WO2023037920A1 - サブマージアーク溶接用ボンドフラックス及び溶接金属 - Google Patents

サブマージアーク溶接用ボンドフラックス及び溶接金属 Download PDF

Info

Publication number
WO2023037920A1
WO2023037920A1 PCT/JP2022/032470 JP2022032470W WO2023037920A1 WO 2023037920 A1 WO2023037920 A1 WO 2023037920A1 JP 2022032470 W JP2022032470 W JP 2022032470W WO 2023037920 A1 WO2023037920 A1 WO 2023037920A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
flux
content
arc welding
Prior art date
Application number
PCT/JP2022/032470
Other languages
English (en)
French (fr)
Inventor
英亮 高内
Yoshimasa MURANISHI (村西 良昌)
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020247007188A priority Critical patent/KR20240035903A/ko
Priority to CN202280059883.6A priority patent/CN117916054A/zh
Publication of WO2023037920A1 publication Critical patent/WO2023037920A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding

Definitions

  • the present invention relates to a bond flux and weld metal for submerged arc welding suitable for welding high Cr ferritic heat-resistant steel.
  • Thermal power boilers and turbines, oil refining pressure vessels, various heat-resistant and pressure-resistant steel pipes, etc. are used in high-temperature and high-pressure environments.
  • heat-resistant steel materials include A387 Gr. 92 can be mentioned.
  • Many proposals have already been made for welding consumables to be used for such high-Cr ferritic heat-resistant steel.
  • Patent Document 1 discloses a submerged arc welding method for 9Cr-1Mo steel.
  • the welding method described in Patent Document 1 is a method of welding a combination of a wire with a controlled content of components and a flux, and is capable of preventing cracking and obtaining excellent high-temperature strength and toughness.
  • the present invention has been made in view of the above-described circumstances, and a bond flux for submerged arc welding of high Cr ferritic heat-resistant steel that can obtain a weld metal having excellent tensile strength and toughness after PWHT, and an excellent
  • An object is to provide a weld metal having tensile strength and toughness.
  • a bond flux for submerged arc welding of high Cr ferritic heat-resistant steel For the total flux mass, MgO: 24.0% by mass or more and 35.0% by mass or less, Ca: 10.3% by mass or more and 21.9% by mass or less, F: 7.8% by mass or more and 14.0% by mass or less, Al 2 O 3 : 7.0% by mass or more and 25.0% by mass or less, SiO 2 : 8.0% by mass or more and 22.0% by mass or less, CO 2 : 1.0% by mass or more and 6.0% by mass or less, Na: 0.5% by mass or more and 4.0% by mass or less, C: 0.02% by mass or more and 0.16% by mass or less, ZrO 2 : 4.0% by mass or less, Al: 0.80% by mass or less, and
  • the MgO content in the flux is defined as [MgO] in mass% relative to the total mass of the flux
  • Preferred embodiments of the present invention relating to bond flux for submerged arc welding relate to [2] to [5] below.
  • K The bond flux for submerged arc welding according to [1] or [2], characterized by containing 0.5% by mass or more and 3.0% by mass or less.
  • the submerged arc welding wire has, with respect to the total wire mass, C: 0.07% by mass or more and 0.12% by mass or less, Si: 0.10% by mass or more and 0.35% by mass or less, Mn: 0.40% by mass or more and 0.80% by mass or less, S: 0.001% by mass or more and 0.020% by mass or less, Ni: 0.15% by mass or more and 0.40% by mass or less, Cr: 8.0% by mass or more and 10.0% by mass or less, Mo: 0.30% by mass or more and 0.60% by mass or less, V: 0.15% by mass or more and 0.25% by mass or less, Co: 0.30% by mass or more and 0.60% by mass or less, B: 0.0003% by mass or more and 0.0030% by mass or less, Nb: 0.020% by mass or more and 0.100% by mass or less, W: 1.50% by mass or more and 2.00% by mass or less, N: 0.030% by mass or more and 0.070%
  • a bonded flux for submerged arc welding of high-Cr ferritic heat-resistant steel which can obtain a weld metal having excellent tensile strength and toughness after PWHT, and a weld metal having excellent tensile strength and toughness are provided. can do.
  • the present inventors used ASTM A387 Gr. Extensive research was conducted on the bond flux for submerged arc welding, which is suitable when using No. 92 and is suitable for obtaining a weld metal having excellent tensile strength and toughness after PWHT. As a result, among the components in the flux, in particular, the contents of MgO, Ca, F, Al2O3 , SiO2 , CO2 , Al and C are appropriately controlled, and MgO, Ca, F, Al It has been found effective to control the parameters with the contents of 2 O 3 , SiO 2 and CO 2 .
  • the bond flux for submerged arc welding is a bond flux suitable for welding high Cr ferritic heat-resistant steel, and may contain the following elements as essential components or as optional components.
  • MgO is a slag-forming agent, and is a component that has the effect of improving the fluidity of slag and adjusting the bead shape. MgO is also a component that has the effect of reducing the amount of oxygen in the weld metal and ensuring toughness. If the MgO content in the flux is less than 24.0% by mass, the effect of reducing the amount of oxygen in the weld metal is insufficient, resulting in reduced toughness and deteriorated bead appearance.
  • the MgO content with respect to the total mass of the flux is 24.0% by mass or more, preferably 25.0% by mass or more, and more preferably 25.5% by mass or more.
  • the MgO content relative to the total mass of the flux is 35.0% by mass or less, preferably 34.5% by mass or less, and more preferably 34.0% by mass or less.
  • the content of MgO means a value obtained by converting all Mg contained in the flux into MgO.
  • Ca is a component that acts as a deoxidizing agent and has the effect of reducing the amount of oxygen in the weld metal. If the Ca content in the flux is less than 10.3% by mass, a sufficient deoxidizing effect due to Ca cannot be obtained, and the toughness and bead appearance deteriorate. Therefore, the Ca content relative to the total mass of the flux is 10.3% by mass or more, preferably 11.3% by mass or more, and more preferably 11.8% by mass or more. On the other hand, when the Ca content in the flux exceeds 21.9% by mass, the slag removability deteriorates. Therefore, the Ca content relative to the total mass of the flux is 21.9% by mass or less, preferably 20.9% by mass or less, and more preferably 20.4% by mass or less. Ca is contained in the flux in the form of fluorides and carbonates.
  • F 7.8% by mass or more and 14.0% by mass or less>
  • F is a component that has the effect of reducing the amount of diffusible hydrogen in the weld metal and improving the resistance to cold cracking, as well as having the effect of controlling the amount of oxygen in the weld metal and adjusting the bead shape. If the F content in the flux is less than 7.8% by mass, the amount of oxygen in the weld metal increases and the toughness decreases. Therefore, the F content with respect to the total mass of the flux is 7.8% by mass or more, preferably 8.3% by mass or more, and more preferably 8.6% by mass or more.
  • the F content with respect to the total mass of the flux is 14.0% by mass or less, preferably 13.7% by mass or less, more preferably 13.4% by mass or less.
  • Al 2 O 3 is a slag-forming agent, and is a component that has the effect of improving the fluidity of slag and adjusting the bead shape. If the Al 2 O 3 content in the flux is less than 7.0% by mass, the bead shape deteriorates. Therefore, the Al 2 O 3 content with respect to the total mass of the flux should be 7.0% by mass or more, preferably 7.5% by mass or more, and more preferably 8.0% by mass or more. On the other hand, when the Al 2 O 3 content in the flux exceeds 25.0% by mass, slag entrainment increases and welding workability decreases. Therefore, the Al 2 O 3 content with respect to the total mass of the flux is set to 25.0% by mass or less, preferably 24.5% by mass or less, more preferably 24.0% by mass or less.
  • SiO 2 is a component that has the effect of improving the fluidity of slag and adjusting the bead shape. If the SiO2 content in the flux is less than 8.0% by mass, the bead shape deteriorates. Therefore, the SiO 2 content relative to the total mass of the flux should be 8.0% by mass or more, preferably 8.5% by mass or more, and more preferably 9.0% by mass or more. On the other hand, when the SiO 2 content in the flux exceeds 22.0% by mass, slag entrainment increases and welding workability decreases.
  • the SiO 2 content with respect to the total mass of the flux is 22.0% by mass or less, preferably 21.0% by mass or less, and more preferably 20.5% by mass or less.
  • the content of SiO 2 means a value obtained by converting all Si contained in the flux into SiO 2 .
  • SiO 2 in the flux also includes SiO 2 derived from water glass used as a binder.
  • CO 2 is a component that has the effect of reducing the amount of diffusible hydrogen in the weld metal and improving the resistance to cold cracking, as well as the effect of controlling the amount of oxygen in the weld metal. If the CO2 content in the flux is less than 1.0 wt%, cold cracking occurs. Therefore, the CO 2 content relative to the total mass of the flux should be 1.0% by mass or more, preferably 1.1% by mass or more, and more preferably 1.2% by mass or more. On the other hand, if the CO2 content in the flux exceeds 6.0% by mass, the amount of oxygen in the weld metal increases and the toughness decreases.
  • the CO 2 content with respect to the total mass of the flux is 6.0% by mass or less, preferably 5.5% by mass or less, more preferably 5.0% by mass or less.
  • CO 2 is contained in the flux in the form of metal carbonate.
  • Metal carbonates include CaCO 3 , BaCO 3 , MgCO 3 and the like, and similar effects can be obtained as long as the CO 2 conversion values of these metal carbonates are within the above range.
  • Na 0.5% by mass or more and 4.0% by mass or less>
  • Na is a component that has the effect of improving arc stability. If the Na content in the flux is less than 0.5% by mass, the arc stability is lowered and poor welding occurs. Therefore, the Na content relative to the total mass of the flux should be 0.5% by mass or more, preferably 0.7% by mass or more, and more preferably 0.9% by mass or more.
  • the Na content in the flux exceeds 4.0% by mass, the amount of moisture absorbed by the flux increases, so the amount of hydrogen in the weld metal increases and cold cracking occurs. Therefore, the Na content relative to the total mass of the flux is 4.0% by mass or less, preferably 3.5% by mass or less, and more preferably 3.1% by mass or less.
  • C is a component that has the effect of improving tensile strength. If the C content in the flux is less than 0.02% by mass, the effect of improving the tensile strength of the weld metal cannot be obtained. Therefore, the C content with respect to the total mass of the flux is 0.02% by mass or more, preferably 0.03% by mass or more, and more preferably 0.04% by mass or more. On the other hand, when the C content in the flux exceeds 0.16% by mass, the strength of the weld metal becomes too high, hot cracks are likely to occur, and the toughness decreases. Therefore, the C content with respect to the total mass of the flux is 0.16% by mass or less, preferably 0.15% by mass or less.
  • ZrO 2 is a slag-forming agent and is a component that has the effect of improving the fluidity of slag and adjusting the bead shape, but it is not necessarily contained in the flux.
  • the ZrO 2 content with respect to the total mass of the flux is preferably 0.01% by mass or more, more preferably 0.1% by mass or more.
  • the ZrO 2 content in the flux exceeds 4.0% by mass, slag entrainment increases and welding workability decreases.
  • the ZrO 2 content relative to the total mass of the flux should be 4.0% by mass or less, preferably 3.5% by mass or less, and more preferably 3.0% by mass or less.
  • the content of ZrO 2 means a value obtained by converting all Zr contained in the flux into ZrO 2 .
  • Al 0.80% by mass or less (including 0% by mass)>
  • Al is a component that combines with N to form AlN, reduces the precipitation amount of Cr, Nb, and V carbonitrides essential for ensuring creep strength, and deteriorates the creep strength. is preferably reduced as much as possible.
  • the Al content in the flux exceeds 0.80% by mass, the beads are seized and the slag removability deteriorates.
  • the toughness deteriorates. Therefore, the Al content with respect to the total mass of the flux is 0.80% by mass or less, preferably 0.75% by mass or less, and more preferably 0.70% by mass or less.
  • Al defined as 0.80% by mass or less is contained in the flux in the form of simple Al, Fe--Al and Al alloys, and does not include the form of oxides.
  • ⁇ Formula (1) 3.0 or more and 7.0 or less>
  • the following formula (1) is a parameterization of the deoxidizing power of the flux component on the weld metal. If the value obtained by formula (1) increases, the deoxidizing power of the flux increases and the amount of oxygen in the weld metal decreases, so toughness can be improved. Welding workability deteriorates because the viscosity becomes too high. That is, by appropriately controlling the value obtained by the formula (1), it is possible to achieve both improvement in toughness and improvement in welding workability. If the value obtained from formula (1) is less than 3.0, the deoxidizing power will be weak and the toughness of the weld metal will be low.
  • the value obtained by the formula (1) should be 3.0 or more, preferably 3.3 or more, more preferably 3.9 or more.
  • the value obtained by the formula (1) exceeds 7.0, the shape of the weld bead is deteriorated such that the central portion of the bead becomes a convex bead shape. Therefore, the value obtained by the formula (1) should be 7.0 or less, preferably 6.5 or less, more preferably 6.1 or less.
  • [SiO 2 ] is the value expressed in mass% with respect to the total mass of the flux
  • [SiO 2 ] is the value expressed in mass% with respect to the total mass of the flux
  • [CO 2 ] is the value expressed in mass% relative to the total mass of the flux. is the value expressed in mass% of the CO 2 content of the total mass of the flux.
  • the bonded flux for submerged arc welding according to the present embodiment preferably contains the following components in predetermined contents in addition to the above components.
  • Mn is a component having a deoxidizing effect.
  • Mn content is a component having a deoxidizing effect.
  • the Mn content relative to the total mass of the flux is preferably 0.5% by mass or more, more preferably 0.6% by mass or more.
  • the Mn content in the flux is 2.5% by mass or less, the strength and toughness of the weld metal can be well balanced. Therefore, the Mn content relative to the total mass of the flux is preferably 2.5% by mass or less, more preferably 2.2% by mass or less, and even more preferably 1.9% by mass or less.
  • K is an arc stabilizer and is a component contained in the flux to improve arc stability.
  • the K content with respect to the total mass of the flux is preferably 0.5% by mass or more, more preferably 0.6% by mass or more.
  • the K content in the flux is 3.0% by mass or less, the moisture absorption amount of the flux is suppressed, and the amount of hydrogen in the weld metal is reduced, so the occurrence of cold cracking can be suppressed. Therefore, the K content relative to the total mass of the flux is preferably 3.0% by mass or less, more preferably 2.7% by mass or less, and even more preferably 2.4% by mass or less.
  • Li is an arc stabilizer and is a component contained in the flux to improve arc stability.
  • the Li content relative to the total mass of the flux is preferably 0.05% by mass or more, more preferably 0.06% by mass or more.
  • the Li content in the flux is 0.20% by mass or less, the moisture absorption amount of the flux is suppressed and the amount of hydrogen in the weld metal is reduced, so that the occurrence of cold cracking can be suppressed. Therefore, the Li content relative to the total mass of the flux is preferably 0.20% by mass or less, more preferably 0.18% by mass or less, and even more preferably 0.17% by mass or less.
  • the total content of the above MgO, Ca, F, Al 2 O 3 , SiO 2 , CO 2 , Na, C, ZrO 2 , and Al is the total flux mass It is preferably 88% by mass or more, more preferably 91% by mass or more, and even more preferably 93% by mass or more.
  • the bond flux for submerged arc welding according to the present embodiment may contain Fe, Mo, W, Cu, etc., in addition to the above components, within a range that does not hinder the effects of the present invention.
  • these components may exist as a single substance, and may exist as a compound.
  • the bond flux for submerged arc welding according to this embodiment is used together with a wire for submerged arc welding.
  • the reason for adding the components and the reason for limiting the composition of the wire, which is preferably used together with the bond flux for submerged arc welding according to the present embodiment, will be described in detail.
  • C is a component that has a large effect on the hardenability and the amount of carbonitride precipitation in the weld metal, functions as an austenite stabilizing element, and has the effect of suppressing the remaining ⁇ ferrite phase in the weld metal. .
  • the C content in the wire is less than 0.07% by mass, the C content in the weld metal becomes too small, resulting in an insufficient amount of carbide precipitation.
  • the ⁇ ferrite phase remains and the desired creep strength cannot be obtained. Therefore, the C content with respect to the total mass of the wire is 0.07% by mass or more, preferably 0.08% by mass or more.
  • the C content in the wire exceeds 0.12% by mass, the susceptibility to hot cracking increases, and cracking is likely to occur particularly in submerged arc welding in a narrow groove.
  • the amount of precipitated carbides increases, significantly increasing the strength of the weld metal and deteriorating the toughness of the weld metal. Therefore, the C content with respect to the total mass of the wire is 0.12% by mass or less, preferably 0.11% by mass or less, and more preferably 0.10% by mass or less.
  • Si 0.10% by mass or more and 0.35% by mass or less> Si is a component that improves the conformability of the weld bead, functions as a deoxidizing agent, and has the effect of improving the strength and toughness of the weld metal. If the Si content in the wire is less than 0.10% by mass, the Si content in the weld metal becomes too small, and welding workability (for example, weld bead conformability and fusibility) deteriorates, and toughness deteriorates. And the creep strength also deteriorates. Therefore, the Si content with respect to the total mass of the wire is 0.10% by mass or more, preferably 0.11% by mass or more, and more preferably 0.12% by mass or more.
  • the Si content in the wire exceeds 0.35% by mass, the strength of the weld metal is significantly increased and the toughness is deteriorated. Therefore, the Si content with respect to the total mass of the wire is set to 0.35% by mass or less, preferably 0.33% by mass or less, and more preferably 0.31% by mass or less.
  • Mn 0.40% by mass or more and 0.80% by mass or less>
  • Mn is a component that functions as a deoxidizing agent and has the effect of improving the toughness of the weld metal.
  • Mn is also a component that functions as an austenite stabilizing element and has the effect of suppressing the remaining ⁇ ferrite phase in the weld metal. Furthermore, as will be described later, Mn also has the effect of mitigating the adverse effect of S on hot cracking resistance. If the Mn content in the wire is less than 0.40% by mass, the Mn content in the weld metal is too small to obtain the desired toughness, and the soft ⁇ ferrite phase is formed in the weld metal. It remains inside and the creep strength deteriorates.
  • the Mn content with respect to the total mass of the wire is 0.40% by mass or more, preferably 0.44% by mass or more, and more preferably 0.48% by mass or more.
  • the Mn content in the wire exceeds 0.80% by mass, the Mn content in the weld metal becomes too large, destabilizing the carbonitrides and lowering the creep strength. Therefore, the Mn content relative to the total mass of the wire is 0.80% by mass or less, preferably 0.78% by mass or less, and more preferably 0.77% by mass or less.
  • S is a component that has the effect of lowering the surface energy of the molten pool, improving welding workability, especially conformability on the groove surface, and adjusting the bead appearance and toe shape.
  • S is a component that combines with Fe during welding to form a low melting point eutectic of Fe—FeS in the final solidified portion, which not only increases hot cracking resistance but also embrittles the weld metal and deteriorates toughness. But also. If the S content in the wire is less than 0.001% by mass, the bead shape deteriorates. Therefore, the S content with respect to the total mass of the wire should be 0.001% by mass or more.
  • the S content in the wire exceeds 0.020% by mass, hot cracking is likely to occur and toughness deteriorates. Therefore, the S content with respect to the total mass of the wire is 0.020% by mass or less, preferably 0.018% by mass or less, and more preferably 0.016% by mass or less.
  • Ni is a component that dissolves in the matrix of the weld metal and has the effect of improving the toughness of the ferrite itself. If the Ni content in the wire is less than 0.15% by mass, the effect of improving the toughness of ferrite cannot be obtained. Therefore, the Ni content with respect to the total mass of the wire is 0.15% by mass or more, preferably 0.17% by mass or more, and more preferably 0.20% by mass or more. On the other hand, when the Ni content in the wire exceeds 0.40% by mass, Ni concentrates in the final solidified portion during welding, lowering the solidification completion temperature and increasing the susceptibility to hot cracking.
  • the Ni content with respect to the total mass of the wire is 0.40% by mass or less, preferably 0.38% by mass or less, and more preferably 0.36% by mass or less.
  • Cr 8.0% by mass or more and 10.0% by mass or less> Cr is a component that forms carbonitrides during PWHT and has the effect of improving the creep strength of the weld metal. If the Cr content in the wire is less than 8.0% by mass, the precipitation amount of carbonitrides is insufficient, and the desired creep strength cannot be obtained. Therefore, the Cr content with respect to the total mass of the wire is 8.0% by mass or more, preferably 8.2% by mass or more, and more preferably 8.4% by mass or more. On the other hand, when the Cr content in the wire exceeds 10.0% by mass, the solidification completion temperature decreases, the susceptibility to hot cracking increases, and the ⁇ ferrite phase remains in the weld metal, resulting in poor creep strength and toughness. descend. In addition, the slag removability is remarkably deteriorated. Therefore, the Cr content with respect to the total mass of the wire is 10.0% by mass or less, preferably 9.7% by mass or less, and more preferably 9.5% by mass or less.
  • Mo is a component that has the effect of improving the creep strength of the weld metal by forming a solid solution in the Cr-based carbide or matrix during PWHT. Desired creep strength cannot be obtained as Mo content in a wire is less than 0.30 mass %. Therefore, the Mo content with respect to the total mass of the wire is 0.30% by mass or more, preferably 0.32% by mass or more, and more preferably 0.33% by mass or more.
  • the Mo content in the wire exceeds 0.60% by mass, the amount of solid solution in the Cr-based carbides and matrix increases excessively, resulting in a marked increase in the strength of the weld metal and deterioration in toughness. do. Therefore, the Mo content with respect to the total mass of the wire is 0.60% by mass or less, preferably 0.57% by mass or less, and more preferably 0.53% by mass or less.
  • V 0.15% by mass or more and 0.25% by mass or less>
  • V is a component that forms carbonitrides during PWHT and has the effect of improving the creep strength of the weld metal. If the V content in the wire is less than 0.15% by mass, the desired creep strength cannot be obtained. Therefore, the V content with respect to the total mass of the wire is 0.15% by mass or more, preferably 0.16% by mass or more. On the other hand, if the V content in the wire exceeds 0.25% by mass, the amount of precipitated carbonitrides significantly increases, resulting in an increase in the strength of the weld metal and deterioration in toughness. Therefore, the V content with respect to the total mass of the wire is set to 0.25% by mass or less, preferably 0.24% by mass or less.
  • Co is a component that has the effect of improving the room temperature strength and creep strength of the weld metal. If the Co content in the wire is less than 0.30% by mass, the effect of improving the strength of the weld metal cannot be obtained. Therefore, the Co content with respect to the total mass of the wire should be 0.30% by mass or more, preferably 0.32% by mass or more, and more preferably 0.33% by mass or more. On the other hand, if the Co content in the wire exceeds 0.60% by mass, the strength of the weld metal becomes too high and the toughness decreases. Therefore, the Co content with respect to the total mass of the wire is 0.60% by mass or less, preferably 0.56% by mass or less, and more preferably 0.51% by mass or less.
  • B is a component that has the effect of stabilizing the toughness of the weld metal. If the B content in the wire is less than 0.0003% by mass, the toughness of the weld metal will be insufficient. Therefore, the B content with respect to the total mass of the wire should be 0.0003% by mass or more. On the other hand, if the B content in the wire exceeds 0.0030% by mass, the strength of the weld metal becomes too high, which not only causes a decrease in toughness but also increases susceptibility to hot cracking during welding. Therefore, the B content with respect to the total mass of the wire is 0.0030% by mass or less, preferably 0.0029% by mass or less, and more preferably 0.0028% by mass or less.
  • Nb is a component that forms carbonitrides during PWHT and has the effect of improving the creep strength of the weld metal. If the Nb content in the wire is less than 0.020% by mass, the desired creep strength cannot be obtained. Therefore, the Nb content with respect to the total mass of the wire is 0.020% by mass or more, preferably 0.021% by mass or more, and more preferably 0.023% by mass or more. On the other hand, if the Nb content in the wire exceeds 0.100% by mass, the amount of precipitation of carbonitrides increases remarkably, increasing the strength of the weld metal and deteriorating toughness.
  • the Nb content with respect to the total mass of the wire is 0.100% by mass or less, preferably 0.080% by mass or less, and more preferably 0.065% by mass or less.
  • W is a component that has the effect of improving the room temperature strength and creep strength of the weld metal. If the W content in the wire is less than 1.50% by mass, the effect of improving the strength of the weld metal cannot be obtained. Therefore, the W content with respect to the total mass of the wire is 1.50% by mass or more, preferably 1.51% by mass or more, and more preferably 1.53% by mass or more. On the other hand, when the W content in the wire exceeds 2.00% by mass, the strength of the weld metal becomes too high and the toughness decreases. Therefore, the W content with respect to the total mass of the wire is 2.00% by mass or less, preferably 1.90% by mass or less, and more preferably 1.85% by mass or less.
  • N is a component that combines with Cr, V, Nb, etc. during PWHT to form carbonitrides and has the effect of improving the creep strength of the weld metal. If the N content in the wire is less than 0.030% by mass, the desired creep strength cannot be obtained. Therefore, the N content with respect to the total mass of the wire is 0.030% by mass or more, preferably 0.035% by mass or more, and more preferably 0.038% by mass or more. On the other hand, when the N content in the wire exceeds 0.070% by mass, the precipitation amount of carbonitrides increases significantly, the strength of the weld metal increases, and the toughness deteriorates.
  • the N2 gas generated during the welding process tends to remain in the molten metal, causing blowholes. Therefore, the N content with respect to the total mass of the wire is 0.070% by mass or less, preferably 0.068% by mass or less, and more preferably 0.066% by mass or less.
  • P is a component that forms a low-melting point compound in the final solidification zone during welding, which not only increases the susceptibility to hot cracking, but also embrittles the weld metal and degrades toughness. preferably. If the P content in the wire exceeds 0.020% by mass, hot cracking is likely to occur and toughness deteriorates. Therefore, the P content with respect to the total mass of the wire is 0.020% by mass or less, preferably 0.016% by mass or less, and more preferably 0.011% by mass or less.
  • Cu is a component that makes the weld metal susceptible to hot cracking. If the Cu content in the wire exceeds 0.20% by mass, hot cracking of the weld metal is likely to occur. Therefore, the Cu content relative to the total mass of the wire is 0.20% by mass or less, preferably 0.16% by mass or less, and more preferably 0.11% by mass or less.
  • Al 0.020% by mass or less>
  • Al is a component that combines with N to form AlN, reduces the amount of precipitation of carbonitrides such as Cr, Nb, and V, which are indispensable for ensuring creep strength, and deteriorates the creep strength. is preferably reduced as much as possible. If the Al content in the wire exceeds 0.020% by mass, the bead seizes and the slag removability deteriorates. Moreover, since the yield of elements in the weld metal increases and the strength increases, the toughness deteriorates. Therefore, the Al content with respect to the total mass of the wire is set to 0.020% by mass or less, preferably 0.016% by mass or less, and more preferably 0.012% by mass or less.
  • the balance is Fe and unavoidable impurities.
  • unavoidable impurities include Sn, As, Sb, Pb, and Bi.
  • Sn, As, and Sb are each preferably, for example, 0.005% by mass or less with respect to the total mass of the wire, and preferably 0.015% by mass or less in total.
  • Pb and Bi are preferably, for example, 0.001% by mass or less with respect to the total mass of the wire.
  • the weld metal according to the present embodiment is the above [1. Bonded Flux for Submerged Arc Welding].
  • various welding conditions other than the use of the bond flux for submerged arc welding according to the present embodiment are not particularly limited. etc., the usual conditions in submerged arc welding processes can be used.
  • Comparative Example No. 1 to 5 are based on the contents of MgO, Ca, F, Al 2 O 3 , SiO 2 and CO 2 in the flux.
  • the toughness of the weld metal decreased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PWHT後に優れた引張強度及び靱性を有する溶接金属を得ることができる高Crフェライト系耐熱鋼のサブマージアーク溶接用ボンドフラックスを提供する。高Crフェライト系耐熱鋼のサブマージアーク溶接用ボンドフラックスは、MgO、Ca、F、Al2O3、SiO2、CO2、Na及びCを所定の範囲で含有し、ZrO2及びAlが所定の含有量以下であり、フラックス中のMgO、Ca、F、Al2O3、SiO2、CO2の含有量を、それぞれ、フラックス全質量に対する質量%で、[MgO]、[Ca]、[F]、[Al2O3]、[SiO2]、[CO2]とする場合に、式(1):{[MgO]+1.4×([Ca]-1.055×[F])+2.055×[F]+0.5×[Al2O3]}/([SiO2]+[CO2])により得られる値が3.0以上7.0以下である。

Description

サブマージアーク溶接用ボンドフラックス及び溶接金属
 本発明は、高Crフェライト系耐熱鋼の溶接に適したサブマージアーク溶接用ボンドフラックス及び溶接金属に関する。
 火力発電ボイラやタービン、石油精製用圧力容器、各種耐熱耐圧鋼管等は、高温、高圧環境下で使用されるため、その使用環境に応じて、種々の高Crフェライト系耐熱鋼が使用されている。このような耐熱鋼材としては、例えば、ASTM(American Society for Testing and Materials:米国材料試験協会)規格やASME(American Society of Mechanical Engineers:米国機械協会)規格に規定される、A387Gr.92が挙げられる。そして、このような高Crフェライト系耐熱鋼を対象として使用される溶接材料について、既に多くの提案がなされている。
 例えば、特許文献1には、9Cr-1Mo鋼のサブマージアーク溶接方法が開示されている。上記特許文献1に記載の溶接方法は、含有成分の含有量が制御されたワイヤとフラックスとを組み合わせて溶接する方法であり、割れを防止し、優れた高温強度及び靱性を得ることができることが記載されている。
日本国特開平1-258894号公報
 しかしながら、近年、溶接金属の機械的性能のさらなる向上が要求されており、上記特許文献1に記載の溶接方法を用いても、要求される機械的性能を満足することができない。具体的には、PWHT(溶接後熱処理:Post Weld Heat Treatment)後に、引張強度と靱性とがより一層優れた溶接金属を得ることができる溶接材料が要求されている。
 本発明は、上述した状況に鑑みてなされたものであり、PWHT後に優れた引張強度及び靱性を有する溶接金属を得ることができる高Crフェライト系耐熱鋼のサブマージアーク溶接用ボンドフラックス、並びに優れた引張強度及び靱性を有する溶接金属を提供することを目的とする。
 本発明の上記目的は、サブマージアーク溶接用ボンドフラックスに係る下記[1]の構成により達成される。
[1] 高Crフェライト系耐熱鋼のサブマージアーク溶接用ボンドフラックスであって、
 フラックス全質量に対して、
 MgO:24.0質量%以上35.0質量%以下、
 Ca:10.3質量%以上21.9質量%以下、
 F:7.8質量%以上14.0質量%以下、
 Al:7.0質量%以上25.0質量%以下、
 SiO:8.0質量%以上22.0質量%以下、
 CO:1.0質量%以上6.0質量%以下、
 Na:0.5質量%以上4.0質量%以下、
 C:0.02質量%以上0.16質量%以下、を含有し、
 ZrO:4.0質量%以下、
 Al:0.80質量%以下、であり、
 フラックス中のMgO含有量をフラックス全質量に対する質量%で[MgO]とし、フラックス中のCa含有量をフラックス全質量に対する質量%で[Ca]とし、フラックス中のF含有量をフラックス全質量に対する質量%で[F]とし、フラックス中のAl含有量をフラックス全質量に対する質量%で[Al]とし、フラックス中のSiO含有量をフラックス全質量に対する質量%で[SiO]とし、フラックス中のCO含有量をフラックス全質量に対する質量%で[CO]とする場合に、下記式(1)により得られる値が3.0以上7.0以下、であることを特徴とするサブマージアーク溶接用ボンドフラックス。
 式(1):{[MgO]+1.4×([Ca]-1.055×[F])+2.055×[F]+0.5×[Al]}/([SiO]+[CO])
 サブマージアーク溶接用ボンドフラックスに係る本発明の好ましい実施形態は、以下の[2]~[5]に関する。
[2] さらに、フラックス全質量に対して、
 Mn:0.5質量%以上2.5質量%以下、を含有することを特徴とする[1]に記載のサブマージアーク溶接用ボンドフラックス。
[3] さらに、フラックス全質量に対して、
 K:0.5質量%以上3.0質量%以下、を含有することを特徴とする[1]又は[2]に記載のサブマージアーク溶接用ボンドフラックス。
[4] さらに、フラックス全質量に対して、
 Li:0.05質量%以上0.20質量%以下、を含有することを特徴とする[1]~[3]のいずれか1つに記載のサブマージアーク溶接用ボンドフラックス。
[5] サブマージアーク溶接用ワイヤとともに用いられ、
 前記サブマージアーク溶接用ワイヤは、ワイヤ全質量に対して、
 C:0.07質量%以上0.12質量%以下、
 Si:0.10質量%以上0.35質量%以下、
 Mn:0.40質量%以上0.80質量%以下、
 S:0.001質量%以上0.020質量%以下、
 Ni:0.15質量%以上0.40質量%以下、
 Cr:8.0質量%以上10.0質量%以下、
 Mo:0.30質量%以上0.60質量%以下、
 V:0.15質量%以上0.25質量%以下、
 Co:0.30質量%以上0.60質量%以下、
 B:0.0003質量%以上0.0030質量%以下、
 Nb:0.020質量%以上0.100質量%以下、
 W:1.50質量%以上2.00質量%以下、
 N:0.030質量%以上0.070質量%以下、を含有し、
 P:0.020質量%以下、
 Cu:0.20質量%以下、
 Al:0.020質量%以下、であり、
 残部がFe及び不可避的不純物であることを特徴とする、[1]~[4]のいずれか1つに記載のサブマージアーク溶接用ボンドフラックス。
 本発明の上記目的は、溶接金属に係る下記[6]の構成により達成される。
[6] [1]~[5]のいずれか1つに記載のサブマージアーク溶接用ボンドフラックスを使用して形成されることを特徴とする、溶接金属。
 本発明によれば、PWHT後に優れた引張強度及び靱性を有する溶接金属を得ることができる高Crフェライト系耐熱鋼のサブマージアーク溶接用ボンドフラックス、並びに優れた引張強度及び靱性を有する溶接金属を提供することができる。
 以下、本発明を実施するための形態について詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変更して実施することができる。
 本発明者らは、溶接母材として、ASTM A387Gr.92を使用した場合に好適であって、PWHT後の引張強度及び靱性がいずれも優れた溶接金属を得るためのサブマージアーク溶接用ボンドフラックスについて、鋭意検討を行った。その結果、フラックス中の各成分のうち、特に、MgO、Ca、F、Al、SiO、CO、Al及びCの含有量を適切に制御するとともに、MgO、Ca、F、Al、SiO、及びCOの含有量を用いたパラメータを制御することが効果的であることを見出した。
 以下、本実施形態に係るサブマージアーク溶接用ボンドフラックスについて、その成分添加理由及び組成限定理由を詳細に説明する。
[1.サブマージアーク溶接用ボンドフラックス]
 本実施形態に係るサブマージアーク溶接用ボンドフラックスは、高Crフェライト系耐熱鋼の溶接に適したボンドフラックスであり、以下の元素を必須成分として含有し、又は、任意成分として含有し得る。
<MgO:24.0質量%以上35.0質量%以下>
 MgOは、スラグ造滓剤であり、スラグの流動性を向上させ、ビード形状を整える効果を有する成分である。また、MgOは、溶接金属中の酸素量を低減し、靱性を確保する効果を有する成分でもある。
 フラックス中のMgO含有量が24.0質量%未満であると、溶接金属中の酸素量を低減する効果が不足し、靱性が低下するとともに、ビード外観が劣化する。したがって、フラックス全質量に対するMgO含有量は、24.0質量%以上とし、25.0質量%以上であることが好ましく、25.5質量%以上であることがより好ましい。
 一方、フラックス中のMgO含有量が35.0質量%を超えると、スラグ巻き込みが多くなり、溶接作業性が低下する。したがって、フラックス全質量に対するMgO含有量は、35.0質量%以下とし、34.5質量%以下であることが好ましく、34.0質量%以下であることがより好ましい。
 なお、本実施形態において、MgOの含有量とは、フラックス中に含まれるすべてのMgをMgOに換算した値を意味する。
<Ca:10.3質量%以上21.9質量%以下>
 Caは、脱酸剤として作用し、溶接金属中の酸素量を低減する効果を有する成分である。
 フラックス中のCa含有量が10.3質量%未満であると、Caによる十分な脱酸効果を得ることができず、靱性が低下するとともに、ビード外観が劣化する。したがって、フラックス全質量に対するCa含有量は、10.3質量%以上とし、11.3質量%以上であることが好ましく、11.8質量%以上であることがより好ましい。
 一方、フラックス中のCa含有量が21.9質量%を超えると、スラグ剥離性が低下する。したがって、フラックス全質量に対するCa含有量は、21.9質量%以下とし、20.9質量%以下であることが好ましく、20.4質量%以下であることがより好ましい。
 なお、Caは、フッ化物及び炭酸塩の形態でフラックス中に含有される。
<F:7.8質量%以上14.0質量%以下>
 Fは、溶接金属の拡散性水素量を低減し、耐低温割れ性を向上する効果を有するとともに、溶接金属中の酸素量をコントロールし、ビード形状を整える効果を有する成分である。
 フラックス中のF含有量が7.8質量%未満であると、溶接金属中の酸素量が増加し、靱性が低下する。したがって、フラックス全質量に対するF含有量は、7.8質量%以上とし、8.3質量%以上であることが好ましく、8.6質量%以上であることがより好ましい。
 一方、フラックス中のF含有量が14.0質量%を超えると、アークが不安定となり、ビード形状やスラグの剥離性が低下する。したがって、フラックス全質量に対するF含有量は、14.0質量%以下とし、13.7質量%以下であることが好ましく、13.4質量%以下であることがより好ましい。
<Al:7.0質量%以上25.0質量%以下>
 Alは、スラグ造滓剤であり、スラグの流動性を向上させ、ビード形状を整える効果を有する成分である。
 フラックス中のAl含有量が7.0質量%未満であると、ビード形状が劣化する。したがって、フラックス全質量に対するAl含有量は、7.0質量%以上とし、7.5質量%以上であることが好ましく、8.0質量%以上であることがより好ましい。
 一方、フラックス中のAl含有量が25.0質量%を超えると、スラグ巻き込みが多くなり、溶接作業性が低下する。したがって、フラックス全質量に対するAl含有量は、25.0質量%以下とし、24.5質量%以下であることが好ましく、24.0質量%以下であることがより好ましい。
<SiO:8.0質量%以上22.0質量%以下>
 SiOは、スラグの流動性を向上させ、ビード形状を整える効果を有する成分である。
 フラックス中のSiO含有量が8.0質量%未満であると、ビード形状が劣化する。したがって、フラックス全質量に対するSiO含有量は、8.0質量%以上とし、8.5質量%以上であることが好ましく、9.0質量%以上であることがより好ましい。
 一方、フラックス中のSiO含有量が22.0質量%を超えると、スラグ巻き込みが多くなり、溶接作業性が低下する。したがって、フラックス全質量に対するSiO含有量は、22.0質量%以下とし、21.0質量%以下であることが好ましく、20.5質量%以下であることがより好ましい。
 なお、本実施形態において、SiOの含有量とは、フラックス中に含まれるすべてのSiをSiOに換算した値を意味する。また、フラックス中のSiOとしては、バインダーとして使用される水ガラスに由来するSiOも含まれる。
<CO:1.0質量%以上6.0質量%以下>
 COは、溶接金属の拡散性水素量を低減し、耐低温割れ性を向上させる効果を有するとともに、溶接金属中の酸素量をコントロールする効果を有する成分である。
 フラックス中のCO含有量が1.0質量%未満であると、低温割れが発生する。したがって、フラックス全質量に対するCO含有量は、1.0質量%以上とし、1.1質量%以上であることが好ましく、1.2質量%以上であることがより好ましい。
 一方、フラックス中のCO含有量が6.0質量%を超えると、溶接金属中の酸素量が増加し、靱性が低下する。したがって、フラックス全質量に対するCO含有量は、6.0質量%以下とし、5.5質量%以下であることが好ましく、5.0質量%以下であることがより好ましい。
 なお、COは、金属炭酸塩の形態でフラックス中に含有される。金属炭酸塩としては、CaCO、BaCO、MgCO等があるが、これらの金属炭酸塩をCOに換算した換算値が上記範囲であれば、同様の効果を得ることができる。
<Na:0.5質量%以上4.0質量%以下>
 Naは、アーク安定性を向上させる効果を有する成分である。
 フラックス中のNa含有量が0.5質量%未満であると、アーク安定性が低下し、溶接不良が発生する。したがって、フラックス全質量に対するNa含有量は、0.5質量%以上とし、0.7質量%以上であることが好ましく、0.9質量%以上であることがより好ましい。
 一方、フラックス中のNa含有量が4.0質量%を超えると、フラックスの吸湿量が高くなるため、溶接金属中の水素量が高くなり、低温割れが発生する。したがって、フラックス全質量に対するNa含有量は、4.0質量%以下とし、3.5質量%以下であることが好ましく、3.1質量%以下であることがより好ましい。
<C:0.02質量%以上0.16質量%以下>
 Cは、引張強さを向上させる効果を有する成分である。
 フラックス中のC含有量が0.02質量%未満であると、溶接金属の引張強さを向上させる効果を得ることができない。したがって、フラックス全質量に対するC含有量は、0.02質量%以上とし、0.03質量%以上であることが好ましく、0.04質量%以上であることがより好ましい。
 一方、フラックス中のC含有量が0.16質量%を超えると、溶接金属の強度が高くなりすぎて、高温割れが発生しやすくなり、靱性が低下する。したがって、フラックス全質量に対するC含有量は、0.16質量%以下とし、0.15質量%以下であることが好ましい。
<ZrO:4.0質量%以下(0質量%を含む)>
 ZrOは、スラグ造滓剤であり、スラグの流動性を向上させ、ビード形状を整える効果を有する成分であるが、必ずしもフラックス中に含有される必要はない。
 フラックス中にZrOを含有させる場合に、フラックス全質量に対するZrO含有量は、0.01質量%以上とすることが好ましく、0.1質量%以上とすることがより好ましい。
 一方、フラックス中のZrO含有量が4.0質量%を超えると、スラグ巻き込みが多くなり、溶接作業性が低下する。したがって、フラックス全質量に対するZrO含有量は、4.0質量%以下とし、3.5質量%以下であることが好ましく、3.0質量%以下であることがより好ましい。
 なお、本実施形態において、ZrOの含有量とは、フラックス中に含まれるすべてのZrをZrOに換算した値を意味する。
<Al:0.80質量%以下(0質量%を含む)>
 Alは、Nと結合してAlNを形成し、クリープ強度の確保に必要不可欠なCrやNb、Vの炭窒化物析出量を低減し、クリープ強度を劣化させる成分であるため、フラックス中のAlは、できるだけ低減することが好ましい。
 フラックス中のAl含有量が0.80質量%を超えると、ビードが焼付き、スラグ剥離性が劣化する。また、溶接金属中の元素の歩留まりが向上し、強度が上昇するため、靱性が劣化する。したがって、フラックス全質量に対するAl含有量は、0.80質量%以下とし、0.75質量%以下であることが好ましく、0.70質量%以下であることがより好ましい。
 なお、ここで0.80質量%以下として規定されるAlは、Al単体、Fe-Al及びAl合金の形態でフラックス中に含有されるものであり、酸化物の形態は含まれない。
<式(1):3.0以上7.0以下>
 下記式(1)は、フラックス成分による溶接金属への脱酸力をパラメータ化したものである。式(1)により得られる値が高くなると、フラックスによる脱酸力が高くなり、溶接金属の酸素量が低下するため、靱性を向上させることができるが、過度に高くなると、各温度でのスラグ粘度が高くなりすぎるため、溶接作業性が劣化する。すなわち、式(1)により得られる値を適切に制御することにより、靱性の向上と溶接作業性の向上とを両立させることができる。
 式(1)により得られる値が3.0未満であると、脱酸力が弱くなり、溶接金属の靱性が低下する。したがって、式(1)により得られる値は、3.0以上とし、3.3以上であることが好ましく、3.9以上であることがより好ましい。
 一方、式(1)により得られる値が7.0を超えると、ビードの中央部が凸ビード形状になるなど、溶接ビードの形状が劣化する。したがって、式(1)により得られる値は、7.0以下とし、6.5以下であることが好ましく、6.1以下であることがより好ましい。
 式(1):{[MgO]+1.4×([Ca]-1.055×[F])+2.055×[F]+0.5×[Al]}/([SiO]+[CO])
 なお、上記式(1)中、[MgO]は、フラックス中のMgO含有量をフラックス全質量に対する質量%で表した値であり、[Ca]は、フラックス中のCa含有量をフラックス全質量に対する質量%で表した値であり、[F]は、フラックス中のF含有量をフラックス全質量に対する質量%で表した値であり、[Al]は、フラックス中のAl含有量をフラックス全質量に対する質量%で表した値であり、[SiO]は、フラックス中のSiO含有量をフラックス全質量に対する質量%で表した値であり、[CO]は、フラックス中のCO含有量をフラックス全質量に対する質量%で表した値である。
 本実施形態に係るサブマージアーク溶接用ボンドフラックスは、上記成分の他に、以下の成分を所定の含有量で含有することが好ましい。
<Mn:0.5質量%以上2.5質量%以下>
 Mnは、脱酸効果を有する成分である。
 フラックス中にMnを含有させる場合に、Mn含有量が0.5質量%以上であると、脱酸力を発揮し、溶接金属が低酸素となるため、靱性を向上させることができる。したがって、フラックス全質量に対するMn含有量は、0.5質量%以上であることが好ましく、0.6質量%以上であることがより好ましい。
 一方、フラックス中のMn含有量が2.5質量%以下であると、溶接金属の強度と靱性のバランスを良好にすることができる。したがって、フラックス全質量に対するMn含有量は、2.5質量%以下であることが好ましく、2.2質量%以下であることがより好ましく、1.9質量%以下であることがさらに好ましい。
<K:0.5質量%以上3.0質量%以下>
 Kは、アーク安定剤であり、アーク安定性を良好にするためにフラックス中に含有させる成分である。
 フラックス中にKを含有させる場合に、K含有量が0.5質量%以上であると、アーク安定性が向上するため、溶接作業性を良好とすることができる。したがって、フラックス全質量に対するK含有量は、0.5質量%以上であることが好ましく、0.6質量%以上であることがより好ましい。
 一方、フラックス中のK含有量が3.0質量%以下であると、フラックスの吸湿量が抑制され、溶接金属中の水素量が低減するため、低温割れの発生を抑制することができる。したがって、フラックス全質量に対するK含有量は、3.0質量%以下であることが好ましく、2.7質量%以下であることがより好ましく、2.4質量%以下であることがさらに好ましい。
<Li:0.05質量%以上0.20質量%以下>
 Liは、アーク安定剤であり、アーク安定性を良好にするためにフラックス中に含有させる成分である。
 フラックス中にLiを含有させる場合に、Li含有量が0.05質量%以上であると、アーク安定性が向上するため、溶接作業性を良好とすることができる。したがって、フラックス全質量に対するLi含有量は、0.05質量%以上であることが好ましく、0.06質量%以上であることがより好ましい。
 一方、フラックス中のLi含有量が0.20質量%以下であると、フラックスの吸湿量が抑制され、溶接金属中の水素量が低減するため、低温割れの発生を抑制することができる。したがって、フラックス全質量に対するLi含有量は、0.20質量%以下であることが好ましく、0.18質量%以下であることがより好ましく、0.17質量%以下であることがさらに好ましい。
<必須成分の合計含有量>
 本実施形態に係るサブマージアーク溶接用ボンドフラックスは、上記MgO、Ca、F、Al、SiO、CO、Na、C、ZrO、及びAlの合計の含有量が、フラックス全質量に対して88質量%以上であることが好ましく、91質量%以上であることがより好ましく、93質量%以上であることがさらに好ましい。
<残部>
 本実施形態に係るサブマージアーク溶接用ボンドフラックスは、上記成分以外に、例えば、Fe、Mo、W、Cu等を、本発明の効果を妨げない範囲で含有してもよい。なお、これらの成分は、単体として存在してもよいし、化合物として存在していてもよい。
[2.サブマージアーク溶接用ワイヤ]
 本実施形態に係るサブマージアーク溶接用ボンドフラックスは、サブマージアーク溶接用ワイヤとともに用いられる。以下、本実施形態に係るサブマージアーク溶接用ボンドフラックスにとともに用いることが好ましいワイヤについて、その成分添加理由及び組成限定理由を詳細に説明する。
<C:0.07質量%以上0.12質量%以下>
 Cは、溶接金属中の焼き入れ性と炭窒化物の析出量に大きな影響を及ぼすとともに、オーステナイト安定化元素として機能し、溶接金属中のδフェライト相の残存を抑制する効果を有する成分である。
 ワイヤ中のC含有量が0.07質量%未満であると、溶接金属中のC含有量が少なくなりすぎて、炭化物の析出量が不十分となる。また、δフェライト相が残存して、所望のクリープ強度を得ることができない。したがって、ワイヤ全質量に対するC含有量は、0.07質量%以上とし、0.08質量%以上であることが好ましい。
 一方で、ワイヤ中のC含有量が0.12質量%を超えると、高温割れ感受性が高まり、特に、狭開先内のサブマージアーク溶接で割れが発生しやすくなる。また、炭化物の析出量が増大して、溶接金属の強度を著しく高め、靱性を劣化させる。したがって、ワイヤ全質量に対するC含有量は、0.12質量%以下とし、0.11質量%以下であることが好ましく、0.10質量%以下であることがより好ましい。
<Si:0.10質量%以上0.35質量%以下>
 Siは、溶接ビードのなじみ性を改善するとともに、脱酸剤として機能し、溶接金属の強度及び靱性を向上させる効果を有する成分である。
 ワイヤ中のSi含有量が0.10質量%未満であると、溶接金属中のSi含有量が少なくなりすぎて、溶接作業性(例えば、溶接ビードのなじみ性や融合性)が劣化し、靱性及びクリープ強度も劣化する。したがって、ワイヤ全質量に対するSi含有量は、0.10質量%以上とし、0.11質量%以上であることが好ましく、0.12質量%以上であることがより好ましい。
 一方、ワイヤ中のSi含有量が0.35質量%を超えると、溶接金属の強度が著しく高くなり、靱性が劣化する。したがって、ワイヤ全質量に対するSi含有量は、0.35質量%以下とし、0.33質量%以下であることが好ましく、0.31質量%以下であることがより好ましい。
<Mn:0.40質量%以上0.80質量%以下>
 Mnは、Siと同様に、脱酸剤として機能し、溶接金属の靱性を向上させる効果を有する成分である。また、Mnは、オーステナイト安定化元素として機能し、溶接金属中のδフェライト相の残存を抑制する効果を有する成分でもある。さらに、Mnは、後述するとおり、Sによる高温割れ性への悪影響を緩和する効果も有する。
 ワイヤ中のMn含有量が0.40質量%未満であると、溶接金属中のMn含有量が少なくなりすぎて、所望の靱性を得ることができず、また、軟質なδフェライト相が溶接金属中に残存して、クリープ強度が劣化する。さらに、Sによって引き起こされる高温割れを抑制することが困難となる。したがって、ワイヤ全質量に対するMn含有量は、0.40質量%以上とし、0.44質量%以上であることが好ましく、0.48質量%以上であることがより好ましい。
 一方、ワイヤ中のMn含有量が0.80質量%を超えると、溶接金属中のMn含有量が多くなりすぎて、炭窒化物が不安定化し、クリープ強度が低下する。したがって、ワイヤ全質量に対するMn含有量は、0.80質量%以下とし、0.78質量%以下であることが好ましく、0.77質量%以下であることがより好ましい。
<S:0.001質量%以上0.020質量%以下>
 Sは、溶融池の表面エネルギーを下げ、溶接作業性、特に開先面でのなじみを良好にして、ビード外観及び止端形状を整える効果を有する成分である。しかし、Sは、溶接時にFeと結合して、Fe-FeSの低融点共晶を最終凝固部に形成し、高温割れ性を高めるだけでなく、溶接金属を脆化させて靱性を劣化させる成分でもある。
 ワイヤ中のS含有量が0.001質量%未満であると、ビード形状が劣化する。したがって、ワイヤ全質量に対するS含有量は、0.001質量%以上とする。
 一方、ワイヤ中のS含有量が0.020質量%を超えると、高温割れが発生しやすくなるとともに、靱性が劣化する。したがって、ワイヤ全質量に対するS含有量は、0.020質量%以下とし、0.018質量%以下であることが好ましく、0.016質量%以下であることがより好ましい。
<Ni:0.15質量%以上0.40質量%以下>
 Niは、溶接金属のマトリクスに固溶して、フェライトそのものの靱性を向上させる効果を有する成分である。
 ワイヤ中のNi含有量が0.15質量%未満であると、フェライトの靱性を向上させる効果を得ることができない。したがって、ワイヤ全質量に対するNi含有量は、0.15質量%以上とし、0.17質量%以上であることが好ましく、0.20質量%以上であることがより好ましい。
 一方、ワイヤ中のNi含有量が0.40質量%を超えると、Niが溶接時の最終凝固部に濃化し、凝固完了温度が低温化され、高温割れ感受性が高くなる。また、クリープ変形中に炭窒化物のサイズが粗大化し、クリープ強度が低下する。したがって、ワイヤ全質量に対するNi含有量は、0.40質量%以下とし、0.38質量%以下であることが好ましく、0.36質量%以下であることがより好ましい。
<Cr:8.0質量%以上10.0質量%以下>
 Crは、PWHT時に炭窒化物を形成して、溶接金属のクリープ強度を向上させる効果を有する成分である。
 ワイヤ中のCr含有量が8.0質量%未満であると、炭窒化物の析出量が不足して、所望のクリープ強度を得ることができない。したがって、ワイヤ全質量に対するCr含有量は、8.0質量%以上とし、8.2質量%以上であることが好ましく、8.4質量%以上であることがより好ましい。
 一方、ワイヤ中のCr含有量が10.0質量%を超えると、凝固完了温度が低下し、高温割れ感受性が高くなるとともに、δフェライト相が溶接金属中に残留して、クリープ強度及び靱性が低下する。また、スラグ剥離性が著しく劣化する。したがって、ワイヤ全質量に対するCr含有量は、10.0質量%以下とし、9.7質量%以下であることが好ましく、9.5質量%以下であることがより好ましい。
<Mo:0.30質量%以上0.60質量%以下>
 Moは、PWHT時にCr系炭化物中又は母相中に固溶して、溶接金属のクリープ強度を向上させる効果を有する成分である。
 ワイヤ中のMo含有量が0.30質量%未満であると、所望のクリープ強度を得ることができない。したがって、ワイヤ全質量に対するMo含有量は、0.30質量%以上とし、0.32質量%以上であることが好ましく、0.33質量%以上であることがより好ましい。
 一方、ワイヤ中のMo含有量が0.60質量%を超えると、Cr系炭化物中及び母相中への固溶量が過剰に増加して、溶接金属の強度が著しく高くなり、靱性が劣化する。したがって、ワイヤ全質量に対するMo含有量は、0.60質量%以下とし、0.57質量%以下であることが好ましく、0.53質量%以下であることがより好ましい。
<V:0.15質量%以上0.25質量%以下>
 Vは、PWHT時に炭窒化物を形成して、溶接金属のクリープ強度を向上させる効果を有する成分である。
 ワイヤ中のV含有量が0.15質量%未満であると、所望のクリープ強度を得ることができない。したがって、ワイヤ全質量に対するV含有量は、0.15質量%以上とし、0.16質量%以上であることが好ましい。
 一方、ワイヤ中のV含有量が0.25質量%を超えると、炭窒化物の析出量が著しく増加して、溶接金属の強度が高くなり、靱性が劣化する。したがって、ワイヤ全質量に対するV含有量は、0.25質量%以下とし、0.24質量%以下であることが好ましい。
<Co:0.30質量%以上0.60質量%以下>
 Coは、溶接金属の室温強度及びクリープ強度を向上させる効果を有する成分である。
 ワイヤ中のCo含有量が0.30質量%未満であると、溶接金属の強度を向上させる効果を得ることができない。したがって、ワイヤ全質量に対するCo含有量は、0.30質量%以上とし、0.32質量%以上であることが好ましく、0.33質量%以上であることがより好ましい。
 一方、ワイヤ中のCo含有量が0.60質量%を超えると、溶接金属の強度が高くなりすぎて、靱性が低下する。したがって、ワイヤ全質量に対するCo含有量は、0.60質量%以下とし、0.56質量%以下であることが好ましく、0.51質量%以下であることがより好ましい。
<B:0.0003質量%以上0.0030質量%以下>
 Bは、溶接金属の靱性を安定化させる効果を有する成分である。
 ワイヤ中のB含有量が0.0003質量%未満であると、溶接金属の靱性が不足する。したがって、ワイヤ全質量に対するB含有量は、0.0003質量%以上とする。
 一方、ワイヤ中のB含有量が0.0030質量%を超えると、溶接金属の強度が高くなりすぎて、靱性の低下を招くだけでなく、溶接時の高温割れ感受性が高くなる。したがって、ワイヤ全質量に対するB含有量は、0.0030質量%以下とし、0.0029質量%以下であることが好ましく、0.0028質量%以下であることがより好ましい。
<Nb:0.020質量%以上0.100質量%以下>
 Nbは、Vと同様に、PWHT時に炭窒化物を形成して、溶接金属のクリープ強度を向上させる効果を有する成分である。
 ワイヤ中のNb含有量が0.020質量%未満であると、所望のクリープ強度を得ることができない。したがって、ワイヤ全質量に対するNb含有量は、0.020質量%以上とし、0.021質量%以上であることが好ましく、0.023質量%以上であることがより好ましい。
 一方、ワイヤ中のNb含有量が0.100質量%を超えると、炭窒化物の析出量が著しく増加して、溶接金属の強度が高くなり、靱性が劣化する。また、スラグ剥離性が大幅に劣化する。したがって、ワイヤ全質量に対するNb含有量は、0.100質量%以下とし、0.080質量%以下であることが好ましく、0.065質量%以下であることがより好ましい。
<W:1.50質量%以上2.00質量%以下>
 Wは、溶接金属の室温強度及びクリープ強度を向上させる効果を有する成分である。
 ワイヤ中のW含有量が1.50質量%未満であると、溶接金属の強度を向上させる効果を得ることができない。したがって、ワイヤ全質量に対するW含有量は、1.50質量%以上とし、1.51質量%以上であることが好ましく、1.53質量%以上であることがより好ましい。
 一方、ワイヤ中のW含有量が2.00質量%を超えると、溶接金属の強度が高くなりすぎて、靱性が低下する。したがって、ワイヤ全質量に対するW含有量は、2.00質量%以下とし、1.90質量%以下であることが好ましく、1.85質量%以下であることがより好ましい。
<N:0.030質量%以上0.070質量%以下>
 Nは、PWHT時にCr、V、Nb等と結合して、炭窒化物を形成し、溶接金属のクリープ強度を向上させる効果を有する成分である。
 ワイヤ中のN含有量が0.030質量%未満であると、所望のクリープ強度を得ることができない。したがって、ワイヤ全質量に対するN含有量は、0.030質量%以上とし、0.035質量%以上であることが好ましく、0.038質量%以上であることがより好ましい。
 一方、ワイヤ中のN含有量が0.070質量%を超えると、炭窒化物の析出量が著しく増加して、溶接金属の強度が高くなり、靱性が劣化する。また、溶接過程で発生するNガスが溶融金属中に残留しやすくなり、ブローホールが発生する。したがって、ワイヤ全質量に対するN含有量は、0.070質量%以下とし、0.068質量%以下であることが好ましく、0.066質量%以下であることがより好ましい。
<P:0.020質量%以下>
 Pは、溶接時の最終凝固部に低融点化合物を形成し、高温割れ感受性を高めるだけでなく、溶接金属を脆化させて靱性を劣化させる成分であるため、ワイヤ中のPは、できるだけ低減することが好ましい。
 ワイヤ中のP含有量が0.020質量%を超えると、高温割れが発生しやすくなるとともに、靱性が劣化する。したがって、ワイヤ全質量に対するP含有量は、0.020質量%以下とし、0.016質量%以下であることが好ましく、0.011質量%以下であることがより好ましい。
<Cu:0.20質量%以下>
 Cuは、溶接金属の高温割れを生じやすくする成分である。
 ワイヤ中のCu含有量が、0.20質量%を超えると、溶接金属の高温割れが発生しやすくなる。したがって、ワイヤ全質量に対するCu含有量は、0.20質量%以下とし、0.16質量%以下であることが好ましく、0.11質量%以下であることがより好ましい。
<Al:0.020質量%以下>
 Alは、Nと結合してAlNを形成し、クリープ強度の確保に必要不可欠なCrやNb、Vの炭窒化物析出量を低減し、クリープ強度を劣化させる成分であるため、ワイヤ中のAlは、できるだけ低減することが好ましい。
 ワイヤ中のAl含有量が0.020質量%を超えると、ビードが焼付き、スラグ剥離性が劣化する。また、溶接金属中の元素の歩留まりが向上し、強度が上昇するため、靱性が劣化する。したがって、ワイヤ全質量に対するAl含有量は、0.020質量%以下とし、0.016質量%以下であることが好ましく、0.012質量%以下であることがより好ましい。
<残部>
 本実施形態に係るサブマージアーク溶接用ボンドフラックスにとともに用いることが好ましいワイヤにおいて、残部はFe及び不可避的不純物である。不可避的不純物としては、例えば、Sn、As、Sb、Pb、Bi等が挙げられる。これらの不純物のうち、Sn、As、Sbは、それぞれ、ワイヤ全質量に対して、例えば、0.005質量%以下であることが好ましく、合計で0.015質量%以下であることが好ましい。
 また、Pb、Biは、それぞれ、ワイヤ全質量に対して、例えば、0.001質量%以下であることが好ましい。また、上記不可避的不純物として列挙した元素以外の元素であっても、ワイヤ全質量に対して、それぞれ、0.10質量%以下であれば、不可避的不純物としてワイヤ中に含有されていてもよく、0.08質量%以下であることが好ましく、0.06質量%以下であることがより好ましい。
[3.溶接金属]
 本実施形態に係る溶接金属は、上記[1.サブマージアーク溶接用ボンドフラックス]で説明したボンドフラックスを使用して形成された溶接金属である。
 なお、本実施形態に係る溶接金属において、本実施形態に係るサブマージアーク溶接用ボンドフラックスを用いること以外の各種溶接条件については特に限定されず、母材の種類、溶接電圧、溶接電流、溶接姿勢等について、サブマージアーク溶接方法における通常の条件を用いることができる。
 以下に、本発明の効果を示す発明例と比較例を参照し、本発明の内容を具体的に説明する。
[サブマージアーク溶接]
 まず、種々の化学成分を有し、直径が2.4mmであるワイヤを製造するとともに、種々の化学成分を有するボンドフラックスを製造した。ワイヤ中の化学成分及びその含有量を下記表1に示し、使用したワイヤNo.並びにフラックス中の化学成分及びその含有量を下記表2に示す。
 なお、下記表1に示すワイヤ中の化学成分の残部は、Fe及び不可避的不純物である。また、下記表2に示すボンドフラックス中の化学成分において、Alは積極的に添加していない成分であるため、「<0.80」(0.80未満)とした。
 次に、上記ワイヤ及びボンドフラックスを使用して、サブマージアーク溶接を実施した後、以下に示す条件で溶接後熱処理(PWHT)を実施した。溶接条件及びPWHT条件を以下に示す。なお、溶接母材としては、9Cr系鋼材又は軟鋼鋼材に、ASTM A387Gr.92の化学成分を模擬した溶接材料をバタリングしたものを使用した。
(溶接条件)
 母材の板厚:25mm
 開先角度、形状:30°、V型
 ルート間隔:13mm
 極性:直流棒プラス(DCEP:Direct Current Electrode Positive)
 ワイヤ径:2.4mm
 溶接姿勢:下向
 電流:350~450A(狙い:400A)
 電圧:27~30V(狙い:29V)
 溶接速度:33~39cm/min(狙い36cm/min)
 予熱・パス間温度:210~260℃
 積層法:8層16~17パス
(PWHT条件)
 約760℃、約2hr
[評価]
 上記サブマージアーク溶接後に、上記PWHT条件にて熱処理を実施し、得られた溶接金属について、室温強度及び靱性を評価した。PWHT条件の具体的な温度(℃)及び時間(hr)、並びに各試験の評価結果を下記表3に示す。
<室温強度>
 PWHT後の溶接金属について、JIS Z3111:2005に規定される溶着金属の引張及び衝撃試験方法に準じて、室温での引張試験を実施し、0.2%耐力(YS:Yield Stress)及び引張強度(TS:Tensile Strength)を測定した。なお、A387 Gr.92の母材と同等レベルの強度が得られ、AWS5.23に規定される引張性能区分から合格基準を設定した。具体的に、YSについては、540MPa以上であったものを合格とし、540MPa未満であったものを不合格とした。また、TSについては、620~775MPaであったものを合格とし、620MPa未満又は775MPaを超えたものを不合格とした。
<靱性>
 PWHT後の溶接金属から3本の試験材を採取し、JIS Z2242に規定される金属材料のシャルピー衝撃試験方法に準じて、20℃でのシャルピー衝撃試験を実施した。そして、測定された各試験材の吸収エネルギーvE(J)の平均値を算出し、靱性を評価した。なお、測定により得られた吸収エネルギーの平均値が47J以上であったものを合格とし、47J未満であったものを不合格とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 上記表2及び3に示すように、発明例No.1~7は、サブマージアーク溶接用ボンドフラックス中の化学成分の含有量が本発明の範囲内であるため、これらのフラックスを使用してサブマージアーク溶接を実施した結果、PWHT後に優れた引張強度及び靱性を有する溶接金属を得ることができた。
 一方、比較例No.1~5は、フラックス中のMgO、Ca、F、Al、SiO及びCO含有量に基づき、式(1)により算出される値が本発明の範囲の下限未満であったため、溶接金属の靱性が低下した。
 また、比較例No.2及び3については、引張強度が所望の範囲を超えて高い値となった。
 比較例No.6は、フラックス中のZrOの含有量が本発明の範囲の上限を超えていたため、溶接金属の靱性が低下した。
 比較例No.7は、MgOの含有量が本発明の範囲の上限を超えているとともに、Fの含有量が本発明の範囲の下限未満であったため、溶接金属の靱性が低下した。
 以上、各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2021年9月7日出願の日本特許出願(特願2021-145757)に基づくものであり、その内容は本出願の中に参照として援用される。

Claims (9)

  1.  高Crフェライト系耐熱鋼のサブマージアーク溶接用ボンドフラックスであって、
     フラックス全質量に対して、
     MgO:24.0質量%以上35.0質量%以下、
     Ca:10.3質量%以上21.9質量%以下、
     F:7.8質量%以上14.0質量%以下、
     Al:7.0質量%以上25.0質量%以下、
     SiO:8.0質量%以上22.0質量%以下、
     CO:1.0質量%以上6.0質量%以下、
     Na:0.5質量%以上4.0質量%以下、
     C:0.02質量%以上0.16質量%以下、を含有し、
     ZrO:4.0質量%以下、
     Al:0.80質量%以下、であり、
     フラックス中のMgO含有量をフラックス全質量に対する質量%で[MgO]とし、フラックス中のCa含有量をフラックス全質量に対する質量%で[Ca]とし、フラックス中のF含有量をフラックス全質量に対する質量%で[F]とし、フラックス中のAl含有量をフラックス全質量に対する質量%で[Al]とし、フラックス中のSiO含有量をフラックス全質量に対する質量%で[SiO]とし、フラックス中のCO含有量をフラックス全質量に対する質量%で[CO]とする場合に、下記式(1)により得られる値が3.0以上7.0以下、であることを特徴とするサブマージアーク溶接用ボンドフラックス。
     式(1):{[MgO]+1.4×([Ca]-1.055×[F])+2.055×[F]+0.5×[Al]}/([SiO]+[CO])
  2.  さらに、フラックス全質量に対して、
     Mn:0.5質量%以上2.5質量%以下、を含有することを特徴とする請求項1に記載のサブマージアーク溶接用ボンドフラックス。
  3.  さらに、フラックス全質量に対して、
     K:0.5質量%以上3.0質量%以下、を含有することを特徴とする請求項1又は2に記載のサブマージアーク溶接用ボンドフラックス。
  4.  さらに、フラックス全質量に対して、
     Li:0.05質量%以上0.20質量%以下、を含有することを特徴とする請求項1又は2に記載のサブマージアーク溶接用ボンドフラックス。
  5.  さらに、フラックス全質量に対して、
     Li:0.05質量%以上0.20質量%以下、を含有することを特徴とする請求項3に記載のサブマージアーク溶接用ボンドフラックス。
  6.  サブマージアーク溶接用ワイヤとともに用いられ、
     前記サブマージアーク溶接用ワイヤは、ワイヤ全質量に対して、
     C:0.07質量%以上0.12質量%以下、
     Si:0.10質量%以上0.35質量%以下、
     Mn:0.40質量%以上0.80質量%以下、
     S:0.001質量%以上0.020質量%以下、
     Ni:0.15質量%以上0.40質量%以下、
     Cr:8.0質量%以上10.0質量%以下、
     Mo:0.30質量%以上0.60質量%以下、
     V:0.15質量%以上0.25質量%以下、
     Co:0.30質量%以上0.60質量%以下、
     B:0.0003質量%以上0.0030質量%以下、
     Nb:0.020質量%以上0.100質量%以下、
     W:1.50質量%以上2.00質量%以下、
     N:0.030質量%以上0.070質量%以下、を含有し、
     P:0.020質量%以下、
     Cu:0.20質量%以下、
     Al:0.020質量%以下、であり、
     残部がFe及び不可避的不純物であることを特徴とする、請求項1又は2に記載のサブマージアーク溶接用ボンドフラックス。
  7.  サブマージアーク溶接用ワイヤとともに用いられ、
     前記サブマージアーク溶接用ワイヤは、ワイヤ全質量に対して、
     C:0.07質量%以上0.12質量%以下、
     Si:0.10質量%以上0.35質量%以下、
     Mn:0.40質量%以上0.80質量%以下、
     S:0.001質量%以上0.020質量%以下、
     Ni:0.15質量%以上0.40質量%以下、
     Cr:8.0質量%以上10.0質量%以下、
     Mo:0.30質量%以上0.60質量%以下、
     V:0.15質量%以上0.25質量%以下、
     Co:0.30質量%以上0.60質量%以下、
     B:0.0003質量%以上0.0030質量%以下、
     Nb:0.020質量%以上0.100質量%以下、
     W:1.50質量%以上2.00質量%以下、
     N:0.030質量%以上0.070質量%以下、を含有し、
     P:0.020質量%以下、
     Cu:0.20質量%以下、
     Al:0.020質量%以下、であり、
     残部がFe及び不可避的不純物であることを特徴とする、請求項3に記載のサブマージアーク溶接用ボンドフラックス。
  8.  サブマージアーク溶接用ワイヤとともに用いられ、
     前記サブマージアーク溶接用ワイヤは、ワイヤ全質量に対して、
     C:0.07質量%以上0.12質量%以下、
     Si:0.10質量%以上0.35質量%以下、
     Mn:0.40質量%以上0.80質量%以下、
     S:0.001質量%以上0.020質量%以下、
     Ni:0.15質量%以上0.40質量%以下、
     Cr:8.0質量%以上10.0質量%以下、
     Mo:0.30質量%以上0.60質量%以下、
     V:0.15質量%以上0.25質量%以下、
     Co:0.30質量%以上0.60質量%以下、
     B:0.0003質量%以上0.0030質量%以下、
     Nb:0.020質量%以上0.100質量%以下、
     W:1.50質量%以上2.00質量%以下、
     N:0.030質量%以上0.070質量%以下、を含有し、
     P:0.020質量%以下、
     Cu:0.20質量%以下、
     Al:0.020質量%以下、であり、
     残部がFe及び不可避的不純物であることを特徴とする、請求項4に記載のサブマージアーク溶接用ボンドフラックス。
  9.  請求項1又は2に記載のサブマージアーク溶接用ボンドフラックスを使用して形成されることを特徴とする、溶接金属。
PCT/JP2022/032470 2021-09-07 2022-08-29 サブマージアーク溶接用ボンドフラックス及び溶接金属 WO2023037920A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247007188A KR20240035903A (ko) 2021-09-07 2022-08-29 서브머지드 아크 용접용 본드 플럭스 및 용접 금속
CN202280059883.6A CN117916054A (zh) 2021-09-07 2022-08-29 埋弧焊用粘结焊剂和焊接金属

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-145757 2021-09-07
JP2021145757A JP2023038836A (ja) 2021-09-07 2021-09-07 サブマージアーク溶接用ボンドフラックス及び溶接金属

Publications (1)

Publication Number Publication Date
WO2023037920A1 true WO2023037920A1 (ja) 2023-03-16

Family

ID=85506616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032470 WO2023037920A1 (ja) 2021-09-07 2022-08-29 サブマージアーク溶接用ボンドフラックス及び溶接金属

Country Status (4)

Country Link
JP (1) JP2023038836A (ja)
KR (1) KR20240035903A (ja)
CN (1) CN117916054A (ja)
WO (1) WO2023037920A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639587A (ja) * 1992-07-23 1994-02-15 Nippon Steel Corp 高Crフェライト系耐熱鋼用潜弧溶接方法
JPH09267190A (ja) * 1996-03-29 1997-10-14 Kobe Steel Ltd 高クロムフェライト鋼用溶接ワイヤ
CN103934594A (zh) * 2014-03-28 2014-07-23 中国船舶重工集团公司第七二五研究所 一种铬钼耐热钢用超低氢陶质焊剂及制备方法
JP2016022500A (ja) * 2014-07-18 2016-02-08 株式会社神戸製鋼所 高Cr系CSEF鋼のシングルサブマージアーク溶接方法
JP2017047472A (ja) * 2015-09-04 2017-03-09 株式会社神戸製鋼所 サブマージアーク溶接用ワイヤ
JP2021133425A (ja) * 2020-02-27 2021-09-13 日鉄溶接工業株式会社 サブマージアーク溶接用ボンドフラックス

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01258894A (ja) 1988-04-08 1989-10-16 Nippon Steel Corp 9Cr−1Mo鋼のサブマージアーク溶接方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639587A (ja) * 1992-07-23 1994-02-15 Nippon Steel Corp 高Crフェライト系耐熱鋼用潜弧溶接方法
JPH09267190A (ja) * 1996-03-29 1997-10-14 Kobe Steel Ltd 高クロムフェライト鋼用溶接ワイヤ
CN103934594A (zh) * 2014-03-28 2014-07-23 中国船舶重工集团公司第七二五研究所 一种铬钼耐热钢用超低氢陶质焊剂及制备方法
JP2016022500A (ja) * 2014-07-18 2016-02-08 株式会社神戸製鋼所 高Cr系CSEF鋼のシングルサブマージアーク溶接方法
JP2017047472A (ja) * 2015-09-04 2017-03-09 株式会社神戸製鋼所 サブマージアーク溶接用ワイヤ
JP2021133425A (ja) * 2020-02-27 2021-09-13 日鉄溶接工業株式会社 サブマージアーク溶接用ボンドフラックス

Also Published As

Publication number Publication date
CN117916054A (zh) 2024-04-19
JP2023038836A (ja) 2023-03-17
KR20240035903A (ko) 2024-03-18

Similar Documents

Publication Publication Date Title
KR100920549B1 (ko) 가스 실드 아크 용접용 플럭스 함유 와이어
KR101923806B1 (ko) 스테인리스강 플럭스 코어드 와이어
JP5792050B2 (ja) 低温用鋼のサブマージアーク溶接方法
WO2012073646A1 (ja) Ni基合金溶接金属、Ni基合金被覆アーク溶接棒
CN107617809B (zh) 埋弧焊方法
JP5097499B2 (ja) 低合金耐熱鋼用ガスシールドアーク溶接用フラックス入りワイヤ
JP2011020154A (ja) ガスシールド溶接用フラックス入りワイヤ
JP3346887B2 (ja) 高窒素オーステナイト・ステンレス鋼用被覆アーク溶接棒
JP4767592B2 (ja) 耐火構造用鋼のサブマージアーク溶接方法
CN112621016B (zh) 焊接用材料、焊接金属和电渣焊方法
JP3258190B2 (ja) 高強度Cr−Mo鋼用サブマージアーク溶接方法及び溶接金属
JP2010064087A (ja) ガスシールドアーク溶接用フラックス入りワイヤ
JP7156585B1 (ja) サブマージアーク溶接継手
JP4486528B2 (ja) 溶接部の耐脆性破壊発生特性に優れたエレクトロガスアーク溶接方法
WO2023037920A1 (ja) サブマージアーク溶接用ボンドフラックス及び溶接金属
JPH0561036B2 (ja)
JP4309172B2 (ja) 低合金耐熱鋼用低水素系被覆アーク溶接棒
WO2023037921A1 (ja) サブマージアーク溶接用ボンドフラックス及び溶接金属
JP2017170515A (ja) ガスシールドアーク溶接用フラックス入りワイヤ
JPH0825060B2 (ja) 低水素系被覆アーク溶接棒
JP7235185B1 (ja) サブマージアーク溶接用メタルコアードワイヤおよびそれを用いたサブマージアーク溶接方法
JP7267521B1 (ja) サブマージアーク溶接方法
WO2022172666A1 (ja) フラックス入りワイヤ
JPH0542390A (ja) 9Cr系鋼溶接用低水素系被覆アーク溶接棒
WO2022230615A1 (ja) サブマージアーク溶接継手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867242

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247007188

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280059883.6

Country of ref document: CN