WO2020233493A1 - 一种基于蓄能器补偿的线控电子液压制动系统及控制方法 - Google Patents

一种基于蓄能器补偿的线控电子液压制动系统及控制方法 Download PDF

Info

Publication number
WO2020233493A1
WO2020233493A1 PCT/CN2020/090206 CN2020090206W WO2020233493A1 WO 2020233493 A1 WO2020233493 A1 WO 2020233493A1 CN 2020090206 W CN2020090206 W CN 2020090206W WO 2020233493 A1 WO2020233493 A1 WO 2020233493A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
motor
control unit
electronic control
solenoid valve
Prior art date
Application number
PCT/CN2020/090206
Other languages
English (en)
French (fr)
Inventor
赵万忠
章波
周小川
栾众楷
高犇
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Publication of WO2020233493A1 publication Critical patent/WO2020233493A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/745Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on a hydraulic system, e.g. a master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors

Definitions

  • the invention belongs to the technical field of electronic hydraulic brake systems, and in particular relates to an electronic hydraulic brake system and a control method using a high-pressure accumulator as pressure compensation.
  • P-EHB pump-type electronic hydraulic brake system
  • I-EHB integrated electronic hydraulic brake system
  • the unit opens and closes the solenoid valves of each wheel brake cylinder, high pressure hydraulic pressure source and low pressure hydraulic pressure source, so that each wheel brake cylinder receives different hydraulic pressures, so as to achieve vehicle braking and yaw stability during vehicle braking.
  • the electronic control unit recognizes the driver's braking intention, it sends a command to the motor controller.
  • the motor controller controls the motor to output the corresponding speed and torque, which are output to the piston rod of the brake master cylinder through the brake deceleration device , So as to achieve pressure building and braking.
  • the above two systems respectively use the high-speed switching characteristics of the solenoid valve and the precise control characteristics of the motor to improve the braking characteristics of the braking system.
  • the purpose of the present invention is to provide a wire-controlled electronic hydraulic brake system and control method based on accumulator compensation to solve the brake lag and control method of the electronic hydraulic brake system in the prior art.
  • a wire-controlled electronic hydraulic brake system based on accumulator compensation of the present invention includes: an electronic pedal module, an electronic control unit, an integrated wire-controlled actuator module, a hydraulic cylinder module, and a high-pressure accumulator compensation module; wherein,
  • the electronic pedal module includes: a brake pedal, an input rod, a feedback deceleration device, a feedback motor, a feedback motor controller, a pedal displacement sensor, and a pedal force sensor; wherein the brake pedal is connected to the input rod; an electronic control unit, a feedback motor The controller and the feedback motor are electrically connected in turn, the feedback deceleration device is connected to the feedback motor output shaft, and the force and movement output by the feedback motor are transmitted to the input rod mechanically connected to it; both the pedal displacement sensor and the pedal force sensor are placed in the input On the pole, and are electrically connected with the electronic control unit;
  • the integrated wire-controlled dynamic module includes: a brake motor controller, a brake motor, a brake deceleration device, a speed sensor and a torque sensor; the electronic control unit, the brake motor controller and the brake motor are electrically connected in sequence,
  • the dynamic deceleration device is mechanically connected with the output shaft of the brake motor, and transmits the force and motion output by the brake motor to the hydraulic cylinder module connected to it;
  • the speed sensor is used to detect the output speed of the brake motor, and it is controlled by the electronic
  • the unit is electrically connected;
  • the torque sensor is used to detect the size of the output torque of the brake motor, and is electrically connected with the electronic control unit to realize the torque closed-loop control of the brake motor;
  • the hydraulic cylinder module includes: a tandem double-chamber brake master cylinder, a wheel cylinder double-conducting solenoid valve group, and a brake group; wherein the tandem double-chamber brake master cylinder includes a first cavity and a second cavity, and the first cavity Connected with the left front wheel brake and the right front wheel brake, the second cavity is connected with the left rear wheel brake and the right rear wheel brake, and a two-way solenoid valve is arranged in each of the four connecting pipelines to control the connecting pipeline
  • the four bidirectional solenoid valves form the wheel cylinder bidirectional solenoid valve group.
  • the wheel cylinder bidirectional solenoid valve group is electrically connected to the electronic control unit.
  • the four brakes form the brake group.
  • Each brake has A wheel cylinder
  • the high-pressure accumulator compensation module includes: a return solenoid valve group, a boost solenoid valve group, a liquid storage tank, a hydraulic pump motor, a hydraulic pump, and a high-pressure accumulator; the return solenoid valve is located in the liquid storage tank and the tandem double-chamber system
  • the hydraulic pump motor is electrically connected to the electronic control unit, and is mechanically connected to the hydraulic pump to drive the hydraulic pump; the hydraulic pump is driven by the hydraulic pump motor to realize the slave liquid storage
  • the tank draws out the brake fluid to the high-pressure accumulator to increase the pressure of the brake fluid in the high-pressure accumulator;
  • the booster solenoid valve group is electrically connected to the electronic control unit, and is located in the tandem double-chamber brake master cylinder to communicate with the high-pressure accumulator On the pipeline
  • the electronic control unit is respectively connected with the pedal displacement sensor, the pedal force sensor, the feedback motor controller, the brake motor controller, the boost solenoid valve group, the return solenoid valve group, the hydraulic pump motor, and the wheel cylinder bidirectional solenoid valve group. connection.
  • the brake reduction device in the integrated brake-by-wire module adopts a planetary gear reduction mechanism.
  • a compensation hole is opened above the first cavity and the second cavity, and the compensation hole is a connection channel between the high-pressure accumulator and the tandem dual-cavity brake master cylinder, and the two connection channels are respectively arranged with a solenoid valve , Both solenoid valves are boost solenoid valve groups, which are electrically connected to the electronic control unit.
  • workflow of the electronic control unit includes the following steps:
  • the electronic control unit receives the pedal displacement and pedal force signals of the pedal displacement sensor and the pedal force sensor;
  • the electronic control unit sends a control command to the feedback motor controller according to the received pedal displacement and pedal force signals, so that the feedback motor controller controls the feedback motor;
  • the electronic control unit recognizes the driver's braking intention based on the pedal displacement and pedal force signals, and sends a control command to the brake motor controller so that the brake motor controller can control the brake motor;
  • the electronic control unit receives the signal of the speed sensor of the integrated brake-by-wire module, and according to the signal, controls the boost solenoid valve group under braking conditions;
  • the electronic control unit controls the on/off of the wheel-cylinder bidirectional solenoid valve group
  • the electronic control unit controls the on/off of the return solenoid valve group.
  • the control method of a wire-controlled electronic hydraulic brake system based on accumulator compensation of the present invention includes the following steps:
  • the electronic control unit recognizes the driver’s braking intention according to the received pedal displacement and force signals, and generates control commands for the feedback motor controller and the brake motor controller, and sends the commands to the feedback motor controller and brake respectively motor control;
  • the feedback motor controller controls the output force and movement of the feedback motor according to the received instruction, and outputs the force and movement to the input rod through the feedback deceleration device, and then outputs the force and movement to the brake pedal to form a pedal feel;
  • the brake motor controller After the brake motor controller receives the instruction from the electronic control unit, it controls the output force and movement of the brake motor to the brake decelerating device.
  • the brake decelerating device inputs the force and movement to the master cylinder piston and drives the master cylinder piston to make a straight line Movement to achieve pressure build up in the master cylinder;
  • the speed sensor collects the actual output speed ⁇ 1 of the brake motor, and transmits the speed signal of the brake motor to the electronic control unit.
  • the electronic control unit calculates the actual master cylinder hydraulic pressure and compares it with the target hydraulic pressure to calculate the hydraulic pressure
  • the electronic control unit calculates the duty ratio of each solenoid valve in the boost solenoid valve group, and controls the on/off between the high-pressure accumulator and the tandem dual-chamber brake master cylinder by controlling the boost solenoid valve group , So as to realize the compensation of the hydraulic pressure of the tandem dual-chamber brake master cylinder by the high-pressure accumulator;
  • the electronic control unit controls the conduction and cut-off of each solenoid valve in the wheel-cylinder bidirectional solenoid valve group, thereby controlling the communication and cut-off between the tandem double-chamber master cylinder and the brake group. Realize the flow of high-pressure brake fluid from the tandem dual-chamber master cylinder to the brake group;
  • the electronic control unit controls the on/off of the return solenoid valve group to realize the return of the brake fluid of the high-pressure master cylinder to the reservoir.
  • T 1 is the motor torque feedback
  • J 1 is the moment of inertia of the feed motor
  • B 1 is a damping coefficient of the feed motor
  • T a1 is a motor load torque feedback
  • f 1 is the feedback rotor Coulomb friction constant
  • ⁇ 1 is the feedback motor speed.
  • T 2 is the brake motor torque
  • J 2 is the moment of inertia of the brake motor
  • B 2 is the damping coefficient of the brake motor
  • T a2 is the load torque of the brake motor
  • f 2 is the coulomb of the brake motor rotor
  • the friction constant, ⁇ 2 is the speed of the brake motor.
  • the brake motor adopts torque closed-loop control
  • the torque sensor collects the output torque of the brake motor, and returns the data to the input terminal of the brake motor through the gain k 1 , and the output torque of the brake motor
  • the target output torque T 1 is compared to obtain the difference between the output torque of the brake motor and the target output torque:
  • the calculated error is used as the input of torque closed-loop control.
  • PID controller is used for torque closed-loop control.
  • the output model of the controller is:
  • K pT is the proportional coefficient
  • T T is the differential constant
  • T dT is the integral constant
  • u OT is the control constant
  • control method for the compensation of the hydraulic pressure of the tandem dual-chamber master cylinder by the high-pressure accumulator is:
  • the electronic control unit calculates the actual master cylinder hydraulic pressure change according to the signal of the speed sensor; the speed sensor collects the actual output speed ⁇ 2 of the brake motor and transmits the signal to the electronic control unit, which calculates the actual displacement of the piston Quantity X 1 :
  • X 1 is the displacement of the long nut
  • t is the time
  • i 1 is the transmission ratio of the brake reduction device
  • P is the pitch of the long nut
  • the electronic control unit calculates the master cylinder hydraulic pressure change ⁇ P according to the fluid compressibility equation, and calculates the difference between the target master cylinder hydraulic pressure change ⁇ P final and the actual master cylinder hydraulic pressure change ⁇ P e p (t):
  • k is the brake fluid compression coefficient
  • V 0 is the initial test volume of the fluid
  • ⁇ V is the volume reduction of the fluid
  • A represents the bore of the master cylinder
  • the electronic control unit calculates the duty cycle of each solenoid valve in the boost solenoid valve group according to the pressure difference e p (t) to realize the compensation of the hydraulic pressure of the main cylinder by the high-pressure accumulator.
  • the integrated wire-controlled electronic hydraulic braking system compensated by the high-pressure accumulator utilizes the high-speed response characteristics of the integrated electronic hydraulic braking system to compensate for the low braking response speed caused by the hydraulic hysteresis characteristics.
  • the use of high-pressure accumulator and high-speed conduction solenoid valve realizes the compensation of master cylinder pressure, which not only realizes less braking response time, but also enables precise control of master cylinder brake fluid pressure, and the braking effect is significant Promote.
  • the invention adopts the method of torque closed-loop control, so that the torque motor can give full play to its working characteristics and output the torque more accurately, so that the hydraulic pressure of the master cylinder can reach a good level of accuracy, and then by adjusting the PWM wave duty ratio Control the high-speed on and off of the booster solenoid valve group to make the main cylinder hydraulic pressure control more accurate.
  • Figure 1 is a structural diagram of the integrated wire-controlled electronic hydraulic brake system compensated by the high-pressure accumulator of the present invention
  • Figure 2 is a schematic diagram of the integrated wire-controlled electronic hydraulic brake system compensated by the high-pressure accumulator of the present invention
  • Figure 3 is a control flow chart of the integrated wire-controlled electronic hydraulic brake system compensated by the high-pressure accumulator of the present invention
  • A-electronic pedal module B-integrated wire control module, C-high pressure accumulator compensation module, D-hydraulic cylinder module, 1-brake pedal, 2-input rod, 3-feedback deceleration device, 4-feedback motor, 5-feedback motor controller, 6-pedal displacement sensor, 7-pedal force sensor, 8-electronic control unit, 91-brake motor controller, 92-brake motor, 93-speed sensor, 94 -Torque sensor, 10-brake deceleration device, 11-tandem dual-chamber brake master cylinder, 12-wheel cylinder two-way solenoid valve group, 13-brake group, 141 return solenoid valve group, 142-booster solenoid Valve block, 15-storage tank, 16-hydraulic pump motor, 17-hydraulic pump, 18-high pressure accumulator.
  • an integrated wire-controlled electronic hydraulic brake system for high-voltage accumulator compensation of the present invention is characterized by comprising: an electronic pedal module A, an electronic control unit 8, and an integrated wire control Dynamic module B, high-pressure accumulator compensation module C, hydraulic cylinder module D;
  • the electronic pedal module A includes: a brake pedal 1, an input rod 2, a pedal displacement sensor 6, a pedal force sensor 7, a feedback motor controller 5, a feedback motor 4, and a feedback deceleration device 3.
  • the brake pedal 1 and the input The lever 2 is connected, the pedal displacement sensor 6 and the pedal force sensor 7 are both placed on the input rod 2, and both are electrically connected to the electronic control unit 8.
  • the pedal displacement and pedal force are transmitted to the input rod 2 through the pedal 1, and the pedal displacement sensor 6 is connected to the input rod 2.
  • the pedal force sensor 7 collects pedal displacement and pedal force signals, and transmits the signals to the electronic control unit 8.
  • the electronic control unit 8 outputs instructions to the feedback motor controller 5, and controls the feedback motor 4 to output speed and torque via the feedback reduction device 3,
  • the input rod 2 reaches the pedal 1, forming a corresponding pedal feeling;
  • the electronic control unit 8 (whose core is a CPU, the Freescale single-chip microcomputer used in this embodiment, the model is 16-bit MC9S12XEP100).
  • the electronic control unit 8 calculates the target output speed and torque of the feedback motor 4 and the target output torque and output speed of the brake motor 92 according to the received pedal displacement signal and pedal speed signal, and generates a feedback motor controller 5 and brake The control signal of the motor controller 91;
  • the integrated brake-by-wire dynamic module B includes: a brake motor controller 91, a brake motor 92, a speed sensor 93, a torque sensor 94, and a brake deceleration device 10; wherein, the brake motor controller 91 receives the electronic control
  • the instruction of the unit 8 controls the brake motor 92 to output the corresponding speed and torque, decelerates and increases the distance through the brake reduction device 10, and converts the input rotational motion into linear motion, the torque output into force output, and then the linear motion
  • the movement and force are transmitted to the piston rod of the tandem double-chamber master cylinder 11, and the movement of the piston rod squeezes the brake fluid in the tandem double-chamber master cylinder 11, so that the tandem double-chamber master cylinder 11 establishes a corresponding
  • the brake motor controller 91 consists of a motor controller MCU and a motor drive circuit; in this embodiment, the motor controller MCU uses the 16-bit motor controller chip MC9S12ZVMRM produced by NXP; the motor drive circuit is composed of
  • the MOSFETs are driven by the GDU module of the MCU, and the PWM module controls the on-off.
  • the MOSFET uses Infineon’s IRLR8743TR; in specific implementation, other conventional control chips in this field can also be used And a drive circuit; the brake reduction device 10 uses a planetary gear transmission mechanism;
  • the high-pressure accumulator compensation module C includes: a return solenoid valve group 141, a boost solenoid valve group 142, a liquid storage tank 15, a hydraulic pump motor 16, a hydraulic pump 17, and a high-pressure accumulator 18; the working modes of this module include: There are two types, namely the boost mode and the depressurization mode. In the boost mode, the solenoid valve in the return solenoid valve group 141 is in the cut-off state. At this time, the electronic control unit 8 controls the hydraulic pump motor 16 to rotate and drive the hydraulic pump 17, from the reservoir The brake fluid is extracted from the tank 15 and output to the high-pressure accumulator 18 to pressurize the brake fluid.
  • Such a high-pressure accumulator 18 is a well-known technology, so detailed descriptions are omitted; under braking conditions, it is a compensation integration Insufficient pressure build-up of the tandem dual-chamber brake master cylinder 11 caused by insufficient output displacement and force of the linear control module B.
  • the electronic control unit 8 controls the on and off of the two solenoid valves in the booster solenoid valve group 142 to reduce the high pressure
  • the high-pressure brake fluid in the accumulator 18 is input to the first cavity and the second cavity of the tandem dual-chamber master cylinder 11, and the first cavity and the second cavity of the tandem dual-chamber master cylinder 11 are pressurized respectively ;
  • Two compensation holes are respectively opened above the first cavity and the second cavity of the tandem dual-chamber master cylinder 11, which communicate with the two cavities of the high-pressure accumulator 18 and the tandem dual-chamber master cylinder 11;
  • the boost solenoid valve group 142 When activated, the depressurization mode is activated, the boost solenoid valve group 142 is closed, and the electronic control unit 8 controls the on and off of the two solenoid valves in the return solenoid valve group 141.
  • the hydraulic cylinder module D includes: a tandem dual-chamber brake master cylinder 11, a wheel-cylinder dual-directional solenoid valve group 12, and a brake group 13; wherein the tandem double-chamber master cylinder 11 includes a first chamber and a second chamber.
  • the first cavity is connected with the left front wheel brake and the right front wheel brake
  • the second cavity is connected with the left rear wheel brake and the right rear wheel brake.
  • the first cavity and the second cavity are provided with compensation holes for compensation.
  • the hole communicates with the high-pressure accumulator 18 and the tandem dual-chamber brake master cylinder 11.
  • the wheel cylinder two-way solenoid valve group 12 consists of four two-way solenoid valves.
  • the four solenoid valves are respectively connected with the left front wheel cylinder, the right front wheel cylinder, the left rear wheel cylinder, and the right rear wheel cylinder.
  • the electronic control unit 8 controls the electromagnetic The valve is turned on and off to control the connection and disconnection of the tandem dual-chamber master cylinder and the wheel brake cylinder; the brake group is composed of the left front brake, the right front brake, the left rear brake, and the right rear brake.
  • Each brake contains a set of brake wheel cylinders.
  • a control method of a wire-controlled electronic hydraulic brake system based on accumulator compensation of the present invention includes the following steps:
  • the electronic control unit recognizes the driver’s braking intention according to the received pedal displacement and force signals, and generates control commands for the feedback motor controller and the brake motor controller, and sends the commands to the feedback motor controller and brake respectively motor control;
  • the feedback motor controller controls the output force and movement of the feedback motor according to the received instruction, and outputs the force and movement to the input rod through the feedback deceleration device, and then outputs the force and movement to the brake pedal to form a pedal feel;
  • the brake motor controller After the brake motor controller receives the instruction from the electronic control unit, it controls the output force and movement of the brake motor to the brake decelerating device.
  • the brake decelerating device inputs the force and movement to the master cylinder piston and drives the master cylinder piston to make a straight line Exercise to achieve the pressure build up of the master cylinder;
  • the speed sensor collects the actual output speed ⁇ 1 of the brake motor, and transmits the speed signal of the brake motor to the electronic control unit.
  • the electronic control unit calculates the actual master cylinder hydraulic pressure and compares it with the target hydraulic pressure to calculate the hydraulic pressure
  • the electronic control unit calculates the duty ratio of each solenoid valve in the boost solenoid valve group, and controls the on/off between the high-pressure accumulator and the tandem dual-chamber brake master cylinder by controlling the boost solenoid valve group , So as to realize the compensation of the hydraulic pressure of the tandem dual-chamber brake master cylinder by the high-pressure accumulator;
  • the electronic control unit controls the conduction and cut-off of each solenoid valve in the wheel-cylinder bidirectional solenoid valve group, thereby controlling the communication and cut-off between the tandem double-chamber master cylinder and the brake group. Realize the flow of high-pressure brake fluid from the tandem dual-chamber master cylinder to the brake group;
  • the electronic control unit controls the on/off of the return solenoid valve group to realize the return of the brake fluid of the high-pressure master cylinder to the reservoir.
  • T 1 is the motor torque feedback
  • J 1 is the moment of inertia of the feed motor
  • B 1 is a damping coefficient of the feed motor
  • T a1 is a motor load torque feedback
  • f 1 is the feedback rotor Coulomb friction constant
  • ⁇ 1 is the feedback motor speed.
  • T 2 is the brake motor torque
  • J 2 is the moment of inertia of the brake motor
  • B 2 is the damping coefficient of the brake motor
  • T a2 is the load torque of the brake motor
  • f 2 is the coulomb of the brake motor rotor
  • the friction constant, ⁇ 2 is the speed of the brake motor.
  • the brake motor in the step 4) adopts torque closed-loop control
  • the torque sensor collects the output torque of the brake motor, and returns the data to the input terminal of the brake motor through the gain k 1 , and the target
  • the output torque T 1 is compared to obtain the difference between the output torque of the brake motor and the target output torque:
  • the calculated error is used as the input of torque closed-loop control.
  • PID controller is used for torque closed-loop control.
  • the output model of the controller is:
  • K pT is the proportional coefficient
  • T T is the differential constant
  • T dT is the integral constant
  • u OT is the control constant
  • control method for the compensation of the hydraulic pressure of the tandem dual-chamber master cylinder by the high-pressure accumulator in the step 5) is:
  • the electronic control unit calculates the actual master cylinder hydraulic pressure change according to the signal of the speed sensor; the speed sensor collects the actual output speed ⁇ 2 of the brake motor and transmits the signal to the electronic control unit, which calculates the actual displacement of the piston Quantity X 1 :
  • X 1 is the displacement of the long nut
  • t is the time
  • i 1 is the transmission ratio of the brake reduction device
  • P is the pitch of the long nut
  • the electronic control unit calculates the master cylinder hydraulic pressure change ⁇ P according to the fluid compressibility equation, and calculates the difference between the target master cylinder hydraulic pressure change ⁇ P final and the actual master cylinder hydraulic pressure change ⁇ P e p (t):
  • k is the brake fluid compression coefficient
  • V 0 is the initial test volume of the fluid
  • ⁇ V is the volume reduction of the fluid
  • A represents the bore of the master cylinder
  • the electronic control unit calculates the duty cycle of each solenoid valve in the boost solenoid valve group according to the pressure difference e p (t) to realize the compensation of the hydraulic pressure of the main cylinder by the high-pressure accumulator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

一种基于蓄能器补偿的线控电子液压制动系统,当驾驶员踩下制动踏板(1)时,电子控制单元(8)采集踏板位移及踏板速度信号,判断驾驶员制动意图,并计算所需制动阻力矩的大小,通过发送控制信号到制动执行器控制器(91),实现对制动执行机构中制动电机(92)输出转矩的控制及高压蓄能器(18)电磁阀占空比的补偿控制,在实现较高的响应速度的基础上,实现对制动主缸(11)和轮缸液压力的精确控制,从而提高制动性能。还涉及线控电子液压制动系统的控制方法。

Description

一种基于蓄能器补偿的线控电子液压制动系统及控制方法 技术领域
本发明属于电子液压制动系统技术领域,尤其是涉及一种以高压蓄能器作为建压补偿的电子液压制动系统及控制方法。
背景技术
电子液压制动系统目前主要分为两类,一种是以蓄能器和电磁阀为主要执行机构的泵式电子液压制动系统(P-EHB),另一种是以电机和减速机构为主要执行机构的集成式电子液压制动系统(I-EHB)。在P-EHB系统中,电子控制单元识别驾驶员制动意图后,通过使用高压蓄能器和低压蓄能器分别建立高压液压源和低压液压源,针对车辆当前横摆稳定性要求,电子控制单元开闭各个制动轮缸与高压液压源及低压液压源的电磁阀,使得各个制动轮缸得到不同的液压力,从而实现车辆制动和车辆制动时的横摆稳定性。在I-EHB中,电子控制单元识别驾驶员制动意图后,向电机控制器发出指令,电机控制器控制电机输出相应的转速和转矩,经过制动减速装置输出到制动主缸活塞杆,从而实现建压、制动。上述两种系统,分别利用了电磁阀的高速开关特性和电机的精确控制特性,提高了制动系统的制动特性。
然而,现有的P-EHB系统中,由于制动液粘度等因素造成的流体滞后性,使得P-EHB整体制动响应呈现一定滞后,影响制动效果;此外,现有I-EHB系统中,由于减速机构之间存在摩擦,力矩传递效率降低,引起制动主缸建压不足,难以获得精准的制动压力。
发明内容
针对于上述现有技术的不足,本发明的目的在于提供一种基于蓄能器补偿的线控电子液压制动系统及控制方法,以解决现有技术中电子液压制动系统制动滞后以及制动液压建压不足的问题。
为达到上述目的,本发明采用的技术方案如下:
本发明的一种基于蓄能器补偿的线控电子液压制动系统,包括:电子踏板模块、电子控制单元、集成式线控制动模块、液压缸模块及高压蓄能器补偿模块;其中,
所述电子踏板模块包括:制动踏板、输入杆、反馈减速装置、反馈电机、反馈电机控制器、踏板位移传感器及踏板力传感器;其中,制动踏板与输入杆连接;电子控制单元、反馈电机控制器与反馈电机依次电气连接,反馈减速装置连接到反馈电机输出轴,并将反馈电机输出的力和运动传递到与之机械连接的输入杆上;踏板位移传感器和踏板力传感器均置于输入杆上,并均与电子控制单元电气连接;
所述集成式线控制动模块包括:制动电机控制器、制动电机、制动减速装置、转速传感器及转矩传感器;电子控制单元、制动电机控制器和制动电机依次电气连接,制动减速装置与制动电机输出轴机械连接,并将制动电机输出的力和运动传递到与之连接的液压缸模块上; 转速传感器用于检测制动电机输出转速的大小,并与电子控制单元电气连接;转矩传感器用于检测制动电机输出转矩的大小,并与电子控制单元电气连接,实现制动电机的转矩闭环控制;
所述液压缸模块包括:串列双腔制动主缸、轮缸双向导通电磁阀组及制动器组;其中,串列双腔制动主缸包含第一腔和第二腔,第一腔与左前轮制动器、右前轮制动器相连通,第二腔与左后轮制动器、右后轮制动器相连通,且四个连通管路中均布置了一个双向导通电磁阀,控制连通管路的开闭,四个双向导通电磁阀组成了轮缸双向导通电磁阀组,轮缸双向导通电磁阀组与电子控制单元电气连接,四个制动器组成了制动器组,每个制动器中有一个轮缸;
所述高压蓄能器补偿模块包括:回流电磁阀组、增压电磁阀组、储液罐、液压泵电机、液压泵及高压蓄能器;回流电磁阀位于储液罐与串列双腔制动主缸的连通通道上,并与电子控制单元电气连接;液压泵电机与电子控制单元电气连接,并与液压泵机械连接并驱动液压泵;液压泵在液压泵电机驱动下,实现从储液罐抽出制动液到高压蓄能器,提高高压蓄能器制动液的压强;增压电磁阀组与电子控制单元电气连接,位于串列双腔制动主缸与高压蓄能器的连通管路上;
所述电子控制单元分别与踏板位移传感器、踏板力传感器、反馈电机控制器、制动电机控制器、增压电磁阀组、回流电磁阀组、液压泵电机、轮缸双向导通电磁阀组电气连接。
进一步地,所述集成式线控制动模块中的制动减速装置采用行星齿轮减速机构。
进一步地,所述第一腔和第二腔上方均开设有补偿孔,补偿孔为高压蓄能器和串列双腔制动主缸的连接通道,且两个连接通道分别布置了一个电磁阀,两个电磁阀均为增压电磁阀组,增压电磁阀组与电子控制单元电气连接。
进一步地,所述电子控制单元的工作流程包括以下步骤:
电子控制单元接收踏板位移传感器、踏板力传感器的踏板位移与踏板力信号;
电子控制单元根据接收到的踏板位移与踏板力信号向反馈电机控制器发送控制指令,使反馈电机控制器向反馈电机施加控制;
电子控制单元根据踏板位移和踏板力信号,识别出驾驶员制动意图,向制动电机控制器发送控制指令,使制动电机控制器向制动电机施加控制;
电子控制单元接收集成式线控制动模块的转速传感器信号,并根据该信号,在制动工况下,对增压电磁阀组施加控制;
制动工况下,电子控制单元控制轮缸双向导通电磁阀组的通/断;
制动结束工况下,电子控制单元控制回流电磁阀组的通/断。
本发明的一种基于蓄能器补偿的线控电子液压制动系统的控制方法,包括步骤如下:
1)驾驶员通过制动踏板向输入杆输入踏板位移和踏板力,踏板位移传感器和踏板力传感器采集踏板位移和踏板力信号;
2)电子控制单元根据接收到的踏板位移和力信号识别驾驶员的制动意图,并生成反馈电机控制器和制动电机控制器的控制指令,并分别发送指令到反馈电机控制器和制动电机控制;
3)反馈电机控制器根据接收到的指令,控制反馈电机输出力和运动,并通过反馈减速装置将力和运动输出到输入杆,进而输出力和运动到制动踏板,形成踏板感;
4)制动电机控制器接收到电子控制单元的指令后,控制制动电机输出力和运动到制动减速装置,制动减速装置将力和运动输入到主缸活塞,驱动主缸活塞做直线运动,实现主缸建立压强;
5)转速传感器采集制动电机的实际输出转速ω 1,并将制动电机的转速信号传递到电子控制单元,电子控制单元计算出实际主缸液压力,并与目标液压力对比,计算出液压差,进而电子控制单元计算增压电磁阀组中各电磁阀的占空比,并通过控制增压电磁阀组,控制高压蓄能器与串列双腔制动主缸之间的通/断,从而实现高压蓄能器对串列双腔制动主缸液压力的补偿;
6)制动工况下,电子控制单元控制轮缸双向导通电磁阀组中各电磁阀的导通和截止,从而控制串列双腔制动主缸与制动器组之间的连通与截断,实现高压制动液从串列双腔制动主缸流向制动器组;
7)制动结束工况时,电子控制单元控制回流电磁阀组的通/断,实现高压主缸制动液回流到储液罐。
进一步地,所述步骤3)中,反馈电机转矩的计算表达式为:
Figure PCTCN2020090206-appb-000001
式中,T 1为反馈电机转矩,J 1为反馈电机的转动惯量,B 1为反馈电机的阻尼系数,T a1为反馈电机负载转矩,f 1为反馈电机转子处库伦摩擦常数,ω 1为反馈电机转速。
进一步地,所述步骤4)中,制动电机转矩的计算表达式为:
Figure PCTCN2020090206-appb-000002
式中,T 2为制动电机转矩,J 2为制动电机的转动惯量,B 2为制动电机的阻尼系数,T a2为制动 电机负载转矩,f 2制动电机转子处库伦摩擦常数,ω 2为制动电机转速。
进一步的,所述步骤4)中制动电机采用转矩闭环控制,转矩传感器采集制动电机的输出转矩,并返回数据经过增益k 1,到制动电机输入端,与制动电机的目标输出转矩T 1对比,得到制动电机的输出力矩与目标输出力矩之间的差值:
e T(t)=T 1-T real*k 1    (3)
将计算得到的误差作为转矩闭环控制的输入,转矩闭环控制选用PID控制器,控制器的输出模型为:
Figure PCTCN2020090206-appb-000003
式中,K pT为比例系数,T T为微分常数,T dT为积分常数,u OT为控制常量。
进一步地,所述步骤5)中高压蓄能器对串列双腔制动主缸液压力的补偿的控制方法为:
51)电子控制单元根据转速传感器的信号,计算出实际主缸液压力变化量;转速传感器采集制动电机的实际输出转速ω 2,并将信号传递到电子控制单元,电子控制单元计算活塞实际位移量X 1
Figure PCTCN2020090206-appb-000004
式中,X 1为长螺母位移,t为时间,i 1为制动减速装置的传动比,P为长螺母螺距;
52)电子控制单元根据流体压缩性方程计算主缸液压力变化量ΔP,并计算目标主缸液压力变化量ΔP final与实际主缸液压力变化量ΔP之间的差值e p(t):
Figure PCTCN2020090206-appb-000005
ΔV=X 1*A       (7)
e p(t)=ΔP final-ΔP     (8)
式中,k为制动液压缩系数,V 0为液体初试体积,ΔV为液体体积减小量;A表示主缸缸径;
53)电子控制单元根据压力差e p(t)计算增压电磁阀组中各电磁阀的占空比,实现高压蓄能器对主缸液压力的补偿。
本发明的有益效果:
本发明提供的高压蓄能器补偿的集成式线控电子液压制动系统,利用集成式电子液压制动系统的高速响应特性,弥补了由于液压滞后特性引起的制动响应速度的偏低,同时利用高压蓄能器以及高速导通电磁阀,实现了主缸建压的补偿,既实现了制动响应时间的较少,又使得主缸制动液压力的精确控制,制动效果得到了显著提升。
本发明采用转矩闭环控制的方法,使得转矩电机充分发挥其工作特性,较为准确的输出转矩,从而主缸液压力的可以达到良好的精度水平,然后通过调节PWM波占空比的方式控制增压电磁阀组的高速通、断,使主缸液压力控制更加精确。
附图说明
图1为本发明高压蓄能器补偿的集成式线控电子液压制动系统的结构图;
图2为本发明高压蓄能器补偿的集成式线控电子液压制动系统的原理图;
图3为本发明高压蓄能器补偿的集成式线控电子液压制动系统的控制流程图;
图中:A-电子踏板模块,B-集成式线控制动模块,C-高压蓄能器补偿模块,D-液压缸模块,1-制动踏板,2-输入杆,3-反馈减速装置,4-反馈电机,5-反馈电机控制器,6-踏板位移传感器,7-踏板力传感器,8-电子控制单元,91-制动电机控制器,92-制动电机,93-转速传感器,94-转矩传感器,10-制动减速装置,11-串列双腔制动主缸,12-轮缸双向导通电磁阀组,13-制动器组,141回流电磁阀组,142-增压电磁阀组,15-储液罐,16-液压泵电机,17-液压泵,18-高压蓄能器。
具体实施方式
为了便于本领域技术人员的理解,下面结合实施例与附图对本发明作进一步的说明,实施方式提及的内容并非对本发明的限定。
参照图1、图2所示,本发明的一种高压蓄能器补偿的集成式线控电子液压制动系统,其特征在于,包括:电子踏板模块A、电子控制单元8、集成式线控制动模块B、高压蓄能器补偿模块C、液压缸模块D;
所述电子踏板模块A包括:制动踏板1、输入杆2、踏板位移传感器6、踏板力传感器7、反馈电机控制器5、反馈电机4及反馈减速装置3;其中,制动踏板1与输入杆2连接,踏板位移传感器6和踏板力传感器7均置于输入杆2上,并均与电子控制单元8电气连接,踏板位移与踏板力经踏板1传入输入杆2,踏板位移传感器6与踏板力传感器7采集踏板位移与踏板力信号,并将信号传递到电子控制单元8,电子控制单元8向反馈电机控制器5输出指 令,控制反馈电机4输出转速和转矩经反馈减速装置3、输入杆2到达踏板1,形成相应踏板感;
所述电子控制单元8(其核心为CPU,本实施例中使用的为飞思卡尔单片机,型号为16位的MC9S12XEP100)。电子控制单元8根据接收到的踏板位移信号、踏板速度信号;计算反馈电机4目标输出转速与转矩以及制动电机92的目标输出转矩和输出转速,生成对反馈电机控制器5和制动电机控制器91的控制信号;
所述集成式线控制动模块B包括:制动电机控制器91、制动电机92、转速传感器93、转矩传感器94及制动减速装置10;其中,制动电机控制器91接收来自电子控制单元8的指令,控制制动电机92输出相应的转速和转矩,经过制动减速装置10减速增距,并将输入的旋转运动转变为直线运动、转矩输出转变为力输出,进而将直线运动和力传递到串列双腔制动主缸11活塞杆,活塞杆运动挤压串列双腔制动主缸11中的制动液,从而使串列双腔制动主缸11建立相应的压强;其中,制动电机控制器91由电机控制器MCU和电机驱动电路组成;本实施例中,电机控制器MCU选用NXP公司生产的16位电机控制器芯片MC9S12ZVMRM;电机驱动电路为由六个N沟道MOSFET组成的三相全桥驱动电路,MOSFET由MCU的GDU模块驱动,PWM模块控制通断,MOSFET采用Infineon公司的IRLR8743TR;在具体实施中,也可以使用其他本领域常规的控制芯片和驱动电路;所述制动减速装置10选用行星齿轮传动机构;
所述高压蓄能器补偿模块C包括:回流电磁阀组141、增压电磁阀组142、储液罐15、液压泵电机16、液压泵17及高压蓄能器18;该模块的工作模式有两种,分别是增压模式和降压模式;增压模式下回流电磁阀组141中的电磁阀处于截止状态,此时电子控制单元8控制液压泵电机16转动驱动液压泵17,从储液罐15中抽取制动液,输出到高压蓄能器18使制动液增压,这样的高压蓄能器18为已被公知的技术,因此省略详细说明;制动工况下,为补偿集成式线控制动模块B输出位移和力不足导致的串列双腔制动主缸11的建压不足,电子控制单元8控制增压电磁阀组142中两个电磁阀的通、断,将高压蓄能器18中的高压制动液输入到串列双腔制动主缸11的第一腔和第二腔,分别使串列双腔制动主缸11第一腔和第二腔增压;其中串列双腔制动主缸11的第一腔和第二腔上方分别开有两个补偿孔,连通高压蓄能器18和串列双腔制动主缸11的两腔;解除制动时,启动降压模式,增压电磁阀组142截止,电子控制单元8控制回流电磁阀组141中两个电磁阀的通、断,此时四个制动轮缸中高压制动液经串列双腔制动主缸11、补偿孔,回流到储液罐15;
所述液压缸模块D包括:串列双腔制动主缸11、轮缸双向导通电磁阀组12、制动器组13;其中,串列双腔制动主缸11包含第一腔和第二腔,第一腔与左前轮制动器、右前轮制动器相连通,第二腔与左后轮制动器、右后轮制动器相连通,此外第一腔和第二腔上方均开有补偿孔,补偿孔连通高压蓄能器18和串列双腔制动主缸11,这样的串列双腔制动主缸为已 被公知的技术,因此省略详细说明;其中,轮缸双向导通电磁阀组12由四个双向导通电磁阀组成,四个电磁阀分别与左前轮轮缸、右前轮轮缸、左后轮轮缸、右后轮轮缸相连通,由电子控制单元8控制电磁阀的导通与截止,从而控制串列双腔制动主缸与制动轮缸的连通与断开连接;其中,制动器组由左前制动器、右前制动器、左后制动器、右后制动器组成,每个制动器中均包含一组制动轮缸。
参照图3所示,本发明的一种基于蓄能器补偿的线控电子液压制动系统的控制方法,基于上述系统,包括步骤如下:
1)驾驶员通过制动踏板向输入杆输入踏板位移和踏板力,踏板位移传感器和踏板力传感器采集踏板位移和踏板力信号;
2)电子控制单元根据接收到的踏板位移和力信号识别驾驶员的制动意图,并生成反馈电机控制器和制动电机控制器的控制指令,并分别发送指令到反馈电机控制器和制动电机控制;
3)反馈电机控制器根据接收到的指令,控制反馈电机输出力和运动,并通过反馈减速装置将力和运动输出到输入杆,进而输出力和运动到制动踏板,形成踏板感;
4)制动电机控制器接收到电子控制单元的指令后,控制制动电机输出力和运动到制动减速装置,制动减速装置将力和运动输入到主缸活塞,驱动主缸活塞做直线运动,实现主缸建立压强;;
5)转速传感器采集制动电机的实际输出转速ω 1,并将制动电机的转速信号传递到电子控制单元,电子控制单元计算出实际主缸液压力,并与目标液压力对比,计算出液压差,进而电子控制单元计算增压电磁阀组中各电磁阀的占空比,并通过控制增压电磁阀组,控制高压蓄能器与串列双腔制动主缸之间的通/断,从而实现高压蓄能器对串列双腔制动主缸液压力的补偿;
6)制动工况下,电子控制单元控制轮缸双向导通电磁阀组中各电磁阀的导通和截止,从而控制串列双腔制动主缸与制动器组之间的连通与截断,实现高压制动液从串列双腔制动主缸流向制动器组;
7)制动结束工况时,电子控制单元控制回流电磁阀组的通/断,实现高压主缸制动液回流到储液罐。
其中,所述步骤3)中,反馈电机转矩的计算表达式为:
Figure PCTCN2020090206-appb-000006
式中,T 1为反馈电机转矩,J 1为反馈电机的转动惯量,B 1为反馈电机的阻尼系数,T a1为反馈电机负载转矩,f 1为反馈电机转子处库伦摩擦常数,ω 1为反馈电机转速。
其中,所述步骤4)中,制动电机转矩的计算表达式为:
Figure PCTCN2020090206-appb-000007
式中,T 2为制动电机转矩,J 2为制动电机的转动惯量,B 2为制动电机的阻尼系数,T a2为制动电机负载转矩,f 2制动电机转子处库伦摩擦常数,ω 2为制动电机转速。
其中,所述步骤4)中制动电机采用转矩闭环控制,转矩传感器采集制动电机的输出转矩,并返回数据经过增益k 1,到制动电机输入端,与制动电机的目标输出转矩T 1对比,得到制动电机的输出力矩与目标输出力矩之间的差值:
e T(t)=T 1-T real*k 1      (3)
将计算得到的误差作为转矩闭环控制的输入,转矩闭环控制选用PID控制器,控制器的输出模型为:
Figure PCTCN2020090206-appb-000008
式中,K pT为比例系数,T T为微分常数,T dT为积分常数,u OT为控制常量。
其中,所述步骤5)中高压蓄能器对串列双腔制动主缸液压力的补偿的控制方法为:
51)电子控制单元根据转速传感器的信号,计算出实际主缸液压力变化量;转速传感器采集制动电机的实际输出转速ω 2,并将信号传递到电子控制单元,电子控制单元计算活塞实际位移量X 1
Figure PCTCN2020090206-appb-000009
式中,X 1为长螺母位移,t为时间,i 1为制动减速装置的传动比,P为长螺母螺距;
52)电子控制单元根据流体压缩性方程计算主缸液压力变化量ΔP,并计算目标主缸液压力变化量ΔP final与实际主缸液压力变化量ΔP之间的差值e p(t):
Figure PCTCN2020090206-appb-000010
ΔV=X 1*A      (7)
e p(t)=ΔP final-ΔP      (8)
式中,k为制动液压缩系数,V 0为液体初试体积,ΔV为液体体积减小量;A表示主缸缸径;
53)电子控制单元根据压力差e p(t)计算增压电磁阀组中各电磁阀的占空比,实现高压蓄能器对主缸液压力的补偿。
本发明具体应用途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (9)

  1. 一种基于蓄能器补偿的线控电子液压制动系统,其特征在于,包括:电子踏板模块、电子控制单元、集成式线控制动模块、液压缸模块及高压蓄能器补偿模块;其中,
    所述电子踏板模块包括:制动踏板、输入杆、反馈减速装置、反馈电机、反馈电机控制器、踏板位移传感器及踏板力传感器;其中,制动踏板与输入杆连接;电子控制单元、反馈电机控制器与反馈电机依次电气连接,反馈减速装置连接到反馈电机输出轴,并将反馈电机输出的力和运动传递到与之机械连接的输入杆上;踏板位移传感器和踏板力传感器均置于输入杆上,并均与电子控制单元电气连接;
    所述集成式线控制动模块包括:制动电机控制器、制动电机、制动减速装置、转速传感器及转矩传感器;电子控制单元、制动电机控制器和制动电机依次电气连接,制动减速装置与制动电机输出轴机械连接,并将制动电机输出的力和运动传递到与之连接的液压缸模块上;转速传感器用于检测制动电机输出转速的大小,并与电子控制单元电气连接;转矩传感器用于检测制动电机输出转矩的大小,并与电子控制单元电气连接;
    所述液压缸模块包括:串列双腔制动主缸、轮缸双向导通电磁阀组及制动器组;其中,串列双腔制动主缸包含第一腔和第二腔,第一腔与左前轮制动器、右前轮制动器相连通,第二腔与左后轮制动器、右后轮制动器相连通,且四个连通管路中均布置了一个双向导通电磁阀,控制连通管路的开闭,四个双向导通电磁阀组成了轮缸双向导通电磁阀组,轮缸双向导通电磁阀组与电子控制单元电气连接,四个制动器组成了制动器组;
    所述高压蓄能器补偿模块包括:回流电磁阀组、增压电磁阀组、储液罐、液压泵电机、液压泵及高压蓄能器;回流电磁阀位于储液罐与串列双腔制动主缸的连通通道上,并与电子控制单元电气连接;液压泵电机与电子控制单元电气连接,并与液压泵机械连接并驱动液压泵;液压泵在液压泵电机驱动下,实现从储液罐抽出制动液到高压蓄能器,提高高压蓄能器制动液的压强;增压电磁阀组与电子控制单元电气连接,位于串列双腔制动主缸与高压蓄能器的连通管路上;
    所述电子控制单元分别与踏板位移传感器、踏板力传感器、反馈电机控制器、制动电机控制器、增压电磁阀组、回流电磁阀组、液压泵电机、轮缸双向导通电磁阀组电气连接。
  2. 根据权利要求1所述的基于蓄能器补偿的线控电子液压制动系统,其特征在于,所述集成式线控制动模块中的制动减速装置采用行星齿轮减速机构。
  3. 根据权利要求1所述的基于蓄能器补偿的线控电子液压制动系统,其特征在于,所述第一腔和第二腔上方均开设有补偿孔,补偿孔为高压蓄能器和串列双腔制动主缸的连接通道,且两个连接通道分别布置了一个电磁阀,两个电磁阀均为增压电磁阀组,增压电磁阀组与电子控制单元电气连接。
  4. 根据权利要求1所述的基于蓄能器补偿的线控电子液压制动系统,其特征在于,所述电子控制单元的工作流程包括以下步骤:
    电子控制单元接收踏板位移传感器、踏板力传感器的踏板位移与踏板力信号;
    电子控制单元根据接收到的踏板位移与踏板力信号向反馈电机控制器发送控制指令,使反馈电机控制器向反馈电机施加控制;
    电子控制单元根据踏板位移和踏板力信号,识别出驾驶员制动意图,向制动电机控制器发送控制指令,使制动电机控制器向制动电机施加控制;
    电子控制单元接收集成式线控制动模块的转速传感器信号,并根据该信号,在制动工况下,对增压电磁阀组施加控制;
    制动工况下,电子控制单元控制轮缸双向导通电磁阀组的通/断;
    制动结束工况下,电子控制单元控制回流电磁阀组的通/断。
  5. 一种基于蓄能器补偿的线控电子液压制动系统的控制方法,其特征在于,包括步骤如下:
    1)驾驶员通过制动踏板向输入杆输入踏板位移和踏板力,踏板位移传感器和踏板力传感器采集踏板位移和踏板力信号;
    2)电子控制单元根据接收到的踏板位移和力信号识别驾驶员的制动意图,并生成反馈电机控制器和制动电机控制器的控制指令,并分别发送指令到反馈电机控制器和制动电机控制;
    3)反馈电机控制器根据接收到的指令,控制反馈电机输出力和运动,并通过反馈减速装置将力和运动输出到输入杆,进而输出力和运动到制动踏板,形成踏板感;
    4)制动电机控制器接收到电子控制单元的指令后,控制制动电机输出力和运动到制动减速装置,制动减速装置将力和运动输入到主缸活塞,驱动主缸活塞做直线运动,实现主缸建立压强;
    5)转速传感器采集制动电机的实际输出转速ω 1,并将制动电机的转速信号传递到电子控制单元,电子控制单元计算出实际主缸液压力,并与目标液压力对比,计算出液压差,进而电子控制单元计算增压电磁阀组中各电磁阀的占空比,并通过控制增压电磁阀组,控制高压蓄能器与串列双腔制动主缸之间的通/断,从而实现高压蓄能器对串列双腔制动主缸液压力的补偿;
    6)制动工况下,电子控制单元控制轮缸双向导通电磁阀组中各电磁阀的导通和截止,从而控制串列双腔制动主缸与制动器组之间的连通与截断,实现高压制动液从串列双腔制动主缸流向制动器组;
    7)制动结束工况时,电子控制单元控制回流电磁阀组的通/断,实现高压主缸制动液回流到储液罐。
  6. 根据权利要求5所述的基于蓄能器补偿的线控电子液压制动系统的控制方法,其特征在于,所述步骤3)中,反馈电机转矩的计算表达式为:
    Figure PCTCN2020090206-appb-100001
    式中,T 1为反馈电机转矩,J 1为反馈电机的转动惯量,B 1为反馈电机的阻尼系数,T a1为反馈电机负载转矩,f 1为反馈电机转子处库伦摩擦常数,ω 1为反馈电机转速。
  7. 根据权利要求5所述的基于蓄能器补偿的线控电子液压制动系统的控制方法,其特征在于,所述步骤4)中,制动电机转矩的计算表达式为:
    Figure PCTCN2020090206-appb-100002
    式中,T 2为制动电机转矩,J 2为制动电机的转动惯量,B 2为制动电机的阻尼系数,T a2为制动电机负载转矩,f 2制动电机转子处库伦摩擦常数,ω 2为制动电机转速。
  8. 根据权利要求7所述的基于蓄能器补偿的线控电子液压制动系统的控制方法,其特征在于,所述步骤4)中制动电机采用转矩闭环控制,转矩传感器采集制动电机的输出转矩,并返回数据经过增益k 1,到制动电机输入端,与制动电机的目标输出转矩T 1对比,得到制动电机的输出力矩与目标输出力矩之间的差值:
    e T(t)=T 1-T real*k 1    (3)
    将计算得到的误差作为转矩闭环控制的输入,转矩闭环控制选用PID控制器,控制器的输出模型为:
    Figure PCTCN2020090206-appb-100003
    式中,K pT为比例系数,T T为微分常数,T dT为积分常数,u 0T为控制常量。
  9. 根据权利要求7所述的基于蓄能器补偿的线控电子液压制动系统的控制方法,其特征在于,所述步骤5)中高压蓄能器对串列双腔制动主缸液压力的补偿的控制方法为:
    51)电子控制单元根据转速传感器的信号,计算出实际主缸液压力变化量;转速传感器 采集制动电机的实际输出转速ω 2,并将信号传递到电子控制单元,电子控制单元计算活塞实际位移量X 1
    Figure PCTCN2020090206-appb-100004
    式中,X 1为长螺母位移,t为时间,i 1为制动减速装置的传动比,P为长螺母螺距;
    52)电子控制单元根据流体压缩性方程计算主缸液压力变化量ΔP,并计算目标主缸液压力变化量ΔP final与实际主缸液压力变化量ΔP之间的差值e p(t):
    Figure PCTCN2020090206-appb-100005
    ΔV=X 1*A  (7)
    e p(t)=ΔP final-ΔP  (8)
    式中,k为制动液压缩系数,V 0为液体初试体积,ΔV为液体体积减小量;A表示主缸缸径;
    53)电子控制单元根据压力差e p(t)计算增压电磁阀组中各电磁阀的占空比,实现高压蓄能器对主缸液压力的补偿。
PCT/CN2020/090206 2019-05-23 2020-05-14 一种基于蓄能器补偿的线控电子液压制动系统及控制方法 WO2020233493A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910433566.6 2019-05-23
CN201910433566.6A CN110065480B (zh) 2019-05-23 2019-05-23 一种基于蓄能器补偿的线控电子液压制动系统及控制方法

Publications (1)

Publication Number Publication Date
WO2020233493A1 true WO2020233493A1 (zh) 2020-11-26

Family

ID=67371384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090206 WO2020233493A1 (zh) 2019-05-23 2020-05-14 一种基于蓄能器补偿的线控电子液压制动系统及控制方法

Country Status (2)

Country Link
CN (1) CN110065480B (zh)
WO (1) WO2020233493A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112622848A (zh) * 2020-12-24 2021-04-09 奇瑞汽车股份有限公司 线控制动系统和汽车
CN112644444A (zh) * 2021-02-02 2021-04-13 山东理工大学 一种具有高动态制动压力调节特性的线控制动系统
CN113716025A (zh) * 2021-08-30 2021-11-30 西安微电子技术研究所 一种无人机电静液刹车控制装置及动态保压方法
CN114278626A (zh) * 2021-12-23 2022-04-05 中国航空工业集团公司金城南京机电液压工程研究中心 一种电动增压储能流量补偿的机载应急液压系统及方法
CN114707248A (zh) * 2022-04-14 2022-07-05 江苏恒力制动器制造有限公司 基于神经网络的ehb压力控制方法
CN115107717A (zh) * 2022-07-21 2022-09-27 合肥工业大学 一种电子液压制动器的精确压力控制方法
CN116039593A (zh) * 2023-02-17 2023-05-02 湘潭大学 一种双驱制动器及混合线控制动系统控制方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110065480B (zh) * 2019-05-23 2023-07-11 南京航空航天大学 一种基于蓄能器补偿的线控电子液压制动系统及控制方法
CN110509907A (zh) * 2019-08-15 2019-11-29 哈尔滨北方防务装备股份有限公司 双节履带车双回路制动系统
CN111152772B (zh) * 2020-01-02 2020-10-09 佛山市一为制动技术有限公司 制动系统油压波动抑制装置及设备、制动主缸
CN112937526B (zh) * 2021-02-04 2022-07-08 南京航空航天大学 一种基于电子地图及模式切换的坡道制动系统及方法
CN114312714A (zh) * 2022-03-02 2022-04-12 万向钱潮股份有限公司 一种电子线控助力器控制系统
CN114771487A (zh) * 2022-04-16 2022-07-22 江苏恒力制动器制造有限公司 一种集成式电子液压制动系统及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103129544A (zh) * 2011-11-22 2013-06-05 株式会社万都 一体式电子液压制动系统
CN104760586A (zh) * 2015-03-31 2015-07-08 同济大学 可主动模拟踏板感觉的双电机驱动式电子液压制动系统
CN105946837A (zh) * 2016-06-29 2016-09-21 吉林大学 一种具有多工作模式的电子液压制动系统
CN110065480A (zh) * 2019-05-23 2019-07-30 南京航空航天大学 一种基于蓄能器补偿的线控电子液压制动系统及控制方法
DE102018217621A1 (de) * 2018-10-15 2020-04-16 Robert Bosch Gmbh Vorrichtung für ein hydraulisches Bremssystem und Verfahren zur Steuerung dessen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130037874A (ko) * 2011-10-07 2013-04-17 주식회사 만도 차량용 전자제어 유압 브레이크시스템의 제동장치
CN103496362B (zh) * 2013-10-24 2016-05-18 吉林大学 一种补偿式集成电机电控制动系统
CN103754210B (zh) * 2014-01-08 2016-04-20 同济大学 一种电机驱动的电子液压制动系统
CN108087346B (zh) * 2017-12-15 2019-07-26 吉林大学 一种轮毂马达液压驱动系统蓄能器流量控制方法
CN108501921B (zh) * 2018-05-04 2019-04-02 吉林大学 一种具有双压力源的液压线控制动系统及其制动控制方法
CN109532811B (zh) * 2018-10-22 2020-09-08 清华大学 一种集成式线控液压制动系统的轮缸压力调控方法
CN210101604U (zh) * 2019-05-23 2020-02-21 南京航空航天大学 一种基于蓄能器补偿的线控电子液压制动系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103129544A (zh) * 2011-11-22 2013-06-05 株式会社万都 一体式电子液压制动系统
CN104760586A (zh) * 2015-03-31 2015-07-08 同济大学 可主动模拟踏板感觉的双电机驱动式电子液压制动系统
CN105946837A (zh) * 2016-06-29 2016-09-21 吉林大学 一种具有多工作模式的电子液压制动系统
DE102018217621A1 (de) * 2018-10-15 2020-04-16 Robert Bosch Gmbh Vorrichtung für ein hydraulisches Bremssystem und Verfahren zur Steuerung dessen
CN110065480A (zh) * 2019-05-23 2019-07-30 南京航空航天大学 一种基于蓄能器补偿的线控电子液压制动系统及控制方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112622848A (zh) * 2020-12-24 2021-04-09 奇瑞汽车股份有限公司 线控制动系统和汽车
CN112622848B (zh) * 2020-12-24 2022-02-01 奇瑞汽车股份有限公司 线控制动系统和汽车
CN112644444A (zh) * 2021-02-02 2021-04-13 山东理工大学 一种具有高动态制动压力调节特性的线控制动系统
CN113716025A (zh) * 2021-08-30 2021-11-30 西安微电子技术研究所 一种无人机电静液刹车控制装置及动态保压方法
CN113716025B (zh) * 2021-08-30 2023-05-16 西安微电子技术研究所 一种无人机电静液刹车控制装置及动态保压方法
CN114278626A (zh) * 2021-12-23 2022-04-05 中国航空工业集团公司金城南京机电液压工程研究中心 一种电动增压储能流量补偿的机载应急液压系统及方法
CN114278626B (zh) * 2021-12-23 2023-11-07 中国航空工业集团公司金城南京机电液压工程研究中心 一种电动增压储能流量补偿的机载应急液压系统及方法
CN114707248A (zh) * 2022-04-14 2022-07-05 江苏恒力制动器制造有限公司 基于神经网络的ehb压力控制方法
CN114707248B (zh) * 2022-04-14 2024-04-26 江苏恒力制动器制造有限公司 基于神经网络的ehb压力控制方法
CN115107717A (zh) * 2022-07-21 2022-09-27 合肥工业大学 一种电子液压制动器的精确压力控制方法
CN116039593A (zh) * 2023-02-17 2023-05-02 湘潭大学 一种双驱制动器及混合线控制动系统控制方法
CN116039593B (zh) * 2023-02-17 2024-04-26 湘潭大学 一种双驱制动器及混合线控制动系统控制方法

Also Published As

Publication number Publication date
CN110065480A (zh) 2019-07-30
CN110065480B (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
WO2020233493A1 (zh) 一种基于蓄能器补偿的线控电子液压制动系统及控制方法
CN106891878B (zh) 一种改进主缸的电机驱动电子液压制动系统
CN108501921B (zh) 一种具有双压力源的液压线控制动系统及其制动控制方法
CN206406908U (zh) 一种改进主缸的电机驱动电子液压制动系统
WO2021073645A1 (zh) 踏板感可调带自检的集成制动系统
CN105799679A (zh) 油压助力制动系统及其控制方法
CN204567648U (zh) 一种解耦式电子液压制动系统
CN110682899A (zh) 踏板感可调的集成制动系统
CN109177944A (zh) 一种液压耦合的电子液压制动系统
CN103950443A (zh) 踏板感觉主动控制式电子液压制动系统
CN105946837A (zh) 一种具有多工作模式的电子液压制动系统
CN107891850A (zh) 一种带有解耦功能的集成式电液制动系统
CN208897043U (zh) 一种液压耦合的电子液压制动系统
CN110774900B (zh) 用于轮毂电机驱动汽车全解耦式再生制动装置及控制方法
CN216185080U (zh) 电动汽车三通道式制动系统
CN105329227A (zh) 用于车辆的制动系统
CN113830058A (zh) 一种线控液压制动系统及方法
CN211809554U (zh) 一种踏板感可调的集成制动系统
CN114604216B (zh) 一种底盘集成制动系统
CN113492817A (zh) 车辆制动系统和车辆
CN210101604U (zh) 一种基于蓄能器补偿的线控电子液压制动系统
CN211809555U (zh) 一种踏板感可调带自检的集成制动系统
CN212529614U (zh) 可同时实现线控与人工驾驶的液压制动系统
CN109383475A (zh) 一种用于制动系统的供能及压力调节装置、制动系统及自主制动方法
CN201961304U (zh) 一种电控液压制动助力系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809488

Country of ref document: EP

Kind code of ref document: A1