WO2023042479A1 - ハニカム型メタル担体及び触媒コンバータ - Google Patents

ハニカム型メタル担体及び触媒コンバータ Download PDF

Info

Publication number
WO2023042479A1
WO2023042479A1 PCT/JP2022/020024 JP2022020024W WO2023042479A1 WO 2023042479 A1 WO2023042479 A1 WO 2023042479A1 JP 2022020024 W JP2022020024 W JP 2022020024W WO 2023042479 A1 WO2023042479 A1 WO 2023042479A1
Authority
WO
WIPO (PCT)
Prior art keywords
burrs
foil
honeycomb
burr
metal foil
Prior art date
Application number
PCT/JP2022/020024
Other languages
English (en)
French (fr)
Inventor
徹 稲熊
省吾 紺谷
啓 村松
康秀 後藤
創平 野澤
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Priority to CN202280053604.5A priority Critical patent/CN117858760A/zh
Priority to EP22869630.8A priority patent/EP4368286A4/en
Publication of WO2023042479A1 publication Critical patent/WO2023042479A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • F01N3/2821Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates the support being provided with means to enhance the mixing process inside the converter, e.g. sheets, plates or foils with protrusions or projections to create turbulence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/38Honeycomb supports characterised by their structural details flow channels with means to enhance flow mixing,(e.g. protrusions or projections)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a technology of a honeycomb metal carrier in which flat metal foils and corrugated metal foils are alternately laminated.
  • a catalytic converter As a catalyst carrier for purifying exhaust gas of internal combustion engines such as automobiles, a catalytic converter is known which is made by inserting a honeycomb body made of a heat-resistant alloy into an outer cylinder made of the same alloy.
  • the honeycomb body is formed by alternately laminating metal flat foils having a thickness of about 50 ⁇ m and corrugated flat foils.
  • a strip-shaped flat foil and a corrugated foil are layered and wound in a spiral shape.
  • Patent Document 1 by appropriately determining the number, size, and distribution of the holes, the flow characteristics inside the honeycomb body are improved, and the resulting material exchange between the flow and the surface is improved, thereby improving the purification performance. Techniques are disclosed.
  • Patent Literature 2 discloses a catalytic converter that is excellent in high-temperature durability and that uses a metal foil with a large number of holes as a base, and the brazing positions are devised.
  • Patent Document 3 in a metal catalyst carrier in which a plurality of slit holes are formed in a corrugated plate and a flat plate, an annular projection is formed at the opening edge of the slit hole and protrudes from the surface of the corrugated plate and the flat plate.
  • Patent Document 4 discloses a catalytic converter for purifying an exhaust gas composed of a metal honeycomb base material formed by processing a stainless steel foil and a catalyst layer formed on the stainless steel foil, wherein the stainless steel foil contains at least Fe, Cr, and Al, and an oxide film formed on the surface of the stainless steel foil is formed by oxidizing the stainless steel foil components, and the concentration of Fe contained in the oxide film is 0.0% by mass relative to the oxide.
  • a catalytic converter is disclosed that is between 1% and 7%.
  • Patent Document 4 discloses that Fe contained in the oxide film suppresses migration of Fe in the foil to the catalyst layer, thereby suppressing deterioration of the catalyst due to Fe.
  • Patent No. 4975969 Patent No. 5199291 JP-A-2005-313083 JP 2007-203256 A
  • the inventors of the present invention have discovered that the purification performance is improved by leaving the burrs formed around the holes. On the other hand, we discovered that the catalyst around the burrs deteriorates due to aging.
  • the purpose of the present invention is to improve the purification performance of the catalytic converter and to suppress catalyst deterioration.
  • a honeycomb-shaped metal carrier is (A) a honeycomb-shaped metal carrier in which a flat metal foil and a corrugated metal foil are alternately laminated, wherein the flat metal foil and the metal corrugated foil are alternately laminated. A plurality of holes are formed in the corrugated foil, and a slightly elevated burr is formed at the edge of each hole. It is covered with a film, and when the average pore diameter of the plurality of pores is D, the porosity is R, and the average height of burrs is L, the following formulas (1) to (3) are satisfied. Characterized by 0.2 mm ⁇ D ⁇ 4.0 mm (1) 5% ⁇ R ⁇ 70% (2) 0.1 ⁇ m ⁇ L ⁇ 30 ⁇ m (3)
  • (E) The honeycomb-shaped metal carrier according to any one of (A) to (C) above, and a catalyst layer supported on the flat metal foil and the corrugated metal foil, A catalytic converter, wherein the average height L is smaller than the thickness of the catalyst layer or is larger than the catalyst layer by a predetermined amount, and the predetermined amount is 10 ⁇ m or less.
  • the oxide film may have a thickness of 0.05 ⁇ m or more and 2 ⁇ m or less, and may contain at least 10% by mass or more of ⁇ -alumina.
  • FIG. 1 is a perspective view of a catalytic converter
  • FIG. Fig. 3 is a cross-sectional view of a portion of the honeycomb body
  • It is a cross-sectional photograph of a burr before shape adjustment.
  • It is a cross-sectional photograph of a burr after shape adjustment.
  • FIG. 4 is a schematic diagram of the tip surface of a burr extending around a hole.
  • FIG. 4 is a plan view of a catalytic converter for explaining a method of calculating average burr height L; It is the schematic of a shape adjustment apparatus. 4 is a diagram for explaining an aperture ratio R;
  • FIG. It is a cross-sectional photograph of the burr (modification) after shape adjustment.
  • It is a cross-sectional view of a portion of the honeycomb body (second embodiment).
  • FIG. 1 is a perspective view of the catalytic converter 1, and the axial direction of the catalytic converter 1 is indicated by a double arrow.
  • the catalytic converter 1 includes a honeycomb body (corresponding to a honeycomb-shaped metal carrier) 4 formed by spirally winding a flat foil 2 and a corrugated foil 3 into a wound body, and an outer cylinder 5 surrounding the outer peripheral surface of the honeycomb body 4. and
  • the honeycomb body 4 may be a laminate in which the flat foils 2 and the corrugated foils 3 are alternately laminated.
  • the honeycomb-shaped metal carrier described in the claims includes not only the laminated body but also the wound body.
  • a metal foil made of a heat-resistant alloy can be used for the flat foil 2 and the corrugated foil 3 .
  • the plate thickness of the metal foil is preferably 20 ⁇ m or more and 100 ⁇ m or less.
  • the plate width of the metal foil is preferably 10 mm or more and 500 mm or less.
  • the size of the metal foil can be appropriately changed according to the use of the catalytic converter 1.
  • the corrugated foil 3 can be manufactured by, for example, corrugating a metal flat foil.
  • a stainless steel foil containing aluminum can be used as the heat-resistant alloy.
  • ferritic stainless steel containing 20% by mass of Cr, 3 to 8% by mass of Al, and the balance being Fe and unavoidable impurities can be used.
  • the heat-resistant alloy applicable to the present invention is not limited to the aforementioned ferritic stainless steel, and a wide range of heat-resistant stainless steels containing Al in the alloy composition can be used. That is, the metal foil used for the honeycomb body 4 usually contains 15 to 25% by mass of Cr and 2 to 8% by mass of Al, and Fe-18Cr-3Al alloy, Fe-20Cr-8Al alloy, etc. It can be used as a heat-resistant alloy.
  • the catalyst can be supported on the metal foil by applying a predetermined washcoat liquid to the surface of the metal foil of the honeycomb body 4 and drying and firing it.
  • a predetermined washcoat liquid for example, a slurry obtained by stirring ⁇ -alumina powder, lanthanum oxide, zirconium oxide, and cerium oxide in an aqueous solution of palladium nitrate can be used.
  • the thickness of the outer cylinder 5 is preferably 0.5 mm or more and 3 mm or less.
  • the cell density of the honeycomb body 4 is preferably 100 to 600 cells per square inch.
  • the catalytic converter 1 is installed in an exhaust pipe of a vehicle (not shown) so that exhaust gas can flow in from one end side in the axial direction and the exhaust gas that has flowed in can be discharged from the other end side. By reacting the catalyst supported on the catalytic converter 1 with the exhaust gas, the exhaust gas flowing into the catalytic converter 1 can be purified.
  • FIG. 2 is a cross-sectional view of a portion of the honeycomb body 4 cut in the radial direction.
  • a plurality of holes 8 are formed through the flat foil 2 and the corrugated foil 3 in the thickness direction.
  • the arrangement of the holes 8 is not particularly limited, for example, a metal foil in which the holes 8 are formed in a grid pattern or a zigzag pattern in the unfolded state before forming the honeycomb body 4 can be used.
  • the gas flow in a metal carrier consisting of non-perforated flat and corrugated foils is laminar.
  • the Reynolds number is partially increased at the holes, and turbulence is likely to be generated. As a result, the purification performance is improved.
  • excessive turbulence is not preferable because it causes an increase in pressure loss.
  • excessive turbulence is suppressed by limiting the hole diameter and aperture ratio of the holes 8 to a predetermined range, and by limiting the height of the burrs to a small height. Kaeri's spark effect compensates for the decrease in This point will be described later in detail.
  • burr 2A embedded in the catalyst layer 20 is formed extending in the circumferential direction.
  • a burr 3A embedded in the catalyst layer 20 is formed extending in the circumferential direction.
  • the burrs 2A and 3A are protrusions that are naturally formed when holes are made in the metal foil using a hole punching tool, and are also called burrs. Since burrs are generally unnecessary projections, they are removed in the deburring process, but in the present invention, by performing the shape adjustment process, they are left as structures for improving purification performance.
  • the type of punching tool is not particularly limited, continuous processing can be performed using a die such as a punching press or a rotary punching machine.
  • An oxide film containing ⁇ -alumina is formed on the surfaces of the flat foil 2 and the corrugated foil 3 .
  • This oxide film is also formed on the surfaces of the burrs 2A and 3A.
  • the oxide film is formed on the surfaces of the flat foils 2 and the corrugated foils 3 (including the burr surfaces) by heating the honeycomb body 4 in an oxidizing atmosphere above 800°C.
  • the metal foil used for the flat foil 2 and the corrugated foil 3 is a ferritic stainless steel foil composed of Cr: 20% by mass, Al: 3 to 8% by mass, and the balance being Fe and inevitable impurities, the honeycomb body 4
  • the oxidation treatment heat treatment
  • an oxide film containing at least 10% by mass of ⁇ -alumina is formed on the surface of the stainless steel foil.
  • the oxide film may contain Cr oxide and Fe oxide in addition to ⁇ -alumina.
  • the thickness of the oxide film is preferably 0.05 ⁇ m or more and 2 ⁇ m or less. If the oxide film containing at least 10% by mass of ⁇ -alumina has a thickness of 0.05 ⁇ m or more, deterioration of the catalyst due to aging can be suppressed. By suppressing the thickness of the oxide film to 2 ⁇ m or less, deterioration in durability of the flat foil 2 and the corrugated foil 3 can be suppressed. The thickness of the oxide film increases as the content of aluminum contained in the stainless steel foil increases.
  • FIG. 3 is a cross-sectional photograph of a burr before shape adjustment (in other words, a burr immediately after punching).
  • FIG. 4 is a cross-sectional photograph of a burr after shape adjustment.
  • FIG. 5 is a schematic diagram schematically showing the tip surface of the burr extending around the hole.
  • the tip surfaces of burrs 2A and 3A extend in a direction perpendicular to the projecting direction of the burrs (thickness direction of the metal foil).
  • the term “extends” means, as shown by hatching in FIG. The degree of spread is not necessarily uniform. Further, the tip surfaces of the burrs 2A and 3A may be flat, or may be formed with fine irregularities.
  • the burrs 2A and 3A are formed with a draw shape portion 50.
  • the width of the tip face is P1 and the width of the draw shape portion 50 is P2, P1 and P2 are large and small.
  • the relationship is P1>P2.
  • the width is the width of the hole 8 in the radial direction.
  • the shape of the reference numeral 50 is similar to the shape formed by drawing, so the name of the drawing shape portion is given, but the processing process of the drawing shape portion is not limited to drawing. .
  • the constriction shape portion 50 can be rephrased as a “constriction shape portion”.
  • the purification performance of the catalytic converter 1 can be improved.
  • the reason is presumed as follows.
  • the small burrs 2A and 3A have small heat capacities and tend to rise in temperature when the exhaust gas flows in.
  • they since they are buried in the catalyst layer 20, it is difficult for the accumulated heat to be removed by the air. Therefore, the temperature of the spread of the catalytic reaction region starting from the burrs is lowered, and the catalytic reaction of the honeycomb body 4 as a whole is activated.
  • the catalyst supported on the burrs and their surroundings becomes a spark that determines the start and end of the catalytic reaction, and the catalytic reaction can be activated early by lowering the temperature of the generation and disappearance of the spark.
  • the effect of the burrs 2A and 3A is also referred to as a spark effect.
  • the average height of burrs 2A and 3A after shape adjustment (hereinafter also referred to as average burr height L) is 0.1 ⁇ m or more and 30 ⁇ m or less, preferably 0.5 ⁇ m or more and 20 ⁇ m or less.
  • the average burr height L When the average burr height L is reduced to less than 0.1 ⁇ m, the heat energy stored in the burrs 2A and 3A becomes too small, and the spark effect cannot be fully realized.
  • the average burr height L exceeds 30 ⁇ m, the tip portions of the burrs 2A and 3A that penetrate the catalyst layer 20 come into contact with the air and remove heat. The contact creates turbulence and increases pressure loss.
  • the average burr height L By limiting the average burr height L to 0.5 ⁇ m or more and 20 ⁇ m or less, it becomes easier to obtain the above-described spark effect.
  • FIG. 6 is a plan view of the catalytic converter 1 viewed from the axial direction.
  • the average burr height L is obtained by cutting the catalytic converter 1 along a plane ("CS" indicated by a dotted line) including the central axis, and image analysis of the height of each burr appearing on the cut surface. can be obtained by summing these measured values and dividing the sum by the number of times of measurement.
  • the burr height can be obtained from the difference between the thickness of the metal foil and the length from one end of the metal foil in the thickness direction to the tip of the burr.
  • the metal foil (the base material of the flat foil 2 or the corrugated foil 3) is imaged by an image dimension measuring device equipped with an imaging element (CMOS sensor or the like).
  • the burr height of each hole 8 may be obtained by acquiring an image along the circumferential direction of the hole 8 .
  • the average burr height L can be obtained by dividing the total value of the measured burr heights by the number of measurements.
  • the burr height of each hole 8 formed in the metal foil may be obtained using a micrometer.
  • the average burr height L can be obtained by dividing the total value of the measured burr heights by the number of measurements.
  • FIG. 7 is a schematic diagram of the shape adjusting device viewed from the entrance side of the metal foil.
  • the shape adjusting device 100 includes a driving roller 101 , a driven roller 102 , a driving motor 103 , a transmission mechanism 104 , a fixing table 105 , a hydraulic mechanism 106 and a digital indicator 107 .
  • the driving motor 103 is connected to the driving roller 101 via a transmission mechanism 104. When the driving motor 103 is operated, the driving force of the driving motor 103 is transmitted to the driving roller 101 via the transmission mechanism 104, and the driving roller 101 is It rotates around the rotation axis L1.
  • the driven roller 102 is arranged directly above the drive roller 101 and is pressed toward the drive roller 101 by a hydraulic mechanism 106 . Therefore, the driven roller 102 rotates together with the drive roller 101 .
  • a metal foil can be slid between the drive roller 101 and the driven roller 102 (that is, the nip portion).
  • the nip pressure between the drive roller 101 and the driven roller 102 can be adjusted by the hydraulic mechanism 106 . Nip pressure can be measured by indicator 107 .
  • a guide roller (not shown) is arranged upstream of the driving roller 101 and the driven roller 102 .
  • the hydraulic mechanism 106 , the gearbox of the transmission mechanism 104 and the drive motor 103 are fixed with respect to the fixed base 105 .
  • a metal foil having holes with burrs formed by a punching device is prepared and fed into the nip portion between the driving roller 101 and the driven roller 102 via a guide roller (not shown).
  • the drive roller 101 is rotated clockwise as viewed from the drive motor 103 side, the metal foil is drawn into the nip portion between the drive roller 101 and the driven roller 102, and the burrs of the metal foil push the drive roller 101 (driven roller 102). comes into contact.
  • the corrugated foil 3 is transferred to the corrugated foil forming process after shape adjustment by the shape adjusting device 100 .
  • the corrugated foil 3 can be manufactured by bringing a gear corresponding to the shape of the corrugated foil into contact with the metal foil to plastically deform the metal foil.
  • the method of adjusting the shape of the burrs 2A and 3A is not limited to the shape adjusting device 100.
  • the shape may be adjusted by installing a baffle plate that suppresses protrusion of the burrs.
  • the thickness of the catalyst layer 20 can be appropriately set in relation to the average burr height L. That is, as described above, when the protrusion amount of the burrs 2A and 3A protruding from the catalyst layer 20 increases, the torch effect is lowered and turbulence is generated. Therefore, if the thickness of the catalyst layer 20 is set to be equal to or greater than the average burr height L, or if the average burr height L is greater than the catalyst layer 20, the difference between the average burr height L and the thickness of the catalyst layer 20 ( (corresponding to a predetermined amount) is desirably limited to 10 ⁇ m or less.
  • the average hole diameter of the holes 8 is defined as D
  • the average hole diameter D is 0.2 mm or more and 4.0 mm or less.
  • the hole diameter of the hole 8 is a diameter. If the average pore diameter D falls below 0.2 mm, the productivity of the catalytic converter 1 will decline. When the average pore diameter D exceeds 4.0 mm, the total edge length of the pores 8 (that is, the total edge length of the pores 8 in the honeycomb body 4 as a whole) becomes small, and even if burrs are applied, the total length of burrs remains. is short, the purification performance cannot be sufficiently improved.
  • the average pore diameter D is reduced to less than 1.1 mm, the pores 8 may be clogged by the catalyst, degrading the purification performance. Therefore, when the average pore diameter D is less than 1.1 mm, it is desirable to use a catalyst with low viscosity.
  • the hole 8 has a circular shape in the above-described embodiment, it may have another shape.
  • Other shapes can include various shapes such as ellipses, rectangles, and the like. Regardless of the shape, the pore size can be obtained by converting the area into a circle.
  • the diameter of the holes 8 can be controlled by the punch diameter and die diameter of the mold. Although the hole diameters of the holes 8 do not necessarily have to be the same, from the viewpoint of ease of processing, etc., it is preferable to manufacture so that the standard deviation ⁇ is 0.001 mm or more and 0.5 mm or less.
  • the aperture ratio of the holes 8 is defined as R
  • the aperture ratio R is 5% or more and 70% or less, preferably 20% or more and 70% or less.
  • the open area ratio R is a value calculated as a ratio of the total area of blackened holes to the total area surrounded by triangles as shown in FIG. That is, when a triangle is drawn by connecting the centers of three adjacent holes 8 with a line, the area inside the triangle is defined as the total area, and the area where the triangle and the hole 8 overlap is defined as the hole area, the total area
  • the aperture ratio R is defined as the ratio of the pore area to the area.
  • the aperture ratio R When the aperture ratio R is reduced to less than 5%, the total edge length of the holes 8 becomes small, and even if burrs are applied, the purification performance cannot be sufficiently improved. If the opening ratio R exceeds 70%, the rigidity of the honeycomb body 4 is lowered, and the flat foils 2 and the corrugated foils 3 may be cracked or broken, and the catalytic converter 1 may become unusable early.
  • the catalytic converter 1 of this modified example includes burrs 2A and 3A that do not have a constricted portion.
  • the burr having the draw shape portion that is, the burr shown in FIG. 4
  • burr V1 the burr having the draw shape portion
  • burr V2 the burr that does not have the draw shape portion
  • the present inventors confirmed that the burr V1 relatively decreased and the burr V2 relatively increased as the pressure of the roll press increased. Even with the catalytic converter 1 in which flashes V1 and V2 are mixed, the same effects as those of the first embodiment, such as the spark effect, can be obtained by satisfying predetermined numerical conditions.
  • the predetermined numerical conditions have been described in the first embodiment, they are 1.1 mm ⁇ D ⁇ 4.0 mm, 5% ⁇ R ⁇ 70%, and 0.1 ⁇ m ⁇ L ⁇ 30 ⁇ m.
  • Fig. 9 is a photograph of Kaeri V2.
  • burr V2 has a tip end surface extending in a direction perpendicular to the projecting direction of burr V1, and is similar to burr V1 in that it does not have a drawn portion 50. differ. This is because when needle-like burrs are pressed by the shape adjusting device 100 in a state in which the hydraulic pressure of the hydraulic mechanism 106 is increased, constrictions such as burrs V1 are first formed, and when the pressure is further increased, the constrictions are crushed. It is presumed that a stepped burr without the drawn portion 50 is formed as shown in FIG.
  • burrs V1 and V2 are mixed as in the present embodiment, it is preferable to obtain the burr height without distinguishing between them and calculate the average burr height L.
  • the catalytic converter 1 of this modified example includes burrs 2A and 3A that do not have a constricted portion.
  • the burr having the draw shape portion that is, the burr shown in FIG. 4
  • burr V1 the burr having the draw shape portion
  • burr V2 the burr that does not have the draw shape portion
  • the present inventors confirmed that the burr V1 relatively decreased and the burr V2 relatively increased as the pressure of the roll press increased. Even with the catalytic converter 1 in which flashes V1 and V2 are mixed, the same effects as those of the first embodiment, such as the spark effect, can be obtained by satisfying predetermined numerical conditions.
  • the predetermined numerical conditions have been described in the first embodiment, they are 1.1 mm ⁇ D ⁇ 4.0 mm, 5% ⁇ R ⁇ 70%, and 0.1 ⁇ m ⁇ L ⁇ 30 ⁇ m.
  • Fig. 9 is a photograph of Kaeri V2.
  • burr V2 has a tip end surface extending in a direction perpendicular to the projecting direction of burr V1, and is similar to burr V1 in that it does not have a drawn portion 50. differ. This is because when needle-like burrs are pressed by the shape adjusting device 100 in a state in which the hydraulic pressure of the hydraulic mechanism 106 is increased, constrictions such as burrs V1 are first formed, and when the pressure is further increased, the constrictions are crushed. It is presumed that a stepped burr without the drawn portion 50 is formed as shown in FIG.
  • burrs V1 and V2 are mixed as in the present embodiment, it is preferable to obtain the burr height without distinguishing between them and calculate the average burr height L.
  • FIG. 10 corresponds to FIG. 2 and is a cross-sectional view of a portion of the honeycomb body. Components having functions common to those of the first embodiment are denoted by the same reference numerals.
  • the average height L of the burrs 2A is set to 0.1 ⁇ m or more and 30 ⁇ m or less without performing the shape adjustment process. Specifically, by increasing the punching speed of the punching press, the height of the burrs 2A can be suppressed, and the average height L of the burrs 2A can be suppressed to 0.1 ⁇ m or more and 30 ⁇ m or less.
  • the drawing speed of the punching press is preferably 100 mm/sec or more.
  • the burr 2A of the present embodiment has a general burr shape with a sharp tip (that is, the tip is needle-like), and the tip surface extends in a direction orthogonal to the projecting direction of the burr.
  • the shape is different from that of the burrs of the first embodiment. Since other configurations are the same as those of the first embodiment, detailed description is omitted, but the summary is as follows.
  • the plate thicknesses and materials of the metal foils constituting the flat foil 2 and the corrugated foil 3, the catalyst, and the outer cylinder 5 are the same as in the first embodiment. Further, the flat foil 2 and the corrugated foil 3 (including burrs) are formed with an oxide film containing ⁇ -alumina in the same manner as in the first embodiment. Similar to the first embodiment, the average burr height L of the burrs 2A and 3A is preferably 0.5 ⁇ m or more and 20 ⁇ m or less. The method of measuring the average burr height L is also the same as in the first embodiment. When the protrusion amount of the burrs 2A and 3A protruding from the catalyst layer 20 increases, the torch effect is lowered and turbulence is generated.
  • the thickness of the catalyst layer 20 is set to be equal to or greater than the average burr height L, or if the average burr height L is greater than the catalyst layer 20, the difference between the average burr height L and the thickness of the catalyst layer 20 ( (corresponding to a predetermined amount) is desirably limited to 10 ⁇ m or less.
  • the point that the average pore diameter D is 1.1 mm or more and 4.0 mm or less is also the same as in the first embodiment.
  • the point that the shape of the hole 8 is not limited to a circle is also the same as in the first embodiment.
  • the hole diameter standard deviation ⁇ of the holes 8 is preferably 0.001 mm or more and 0.5 mm or less, as in the first embodiment.
  • the aperture ratio R of the holes 8 is 5% or more and 70% or less, preferably 20% or more and 70% or less.
  • Example 1 In this example, the average burr height L was variously changed to evaluate purification performance, catalyst deterioration, and pressure loss performance. Table 1 shows the evaluation results. Purification performance was evaluated by T80°C (in other words, T80°C before aging). T80° C. is the temperature at which the CO conversion (%) calculated based on the CO conversion-temperature curve reaches 80%.
  • the CO conversion rate-temperature curve is obtained by flowing a simulated gas through a catalytic converter at SV (space velocity) of 100,000 h -1 , gradually heating the simulated gas from room temperature using a heater, and calculating the CO conversion rate ( %) was obtained by measuring the THC (propane, C 3 H 6 ): 550 ppm (1650 ppmC), NO: 500 ppm, CO: 0.5%, O 2 : 1.5%, H 2 O: 10%, N 2 : using balance gas, Diesel exhaust gas was simulated. It can be evaluated that the lower the T80°C, the higher the purification performance of the catalyst carrier.
  • Catalyst deterioration was evaluated based on the difference between "T80°C after aging” and "T80°C before aging”. Heating temperature: 980°C Heating time: 20 hours The catalytic converter was heated under the heating conditions, and after cooling to room temperature, T80°C was measured by the method described above to obtain "T80°C after aging”. It can be evaluated that the smaller the difference, the lower the deterioration of the catalyst.
  • the pressure loss performance was evaluated by flowing dry N 2 gas at 25° C. at a flow rate of 0.12 Nm 3 /min and measuring the pressure difference across the catalytic converter.
  • ferritic stainless steel composed of Cr: 20% by mass, Al: 5% by mass, and the balance being Fe and unavoidable impurities was used.
  • the plate thickness of the metal foil was set to 30 ⁇ m.
  • Using a punching press holes were formed in regions excluding the end portions of the honeycomb body (within a range of 5 mm from the entry and exit end faces).
  • the average burr height L was controlled by adjusting the punching speed of the punching press without adjusting the height with the shape adjusting device.
  • the average burr height L was measured by the method described in the embodiment described with reference to FIG. 6 (the same applies to other examples described later).
  • the area where the hole was made in the metal foil was imaged from the thickness direction of the metal foil, and after converting the outline of the hole into data, the hole diameter was calculated by converting it into a circle by computer processing.
  • the aperture ratio R was obtained by the method described in the above embodiment.
  • the corrugated foil coated with a brazing material at an appropriate position and the flat foil are overlapped and wound, and heat treatment (brazing treatment) is performed.
  • a honeycomb body was produced by applying The honeycomb body had a diameter of 35 mm and an axial length of 80 mm. The cell density was 400cpsi.
  • the manufactured honeycomb body was inserted into an outer cylinder and fixed by brazing to obtain a catalytic converter.
  • the catalytic converter had a diameter of 38 mm and an axial length of 80 mm.
  • a washcoat liquid containing ceria-zirconia-lanthana-alumina as a main component and containing 1.25 g of palladium per 100 g is passed through the honeycomb body, excess washcoat liquid is removed, and then dried at 180°C for 1 hour, Subsequently, by firing at 500° C. for 2 hours, a catalyst layer having a thickness of 20 ⁇ m was formed. The viscosity of the washcoat liquid was appropriately adjusted so that the pores would not be clogged with the catalyst.
  • the honeycomb body was heat-treated to form an oxide film before forming the catalyst layer.
  • the heat treatment conditions were a heating temperature of 900° C. and a heating time of 2 hours.
  • No. 1 and No. 3 had no burrs and had low purification performance (T80°C).
  • the purification performance (T80°C) was high due to burrs, but catalyst deterioration was remarkably increased because there was no oxide film.
  • the purification performance (T80°C) increased due to burrs, and catalyst deterioration was also suppressed.
  • the pressure loss could be maintained at a low value.
  • burrs protruded greatly from the catalyst layer (protrusion from the catalyst layer of 20 ⁇ m), turbulent flow was generated, pressure loss increased, and the purification performance (T80° C.) deteriorated due to a decrease in the torch effect.
  • Example 2 Purification performance (T80°C), catalyst deterioration and pressure drop performance were evaluated by variously changing the thickness of the oxide film and the content of ⁇ -alumina.
  • the thickness of the oxide film and the content of ⁇ -alumina were adjusted by adjusting the heat treatment conditions for forming the oxide film within the ranges of heating temperature: 1000° C. to 1100° C. and heating time: 5 min to 20 hours.
  • the average burr height L was unified to 5 ⁇ m by adjusting the punching speed of the punching press without adjusting the height using the shape adjusting device.
  • the foil thickness of the metal foil was set to 40 ⁇ m.
  • the honeycomb body had a diameter of 40 mm and an axial length of 60 mm.
  • the cell density was 400cpsi.
  • the manufactured honeycomb body was inserted into an outer cylinder and fixed by brazing to obtain a catalytic converter.
  • the catalytic converter had a diameter of 43 mm and an axial length of 60 mm.
  • the hole diameter and aperture ratio were unified to 2 mm and 50%, respectively.
  • Other conditions were the same as in Example 1.
  • No. 12 since the thickness of the oxide film was only 0.03 ⁇ m, the deterioration of the catalyst increased.
  • the thickness of the oxide film exceeded 2.0 ⁇ m, chipping of the foil occurred and T80° C. after aging could not be evaluated.
  • the amount of ⁇ -alumina contained in the oxide film was only 5% by mass, so the catalyst deteriorated significantly. From this example, it was found that catalyst deterioration can be effectively suppressed by forming an oxide film containing at least 10% by mass of ⁇ -alumina to a thickness of 0.05 ⁇ m or more and 2 ⁇ m or less.
  • Example 3 purification performance (T80° C.), pressure loss performance, and catalyst deterioration were evaluated when the average pore diameter D and the open area ratio R were variously changed.
  • the average burr height L was unified to 8 ⁇ m by adjusting the punching speed of the punching press without adjusting the height by the shape adjusting device.
  • the foil thickness of the metal foil was set to 50 ⁇ m.
  • the honeycomb body had a diameter of 51 mm and an axial length of 120 mm.
  • the cell density was 300cpsi.
  • the manufactured honeycomb body was inserted into an outer cylinder and fixed by brazing to obtain a catalytic converter.
  • the catalytic converter had a diameter of 54 mm and an axial length of 120 mm.
  • the desired purification performance (T80° C.) can be ensured by imparting burrs even if the average pore diameter D is small.
  • the average pore diameter D was excessively large and the total length of burrs was short, so the purification performance (T80°C) could not be improved.
  • the aperture ratio was excessively small and the total length of the burrs was shortened, the purification performance could not be improved.
  • the aperture ratio exceeded 70% chipping of the metal foil was observed after aging, and catalyst deterioration was not evaluated.
  • Example 4 In this example, the test was conducted under the same conditions as in Example 1, except that the average burr height L was adjusted by a shape adjusting device. Regarding Nos. 45 to 46, burrs V2 were observed in about 30%, but they were burrs V1 with other diaphragms. As for Nos. 46 to 51, burr V1 with a squeeze was dominant. No. 42 and No. 44 had no burrs and had low purification performance (T80°C). In No. 43, the purification performance (T80°C) was high due to burrs, but catalyst deterioration was remarkably high because there was no oxide film. In No. 45 to No.
  • Example 5 In this example, the test was conducted under the same conditions as in Example 2, except that the average burr height L was adjusted by a shape adjusting device. In No. 53, since the thickness of the oxide film was only 0.03 ⁇ m, the deterioration of the catalyst increased. In No. 59, since the thickness of the oxide film exceeded 2.0 ⁇ m, chipping of the foil occurred and T80° C. after aging could not be evaluated. It was found that by forming an oxide film containing at least 10% by mass of ⁇ -alumina to a thickness of 0.05 ⁇ m or more and 2 ⁇ m or less, purification performance can be enhanced, and pressure loss and catalyst deterioration can be reduced.
  • Example 6 In this example, the test was conducted under the same conditions as in Example 3, except that the average burr height L was adjusted by a shape adjusting device. With reference to Nos. 65 to 71, it was found that the desired purification performance (T80° C.) can be ensured by imparting burrs even if the average pore diameter D is small. In No. 72, the average pore diameter D was excessively large and the total length of burrs was short, so the purification performance (T80°C) could not be improved. In No. 73, the aperture ratio was excessively small and the total length of burrs was shortened, so the purification performance (T80°C) could not be improved. In No. 82, since the aperture ratio exceeded 70%, chipping of the metal foil was observed after aging, and catalyst deterioration was not evaluated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

【課題】触媒コンバータの浄化性能の向上及び触媒劣化の抑制を両立する。 【解決手段】 金属平箔と金属波箔とが交互に積層されたハニカム型メタル担体であって、前記金属平箔及び前記金属波箔には孔が複数形成されるとともに、各孔の縁には小高のカエリが形成されており、前記金属平箔及び前記金属波箔のうち少なくとも前記カエリの表面はα-アルミナを含む酸化皮膜によって覆われており、前記複数の孔の平均孔径をD、開孔率をR、カエリの平均高さをLとしたとき、0.2mm≦D≦4.0mm、5%≦R≦70%、0.1μm≦L≦30μmを満足する。

Description

ハニカム型メタル担体及び触媒コンバータ
 本発明は、金属平箔と金属波箔とが交互に積層されたハニカム型メタル担体の技術に関するものである。
 自動車などの内燃機関の排ガス浄化用触媒担体として、耐熱合金製の外筒に同合金製のハニカム体を嵌入してなる触媒コンバータが知られている。触媒コンバータのうち、特に金属製の箔から構成されるメタル担体においては、ハニカム体は厚さ50μm程度の金属製の平箔と、該平箔をコルゲート加工した波箔とを交互に積層したものや、帯状の平箔と波箔を重ねて渦巻状に巻き回したもの等が使用されている。
 近年、自動車排ガス規制が非常に厳しくなる傾向にあり、特に排出ガス測定モードにおけるコールドスタート時の一酸化炭素、炭化水素、窒素酸化物などの有害物質の排出が総排出量のかなりの割合を占めており、触媒の早期活性化が求められている。そこでメタル担体を構成する平箔および波箔に孔開け加工を施して、乱流を生成することにより浄化性能を高めたメタル担体が種々提案されている。
 特許文献1には、孔の個数、寸法及び分布を適宜定めることによって、ハニカム体の内部における流れ特性の改善およびこれによって生ずる流れと表面との間の物質交換を改善し、浄化性能を向上させる技術が開示されている。
 特許文献2には、孔が多数形成された金属箔をベースとしてろう付け位置を工夫した高温耐久性に優れる触媒コンバータが開示されている。特許文献3には、波板と平板に複数のスリット孔が形成された金属製触媒担体において、スリット孔の開口縁部に波板と平板の面から突出する環状突起を形成し、環状突起に排ガスを衝突させて乱流を起こすことにより、浄化性能を高める技術が開示されている。
 特許文献4には、ステンレス箔を加工してなるメタルハニカム基材と、ステンレス箔上に形成した触媒層から構成される排気ガス浄化用触媒コンバータであって、前記ステンレス箔は少なくともFe、Cr、及びAlを含有し、前記ステンレス箔の表面にはステンレス箔成分が酸化してできた酸化物皮膜が形成されており、該酸化物皮膜の含有するFeの濃度が酸化物に対する質量%で0.1%以上7%以下である触媒コンバータが開示されている。また、この特許文献4には、酸化皮膜中にFeを含有させることによって箔中のFeの触媒層への移動が抑制され、Feによる触媒劣化が抑制されることが開示されている。
 特許文献1乃至3に記載されているようにハニカム体に用いられる金属箔に孔を形成すると、孔の縁にバリが形成される。このバリは、不要な突起物であるため、通常、バリ取り工程で取り除かれる。
特許第4975969号 特許第5199291号 特開2005-313083号公報 特開2007-203256号公報
 本発明者等は、孔の周囲に形成されたカエリを残すことにより、浄化性能が向上することを発見した。一方、カエリの周囲にある触媒がエイジングにより劣化する課題を発見した。
 本発明は、触媒コンバータの浄化性能の向上及び触媒劣化の抑制を目的とする。
 上記課題を解決するために、本願発明に係るハニカム型メタル担体は、(A)金属平箔と金属波箔とが交互に積層されたハニカム型メタル担体であって、前記金属平箔及び前記金属波箔には孔が複数形成されるとともに、各孔の縁には小高のカエリが形成されており、前記金属平箔及び前記金属波箔のうち少なくとも前記カエリの表面はα-アルミナを含む酸化皮膜によって覆われており、前記複数の孔の平均孔径をD、開孔率をR、カエリの平均高さをLとしたとき、以下の式(1)~式(3)を満足することを特徴とする。
  0.2mm≦D≦4.0mm・・・・(1)
  5%≦R≦70%・・・・・・・・・(2)
  0.1μm≦L≦30μm・・・・・(3)
 (B)前記小高のカエリは、先端面がカエリの突出方向に対して直交する方向に延在する形状であることを特徴とする上記(A)に記載のハニカム型メタル担体。
 (C)前記カエリは、前記先端面よりも幅が小さい絞り形状部を有することを特徴とする上記(B)に記載のハニカム型メタル担体。
 (D)カエリの平均高さLは、以下の式(4)を満足することを特徴とする上記(A)乃至(C)のうちいずれか一つに記載のハニカム型メタル担体。
0.5μm≦L≦20μm・・・・・(4)
 (E)上記(A)乃至(C)のうちいずれか一つに記載のハニカム型メタル担体と、前記金属平箔及び前記金属波箔に担持される触媒層と、を有し、前記カエリの平均高さLは、前記触媒層の厚みよりも小さいか或いは、前記触媒層よりも所定量だけ大きく、前記所定量は10μm以下であることを特徴とする触媒コンバータ。
 (F)上記(D)に記載のハニカム型メタル担体と、前記金属平箔及び前記金属波箔に担持される触媒層と、を有し、前記カエリの平均高さLは、前記触媒層の厚みよりも小さいことを特徴とする触媒コンバータ。
 (G)上記(A)乃至(F)において、前記酸化皮膜を、厚みが0.05μm以上2μm以下、α-アルミナを少なくとも10質量%以上含むように構成することができる。
 本発明によれば、触媒コンバータの浄化性能の向上及び触媒劣化の抑制を両立することができる。
触媒コンバータの斜視図である。 ハニカム体の一部における断面図である。 形状調整前のカエリの断面写真である。 形状調整後のカエリの断面写真である。 孔の周囲に延在するカエリの先端面の模式図である。 平均カエリ高さLの算出方法を説明するための触媒コンバータの平面図である。 形状調整装置の概略図である。 開口率Rを説明するための図である。 形状調整後のカエリ(変形例)の断面写真である。 ハニカム体の一部における断面図である(第2実施形態)。
(第1実施形態)
 図面を参照しながら、本発明の好適な実施形態について詳細に説明する。図1は触媒コンバータ1の斜視図であり、触媒コンバータ1の軸方向を両矢印により示している。触媒コンバータ1は、平箔2と波箔3を渦巻状に巻き回して捲回体にしたハニカム体(ハニカム型メタル担体に相当する)4と、当該ハニカム体4の外周面を囲む外筒5とを有する。ただし、ハニカム体4は、平箔2と波箔3を交互に重ねた積層体であってもよい。捲回体であっても、積層体であっても、断面で視ると平箔2と波箔3とが積層された構造となっている。したがって、請求項に記載されたハニカム型メタル担体には、積層体は勿論のこと、捲回体も含まれる。
 平箔2及び波箔3には、耐熱合金からなる金属箔を用いることができる。金属箔の板厚は、好ましくは20μm以上100μm以下である。金属箔の板幅は、好ましくは10mm以上500mm以下である。金属箔のサイズは、触媒コンバータ1の用途に応じて適宜変更することができる。波箔3は、金属製の平箔を例えばコルゲート加工することによって製造することができる。
 ここで、耐熱合金としてアルミニウムを含むステンレス箔を用いることができる。この種のステンレス箔として、好ましくは、Cr:20質量%、Al:3~8質量%、残部がFe及び不可避的不純物からなるフェライト系ステンレスを用いることができる。ただし、本発明に適用可能な耐熱合金は前述のフェライト系ステンレスに限るものではなく、合金組成にAlを含む耐熱性の各種ステンレス鋼を広く用いることができる。すなわち、通常、ハニカム体4に用いられる金属箔は、Crを15-25質量%、Alを2-8質量%含有しており、Fe-18Cr-3Al合金や、Fe-20Cr-8Al合金なども耐熱合金として用いることができる。
 触媒は、ハニカム体4の金属箔表面に所定のウォッシュコート液を塗布して、それを乾燥、焼成することによって、金属箔に担持させることができる。ウォッシュコート液には、例えば、γアルミナ粉末、ランタン酸化物、ジルコニウム酸化物、セリウム酸化物を硝酸パラジウムの水溶液内で撹拌してスラリー状にしたものを用いることができる。
 外筒5には例えばステンレスを用いることができる。外筒5の肉厚は、好ましくは0.5mm以上3mm以下である。ハニカム体4のセル密度は、好ましくは1平方インチあたり100セルから600セルである。
 触媒コンバータ1は、軸方向における一端側から排ガスを流入させ、この流入した排ガスを他端側から排出し得るように、図示しない車両の排気管に設置される。触媒コンバータ1に担持された触媒と排ガスが反応することによって、触媒コンバータ1に流入した排気ガスを浄化することができる。
 図2は、径方向に切断したハニカム体4の一部における断面図である。平箔2と波箔3には、それぞれ厚さ方向に貫通する複数の孔8が形成されている。孔8の配置は特に限定しないが、例えば、ハニカム体4にする前の展開状態において、碁盤の目状又は千鳥状に孔8が形成された金属箔を用いることができる。通常、孔の開いていない平箔と波箔から構成されるメタル担体のガス流れは、層流である。しかしながら、金属箔に孔が開いていると、孔の部分では部分的にレイノルズ数が大きくなり乱流が生成されやすくなり、その結果浄化性能が向上する。ただし、過度な乱流は、圧力損失の増大を招くため好ましくない。本発明は、孔8の孔径及び開口率を所定範囲に制限したり、カエリの高さを小高に制限することによって、過度な乱流を抑制しており、乱流を抑制することによる浄化性能の低下をカエリの火種効果によって補っている。この点については、詳細を後述する。
 平箔2の各孔8の縁には、触媒層20に埋没するカエリ2Aが周方向に延びて形成されている。波箔3の各孔8の縁には、触媒層20に埋没するカエリ3Aが周方向に延びて形成されている。カエリ2A,3Aは、孔開け工具を用いて金属箔に孔を開ける際に自然に形成される突起であり、バリとも称される。カエリは、一般的には不要な突起物であるためバリ取り工程において除去されるが、本発明では形状調整工程を実施することによって、浄化性能を向上させるための構造物として残存させている。孔開け工具の種類は特に問わないが、パンチングプレス、ロータリーパンチングマシンなどの金型を用いて連続加工することができる。
 平箔2及び波箔3の表面には、α-アルミナを含む酸化皮膜が形成されている。この酸化皮膜は、カエリ2A、3Aの表面にも形成されている。酸化皮膜は、800℃超の酸化性雰囲気下でハニカム体4を加熱することにより、平箔2及び波箔3の表面(カエリの表面を含む)に形成される。平箔2及び波箔3に用いられる金属箔が、Cr:20質量%、Al:3~8質量%、残部がFe及び不可避的不純物からなるフェライト系ステンレス箔の場合、ハニカム体4に対して上述の酸化処理(加熱処理)を施することにより、α-アルミナを少なくとも10質量%以上含む酸化皮膜がステンレス箔の表面に形成される。なお、酸化皮膜にはα-アルミナのほかに、Cr酸化物、Fe酸化物が含まれていてもよい。
 酸化皮膜の厚みは、好ましくは0.05μm以上2μm以下である。α-アルミナを少なくとも10質量%以上含む酸化皮膜の厚みが0.05μm以上あれば、エイジングによる触媒劣化を抑制できる。酸化皮膜の厚みを2μm以下に抑制することにより、平箔2及び波箔3の耐久性の低下を抑制できる。酸化皮膜の厚みは、ステンレス箔に含まれるアルミの含有量が高くなるほど、厚くなる。
 カエリ2A、3Aの構造について、図3、図4及び図5を参照しながら詳細に説明する。図3は形状調整前のカエリ(言い換えると、パンチング直後のカエリ)の断面写真である。図4は形状調整後のカエリの断面写真である。図5は、孔の周囲に延在するカエリの先端面を模式的に示した模式図である。
 図3を参照して、形状調整前のカエリは、先端が尖ったままであるため、平箔(波箔)に触媒層を形成すると、カエリが触媒層から過度に突出してしまう。この場合、触媒層から突出したカエリに排ガスが衝突することによって、過度な乱流が発生して、圧力損失が大きくなる。
 図4を参照して、カエリ2A、3Aの先端面は、カエリの突出方向(金属箔の厚み方向)に対して直交する方向に延在している。「延在」とは、図5にハッチングで示すように、「孔8の縁から径方向に向かってカエリ2A、3Aの先端面が広がって存在する」の意であり、各周方向位置における広がり度合いは必ずしも一様とは限らない。また、カエリ2A、3Aの先端面はフラットであってもよし、微小な凹凸が形成されていてもよい。
 また、図4に図示するように、カエリ2A、3Aには絞り形状部50が形成されており、先端面の幅をP1、絞り形状部50の幅をP2としたとき、P1及びP2の大小関係はP1>P2である。幅とは、孔8の径方向における幅のことである。本実施形態では、符号50の形状が、絞り加工によって形成された形状に似ていることから、絞り形状部という名称を付したが、絞り形状部の加工工程は絞り加工に限定するものではない。絞り形状部50は、「括れ形状部」と言い換えることができる。
 小高のカエリ2A、3Aを設けることによって触媒コンバータ1の浄化性能を向上させることができる。その理由は、以下のように推察される。小高のカエリ2A、3Aは熱容量が小さく排ガス流入時に温度が上がりやすい一方で、触媒層20に埋没しているため、ため込んだ熱が空気によって抜熱されるにくい。したがって、カエリを起点とした触媒反応領域の広がりが低温化され、ハニカム体4全体としての触媒反応が活性化される。
 すなわち、カエリ及びその周辺に担持された触媒が触媒反応の開始、終了を決める火種的なものになり、火種の発生、消滅の低温化によって触媒反応を早期に活性化させることができる。なお、以下の説明において、このカエリ2A、3Aによる効果を火種効果ともいう。カエリ2A、3Aの先端面をカエリの突出方向に対して直交する方向に延在する形状に形成することによって、カエリ高さが同等で、かつ、先端が鋭利なカエリ(後述する第2実施形態のカエリを含む)と比較して触媒との接触面積が増大するため、上述の火種効果を高めることができる。
 一方、本発明者等は、平箔2及び波箔3の表面に酸化皮膜が形成されていない触媒コンバータ1(つまり、本発明の範囲外の触媒コンバータ)を用いて排ガスを浄化したときに、エイジングによる触媒劣化が大きくなる課題を発見した。この課題を詳細に検討した結果、カエリ2A、3A近傍の触媒が異常に温度上昇して、劣化するものと推察した。そして、この触媒劣化を抑制する手段として、カエリ2A、3Aの表面に、α-アルミナを含む酸化皮膜を形成することを知見した。すなわち、カエリ2A、3Aの表面に、α-アルミナを含む酸化皮膜を形成しておくことにより、カエリ2A、3Aと触媒との熱伝達が促進される。これにより、触媒の異常な温度上昇が防止され、エイジングによる触媒劣化を抑制できる。
 形状調整後のカエリ2A、3Aの平均高さ(以下、平均カエリ高さLともいう)は、0.1μm以上30μm以下であり、好ましくは0.5μm以上20μm以下である。カエリ2A、3Aを0.1μm以上30μm以下の高さに調整することにより、火種効果を発現させることができる。
 平均カエリ高さLが0.1μm未満に低下すると、カエリ2A、3Aに蓄える熱エネルギが過少となり、火種効果を十分に発現させることができない。平均カエリ高さLが30μmを超過すると、触媒層20を突き抜けたカエリ2A、3Aの先端部分が空気に触れて抜熱されるため、火種効果が発現しにくくなるとともに、排ガスがカエリ2A、3Aに接触することによって乱流が生成され、圧力損失が大きくなる。平均カエリ高さLを0.5μm以上20μm以下に制限することによって、上述の火種効果等がより得られやすくなる。
 図6は、触媒コンバータ1を軸方向から視た平面図である。同図を参照して、平均カエリ高さLは、中心軸を含む面(点線で示す「CS」)で触媒コンバータ1を切断し、その切断面に現れた個々のカエリの高さを画像解析によって測定した後、これらの測定値を合算し、この合算値を更に測定回数で除することによって求めることができる。なお、測定処理を行う際に、ハニカム体4のガス流路(空隙)を樹脂により埋めておくことが望ましい。カエリ高さは、金属箔の箔厚と金属箔の箔厚方向一端からカエリの先端までの長さとの差分から求めることができる。
 また、別の測定方法として、ハニカム体4を展開した後、金属箔(平箔2又は波箔3の母材)を、撮像素子(CMOSセンサ等)を備えた画像寸法測定器によって撮像して孔8の周方向に沿った画像を取得することにより、個々の孔8のカエリ高さを求めてもよい。この場合、測定したカエリ高さの合算値を、測定回数で除することによって平均カエリ高さLを求めることができる。
 また、ハニカム体4を展開した後、マイクロメータを用いて金属箔(平箔2又は波箔3の母材)に形成された各孔8のカエリ高さを求めてもよい。この場合も、測定したカエリ高さの合算値を、測定回数で除することによって平均カエリ高さLを求めることができる。
 図7を参照しながら、カエリ2A、3Aの形状を調整する調整方法について説明する。図7は、金属箔の入側から視た形状調整装置の概略図である。形状調整装置100は、駆動ローラ101、従動ローラ102、駆動モータ103、伝達機構104、固定台105、油圧機構106、デジタルインジゲータ107を含む。駆動モータ103は伝達機構104を介して駆動ローラ101に接続されており、駆動モータ103が作動すると、駆動モータ103の駆動力が伝達機構104を介して駆動ローラ101に伝達され、駆動ローラ101は回転軸L1周りに回転動作する。
 従動ローラ102は、駆動ローラ101の直上に配設されており、油圧機構106によって駆動ローラ101に接近する側に押圧されている。したがって、従動ローラ102は、駆動ローラ101とともに回転する。駆動ローラ101と従動ローラ102の間(つまり、ニップ部)に、金属箔を滑り込ませることができる。
 油圧機構106によって、駆動ローラ101及び従動ローラ102のニップ圧を調整することができる。ニップ圧は、インジケータ107によって測定することができる。駆動ローラ101及び従動ローラ102の上流側には、図示しないガイドローラが配設されている。油圧機構106、伝達機構104のギアボックス及び駆動モータ103は、固定台105に対して固定されている。
 上述の構成において、パンチング装置によりカエリ付きの孔が形成された金属箔を準備し、これを図示しないガイドローラを介して、駆動ローラ101及び従動ローラ102のニップ部に送り込む。駆動ローラ101を駆動モータ103側から視て時計周りに方向に回転させると、金属箔が駆動ローラ101及び従動ローラ102のニップ部に引き込まれ、金属箔のカエリに駆動ローラ101(従動ローラ102)が接触する。
 駆動ローラ101及び従動ローラ102を更に回転させると、これらのローラによってカエリが押し潰され、絞り形状部50は有するカエリ2A、3Aが形成される。予め、所望のカエリ2A、3Aを形成するためのニップ圧を実験等で求めておくことが望ましい。なお、波箔3用の金属箔は、形状調整装置100による形状調整後に、波箔形成工程に移送される。波箔形成工程では、例えば、波箔の形状に対応したギアを金属箔に当接させて、金属箔を塑性変形させることにより、波箔3を製造することができる。
 カエリ2A、3Aの形状調整方法は、形状調整装置100に限るものではなく、例えば、金属箔をパンチングする際に、カエリの突出を抑制する邪魔板を設置することにより形状調整としてもよい。この場合、パンチングの際に形成されるカエリが邪魔板に当接して塑性変形することにより、孔8の縁に図2に図示するカエリ2A、3Aを形成することができる。
 触媒層20の厚みは平均カエリ高さLとの関係で適宜設定することができる。すなわち、上述したように、触媒層20から突出するカエリ2A、3Aの突出量が大きくなると、火種効果の低下と乱流生成が顕著となる。したがって、触媒層20の厚みを平均カエリ高さL以上に設定するか、或いは平均カエリ高さLが触媒層20よりも大きい場合には、平均カエリ高さL及び触媒層20の厚みの差分(所定量に相当する)を10μm以下に制限することが望ましい。 
 ここで、孔8の平均孔径をDと定義したときに、平均孔径Dは0.2mm以上4.0mm以下である。なお、孔8の孔径は、直径である。平均孔径Dが0.2mm未満に低下すると、触媒コンバータ1の生産性が低下する。平均孔径Dが4.0mmを超過すると、孔8の縁長さの総和量(つまり、ハニカム体4全体における孔8の縁の総長さ)が小さくなり、カエリを付与してもカエリの総長さが短いため、浄化性能を十分に向上させることができない。なお、平均孔径Dが1.1mm未満に低下すると、触媒によって孔8が閉塞して、浄化性能が低下するおそれがある。そのため、平均孔径Dが1.1mm未満の場合、粘性の低い触媒を用いることが望ましい。
 上述の実施形態では、孔8の形状を円形としたが、他の形状であってもよい。他の形状には、楕円、矩形等種々の形状を含めることができる。いずれの形状であっても、面積から円換算により孔径を求めることができる。
 孔8の孔径は、金型のパンチ径及びダイス径によって制御することができる。各孔8の孔径は必ずしも同一である必要はないが、加工容易性等の観点から、標準偏差σが0.001mm以上0.5mm以下となるように製造するのが好ましい。
 孔8の開口率をRと定義すると、開口率Rは5%以上70%以下であり、好ましくは20%以上70%以下である。ここで、開口率Rとは、図8に示すように三角形で囲まれる全体面積に対する、黒く塗りつぶされた孔部の面積の総和の比として算出される値をいう。すなわち、隣接する三つの孔8の中心を線で結んで三角形を描くとともに、当該三角形の内側の面積を全体面積、当該三角形と孔8とが重なる部分の面積を孔面積と定義したとき、全体面積に対する孔面積の比を開口率Rと定義する。
 開口率Rが5%未満に低下すると、孔8の縁長さの総和量が小さくなり、カエリを付与しても浄化性能を十分に向上させることができない。開口率Rが70%を超過すると、ハニカム体4の剛性が下がり、平箔2及び波箔3の亀裂、破断により触媒コンバータ1が早期に使用できなくなるおそれがある。
 (変形例)
 本発明の変形例について説明する。本変形例の触媒コンバータ1には、カエリ2A、3Aの中に絞り形状部を有しないカエリが含まれている。本変形例では、便宜上、絞り形状部を有するカエリ(つまり、図4に図示するカエリ)をカエリV1と称し、絞り形状部を有しないカエリ(つまり、図9に図示するカエリ)をカエリV2と称するものとする。本発明者等は、ロールプレスの圧が高まるとカエリV1が相対的に減少し、カエリV2が相対的に増大することを確認した。カエリV1及びV2が混在する触媒コンバータ1であっても、所定の数値条件を満足することにより、火種効果等第1実施形態と同様の効果を得ることができる。
 所定の数値条件は第1実施形態で説明しているが、重ねて説明すると、1.1mm≦D≦4.0mm、5%≦R≦70%、0.1μm≦L≦30μmである。
 図9は、カエリV2の写真である。同図を参照して、カエリV2は、先端面がカエリの突出方向に対して直交する方向に延在している点でカエリV1と共通し、絞り形状部50を有しない点でカエリV1と相違する。これは、油圧機構106の油圧を高めた状態で、針状のカエリを形状調整装置100でプレスすると、カエリV1のような括れが最初に形成され、更に圧が高まると括れが潰れて図9に示すような絞り形状部50のない階段状のカエリが形成されたものと推察される。
 本実施形態のようにカエリV1及びV2が混在している場合には、これらを区別することなくカエリ高さを求め、平均カエリ高さLを算出するとよい。
 (変形例)
 本発明の変形例について説明する。本変形例の触媒コンバータ1には、カエリ2A、3Aの中に絞り形状部を有しないカエリが含まれている。本変形例では、便宜上、絞り形状部を有するカエリ(つまり、図4に図示するカエリ)をカエリV1と称し、絞り形状部を有しないカエリ(つまり、図9に図示するカエリ)をカエリV2と称するものとする。本発明者等は、ロールプレスの圧が高まるとカエリV1が相対的に減少し、カエリV2が相対的に増大することを確認した。カエリV1及びV2が混在する触媒コンバータ1であっても、所定の数値条件を満足することにより、火種効果等第1実施形態と同様の効果を得ることができる。
 所定の数値条件は第1実施形態で説明しているが、重ねて説明すると、1.1mm≦D≦4.0mm、5%≦R≦70%、0.1μm≦L≦30μmである。
 図9は、カエリV2の写真である。同図を参照して、カエリV2は、先端面がカエリの突出方向に対して直交する方向に延在している点でカエリV1と共通し、絞り形状部50を有しない点でカエリV1と相違する。これは、油圧機構106の油圧を高めた状態で、針状のカエリを形状調整装置100でプレスすると、カエリV1のような括れが最初に形成され、更に圧が高まると括れが潰れて図9に示すような絞り形状部50のない階段状のカエリが形成されたものと推察される。
 本実施形態のようにカエリV1及びV2が混在している場合には、これらを区別することなくカエリ高さを求め、平均カエリ高さLを算出するとよい。
 (第2実施形態)
 図10を参照しながら、本発明の第2実施形態について説明する。図10は、図2に対応しており、ハニカム体の一部における断面図である。第1実施形態と機能が共通する構成要素には、同一符号を付している。本実施形態のカエリ2A、3Aは、形状調整工程を実施せずに、カエリ2Aの平均高さLを0.1μm以上、30μm以下に設定している。具体的には、パンチングプレスの抜き速度を増速することにより、カエリ2Aの高さが抑えられ、カエリ2Aの平均高さLを0.1μm以上30μm以下に抑えることができる。パンチングプレスの抜き速度は、好ましくは100mm/sec以上である。
 したがって、本実施形態のカエリ2Aは、先端が鋭利(つまり、先端が針状)な一般的なカエリの形状を呈しており、先端面がカエリの突出方向に対して直交する方向に延在する第1実施形態のカエリとは形状が異なる。その他の構成は、第1実施形態で同様であるため詳細な説明を省略するが、要約すると下記の通りである。
 平箔2及び波箔3を構成する金属箔の板厚及び材料、触媒、外筒5は、第1実施形態と同様である。また、平箔2及び波箔3(カエリを含む)にα-アルミナを含む酸化皮膜が形成されている点も第1実施形態と同様である。
 カエリ2A、3Aの平均カエリ高さLが、好ましくは0.5μm以上20μm以下である点も第1実施形態と同様である。平均カエリ高さLの測定方法も第1実施形態と同様である。
 触媒層20から突出するカエリ2A、3Aの突出量が大きくなると、火種効果の低下と乱流生成が顕著となる。したがって、触媒層20の厚みを平均カエリ高さL以上に設定するか、或いは平均カエリ高さLが触媒層20よりも大きい場合には、平均カエリ高さL及び触媒層20の厚みの差分(所定量に相当する)を10μm以下に制限することが望ましい。 
 平均孔径Dは1.1mm以上4.0mm以下である点も第1実施形態と同様である。孔8の形状が円形に限定されない点も、第1実施形態と同様である。孔8の孔径の標準偏差σが0.001mm以上0.5mm以下となるように製造するのが好ましい点も第1実施形態と同様である。孔8の開口率Rは5%以上70%以下であり、好ましくは20%以上70%以下である点も、第1実施形態と同様である。
 以上説明したように、本実施形態のカエリ2A、3Aを備えることにより、第1実施形態と同質の効果を得ることができる。
 (実施例1)
 本実施例では、平均カエリ高さLを種々変更して、浄化性能、触媒劣化及び圧損性能を評価した。表1はその評価結果である。浄化性能は、T80℃(言い換えると、エイジング前のT80℃)により評価した。T80℃とは、CO転化率-温度曲線に基づき算出されるCO転化率(%)が80%に達した時の温度である。CO転化率-温度曲線は、SV(空間速度):100,000h-1にて模擬ガスを触媒コンバータに流し、ヒーターを用いて模擬ガスを常温から徐々に加熱し、各温度におけるCO転化率(%)を測定することによって取得した。THC(プロパン、C):550ppm(1650ppmC)、NO:500ppm、CO:0.5%、O:1.5%、HO:10%、N:バランスガスを用いて、ディーゼル排ガスを模擬した。T80℃が低いほど、触媒担体の浄化性能は高いと評価することができる。
 触媒劣化は、「エイジング後のT80℃」と「エイジング前のT80℃」との差分に基づき評価した。加熱温度:980℃,加熱時間:20hourの加熱条件にて触媒コンバータを加熱し、常温まで冷却した後、既述の方法でT80℃を測定することにより「エイジング後のT80℃」を求めた。前記の差分が小さいほど、触媒劣化が低いと評価することができる。
 圧損性能は、25℃の乾燥したNガスを流量0.12Nm/minで流して、触媒コンバータ前後の圧力差を測定することにより評価した。
 波箔及び平箔に用いられる金属箔として、Cr:20質量%、Al:5質量%、残部がFe及び不可避的不純物からなるフェライト系ステンレスを使用した。金属箔の板厚は30μmとした。パンチングプレスを使用して、ハニカム体の端部(入側、出側端面からそれぞれ5mmの範囲)を除いた領域に孔を形成した。形状調整装置による高さ調整は行わずに、パンチングプレスの抜き速度を調整することにより、平均カエリ高さLを制御した。平均カエリ高さLは、図6を参照しながら説明した実施形態記載の方法によって測定した(後述する他の実施例も同様である)。
 金属箔における孔を空けた領域を金属箔の箔厚方向から撮像し、孔の輪郭をデータ化した後、コンピュータ処理により孔径を円換算により求めた。開口率Rは、上述の実施形態に記載した方法により求めた。
 上述の処理によって得られた金属箔をコルゲート加工により波箔とした後、適宜の位置にろう材が塗布された波箔と平箔とを重ね合わせて巻き回し、加熱処理(ろう付け処理)を施すことによってハニカム体を製造した。ハニカム体の直径は35mm、軸方向長さは80mmとした。セル密度は400cpsiとした。製造したハニカム体を外筒に装入し、ろう付け処理により固定することにより触媒コンバータとした。触媒コンバータの直径は38mm、軸方向長さは80mmとした。
 セリア―ジルコニア―ランタナ-アルミナを主成分とし、100gあたりパラジウムを1.25g含有するウォッシュコート液をハニカム体に通液させ、余分なウォッシュコート液を除去した後、180℃で1時間乾燥し、続いて500℃で2時間焼成することにより、厚さ20μmの触媒層を形成した。なお、触媒によって孔が閉塞されないように、ウォッシュコート液の粘度を適宜調整して使用した。
 No.3~10については、触媒層を形成する前にハニカム体を熱処理して、酸化皮膜を形成した。熱処理の条件は、加熱温度:900℃、加熱時間:2hourとした。
Figure JPOXMLDOC01-appb-T000001
  No.1、No.3はカエリがなく、浄化性能(T80℃)が低くなった。No.2はカエリによって浄化性能(T80℃)は高くなったが、酸化皮膜がないため触媒劣化が著しく大きくなった。No.4~No.9は、カエリによって浄化性能(T80℃)が高くなり、触媒劣化も低く抑えることができた。また、圧力損失も低い値に維持することができた。No.10は、触媒層からカエリが大きく突出して(20μm触媒層から突出)、乱流が生成され圧力損失が増大するとともに、火種効果の低下により浄化性能(T80℃)が悪化した。
(実施例2)
 酸化皮膜の厚みやα-アルミナの含有量を種々変更して、浄化性能(T80℃)、触媒劣化及び圧損性能を評価した。酸化皮膜を形成する際の熱処理条件を加熱温度:1000℃~1100℃、加熱時間:5min~20hourの範囲で調整することにより、酸化皮膜の厚みやα-アルミナの含有量を調整した。実施例1と同様に、形状調整装置による高さ調整は行わずに、パンチングプレスの抜き速度を調整することにより、平均カエリ高さLを5μmに統一した。金属箔の箔厚は、40μmとした。ハニカム体の直径は40mm、軸方向長さは60mmとした。セル密度は400cpsiとした。製造したハニカム体を外筒に装入し、ろう付け処理により固定することにより触媒コンバータとした。触媒コンバータの直径は43mm、軸方向長さは60mmとした。孔径、開口率についてはそれぞれ2mm及び50%に統一した。その他の条件は、実施例1と同様にした。
Figure JPOXMLDOC01-appb-T000002
 No.12では酸化皮膜の厚みが0.03μmしか得られなかったため、触媒劣化が大きくなった。No.18では酸化皮膜の厚みが2.0μmを超過したため、箔欠けが生じてエイジング後のT80℃を評価できなかった。No.19では酸化皮膜に含まれるα-アルミナが僅か5質量%であったため、触媒劣化が大きくなった。本実施例から、α-アルミナを少なくとも10質量%含む酸化皮膜を0.05μm以上2μm以下形成することによって、触媒劣化を効果的に抑制できることがわかった。
(実施例3)
 本実施例では、平均孔径D及び開口率Rを種々変化させたときの浄化性能(T80℃)、圧損性能及び触媒劣化を評価した。実施例1と同様に、形状調整装置による高さ調整は行わずに、パンチングプレスの抜き速度を調整することにより、平均カエリ高さLを8μmに統一した。金属箔の箔厚は、50μmとした。ハニカム体の直径は51mm、軸方向長さは120mmとした。セル密度は300cpsiとした。製造したハニカム体を外筒に装入し、ろう付け処理により固定することにより触媒コンバータとした。触媒コンバータの直径は54mm、軸方向長さは120mmとした。
Figure JPOXMLDOC01-appb-T000003
 No.24~30を参照して、カエリを付与することによって平均孔径Dが小さくても、所望の浄化性能(T80℃)を確保できることがわかった。No.31は、平均孔径Dが過度に大きく、カエリの合計長さが短くなったため、浄化性能(T80℃)を向上させることができなかった。No.32では、開口率が過度に小さく、カエリの合計長さが短くなったため、浄化性能を向上させることができなかった。No.41では、開口率が70%を超過したため、エイジング後に金属箔に箔欠けが確認されたため、触媒劣化については評価しなかった。
(実施例4)
 本実施例は、形状調整装置により平均カエリ高さLを調整した点を除いて、実施例1と同様の条件で試験を行った。なお、No.45~46については、3割ほどにカエリV2が観察されたが、他の絞りのあるカエリV1であった。No.46~51については、絞りのあるカエリV1が支配的であった。
Figure JPOXMLDOC01-appb-T000004
 No.42、No.44はカエリがなく、浄化性能(T80℃)が低くなった。No.43はカエリによって浄化性能(T80℃)は高くなったが、酸化皮膜がないため触媒劣化が著しく高くなった。No.45~No.50は、カエリによって浄化性能(T80℃)が高くなり、触媒劣化も低く抑えることができた。また、圧力損失も低い値に維持することができた。No.51は、触媒層からカエリが大きく突出して(20μm触媒層から突出)、乱流が生成され圧力損失が増大するとともに、火種効果の低下により浄化性能(T80℃)が悪化した。
(実施例5)
 本実施例は、形状調整装置により平均カエリ高さLを調整した点を除いて、実施例2と同様の条件で試験を行った。
Figure JPOXMLDOC01-appb-T000005
 No.53では酸化皮膜の厚みが0.03μmしか得られなかったため、触媒劣化が大きくなった。No.59では酸化皮膜の厚みが2.0μmを超過したため、箔欠けが生じてエイジング後のT80℃を評価できなかった。α-アルミナを少なくとも10質量%含む酸化皮膜を0.05μm以上2μm以下形成することによって、浄化性能が高くなり、圧力損失及び触媒劣化を小さくできることがわかった。
(実施例6)
 本実施例は、形状調整装置により平均カエリ高さLを調整した点を除いて、実施例3と同様の条件で試験を行った。
Figure JPOXMLDOC01-appb-T000006
 No.65~71を参照して、カエリを付与することによって平均孔径Dが小さくても、所望の浄化性能(T80℃)を確保できることがわかった。No.72は、平均孔径Dが過度に大きく、カエリの合計長さが短くなったため、浄化性能(T80℃)を向上させることができなかった。No.73では、開口率が過度に小さく、カエリの合計長さが短くなったため、浄化性能(T80℃)を向上させることができなかった。No.82では、開口率が70%を超過したため、エイジング後に金属箔に箔欠けが確認されたため、触媒劣化については評価しなかった。
1 触媒コンバータ
2 平箔
3 波箔
4 ハニカム体

Claims (8)

  1.  金属平箔と金属波箔とが交互に積層されたハニカム型メタル担体であって、
     前記金属平箔及び前記金属波箔には孔が複数形成されるとともに、各孔の縁には小高のカエリが形成されており、
     前記金属平箔及び前記金属波箔のうち少なくとも前記カエリの表面はα-アルミナを含む酸化皮膜によって覆われており、
     前記複数の孔の平均孔径をD、開孔率をR、カエリの平均高さをLとしたとき、以下の式(1)~式(3)を満足することを特徴とするハニカム型メタル担体。
      0.2mm≦D≦4.0mm・・・・(1)
      5%≦R≦70%・・・・・・・・・(2)
      0.1μm≦L≦30μm・・・・・(3)
  2.  前記小高のカエリは、先端面がカエリの突出方向に対して直交する方向に延在する形状であることを特徴とする請求項1に記載のハニカム型メタル担体。
  3.  前記カエリは、前記先端面よりも幅が小さい絞り形状部を有することを特徴とする請求項2に記載のハニカム型メタル担体。
  4.  カエリの平均高さLは、以下の式(4)を満足することを特徴とする請求項1乃至3のうちいずれか一つに記載のハニカム型メタル担体。
      0.5μm≦L≦20μm・・・・・(4)
  5.  請求項1乃至3のうちいずれか一つに記載のハニカム型メタル担体と、
     前記金属平箔及び前記金属波箔に担持される触媒層と、を有し、
     前記カエリの平均高さLは、前記触媒層の厚みよりも小さいか或いは、前記触媒層よりも所定量だけ大きく、
     前記所定量は10μm以下であることを特徴とする触媒コンバータ。
  6.  請求項4に記載のハニカム型メタル担体と、
     前記金属平箔及び前記金属波箔に担持される触媒層と、を有し、
     前記カエリの平均高さLは、前記触媒層の厚みよりも小さいことを特徴とする触媒コンバータ。
  7.  前記酸化皮膜は、厚みが0.05μm以上2μm以下であり、α-アルミナを少なくとも10質量%以上含むことを特徴とする請求項1乃至4のうちいずれか一つに記載のハニカム型メタル担体。
  8.  前記酸化皮膜は、厚みが0.05μm以上2μm以下であり、α-アルミナを少なくとも10質量%以上含むことを特徴とする請求項5又は6に記載の触媒コンバータ。
PCT/JP2022/020024 2021-09-17 2022-05-12 ハニカム型メタル担体及び触媒コンバータ WO2023042479A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280053604.5A CN117858760A (zh) 2021-09-17 2022-05-12 蜂窝型金属载体和催化转换器
EP22869630.8A EP4368286A4 (en) 2021-09-17 2022-05-12 HONEYCOMB TYPE METAL BRACKET AND CATALYTIC CONVERTER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021151781A JP7033689B1 (ja) 2021-09-17 2021-09-17 ハニカム型メタル担体及び触媒コンバータ
JP2021-151781 2021-09-17

Publications (1)

Publication Number Publication Date
WO2023042479A1 true WO2023042479A1 (ja) 2023-03-23

Family

ID=81213088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020024 WO2023042479A1 (ja) 2021-09-17 2022-05-12 ハニカム型メタル担体及び触媒コンバータ

Country Status (4)

Country Link
EP (1) EP4368286A4 (ja)
JP (1) JP7033689B1 (ja)
CN (1) CN117858760A (ja)
WO (1) WO2023042479A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7129535B1 (ja) 2021-11-05 2022-09-01 日鉄ケミカル&マテリアル株式会社 ハニカム型メタル担体及び触媒コンバータ

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257048A (ja) * 1998-03-12 1999-09-21 Nisshin Steel Co Ltd ディーゼルエンジン用金属製フィルタ
JP2005313083A (ja) 2004-04-28 2005-11-10 Calsonic Kansei Corp 金属製触媒担体
JP2005334757A (ja) * 2004-05-26 2005-12-08 Nippon Steel Corp ハニカム体及びその製造方法
JP2006142138A (ja) * 2004-11-16 2006-06-08 Calsonic Kansei Corp メタル担体
JP2007203256A (ja) 2006-02-03 2007-08-16 Nippon Steel Materials Co Ltd 排気ガス浄化用触媒コンバータ
JP2009178647A (ja) * 2008-01-30 2009-08-13 Cataler Corp 排ガス浄化用パンチングメタル担体触媒
JP4975969B2 (ja) 2002-08-16 2012-07-11 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング 少なくとも部分的に孔を開けられた薄板から成る金属ハニカム体
JP5199291B2 (ja) 2010-02-03 2013-05-15 新日鉄住金マテリアルズ株式会社 触媒担体
WO2018159556A1 (ja) * 2017-02-28 2018-09-07 新日鉄住金マテリアルズ株式会社 触媒担持用ハニカム基材、排ガス浄化用触媒コンバータ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1004992B (zh) * 1986-07-30 1989-08-16 北京工业大学 制备稀土金属复合氧化物/合金蜂窝体催化剂的方法
JP2830524B2 (ja) * 1991-07-30 1998-12-02 トヨタ自動車株式会社 内燃機関の触媒コンバータの触媒担体構造
JP3573708B2 (ja) * 2000-11-22 2004-10-06 株式会社オーデン ディーゼル微粒子除去装置
JP6396748B2 (ja) * 2014-10-02 2018-09-26 新日鉄住金マテリアルズ株式会社 触媒担持用基材、触媒担体、触媒担持用基材の製造方法及び触媒担体の製造方法
US10232362B2 (en) * 2016-01-08 2019-03-19 Nippon Steel & Sumikin Materials Co., Ltd. Honeycomb core for carrying catalyst and catalytic converter
JP6340101B1 (ja) * 2017-02-28 2018-06-06 新日鉄住金マテリアルズ株式会社 触媒担持用基材及び触媒担体
WO2019082553A1 (ja) * 2017-10-27 2019-05-02 株式会社キャタラー メタル基材を用いた排ガス浄化装置及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257048A (ja) * 1998-03-12 1999-09-21 Nisshin Steel Co Ltd ディーゼルエンジン用金属製フィルタ
JP4975969B2 (ja) 2002-08-16 2012-07-11 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング 少なくとも部分的に孔を開けられた薄板から成る金属ハニカム体
JP2005313083A (ja) 2004-04-28 2005-11-10 Calsonic Kansei Corp 金属製触媒担体
JP2005334757A (ja) * 2004-05-26 2005-12-08 Nippon Steel Corp ハニカム体及びその製造方法
JP2006142138A (ja) * 2004-11-16 2006-06-08 Calsonic Kansei Corp メタル担体
JP2007203256A (ja) 2006-02-03 2007-08-16 Nippon Steel Materials Co Ltd 排気ガス浄化用触媒コンバータ
JP2009178647A (ja) * 2008-01-30 2009-08-13 Cataler Corp 排ガス浄化用パンチングメタル担体触媒
JP5199291B2 (ja) 2010-02-03 2013-05-15 新日鉄住金マテリアルズ株式会社 触媒担体
WO2018159556A1 (ja) * 2017-02-28 2018-09-07 新日鉄住金マテリアルズ株式会社 触媒担持用ハニカム基材、排ガス浄化用触媒コンバータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4368286A4

Also Published As

Publication number Publication date
CN117858760A (zh) 2024-04-09
EP4368286A4 (en) 2024-06-26
EP4368286A1 (en) 2024-05-15
JP2023043990A (ja) 2023-03-30
JP7033689B1 (ja) 2022-03-10

Similar Documents

Publication Publication Date Title
JP4511396B2 (ja) ハニカム構造体及びその製造方法
EP3539658B1 (en) Metal substrate for catalytic converters
US7083860B2 (en) Metallic honeycomb body having at least partially perforated sheet-metal layers
US20050274012A1 (en) Method and tool for producing structured sheet metal layers, method for producing a metal honeycomb body, and catalyst carrier body
US20040013580A1 (en) Open filter body with improved flow properties
WO2023042479A1 (ja) ハニカム型メタル担体及び触媒コンバータ
JP4975969B2 (ja) 少なくとも部分的に孔を開けられた薄板から成る金属ハニカム体
JP4500456B2 (ja) 小さな体積の触媒コンバータを備えた燃焼機関
JP5958567B2 (ja) ハニカム構造体
WO2022137672A1 (ja) ハニカム型メタル担体、触媒コンバータ及びハニカム型メタル担体の製造方法
KR101060986B1 (ko) 분산 촉매 배열을 갖는 배기 가스 후처리용 캐리어체
JP7129535B1 (ja) ハニカム型メタル担体及び触媒コンバータ
JP5015017B2 (ja) 排気ガス浄化触媒用担体構造
WO2021251105A1 (ja) 触媒担持用基材及び触媒コンバータ
RU2413575C2 (ru) Способ изготовления кольцеобразного сотового элемента, а также кольцеобразный сотовый элемент
CN107735176B (zh) 催化剂负载用蜂窝体以及催化剂转换器
WO2010128570A1 (ja) 排気ガス浄化装置
JP2010284599A (ja) 排ガス浄化触媒用ハニカム担体
WO2023112964A1 (ja) 排気ガスの浄化に用いられる触媒担持用基材
JPH10309475A (ja) メタルハニカム構造体
JP2006110431A (ja) 浄化性能に優れた触媒担持用メタル担体
JP2009011983A (ja) 排気ガス浄化用の触媒担体
JPH1066880A (ja) 車両用触媒コンバータの金属触媒担体の製造方法
JPH0673321U (ja) メタル担体
JP2005155557A (ja) 排気ガス浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869630

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280053604.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022869630

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022869630

Country of ref document: EP

Effective date: 20240208

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024002040

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112024002040

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240131

NENP Non-entry into the national phase

Ref country code: DE