강 필름을 구비한 디바이스 및 그 제조 방법
KR20240001673A (ko) 보강 필름, 디바이스의 제조 방법 및 보강 방법
WO2022209830A1 (ja) 粘着シート、補強フィルム、およびデバイスの製造方法
WO2023042726A1 (ja) 補強フィルム、デバイスの製造方法および補強方法
JP2020132659A (ja) 補強フィルムおよびその製造方法、デバイスの製造方法、ならびに補強方法
TWI855026B (zh) 補強膜、裝置之製造方法及補強方法
JP2024114027A (ja) 補強フィルム、デバイスの製造方法および補強方法
JP2024114026A (ja) 補強フィルム、デバイスの製造方法および補強方法
JP2024114028A (ja) 補強フィルム、および補強フィルム付きデバイスの製造方法
TW202411069A (zh) 補強膜、裝置之製造方法及補強方法
JP2024003755A (ja) 補強フィルム、デバイスの製造方法および補強方法
CN117304832A (zh) 加强薄膜、器件的制造方法及加强方法
JP2020132845A (ja) 補強フィルムおよびその製造方法、デバイスの製造方法、ならびに補強方法
JP2020132846A (ja) 補強フィルム、デバイスの製造方法および補強方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869873

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023548432

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280062332.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22869873

Country of ref document: EP

Kind code of ref document: A1