WO2021073645A1 - 踏板感可调带自检的集成制动系统 - Google Patents

踏板感可调带自检的集成制动系统 Download PDF

Info

Publication number
WO2021073645A1
WO2021073645A1 PCT/CN2020/121960 CN2020121960W WO2021073645A1 WO 2021073645 A1 WO2021073645 A1 WO 2021073645A1 CN 2020121960 W CN2020121960 W CN 2020121960W WO 2021073645 A1 WO2021073645 A1 WO 2021073645A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
brake
master cylinder
pressure
cylinder
Prior art date
Application number
PCT/CN2020/121960
Other languages
English (en)
French (fr)
Inventor
郝江脉
黄朕
郑利水
杨雄
Original Assignee
浙江亚太机电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江亚太机电股份有限公司 filed Critical 浙江亚太机电股份有限公司
Priority to JP2022523293A priority Critical patent/JP7490911B2/ja
Publication of WO2021073645A1 publication Critical patent/WO2021073645A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • B60T8/409Systems with stroke simulating devices for driver input characterised by details of the stroke simulating device

Definitions

  • the invention belongs to an automobile intelligent driving brake control system, and particularly relates to an integrated brake system with adjustable pedal feel and self-checking in the automobile brake system.
  • the present invention provides an integrated brake system with adjustable pedal feel and self-checking.
  • the integrated brake master cylinder can accurately control the braking force of each wheel cylinder, and can be The effect of rapid pressurization is achieved within time, and the function of quickly and accurately controlling wheel cylinder pressure is realized.
  • the present invention adopts the following technical solutions:
  • the present invention includes a master cylinder control part and a pressure execution part.
  • the master cylinder control part includes a brake master cylinder, a pedal simulator and a brake fluid cup.
  • the pressure execution part includes a motor, a sub-master cylinder, a coupling valve, Linear inlet valve and brake wheel cylinder; the brake master cylinder is integrated with a stroke displacement sensor; the motor is connected to the auxiliary master cylinder, and the output end of the motor pushes the piston in the auxiliary master cylinder to reciprocate through the transmission part, and the pressure is one-way
  • the input ends of the valve are directly connected to the brake fluid cup; two oil circuits are respectively output from the double chamber on the brake master cylinder, and the front chamber of the brake master cylinder is connected to the input of the pressure build-up check valve via the pedal simulator The front chamber of the brake master cylinder and the front chamber of the brake master cylinder.
  • the rear chamber of the brake master cylinder is connected to the wheel brake cylinder of the front wheel brake of the automobile and the wheel brake cylinder of the rear wheel brake through two coupling valves.
  • the coupling valve and each brake A linear inlet valve is installed on the oil circuit between the moving wheel cylinders; the auxiliary master cylinder is connected to the front wheel brake corresponding coupling valve and the linear inlet valve through the two pressure building unit supply valves, and the rear of the vehicle.
  • the pressure check valve is directly connected to the brake wheel cylinders of the front and rear wheel brakes of the car, and the oil line between each brake wheel cylinder is connected with a linear outlet. Liquid valve.
  • the master cylinder control part of the present invention can non-linearly adjust the simulated braking foot feeling in an electro-hydraulic coordinated control mode to realize the non-linear braking foot feeling; the pressure execution part provides fast and accurate wheel cylinder pressure control and adjustment.
  • the liquid supply valve and the coupling valve of the pressure building unit are both on-off valves.
  • the linear inlet valve and the linear outlet valve are both regulating valves.
  • the pressure building check valve is a valve that is controlled by the oil pressure at both ends and only flows from the brake fluid oil cup to the sub-master cylinder.
  • the pedal simulator is a non-linear control pedal simulator, which includes a pedal simulator cylinder, a pedal simulator piston, a piston return spring, a foot control valve, a simulator valve, an oil cup and a pressure sensor; the pedal simulator piston is set In the pedal simulator cylinder, the inner cavity of the pedal simulator cylinder is divided into two cavities of the piston front cavity and the piston rear cavity.
  • the piston return spring is installed in the piston rear cavity of the pedal simulator cylinder.
  • the rear chamber of the body piston is connected to the brake fluid cup through the foot feel regulating valve.
  • the rear chamber of the pedal simulator cylinder piston is connected to the rod chamber of the brake master cylinder.
  • the front chamber of the pedal simulator cylinder piston is connected through the simulator valve and The rod cavity of the brake master cylinder is connected and communicated.
  • a pressure sensor is installed on the oil pipeline between the simulator valve and the master cylinder of the brake.
  • the foot sensing regulating valve is a linear control solenoid valve, which can linearly adjust the flow rate.
  • the rear brake fluid flows from the oil cup through the foot sensing regulating valve into the rear cavity of the piston;
  • the simulator valve is an on-off valve that pressurizes the brake fluid. Flow from the piston front chamber through the simulator valve without adjusting the flow to the brake master cylinder.
  • the simulator valve is connected in parallel with a front check valve for brake fluid return.
  • the front check valve flows from the piston front chamber to the brake master cylinder under the control of a specific oil pressure; the foot feeling regulating valve is connected in parallel with The rear check valve for the backflow of brake fluid, which flows from the oil cup to the piston rear cavity under the control of a specific oil pressure.
  • the pedal simulator can simulate the traditional brake pedal foot feeling, and the pedal simulator is provided with a pedal simulator foot feeling regulating valve for simulating the brake foot feeling in different states, and the brake can be realized through electro-hydraulic coordination Non-linear control of pedal simulation.
  • the pressure execution part provides fast and accurate wheel cylinder pressure control.
  • the braking force can be supplemented in the state of energy recovery.
  • the real-time change of wheel cylinder pressure is realized during the energy recovery process, which improves the efficiency of energy recovery.
  • it can realize the wheel anti-lock braking and body stability system on this basis, which provides a good expansion platform for the expansion of intelligent driving.
  • Figure 1 is a working state diagram of the integrated braking system
  • Figure 2 is a working state diagram of a conventional pressurized state
  • Figure 3 is a working state diagram of a conventional decompression state
  • Figure 4 is a working state diagram of the active independent pressurization state
  • Figure 5 is a working state diagram of the active independent decompression state
  • Figure 6 is a working state diagram of the brake in the failed brake state
  • Figure 7 is the first working state diagram of the product oil circuit leak detection.
  • Figure 8 is the second working state diagram of the product oil circuit leak detection.
  • Fig. 9 is a schematic diagram of the overall structure of a non-linear control pedal simulator.
  • Fig. 10 is a simulated foot feel PV characteristic diagram of a non-linear control pedal simulator.
  • Fig. 11 is a linear characteristic diagram of the control flow rate of the pedal simulator foot control valve in the non-linear control pedal simulator.
  • Fig. 12 is an overall control flow chart of the non-linear control pedal simulator.
  • Fig. 13 is a schematic diagram of the operation of various components of the non-linear control pedal simulator during the braking process under driving.
  • Fig. 14 is a schematic diagram of the operation of the various components of the non-linear control pedal simulator when the driver raises or maintains the braking process.
  • pedal simulator cylinder 1 pedal simulator piston 2
  • piston return spring 3 foot control valve 4
  • simulator valve 5 oil cup 6, pressure sensor 7.
  • the master cylinder control part includes a brake master cylinder, a pedal simulator and a brake fluid cup.
  • the pressure execution part includes a motor, an auxiliary master cylinder, a coupling valve, and a linear Inlet valve and brake wheel cylinder, the motor is a brushless motor; the brake master cylinder is integrated with a stroke displacement sensor, which is used to measure the depth and speed of the piston pedal movement on the brake master cylinder; by the brushless motor
  • the pressure building unit composed of the auxiliary master cylinder, the motor is connected to the auxiliary master cylinder, the output end of the motor pushes the piston in the auxiliary master cylinder to reciprocate through the transmission component, and the back cavity of the auxiliary master cylinder is connected to the input end of the pressure building check valve ,
  • the input end of the pressure building check valve is directly connected to the brake fluid oil cup; two oil circuits are respectively output from the double chamber on the brake master cylinder, and the front chamber of the brake master cylinder is connected
  • the wheel cylinder and the brake wheel cylinder of the rear wheel brake, the coupling valve and the oil line between each brake wheel cylinder are connected with a linear inlet valve, and each linear inlet valve is connected in parallel with a one-way for oil return
  • the output end of the pressure building unit supply valve is connected between the coupling valve and the linear inlet valve; the rear chamber of the auxiliary master cylinder is connected to the corresponding coupling valve and the front wheel brake of the vehicle through the two pressure building unit supply valves.
  • the pressure build-up check valve is directly connected to the brake wheel cylinders of the front and rear wheel brakes of the car, and between each brake wheel cylinder All the oil lines are connected with a linear outlet valve.
  • the front cavity of the brake master cylinder is closer to the side with rods, and the rear cavity is closer to the side without rods.
  • Both the front chamber and the rear chamber are pressure building chambers.
  • Both the liquid supply valve and the coupling valve of the pressure building unit are on-off valves. Both the linear inlet valve and the linear outlet valve are regulating valves.
  • the pressure build-up check valve is a valve that is controlled by the oil pressure at both ends and only flows from the brake fluid cup to the sub-master cylinder.
  • the two front wheels of the car each have a brake
  • the two rear wheels each have a brake
  • pressure sensors are installed in both the rear cavity of the auxiliary master cylinder and the wheel brake cylinder.
  • the oil in the rear chamber of the brake master cylinder is divided into two paths, one of which is a simulator valve and a pedal simulator that always close the solenoid valve, and the other is connected to the pressure execution part (2) through the coupling valve output.
  • the dual chambers on the brake master cylinder respectively output two oil paths, and then each is divided into two consecutively divided into four paths, respectively divided into two paths through the linear inlet valve, one output to the wheel cylinder, and the other through the outlet valve to return to the oil cup.
  • two oil ports connected to the oil cup can be opened on the side wall of the brake master cylinder, and the two oil ports are located beside the front cavity and the rear cavity respectively.
  • two oil ports connect the front cavity and the rear cavity to the oil cup.
  • the piston expands and blocks the two oil ports, and the front cavity and the rear cavity are not connected to the oil cup.
  • the invention has a self-check function while the pedal is adjustable, and has at least two detection methods for specific implementation.
  • the first specific detection process is: the two-way pressure building unit supply valve is energized and opened, the four-line linear inlet valve is energized and closed, and the bottom coupling valve (the front chamber of the master cylinder connected to the rear chamber in the schematic diagram) is energized and closed, and the foot feels The regulating valve is energized and closed.
  • the auxiliary master cylinder builds pressure, and observe the auxiliary master cylinder oil pressure sensor, if the pressure of the oil pressure sensor drops significantly. It shows that the detection of oil circuit leakage, the product alarm is unqualified.
  • the second specific detection process is: the liquid supply valve of the two pressure building units is energized and opened, the lower coupling valve (the front chamber of the main cylinder connected to the rear chamber in the schematic diagram) is energized and closed, and the foot sensing regulating valve is energized and closed.
  • the auxiliary master cylinder builds pressure, and observe the auxiliary master cylinder oil pressure sensor, if the pressure of the oil pressure sensor drops significantly. It shows that the detection of oil circuit leakage, the product alarm is unqualified.
  • the specific implementation includes the pedal simulator cylinder 1, the pedal simulator piston 2, the piston return spring 3, the foot feeling regulating valve 4, the simulator valve 5, the oil cup 6, and the pressure sensor 7; the pedal simulator piston 2 is placed in the pedal simulator cylinder 1, the inner cavity of the pedal simulator cylinder 1 is divided into two cavities, the piston front cavity and the piston back cavity, and the piston return spring 3 is installed in the pedal simulator cylinder 1 piston back cavity The piston return spring 3 is connected between the piston 2 of the pedal simulator and the inner wall of the piston rear cavity of the pedal simulator cylinder 1.
  • the piston rear cavity of the pedal simulator cylinder 1 is connected to the brake fluid through the foot control valve 4 At the same time, the piston rear cavity of the pedal simulator cylinder 1 is connected to the rod cavity of the brake master cylinder, and the piston front cavity of the pedal simulator cylinder 1 is connected to the rod cavity of the brake master cylinder through the simulator valve 5.
  • a pressure sensor 7 is installed on the oil pipeline between the simulator valve 5 and the master cylinder of the brake;
  • the foot sensing regulating valve 4 is a linear control solenoid valve, and the rear brake fluid flows from the oil cup 6 to the piston rear cavity through the foot sensing regulating valve 4 ;
  • the simulator valve 5 is an on-off valve, and the pressure brake fluid flows from the piston front chamber through the simulator valve 5 to the brake master cylinder.
  • the simulator valve 5 is connected in parallel with a front check valve for brake fluid backflow, and the foot-sensing regulating valve 4 is connected with a rear check valve for brake fluid backflow in parallel.
  • the one-way valves connected in parallel to the simulator valve 5 and the foot-sense regulating valve 4 are all controlled by oil pressure to achieve one-way flow, and can only be opened when the oil pressure at the inlet end is greater than the oil pressure at the outlet end. If the oil pressure at the inlet end is lower than the oil pressure at the outlet end, the valve core is blocked by the higher oil pressure at the outlet end and cannot be opened.
  • the front piston chamber is used to collect the pressurized brake fluid stepped on from the master cylinder of the brake when the driver brakes.
  • the back cavity of the piston is provided with a piston return spring.
  • the spring 3 end is a sealed cavity filled with an oil cup brake fluid, which is connected to the brake fluid oil cup 6 through a foot feeling regulating valve 4.
  • the pressure sensor 7 is placed to monitor the pressure in the front chamber of the piston when the entire pedal simulator is working.
  • Fig. 11 shows the characteristic curve of the flow control of the foot feeling regulating valve of the present invention.
  • the solenoid valve Through the control of the solenoid valve, the amount of brake fluid flowing out of the rear cavity of the pedal simulator is controlled to form a pressure change to simulate the changing foot feel.
  • Figure 12 shows the control flow of the pedal simulator in the entire braking system.
  • the implementation process of the present invention is as follows:
  • the brake system is initialized for fault self-checking:
  • the simulator valve 5 and the foot control valve 4 are energized, and the brake pedal pushes the piston in the master cylinder of the brake to move, causing the front brake in the master cylinder of the brake to move.
  • the hydraulic pressure increases to form pressure brake fluid, which enters the piston front cavity of the pedal simulator cylinder 1 of the pedal simulator through the simulator valve 5.
  • the piston 2 compresses the piston return spring 3 so that the piston of the pedal simulator cylinder 1
  • the oil pressure in the rear chamber increases, and the rear brake fluid in the piston rear chamber of the pedal simulator cylinder 1 is discharged to the oil cup 6 through the foot feel regulating valve 4, which is behind the piston of the pedal simulator cylinder 1.
  • the flow rate when the rear brake fluid is discharged from the cavity is adjusted, and the resistance is formed by adjusting the flow rate.
  • the resistance and the spring force of the piston return spring 3 itself form a brake resistance feedback to the driver, that is, the brake foot feel. ;
  • the simulator valve 5 and the foot sensor valve 4 are de-energized, and the pressure sensor 7 collects the pressure change processing to maintain the pressure of the brake fluid (specifically, the pressure sensor 7 collects).
  • the pressure sensor 7 collects When the pressure becomes smaller, the simulator valve 5 and the foot feel regulating valve 4 are closed and no flow, and the oil is returned through the two one-way valves, so that the pressure in the front and rear chambers is balanced), maintaining the pressure to ensure the driver's brake foot feel .
  • FL P L ⁇ S
  • P L is the instantaneous pressure of the piston rear cavity
  • S is the hydraulic pressure area of the piston rear cavity.
  • F s K s ⁇ L
  • K s is the spring stiffness of the piston return spring 2
  • L is the compressed length of the piston return spring 2.
  • the coherent curve in Fig. 10 is the PV characteristic curve relationship between the simulated target brake pressure and the volume of brake fluid. The required V brake fluid volume is used to calculate the compression length of the spring at the current target pressure P, and F s is thus obtained. Know the amount.
  • the damping force formed when the FL brake fluid flows is controlled to perform nonlinear control of the foot feel. Because of the liquid flow type due to the pressure difference, there is a liquid flow formula Where P L is the instantaneous pressure in the rear cavity of the pedal simulator, the rear end of the simulator foot sensor is directly connected to the oil cup, P 0 represents the atmospheric pressure P 0 , ⁇ is the liquid bulk density, the inherent liquid parameter, and u is the liquid flow rate in the current state .
  • the flow rate is controlled by the foot-sensing control valve shown in Figure 11, the flow is converted into a flow velocity u, and then the flow rate u setting of the liquid flow is controlled by controlling the foot-sensing control valve 4, and then according to Obtain the size of F L, thereby controlling the size of the resistance F value to realize the non-linear continuous foot feel adjustment of the entire pedal simulator, and realize the non-linear process represented by the coherent curve in FIG. 10.
  • the specific working modes of the present invention include:
  • the coupling valves are all energized, isolating the master cylinder control part from the pressure execution part and not conducting.
  • the simulator valve in the pedal simulator is opened, and the foot sensor valve is opened; the pressure building unit supply valve and linear liquid inlet valve are both opened, and the linear liquid outlet valve is closed.
  • the brake pedal pushes the brake fluid in the front cavity of the brake master cylinder into the piston front cavity of the pedal simulator through the simulator valve, and the oil in the piston rear cavity (spring cavity) at the other end of the pedal simulator The liquid flows out through the foot feeling regulating valve and flows into the oil cup.
  • the pedal simulator structure can be used to adjust the simulated braking foot feeling in an electro-hydraulic coordinated control mode, and a nonlinear braking foot feeling simulation can be realized.
  • the brushless motor works to push the auxiliary master cylinder, and the oil in the back cavity of the auxiliary master cylinder forms high-pressure oil.
  • the high-pressure oil reaches the outlet of the pressure-building check valve so that the pressure-building check valve cannot be opened and does not conduct.
  • the oil is sent to the brake wheel cylinders of the brakes of the front and rear wheels through the pressure building unit supply valve and linear inlet valve for fluid supply, so as to provide high pressure brake fluid for the wheel cylinders to form brakes, realizing a rapid pressurization control wheel Cylinder pressure.
  • the brake fluid from the linear inlet valve flows to the brake wheel cylinder, and cannot directly flow back into the oil cup through the linear outlet valve.
  • the coupling valves are continuously energized to keep the master cylinder control part and the pressure execution part isolated and non-conducting with each other.
  • the simulator valve in the pedal simulator is closed, and the foot sensor valve is closed; the pressure building unit supply valve and linear liquid inlet valve are both opened, and the linear liquid outlet valve is closed.
  • the brake fluid of the pedal simulator enters the brake master cylinder, and the pressure execution part of the motor pulls back to the auxiliary master cylinder to reduce the pressure of the wheel cylinder brake fluid.
  • the brake fluid in the oil cup enters the piston rear cavity (spring cavity) of the pedal simulator through the rear check valve, and the oil in the piston front cavity at the other end of the pedal simulator flows out through the front check valve. Flow to the front cavity of the brake pedal pushing the brake master cylinder.
  • the brushless motor works to pull back the auxiliary master cylinder, and the oil in the back cavity of the auxiliary master cylinder forms low pressure oil.
  • the low pressure oil reaches the outlet of the pressure building check valve to open and conduct the pressure building check valve.
  • the brake fluid of the brake wheel cylinder of the wheel brake flows to the rear cavity of the auxiliary master cylinder through the linear fluid inlet valve and the pressure-building unit supply valve, thereby forming brake relaxation, reducing the brake fluid pressure of the wheel cylinder, and realizing Rapid decompression controls wheel cylinder pressure.
  • the flow from the brake wheel cylinder does not flow directly to the oil cup through the linear outlet valve except for the linear inlet valve.
  • the coupling valves are all energized to isolate the master cylinder control part from the pressure execution part and not conduct.
  • Both the simulator valve and the foot control valve in the pedal simulator are closed; the pressure building unit supply valve is open, the linear inlet valve of the wheel that needs to be braked is opened, and the linear inlet valve of the wheel that does not need to be braked is closed, linear The outlet valves are closed.
  • the brake pedal does not push the brake master cylinder to move, so the master cylinder control part does not work and there is no oil flow.
  • the brushless motor works to push the auxiliary master cylinder, and the oil in the back cavity of the auxiliary master cylinder forms high-pressure oil.
  • the high-pressure oil reaches the outlet of the pressure-building check valve so that the pressure-building check valve cannot be opened and does not conduct.
  • the oil is sent to the brake wheel cylinder of the brake of the wheel to be braked through the supply valve of the pressure building unit and the linear fluid inlet valve, so as to provide high-pressure brake fluid to the wheel cylinder of the wheel to be braked to form a brake. Achieved rapid and precise boost control of wheel cylinder pressure.
  • the wheels that do not need to be braked are not braked, as shown in Figure 4, the first three wheels are not braked, and the last wheel is braked.
  • the brake fluid from the linear inlet valve flows to the brake wheel cylinder, and cannot directly flow back into the oil cup through the linear outlet valve.
  • the wheel cylinder When the driver does not brake and the vehicle recognizes the need for decompression braking, the wheel cylinder will be selectively braked, and when the brake is withdrawn, it will flow back to the oil cup through the outlet valve.
  • the coupling valves are all energized to isolate the master cylinder control part from the pressure execution part and not conduct.
  • Both the simulator valve and the foot control valve in the pedal simulator are closed; the pressure building unit supply valve is open, and the linear inlet valve and linear outlet valve of the wheel that needs to be withdrawn are opened, and there is no need to withdraw the brake of the wheel.
  • the linear inlet valve and linear outlet valve are closed.
  • the brake pedal does not push the brake master cylinder to move, so the master cylinder control part does not work and there is no oil flow.
  • the brushless motor works to pull back the auxiliary master cylinder.
  • the oil in the back cavity of the auxiliary master cylinder forms low-pressure oil.
  • the low-pressure oil reaches the outlet of the pressure-building check valve to open and conduct the pressure-building check valve.
  • the brake fluid of the brake wheel cylinder of the brake of the brake wheel can be directly flowed back to the oil cup through the linear outlet valve, realizing rapid and accurate pressure reduction and control of the wheel cylinder pressure.
  • wheel cylinder brake fluid directly returns to the oil cup.
  • the wheels that do not need to be braked are not braked, as shown in Figure 5, the first three wheels are not braked, and the last wheel is braked.
  • the control part of the master cylinder and the pressure execution part are connected to each other. Since the simulator valve and the foot control valve are closed, the brake pedal pushes the brake master cylinder to form high-pressure oil.
  • the valve can not enter the piston front cavity of the pedal simulator, but enters the two-way brake wheel cylinder oil circuit of the front wheel/rear wheel through a coupling valve, and the high pressure oil is pushed through the pressure building unit supply valve and linear liquid inlet.
  • the valve is supplied to the two brake wheel cylinders of the brakes of the two brake wheels; the high-pressure brake fluid in the rear cavity directly enters the two brake wheel cylinder oil circuits of the rear wheels/front wheels through the other coupling valve. In the middle, the high-pressure oil is pushed through the pressure-building unit supply valve and linear inlet valve to the brake wheel cylinders of the other two brake wheels for liquid supply.
  • the oil pressure sensor is installed in the rear cavity of the brake master cylinder through the value of the oil pressure sensor in the oil circuit, and the leakage of each valve is detected through different valve working methods. Used for self-checking when the product system is activated.
  • the first specific detection process is: the two-way pressure building unit supply valve is energized and opened, the four-line linear inlet valve is energized and closed, and the bottom coupling valve (the front chamber of the master cylinder connected to the rear chamber in the schematic diagram) ) Turn off when energized, and turn off the foot-sense control valve.
  • the auxiliary master cylinder builds pressure, and observe the auxiliary master cylinder oil pressure sensor, if the pressure of the oil pressure sensor drops significantly. It shows that the detection of oil circuit leakage, the product alarm is unqualified.
  • the second specific detection process is: the two-way pressure building unit supply valve is energized and opened, the bottom coupling valve (the front chamber of the main cylinder connected to the rear chamber in the schematic diagram) is energized and closed, and the foot sensing regulating valve is energized shut down.
  • the auxiliary master cylinder builds pressure, and observe the auxiliary master cylinder oil pressure sensor, if the pressure of the oil pressure sensor drops significantly. It shows that the detection of oil leakage, the product alarm is unqualified.
  • the integrated braking structure with a pedal simulator of the present invention can simultaneously realize multiple braking conditions, and can realize non-linear adjustment of the simulated braking foot feeling through electro-hydraulic coordination, and realize the simulation of the braking foot feel at the same time during the braking process.
  • the pedal feel is adjustable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

一种踏板感可调带自检的集成制动系统,制动主缸上集成安装有行程位移传感器;电机连接副主缸,建压单向阀输入接到制动液油杯(6);从制动主缸上双腔输出两路油路,制动主缸前腔经踏板模拟器接回到建压单向阀输入和自身制动主缸前腔,制动主缸后腔经两个耦合阀接到汽车前后轮制动器的制动轮缸,耦合阀和制动轮缸之间油路装有线性进液阀;副主缸经两个建压单元供液阀接到车前后轮制动器对应的耦合阀和线性进液阀之间;建压单向阀接到制动轮缸,和每个制动轮缸之间的油路装有线性出液阀。该集成制动系统能够精确控制各个轮缸的制动力,实现快速增压,实现快速精准控制轮缸压力,很好实现模拟传统制动时的制动脚感,同时可检测系统的泄漏状况。

Description

踏板感可调带自检的集成制动系统 技术领域
本发明属于汽车智能驾驶制动控制系统,尤其涉及汽车制动系统中的一种踏板感可调带自检的集成制动系统。
背景技术
在新能源汽车蓬勃发展的大环境下,汽车正在从传统的内燃机动力向混合动力及纯电力驱动的方向发展。失去传统内燃机动力的汽车在制动过程中没有了真空源为制动主缸提供真空助力,为了解决此问题,现有的电动车或者混动车会在传统的助力器上加装一个真空泵作为真空源。该方法一方面提升了成本,一方面增加了真空泵工不可避免的工作噪音。另外,传统的制动主缸只具有提供制动力的作用,并不能满足系能源汽车的能量回收功能,为实现能量回收必须加装能量回收装置,提升了成本。
发明内容
为了解决背景技术中存在的问题,本发明提供了一种踏板感可调带自检的集成制动系统,集成式制动主缸,能够精确控制各个轮缸的制动力,而且能够在规定的时间内达到快速增压的效果,实现快速精准控制轮缸压力的功能。
为解决上述技术问题,本发明采用如下技术方案:
本发明包括主缸控制部分和压力执行部分,所述主缸控制部分包括制动主缸、踏板模拟器和制动液油杯,所述的压力执行部分包括电机、副主缸、耦合阀、线性进液阀和制动轮缸;制动主缸上集成安装有行程位移传感器;电机连接副主缸,电机的输出端经传动部件推动副主缸中的活塞做往复移动,建压单向阀的输入端分别直接连接到制动液油杯;从制动主缸上双腔分别输出两路油路,制动主缸的前腔经踏板模拟器连接回到建压单向阀的输入端以及自身制动主缸前腔,制动主缸的后腔经两个耦合阀分别连接到汽车前轮制动器的制动轮缸和后轮制动器的制动轮缸,耦合阀和每个制动轮缸之间的油路上均连接安装有线性进液阀;副主缸分别经两个建压单元供液阀连接到车前轮制动器对应的耦合阀和线性进液阀之间以及车后轮制动器对应的耦合阀和线性进液阀之间;建压单向阀直接连接到汽车前后轮制动器的制动轮缸,和每个制动轮缸之间的油路上均连接安装有线性出液阀。
本发明的主缸控制部分能以电液配合控制方式非线性调节模拟制动脚感,实现非线性的制动脚感;压力执行部分提供快速精确的轮缸压力控制及调节。
所述的建压单元供液阀和耦合阀均是开关阀。
所述的线性进液阀和线性出液阀均是调节阀。
所述的建压单向阀为受两端油压高低控制的仅由制动液油杯向副主缸流动的阀。
所述的踏板模拟器为非线性控制踏板模拟器,包括踏板模拟器缸体、踏板模拟器活塞、活塞复位弹簧、脚感调节阀、模拟器阀、油杯和压力传感器;踏板模拟器活塞置于踏板模拟器缸体内,将踏板模拟器缸体内腔分为活塞前腔和活塞后腔的两个腔体,活塞复位弹簧安装在踏板模拟器缸体活塞后腔中,踏板模拟器缸体活塞后腔经脚感调节阀连通到制动液油杯,同时踏板模拟器缸体活塞后腔连接到制动主缸的有杆腔,踏板模拟器缸体活塞前腔经模拟器阀和制动主缸的有杆腔连接相通。
所述的模拟器阀和制动器的主缸之间的油管路上安装有压力传感器。
所述的脚感调节阀是线性控制电磁阀,能线性调节流量,后制动液从油杯经脚感调节阀流入到活塞后腔;所述的模拟器阀是开关阀,压力制动液从活塞前腔经模拟器阀不调节流量地流入到制动器主缸。
所述的模拟器阀上并联有用于制动液回流的前单向阀,前单向阀受特定油压控制下从活塞前腔流向制动器主缸;所述的脚感调节阀上并联有用于制动液回流的后单向阀,后单向阀受特定油压控制下从油杯流向活塞后腔。
所述的踏板模拟器能模拟传统制动踏板脚感,且踏板模拟器上设有踏板模拟器脚感调节阀用于模拟不同状态下的制动脚感,并且通过电液配合能实现制动踏板模拟的非线性控制。
本发明的有益效果是:
本发明采用的技术方案中,压力执行部分提供快速精确的轮缸压力控制。
进一步的,制动轮轮缸中的压力会由线性进液阀控制到具体的压力后,可以实现能量回收状态下制动力补充。而且在能量回收过程中实现轮缸压力实时变化,提高能量回收效能。同时可以在此基础上实现车轮防抱死和车身稳定系统,为智能驾驶的拓展功能提供了一个良好的拓展平台。
附图说明
下面结合附图和具体实施方式对本发明作进一步描述:
图1是集成式制动系统的工作状态图;
图2是常规增压状态的工作状态图;
图3是常规减压状态的工作状态图;
图4是主动独立增压状态的工作状态图;
图5是主动独立减压状态的工作状态图;
图6是失效制动状态制动的工作状态图;
图7是产品油路测漏的第一种工作状态图。
图8是产品油路测漏的第二种工作状态图。
图9是非线性控制踏板模拟器的整体结构示意图。
图10是非线性控制踏板模拟器的模拟脚感PV特性图。
图11是非线性控制踏板模拟器中踏板模拟器脚感调节阀的控制流量线性特性图。
图12是非线性控制踏板模拟器整体控制流程图。
图13是驾驶下踩制动过程时非线性控制踏板模拟器的各部件工作示意图。
图14是驾驶抬起或者保持制动过程时非线性控制踏板模拟器各部件工作示意图。
图中:踏板模拟器缸体1、踏板模拟器活塞2、活塞复位弹簧3、脚感调节阀4、模拟器阀5、油杯6、压力传感器7。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
如图1所示,包括主缸控制部分和压力执行部分,主缸控制部分包括制动主缸、踏板模拟器和制动液油杯,压力执行部分包括电机、副主缸、耦合阀、线性进液阀和制动轮缸,电机为无刷电机;制动主缸上集成安装有行程位移传感器,行程位移传感器用于测量制动主缸上活塞踏板移动的深度和快慢;由无刷电机和副主缸构成的建压单元,电机连接副主缸,电机的输出端经传动部件推动副主缸中的活塞做往复移动,副主缸的后腔连接到建压单向阀的输入端,建压单向阀的输入端分别直接连接到制动液油杯;从制动主缸上双腔分别输出两路油路,制动主缸的前腔经踏板模拟器连接回到建压单向阀的输入端以及自身制动主缸前腔,制动主缸的后腔连接安装有压力传感器,制动主缸的后腔经两个耦合阀分别连接到汽车前轮制动器的制动轮缸和后轮制动器的制动轮缸,耦合阀和每个制动轮缸之间的油路上均连接安装有线性进液阀,每个线性进液阀均并联有用于回油的单向阀,建压单元供液阀的输出端连接到耦合阀和线性进液阀之间;副主缸的后腔分别经两个建压单元供液阀连接到车前轮制动器对 应的耦合阀和线性进液阀之间以及车前轮制动器对应的耦合阀和线性进液阀之间;建压单向阀直接连接到汽车前后轮制动器的制动轮缸,和每个制动轮缸之间的油路上均连接安装有线性出液阀。制动主缸前腔更靠近有杆的一侧,后腔更靠近无杆的一侧。前腔和后腔都是压力建立腔。
建压单元供液阀和耦合阀均是开关阀。线性进液阀和线性出液阀均是调节阀。建压单向阀为受两端油压高低控制的仅由制动液油杯向副主缸流动的阀。
具体实施中,汽车两个前轮各有一个制动器,两个后轮各有一个制动器。
具体实施中,副主缸的后腔和制动轮缸均安装有压力传感器。
制动主缸的后腔一路油再路分成两路,其中一路经常闭电磁阀的模拟器阀与踏板模拟器,另一路经耦合阀输出连接至压力执行部分(2)。制动主缸上双腔分别输出两路油路再各自分二连分成四路,分别经由线性进液阀分成两路,一路输出至轮缸,一路经由出液阀返回油杯。
具体实施中可在制动主缸侧壁开设和油杯连通的两个油口,两个油口分别处于前腔和后腔旁。在非建压工作过程中,如图1、图3-图5和图7-图8所示,两个油口将前腔和后腔连通于油杯。在建压工作过程中,如图2和图6所示,活塞扩张堵住两个油口,前腔和后腔不连通于油杯。
本发明在踏板可调的同时还具有自检功能,具体实施具有至少两种检测方法。
第一种具体检测过程是:两路建压单元供液阀通电打开,四路线性进液阀通电关闭,下路耦合阀(示意图中与后腔连接的主缸前腔)通电关闭,脚感调节阀通电关闭。此时副主缸建压,观测副主缸油压传感器,若油压传感器出现压力明显下掉。说明检测油路泄漏,产品报警不合格。
第二种具体检测过程是:两路建压单元供液阀通电打开,下路耦合阀(示意图中与后腔连接的主缸前腔)通电关闭,脚感调节阀通电关闭。此时副主缸建压,观测副主缸油压传感器,若油压传感器出现压力明显下掉。说明检测油路泄漏,产品报警不合格。
如图9所示,具体实施包括踏板模拟器缸体1、踏板模拟器活塞2、活塞复位弹簧3、脚感调节阀4、模拟器阀5、油杯6和压力传感器7;踏板模拟器活塞2置于踏板模拟器缸体1内,将踏板模拟器缸体1内腔分为活塞前腔和活塞后腔的两个腔体,活塞复位弹簧3安装在踏板模拟器缸体1活塞后腔中,活塞复位弹簧3连接在踏板模拟器活塞2和踏板模拟器缸体1活塞后腔的腔内壁之间,踏板模拟器缸体1活塞后腔经脚感调节阀4连通到制动液油杯,同时踏板模拟器缸体1活塞后腔连接到制动主缸的有杆腔,踏板模拟器缸体1活塞前腔 经模拟器阀5和制动主缸的有杆腔连接相通。
模拟器阀5和制动器的主缸之间的油管路上安装有压力传感器7;脚感调节阀4是线性控制电磁阀,后制动液从油杯6经脚感调节阀4流入到活塞后腔;模拟器阀5是开关阀,压力制动液从活塞前腔经模拟器阀5流入到制动器主缸。
模拟器阀5上并联有用于制动液回流的前单向阀,脚感调节阀4上并联有用于制动液回流的后单向阀。模拟器阀5和脚感调节阀4所并联的单向阀均受油压力控制实现单向流动,仅在入口端油压大于出口端油压时才能打开。若在入口端油压小于出口端油压时,阀芯受出口端更高油压压力阻塞而无法打开。
活塞前腔用于收集驾驶员制动时从制动器的主缸踩出的有压力制动液。活塞后腔有活塞复位弹簧弹簧3端为密封腔充满油杯制动液,其中通过脚感调节阀4连接至制动液油杯6。压力传感器7置于监控整个踏板模拟器工作时候的活塞前腔内的压力。
如图10中的折线所示,现如今大多数踏板模拟器采用的是图中多段折线型的线性拟合图中非线性曲线来满足驾驶员的踏板感。
如图11所示为本发明的脚感调节阀控制流量的特性曲线。通过对该电磁阀的控制来控制踏板模拟器后腔流出的制动液的量形成压力变化来模拟变化的脚感。
如图12所示为踏板模拟器在整个制动系统中的控制流程。
本发明的实施工作过程如下:
在驾驶员点火后,制动系统初始化进行故障自检:
若制动系统自检出现故障,踏板模拟器不介入工作;
若制动系统自检无故障发生,踏板模拟器介入进入工作,具体为:
当驾驶员踩下制动踏板时,如图13所示,模拟器阀5和脚感调节阀4通电,制动踏板推动制动器的主缸内的活塞运动,使得制动器的主缸内的前制动液压力增大形成压力制动液,并经模拟器阀5进入踏板模拟器的踏板模拟器缸体1的活塞前腔中,活塞2压缩活塞复位弹簧3使得踏板模拟器缸体1的活塞后腔的油压增大,踏板模拟器缸体1的活塞后腔的后制动液经脚感调节阀4排出到油杯6,脚感调节阀4对踏板模拟器缸体1的活塞后腔的后制动液排出时的流量进行调节,通过调节流量大小形成阻力,通过该阻力与活塞复位弹簧3自身的弹簧力共同作用形成反馈给驾驶员的制动阻力感,即制动脚感;
当驾驶员保持踏板不变或者抬起踏板时,模拟器阀5与脚感调节阀4断电,由压力传感器7采集压力变化量处理来保持制动液的压力(具体是在压力传感器7采集压力变小时,模拟器阀5和脚感调节阀4关闭不流通,通过两个单向 阀进行回油,使得前腔和后腔的压力保持平衡),维持压力保证驾驶员的制动脚感。
形成的制动阻力感用F表示,其组成为F=F L+F S,F L为制动液流动时形成的阻尼力,F S为活塞后腔中弹簧的弹力。其中F L=P L×S,P L为活塞后腔的瞬时压强,S为活塞后腔液压作用的面积。其中F s=K s×L,K s为活塞复位弹簧2的弹簧刚度,L为活塞复位弹簧2压缩的长度。图10的连贯曲线为模拟的目标制动压强与制动液体积的PV特性曲线关系,用所需的V制动液体积计算当前目标压强P时弹簧的压缩长度,由此获得F s为已知量。
具体实施中,控制F L制动液流动时形成的阻尼力进而进行脚感的非线性控制。因为液体流动式由于压力差的作用,有液体流动公式
Figure PCTCN2020121960-appb-000001
其中P L为踏板模拟器后腔瞬时压力,模拟器脚感调节阀后端直接与油杯相连,P 0表示大气压P 0,γ为液体容重,液体固有参数,u为当前状态下的液体流速。
由图11所示的脚感调节阀控制流量的特性,将流量转化为流速u,进而通过控制脚感调节阀4来控制液体流动的流速u设置,再根据
Figure PCTCN2020121960-appb-000002
得F L的大小,从而控制阻力感F值的大小实现整个踏板模拟器的非线性连续脚感调节,实现了如图10的连贯曲线所表示非线性过程。
当驾驶员维持不动时,脚感调节阀4立刻断电,维持模拟器的活塞后腔的压强。
当驾驶员抬起制动踏板时,如图14所示,所有脚感调节阀4和模拟器阀5断电,活塞2前移,前制动液由活塞2推动通过模拟器阀5并联的前单向阀回到制动器主缸,后腔制动液形成负压将油杯的后制动液经脚感电磁阀4并联的后单向阀吸入回到活塞后腔,为下一次模拟制动做准备。
本发明具体实施的工作模式包括:
A)如图2所示是常规增压状态的工作状态。
在驾驶员踩下制动踏板时,耦合阀均通电,将主缸控制部分和压力执行部分隔离开不导通。踏板模拟器中的模拟器阀打开,脚感调节阀打开;建压单元供液阀、线性进液阀均打开,线性出液阀关闭。
主缸控制部分中,制动踏板推动制动主缸的前腔内的制动液经模拟器阀进 入踏板模拟器的活塞前腔,踏板模拟器另一端的活塞后腔(弹簧腔)的油液经脚感调节阀流出,流到油杯中。这样能通过踏板模拟器结构以电液配合控制方式来调节模拟制动脚感,实现了非线性的制动脚感模拟。
压力执行部分中,无刷电机工作推动副主缸,副主缸的后腔油液形成高压油,高压油到建压单向阀的出口处使得建压单向阀无法打开不导通,高压油推送经建压单元供液阀、线性进液阀后到前后轮的制动器的制动轮缸中进行供液,从而为轮缸提供高压制动液形成制动,实现了快速增压控制轮缸压力。
从线性进液阀流出的制动液除了流向制动轮缸,并无法经线性出液阀直接回流到油杯中。
B)如图3所示是常规减压状态的工作状态。
在驾驶员抬起制动踏板时,耦合阀均持续通电,将主缸控制部分和压力执行部分保持隔离,相互不导通。踏板模拟器中的模拟器阀关闭,脚感调节阀关闭;建压单元供液阀、线性进液阀均打开,线性出液阀关闭。踏板模拟器制动液进入制动主缸,压力执行部分电机拉回副主缸为降低轮缸制动液压力。
主缸控制部分中,油杯中的制动液经后单向阀进入踏板模拟器的活塞后腔(弹簧腔),踏板模拟器另一端的活塞前腔的油液经前单向阀流出,流到制动踏板推动制动主缸的前腔中。
压力执行部分中,无刷电机工作回拉副主缸,副主缸的后腔油液形成低压油,低压油到建压单向阀的出口处使得建压单向阀打开而导通,前后轮的制动器的制动轮缸的制动液经线性进液阀、建压单元供液阀后往副主缸的后腔流动,从而形成制动放松,降低轮缸制动液压力,实现了快速减压控制轮缸压力。
从制动轮缸流出除了流向线性进液阀,并无法经线性出液阀直接回流到油杯中。
C)如图4所示是主动独立增压状态的工作状态。
在驾驶员无制动过程,车辆识别需要增压制动时,将会对需要制动的轮缸进行制动,此时无需制动的车轮不进行制动,对应的进出液阀处于关闭状态。
此时,耦合阀均通电,将主缸控制部分和压力执行部分隔离开不导通。踏板模拟器中的模拟器阀和脚感调节阀均关闭;建压单元供液阀均打开,需制动的车轮的线性进液阀打开,无需制动的车轮的线性进液阀关闭,线性出液阀均关闭。
主缸控制部分中,由于模拟器阀和脚感调节阀均关闭,制动踏板也无推动制动主缸运动,因此主缸控制部分不工作,油液无流动。
压力执行部分中,无刷电机工作推动副主缸,副主缸的后腔油液形成高压 油,高压油到建压单向阀的出口处使得建压单向阀无法打开不导通,高压油推送经建压单元供液阀、线性进液阀后到需制动车轮的制动器的制动轮缸中进行供液,从而为需制动车轮的轮缸提供高压制动液形成制动,实现了快速精准增压控制轮缸压力。
而无需制动的车轮没有施加制动,如图4所示,前三个车轮的未制动,最后一个车轮制动。
从线性进液阀流出的制动液除了流向制动轮缸,并无法经线性出液阀直接回流到油杯中。
D)如图5所示是主动独立减压状态的工作状态。
在驾驶员无制动过程,车辆识别需要减压制动时,将会对轮缸进行选择性制动,制动撤出时通过出液阀流回油杯。
此时,耦合阀均通电,将主缸控制部分和压力执行部分隔离开不导通。踏板模拟器中的模拟器阀和脚感调节阀均关闭;建压单元供液阀均打开,需撤回制动的车轮的线性进液阀和线性出液阀打开,无需撤回制动的车轮的线性进液阀和线性出液阀关闭。
主缸控制部分中,由于模拟器阀和脚感调节阀均关闭,制动踏板也无推动制动主缸运动,因此主缸控制部分不工作,油液无流动。
压力执行部分中,无刷电机工作回拉副主缸,副主缸的后腔油液形成低压油,低压油到建压单向阀的出口处使得建压单向阀打开而导通,需制动车轮的制动器的制动轮缸的制动液可以经线性出液阀能够直接流回到油杯中,实现了快速精准减压控制轮缸压力。独立减压过程,轮缸制动液直接返回油杯。
而无需制动的车轮没有制动撤回,如图5所示,前三个车轮的未撤回制动,最后一个车轮撤回制动。
同时从制动轮缸流出的制动液无法流向线性进液阀回到副主缸,多余制动液可以经线性出液阀能够直接流回到油杯中。
E)如图6所示是失效制动状态制动的工作状态;
在驾驶员制动过程,产品失效、电机及所有电磁阀(模拟器阀和脚感调节阀)都无法工作状态下,导致踏板模拟器和副主缸无法介入工作,驾驶员踩制动踏板时,主缸制动液将直接进入轮缸。
此时,耦合阀均不通电,将主缸控制部分和压力执行部分之间相互导通。踏板模拟器中的模拟器阀和脚感调节阀均无法工作而关闭;建压单元供液阀均无法工作而关闭,线性出液阀均关闭,线性进液阀打开。
主缸控制部分和压力执行部分相互连通,由于模拟器阀和脚感调节阀均关 闭,制动踏板推动制动主缸形成高压油,前腔内的高压制动液经模拟器阀还是前单向阀均无法进入踏板模拟器的活塞前腔,而是经一个耦合阀进入前轮/后轮的两路制动轮缸油路中,高压油推送经建压单元供液阀、线性进液阀后到其中两路制动车轮的制动器的制动轮缸中进行供液;后腔内的高压制动液直接经另一个耦合阀进入后轮/前轮的两路制动轮缸油路中,高压油推送经建压单元供液阀、线性进液阀后到另外两路制动车轮的制动器的制动轮缸中进行供液。
由于线性出液阀关闭,使得从线性进液阀流出的制动液流向制动轮缸的制动液无法经线性出液阀流回到油杯中。
F)如图7和图8所示是油路检测的一种工作状态。
汽车点火后,系统进入自检油路模式,通过油路中的油压传感器的数值,油压传感器安装于制动主缸的后腔中,通过不同的阀工作方式检测各个阀的泄漏情况,用于产品系统启用时的自检工作。
如图7所示,第一种具体检测过程是:两路建压单元供液阀通电打开,四路线性进液阀通电关闭,下路耦合阀(示意图中与后腔连接的主缸前腔)通电关闭,脚感调节阀通电关闭。此时副主缸建压,观测副主缸油压传感器,若油压传感器出现压力明显下掉。说明检测油路泄漏,产品报警不合格。
如图8所示,第二种具体检测过程是:两路建压单元供液阀通电打开,下路耦合阀(示意图中与后腔连接的主缸前腔)通电关闭,脚感调节阀通电关闭。此时副主缸建压,观测副主缸油压传感器,若油压传感器出现压力明显下掉。说明检测油路泄漏,产品报警不合格。
由此上述实施可见,本发明带有踏板模拟器的集成制动结构可同时实现多种制动工况,并且能电液配合实现非线性调节模拟制动脚感,在制动过程的同时实现踏板脚感可调。

Claims (8)

  1. 一种踏板感可调带自检的集成制动系统及检测方法,包括主缸控制部分和压力执行部分,其特征在于:所述主缸控制部分包括制动主缸、踏板模拟器和制动液油杯,所述的压力执行部分包括电机、副主缸、耦合阀、线性进液阀和制动轮缸;制动主缸上集成安装有行程位移传感器;电机连接副主缸,电机的输出端经传动部件推动副主缸中的活塞做往复移动,建压单向阀的输入端分别直接连接到制动液油杯;从制动主缸上双腔分别输出两路油路,制动主缸的前腔经踏板模拟器连接回到建压单向阀的输入端以及自身制动主缸前腔,制动主缸的后腔经两个耦合阀分别连接到汽车前轮制动器的制动轮缸和后轮制动器的制动轮缸,耦合阀和每个制动轮缸之间的油路上均连接安装有线性进液阀;副主缸分别经两个建压单元供液阀连接到车前轮制动器对应的耦合阀和线性进液阀之间以及车后轮制动器对应的耦合阀和线性进液阀之间;建压单向阀直接连接到汽车前后轮制动器的制动轮缸,和每个制动轮缸之间的油路上均连接安装有线性出液阀。
  2. 根据权利要求1所述的一种踏板感可调带自检的集成制动系统,其特征在于:所述的建压单元供液阀和耦合阀均是开关阀。
  3. 根据权利要求1所述的一种踏板感可调带自检的集成制动系统,其特征在于:所述的线性进液阀和线性出液阀均是调节阀。
  4. 根据权利要求1所述的一种踏板感可调带自检的集成制动系统,其特征在于:所述的建压单向阀为受两端油压高低控制的仅由制动液油杯向副主缸流动的阀。
  5. 根据权利要求1所述的一种踏板感可调带自检的集成制动系统,其特征在于:所述的踏板模拟器为非线性控制踏板模拟器,包括踏板模拟器缸体(1)、踏板模拟器活塞(2)、活塞复位弹簧(3)、脚感调节阀(4)、模拟器阀(5)、油杯(6)和压力传感器(7);踏板模拟器活塞(2)置于踏板模拟器缸体(1)内,将踏板模拟器缸体(1)内腔分为活塞前腔和活塞后腔的两个腔体,活塞复位弹簧(3)安装在踏板模拟器缸体(1)活塞后腔中,踏板模拟器缸体(1)活塞后腔经脚感调节阀(4)连通到制动液油杯,同时踏板模拟器缸体(1)活塞后腔连接到制动主缸的有杆腔,踏板模拟器缸体(1)活塞前腔经模拟器阀(5)和制动主缸的有杆腔连接相通。
  6. 根据权利要求5所述的一种踏板感可调带自检的集成制动系统,其特征在于:所述的模拟器阀(5)和制动器的主缸之间的油管路上安装有压力传感器 (7)。
  7. 根据权利要求5所述的一种踏板感可调带自检的集成制动系统,其特征在于:所述的脚感调节阀(4)是线性控制电磁阀,能线性调节流量,后制动液从油杯(6)经脚感调节阀(4)流入到活塞后腔;所述的模拟器阀(5)是开关阀,压力制动液从活塞前腔经模拟器阀(5)不调节流量地流入到制动器主缸。
  8. 根据权利要求5所述的一种踏板感可调带自检的集成制动系统,其特征在于:所述的模拟器阀(5)上并联有用于制动液回流的前单向阀,前单向阀受特定油压控制下从活塞前腔流向制动器主缸;所述的脚感调节阀(4)上并联有用于制动液回流的后单向阀,后单向阀受特定油压控制下从油杯(6)流向活塞后腔。
PCT/CN2020/121960 2019-10-17 2020-10-19 踏板感可调带自检的集成制动系统 WO2021073645A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022523293A JP7490911B2 (ja) 2019-10-17 2020-10-19 調節可能なペダルフィーリング及び自己検査機能を有するインテグレーテッドブレーキシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910987941.1A CN110682900A (zh) 2019-10-17 2019-10-17 踏板感可调带自检的集成制动系统
CN201910987941.1 2019-10-17

Publications (1)

Publication Number Publication Date
WO2021073645A1 true WO2021073645A1 (zh) 2021-04-22

Family

ID=69112963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121960 WO2021073645A1 (zh) 2019-10-17 2020-10-19 踏板感可调带自检的集成制动系统

Country Status (3)

Country Link
JP (1) JP7490911B2 (zh)
CN (1) CN110682900A (zh)
WO (1) WO2021073645A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114537355A (zh) * 2022-03-03 2022-05-27 万向钱潮股份有限公司 一种分体布置的大型车辆电子制动助力系统
CN115095618A (zh) * 2022-06-27 2022-09-23 浙江师范大学 一种复合式线控制动器、制动系统及控制方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110682900A (zh) * 2019-10-17 2020-01-14 浙江亚太机电股份有限公司 踏板感可调带自检的集成制动系统
CN111284462A (zh) * 2020-02-18 2020-06-16 万向钱潮股份有限公司 一种集成式电子助力制动系统
JP7511676B2 (ja) * 2020-05-27 2024-07-05 華為技術有限公司 油圧制御ユニット、ブレーキシステム、および制御方法
CN113276811B (zh) * 2021-06-17 2022-10-28 中汽创智科技有限公司 一种基于制动系统的踏板感传递控制方法及控制系统
CN113335259B (zh) * 2021-07-22 2022-06-21 中国第一汽车股份有限公司 制动系统上电检测方法、装置、设备和存储介质
CN114604216B (zh) * 2022-05-10 2023-06-23 浙江亚太机电股份有限公司 一种底盘集成制动系统
CN118025103A (zh) * 2022-11-02 2024-05-14 芜湖伯特利电子控制系统有限公司 一种汽车线控液压制动系统及其控制方法
CN116039591B (zh) * 2023-02-06 2024-05-31 清华大学 制动系统
CN117360459A (zh) * 2023-11-08 2024-01-09 辰致科技有限公司 一种踏板感觉模拟器和踏板反馈力调节单元及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016201047A1 (de) * 2015-01-29 2016-08-04 Continental Teves Ag & Co. Ohg Bremsanlage für Kraftfahrzeuge
CN107697050A (zh) * 2017-11-13 2018-02-16 吉林大学 一种液体高压源发生器所在线控液压制动系统
CN110116718A (zh) * 2019-04-24 2019-08-13 芜湖伯特利电子控制系统有限公司 线控液压制动系统
CN110182187A (zh) * 2019-05-21 2019-08-30 清华大学 具有失效保护能力的能量回馈式主动制动系统及控制方法
CN110682900A (zh) * 2019-10-17 2020-01-14 浙江亚太机电股份有限公司 踏板感可调带自检的集成制动系统
CN110682899A (zh) * 2019-10-17 2020-01-14 浙江亚太机电股份有限公司 踏板感可调的集成制动系统
CN211809554U (zh) * 2019-10-17 2020-10-30 浙江亚太机电股份有限公司 一种踏板感可调的集成制动系统
CN211809555U (zh) * 2019-10-17 2020-10-30 浙江亚太机电股份有限公司 一种踏板感可调带自检的集成制动系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4290581B2 (ja) * 2004-01-30 2009-07-08 本田技研工業株式会社 自動二輪車のブレーキ装置
JP2009126327A (ja) * 2007-11-22 2009-06-11 Toyota Motor Corp ストロークシミュレータ及びブレーキ装置
JP5373509B2 (ja) * 2009-09-02 2013-12-18 トヨタ自動車株式会社 ブレーキ制御装置
KR101392840B1 (ko) * 2012-10-31 2014-05-09 주식회사 만도 차량용 전자식 브레이크 시스템
JP6281702B2 (ja) * 2014-09-03 2018-02-21 日立オートモティブシステムズ株式会社 ブレーキ装置
JP2017171015A (ja) * 2016-03-22 2017-09-28 トヨタ自動車株式会社 液圧ブレーキシステムおよびブレーキ操作装置
JP2018069928A (ja) * 2016-10-28 2018-05-10 株式会社アドヴィックス 反力発生装置
CN106740778B (zh) * 2016-11-25 2023-07-04 浙江亚太机电股份有限公司 一种集成式制动主缸
DE102017213392A1 (de) * 2017-08-02 2019-02-07 Robert Bosch Gmbh Steuervorrichtung und Verfahren zum Betreiben eines Simulator-bestückten hydraulischen Bremssystems eines Fahrzeugs
CN207725381U (zh) * 2018-01-08 2018-08-14 吉林大学 一种制动踏板行程模拟器
CN109927695B (zh) * 2018-01-18 2020-10-23 万向钱潮股份有限公司 一种线控制动主动式踏板模拟器及其控制方法
CN109177945A (zh) * 2018-11-02 2019-01-11 吉林大学 一种完全解耦的电子液压制动系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016201047A1 (de) * 2015-01-29 2016-08-04 Continental Teves Ag & Co. Ohg Bremsanlage für Kraftfahrzeuge
CN107697050A (zh) * 2017-11-13 2018-02-16 吉林大学 一种液体高压源发生器所在线控液压制动系统
CN110116718A (zh) * 2019-04-24 2019-08-13 芜湖伯特利电子控制系统有限公司 线控液压制动系统
CN110182187A (zh) * 2019-05-21 2019-08-30 清华大学 具有失效保护能力的能量回馈式主动制动系统及控制方法
CN110682900A (zh) * 2019-10-17 2020-01-14 浙江亚太机电股份有限公司 踏板感可调带自检的集成制动系统
CN110682899A (zh) * 2019-10-17 2020-01-14 浙江亚太机电股份有限公司 踏板感可调的集成制动系统
CN211809554U (zh) * 2019-10-17 2020-10-30 浙江亚太机电股份有限公司 一种踏板感可调的集成制动系统
CN211809555U (zh) * 2019-10-17 2020-10-30 浙江亚太机电股份有限公司 一种踏板感可调带自检的集成制动系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114537355A (zh) * 2022-03-03 2022-05-27 万向钱潮股份有限公司 一种分体布置的大型车辆电子制动助力系统
CN115095618A (zh) * 2022-06-27 2022-09-23 浙江师范大学 一种复合式线控制动器、制动系统及控制方法

Also Published As

Publication number Publication date
CN110682900A (zh) 2020-01-14
JP2022553274A (ja) 2022-12-22
JP7490911B2 (ja) 2024-05-28

Similar Documents

Publication Publication Date Title
WO2021073645A1 (zh) 踏板感可调带自检的集成制动系统
CN108501921B (zh) 一种具有双压力源的液压线控制动系统及其制动控制方法
CN110682899A (zh) 踏板感可调的集成制动系统
CN104169142B (zh) 用于运行制动系统的方法以及制动系统
WO2020233493A1 (zh) 一种基于蓄能器补偿的线控电子液压制动系统及控制方法
JP6341580B2 (ja) ブレーキ制御装置、ブレーキシステム、及びブレーキ液圧発生方法
CN102556031A (zh) 车辆用制动装置
CN109927698A (zh) 一种线控电液制动系统及制动方法
CN102211571A (zh) 车辆用制动装置及车辆用制动装置的控制方法
CN104995073A (zh) 制动装置
US20190193701A1 (en) Vehicle braking system and method of operating the same
CN103874610B (zh) 车辆制动装置
CN105946837A (zh) 一种具有多工作模式的电子液压制动系统
CN104149765A (zh) 一种可实现分时控制的汽车电子液压制动系统
CN109455174A (zh) 一种采用高压蓄能器的线控液压制动系统及其制动控制方法
CN104787020A (zh) 一种具有新型解耦方式的电子液压制动系统
CN107891850A (zh) 一种带有解耦功能的集成式电液制动系统
CN209241052U (zh) 一种采用高压蓄能器的线控液压制动系统
CN106573606A (zh) 制动装置
JP2013514933A (ja) 油圧式車両ブレーキ装置
CA2913287A1 (en) Vehicle brake device
CN211809554U (zh) 一种踏板感可调的集成制动系统
CN108407788B (zh) 带踏板感回馈的汽车制动能量回收系统
CN211809555U (zh) 一种踏板感可调带自检的集成制动系统
CN113830058A (zh) 一种线控液压制动系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022523293

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20877282

Country of ref document: EP

Kind code of ref document: A1