WO2023039923A1 - 一种半芳香族聚酯及其制备方法和应用 - Google Patents

一种半芳香族聚酯及其制备方法和应用 Download PDF

Info

Publication number
WO2023039923A1
WO2023039923A1 PCT/CN2021/119956 CN2021119956W WO2023039923A1 WO 2023039923 A1 WO2023039923 A1 WO 2023039923A1 CN 2021119956 W CN2021119956 W CN 2021119956W WO 2023039923 A1 WO2023039923 A1 WO 2023039923A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
component
semi
aromatic polyester
dimethyl
Prior art date
Application number
PCT/CN2021/119956
Other languages
English (en)
French (fr)
Inventor
张传辉
陈平绪
叶南飚
欧阳春平
麦开锦
董学腾
曾祥斌
卢昌利
蔡彤旻
Original Assignee
珠海万通化工有限公司
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海万通化工有限公司, 金发科技股份有限公司 filed Critical 珠海万通化工有限公司
Publication of WO2023039923A1 publication Critical patent/WO2023039923A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the invention relates to the technical field of biodegradable polyester, in particular to a semi-aromatic polyester and its preparation method and application, in particular to a semi-aromatic polyester with a specific dimer (1,4-butanediol) content Polyesters and their preparation and use.
  • thermoplastic aromatic polyesters which are widely used in industry and daily life, have excellent thermal stability and mechanical properties, are easy to process and low in price.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • these aromatic polyesters are difficult to degrade after being used and discarded, and no obvious direct degradation of aromatic polyesters such as PET and PBT by microorganisms has been observed so far.
  • polyester To improve the color of polyester, the industry generally controls it by adding a stabilizer during the polycondensation process, which has become a conventional technology in aromatic polyesters such as PET and PBT.
  • a stabilizer for example, (Rieckmann, T.; Volker, S., 2. Poly(ethylene terephthalate) Polymerization-Mechanism, Catalysis, Kinetics, Mass Transfer and Reactor Design. In Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters, Scheirs, J.
  • aliphatic-aromatic copolyester can be obtained by adding 0.03% to 0.04% by weight of phosphorus compound in the polycondensation stage of the aliphatic-aromatic copolyester Have a whiteness index of at least 25 according to ASTM E313-73.
  • CN212560068U discloses a production system of biodegradable polyester.
  • the esterification reaction kettle of this production system is connected with a process tower, and the water, tetrahydrofuran and excess 1,4-butanediol generated during the esterification process enter the process tower for rectification, and the bottom of the process tower is heated by liquid heat medium , the recovered 1,4-butanediol discharged from the bottom of the tower is sent back to the reflux port of the esterification tank, so that the recovered 1,4-butanediol enters the reaction system through the reflux port to participate in the esterification reaction again.
  • this simple process column rectification only distills low-boiling point water, tetrahydrofuran, etc.
  • the object of the present invention is to overcome the deficiencies of the prior art, and provide a semi-aromatic polyester with specific dimer (1,4-butanediol) content, its preparation method and application.
  • the present invention provides a semi-aromatic polyester comprising repeat units derived from:
  • the first component A based on the total molar weight of the first component A, comprises:
  • Second component B 1,4-butanediol
  • the third component C dimeric (1,4-butanediol), has the formula HO-CH 2 CH 2 CH 2 CH 2 -O-CH 2 CH 2 CH 2 CH 2 -OH, and, based on the first group
  • the molar content of the repeating unit -CH 2 CH 2 CH 2 CH 2 -O- in the third component C is 0.05-0.35 mol% of the total molar weight of component A.
  • the present invention found that based on the total molar weight of the first component A, controlling the molar content of the repeating unit -CH 2 CH 2 CH 2 CH 2 -O- in the third component C to 0.05-0.35 mol% can effectively improve half Resin color of aromatic polyesters without loss of properties of copolyesters obtained.
  • the component a1) is selected from oxalic acid, dimethyl oxalate, malonic acid, dimethyl malonate, succinic acid, dimethyl succinate, methyl succinic acid, glutaric acid , dimethyl glutarate, bis(2-hydroxyethyl) glutarate, bis(3-hydroxypropyl) glutarate, bis(4-hydroxybutyl) glutarate, 2-methyl Glutaric acid, 3-methylglutaric acid, adipic acid, dimethyl adipate, bis(2-hydroxyethyl) adipate, bis(3-hydroxypropyl) adipate, Bis(4-hydroxybutyl)adipate, 3-methyladipic acid, 2,2,5,5-tetramethyladipic acid, pimelic acid, suberic acid, azelaic acid, azelaic acid dimethyl ester, sebacic acid, 1,11-undecanedicarboxylic acid, 1,10-decanedicarboxylic acid, 1,11-und
  • ester derivatives of aliphatic dicarboxylic acids also belong to the category of component a1), preferably, the ester derivatives of aliphatic dicarboxylic acids are selected from dialkyl esters of aliphatic dicarboxylic acids.
  • the dialkyl ester is for example dimethyl ester, diethyl ester, di-n-propyl ester, diisopropyl ester, di-n-butyl ester, diisobutyl ester, di-tert-butyl ester, di-n-pentyl ester, diisoamyl ester or di-n-hexyl ester.
  • anhydride derivatives formed from the above aliphatic dicarboxylic acids also belong to the category of component a1).
  • the aliphatic dicarboxylic acids or their ester derivatives or their anhydride derivatives in the present invention may be used alone or in admixture of two or more.
  • the component a2) is selected from terephthalic acid, dimethyl terephthalate, bis(2-hydroxyethyl) terephthalate, bis(3-hydroxypropyl terephthalate) ) ester, bis (4-hydroxybutyl) terephthalate, isophthalic acid, dimethyl isophthalate, bis (2-hydroxyethyl) isophthalate, bis ( 3-hydroxypropyl) ester, bis(4-hydroxybutyl) isophthalate, 2,6-naphthalene dicarboxylic acid, 2,6-dimethyl phthalate, 2,7-naphthalene dicarboxylic acid , 2,7-dimethyl phthalate, 3,4'-diphenyl ether dicarboxylic acid, 3,4'-dimethyl diphenyl ether dicarboxylate, 4,4'-diphenyl ether dicarboxylic acid, 4 , 4'-diphenyl ether dicarboxylic acid dimethyl ester,
  • the third component C is dimerized (1,4-butanediol), the molecular formula is HO-CH 2 CH 2 CH 2 CH 2 -O-CH 2 CH 2 CH 2 CH 2 -OH, and, based on the The total molar weight of one component A, the molar content of the repeating unit -CH 2 CH 2 CH 2 CH 2 -O- in the third component C is preferably 0.05-0.30 mol%.
  • the semi-aromatic polyester also contains a fourth component D, in which the fourth component D is preferably a compound containing at least three functional groups, preferably three to six functional compound.
  • the fourth component D is preferably a compound containing at least three functional groups, preferably three to six functional compound.
  • the fourth component D is preferably a compound containing at least three functional groups, preferably three to six functional compound.
  • the fourth component D is preferably selected from: tartaric acid, citric acid, malic acid, trimethylolpropane, trimethylolethane, pentaerythritol, polyethertriol, glycerol, 1,3,5-trimesic acid, 1,2,4- One or more of trimellitic acid, 1,2,4-trimesic anhydride, 1,2,4,5-pyrimellitic acid and pyromellitic dianhydride, more preferably trimethylolpropane, pentaerythritol or glycerin.
  • the content of the fourth component D is 0.01-5.0 mol%, more preferably 0.02-2.0 mol%.
  • the semi-aromatic polyester may also include a fifth component E, which is a chain extender.
  • the chain extender is isocyanate, isocyanurate, peroxide, epoxy, oxazoline, oxazine, lactam, carbodiimide or polycarbodiimide containing two or more functional groups One or more mixtures of amines.
  • the isocyanate containing two or more functional groups may be aromatic isocyanate or aliphatic isocyanate, preferably aromatic diisocyanate or aliphatic diisocyanate.
  • the aromatic diisocyanate is preferably toluene 2,4-diisocyanate, toluene 2,6-diisocyanate, diphenylmethane 2,2'-diisocyanate, diphenylmethane 2,4'-diisocyanate, diphenylmethane Benzene 4,4'-diisocyanate, naphthalene 1,5-diisocyanate or xylene diisocyanate.
  • the aromatic diisocyanate is diphenylmethane 2,2'-diisocyanate, diphenylmethane 2,4'-diisocyanate or diphenylmethane 4,4'-diisocyanate.
  • the aliphatic diisocyanate is any linear or branched alkylene diisocyanate or cycloalkylene diisocyanate containing 2 to 20 carbon atoms. More preferably it contains 3 to 12 carbon atoms.
  • the aliphatic diisocyanate may be hexamethylene 1,6-diisocyanate, isophorone diisocyanate or methylene bis(4-isocyanatocyclohexane). Most preferred is hexamethylene 1,6-diisocyanate or isophorone diisocyanate.
  • the isocyanate containing 2 or more functional groups may also be tris(4-isocyanato-phenyl)methane with three rings.
  • the isocyanurate containing 2 or more functional groups is an aliphatic isocyanurate derived from an alkylene group having 2 to 20 carbon atoms, preferably 3 to 12 carbon atoms Diisocyanates or cycloalkylene diisocyanates, such as isophorone diisocyanate or methylene bis(4-isocyanatocyclohexane).
  • the alkylene diisocyanate may be a linear or branched compound. Particular preference is given to isocyanurates based on n-hexamethylene diisocyanate, such as cyclic trimers, pentamers or higher oligomers of hexamethylene 1,6-diisocyanate.
  • the peroxide containing two or more functional groups is preferably benzoyl peroxide, 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclo Hexane, 1,1-bis(tert-butylperoxy)methylcyclododecane, n-butyl 4,4-bis(butylperoxy)valerate, dicumyl peroxide, benzene peroxide tert-butyl formate, dibutyl peroxide, ⁇ , ⁇ -di(tert-butylperoxy)diisopropylbenzene, 2,5-dimethyl-2,5-bis(tert-butylperoxy) ) hexane, 2,5-dimethyl-2,5-di(tert-butylperoxy)hex-3-yne or cumene tert-butylperoxide.
  • benzoyl peroxide 1,1-bis(tert-butylperoxy)-3,3,
  • the epoxide containing 2 or more functional groups is preferably hydroquinone, diglycidyl ether, resorcinol diglycidyl ether, 1,6-hexanediol diglycidyl ether and hydrogenated bisphenol A diglycidyl ether, diglycidyl terephthalate, diglycidyl tetrahydrophthalate, diglycidyl hexahydrophthalate, di-phthalate Methyl diglycidyl ester, phenylene diglycidyl ether, ethylene diglycidyl ether, trimethylene diglycidyl ether, tetramethylene diglycidyl ether, hexamethylene di Glycidyl ether, sorbitol diglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, gly
  • the epoxy containing 2 or more functional groups is also preferably a copolymer based on styrene, acrylate and/or methacrylate and containing epoxy groups, and the epoxy groups are preferably methacrylic acid shrinkage Glycerides.
  • Compounds which have proven advantageous are copolymers in which the proportion of glycidyl methacrylate in the copolymer is higher than 20% by weight, more preferably higher than 30% by weight, more preferably higher than 50% by weight.
  • the epoxy equivalent weight in these copolymers is preferably 150 to 3000 g/equivalent, more preferably 200 to 500 g/equivalent.
  • the weight average molecular weight Mw of the copolymer is preferably 2,000 to 25,000, more preferably 3,000 to 8,000.
  • the number average molecular weight Mn of the copolymer is preferably 400 to 6000, more preferably 1000 to 4000.
  • the bisoxazoline is 2,2'-bis(2-oxazoline), bis(2-oxazolinyl)methane, 1,2-bis(2-oxazolinyl)ethane , 1,3-bis(2-oxazolinyl)propane, 1,4-bis(2-oxazolinyl)butane, 2,2'-bis(2-oxazoline), 2,2' -bis(4-methyl-2-oxazoline), 2,2'-bis(4,4'-dimethyl-2-oxazoline), 2,2'-bis(4-ethyl- 2-oxazoline), 2,2'-bis(4,4'-diethyl-2-oxazoline), 2,2'-bis(4-propyl-2-oxazoline), 2 ,2'-bis(4-butyl-2-oxazoline), 2,2'-bis(4-hexyl-2-oxazoline), 2,2'-bis(4-phenyl-2- Oxazoline), 2, 2,2
  • dioxazine is 2,2'-bis(2-dioxazine), bis(2-dioxazinyl)methane, 1,2-bis(2-dioxazinyl)ethane, 1, 3-bis(2-dioxazinyl)propane, 1,4-bis(2-dioxazinyl)butane, 1,4-bis(2-dioxazinyl)benzene, 1,2-bis( 2-dioxazinyl)benzene or 1,3-bis(2-dioxazinyl)benzene.
  • it is 1,4-bis(2-oxazolinyl)benzene, 1,2-bis(2-oxazolinyl)benzene or 1,3-bis(2-oxazolinyl)benzene.
  • the carbodiimide or polycarbodiimide having two or more functional groups is preferably N, N'-di-2,6-diisopropylphenylcarbodiimide, N, N'- Di-o-tolylcarbodiimide, N,N'-diphenylcarbodiimide, N,N'-dioctyldecylcarbodiimide, N,N'-di-2,6- Dimethylphenylcarbodiimide, N-tolyl-N'-cyclohexylcarbodiimide, N,N'-di-2,6-di-tert-butylphenylcarbodiimide, N- Tolyl-N'-phenylcarbodiimide, N,N'-di-p-nitrophenylcarbodiimide, N,N'-di-p-aminophenylcarbodiimide, N,N' -Di-p-hydroxyphenylcarbodi
  • the content of the fifth component E is 0.01-5 mol% based on the total molar weight of the first component A.
  • the viscosity number of the semi-aromatic polyester measured in a phenol/o-dichlorobenzene solution with a weight ratio of 1:1 in a constant temperature water bath at 25 ⁇ 0.05°C is 100 according to GB/T 17931-1999 -350ml/g.
  • the carboxyl content of the semi-aromatic polyester is 5-60 mmol/kg, more preferably 10-50 mmol/kg.
  • the present invention also provides the preparation method of above-mentioned semi-aromatic polyester, comprises the steps:
  • step S2 The esterification product AB in step S1 is subjected to a primary polycondensation reaction under the action of the remaining catalyst, and the reaction temperature is 230-270°C until the reaction product reaches the phenol/o In dichlorobenzene solution, the viscosity measured in a constant temperature water bath at 25 ⁇ 0.05°C is 20-60ml/g;
  • step S3 Transfer the product of the primary polycondensation reaction obtained in step S2 to the final polymerization tank, and continue the polycondensation reaction at a temperature of 220 to 270 ° C until the reaction product reaches the phenol/o
  • the viscosity measured in a constant temperature water bath at 25 ⁇ 0.05° C. is 100-250 ml/g, and the carboxyl group content in the reaction product is 5-60 mmol/kg to obtain a semi-aromatic polyester.
  • step S1 when preparing the AB esterification product, 0.001-1% of catalyst based on the weight of the final semi-aromatic polyester is added.
  • the catalyst is added in an amount of 0.02-0.2% by weight of the final semi-aromatic polyester.
  • the amount of catalyst added in step S1 is usually 50-80wt% of the total amount of catalyst used. Controlling the amount of catalyst added can make the subsequent processing more stable.
  • the catalyst may be a tin compound, an antimony compound, a cobalt compound, a lead compound, a zinc compound, an aluminum compound or a titanium compound, more preferably a zinc compound, an aluminum compound or a titanium compound, and most preferably a titanium compound.
  • titanium compounds such as tetrabutyl orthotitanate or tetraisopropyl orthotitanate
  • tetrabutyl orthotitanate or tetraisopropyl orthotitanate over other compounds is that the residues in the product or downstream products are less toxic. This property is especially important in biodegradable polyesters as they go directly into the environment in the form of compostable bags or mulch films.
  • the purification equipment connected to the esterification reactor is a combination of a process column and a short path still.
  • Molecular distillation is a distillation method operated under high vacuum. At this time, the mean free path of steam molecules is greater than the distance between the evaporation surface and the condensation surface, so that the difference in evaporation rate of each component in the feed liquid can be used to optimize the liquid mixture. to separate.
  • the short-path still is designed according to the principle of molecular distillation. It is a model for simulating molecular distillation. Because the distance between the heating surface and the cooling surface is very close and the resistance is small, it is called a short-path still. Due to the function of the built-in condenser, it can instantly liquefy the vaporized vapor phase and shrink its volume, so it can maintain a high vacuum inside the equipment. The operating vacuum of the short-path distiller can reach 0.1Pa (absolute pressure), which cannot be achieved by other evaporation and distillation equipment. Therefore, the short-path distiller is especially suitable for materials with high boiling points under normal pressure and difficult to separate by ordinary separation methods. A new type of liquid-liquid separation equipment has been successfully experienced in many industries.
  • the short-path distiller can use the SPD type short-path distiller of Wuxi Hengyi Chemical Machinery Co., Ltd. (http://www.wxhengyi.com/index.asp).
  • the process column mainly separates low-boiling point substances such as tetrahydrofuran and water and other by-products. These low-boiling point substances flow out from the top of the tower and enter the tetrahydrofuran purification unit; high-boiling point substances such as 1,4-butanediol and other by-products flow out from the bottom of the process column and enter SPD type short-path distiller, after being purified by the short-path distiller, it is recycled into the esterification reactor.
  • low-boiling point substances such as tetrahydrofuran and water and other by-products.
  • step S2 if necessary, the remaining amount of catalyst can be added in step S2.
  • the reaction temperature is more preferably 240-260°C.
  • the pressure at the beginning is usually set to 0.1 to 0.5 bar, preferably 0.2 to 0.4 bar, and the pressure at the end of S2 is usually set to 5 to 200 mbar, more preferably 10 to 100 mbar.
  • the general reaction time is 1 to 5 hours. Under normal circumstances, after this reaction time, it can produce , The viscosity measured in a constant temperature water bath at 25 ⁇ 0.05°C is 20-60ml/g prepolyester.
  • the carboxyl content of the obtained prepolyester after the S2 reaction is generally 10-60 mmol/kg.
  • a passivating agent can be added to the reaction system.
  • Useful passivators are usually phosphorus compounds, including phosphoric acid, phosphorous acid and their esters.
  • a passivating agent is usually added in step S3.
  • the reaction temperature of the continuous polycondensation is preferably 230 to 270°C.
  • the initial pressure is usually controlled to be 0.2 to 5 mbar, more preferably 0.5 to 3 mbar.
  • the reaction time of the continuous polycondensation is preferably 30 to 90 minutes, more preferably 40 to 80 minutes.
  • the carboxyl content of the semi-aromatic polyester after the S3 reaction is 5-60 mmol/kg, preferably 10-50 mmol/kg.
  • step S4 is carried out, and the semi-aromatic polyester obtained in step S3 is added in the twin-screw extruder, together with the fifth component E in an amount of 0.01-5.0 mol% (based on the first group
  • the total molar amount of component A using a residence time of 0.5 to 15 minutes at a reaction temperature of 200 to 270 ° C, to obtain a semi-aromatic polyester, which is specified in GB/T 17931-1999 at a weight ratio of 1:1
  • the viscosity measured in a constant temperature water bath at 25 ⁇ 0.05°C is 150-350ml/g.
  • the present invention also provides the application of the above-mentioned semi-aromatic polyester in the preparation of compostable degradation products, and the compostable degradation products may be fibers, films or containers.
  • the present invention also provides the application of the above-mentioned semi-aromatic polyester in the preparation of straws.
  • Semi-aromatic polyester can be blended and modified with polylactic acid (PLA) as a material for making straws. Since the straw is in contact with liquid, it is required to have certain hydrolysis resistance, but considering the requirements of degradability, water resistance The degradation performance cannot be too high, otherwise the degradation cycle will be too long. According to practical application, use the test of 30-day weight retention rate to evaluate its degradation performance. The 30-day weight retention rate is generally in the range of 50-60%, and within this range, the higher the value, the better. If the 30-day weight retention rate exceeds 65%, the degradation performance is too poor; if it is lower than 45%, the degradation is too rapid.
  • the present invention also provides a semi-aromatic polyester molding composition, comprising the following components by weight ratio:
  • said additives and/or other polymers may be at least one or more selected from the group consisting of aliphatic polyesters, polycaprolactone, starch, cellulose, polyhydroxyalkanoates and polylactic acid components.
  • the present invention has the following beneficial effects:
  • the invention provides a semi-aromatic polyester and its preparation method and application. Based on the total molar weight of diacid, the repeating unit -CH 2 CH 2 CH 2 CH 2 - in dimerization (1,4-butanediol) The molar content of O- is controlled at 0.05-0.35 mol%, preferably 0.05-0.30 mol%, which can effectively improve the resin color of the semi-aromatic polyester without reducing the performance of the copolyester.
  • Fig. 1 is the 1 H NMR that the PBAT that embodiment 2 obtains adopts Bruker company AV 500 nuclear magnetic resonance spectrometer to measure and obtain;
  • Fig. 2 is the 1 H NMR of the key peak of the repeating unit of dimerization (1,4-butanediol) in PBAT obtained by implementing 8.1;
  • Fig. 3 is the schematic diagram of the combined device of esterification reactor connecting process tower and short-path distiller in the embodiment of the present invention
  • Fig. 4 is a schematic diagram of a traditional esterification reactor connected to a primary process tower device
  • Fig. 5 is the 1 H NMR of the peak near the hydrogen atom on CH 2 of the polymer product obtained after adding poly(1,4-butanediol) with a molecular weight of 1000 in Example 8.6 to the ether bond oxygen atom.
  • the purity test method of fresh 1,4-butanediol, recovered crude 1,4-butanediol, and recovered high-purity 1,4-butanediol is:
  • the purity of fresh 1,4-butanediol in all examples and comparative examples is the same, purchased from Xinjiang Meike Chemical Co., Ltd., with a purity of ⁇ 99.7%.
  • Other raw materials such as terephthalic acid, adipic acid, sebacic acid, glycerin, tetrabutyl orthotitanate, and phosphorous acid are commercially available.
  • I 1 and I 1' are the integrated areas of the two hydrogen atom peaks on -CH 2 - on the repeating unit of the dimeric (1,4-butanediol) adjacent to terephthalic acid;
  • I 2 and I 2' are the integrated areas of the two hydrogen atom peaks on -CH 2 - on the repeating unit of dimerization (1,4-butanediol) adjacent to adipic acid;
  • IT is the integral area of 4 hydrogen atoms on the benzene ring of the terephthalic acid repeating unit
  • I A is the integrated area of the 4 hydrogen atoms on the 2 -CH 2 - of the adipic acid repeating unit connected to the carbonyl group;
  • the molar content of the repeating unit -CH 2 CH 2 CH 2 CH 2 -O- in the third component C in other PBATs was also obtained by a similar method.
  • Color of semi-aromatic polyester Take the diced and dried sample and test it according to GB/T 14190-2017 5.5.2 method B (drying method). Get the Hunter Lab color system L, a, and b values from the test, and define the Hunter whiteness:
  • the solvent mixture used included 1 part by volume of DMSO, 8 parts by volume of isopropanol, and 7 parts by volume of toluene, with a solvent volume of 100 ml. Take 3-6g of semi-aromatic polyester and heat it to 70°C to dissolve all the polymers into a clear solution. During the titration, keep the solution temperature at 60-70°C to avoid polymer precipitation.
  • the titration solution is tetrabutylammonium hydroxide, avoiding the use of highly toxic tetramethylammonium hydroxide.
  • the blank solvent in order to prevent the mixed solvent from absorbing CO2 in the air and thus affecting the volume of the titration solution consumed by the blank solvent, when testing the volume of the titration solution consumed by the blank solvent, the blank solvent should be heated to 70°C and kept at a constant temperature for 0.5h, and then the blank solvent should be depleted. Titration.
  • the biodegradation experiment of semi-aromatic polyester refers to GB/T 19277-2003 test.
  • the semi-aromatic polyester sample is pressed into a film with a thickness of 0.10mm, and then cut into a sample piece of 1.2cm ⁇ 2.0cm. At this time, the sample weight is recorded as a 0 .
  • the 30-day weight retention rate is generally within the range of 50-60%, and within this range, the higher the value, the better. If the 30-day weight retention rate exceeds 65%, the degradation performance is too poor; if it is lower than 45%, the degradation is too rapid.
  • the molar content of the repeating unit -CH 2 CH 2 CH 2 CH 2 -O- in the third component C was out of range, resulting in poor color of the resin; similarly, in the resin obtained in Comparative Example 2
  • the molar content of the repeating unit -CH2CH2CH2CH2 - O- in the third component C is too low, although a resin with excellent color is obtained, the 30 -day weight retention is too high, and the excess of 1,4-butane Diol cannot be recovered, the production line operation cost is high, and does not have commercial value; comparative example 3 terephthalic acid content is too high, and resin degradation performance is poor (30-day weight retention rate is too high); comparative example 4 terephthalic acid content is too high Low, resin degrades too quickly (30 day weight retention too low).
  • 1,4-butanediol may contain various products after 1,4-butanediol polymerization, such as dimerization (1,4-butanediol) and poly(1,4-butanediol) etc., to further verify the relationship between PBAT resin color and them.
  • dimerization (1,4-butanediol) and poly(1,4-butanediol) and resin color was studied.
  • the 1,4-butanediol raw materials used in this example are all the same and fresh butanediol with a purity ⁇ 99.7%.
  • Example 8.2 Under the protection of high-purity nitrogen, 2.36kg of terephthalic acid, 2.36kg of adipic acid, 4.38kg of 1,4-butanediol, 25g of dimer (1,4-butanediol), and 6.2g of glycerin were prepared 1. Put 4.2 g of n-butyl titanate into the reaction kettle, raise the temperature to 220-240° C. and keep the temperature for 120 minutes. Then, 1.25 g of phosphorous acid was added thereto. Reduce the pressure in the reactor to below 50 Pa within 30-60 minutes, and react at 220-260°C for 60-120 minutes. Stop stirring, fill the reactor with high-purity nitrogen, press out the resin from the reactor, water-cool and granulate to obtain the polyester product. The performance results are shown in Table 2.
  • Example 8.6 The polymer product obtained after adding poly(1,4-butanediol) with a molecular weight of 1000 (the number of repeating units -CH 2 CH 2 CH 2 CH 2 -O- is about 14) is linked to CH with an ether bond oxygen atom
  • the 1 H NMR of the peak near the hydrogen atom on 2 is shown in Fig. 5 . Since the self-generated dimer (1,4-butanediol) in the polymerization product overlaps with the additionally added poly(1,4-butanediol) with a molecular weight of 1000 around 3.4ppm, only the polymerization product can be calculated
  • I 1 and I 1' are the integrated areas of the hydrogen atom peaks on -CH 2 - linked to the ether bond oxygen atom on the poly(1,4-butanediol) repeating unit adjacent to terephthalic acid;
  • I 2 and I 2' are the integrated areas of the hydrogen atom peaks on -CH 2 - on the poly(1,4-butanediol) repeating unit adjacent to adipic acid, which is connected to the oxygen atom of the ether bond;
  • I 3 is the integrated area of the hydrogen atom peak on -CH 2 -on the poly(1,4-butanediol) repeating unit that is not adjacent to terephthalic acid and adipic acid, which is connected to the ether bond oxygen atom;
  • IT is the integral area of 4 hydrogen atoms on the benzene ring of the terephthalic acid repeating unit
  • I A is the integrated area of the 4 hydrogen atoms on the 2 -CH 2 - of the adipic acid repeating unit connected to the carbonyl group;
  • I 1 and I 1' can also reflect the proportion of repeating units of terephthalic acid
  • I 2 and I 2' can also reflect the proportion of repeating units of adipic acid
  • Formula (6) is based on the total molar weight of the first component A (diacid), the repeating units derived from all poly(1,4-butanediol) (including self-generated and additionally added) in the polymerization product- The formula for calculating the molar content of CH 2 CH 2 CH 2 CH 2 -O-.
  • Example 8 It can be seen from Examples 8.5-8.1 in Table 2 that with the increase of the amount of dimerized (1,4-butanediol), the color of the resin becomes significantly worse. At the same time, adding other poly(1,4-butanediol) with higher molecular weight to the polymerization system (Example 8.6 and Example 8.7) has no obvious effect on the color of the resin.
  • the data of Example 8 further illustrate that dimer (1,4-butanediol) has an influence on the color of the resin, and the content of dimer (1,4-butanediol) increases, and the color of the resin becomes worse.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

一种半芳香族聚酯及其制备方法和应用,基于二酸的总摩尔量,本发明将二聚(1,4-丁二醇)中重复单元-CH2 CH2CH2CH2-O-的摩尔含量控制为0.05-0.35mol%,可有效改善半芳香族聚酯的树脂颜色。

Description

一种半芳香族聚酯及其制备方法和应用 技术领域
本发明涉及可生物降解聚酯技术领域,具体涉及一种半芳香族聚酯及其制备方法和应用,特别是涉及一种具有特定二聚(1,4-丁二醇)含量的半芳香族聚酯及其制备方法和应用。
背景技术
目前广泛应用于工业及日常生活中的热塑性芳香族聚酯有着优良热稳定性能和力学性能,便于加工,价格低廉。例如,聚对苯二甲酸乙二醇酯(PET)和聚对苯二甲酸丁二醇酯(PBT)已广泛应用于纤维、膜和容器的制造中。然而,这些芳香族聚酯在使用废弃后难以降解,至今也没有观察到微生物对芳香族聚酯如PET、PBT有任何明显的直接降解。为了结合芳香族聚酯的优良性能,20世纪80年代以来,本领域技术人员致力于合成脂肪族-芳香族共聚酯的研究,即在脂肪族聚酯中引入芳香链段,既保证了该共聚酯具有芳香族聚酯的优良性能,又保证了该共聚酯的可生物降解性。
对于改善聚酯的颜色,业内一般在缩聚过程中加入稳定剂的方式来控制,其在芳香族聚酯如PET和PBT中已经成为一项常规技术。例如,(Rieckmann,T.;Volker,S.,2.Poly(ethylene terephthalate)Polymerization-Mechanism,Catalysis,Kinetics,Mass Transfer and Reactor Design.In Modern Polyesters:Chemistry and Technology of Polyesters and Copolyesters,Scheirs,J.;Long,T.E.,Eds.John Wiley & Sons,Ltd.:Chichester,2003;p 63.)指出,在PET聚合过程中加入磷酸类化合物(如磷酸三苯酯、亚磷酸三苯酯等)作为稳定剂,可大大降低PET发黄程度;WO2018/219708A1也指出,可通过在脂肪族-芳香族共聚酯缩聚阶段加入0.03%至0.04%重量的磷化合物,获得的脂肪族-芳香族共聚酯具有根据ASTM E313-73至少25的白度指数。
CN212560068U公开了一种生物可降解聚酯的生产系统。该生产系统的酯化反应釜与一个工艺塔相连,酯化过程中生成的水及四氢呋喃和过量的1,4-丁二醇等进入工艺塔中进行精馏,工艺塔底部采用液体热媒加热,塔底出料的回收1,4-丁二醇送回酯化釜的回流口,这样回收1,4-丁二醇通过该回流口进入反应体系重新参与酯化反应。然而,这种简单的工艺塔精馏仅仅将低沸点的水、四氢呋喃等从工艺塔顶部馏出,剩余的物质全部从工艺塔底部回流至酯化釜,这些剩余物质中含有大量的1,4-丁二醇多聚体等副产物,这些副产物进入酯化釜后能够参与聚合反应,造成后续脂肪族-芳香族聚酯性能劣化。
总之,目前本领域技术人员并未意识到副产物杂质对共聚酯性能、尤其是颜色的影响。
发明内容
本发明的目的在于克服现有技术的不足,提供一种具有特定二聚(1,4-丁二醇)含量的半芳香族聚酯及其制备方法和应用。
本发明的上述目的通过如下技术方案予以实现:
一方面,本发明提供一种半芳香族聚酯,其包括衍生自下述组分的重复单元:
第一组分A,基于第一组分A的总摩尔量,包括:
a1)35至65mol%,优选40-60mol%的至少一种脂肪族二羧酸或其酯衍生物或其酸酐衍生物,
a2)35至65mol%,优选40-60mol%的至少一种芳香族二羧酸或其酯衍生物或其酸酐衍生物,
第二组分B,1,4-丁二醇,
第三组分C,二聚(1,4-丁二醇),分子式为HO-CH 2CH 2CH 2CH 2-O-CH 2CH 2CH 2CH 2-OH,并且,基于第一组分A的总摩尔量,第三组分C中重复单元-CH 2CH 2CH 2CH 2-O-的摩尔含量为0.05-0.35mol%。
本发明发现,基于第一组分A的总摩尔量,将第三组分C中重复单元-CH 2CH 2CH 2CH 2-O-的摩尔含量控制为0.05-0.35mol%可有效改善半芳香族聚酯的树脂颜色,且获得的共聚酯的性能不会下降。
作为一种具体选择示例,所述组分a1)选自草酸、草酸二甲酯、丙二酸、丙二酸二甲酯、琥珀酸、琥珀酸二甲酯、甲基琥珀酸、戊二酸、戊二酸二甲酯、戊二酸双(2-羟基乙基)酯、戊二酸双(3-羟基丙基)酯、戊二酸双(4-羟基丁基)酯、2-甲基戊二酸、3-甲基戊二酸、己二酸、己二酸二甲酯、己二酸双(2-羟基乙基)酯、己二酸双(3-羟基丙基)酯、己二酸双(4-羟基丁基)酯、3-甲基己二酸、2,2,5,5-四甲基己二酸、庚二酸、辛二酸、壬二酸、壬二酸二甲酯、癸二酸、1,11-十一烷二羧酸、1,10-癸烷二羧酸、十一烷二酸、1,12-十二烷二羧酸、十六烷二酸、二十烷二酸、二十四烷二酸、二聚酸或其酯衍生物或其酸酐衍生物中的一种或多种,优选选自琥珀酸、己二酸、癸二酸、1,12-十二烷二羧酸或其酯衍生物或其酸酐衍生物中的一种或多种,更优选选自己二酸、癸二酸或其酯衍生物或其酸酐衍生物中的一种或两种,最优选为己二酸或其酯衍生物或其酸酐衍生物。
同时,上述脂肪族二羧酸形成的酯衍生物也属于组分a1)的范畴,优选地,所述脂肪族二羧酸的酯衍生物选自脂肪族二羧酸形成的二烷基酯。所述二烷基酯例如是二甲酯、二乙酯、二正丙酯、二异丙酯、二正丁酯、二异丁酯、二叔丁酯、二正戊酯、二异戊酯或二正己酯。
同时,上述脂肪族二羧酸形成的酸酐衍生物也属于组分a1)的范畴。
本发明中所述脂肪族二羧酸或其酯衍生物或其酸酐衍生物可以单独使用或以两种或更多种的混合物形式使用。
本发明中,所述组分a2)选自对苯二甲酸、对苯二甲酸二甲酯、对苯二甲酸双(2-羟基乙基)酯、对苯二甲酸双(3-羟基丙基)酯、对苯二甲酸双(4-羟基丁基)酯、间苯二甲酸、间苯二甲酸二甲酯、间苯二甲酸双(2-羟基乙基)酯、间苯二甲酸双(3-羟基丙基)酯、 间苯二甲酸双(4-羟基丁基)酯、2,6-萘二羧酸、2,6-苯二甲酸二甲酯、2,7-萘二羧酸、2,7-苯二甲酸二甲酯、3,4′-二苯醚二羧酸、3,4′二苯醚二甲酸二甲酯、4,4′-二苯醚二羧酸、4,4′-二苯醚二甲酸二甲酯、3,4′-苯硫醚二羧酸、3,4′-苯硫醚二甲酸二甲酯、4,4′-二苯硫醚二羧酸、4,4′-苯硫醚二甲酸二甲酯、3,4′-二苯砜二羧酸、3,4′-二苯砜二甲酸二甲酯、4,4′-二苯砜二羧酸、4,4′-二苯砜二甲酸二甲酯、3,4′-苯甲酮二羧酸、3,4’-苯甲酮二甲酸二甲酯、4,4′-苯甲酮二羧酸、4,4′-苯甲酮二甲酸二甲酯、1,4-萘二羧酸、1,4-萘二甲酸二甲酯、4,4′-亚甲基双(苯甲酸)、4,4′-亚甲基双(苯甲酸二甲酯)或其酯衍生物或其酸酐衍生物中的一种或多种,优选为对苯二甲酸或其酯衍生物或其酸酐衍生物。
所述第三组分C为二聚(1,4-丁二醇),分子式为HO-CH 2CH 2CH 2CH 2-O-CH 2CH 2CH 2CH 2-OH,并且,基于第一组分A的总摩尔量,第三组分C中重复单元-CH 2CH 2CH 2CH 2-O-的摩尔含量优选0.05-0.30mol%。
在本发明中,如有必要,所述半芳香族聚酯还含有第四组分D,所述第四组分D中,优选为含有至少三个官能团的化合物,优选为含有三至六个官能团的化合物。优选选自:酒石酸、柠檬酸、苹果酸、三羟甲基丙烷、三羟甲基乙烷、季戊四醇、聚醚三醇、甘油、1,3,5-苯三酸、1,2,4-苯三酸、1,2,4-苯三酸酐、1,2,4,5-苯四酸和苯均四酸二酐中的一种或多种,更优选为三羟甲基丙烷、季戊四醇或甘油。
基于第一组分A的总摩尔量,第四组分D的含量为0.01-5.0mol%,进一步优选为0.02-2.0mol%。
所述半芳香族聚酯还可包括第五组分E,所述第五组分E为扩链剂。
所述扩链剂为含有2个或2个以上官能团的异氰酸酯、异氰脲酸酯、过氧化物、环氧化物、噁唑啉、噁嗪、内酰胺、碳二亚胺或聚碳二亚胺中的一种或几种混合。
所述含有2个或2个以上官能团的异氰酸酯可以是芳香族异氰酸酯或脂肪族异氰酸酯,优选为芳香族二异氰酸酯或脂肪族二异氰酸酯。优选地,所述芳香族二异氰酸酯优 选为甲苯2,4-二异氰酸酯、甲苯2,6-二异氰酸酯、二苯甲烷2,2’-二异氰酸酯、二苯甲烷2,4’-二异氰酸酯、二苯甲烷4,4’-二异氰酸酯、萘1,5-二异氰酸酯或二甲苯二异氰酸酯。
更优选地,所述芳香族二异氰酸酯为二苯甲烷2,2’-二异氰酸酯、二苯甲烷2,4’-二异氰酸酯或二苯甲烷4,4’-二异氰酸酯。
优选地,所述脂肪族二异氰酸酯优选为含2至20个碳原子的任何直链或支链的亚烷基二异氰酸酯或亚环烷基二异氰酸酯。更优选为含3至12个碳原子。所述脂肪族二异氰酸酯可以是六亚甲基1,6-二异氰酸酯、异佛尔酮二异氰酸酯或亚甲基二(4-异氰酸根合环己烷)。最优选为六亚甲基1,6-二异氰酸酯或异佛尔酮二异氰酸酯。
所述含有2个或2个以上官能团的异氰酸酯还可以是带有三个环的三(4-异氰酸根合-苯基)甲烷。
优选地,所述含有2个或2个以上官能团的异氰脲酸酯为脂肪族异氰脲酸酯,其源自具有2至20个碳原子、优选3至12个碳原子的亚烷基二异氰酸酯或亚环烷基二异氰酸酯,如异佛尔酮二异氰酸酯或亚甲基二(4-异氰酸根合环己烷)。所述亚烷基二异氰酸酯可以为直链或支链的化合物。尤其优选基于n-六亚甲基二异氰酸酯如六亚甲基1,6-二异氰酸酯的环状三聚体、五聚体或更高的低聚物的异氰脲酸酯。
优选地,所述含有2个或2个以上官能团的过氧化物优选为苯甲酰过氧化物、1,1-二(叔丁基过氧基)-3,3,5-三甲基环己烷、1,1-二(叔丁基过氧基)甲基环十二烷、4,4-二(丁基过氧基)戊酸正丁酯、过氧化二枯基、过氧苯甲酸叔丁酯、过氧化二丁基、α,α-二(叔丁基过氧基)二异丙基苯、2,5-二甲基-2,5-二(叔丁基过氧基)己烷、2,5-二甲基-2,5-二(叔丁基过氧基)己-3-炔或叔丁基过氧化枯烯。
优选地,所述含有2个或2个以上官能团的环氧化物优选为氢醌、二缩水甘油基醚、间苯二酚二缩水甘油基醚、1,6-己二醇二缩水甘油基醚和氢化双酚A二缩水甘油基醚、对苯二甲酸二缩水甘油基酯、四氢邻苯二甲酸二缩水甘油基酯、六氢邻苯二甲酸二缩水甘油基酯、邻苯二甲酸二甲基二缩水甘油基酯、亚苯基二缩水甘油基醚、亚乙基二缩水 甘油基醚、三亚甲基二缩水甘油基醚、四亚甲基二缩水甘油基醚、六亚甲基二缩水甘油基醚、山梨糖醇二缩水甘油基醚、聚甘油聚缩水甘油基醚、季戊四醇聚缩水甘油基醚、二甘油聚缩水甘油基醚、甘油聚缩水甘油基醚、三羟甲基丙烷聚缩水甘油基醚、间苯二酚二缩水甘油基醚、新戊二醇二缩水甘油基醚、乙二醇二缩水甘油基醚、二甘醇二缩水甘油基醚、聚乙二醇二缩水甘油基醚、丙二醇二缩水甘油基醚、双丙甘醇二缩水甘油基醚、聚丙二醇二缩水甘油基醚或聚丁二醇二缩水甘油基醚。
所述含有2个或2个以上官能团的环氧化物还优选为基于苯乙烯、丙烯酸酯和/或甲基丙烯酸酯并包含环氧基的共聚物,所述环氧基优选为甲基丙烯酸缩水甘油酯。已证明有利的化合物为共聚物中甲基丙烯酸缩水甘油酯的比例高于20重量%、更优选高于30重量%、更优选高于50重量%的共聚物。这些共聚物中环氧当量重量优选地为150至3000g/当量,更优选为200至500g/当量。共聚物的重均分子量Mw优选为2000至25000,更优选为3000至8000。共聚物的数均分子量Mn优选为400至6000,更优选为1000至4000。多分散性指数(Q=Mw/Mn)优选为1.5至5。
所述具有2个或2个以上官能团的噁唑啉、噁嗪优选为二噁唑啉或二噁嗪,其桥连部分为单键,(CH 2)z-亚烷基,其中z=2、3或4,如亚甲基、乙-1,2-二基、丙-1,3-二基、丙-1,2-二基或亚苯基。具体地,所述二噁唑啉为2,2’-二(2-噁唑啉)、二(2-噁唑啉基)甲烷、1,2-二(2-噁唑啉基)乙烷、1,3-二(2-噁唑啉基)丙烷、1,4-二(2-噁唑啉基)丁烷、2,2’-二(2-噁唑啉)、2,2’-二(4-甲基-2-噁唑啉)、2,2’-二(4,4′-二甲基-2-噁唑啉)、2,2’-二(4-乙基-2-噁唑啉),2,2’-二(4,4’-二乙基-2-噁唑啉)、2,2’-二(4-丙基-2-噁唑啉)、2,2’-二(4-丁基-2-噁唑啉)、2,2′-二(4-己基-2-噁唑啉)、2,2’-二(4-苯基-2-噁唑啉)、2,2′-二(4-环己基-2-噁唑啉)、2,2’-二(4-苯甲基-2-噁唑啉)、2,2’-对-亚苯基二(4-甲基-2-噁唑啉)、2,2’-对-亚苯基二(4,4’-二甲基-2-噁唑啉)、2,2’-间-亚苯基二(4-甲基-2-噁唑啉)、2,2’-间-亚苯基二(4,4’-二甲基-2-噁唑啉)、2,2’-六亚甲基二(2-噁唑啉)、2,2’-八亚甲基二(2-噁唑啉)、2,2’-十亚甲基二(2-噁唑啉)、2,2’-亚乙基二(4-甲基-2-噁唑啉)、2,2’-四亚甲基二(4,4′-二甲基-2-噁唑啉)、 2,2’-9,9’-二苯氧基乙烷二(2-噁唑啉)、2,2’-亚环己基二(2-噁唑啉)或2,2’-二亚苯基(2-噁唑啉)。
具体地,二噁嗪为2,2′-二(2-二噁嗪)、二(2-二噁嗪基)甲烷、1,2-二(2-二噁嗪基)乙烷、1,3-二(2-二噁嗪基)丙烷、1,4-二(2-二噁嗪基)丁烷、1,4-二(2-二噁嗪基)苯、1,2-二(2-二噁嗪基)苯或1,3-二(2-二噁嗪基)苯。
更优选为1,4-二(2-噁唑啉基)苯、1,2-二(2-噁唑啉基)苯或1,3-二(2-噁唑啉基)苯。
所述具有2个或2个以上官能团的碳二亚胺或聚碳二亚胺优选为N,N′-二-2,6-二异丙基苯基碳二亚胺、N,N′-二-邻-甲苯基碳二亚胺、N,N′-二苯基碳二亚胺、N,N′-二辛基癸基碳二亚胺、N,N′-二-2,6-二甲基苯基碳二亚胺、N-甲苯基-N′-环己基碳二亚胺、N,N′-二-2,6-二-叔丁基苯基碳二亚胺、N-甲苯基-N′-苯基碳二亚胺、N,N′-二-对硝基苯基碳二亚胺、N,N′-二-对氨基苯基碳二亚胺、N,N′-二-对羟基苯基碳二亚胺、N,N′-二环己基碳二亚胺、N,N′-二-对甲苯基碳二亚胺、对-亚苯基双二-邻甲苯基碳二亚胺、对-亚苯基双二环己基碳二亚胺、六亚甲基双二环己基碳二亚胺、4,4′-二环己基甲烷碳二亚胺、亚乙基双二苯基碳二亚胺、N,N′-苯甲基-碳二亚胺、N-十八烷基-N′-苯基碳二亚胺、N-苄基-N′-苯基碳二亚胺、N-十八烷基-N′-甲苯基碳二亚胺、N-环己基-N′-甲苯基碳二亚胺、N-苯基-N′-甲苯基碳二亚胺、N-苄基-N′-甲苯基碳二亚胺、N,N′-二-邻乙基苯基碳二亚胺、N,N′-二-对-乙基苯基碳二亚胺、N,N′-二-邻异丙基苯基碳二亚胺、N,N′-二-对异丙基苯基碳二亚胺、N,N′-二-邻异丁基苯基碳二亚胺、N,N′-二-对异丁基苯基碳二亚胺、N,N′-二-2,6-二乙基苯基碳二亚胺、N,N′-二-2-乙基-6-异丙基苯基碳二亚胺、N,N′-二-2-异丁基-6-异丙基苯基碳二亚胺、N,N′-二-2,4,6-三甲基苯基碳二亚胺、N,N′-二-2,4,6-三异丙基苯基碳二亚胺、N,N′-二-2,4,6-三异丁基苯基碳二亚胺、二异丙基碳二亚胺、二甲基碳二亚胺、二异丁基碳二亚胺、二辛基碳二亚胺、叔-丁基异丙基碳二亚胺、二-β-萘基碳二亚胺或二-叔-丁基碳二亚胺。
优选地,所述第五组分E的含量为基于第一组分A的总摩尔量的0.01~5mol%。
优选地,所述半芳香族聚酯根据GB/T 17931-1999规定在重量比为1:1的苯酚/邻二氯苯溶液中、于25±0.05℃的恒温水浴中测定的粘数为100-350ml/g。
优选地,所述半芳香族聚酯羧基含量为5-60mmol/kg,进一步优选为10-50mmol/kg。
另一方面,本发明还提供了上述的半芳香族聚酯的制备方法,包括如下步骤:
S1:将第一组分A、第二组分B和部分催化剂(如有必要,第四组分D也一起加入)混合后,于酯化反应器中加热到150-280℃酯化反应1-2h,得到酯化产物AB;其中,第二组分B摩尔用量通常为第一组分A的1.1-3.0倍,过量第二组分B通过同酯化反应器相连的纯化设备回收后进入酯化反应器;
S2:将步骤S1中的酯化产物AB在剩余催化剂作用下进行初级缩聚反应,反应温度230-270℃,直至反应产物达到GB/T 17931-1999规定在重量比为1:1的苯酚/邻二氯苯溶液中、于25±0.05℃的恒温水浴中测定的粘数20-60ml/g;
S3:将步骤S2所得初级缩聚反应的产物转移至终聚釜内,在220至270℃温度下连续缩聚反应至反应产物达到GB/T 17931-1999规定在重量比为1:1的苯酚/邻二氯苯溶液中、于25±0.05℃的恒温水浴中测定的粘数100-250ml/g,且所述反应产物中羧基含量为5~60mmol/kg,即得半芳香族聚酯。
优选地,在步骤S1中,在制备AB酯化产物时,加入基于最终半芳香族聚酯重量的0.001~1%的催化剂。优选地,所述催化剂的添加量为最终半芳香族聚酯重量的0.02~0.2%。步骤S1中催化剂的加入量通常为催化剂总用量的50-80wt%。控制催化剂的加入量,可以使后续加工过程更稳定。进一步地,所述催化剂可以是锡化合物、锑化合物、钴化合物、铅化合物、锌化合物、铝化合物或钛化合物,更优选为锌化合物、铝化合物或钛化合物,最优选为钛化合物。钛化合物例如原钛酸四丁基酯或原钛酸四异丙基酯,相对于其他化合物的优势是残留在产品或下游产品中的残留量的毒性小。这种性质在可生物降解聚酯中尤为重要,因为它们会以堆肥袋或覆盖膜的形式直接进入环境中。
优选地,在步骤S1中,所述同酯化反应器相连的纯化设备为工艺塔和短程蒸馏器的组合。
分子蒸馏是一种在高真空下操作的蒸馏方法,这时蒸汽分子的平均自由程大于蒸发表面与冷凝表面之间的距离,从而可利用料液中各组分蒸发速率的差异,对液体混合物进行分离。
短程蒸馏器就是根据分子蒸馏的原理而设计的,是模拟分子蒸馏的模型,由于其加热面和冷却面的距离很近,阻力很小,故称短程蒸馏器。由于内置冷凝器的作用,能把汽化的汽相瞬间液化,收缩体积,因此能维持设备内部的高真空。短程蒸馏器的操作真空可达0.1Pa(绝压),是其它蒸发、蒸馏设备无法达到的,因此,短程蒸馏器特别适用于在常压下高沸点,用普通分离方法难以分离的物料,作为一种新型的液--液分离设备已有很多行业得到了成功经验。
短程蒸馏器可使用无锡恒谊化工机械有限公司(http://www.wxhengyi.com/index.asp)的SPD型短程蒸馏器。
工艺塔主要分离低沸点物质如四氢呋喃和水等副产物,这些低沸点物质从塔顶流出后进入四氢呋喃纯化装置;高沸点物质如1,4-丁二醇和其它副产物从工艺塔底流出,进入SPD型短程蒸馏器,经短程蒸馏器纯化后再回收进入酯化反应器。
在步骤S2中,如果有必要,可以把剩余量的催化剂在步骤S2中加入。在步骤S2中,反应温度更优选为240~260℃。在步骤S2中,开始时的压力通常设定为0.1至0.5bar、优选为0.2至0.4bar,S2结束时的压力通常设定为5至200mbar、更优选为10至100mbar。在步骤S2中,一般反应的时间为1~5h,在通常情况下,经历该反应时间后可以生产出GB/T 17931-1999规定在重量比为1:1的苯酚/邻二氯苯溶液中、于25±0.05℃的恒温水浴中测定的粘数20-60ml/g预聚酯。而经历S2反应后的所得预聚酯的羧基含量一般在10-60mmol/kg。
在步骤S3中,如果需要,可以将一种钝化剂加入反应体系。可用的钝化剂通常为磷的化合物,包括磷酸、亚磷酸及其酯类。当体系中使用了高活性的钛催化剂时,通常会在步骤S3中加入钝化剂。
在步骤S3中,连续缩聚的反应温度优选为230至270℃。在步骤S3中,开始时的压力通常控制为0.2至5mbar,更优选为0.5至3mbar。连续缩聚的反应时间优选为30至90分钟,更优选为40至80分钟。经历S3反应后的半芳香族聚酯羧基含量为5-60mmol/kg,优选为10-50mmol/kg。
如有必要,在步骤S3结束后,进行步骤S4,将步骤S3所得半芳香族聚酯加入双螺杆挤出机中,连同用量为0.01-5.0mol%的第五组分E(基于第一组分A的总摩尔量),于200至270℃的反应温度下使用0.5至15分钟的停留时间,得到半芳香族聚酯,其根据GB/T 17931-1999规定在重量比为1:1的苯酚/邻二氯苯溶液中、于25±0.05℃的恒温水浴中测定的粘数150-350ml/g。
再一方面,本发明还提供了上述半芳香族聚酯在制备可堆肥降解产品中的应用,所述可堆肥降解产品可以是纤维、薄膜或容器等。
本发明还提供了上述半芳香族聚酯在制备吸管中的应用。半芳香族聚酯可以同聚乳酸(PLA)等共混改性后作为吸管的制作材料,由于吸管同液体接触,这就要求其具有一定的耐水解性能,但考虑到可降解的要求,耐水解性能又不能太高,否则降解周期太久。根据实际应用,使用30天重量保持率这一测试评估其降解性能,30天重量保持率一般为50-60%范围内较佳,并且在此范围内,数值越高越好。30天重量保持率超过65%,降解性能过差;低于45%,降解过于迅速。又一方面,本发明还提供一种半芳香族聚酯模塑组合物,按重量比计,包括如下组分:
5-95wt%的上述的半芳香族聚酯;
5-95wt%的添加剂和/或其它聚合物;
0-70wt%的增强材料和/或填料。
作为一种具体选择,所述添加剂和/或其它聚合物可以是,至少一种或多种选自脂肪族聚酯、聚己内酯、淀粉、纤维素、聚羟基链烷酸酯和聚乳酸的组分。
与现有技术相比,本发明具有如下有益效果:
本发明提供一种半芳香族聚酯及其制备方法和应用,基于二酸的总摩尔量,将二聚(1,4-丁二醇)中重复单元-CH 2CH 2CH 2CH 2-O-的摩尔含量控制为0.05-0.35mol%,优选为0.05-0.30mol%,可有效改善半芳香族聚酯的树脂颜色,且不会降低共聚酯的性能。
附图说明
图1为实施例2得到的PBAT采用Bruker公司AV 500核磁共振波谱仪测定得到的 1H NMR;
图2为实施8.1得到的PBAT中二聚(1,4-丁二醇)重复单元关键峰的 1H NMR;
图3为本发明实施例中酯化反应器连接工艺塔和短程蒸馏器的组合装置示意图;
图4为传统酯化反应器连接一级工艺塔装置示意图;
图5为实施例8.6加入分子量1000的聚(1,4-丁二醇)后得到的聚合产物同醚键氧原子相连CH 2上氢原子附近峰的 1H NMR。
具体实施方式
如无特殊说明,本发明所用原料、试剂及溶剂,均为商业购买,未经任何处理。下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式并不受下述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。另外,关于本说明书中“份”、“%”,除非特别说明,分别表示“质量份”、“质量%”。
测试方法:
新鲜1,4-丁二醇、回收粗1,4-丁二醇、回收高纯1,4-丁二醇的纯度测试方法为:
参考国家标准GB/T 24768-2009工业用1,4-丁二醇,测试1,4-丁二醇的纯度。
其中,所有实施例和对比例中新鲜1,4-丁二醇的纯度均相同,采购自新疆美克化工有限公司,纯度≥99.7%。对苯二甲酸、己二酸、癸二酸、甘油、原钛酸四丁酯、亚磷酸等其他原料均为市售。
半芳香族聚酯中第三组分C含量测试(以实施例2得到的聚己二酸/对苯二甲酸丁二酯(PBAT)为例):
取20mg半芳香族聚酯样品溶于0.6ml氘代氯仿中,然后采用Bruker公司AV 500核磁共振波谱仪在室温下测定 1H NMR,标定氯仿溶剂峰7.26ppm。
参考文献:Chen,X.;Chen,W.;Zhu,G.;Huang,F.;Zhang,J.,Synthesis,1H-NMR characterization,and biodegradation behavior of aliphatic–aromatic random copolyester.J.Appl.Polym.Sci.2007,104(4):2643-2649.可知,对苯二甲酸重复单元中苯环4个氢原子出现在8.10ppm附近;己二酸重复单元中与羰基相邻两个CH 2单元的4个氢原子出现在2.33ppm附近。如图1所示。这样,二酸组分的摩尔含量可通过8.10ppm和2.33ppm这两处峰的积分面积(I T和I A)表示:
PBAT中对苯二甲酸摩尔含量=I T/(I T+I A)×100%
PBAT中己二酸摩尔含量=I A/(I T+I A)×100%
参考文献:Miles,W.H.;Ruddy,D.A.;Tinorgah,S.;Geisler,R.L.,Acylative Dimerization of Tetrahydrofuran Catalyzed by Rare‐Earth Triflates.Synth.Commun.2004,34(10):1871-1880,二聚(1,4-丁二醇)同苯甲酸和乙酸的产物 1H NMR化学位移(标于结构式对应碳原子上,单位ppm)如下图所示:
Figure PCTCN2021119956-appb-000001
参考上述1a和1d物质的 1H NMR可知,二聚(1,4-丁二醇)同己二酸(类似1a)和对苯二甲酸(类似1d)共聚产物中同醚键氧原子相连CH 2单元的氢原子出现在3.40和3.48ppm附近。
为进一步验证二聚(1,4-丁二醇)在PBAT共聚酯中 1H NMR的出峰位置,取实施例8.1中故意添加二聚(1,4-丁二醇)后所得PBAT共聚酯测试 1H NMR,从而得到二聚(1,4-丁二醇)聚合到PBAT共聚酯后同醚键氧原子相连CH 2上氢原子附近峰的 1H NMR如图2所示,这说明3.40和3.48ppm附近的峰确实同我们上述预测吻合。
由图2可计算,基于第一组分A(二酸)的总摩尔量,第三组分C中重复单元-CH 2CH 2CH 2CH 2-O-的摩尔含量X C为:
Figure PCTCN2021119956-appb-000002
其中,
I 1和I 1'为与对苯二甲酸相邻的二聚(1,4-丁二醇)重复单元上同醚键氧原子相连的-CH 2-上2个氢原子峰的积分面积;
I 2和I 2'为与己二酸相邻的二聚(1,4-丁二醇)重复单元上同醚键氧原子相连的-CH 2-上2个氢原子峰的积分面积;
I T为对苯二甲酸重复单元苯环上4个氢原子积分面积;
I A为己二酸重复单元同羰基相连的2个-CH 2-上4个氢原子积分面积;
其它PBAT中的第三组分C中重复单元-CH 2CH 2CH 2CH 2-O-的摩尔含量也由类似方法得到。
半芳香族聚酯的粘数:
根据GB/T 17931-1999规定,在重量比为1:1的苯酚/邻二氯苯溶液中、于25±0.05℃的恒温水浴中测定,样品浓度为5mg/ml。
半芳香族聚酯的颜色:取切粒干燥好的样品,按照GB/T 14190-2017 5.5.2方法B(干 燥法)测试。测试得到Hunter Lab色系L、a、b值,定义Hunter白度:
WH=100-[(100-L) 2+a 2+b 2] 1/2
Hunter白度数值越大,样品颜色越好。
羧基含量:
首先根据1998年10月的DIN EN 12634确定酸值AN(mg KOH/g),然后羧基含量(mmol/kg)=(AN/56)×10 3。所用的溶剂混合物包括1体积份的DMSO,8体积份的异丙醇,和7体积份的甲苯,溶剂体积为100ml。取半芳香族聚酯3-6g加热到70℃以使所有聚合物全部溶解为澄清溶液,滴定过程中保持溶液温度60-70℃以避免聚合物析出。滴定液选用四丁基氢氧化铵,避免使用高毒性的四甲基氢氧化铵。同时,为避免混合溶剂吸收空气中CO 2从而对空白溶剂消耗滴定液的体积造成影响,测试空白溶剂消耗滴定液体积时应将空白溶剂加热到70℃后恒温0.5h,然后再进行空白溶剂的滴定。
30天重量保持率:
半芳香族聚酯的生物降解实验参照GB/T 19277——2003测试。首先将半芳香族聚酯试样压制成0.10mm厚的薄膜,再裁剪成1.2cm×2.0cm的样片,此时样品重量记为a 0。然后将样片埋入堆肥土中并放入恒温箱中,堆肥土是经过56~70天曝气并过筛后的城市垃圾堆肥,实验温度恒定在(58±2)℃,30天后取出堆肥样片,将样片洗净烘干后称重,此时样品重量记为a 1。则30天重量保持率=a 1/a 0×100%。30天重量保持率越高,表明材料越难降解,30天重量保持率越低,表明材料降解速度越快。根据实际应用,30天重量保持率一般为50-60%范围内较佳,并且在此范围内,数值越高越好。30天重量保持率超过65%,降解性能过差;低于45%,降解过于迅速。
实施例1
S1:使用图3所示的酯化反应器连接工艺塔和短程蒸馏器的组合装置,将437kg/h对苯二甲酸、437kg/h己二酸、760kg/h新鲜1,4-丁二醇、253kg/h回收高纯1,4-丁二醇(纯度99.2%,来自图3短程蒸馏器底部)、1.15kg/h甘油和0.506kg/h原钛酸四 丁基酯于酯化反应器进行常温物理混合,然后将该混合物于240℃和0.45bar进行酯化反应60-120分钟,得到酯化产物AB;
S2:将酯化产物AB通过一个静态混合器后进入一个立式搅拌全混合反应器中,加热至260℃,压力0.3bar;在该反应器中加入0.276kg/h原钛酸四丁基酯,压力降至100mbar,大部分过量的1,4-丁二醇被蒸馏除去。反应时间60-120分钟,此时反应产物达到GB/T 17931-1999规定在重量比为1:1的苯酚/邻二氯苯溶液中于25±0.05℃的恒温水浴中测定的粘数23ml/g;
S3:往反应混合物中加入0.23kg/h亚磷酸,同时将反应混合物转移至一个终聚反应釜内,于260℃的温度和1mbar的压力下再缩聚60-80分钟,剩余的过量1,4-丁二醇和其它副产物被蒸馏除去,然后,用一个水下造粒机造粒,然后干燥得到最终聚酯产物。性能结果见表1。
实施例2
S1:使用图3所示的酯化反应器连接工艺塔和短程蒸馏器的组合装置,将437kg/h对苯二甲酸、437kg/h己二酸、760kg/h新鲜1,4-丁二醇、25kg/h回收粗1,4-丁二醇(纯度98.5%,来自图3工艺塔底部)、228kg/h回收高纯1,4-丁二醇(纯度99.3%,来自图3短程蒸馏器底部)、1.15kg/h甘油和0.506kg/h原钛酸四丁基酯于酯化反应器进行常温物理混合,然后将该混合物于240℃和0.45bar进行酯化反应60-120分钟,得到酯化产物AB;
S2:将酯化产物AB通过一个静态混合器后进入一个立式搅拌全混合反应器中,加热至260℃,压力0.3bar;在该反应器中加入0.276kg/h原钛酸四丁基酯,压力降至100mbar,大部分过量的1,4-丁二醇被蒸馏除去。反应时间60-120分钟,此时反应产物达到GB/T 17931-1999规定在重量比为1:1的苯酚/邻二氯苯溶液中于25±0.05℃的恒温水浴中测定的粘数26ml/g;
S3:往反应混合物中加入0.23kg/h亚磷酸,同时将反应混合物转移至一个终聚反应釜内,于260℃的温度和1mbar的压力下再缩聚60-80分钟,剩余的过量1,4-丁二醇和其它副产物被蒸馏除去,然后,用一个水下造粒机造粒,然后干燥得到最终聚酯产物。性能结果见表1。
实施例3
S1:使用图3所示的酯化反应器连接工艺塔和短程蒸馏器的组合装置,将437kg/h对苯二甲酸、437kg/h己二酸、760kg/h新鲜1,4-丁二醇、51kg/h回收粗1,4-丁二醇(纯度98.6%,来自图3工艺塔底部)、202kg/h回收高纯1,4-丁二醇(纯度99.3%,来自图3短程蒸馏器底部)、1.15kg/h甘油和0.506kg/h原钛酸四丁基酯于酯化反应器进行常温物理混合,然后将该混合物于240℃和0.45bar进行酯化反应60-120分钟,得到酯化产物AB;
S2:将酯化产物AB通过一个静态混合器后进入一个立式搅拌全混合反应器中,加热至260℃,压力0.3bar;在该反应器中加入0.276kg/h原钛酸四丁基酯,压力降至100mbar,大部分过量的1,4-丁二醇被蒸馏除去。反应时间60-120分钟,此时反应产物达到GB/T 17931-1999规定在重量比为1:1的苯酚/邻二氯苯溶液中于25±0.05℃的恒温水浴中测定的粘数29ml/g;
S3:往反应混合物中加入0.23kg/h亚磷酸,同时将反应混合物转移至一个终聚反应釜内,于260℃的温度和1mbar的压力下再缩聚60-80分钟,剩余的过量1,4-丁二醇和其它副产物被蒸馏除去,然后,用一个水下造粒机造粒,然后干燥得到最终聚酯产物。性能结果见表1。
实施例4
S1:使用图3所示的酯化反应器连接工艺塔和短程蒸馏器的组合装置,将437kg/h对苯二甲酸、437kg/h己二酸、760kg/h新鲜1,4-丁二醇、101kg/h回收粗1,4-丁二 醇(纯度98.7%,来自图3工艺塔底部)、152kg/h回收高纯1,4-丁二醇(纯度99.4%,来自图3短程蒸馏器底部)、1.15kg/h甘油和0.506kg/h原钛酸四丁基酯于酯化反应器进行常温物理混合,然后将该混合物于240℃和0.45bar进行酯化反应60-120分钟,得到酯化产物AB;
S2:将酯化产物AB通过一个静态混合器后进入一个立式搅拌全混合反应器中,加热至260℃,压力0.3bar;在该反应器中加入0.276kg/h原钛酸四丁基酯,压力降至100mbar,大部分过量的1,4-丁二醇被蒸馏除去。反应时间60-120分钟,此时反应产物达到GB/T 17931-1999规定在重量比为1:1的苯酚/邻二氯苯溶液中于25±0.05℃的恒温水浴中测定的粘数21ml/g;
S3:往反应混合物中加入0.23kg/h亚磷酸,同时将反应混合物转移至一个终聚反应釜内,于260℃的温度和1mbar的压力下再缩聚60-80分钟,剩余的过量1,4-丁二醇和其它副产物被蒸馏除去,然后,用一个水下造粒机造粒,然后干燥得到最终聚酯产物。性能结果见表1。
实施例5
S1:使用图3所示的酯化反应器连接工艺塔和短程蒸馏器的组合装置,将437kg/h对苯二甲酸、605kg/h癸二酸、760kg/h新鲜1,4-丁二醇、25kg/h回收粗1,4-丁二醇(纯度98.4%,来自图3工艺塔底部)、228kg/h回收高纯丁二醇(纯度99.4%,来自图3短程蒸馏器底部)、1.15kg/h甘油和0.506kg/h原钛酸四丁基酯于酯化反应器进行常温物理混合,然后将该混合物于240℃和0.45bar进行酯化反应60-120分钟,得到酯化产物AB;
S2:将酯化产物AB通过一个静态混合器后进入一个立式搅拌全混合反应器中,加热至260℃,压力0.3bar;在该反应器中加入0.276kg/h原钛酸四丁基酯,压力降至100mbar,大部分过量的1,4-丁二醇被蒸馏除去。反应时间60-120分钟,此时反应产 物达到GB/T 17931-1999规定在重量比为1:1的苯酚/邻二氯苯溶液中于25±0.05℃的恒温水浴中测定的粘数30ml/g;
S3:往反应混合物中加入0.23kg/h亚磷酸,同时将反应混合物转移至一个终聚反应釜内,于260℃的温度和1mbar的压力下再缩聚60-80分钟,剩余的过量1,4-丁二醇和其它副产物被蒸馏除去,然后,用一个水下造粒机造粒,然后干燥得到最终聚酯产物。性能结果见表1。
实施例6
S1:使用图3所示的酯化反应器连接工艺塔和短程蒸馏器的组合装置,将437kg/h对苯二甲酸、437kg/h己二酸、760kg/h新鲜1,4-丁二醇、25kg/h回收粗1,4-丁二醇(纯度98.7%,来自图3工艺塔底部)、228kg/h回收高纯1,4-丁二醇(纯度99.2%,来自图3短程蒸馏器底部)和0.506kg/h原钛酸四丁基酯于酯化反应器进行常温物理混合,然后将该混合物于240℃和0.45bar进行酯化反应60-120分钟,得到酯化产物AB;
S2:将酯化产物AB通过一个静态混合器后进入一个立式搅拌全混合反应器中,加热至260℃,压力0.3bar;在该反应器中加入0.276kg/h原钛酸四丁基酯,压力降至100mbar,大部分过量的1,4-丁二醇被蒸馏除去。反应时间60-120分钟,此时反应产物达到GB/T 17931-1999规定在重量比为1:1的苯酚/邻二氯苯溶液中于25±0.05℃的恒温水浴中测定的粘数26ml/g;
S3:往反应混合物中加入0.23kg/h亚磷酸,同时将反应混合物转移至一个终聚反应釜内,于260℃的温度和1mbar的压力下再缩聚60-80分钟,剩余的过量1,4-丁二醇和其它副产物被蒸馏除去,然后,用一个水下造粒机造粒,然后干燥得到最终聚酯产物。性能结果见表1。
实施例7
S1:使用图3所示的酯化反应器连接工艺塔和短程蒸馏器的组合装置,将437kg/h对苯二甲酸、325kg/h己二酸、656kg/h新鲜1,4-丁二醇、22kg/h回收粗1,4-丁二醇(纯度98.6%,来自图3工艺塔底部)、197kg/h回收高纯1,4-丁二醇(纯度99.3%,来自图3短程蒸馏器底部)、0.994kg/h甘油和0.446kg/h原钛酸四丁基酯于酯化反应器进行常温物理混合,然后将该混合物于240℃和0.45bar进行酯化反应60-120分钟,得到酯化产物AB;
S2:将酯化产物AB通过一个静态混合器后进入一个立式搅拌全混合反应器中,加热至260℃,压力0.3bar;在该反应器中加入0.243kg/h原钛酸四丁基酯,压力降至100mbar,大部分过量的1,4-丁二醇被蒸馏除去。反应时间60-120分钟,此时反应产物达到GB/T 17931-1999规定在重量比为1:1的苯酚/邻二氯苯溶液中于25±0.05℃的恒温水浴中测定的粘数29ml/g;
S3:往反应混合物中加入0.20kg/h亚磷酸,同时将反应混合物转移至一个终聚反应釜内,于260℃的温度和1mbar的压力下再缩聚60-80分钟,剩余的过量1,4-丁二醇和其它副产物被蒸馏除去,然后,用一个水下造粒机造粒,然后干燥得到最终聚酯产物。性能结果见表1。
对比例1
S1:使用如图4所示的传统单工艺塔酯化反应器,将437kg/h对苯二甲酸、437kg/h己二酸、760kg/h新鲜1,4-丁二醇、253kg/h回收粗1,4-丁二醇(纯度98.5%)、1.15kg/h甘油和0.506kg/h原钛酸四丁基酯于酯化反应器进行常温物理混合,然后将该混合物于240℃和0.45bar进行酯化反应60-120分钟,得到酯化产物AB;
S2:将酯化产物AB通过一个静态混合器后进入一个立式搅拌全混合反应器中,加热至260℃,压力0.3bar;在该反应器中加入0.276kg/h原钛酸四丁基酯,压力降至100mbar,大部分过量的1,4-丁二醇被蒸馏除去。反应时间60-120分钟,此时反应产 物达到GB/T 17931-1999规定在重量比为1:1的苯酚/邻二氯苯溶液中于25±0.05℃的恒温水浴中测定的粘数22ml/g;
S3:往反应混合物中加入0.23kg/h亚磷酸,同时将反应混合物转移至一个终聚反应釜内,于260℃的温度和1mbar的压力下再缩聚60-80分钟,剩余的过量1,4-丁二醇和其它副产物被蒸馏除去,然后,用一个水下造粒机造粒,然后干燥得到最终聚酯产物。性能结果见表1。
对比例2
S1:使用如图4所示的传统单工艺塔酯化反应器,同时,将工艺塔下部的回流阀关闭以避免回收1,4-丁二醇进入酯化反应器。将437kg/h对苯二甲酸、437kg/h己二酸、1013kg/h新鲜1,4-丁二醇(全部使用新鲜1,4-丁二醇,无回收1,4-丁二醇)、1.15kg/h甘油和0.506kg/h原钛酸四丁基酯于酯化反应器进行常温物理混合,然后将该混合物于240℃和0.45bar进行酯化反应60-120分钟,得到酯化产物AB;
S2:将酯化产物AB通过一个静态混合器后进入一个立式搅拌全混合反应器中,加热至260℃,压力0.3bar;在该反应器中加入0.276kg/h原钛酸四丁基酯,压力降至100mbar,大部分过量的1,4-丁二醇被蒸馏除去。反应时间60-120分钟,此时反应产物达到GB/T 17931-1999规定在重量比为1:1的苯酚/邻二氯苯溶液中于25±0.05℃的恒温水浴中测定的粘数24ml/g;
S3:往反应混合物中加入0.23kg/h亚磷酸,同时将反应混合物转移至一个终聚反应釜内,于260℃的温度和1mbar的压力下再缩聚60-80分钟,剩余的过量1,4-丁二醇和其它副产物被蒸馏除去,然后,用一个水下造粒机造粒,然后干燥得到最终聚酯产物。性能结果见表1。
对比例3
S1:使用图3所示的酯化反应器连接工艺塔和短程蒸馏器的组合装置,将437kg/h对苯二甲酸、165kg/h己二酸、508kg/h新鲜1,4-丁二醇、17kg/h回收粗1,4-丁二醇(纯度98.5%,来自图3工艺塔底部)、152kg/h回收高纯1,4-丁二醇(纯度99.3%,来自图3短程蒸馏器底部)、0.77kg/h甘油和0.337kg/h原钛酸四丁基酯于酯化反应器进行常温物理混合,然后将该混合物于240℃和0.45bar进行酯化反应60-120分钟,得到酯化产物AB;
S2:将酯化产物AB通过一个静态混合器后进入一个立式搅拌全混合反应器中,加热至260℃,压力0.3bar;在该反应器中加入0.184kg/h原钛酸四丁基酯,压力降至100mbar,大部分过量的1,4-丁二醇被蒸馏除去。反应时间60-120分钟,此时反应产物达到GB/T 17931-1999规定在重量比为1:1的苯酚/邻二氯苯溶液中于25±0.05℃的恒温水浴中测定的粘数29ml/g;
S3:往反应混合物中加入0.153kg/h亚磷酸,同时将反应混合物转移至一个终聚反应釜内,于260℃的温度和1mbar的压力下再缩聚60-80分钟,剩余的过量1,4-丁二醇和其它副产物被蒸馏除去,然后,用一个水下造粒机造粒,然后干燥得到最终聚酯产物。性能结果见表1。
对比例4
S1:使用图3所示的酯化反应器连接工艺塔和短程蒸馏器的组合装置,将437kg/h对苯二甲酸、897kg/h己二酸、1185kg/h新鲜1,4-丁二醇、40kg/h回收粗1,4-丁二醇(纯度98.4%,来自图3工艺塔底部)、356kg/h回收高纯1,4-丁二醇(纯度99.5%,来自图3短程蒸馏器底部)、1.791kg/h甘油和0.796kg/h原钛酸四丁基酯于酯化反应器进行常温物理混合,然后将该混合物于240℃和0.45bar进行酯化反应60-120分钟,得到酯化产物AB;
S2:将酯化产物AB通过一个静态混合器后进入一个立式搅拌全混合反应器中,加热至260℃,压力0.3bar;在该反应器中加入0.434kg/h原钛酸四丁基酯,压力降至 100mbar,大部分过量的1,4-丁二醇被蒸馏除去。反应时间60-120分钟,此时反应产物达到GB/T 17931-1999规定在重量比为1:1的苯酚/邻二氯苯溶液中于25±0.05℃的恒温水浴中测定的粘数23ml/g;
S3:往反应混合物中加入0.36kg/h亚磷酸,同时将反应混合物转移至一个终聚反应釜内,于260℃的温度和1mbar的压力下再缩聚60-80分钟,剩余的过量1,4-丁二醇和其它副产物被蒸馏除去,然后,用一个水下造粒机造粒,然后干燥得到最终聚酯产物。性能结果见表1。
Figure PCTCN2021119956-appb-000003
实施例1到实施例4可以看出,第三组分C中重复单元-CH 2CH 2CH 2CH 2-O-的摩尔含量为0.05-0.30mol%时,白度较高,30天重量保持率更佳;实施例5中癸二酸替代己二酸,降解速率偏快(30天重量保持率下降);实施例6中没有甘油,使得其粘数和30天重量保持率都有所下降;实施例7对苯二甲酸含量更高,30天重量保持率有所上升,但仍在商业可接受范围。
对比例1得到的树脂中第三组分C中重复单元-CH 2CH 2CH 2CH 2-O-的摩尔含量超出范围,导致树脂的颜色不佳;同样地,对比例2得到的树脂中第三组分C中重复单元-CH 2CH 2CH 2CH 2-O-的摩尔含量过低,尽管获得了优秀颜色的树脂,但30天重量保持率过高,并且过量1,4-丁二醇不能回收、生产线运行成本高昂,不具备商业价值;对比例3对苯二甲酸含量过高,树脂降解性能较差(30天重量保持率过高);对比例4对苯二甲酸含量过低,树脂降解过于迅速(30天重量保持率过低)。
实施例8
由于回收1,4-丁二醇中可能含有1,4-丁二醇聚合后的多种产物,如二聚(1,4-丁二醇)及多聚(1,4-丁二醇)等,为进一步验证PBAT树脂颜色与它们之间的关系。研究了二聚(1,4-丁二醇)及多聚(1,4-丁二醇)与树脂颜色关系。本实施例中使用的1,4-丁二醇原材料全部相同且是纯度≥99.7%的新鲜丁二醇。
参考文献(Alexander,K.;Schniepp,L.E.,4,4'-Dichlorodibutyl Ether and its Derivatives from Tetrahydrofuran.J.Am.Chem.Soc.1948,70(5):1839-1842.)合成了二聚(1,4-丁二醇);分子量为1000和650的多聚(1,4-丁二醇)采购自Sigma-Aldrich。
实施例8.1
在高纯氮气保护下,将对苯二甲酸2.36kg、己二酸2.36kg、1,4-丁二醇4.38kg、二聚(1,4-丁二醇)50g,甘油6.2g、钛酸正丁酯4.2g投入反应釜中,升温至220~240℃恒温120min。然后向其中投入亚磷酸1.25g。在30~60分钟内将反应釜内压力降低至50Pa以 下,于220~260℃反应60-120min。停止搅拌,向反应釜内充入高纯氮气,将树脂从反应釜中压出、水冷造粒,即得到聚酯产物。性能结果见表2。
实施例8.2 在高纯氮气保护下,将对苯二甲酸2.36kg、己二酸2.36kg、1,4-丁二醇4.38kg、二聚(1,4-丁二醇)25g,甘油6.2g、钛酸正丁酯4.2g投入反应釜中,升温至220~240℃恒温120min。然后向其中投入亚磷酸1.25g。在30~60分钟内将反应釜内压力降低至50Pa以下,于220~260℃反应60-120min。停止搅拌,向反应釜内充入高纯氮气,将树脂从反应釜中压出、水冷造粒,即得到聚酯产物。性能结果见表2。
实施例8.3
在高纯氮气保护下,将对苯二甲酸2.36kg、己二酸2.36kg、1,4-丁二醇4.38kg、二聚(1,4-丁二醇)10g,甘油6.2g、钛酸正丁酯4.2g投入反应釜中,升温至220~240℃恒温120min。然后向其中投入亚磷酸1.25g。在30~60分钟内将反应釜内压力降低至50Pa以下,于220~260℃反应60-120min。停止搅拌,向反应釜内充入高纯氮气,将树脂从反应釜中压出、水冷造粒,即得到聚酯产物。性能结果见表2。
实施例8.4
在高纯氮气保护下,将对苯二甲酸2.36kg、己二酸2.36kg、1,4-丁二醇4.38kg、二聚(1,4-丁二醇)5g,甘油6.2g、钛酸正丁酯4.2g投入反应釜中,升温至220~240℃恒温120min。然后向其中投入亚磷酸1.25g。在30~60分钟内将反应釜内压力降低至50Pa以下,于220~260℃反应60-120min。停止搅拌,向反应釜内充入高纯氮气,将树脂从反应釜中压出、水冷造粒,即得到聚酯产物。性能结果见表2。
实施例8.5
在高纯氮气保护下,将对苯二甲酸2.36kg、己二酸2.36kg、1,4-丁二醇4.38kg,甘油6.2g、钛酸正丁酯4.2g投入反应釜中,升温至220~240℃恒温120min。然后向其中投入亚磷酸1.25g。在30~60分钟内将反应釜内压力降低至50Pa以下,于220~260℃反应60-120min。停止搅拌,向反应釜内充入高纯氮气,将树脂从反应釜中压出、水冷造粒,即得到聚酯产物。性能结果见表2。
实施例8.6
在高纯氮气保护下,将对苯二甲酸2.36kg、己二酸2.36kg、1,4-丁二醇4.38kg,聚(1,4-丁二醇)4.6g(Sigma-Aldrich,Mn~1000),甘油6.2g、钛酸正丁酯4.2g投入反应釜中,升温至220~240℃恒温120min。然后向其中投入亚磷酸1.25g。在30~60分钟内将反应釜内压力降低至50Pa以下,于220~260℃反应60-120min。停止搅拌,向反应釜内充入高纯氮气,将树脂从反应釜中压出、水冷造粒,即得到聚酯产物。性能结果见表2。
实施例8.7
在高纯氮气保护下,将对苯二甲酸2.36kg、己二酸2.36kg、1,4-丁二醇4.38kg,聚(1,4-丁二醇)4.6g(Sigma-Aldrich,Mn~650),甘油6.2g、钛酸正丁酯4.2g投入反应釜中,升温至220~240℃恒温120min。然后向其中投入亚磷酸1.25g。在30~60分钟内将反应釜内压力降低至50Pa以下,于220~260℃反应60-120min。停止搅拌,向反应釜内充入高纯氮气,将树脂从反应釜中压出、水冷造粒,即得到聚酯产物。性能结果见表2。
表2
Figure PCTCN2021119956-appb-000004
实施例8.6加入分子量1000的聚(1,4-丁二醇)(重复单元-CH 2CH 2CH 2CH 2-O-个数约为14)后得到的聚合产物同醚键氧原子相连CH 2上氢原子附近峰的 1H NMR如图5所示。由于聚合产物中自身产生的二聚(1,4-丁二醇)与额外添加的分子量1000的聚(1,4-丁二醇)相关峰在3.4ppm附近发生了重叠,仅能计算聚合产物中重复单元-CH 2CH 2CH 2CH 2-O-总含量:
Figure PCTCN2021119956-appb-000005
其中,
I 1和I 1'为与对苯二甲酸相邻的聚(1,4-丁二醇)重复单元上同醚键氧原子相连的-CH 2-上氢原子峰的积分面积;
I 2和I 2'为与己二酸相邻的聚(1,4-丁二醇)重复单元上同醚键氧原子相连的-CH 2-上氢原子峰的积分面积;
I 3为不与对苯二甲酸和己二酸相邻的聚(1,4-丁二醇)重复单元上同醚键氧原子相连的-CH 2-上氢原子峰的积分面积;
I T为对苯二甲酸重复单元苯环上4个氢原子积分面积;
I A为己二酸重复单元同羰基相连的2个-CH 2-上4个氢原子积分面积;
但是,2、2'和3三个峰出现了重叠,必须将重叠峰中2和2'的峰面积与3峰的面积独立计算出来才能使用公式(2)计算X C
考虑到,I 1和I 1'亦可反映对苯二甲酸重复单元的比例,I 2和I 2'亦可反映己二酸重复单元的比例,我们得到如下关系:
Figure PCTCN2021119956-appb-000006
简化公式(3)后,得到:
Figure PCTCN2021119956-appb-000007
另有,
Figure PCTCN2021119956-appb-000008
将公式(4)和(5)代入公式(2),得到:
Figure PCTCN2021119956-appb-000009
公式(6)即为基于第一组分A(二酸)的总摩尔量,聚合产物中源自所有聚(1,4-丁二醇)(包括自身产生和额外添加的)的重复单元-CH 2CH 2CH 2CH 2-O-的摩尔含量的计算公式。
从表2的实施例8.5-8.1可以看出,随着二聚(1,4-丁二醇)投料量的增加,树脂颜色显著变差。同时,向聚合体系中加入更高分子量的其它多聚(1,4-丁二醇)(实施例8.6和实施例8.7)对树脂颜色无明显影响。该实施例8数据进一步说明二聚(1,4-丁二醇)对树脂的颜色有影响,且二聚(1,4-丁二醇)含量增加,树脂的颜色变差。

Claims (11)

  1. 一种半芳香族聚酯,其包括衍生自下述组分的重复单元:
    第一组分A,基于第一组分A的总摩尔量,包括:
    a1)35至65mol%,优选40-60mol%的至少一种脂肪族二羧酸或其酯衍生物或其酸酐衍生物,
    a2)35至65mol%,优选40-60mol%的至少一种芳香族二羧酸或其酯衍生物或其酸酐衍生物,
    第二组分B,1,4-丁二醇,
    第三组分C,二聚(1,4-丁二醇),分子式为HO-CH 2CH 2CH 2CH 2-O-CH 2CH 2CH 2CH 2-OH,并且,基于第一组分A的总摩尔量,第三组分C中重复单元-CH 2CH 2CH 2CH 2-O-的摩尔含量为0.05-0.35mol%。
  2. 根据权利要求1所述的半芳香族聚酯,其特征在于,所述组分a1)选自草酸、草酸二甲酯、丙二酸、丙二酸二甲酯、琥珀酸、琥珀酸二甲酯、甲基琥珀酸、戊二酸、戊二酸二甲酯、戊二酸双(2-羟基乙基)酯、戊二酸双(3-羟基丙基)酯、戊二酸双(4-羟基丁基)酯、2-甲基戊二酸、3-甲基戊二酸、己二酸、己二酸二甲酯、己二酸双(2-羟基乙基)酯、己二酸双(3-羟基丙基)酯、己二酸双(4-羟基丁基)酯、3-甲基己二酸、2,2,5,5-四甲基己二酸、庚二酸、辛二酸、壬二酸、壬二酸二甲酯、癸二酸、1,11-十一烷二羧酸、1,10-癸烷二羧酸、十一烷二酸、1,12-十二烷二羧酸、十六烷二酸、二十烷二酸、二十四烷二酸、二聚酸或其酯衍生物或其酸酐衍生物中的一种或多种,优选选自琥珀酸、己二酸、癸二酸、1,12-十二烷二羧酸或其酯衍生物或其酸酐衍生物中的一种或多种,更优选选自己二酸、癸二酸或其酯衍生物或其酸酐衍生物中的一种或两种,最优选为己二酸或其酯衍生物或其酸酐衍生物。
  3. 根据权利要求1或2所述的半芳香族聚酯,其特征在于,所述组分a2)选自对苯二甲酸、对苯二甲酸二甲酯、对苯二甲酸双(2-羟基乙基)酯、对苯二甲酸双(3-羟基丙基)酯、对苯二甲酸双(4-羟基丁基)酯、间苯二甲酸、间苯二甲酸二甲酯、间苯二甲酸双(2-羟基乙基)酯、间苯二甲酸双(3-羟基丙基)酯、间苯二甲酸双(4-羟基丁基)酯、2,6-萘二羧酸、2,6-苯二甲酸二甲酯、2,7-萘二羧酸、2,7-苯二甲酸二甲酯、3,4′-二苯醚二羧酸、3,4′二苯醚二甲酸二甲酯、4,4′-二苯醚二羧酸、4,4′-二苯醚二甲酸二甲酯、3,4′-苯硫醚二羧酸、3,4′-苯硫醚二甲酸二甲酯、4,4′-二苯硫醚二羧酸、4,4′-苯硫醚二甲酸二甲酯、3,4′-二苯砜二羧酸、3,4′-二苯砜二甲酸二甲酯、4,4′-二苯砜二羧酸、4,4′-二苯砜二甲酸二甲酯、3,4′-苯甲酮二羧酸、3,4’-苯甲酮二甲酸二甲酯、4,4′-苯甲酮二羧酸、4,4′-苯甲酮二甲酸二甲酯、1,4-萘二羧酸、1,4-萘二甲酸二甲酯、4,4′-亚甲基双(苯甲酸)、4,4′-亚甲基双(苯甲酸二甲酯)或其酯衍生物或其酸酐衍生物中的一种或多种,优选为对苯二甲酸或其酯衍生物或其酸酐衍生物。
  4. 根据权利要求1至3中任一项所述的半芳香族聚酯,其特征在于,基于第一组分A的总摩尔量,所述第三组分C中重复单元-CH 2CH 2CH 2CH 2-O-的摩尔含量为0.05-0.30mol%。
  5. 根据权利要求1至4中任一项所述的半芳香族聚酯,其特征在于,所述半芳香族聚酯还含有第四组分D,所述第四组分D为含有至少三个官能团的化合物,优选为含有三至六个官能团的化合物,更优选选自酒石酸、柠檬酸、苹果酸、三羟甲基丙烷、三羟甲基乙烷、季戊四醇、聚醚三醇、甘油、1,3,5-苯三酸、1,2,4-苯三酸、1,2,4-苯三酸酐、1,2,4,5-苯四酸和苯均四酸二酐中的一种或多种,优选为三羟甲基丙烷、季戊四醇或甘油;
    优选地,基于第一组分A的总摩尔量,所述第四组分D的含量为0.01-5.0mol%,进一步优选为0.02-2.0mol%。
  6. 根据权利要求1至5中任一项所述的半芳香族聚酯,其特征在于,其还含有第五组分E,其为扩链剂;优选地,所述第五组分E选自含有2个或2个以上官能团的异氰酸酯、异氰脲酸酯、过氧化物、环氧化物、噁唑啉、噁嗪、内酰胺、碳二亚胺或聚碳二亚胺中的一种或几种,优选为含有2个或2个以上官能团的异氰酸酯,更优选为六亚甲基二异氰酸酯;
    优选地,基于第一组分A的总摩尔量,所述第五组分E的含量为0.01-5.0mol%。
  7. 根据权利要求1至6中任一项所述的半芳香族聚酯,其特征在于,所述半芳香族聚酯根据GB/T 17931-1999规定在重量比为1:1的苯酚/邻二氯苯溶液中、于25±0.05℃的恒温水浴中测定的粘数为100-350ml/g;
    优选地,所述半芳香族聚酯羧基含量为5-60mmol/kg,进一步优选为10-50mmol/kg。
  8. 一种权利要求1至7中任一项所述的半芳香族聚酯的制备方法,该方法包括如下步骤:
    S1:将第一组分A、第二组分B和部分催化剂(如有必要,第四组分D也一起加入)混合后,于酯化反应器中加热到150-280℃酯化反应1-2h,得到酯化产物AB;其中,第二组分B摩尔用量通常为第一组分A的1.1-3.0倍,过量第二组分B通过同酯化反应器相连的纯化设备回收后进入酯化反应器;
    S2:将步骤S1中的酯化产物AB在剩余催化剂作用下进行初级缩聚反应,反应温度230-270℃,直至反应产物达到GB/T 17931-1999规定在重量比为1:1的苯酚/邻二氯苯溶液中、于25±0.05℃的恒温水浴中测定的粘数20-60ml/g;
    S3:将步骤S2所得初级缩聚反应的产物转移至终聚釜内,在220至270℃温度下连续缩聚反应至反应产物达到GB/T 17931-1999规定在重量比为1:1的苯酚/邻二氯苯溶液中、于25±0.05℃的恒温水浴中测定的粘数100-250ml/g,且所述反应产物中羧基含量为5~60mmol/kg,即得半芳香族聚酯;
    优选地,在步骤S1中,所述纯化设备为工艺塔和短程蒸馏器的组合;
    优选地,在步骤S1中,所述催化剂的添加量为最终半芳香族聚酯重量的0.001~1%,优选为0.02~0.2%;
    优选地,在步骤S1中,所述催化剂的加入量为催化剂总用量的50-80wt%;
    优选地,在步骤S2中,反应温度为240~260℃;
    优选地,在步骤S2中,开始时的压力为0.1至0.5bar,优选为0.2至0.4bar,结束时的压力为5至200mbar,优选为10至100mbar;
    优选地,在步骤S2中,反应时间为1~5h;
    优选地,步骤S2所述初级缩聚反应的产物的羧基含量为10-60mmol/kg;
    优选地,在步骤S3中,连续缩聚的反应温度为230至270℃;
    优选地,在步骤S3中,开始时的压力为0.2至5mbar,优选为0.5至3mbar;
    优选地,在步骤S3中,反应时间为30至90分钟,优选为40至80分钟;
    优选地,在步骤S3中,所述反应产物中羧基含量为10-50mmol/kg;
    优选地,所述催化剂是锡化合物、锑化合物、钴化合物、铅化合物、锌化合物、铝化合物或钛化合物,优选为锌化合物、铝化合物或钛化合物,更优选为原钛酸四丁基酯或原钛酸四异丙基酯;
    优选地,步骤S3中,还包括在反应体系中加入钝化剂的步骤;
    优选地,所述钝化剂为磷的化合物,所述磷的化合物包括磷酸、亚磷酸及其酯类;
    优选地,如有必要,在步骤S3结束后,进行步骤S4,将步骤S3所得半芳香族聚酯加入双螺杆挤出机中,连同用量为0.01-5.0mol%的第五组分E(基于第一组分A的总摩尔量),于200至270℃的反应温度下使用0.5至15分钟的停留时间,得到半芳香族聚酯,其根据GB/T 17931-1999规定在重量比为1:1的苯酚/邻二氯苯溶液中、于25±0.05℃的恒温水浴中测定的粘数150-350ml/g。
  9. 一种半芳香族聚酯模塑组合物,其特征在于,按重量百分比计,包括组分:
    5-95wt%的权利要求1-7中任一项所述的半芳香族聚酯;
    5-95wt%的添加剂和/或其它聚合物;
    0-70wt%的增强材料和/或填料。
  10. 权利要求1~7中任一项所述的半芳香族聚酯在制备可堆肥降解产品中的应用,其特征在于,所述可堆肥降解产品为纤维、薄膜或容器。
  11. 权利要求1-7中任一项所述的半芳香族聚酯在制备吸管中的应用。
PCT/CN2021/119956 2021-09-14 2021-09-23 一种半芳香族聚酯及其制备方法和应用 WO2023039923A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111076704.3 2021-09-14
CN202111076704.3A CN113717356B (zh) 2021-09-14 2021-09-14 一种半芳香族聚酯及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023039923A1 true WO2023039923A1 (zh) 2023-03-23

Family

ID=78683692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119956 WO2023039923A1 (zh) 2021-09-14 2021-09-23 一种半芳香族聚酯及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113717356B (zh)
WO (1) WO2023039923A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114957630A (zh) * 2022-05-24 2022-08-30 珠海金发生物材料有限公司 一种半芳香族聚酯及其制备方法和应用
CN115785413A (zh) * 2022-12-08 2023-03-14 金发科技股份有限公司 一种可生物降解脂肪族聚酯及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102007160A (zh) * 2008-04-15 2011-04-06 巴斯夫欧洲公司 连续生产生物降解聚酯的方法
CN102558519A (zh) * 2010-12-28 2012-07-11 上海轻工业研究所有限公司 芳香族-脂肪族共聚酯及其合成方法
CN103408739A (zh) * 2013-08-08 2013-11-27 山东汇盈新材料科技有限公司 低端羧基含量聚己二酸-对苯二甲酸丁二醇酯的制备方法
WO2014021543A1 (ko) * 2012-07-30 2014-02-06 삼성정밀화학 주식회사 방향족 디카르복실산 화합물의 분할 투입에 의한 생분해성 폴리에스테르 공중합체의 제조방법
WO2016050962A1 (en) * 2014-10-03 2016-04-07 Novamont S.P.A. Process for the production of polyesters
CN107257814A (zh) * 2014-12-30 2017-10-17 Ptt全球化学股份有限公司 可生物降解的共聚酯组合物
WO2018219708A1 (de) 2017-05-31 2018-12-06 Basf Se ALIPHATISCH-AROMATISCHER POLYESTER MIT ERHÖHTEM WEIßGRAD-INDEX
CN110591057A (zh) * 2019-09-09 2019-12-20 彤程化学(中国)有限公司 一种生物可降解脂肪族-芳香族共聚酯的合成方法
CN111269406A (zh) * 2020-03-19 2020-06-12 戴清文 一种低羧基含量、多支链结构的生物降解脂肪-芳香共聚酯及其制备方法和用途
CN111978521A (zh) * 2020-08-21 2020-11-24 万华化学集团股份有限公司 一种共聚酯及其制备方法和应用
CN212560068U (zh) 2020-05-06 2021-02-19 扬州惠通科技股份有限公司 一种生物可降解聚酯的生产系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080125567A1 (en) * 2006-11-28 2008-05-29 Deepak Ramaraju Composition and method for enhancement of acid value of polyesters
US20110187029A1 (en) * 2008-09-29 2011-08-04 Basf Se Aliphatic-aromatic polyester
CN102336896B (zh) * 2010-07-27 2014-03-19 上海杰事杰新材料(集团)股份有限公司 一种轻度交联的脂肪族-芳香族共聚酯的制备方法
CN111100272B (zh) * 2018-10-25 2021-11-30 中国石油化工股份有限公司 合成生物降解脂肪族芳香族共聚酯的方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102007160A (zh) * 2008-04-15 2011-04-06 巴斯夫欧洲公司 连续生产生物降解聚酯的方法
CN102558519A (zh) * 2010-12-28 2012-07-11 上海轻工业研究所有限公司 芳香族-脂肪族共聚酯及其合成方法
WO2014021543A1 (ko) * 2012-07-30 2014-02-06 삼성정밀화학 주식회사 방향족 디카르복실산 화합물의 분할 투입에 의한 생분해성 폴리에스테르 공중합체의 제조방법
CN103408739A (zh) * 2013-08-08 2013-11-27 山东汇盈新材料科技有限公司 低端羧基含量聚己二酸-对苯二甲酸丁二醇酯的制备方法
WO2016050962A1 (en) * 2014-10-03 2016-04-07 Novamont S.P.A. Process for the production of polyesters
CN107257814A (zh) * 2014-12-30 2017-10-17 Ptt全球化学股份有限公司 可生物降解的共聚酯组合物
WO2018219708A1 (de) 2017-05-31 2018-12-06 Basf Se ALIPHATISCH-AROMATISCHER POLYESTER MIT ERHÖHTEM WEIßGRAD-INDEX
CN110591057A (zh) * 2019-09-09 2019-12-20 彤程化学(中国)有限公司 一种生物可降解脂肪族-芳香族共聚酯的合成方法
CN111269406A (zh) * 2020-03-19 2020-06-12 戴清文 一种低羧基含量、多支链结构的生物降解脂肪-芳香共聚酯及其制备方法和用途
CN212560068U (zh) 2020-05-06 2021-02-19 扬州惠通科技股份有限公司 一种生物可降解聚酯的生产系统
CN111978521A (zh) * 2020-08-21 2020-11-24 万华化学集团股份有限公司 一种共聚酯及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ALEXANDER, K.SCHNIEPP, L. E.: "4,4'-Dichlorodibutyl Ether and its Derivatives from Tetrahydrofuran", J. AM. CHEM. SOC., vol. 70, no. 5, 1948, pages 1839 - 1842, XP055326856, DOI: 10.1021/ja01185a056
CHEN, X; CHEN, W.; ZHU, G.; HUANG, F.; ZHANG, J.: "Synthesis, IH-NMR characterization, and biodegradation behavior of aliphatic-aromatic random copolyester", J. APPL. POLYM. SCI., vol. 104, no. 4, 2007, pages 2643 - 2649, XP055953851, DOI: 10.1002/app.25611
MILES, W. H.RUDDY, D. A.TINORGAH, S.GEISLER, R. L.: "Acylative Dimerization of Tetrahydrofuran Catalyzed by Rare-Earth Triflates", SYNTH. COMMUN., vol. 34, no. 10, 2004, pages 1871 - 1880
RIECKMANN, T.VOLKER, S.: "Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters", 2003, JOHN WILEY & SONS, LTD., article "2. Poly(ethylene terephthalate) Polymerization - Mechanism, Catalysis, Kinetics, Mass Transfer and Reactor Design", pages: 63

Also Published As

Publication number Publication date
CN113717356B (zh) 2023-04-07
CN113717356A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
KR101129932B1 (ko) 생분해성 폴리에스테르류 및 그 제조방법
KR101369237B1 (ko) 폴리에스테르 폴리올
KR101989045B1 (ko) 내후성 및 저장안정성이 우수한 생분해성 수지 조성물 및 그 제조방법
TWI650342B (zh) 製造高分子聚酯或共聚酯之方法以及含其之高分子摻合物
WO2023039923A1 (zh) 一种半芳香族聚酯及其制备方法和应用
AU2021415772B2 (en) Semiaromatic polyester, and preparation method and application thereof
CN113683763B (zh) 一种半芳香族聚酯及其制备方法和应用
WO2023226834A1 (zh) 一种半芳香族聚酯及其制备方法和应用
WO2023226835A1 (zh) 一种聚酯及其制备方法和应用
AU2012302534A1 (en) Production method for a biodegradable polyester copolymer resin
EP4050055A1 (en) Biodegradable resin composition having improved mechanical properties, moldability, and weather resistance, and preparation method therefor
EP1160269A2 (en) Biodegradable recycled polyester resin and production process therefor
WO2023040768A1 (zh) 一种聚酯及其制备方法和应用
CN107778462B (zh) 一种制备热塑性生物降解塑料的方法
WO2023040769A1 (zh) 半芳香族聚醚酯及其制备方法和应用
CA3210312A1 (en) Process for branched polyesters for foaming and related products
WO2023071796A1 (zh) 一种半芳香族聚酯及其制备方法和应用
US11254785B2 (en) Process for preparing polyesters by using an additive
CN116515093A (zh) 一种可生物降解脂肪族聚酯组合物及其制备方法和应用
WO2024120311A1 (zh) 一种可生物降解脂肪族聚酯及其制备方法和应用
JP2002053652A (ja) 生分解性のリサイクルポリエステル樹脂およびその製造方法
WO2023111923A1 (en) A biodegradable polymer and a process for its preparation
CN117887048A (zh) 一种可生物降解脂肪族聚酯及其制备方法和应用
CN116410452A (zh) 一种聚酯增容剂及其制备方法和应用
JP2017160359A (ja) ポリテトラメチレングリコール共重合ポリブチレンテレフタレート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957198

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021957198

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021957198

Country of ref document: EP

Effective date: 20240412