WO2023041087A1 - 一种电液伺服驱动装置及层析设备 - Google Patents

一种电液伺服驱动装置及层析设备 Download PDF

Info

Publication number
WO2023041087A1
WO2023041087A1 PCT/CN2022/120147 CN2022120147W WO2023041087A1 WO 2023041087 A1 WO2023041087 A1 WO 2023041087A1 CN 2022120147 W CN2022120147 W CN 2022120147W WO 2023041087 A1 WO2023041087 A1 WO 2023041087A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipeline
oil
valve
hydraulic
outlet
Prior art date
Application number
PCT/CN2022/120147
Other languages
English (en)
French (fr)
Inventor
周胜
李维林
Original Assignee
利穗科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 利穗科技(苏州)有限公司 filed Critical 利穗科技(苏州)有限公司
Publication of WO2023041087A1 publication Critical patent/WO2023041087A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/20Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the conditioning of the sorbent material
    • B01D15/206Packing or coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/01Locking-valves or other detent i.e. load-holding devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/024Pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/027Check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/028Shuttle valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure

Definitions

  • the invention relates to the technical field of biological chromatography purification equipment, in particular to an electro-hydraulic servo drive device and chromatography equipment.
  • the axial compression column is divided into two types: dynamic axial compression column and static axial compression column.
  • dynamic axial compression columns a certain pressure is always applied to the piston to continuously compress the packing; for static axial compression columns, pressure is only applied to the piston intermittently to compress the packing intermittently.
  • static axial compression columns both the dynamic axial compression column and the static axial compression column need to drive the oil cylinder through the driving mechanism to realize the action when the chromatographic filler is loaded and unloaded.
  • Most of the existing driving mechanisms are driven by pneumatic hydraulic pumps or motor screw drives.
  • the present invention provides an electro-hydraulic servo drive device and chromatography equipment, which can simultaneously meet the driving requirements of the dynamic axial compression column and the static axial compression column , with stable operation, can apply constant pressure to the medium, has the characteristics of high column efficiency and high separation, and at the same time, the electro-hydraulic servo motor runs forward and reverse to realize the up and down movement of the oil cylinder, without the need for a reversing valve.
  • an electro-hydraulic servo drive device which is used for chromatography equipment, including a servo drive mechanism, an oil pump, an oil cylinder and an oil tank, wherein the servo
  • the drive mechanism includes a servo driver and a servo motor.
  • the servo driver is connected to the servo motor through a line to control the positive and negative rotation of the servo motor.
  • the motor controls the direction of oil in and out.
  • the pneumatic hydraulic pump method it can provide a constant pressure for the hydraulic oil, and the operation is stable, which brings high column efficiency and high separation to the chromatography equipment.
  • the inlet and outlet a of the oil pump is connected to the inlet and outlet A of the oil cylinder through the first pipeline, the inlet and outlet b of the oil pump is connected to the inlet and outlet B of the oil cylinder through the second pipeline, and the first outlet of the oil tank is connected through the oil outlet pipeline second pipeline;
  • the servo motor rotates to control the oil pump to deliver the hydraulic oil in the oil tank and the rod chamber of the oil cylinder to the rodless chamber of the oil cylinder, so that the piston rod of the oil cylinder descends, driving the piston pressure in the chromatography equipment. filler;
  • the servo motor rotates in reverse to control the oil pump to deliver the hydraulic oil in the rodless cavity of the cylinder to the rod cavity of the cylinder, so that the piston rod of the cylinder is lifted, and the piston in the chromatography equipment is driven to separate from the packing; At the same time, excess hydraulic oil in the first pipeline returns to the oil tank through the oil return pipeline.
  • the electro-hydraulic servo drive device is used to drive the chromatography equipment to realize the positive and negative drive of the hydraulic oil to drive the piston rod of the oil cylinder. Compared with the pneumatic hydraulic pump drive, there is no need to use solenoid valves to realize reversing drive, and no need for speed control valves. Adjust the speed of the pressing column by directly controlling the electro-hydraulic servo drive device to adjust the speed,
  • the electro-hydraulic servo drive device can provide constant pressure and run smoothly, and can divide the column pressure of the chromatography equipment into multiple pressure steps to achieve higher column efficiency.
  • a counterbalancing valve is provided on the second pipeline between the oil cylinder and the oil outlet pipeline, and the A end of the counterbalancing valve and the B terminal The ends are respectively connected with the second pipeline, and the X oil inlet end of the counterbalance valve is connected to the first pipeline through the fourth pipeline.
  • the counterbalance valve is used to prevent the backflow of hydraulic oil, so as to ensure the stable pressure and smooth operation of the chromatography equipment; Both ends of the counterbalancing valve are connected in parallel with a sixth pipeline, and a check valve is also arranged on the sixth pipeline.
  • the first pipeline is provided with a second hydraulic lock
  • the A-end and B-end of the second hydraulic lock communicate with the first pipeline respectively
  • the X-end of the second hydraulic lock communicates with the oil pump through the third pipeline. It communicates with the second pipeline between the counterbalance valve.
  • the second hydraulic lock is used to prevent the backflow of hydraulic oil, thereby bringing the benefits of stable pressure and smooth operation to the chromatography equipment.
  • a first valve is provided on the oil outlet pipeline. The function of the first valve controls the on-off of the hydraulic oil in the oil tank and the second pipeline.
  • the pressure-maintaining oil circuit includes a pressure-maintaining pipeline, an air pump and a third valve, one end of the pressure-maintaining pipeline communicates with the second outlet of the fuel tank, and the other end communicates with the
  • the pneumatic pump and the third valve are sequentially arranged on the pressure maintaining pipeline, and the pneumatic pump is close to the fuel tank, and the third valve is close to the first pipeline; the second outlet B of the fuel tank passes through The pneumatic pump and the third valve are connected to the first pipeline to replenish hydraulic oil and output stable pressure.
  • the safety oil includes the first safety valve relief oil circuit and/or the second safety valve relief oil circuit and/or the pre-pressure relief oil circuit, wherein,
  • the first safety valve overflow oil circuit includes a first overflow valve and a first overflow pipeline, one end of the first overflow pipeline communicates with the oil return pipeline, and the other end is connected to the connection between the oil cylinder and the second hydraulic lock. and communicate with the first pipeline, the first overflow valve is arranged on the first overflow pipeline; the other end of the oil return pipeline communicates with the oil return port of the oil tank; the first safety valve When the overflow oil circuit is under pressure operation, the overflow valve discharges excess hydraulic oil, thus bringing the benefit of smooth operation to the chromatography equipment.
  • the second safety valve overflow oil circuit includes a second overflow valve and a second overflow pipeline, one end of the second overflow pipeline is connected to the first pipeline between the second hydraulic lock and the oil pump, and is connected to the first pipeline between the second hydraulic lock and the oil pump.
  • the first pipeline is connected, and the other end is connected to the second pipeline between the counterbalance valve and the oil pump, and communicated with the second pipeline, which is equivalent to being connected in parallel at both ends of the inlet and outlet a and the inlet and outlet b of the oil pump.
  • the second overflow valve is arranged on the second overflow pipeline; the overflow oil circuit of the second safety valve discharges excess hydraulic oil during the lifting operation, thereby bringing the benefit of smooth operation to the chromatography equipment.
  • the pre-pressure relief oil circuit includes a throttle valve, a solenoid valve and a pre-pressure relief pipeline.
  • One end of the pre-pressure relief pipeline is connected to the first pipeline between the oil cylinder and the second hydraulic lock, and is connected to the first pipeline.
  • the other end is connected to the oil return pipeline and communicated with the oil return pipeline.
  • the throttle valve and solenoid valve are sequentially arranged on the pre-pressure relief pipeline, and the throttle valve is close to the side of the first pipeline.
  • the above solenoid valve is near the oil return line side.
  • Pre-relief oil circuit when the pressure in the oil circuit is too large, the hydraulic oil is delivered to the oil tank through the throttle valve, solenoid valve and pre-pressure pipeline, so as to control the chromatography equipment when the piston is pressed down.
  • the pressure in the chromatography column meets the benefits of column pressure requirements.
  • it also includes a first hydraulic lock, the B end of the first hydraulic lock communicates with the first pipeline, the X end of the first hydraulic lock communicates with the second pipeline, and the A end of the first hydraulic lock communicates with the second pipeline.
  • the oil return line is connected. During the lifting process, part of the hydraulic oil flows back into the oil tank through the first hydraulic lock, and at the same time, through the hydraulic lock, in the pressing circuit, the hydraulic oil in the first pipeline is prevented from flowing back into the oil tank.
  • the B end of the oil cylinder enters the oil, and the A end of the oil cylinder returns the oil. Since the area of the rodless chamber of the oil cylinder is larger than the area of the rod chamber, the oil suction port of the oil pump will generate excess hydraulic oil, which can be The c-end of the oil pump returns to the oil tank, therefore, the c-end of the oil pump communicates with the oil return pipeline.
  • a fifth pipeline is provided between the inlet and outlet a of the oil pump and the inlet and outlet b of the oil pump, a fourth valve is arranged on the fifth pipeline, and the pressure of the oil suction port of the oil pump is output through the fourth valve .
  • a shuttle valve is used as a preferred fourth valve.
  • the fourth valve is provided with a pressure sensor for real-time monitoring of the pressure on the fifth pipeline, and the signal output end of the pressure sensor is connected to the signal receiving end of the servo driver.
  • a pressure sensor is provided on the fourth valve to monitor the pressure of the oil suction port of the pump, and then the collected pressure signal is transmitted to the servo motor driver, and the servo motor driver adjusts the servo motor.
  • first pipeline and/or the second pipeline are provided with pressure sensors for real-time monitoring of the pressure on the first pipeline and the second pipeline respectively. Monitoring the pressure ensures that the hydraulic pressure on the first line and the second line meets the requirements.
  • a chromatographic system includes the above-mentioned electro-hydraulic servo drive device, and also includes a chromatographic column and a mounting bracket.
  • the driving mechanism adopts the forward and reverse operation of the servo motor to realize the up and down movement of the oil cylinder without a reversing valve; it is equipped with a pressure relief device for switching the direction of movement, without switching jitter, stable operation, and can apply constant pressure to the medium to achieve high column efficiency and high efficiency. Separation.
  • the first safety valve overflow oil passage and/or the first safety valve overflow oil passage can realize constant pressure overflow and overcome medium swelling.
  • the present invention adopts servo drive to realize precise speed regulation.
  • the present invention is suitable for fillers of various particle sizes, and operating pressure-low pressure, medium pressure and high pressure chromatographic columns.
  • Fig. 1 is a system schematic diagram of Embodiment 1 of an electro-hydraulic servo pump driving device.
  • Fig. 2 is a schematic diagram of the working principle of the oil circuit in the first pressing process of the embodiment.
  • Fig. 3 is a schematic diagram of the working principle of the oil circuit in the lifting process of the first embodiment.
  • Fig. 4 is a system schematic diagram of Embodiment 2 of the electro-hydraulic servo pump driving device.
  • Fig. 5 is a system schematic diagram of the third embodiment of the electro-hydraulic servo pump driving device.
  • Fig. 6 is a schematic diagram of the working principle of the overflow oil passage of the first safety valve during the depressing process of the third embodiment.
  • Fig. 7 is a schematic diagram of the working principle of the overflow oil circuit and the pre-pressure relief oil circuit of the second safety valve during the lifting process of the third embodiment.
  • Fig. 8 is a system schematic diagram of the fourth embodiment of the electro-hydraulic servo pump driving device.
  • Fig. 9 is a schematic diagram of the system of the fifth embodiment of the electro-hydraulic servo pump driving device (pressing down process).
  • Fig. 10 is a system schematic diagram (lifting process) of the fifth embodiment of the electro-hydraulic servo pump driving device.
  • Fig. 11 is a system schematic diagram of Embodiment 6 of the electro-hydraulic servo pump driving device.
  • Fig. 12 is a system schematic diagram of Embodiment 7 of the driving device for the electro-hydraulic servo pump.
  • Fig. 13 is a schematic diagram of the working principle of the pressing process of the seventh embodiment.
  • Fig. 14 is a schematic diagram of the working principle of the lifting process of the seventh embodiment.
  • FIG. 1 is a simplified schematic diagram only illustrating the basic structure of the present invention in a schematic manner, so it only shows the components relevant to the present invention.
  • an electro-hydraulic servo pump drive device includes a servo drive mechanism 1, an oil cylinder 6 and an oil tank 7; the servo drive mechanism 1 includes a servo driver 11 and a servo motor 12, and the servo motor 12 is connected to the oil pump through a coupling 2 3.
  • the inlet and outlet a of the oil pump 3 is connected to the inlet and outlet A of the oil cylinder 6 through the first pipeline 4, and the inlet and outlet b of the oil pump 3 is connected to the inlet and outlet B of the oil cylinder 6 through the second pipeline 5.
  • the rod chamber is connected, and the inlet and outlet B are connected with the rod chamber.
  • the first outlet A of the oil tank 7 communicates with the second pipeline 5 through the oil outlet pipeline 27, and the oil outlet pipeline 27 is provided with a first valve 10 for controlling the on-off of the oil outlet pipeline 27.
  • the first valve 10 A one-way valve is used.
  • the first pipeline 4 is provided with a second hydraulic lock 8, the A end and the B end of the second hydraulic lock 8 communicate with the first pipeline 4 respectively, and the X end of the second hydraulic lock 8 passes through the third pipeline 29 It communicates with the second pipeline 5 between the oil pump 3 and the balance valve 9 .
  • the second hydraulic lock 8 is used to push the hydraulic oil through the pressure in the first pipeline 4 during the depressing process of the oil cylinder 6 so that the hydraulic oil flowing through the first pipeline 4 in the second hydraulic lock 8 can flow along the A-B direction , that is, the hydraulic oil enters from the A end and flows out from the B end to prevent the hydraulic oil from flowing back; during the lifting process of the oil cylinder 6, when the hydraulic oil in the third pipeline 29 enters the second hydraulic lock 8 from the X end, the first pipe
  • the hydraulic oil in the road 4 can flow along the B-A direction, that is, the hydraulic oil flows from the B end to the A end.
  • the function of the second hydraulic lock 8 is to prevent backflow.
  • a balance valve 9 is arranged on the second pipeline 5 between the oil cylinder 6 and the oil outlet pipeline 27, and the A end and the B end of the balance valve 9 communicate with the second pipeline 5 respectively, and the A end and the B end of the balance valve 9 communicate with the second pipeline 5 respectively.
  • the sixth pipe 35 is connected in parallel to the B end, and the sixth pipe 35 is provided with a one-way valve 34, and the X oil inlet end of the counterbalance valve 9 is connected to the first pipeline 4 through the fourth pipeline 31, and the counterbalance valve 9 is used for:
  • the A terminal and the B terminal in the counterbalance valve 9 communicate, and the hydraulic oil in the second pipeline 5
  • the hydraulic oil is along the A-B direction, that is, the hydraulic oil enters from the A end and flows out from the B end to prevent the hydraulic oil from flowing back; end disconnected, the hydraulic oil in the second pipeline 5 can only flow along the one-way valve 34 between the B end and the A end of the counterbalance valve 9 to prevent the hydraulic oil from flowing back.
  • the oil cylinder 6 performs a press-down operation, the servo drive mechanism 1 starts to work, and the servo drive mechanism 1 drives the oil pump 3, so that the oil tank 7
  • the hydraulic oil enters the cylinder 6 through the first valve 10, the second pipeline 5, the oil pump 3, the first pipeline 4, the second hydraulic lock 8 and the inlet and outlet A of the cylinder 6, and pushes the piston rod of the cylinder 6 downward. Movement, the piston rod is connected with the piston structure of the chromatographic equipment to realize the downward movement of the piston in the column tube of the chromatographic column, thereby completing the filling work of the chromatographic filler.
  • Part of the hydraulic oil in the first pipeline 4 flows into the counterbalance valve 9 through the X oil inlet port of the counterbalance valve 9 through the fourth pipeline 31, so that the A end and the B end of the counterbalance valve 9 are connected, and the second pipeline 5
  • the hydraulic oil in the cylinder is along the A-B direction, that is, the hydraulic oil enters from the A end and flows out from the B end.
  • the hydraulic oil in the rod cavity of the cylinder 6 enters the second pipeline 5 from the inlet and outlet B, and then passes through the second pipeline.
  • the road 5, the oil pump 3, the first pipeline 4, the second hydraulic lock 8 and the inlet and outlet A of the oil cylinder 6 enter the rodless chamber of the oil cylinder 6.
  • the oil cylinder 6 performs a lifting operation, and the servo motor 12 drives the oil pump 3, and the hydraulic oil is passed through the first pipeline 4 and the second hydraulic lock from the inlet and outlet A of the oil cylinder 6. 8.
  • the oil pump 3, the second pipeline 5, the one-way valve 34 of the counterbalance valve 9, and the inlet and outlet B of the oil cylinder 6 reach the oil cylinder 6, push the piston to move upward, and the filler is pumped out from the column of the chromatography device, and the process is completed. Unload packing.
  • part of the hydraulic oil in the second pipeline 5 enters the second hydraulic lock 8 from the X end of the second hydraulic lock 8 through the third pipeline 29, and keeps the communication in the second hydraulic lock 8 along the B-A direction; and the counterbalance valve No hydraulic oil enters the X oil inlet port of 9, and the A port and the B port in the inside of the counterbalancing valve 9 are disconnected, and the hydraulic oil in the second pipeline 5 can only follow the single channel between the B port and the A port of the counterbalancing valve 9. Flow to valve 34 and flow back to cylinder 6.
  • a pressure-maintaining oil circuit is provided, and the pressure-maintaining oil circuit includes a pressure-maintaining pipeline 26, a pneumatic pump 14 and a third valve 13, and one end of the pressure-maintaining pipeline 26 is connected to the The second outlet B of the oil tank 7 is connected, and the other end is connected to the first pipeline 4 between the oil cylinder 6 and the second hydraulic lock 8.
  • the pneumatic pump 14 and the third valve 13 are sequentially arranged on the pressure maintaining pipeline 26, and The pneumatic pump 14 is close to the side of the fuel tank 7 , and the third valve 13 is close to the side of the first pipeline 4 .
  • the arrows in Figure 4 indicate the flow direction of the oil circuit for supplementing the hydraulic oil.
  • the function of the pressure-holding oil circuit is to supplement the hydraulic oil.
  • the oil cylinder 6 performs a press-down operation.
  • the third valve 13 is controlled to open, and the pneumatic pump 14 pumps the hydraulic oil from the second outlet B of the oil tank 7, through the third valve 13,
  • the first pipeline 4 and the inlet and outlet A of the oil cylinder 6 enter the oil cylinder 6 to replenish hydraulic oil and push the piston to move downward to complete the filling work of the chromatographic filler.
  • the pressure-holding oil circuit can timely supplement the lack of hydraulic pressure caused by the drive of the servo motor 12 for the chromatography equipment, so that the cylinder 6 can meet the column pressure requirements during the pressing down process.
  • safety oil circuits such as the first safety valve overflow oil circuit, the second safety valve overflow oil circuit and the pre-pressure relief oil circuit, and the above-mentioned safety valve can be set in the system.
  • One, two or three types of oil circuits are set according to the needs of the system.
  • the function of the first safety valve overflow oil circuit when the hydraulic oil in the first pipeline 4 exceeds the threshold set by the first overflow valve 15, the excess hydraulic oil can flow back to the oil tank 7 through the first overflow valve 15 .
  • the first relief valve overflow oil circuit includes a first overflow valve 15 and a first overflow pipeline 36, one end of the first overflow pipeline 36 communicates with the oil return pipeline 18, and the other end is connected to the oil cylinder 6 and the second
  • the first overflow valve 15 is arranged on the first overflow pipeline 36; the oil return port of the oil tank 7 communicates with the oil return pipe One end of the pipeline 18 and the other end of the oil return pipeline 18 are connected to the first pipeline 4 after passing through the first overflow pipeline 36.
  • the first overflow valve 15 is arranged on the first overflow pipeline 36 for setting a safety threshold.
  • the function of the second safety valve overflow oil circuit when the hydraulic oil in the second pipeline 5 exceeds the threshold set by the second overflow valve 16, the excess hydraulic oil passes through the second overflow valve 16 and returns to the first In line 4.
  • the second safety valve overflow oil circuit includes a second overflow valve 16 and a second overflow pipeline 28, and one end of the second overflow pipeline 28 is connected to the first pipeline 4 between the second hydraulic lock 8 and the oil pump 3 and communicate with the first pipeline 4, the other end is connected to the second pipeline 5 between the counterbalance valve 9 and the oil pump 3, and communicates with the second pipeline 5, the second overflow pipeline 28 is equivalent to parallel
  • the second overflow valve 16 is arranged on the second overflow pipeline 28, and the second pipeline 5 and the first pipeline 4 pass through the second overflow pipeline 28, and returns the hydraulic oil exceeding the threshold to the first pipeline 4 through the second overflow valve 16.
  • the pre-relieving oil circuit includes a throttle valve 19, a solenoid valve 20 and a pre-relieving pipeline 32, and one end of the pre-relieving pipeline 32 is connected to the first pipeline 4 between the oil cylinder 6 and the second hydraulic lock 8 , and communicate with the first pipeline 4, the other end is connected to the oil return pipeline 18, and communicates with the oil return pipeline 18, the throttle valve 19 and the solenoid valve 20 are sequentially arranged on the pre-pressure relief pipeline 32, and
  • the throttle valve 19 is close to the side of the first pipeline 4, and the electromagnetic valve 20 is close to the side of the oil return pipeline 18; the first pipeline 4 and the oil return pipeline 18 are communicated through the pre-pressure relief pipeline 32, and by setting
  • the throttle valve 19 and the solenoid valve 20 on the pre-relief line 32 perform flow control.
  • the hydraulic oil When the hydraulic oil exceeds the threshold of the throttle valve 19, the hydraulic oil enters the pre-relieving oil circuit through the throttle valve 19, which is equivalent to the function of a switch; the role of the solenoid valve 20 is to control the on-off of the pre-relieving pipeline 32.
  • the arrows in the figure indicate the flow direction of the hydraulic oil.
  • the servo motor 12 Drive the oil pump 3 so that the hydraulic oil in the oil tank 7 enters the oil cylinder 6 through the first valve 10, the second pipeline 5, the oil pump 3, the first pipeline 4, the second hydraulic lock 8 and the inlet and outlet A of the oil cylinder 6
  • the first overflow valve 15 is opened, so that the first pipeline 4 passes through the first overflow pipeline 36 and
  • the oil return line 18 is connected, and the hydraulic oil flows into the oil tank 7 through the first overflow line 36, the oil return line 18, and the oil return port of the oil tank 7, so as to realize the adjustment and control of the pressure of the hydraulic oil, so that the chromatography equipment can run smoothly.
  • the relief oil passage of the second safety valve and the pre-pressure relief oil passage are closed or disconnected.
  • the arrow in the figure indicates the flow direction of the hydraulic oil.
  • the hydraulic oil passes through The second overflow valve 16 flows into the first pipeline 4 to realize the control and adjustment of the hydraulic oil, so that the chromatography equipment can run smoothly and the excess hydraulic oil can be recycled; the hydraulic oil then passes through the first pipeline 4 and the oil pump 3 , the second pipeline 5 , the counterbalance valve 9 and the inlet and outlet B of the oil cylinder 6 reach the oil cylinder 6 .
  • the relief oil passage and the pre-pressure relief oil passage of the first safety valve are in a closed state.
  • the chromatography system requires stepped pressure to press the column, so the pressure changes, and the pressure needs to be adjusted to achieve the required column pressure.
  • the pressure needs to be released. Therefore, when the hydraulic oil generates high pressure, the pressure of the hydraulic oil exceeds the threshold value of the throttle valve 19, the inlet and outlet of the throttle valve 19 are connected, and the hydraulic oil flows back to the oil tank 7 through the throttle valve 19 and the solenoid valve 20 to achieve pressure relief. Purpose. Therefore, a pre-pressure relief oil circuit is added between the first pipeline 4 and the oil return pipeline 18 to realize pressure relief, thereby adjusting the high pressure and low pressure of the chromatography equipment.
  • a first hydraulic lock 21 is provided, and the B end of the first hydraulic lock 21 communicates with the first pipeline 4.
  • the X end of the first hydraulic lock 21 communicates with the second pipeline 5 , and the A end of the first hydraulic lock 21 communicates with the oil return pipeline 18 .
  • the arrows in the figures indicate the flow direction of the hydraulic oil.
  • the c-end of the oil pump 3 communicates with the oil return pipeline 18 through a pipeline.
  • a fifth pipeline 33 is provided between the inlet and outlet a of the oil pump 3 and the inlet and outlet b of the oil pump 3 , the fifth pipeline 33 is provided with a fourth valve 22 , and the pressure of the oil suction port of the oil pump 3 is output through the fourth valve 22 .
  • the fourth valve 22 is a shuttle valve, on which a first pressure sensor 23 is arranged, and the signal output end of the sensor of the first pressure sensor 23 is connected to the signal input end of the servo driver 11 .
  • the P1 end of the fourth valve 22 communicates with the inlet and outlet a of the oil pump 3 to output a pressure signal, and the first pressure sensor 23 collects the pressure signal and feeds back the pressure signal to the servo driver 11 .
  • the P2 end of the fourth valve 22 is connected with the inlet and outlet b of the oil pump 3 to output a pressure signal, and the first pressure sensor 23 collects the pressure signal and feeds the pressure signal back to the servo driver 11; The pressure signal is transmitted to the servo driver 11 , and the servo driver 11 is used to adjust the servo motor 12 .
  • the first pipeline 4 and the second pipeline 5 are respectively provided with a second pressure sensor 24 and a third pressure sensor 25 to monitor the first pipeline 4 and the hydraulic pressure on the second line 5.
  • the technical solution of this embodiment includes all the structures of Embodiment 1 to Embodiment 7 at the same time, and the working principle refers to Embodiment 1 to Embodiment 7, and will not be repeated here.
  • the arrows in the figure indicate hydraulic oil direction of flow.
  • a chromatographic system includes the above-mentioned electro-hydraulic servo drive device, and also includes a chromatographic column and a piston connected with the electro-hydraulic servo drive device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

公开了一种电液伺服驱动装置,包括伺服驱动机构(1)、油泵(3)、油缸(6)及油箱(7),伺服驱动机构(1)的伺服电机(12)连接油泵(3),通过伺服电机正反转控制油泵(3)的进出油方向;油泵进出口a通过第一管路(4)连接油缸的进出口A,油泵进出口b通过第二管路(5)连接油缸进出口B,油箱第一出口A通过出油管路(27)连通第二管路(5);还公开了使用该电液伺服驱动装置的层析设备;当层析设备下压保压时,伺服电机(12)转动控制油泵(3)将油箱(7)以及油缸(6)的有杆腔中的液压油输送至油缸(6)的无杆腔,使油缸(6)的活塞杆下降,驱动层析设备中的活塞压填料;当层析设备提升时,伺服电机(12)反向转动使油缸(6)的活塞杆提升,驱动层析设备中的活塞脱离填料;具有运行平稳、高柱效和高分离度的特点。

Description

一种电液伺服驱动装置及层析设备 技术领域
本发明涉及生物层析纯化设备技术领域,特别是涉及一种电液伺服驱动装置及层析设备。
背景技术
生物层析纯化设备根据在分离过程中是否给活塞施加持续的压力,轴向压缩柱又分为两种类型:动态轴向压缩柱和静态轴向压缩柱。对于动态轴向压缩柱,始终给活塞施加一定的压力,使之持续压缩填料;对于静态轴向压缩柱,只是间歇地给活塞施加压力,使之间歇地压缩填料。动态轴向压缩柱和静态轴向压缩柱在色谱填料装填和卸载时,均需要通过驱动机构驱动油缸实现动作。现有驱动机构多采用气动液压泵驱动或者电机丝杆驱动,气动液压泵的缺点在于:不能平稳压柱以及不能控制压缩速度;压柱过程中存在压力抖动;电机丝杆驱动装填不能满足床层的连续性、均匀性、稳定性和紧密性的要求,尤其是工业生产规模的大直径柱的装填,存在相当大的困难。
因此,亟需提供一种高柱效和高分离度的层析设备驱动装置。
发明内容
本发明所要解决的技术问题是:为了克服现有技术中的不足,本发明提供一种电液伺服驱动装置及层析设备,能够同时满足动态轴向压缩柱和静态轴向压缩柱的驱动要求,具有运行平稳,可以给介质施加恒定的压力,具有高柱效和高分离度的特点,同时电液伺服电机正反运行实现油缸的上下运动,无需换向阀。
本发明解决其技术问题所要采用的技术方案是:一种电液伺服驱动装置, 所述电液伺服驱动装置用于层析设备,包括伺服驱动机构、油泵、油缸以及油箱,其中,所述伺服驱动机构包括伺服驱动器和伺服电机,伺服驱动器通过线路与伺服电机连接,控制伺服电机的正反转,伺服电机通过联轴器连接油泵,通过伺服电机正反转控制油泵的进出油方向;通过伺服电机控制进出油方向,与采用气动液压泵方式相比能够给液压油提供恒定的压力,运行平稳从而对层析设备带来高柱效和高分离度。
所述油泵的进出口a通过第一管路连接油缸的进出口A,所述油泵的进出口b通过第二管路连接油缸的进出口B,所述油箱的第一出口通过出油管路连通第二管路;
当层析设备下压保压时,伺服电机转动控制油泵将油箱以及油缸的有杆腔中的液压油输送至油缸的无杆腔,使油缸的活塞杆下降,驱动层析设备中的活塞压填料;
当层析设备提升时,伺服电机反向转动控制油泵将油缸的无杆腔中的液压油输送至油缸的有杆腔内,使油缸的活塞杆提升,驱动层析设备中的活塞脱离填料;同时,第一管路中多余的液压油通过回油管路回流至油箱内。
通过伺服驱动机构的正反转运行实现油缸的活塞杆上下运动的切换,从而实现层析设备中填料的装填。
采用电液伺服驱动装置驱动层析设备的电液伺服驱动装置实现液压油的正反驱动油缸的活塞杆,与气动液压泵驱动相比,无需采用电磁阀实现换向驱动,同时无需调速阀调整压柱速度,通过直接控制电液伺服驱动装置来调速,
电液伺服驱动装置具有提供恒定的压力,运行平稳,可对层析设备的压柱压力分成多个压力阶梯完成,实现更高柱效。
作为进一步的方案,在层析柱的下压和提升过程中需要保证其稳定性,因 此,所述油缸与出油管路之间的第二管路上设置有抗衡阀,抗衡阀的A端和B端分别与第二管路连通,抗衡阀的X进油端通过第四管路连通至第一管路,抗衡阀用于防止液压油回流,从而保证层析设备压力稳定,平稳运行;所述抗衡阀的两端并联第六管路,且第六管路上还设有单向阀。
作为进一步的方案,所述第一管路上设置有第二液压锁,第二液压锁的A端和B端分别与第一管路连通,第二液压锁的X端通过第三管路与油泵和抗衡阀之间的第二管路连通。第二液压锁用于防止液压油回流,从而对层析设备带来压力稳定,平稳运行的好处。
进一步,所述出油管路上设有第一阀门。第一阀门的作用控制油箱中的液压油与第二管路的通断。
作为进一步的方案,还包括保压油路,所述保压油路包括保压管路、气动泵以及第三阀门,所述保压管路一端与油箱的第二出口连通,另一端连通至油泵与第二液压锁之间的第一管路上,气动泵和第三阀门依次设置在保压管路上,且气动泵靠近油箱,第三阀门靠近第一管路;油箱的第二出口B通过气动泵以及第三阀门连通第一管路补充液压油,输出稳定的压力。
作为进一步的方案,当第一管路或者第二管路中的液压油超出阈值,需要排出,控制压力,因此需要通过溢流阀排出多余的液压油,还包括安全油路,所述安全油路包括第一安全阀溢流油路和/或第二安全阀溢流油路和/或预泄压油路,其中,
所述第一安全阀溢流油路包括第一溢流阀和第一溢流管路,所述第一溢流管路一端与回油管路连通,另一端连接至油缸与第二液压锁之间的第一管路上,且与第一管路连通,所述第一溢流阀设置在第一溢流管路上;回油管路另一端与所述油箱的回油口连通;第一安全阀溢流油路在下压运行中,溢流阀排出多 余的液压油,从而对层析设备带来平稳运行好处。
所述第二安全阀溢流油路包括第二溢流阀和第二溢流管路,所述第二溢流路一端连接至第二液压锁与油泵之间的第一管路上,且与第一管路连通,另一端连接至抗衡阀与油泵之间的第二管路上,且与第二管路连通,相当于并联在油泵的进出口a和进出口b的两端,所述第二溢流阀设置在第二溢流管路上;第二安全阀溢流油路在提升运行中,排出多余的液压油,从而对层析设备带来平稳运行好处。
所述预泄压油路包括节流阀、电磁阀和预泄压管路,所述预泄压管路一端连接至油缸与第二液压锁之间的第一管路上,且与第一管路连通,另一端连接至回油管路上,并与回油管路连通,所述节流阀和电磁阀依次设置在预泄压管路上,且所述节流阀靠近第一管路一侧,所述电磁阀靠近回油管路一侧。预泄压油路,当油路中的压力过大时,通过节流阀、电磁阀和预泄压管路,将液压油输送至油箱,从而对层析设备带来控制活塞下压时在层析柱内的压力,满足柱压要求的好处。
作为进一步的方案,还包括第一液压锁,所述第一液压锁的B端与第一管路连通,第一液压锁的X端与第二管路连通,第一液压锁的A端与回油管路连通。在提升过程中部分液压油通过第一液压锁回流到油箱中,同时,通过液压锁,在下压回路中,防止第一管路中的液压油回流到油箱中。
作为进一步的方案,在油缸提升过程中,油缸的B端进油,油缸的A端回油,由于油缸的无杆腔面积大于有杆腔面积,油泵的吸油口会产生多余的液压油,可以通过油泵的c端回油箱,因此,所述油泵的c端与回油管路连通。
作为进一步的方案,所述油泵的进出口a和油泵的进出口b之间设有第五管路,所述第五管路上设有第四阀门,且通过第四阀门输出油泵吸油口的压力。 作为优选第四阀门采用梭阀。
作为进一步的方案,所述第四阀门上设置有压力传感器,用于实时监测第五管路上的压力,压力传感器的信号输出端连接伺服驱动器的信号接收端。通过第四阀门上设置有压力传感器监测泵吸油口的压力,然后将采集到的压力信号传递给伺服电机驱动器,伺服电机驱动器对伺服电机进行调节。
进一步,所述第一管路和/或第二管路上设有压力传感器,分别用于实时监测第一管路和第二管路上的压力。监测压力确保第一管路和第二管路上的液压达到要求。
一种层析系统,包括上述的电液伺服驱动装置,还包括层析柱以及安装支架。
本发明的有益效果是:
(1)驱动机构采用伺服电机正反转运行实现油缸的上下运动,无需换向阀;带切换运动方向泄压装置,无切换抖动,运行平稳,可以给介质施加恒定的压力,实现高柱效和高分离度。
(2)设置有第一安全阀溢流油路和/或者第一安全阀溢流油路可以实现恒压溢流,可以克服介质溶胀。
(3)本发明采用伺服驱动可以实现精确调速。
(4)本发明适合于各种粒径的填料,运行压力-低压、中压和高压的层析柱。
附图说明
下面结合附图和实施例对本发明作进一步说明。
图1是电液伺服泵驱动装置实施例一的系统原理图。
图2是实施例一下压过程的油路的工作原理示意图。
图3是实施例一抬升过程的油路的工作原理示意图。
图4是电液伺服泵驱动装置实施例二的系统原理图。
图5是电液伺服泵驱动装置实施例三的系统原理图。
图6是实施例三下压过程中第一安全阀溢流油路的工作原理示意图。
图7是实施例三抬升过程中第二安全阀溢流油路和预泄压油路的工作原理示意图。
图8是电液伺服泵驱动装置实施例四的系统原理图。
图9是电液伺服泵驱动装置实施例五的系统原理图(下压过程)。
图10是电液伺服泵驱动装置实施例五的系统原理图(抬升过程)。
图11是电液伺服泵驱动装置实施例六的系统原理图。
图12是电液伺服泵驱动装置实施例七的系统原理图。
图13是实施例七下压过程的工作原理示意图。
图14是实施例七抬升过程的工作原理示意图。
图中:1、伺服驱动机构,2、联轴器,3、油泵,4、第一管路,5、第二管路,6、油缸,7、油箱,8、第二液压锁,9、抗衡阀,10、第一阀门,11、伺服驱动器,12、伺服电机,13、第三阀门,14、气动泵,15、第一溢流阀,16、第二溢流阀,18、回油管路,19、节流阀,20、电磁阀,21、第一液压锁,22、第四阀门,23、第一压力传感器,24、第二压力传感器,25、第三压力传感器,26、保压管路,27、出油管路,28、第二溢流管路,29、第三管路,31、第四管路,32、预泄压管路,33、第五管路,34、单向阀,35、第六管路,36、第一溢流管路。
具体实施方式
现在结合附图对本发明作详细的说明。此图为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
实施例一:
如图1所示,一种电液伺服泵驱动装置,包括伺服驱动机构1、油缸6以及油箱7;伺服驱动机构1包括伺服驱动器11和伺服电机12,伺服电机12通过联轴器2连接油泵3,所述的油泵3的进出口a通过第一管路4连接油缸6进出口A,油泵3的进出口b通过第二管路5连通油缸6进出口B,其中,进出口A与无杆腔连通,进出口B与有杆腔连通。所述油箱7的第一出口A通过出油管路27连通第二管路5,且出油管路27上设有用于控制出油管路27通断的第一阀门10,作为优选,第一阀门10采用单向阀。
所述第一管路4上设置有第二液压锁8,第二液压锁8的A端和B端分别与第一管路4连通,第二液压锁8的X端通过第三管路29与油泵3和抗衡阀9之间的第二管路5连通。第二液压锁8用于在油缸6下压过程中,第一管路4中的压力推动液压油使得第二液压锁8中的流经第一管路4的液压油能沿着A-B方向流动,即液压油由A端进从B端流出,防止液压油回流;在油缸6提升过程中,第三管路29中的液压油从X端进入到第二液压锁8中时,第一管路4中的液压油就能沿着B-A方向流动,即液压油由B端进从A端流出。第二液压锁8的作用是防止回流,当由A端流向B端时,只需要有足够的液压即可使A-B向连通,在下压过程中为A-B向连通,当提升过程中是需要B端流向A端的,这时需要通过X端口的液压油推动,实现B-A方向连通,X端相当于B-A方向连通的开关。
所述油缸6与出油管路27之间的第二管路5上设置有抗衡阀9,抗衡阀9的A端和B端分别与第二管路5连通,并且抗衡阀9的A端和B端上并联第六管35,第六管路35上设有单向阀34,抗衡阀9的X进油端通过第四管路31连通至第一管路4,抗衡阀9用于:在油缸6下压的过程中,当第四管路31中的 液压油从X进油端进入抗衡阀9内时,抗衡阀9内的A端和B端连通,第二管路5中的液压油沿着A-B方向,即液压油由A端进从B端流出,防止液压油回流;当第四管路31中无液压油从X进油端进入,抗衡阀9内部中A端与B端断开,第二管路5中的液压油只能沿着抗衡阀9中B端与A端之间的单向阀34流动,防止液压油回流。
如图2所示,当填料装填入层析设备的柱筒内后需要下压时,油缸6实行下压操作,伺服驱动机构1开始工作,伺服驱动机构1驱动油泵3,使得油箱7中的液压油通过第一阀门10、第二管路5、油泵3、第一管路4、第二液压锁8以及油缸6的进出口A,进入到油缸6,推动油缸6的活塞杆向下运动,活塞杆与层析设备活塞结构连接,实现活塞在层析柱的柱管中向下运动,从而完成色谱填料的装填工作。
第一管路4中的部分液压油通过第四管路31经抗衡阀9的X进油端流入到抗衡阀9中,使抗衡阀9内的A端和B端连通,第二管路5中的液压油沿着A-B方向,即液压油由A端进从B端流出,此时,油缸6有杆腔内的液压油从进出口B进入第二管路5,然后再经过第二管路5、油泵3、第一管路4、第二液压锁8以及油缸6的进出口A,进入到油缸6的无杆腔内。
如图3所示,分离工作完成后,需要卸载填料时,油缸6实行提升操作,伺服电机12驱动油泵3,将液压油从油缸6的进出口A经过第一管路4、第二液压锁8、油泵3、第二管路5、抗衡阀9的单向阀34以及油缸6的进出口B到达油缸6,推动活塞向上运动,填料从层析装置的柱筒内泵出,即可完成卸载填料。
此时,第二管路5中部分液压油经第三管路29由第二液压锁8的X端进入第二液压锁8内,保持第二液压锁8内沿B-A方向连通;而抗衡阀9的X进油 端无液压油进入,抗衡阀9内部中A端与B端断开,第二管路5中的液压油只能沿着抗衡阀9中B端与A端之间的单向阀34流动,流回到油缸6内。
图2和图3中箭头表示液压油的流动方向。
实施例二:
如图4所示,在上述实施例一的基础上设置有保压油路,保压油路包括保压管路26、气动泵14以及第三阀门13,所述保压管路26一端与油箱7的第二出口B连通,另一端连通至油缸6与第二液压锁8之间的第一管路4上,气动泵14和第三阀门13依次设置在保压管路26上,且气动泵14靠近油箱7一侧,第三阀门13靠近第一管路4一侧。
图4中箭头表示补充液压油的油路流动方向示意图,保压油路的作用是补充液压油,当填料装填入层析设备的柱筒内后需要下压时,油缸6实行下压操作,在下压过程中,当第一管路4中压力过低,此时,控制第三阀门13打开,气动泵14将液压油从油箱7的第二出口B泵出,通过第三阀门13、第一管路4以及油缸6的进出口A,进入到油缸6,补充液压油,推动活塞向下运动,完成色谱填料的装填工作。保压油路对层析设备能够及时补充伺服电机12驱动带来的液压的不足,使得油缸6下压过程中满足柱压要求。
实施例三:
如图5所示,在上述实施例一的基础上设置有第一安全阀溢流油路、第二安全阀溢流油路和预泄压油路等安全油路,系统中可以设置上述安全油路的一种、两种或三种,根据系统的需要进行设置。
第一安全阀溢流油路的作用:当第一管路4中的液压油超出第一溢流阀15所设的阈值时,多余的液压油能够通过第一溢流阀15回流至油箱7。第一安全阀溢流油路包括第一溢流阀15和第一溢流管路36,所述第一溢流管路36一端 与回油管路18连通,另一端连接至油缸6与第二液压锁8之间的第一管路4上,且与第一管路4连通,所述第一溢流阀15设置在第一溢流管路36上;油箱7的回油口连通回油管路18一端,回油管路18另一端经过第一溢流管路36后连通第一管路4,第一溢流阀15设置在第一溢流管路36上,用于设置安全阈值。
第二安全阀溢流油路的作用:当第二管路5中的液压油超出第二溢流阀16所设的阈值时,多余的液压油经过第二溢流阀16,回流至第一管路4中。第二安全阀溢流油路包括第二溢流阀16和第二溢流管路28,第二溢流管路28一端连接至第二液压锁8与油泵3之间的第一管路4上,且与第一管路4连通,另一端连接至抗衡阀9与油泵3之间的第二管路5上,且与第二管路5连通,第二溢流管路28相当于并联在油泵3的进出口a和进出口b的两端,第二溢流阀16设置在第二溢流管路28上,第二管路5与第一管路4通过第二溢流管路28连通,并通过第二溢流阀16将超出阈值的液压油回流到第一管路4上。
预泄压油路的作用:在油缸6下压的过程中,当第一管路4中的液压油产生的压力超出节流阀19的阈值时,部分液压油会经过节流阀19以及电磁阀20回流到油箱7。预泄压油路包括节流阀19、电磁阀20和预泄压管路32,所述预泄压管路32一端连接至油缸6与第二液压锁8之间的第一管路4上,且与第一管路4连通,另一端连接至回油管路18上,并与回油管路18连通,所述节流阀19和电磁阀20依次设置在预泄压管路32上,且所述节流阀19靠近第一管路4一侧,所述电磁阀20靠近回油管路18一侧;第一管路4和回油管路18通过预泄压管路32连通,并且通过设置在预泄压管路32上的节流阀19和电磁阀20进行流量控制。当液压油超出节流阀19的阈值时,液压油经过节流阀19进入到预泄压油路,相当于开关的作用;电磁阀20的作用是控制预泄压管路32的通断。
如图6所示,图中箭头表示液压油的流动方向,当填料装填入层析设备的柱筒内后需要下压时,油缸6实行下压操作,伺服驱动机构1开始工作,伺服电机12驱动油泵3,使得油箱7中的液压油通过第一阀门10、第二管路5、油泵3、第一管路4、第二液压锁8以及油缸6的进出口A,进入到油缸6的无杆腔,当第一管路4中的液压油过多时超出第一溢流阀15的阈值,第一溢流阀15打开,使第一管路4通过第一溢流管路36与回油管路18连通,液压油通过第一溢流管路36、回油管路18、油箱7的回油口流入到油箱7,实现液压油压力的调节和控制,从而使层析设备平稳运行。在这个过程中,第二安全阀溢流油路和预泄压油路处于关闭状态或者处于断开。
如图7所示,图中箭头表示液压油的流动方向,分离工作完成后,需要卸载填料时,油缸6实行提升操作,伺服电机12驱动油泵3,将液压油从油缸6的进出口A经过第一管路4、油泵3、第二管路5、抗衡阀9以及油缸6的进出口B到达油缸6,推动活塞向上运动,当第二管路5中的液压油过多时,液压油通过第二溢流阀16流入到第一管路4,实现液压油的控制和调节,从而可以使层析设备平稳运行以及使多余液压油循环利用;液压油再通过第一管路4、油泵3、第二管路5、抗衡阀9以及油缸6的进出口B到达油缸6。在这个过程中,第一安全阀溢流油路和预泄压油路处于关闭状态。
层析系统是需要阶梯压力压柱,因此压力的是变化的,需要调节压力达到所需柱压,当高压转变为低压时就需要泄压。因此,当液压油产生高压时,液压油的压力超出节流阀19的阈值,节流阀19的进出口连通,液压油经过节流阀19以及电磁阀20回流至油箱7,达到泄压的目的。因此,在第一管路4与回油管路18之间增加预泄压油路实现泄压,从而调节层析设备的高压与低压。
实施例四:
如图8所示,图中箭头表示液压油的流动方向,在上述实施例一的基础上设置有第一液压锁21,所述第一液压锁21的B端与第一管路4连通,第一液压锁21的X端与第二管路5连通,第一液压锁21的A端与回油管路18连通。
在油缸6提升过程中,第二管路5中的液压油达到一定的量时,液压油经第一液压锁21的X端进入第一液压锁21,此时第一液压锁21沿B-A方向连通,即第一管路4中的液压油经过第一液压锁21的B端进入,从第一液压锁21的A端流出,回流至油箱7。
实施例五:
如图9和图10所示,图中箭头表示液压油的流动方向,在上述实施例一的基础上,油泵3的c端通过管路与回油管路18连通。油泵3的进出口a和油泵3的进出口b之间设有第五管路33,第五管路33上设有第四阀门22,且通过第四阀门22输出油泵3吸油口的压力。所述的第四阀门22采用梭阀,梭阀上设置有第一压力传感器23,第一压力传感器23的传感器的信号输出端连接伺服驱动器11的信号输入端。
如图9所示,油缸6下压过程中,第四阀门22的P1端与油泵3的进出口a连通输出压力信号,第一压力传感器23采集压力信号,并将压力信号反馈给伺服驱动器11。
如图10所示,油缸6提升过程中,第四阀门22的P2端与油泵3的进出口b连通输出压力信号,第一压力传感器23采集压力信号,并将压力信号反馈给伺服驱动器11;压力信号传输给伺服驱动器11,伺服驱动器11用来调节伺服电机12。
实施例六:
如图11所示,在上述实施例一的基础上,所述的第一管路4和第二管路5 上分别设置有第二压力传感器24和第三压力传感器25,监测第一管路4和第二管路5上的液压。
实施例七:
如图12-图14所示,本实施例的技术方案同时包括了实施例一至实施例七的所有结构,工作原理参照实施例一至实施例七,此处不再赘述,图中箭头表示液压油的流动方向。
一种层析系统,包括上述的电液伺服驱动装置,还包括层析柱以及与电液伺服驱动装置相连接的活塞。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关的工作人员完全可以在不偏离本发明的范围内,进行多样的变更以及修改。本项发明的技术范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (12)

  1. 一种电液伺服驱动装置,其特征在于:所述电液伺服驱动装置用于层析设备,包括伺服驱动机构、油泵、油缸以及油箱,其中,所述伺服驱动机构包括伺服驱动器和伺服电机,伺服驱动器通过线路与伺服电机连接,控制伺服电机的正反转,伺服电机通过联轴器连接油泵,通过伺服电机正反转控制油泵的进出油方向;
    所述油泵的进出口a通过第一管路连接油缸的进出口A,所述油泵的进出口b通过第二管路连接油缸的进出口B,所述油箱的第一出口A通过出油管路连通第二管路;
    当层析设备下压保压时,伺服电机转动控制油泵将油箱以及油缸的有杆腔中的液压油输送至油缸的无杆腔,使油缸的活塞杆下降,驱动层析设备中的活塞压填料;
    当层析设备提升时,伺服电机反向转动控制油泵将油缸的无杆腔中的液压油输送至油缸的有杆腔内,使油缸的活塞杆提升,驱动层析设备中的活塞脱离填料。
  2. 如权利要求1所述的电液伺服驱动装置,其特征在于:所述油缸与出油管路之间的第二管路上设置有抗衡阀,抗衡阀的A端和B端分别与第二管路连通,抗衡阀的X进油端通过第四管路连通至第一管路,所述抗衡阀的两端并联第六管路,且第六管路上还设有单向阀。
  3. 如权利要求1所述的电液伺服驱动装置,其特征在于:所述第一管路上设置有第二液压锁,第二液压锁的A端和B端分别与第一管路连通,第二液压锁的X端通过第三管路与油泵和抗衡阀之间的第二管路连通。
  4. 如权利要求1所述的电液伺服驱动装置,其特征在于:所述出油管路上设有用于控制液压油单向流出的第一阀门。
  5. 如权利要求1-4任一项所述的电液伺服驱动装置,其特征在于:还包括保压油路,所述保压油路包括保压管路、气动泵以及第三阀门,所述保压管路一端与油箱的第二出口B连通,另一端连通至油泵与第二液压锁之间的第一管路上,气动泵和第三阀门依次设置在保压管路上,且气动泵靠近油箱一侧,第三阀门靠近第一管路一侧。
  6. 如权利要1所述的电液伺服驱动装置,其特征在于:还包括安全油路,所述安全油路包括第一安全阀溢流油路和/或第二安全阀溢流油路和/或预泄压油路,其中,
    所述第一安全阀溢流油路包括第一溢流阀和第一溢流管路,所述第一溢流管路一端与回油管路连通,另一端连接至油缸与第二液压锁之间的第一管路上,且与第一管路连通,所述第一溢流阀设置在第一溢流管路上;回油管路另一端与所述油箱的回油口连通;
    所述第二安全阀溢流油路包括第二溢流阀和第二溢流管路,所述第二溢流路一端连接至第二液压锁与油泵之间的第一管路上,且与第一管路连通,另一端连接至抗衡阀与油泵之间的第二管路上,且与第二管路连通,所述第二溢流阀设置在第二溢流管路上;
    所述预泄压油路包括节流阀、电磁阀和预泄压管路,所述预泄压管路一端连接至油缸与第二液压锁之间的第一管路上,且与第一管路连通,另一端连接至回油管路上,并与回油管路连通,所述节流阀和电磁阀依次设置在预泄压管路上,且所述节流阀靠近第一管路一侧,所述电磁阀靠近回油管路一侧。
  7. 如权利要1所述的电液伺服驱动装置,其特征在于:还包括第一液压锁,所述第一液压锁的B端与第一管路连通,第一液压锁的X端与第二管路连通,第一液压锁的A端与回油管路连通。
  8. 如权利要1所述的电液伺服驱动装置,其特征在于:所述油泵的c端通过管路与回油管路连通。
  9. 如权利要1所述的电液伺服驱动装置,其特征在于:所述油泵的进出口a和油泵的进出口b之间设有第五管路,所述第五管路上设有第四阀门,且通过第四阀门输出油泵的进出口a或进出口b液压信号。
  10. 如权利要9所述的电液伺服驱动装置,其特征在于:所述第四阀门上设置有压力传感器,用于实时采集第四阀门输出的油泵进出口a或进出口b液压信号,压力传感器的信号输出端连接伺服驱动器的信号接收端。
  11. 如权利要1所述的电液伺服驱动装置,其特征在于:所述第一管路和/或第二管路上设有压力传感器,分别用于实时监测第一管路和第二管路上的压力。
  12. 一种层析系统,其特征在于:包括如权利要求1-11任一项所述的电液伺服驱动装置,还包括层析柱以及与电液伺服驱动装置相连接的活塞。
PCT/CN2022/120147 2021-09-16 2022-09-21 一种电液伺服驱动装置及层析设备 WO2023041087A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111085860.6A CN113915177B (zh) 2021-09-16 2021-09-16 一种电液伺服驱动装置及层析设备
CN202111085860.6 2021-09-16

Publications (1)

Publication Number Publication Date
WO2023041087A1 true WO2023041087A1 (zh) 2023-03-23

Family

ID=79235086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120147 WO2023041087A1 (zh) 2021-09-16 2022-09-21 一种电液伺服驱动装置及层析设备

Country Status (2)

Country Link
CN (1) CN113915177B (zh)
WO (1) WO2023041087A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113915177B (zh) * 2021-09-16 2024-05-14 利穗科技(苏州)有限公司 一种电液伺服驱动装置及层析设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325959A (ja) * 2004-05-17 2005-11-24 Sumitomo Heavy Industries Techno-Fort Co Ltd 電気油圧アクチュエータ
CN101822914A (zh) * 2010-04-23 2010-09-08 聊城万合工业制造有限公司 高效液相制备轴向加压层析柱装置
US20140033696A1 (en) * 2012-08-01 2014-02-06 Sauer-Danfoss Gmbh & Co. Ohg Control device for hydrostatic drives
CN103691149A (zh) * 2014-01-07 2014-04-02 利穗科技(苏州)有限公司 一种新型精确控制的dac动态轴向压缩层析柱系统
CN113915177A (zh) * 2021-09-16 2022-01-11 利穗科技(苏州)有限公司 一种电液伺服驱动装置及层析设备

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU832140A1 (ru) * 1978-12-18 1981-05-23 Специальное Конструкторское Бюро Анэстонской Ccp Устройство дл управлени жидкостнымХРОМАТОгРАфОМ
JP3678507B2 (ja) * 1996-08-09 2005-08-03 株式会社タダノ 増圧装置
US5897781A (en) * 1997-06-06 1999-04-27 Waters Investments Limited Active pump phasing to enhance chromatographic reproducibility
US6299767B1 (en) * 1999-10-29 2001-10-09 Waters Investments Limited High pressure capillary liquid chromatography solvent delivery system
US7452471B2 (en) * 2005-10-21 2008-11-18 Ge Healthcare Bio-Sciences Ab Automated packing system and method for chromatography columns
US20080050250A1 (en) * 2006-08-25 2008-02-28 Haldex Brake Corporation Air supply system with reduced oil passing in compressor
KR100780452B1 (ko) * 2007-08-16 2007-11-28 한국수자원공사 혼합역지변 유압제어시스템
JP2009118787A (ja) * 2007-11-15 2009-06-04 Iseki & Co Ltd コンバインの油圧駆動回路
US8133395B2 (en) * 2008-05-30 2012-03-13 Ge Healthcare Bio-Sciences Ab Automated column packing method
CN101550951B (zh) * 2009-04-30 2011-04-13 山东泰丰液压股份有限公司 螺纹式插装阀液压控制系统
JP2012106483A (ja) * 2010-10-20 2012-06-07 Sumitomo Heavy Ind Ltd 射出成形機及び油圧アクチュエータ
CN102588360A (zh) * 2012-03-08 2012-07-18 四川华通工程技术研究院 一种骨骼服的液压系统
CN203548373U (zh) * 2013-09-27 2014-04-16 重庆市科学技术研究院 伺服液压系统
CN203598535U (zh) * 2013-11-14 2014-05-21 上海天士力药业有限公司 一种便于切换Streamline柱流路方向的装置
CN104632794A (zh) * 2015-03-05 2015-05-20 河海大学常州校区 直驱式液压启闭机电液伺服系统
CN104730175B (zh) * 2015-04-10 2016-08-24 大连工业大学 一种自动真空液相色谱分离装置及其控制方法
JP6393660B2 (ja) * 2015-05-28 2018-09-19 住友重機械建機クレーン株式会社 油圧回路
CN105156376B (zh) * 2015-08-20 2017-12-19 深圳市达丰科技有限公司 闭式液压伺服加载系统、液压装置以及加载设备
CN105179343B (zh) * 2015-10-27 2017-03-22 中国矿业大学 一种多缸同步节能高效液压升降系统及方法
EP3543546B1 (en) * 2016-12-30 2021-07-07 Xuzhou Heavy Machinery Co., Ltd. Crane hydraulic control system and crane
CN109538544A (zh) * 2018-12-07 2019-03-29 千人计划常州新能源汽车研究院有限公司 一种转向助力装置
CN111255759A (zh) * 2020-03-24 2020-06-09 桥弘数控科技(上海)有限公司 一种伺服液压系统
CN214146070U (zh) * 2020-12-30 2021-09-07 济南博尔动力设备有限公司 一种升降设备的液压动力装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325959A (ja) * 2004-05-17 2005-11-24 Sumitomo Heavy Industries Techno-Fort Co Ltd 電気油圧アクチュエータ
CN101822914A (zh) * 2010-04-23 2010-09-08 聊城万合工业制造有限公司 高效液相制备轴向加压层析柱装置
US20140033696A1 (en) * 2012-08-01 2014-02-06 Sauer-Danfoss Gmbh & Co. Ohg Control device for hydrostatic drives
CN103691149A (zh) * 2014-01-07 2014-04-02 利穗科技(苏州)有限公司 一种新型精确控制的dac动态轴向压缩层析柱系统
CN113915177A (zh) * 2021-09-16 2022-01-11 利穗科技(苏州)有限公司 一种电液伺服驱动装置及层析设备

Also Published As

Publication number Publication date
CN113915177A (zh) 2022-01-11
CN113915177B (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
CN110065480B (zh) 一种基于蓄能器补偿的线控电子液压制动系统及控制方法
CN1286600C (zh) 控制/调节直线加压/浇注运动的方法以及驱动系统
WO2021073645A1 (zh) 踏板感可调带自检的集成制动系统
WO2023041087A1 (zh) 一种电液伺服驱动装置及层析设备
CN103201093A (zh) 液压轴
CN1461255A (zh) 液压压力机控制装置以及其操作方法
CN101870160B (zh) 用于注塑机的泵-阀复合控制液压系统及其控制方法
CN101691877B (zh) 基于伺服电机控制的多泵组合控制液压动力系统
CN201645777U (zh) 用于注塑机的泵-阀复合控制液压系统
CN107542711A (zh) 一种增压系统
CN1124412C (zh) 斜盘式可变容量泵的控制装置
CN107882791B (zh) 多缸压力机液压控制系统及其控制方法
CN100366975C (zh) 密封低噪声轴承定量注脂机
CN1852758A (zh) 克服压力下降的对水进行淡化的方法和装置
US4215543A (en) Method and apparatus for linear and nonlinear control of a hydraulic press
KR20090012758A (ko) 유압프레스
CN114604216A (zh) 一种底盘集成制动系统
CN211809555U (zh) 一种踏板感可调带自检的集成制动系统
WO2021226889A1 (zh) 液压调节装置、液压调节系统、制动系统及控制方法
CN113757221A (zh) 一种供液速度和位置开环控制方法
CN106122136B (zh) 一种防止内高压成形时型腔超压的装置及方法
CN110397645B (zh) 一种液压操动机构控制油路故障消除方法及装置
CN219635187U (zh) 一种无人驾驶车辆线控制动装置
JPS62401Y2 (zh)
CN219549463U (zh) 一种油气弹簧自动填充系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE