WO2012073646A1 - Ni基合金溶接金属、Ni基合金被覆アーク溶接棒 - Google Patents

Ni基合金溶接金属、Ni基合金被覆アーク溶接棒 Download PDF

Info

Publication number
WO2012073646A1
WO2012073646A1 PCT/JP2011/075431 JP2011075431W WO2012073646A1 WO 2012073646 A1 WO2012073646 A1 WO 2012073646A1 JP 2011075431 W JP2011075431 W JP 2011075431W WO 2012073646 A1 WO2012073646 A1 WO 2012073646A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
content
arc welding
welding rod
Prior art date
Application number
PCT/JP2011/075431
Other languages
English (en)
French (fr)
Inventor
裕晃 川本
博久 渡邉
哲直 池田
有志 澤田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201180004526.1A priority Critical patent/CN102639285B/zh
Priority to KR1020127029318A priority patent/KR101443480B1/ko
Priority to US13/520,583 priority patent/US9969033B2/en
Publication of WO2012073646A1 publication Critical patent/WO2012073646A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/365Selection of non-metallic compositions of coating materials either alone or conjoint with selection of soldering or welding materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/053Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • Y10T428/2951Metal with weld modifying or stabilizing coating [e.g., flux, slag, producer, etc.]

Definitions

  • the present invention relates to a Ni-base alloy weld metal suitable for welding reactors and pressure vessels, etc., and a Ni-base alloy-coated arc welding rod used for obtaining the same, and particularly has good crack resistance and bead appearance.
  • the present invention relates to a Ni-base alloy weld metal and a Ni-base alloy-coated arc welding rod which is used for obtaining the weld metal and has good welding workability.
  • a material for a high-temperature and high-pressure vessel represented by a pressurized water nuclear power plant or the like a Ni-15Cr alloy having excellent stress corrosion cracking resistance in an environment of high-temperature and high-pressure water has been used.
  • a Ni-based high Cr alloy such as a Ni-30Cr alloy has been adopted for the purpose of further improving the stress corrosion cracking resistance. Since welding of this high-pressure vessel requires corrosion resistance equivalent to that of the base material, a filler material having the same component system as the base material is required.
  • Patent Document 1 Mn and Nb are added as a conventional technique for preventing this ductile drop reheat cracking.
  • Cr 27 to 31% by mass
  • Fe 6 to 11% by mass
  • C 0.01 to 0.04% by mass
  • Mn 1.5 to 4.0% by mass
  • Nb 1 To 3% by mass
  • Ta 3% by mass or less
  • Nb + Ta 1 to 3% by mass
  • Ti 0.01 to 0.50% by mass
  • Zr 0.0003 to 0.02% by mass
  • B 0.0005 to 0.004% by mass
  • Si less than 0.50% by mass
  • Al maximum 0.50% by mass
  • Cu less than 0.50% by mass
  • W less than 1.0% by mass
  • Mo less than 1.0% by mass
  • Co less than 0.12 mass%
  • S less than 0.015 mass%
  • P 0.015 mass% or less
  • Mg 0.004 to 0.01 mass%
  • a Ni—Cr—Fe alloy weld metal is disclosed.
  • Patent Document 2 discloses an austenitic weld joint and welding material used in a high-temperature apparatus such as a boiler, and discloses a technique for ensuring corrosion resistance by adding 1 to 5% by mass of Cu. . Moreover, in the technique of patent document 2, by making content of Mn added as a deoxidizer into 3.0 mass% or less with respect to the total mass of a welded joint or a welding material, the intermetallic compound in use for a long time at high temperature It has been disclosed to suppress the formation of and prevent embrittlement.
  • Patent Document 3 defines a range of components such as Si, Mn, Cu, Nb, W, and V to be added to the coated arc welding rod in order to obtain a weld metal having excellent weld crack resistance. Moreover, by adding N as an inevitable impurity (0.03 to 0.3% by mass), a nitride such as TiN is formed between Ti and the like, thereby improving the tensile strength of the weld metal. Is disclosed.
  • the weld metal of Patent Document 1 described above has a large amount of Mg added as a deoxidizing agent, and the welding workability such as slag encapsulation and peelability deteriorates during welding work. Moreover, the weld metal of patent document 1 has little content of Mn, and cannot fully secure reheat cracking resistance. Moreover, when the welding metal of patent document 1 contains B and Zr in large quantities, the solidification cracking resistance of a welding metal may fall.
  • Patent Document 2 corrosion resistance is ensured by adding 1 to 5% by mass of Cu.
  • the austenitic steel containing Cu has high weld cracking susceptibility, and in addition to solidification cracking, multilayer welding is performed.
  • the weld joint and welding material of patent document 2 have few Mn contents similarly to patent document 1, and cannot fully ensure reheat cracking resistance.
  • the technique of the said patent documents 1 and 2 is a technique also including a covering arc welding rod as a welding material
  • the description about a slag agent etc. when applied to a covering arc welding rod is not enough. Therefore, it is difficult to ensure good welding workability depending on the configuration of the slag agent.
  • the present invention has been made in view of such problems, and is a Ni-base alloy weld metal having good crack resistance and bead appearance, and a Ni-base alloy coating used for obtaining this and having good weldability.
  • An object is to provide an arc welding rod.
  • the Ni-base alloy weld metal according to the present invention is Cr: 28.0 to 31.5% by mass, Fe: 7.0 to 11.0% by mass, Nb and Ta: total amount, based on the total mass of the Ni-base alloy weld metal. 1.0 to 2.0 mass%, C: 0.05 mass% or less, Mn: 4.0 to 5.5 mass%, N: 0.005 to 0.08 mass%, Si: 0.70% mass
  • Mg 0.0010% mass or less
  • Al 0.50% mass or less
  • Ti 0.50% mass or less
  • Mo 0.50% mass or less
  • Cu 0.50% mass or less
  • It has a composition in which the content of B is regulated to B: 0.0010% by mass or less and the content of Zr is regulated to Zr: 0.0010% by mass or less, and the balance consists of Ni and unavoidable impurities.
  • the Co content is Co: 0.10% by mass or less
  • the P content is P: 0.015.
  • the Ni-based alloy-coated arc welding rod according to the present invention is a Ni-based alloy-coated arc welding rod obtained by coating a coating containing a flux component on the outer periphery of a core wire made of a Ni-based alloy.
  • Cr 28.0 to 31.5 mass%
  • Fe 7.0 to 11.0 mass%
  • Nb and Ta 1.0 to 2.0 mass% in total
  • C 0.05, based on the total mass of the wire %
  • Mn 4.0 to 5.5% by mass
  • N 0.001 to 0.02% by mass
  • Si 0.70% by mass or less
  • Mg 0.0010% by mass or less
  • Al 0.00%.
  • the coating agent has a composition regulated to 015% by mass or less, and the coating agent is, as the flux component, a slag forming agent per total mass of the coated arc welding rod: 3.5 to 6.5% by mass, metal fluoride (F amount) Conversion value): 2 to 5% by mass, carbonate (CO 2 amount conversion value): 2.5 to 6.5% by mass, Mn content in the flux is Mn: 2.0% by mass or less
  • the composition is characterized in that the total content of Nb and Ta is Nb + Ta: 1.5% by mass or less, and the content of Fe is regulated to Fe: 2.5% by mass or less.
  • the coating agent preferably contains, as the flux component, 0.7 to 1.8% by mass of an alkali metal oxide per total mass of the coated arc welding rod.
  • the contents of Cr, Fe, Mn, Ti, Si, Cu, N, Al, C, Mg, Mo, B, Zr, and Nb + Ta are properly defined, and are unavoidable.
  • the contents of Co, P and S in the general impurities are also regulated within an appropriate range.
  • content of Mn is prescribed
  • Ni-based alloy-coated arc welding rod according to the present invention is restricted in the proper amount of B and Zr, and the amount of N is small, so that the occurrence of welding defects such as pits and blowholes is suppressed, and crack resistance is prevented. A weld metal with good properties can be obtained.
  • the Ni-based alloy-coated arc welding rod according to the present invention has a slag forming agent, a metal fluoride, a carbonate, and an alkali metal oxide, which are contained in the coating agent as flux components. Therefore, Mn, Fe, Nb, and Ta in the flux are properly regulated as regulating components. Thereby, welding workability
  • operativity is also favorable and the weld metal which has a favorable bead external appearance is obtained.
  • the inventors of the present application have determined the slag forming agent, metal fluoride, carbonate, and alkali metal oxide contained in the coating material within a proper range in the coated arc welding rod as described above.
  • the present inventors have found that when obtaining a weld metal having excellent crack resistance, it is possible to prevent a decrease in welding workability.
  • the reasons for limiting the composition of the Ni-base alloy weld metal and the Ni-base alloy-coated arc welding rod of the present invention will be described.
  • the composition of the core wire of the weld metal and the coated arc welding rod is the same for the other elements except N.
  • the reasons for limiting the composition of the weld metal and the wire core will be described.
  • the composition of the core wire of the coated arc welding rod is the content per total mass of the core wire
  • the composition of the weld metal is the content per total mass of the weld metal. Describe as an amount.
  • Cr: 28.0 to 31.5 mass% per total mass” Cr is a main element that improves the stress corrosion cracking resistance in high-temperature and high-pressure water, and is effective for ensuring oxidation resistance and corrosion resistance. 28.0 mass% or more is required.
  • content of Cr is prescribed
  • Fe: 7.0 to 11.0 mass% per total mass Fe dissolved in the Ni alloy is added in an amount of 7.0% by mass or more in order to improve the tensile strength.
  • Fe precipitates at the grain boundary as a low melting point Laves phase Fe 2 Nb, remelts due to reheating during multi-pass welding, and causes reheat liquefaction cracking at the grain boundary. For this reason, Fe is 11.0 mass% or less.
  • C 0.05 mass% or less per total mass
  • C in the Ni alloy is a solid solution strengthening element and is effective in improving tensile strength and creep rupture strength. However, since C forms carbides with Cr and Mo and degrades the intergranular corrosion resistance and hot cracking resistance of the deposited metal, C is not added exceeding 0.05 mass%. In order to obtain the effect of solid solution strengthening by the addition of C, the C content is preferably 0.03 to 0.05% by mass.
  • Mn: 4.0 to 5.5 mass% per total mass In a Ni-based alloy having a completely austenitic structure at the time of welding, impurities segregate at the grain boundary during solidification, thereby lowering the melting point of the grain boundary and causing reheat cracking.
  • the content of Mn in the core wire of the coated arc welding rod is 4.0% by mass or more, the formation of a low melting point compound in the weld solidified portion is suppressed, and a weld metal having a similar composition , The reheat cracking resistance is remarkably improved.
  • the Mn content is specified to be 4.0 to 5.5 mass%.
  • the Mn content is preferably 4.5 to 5.5% by mass or less based on the total mass of the core wire or the weld metal. The reason for this will be described later in Example 2. By setting the Mn content to 4.5% by mass or more, the crack resistance of the weld metal is dramatically improved.
  • N in the Ni alloy is a solid solution strengthening element. By adding 0.001% by mass, it contributes to the improvement of the tensile strength of the weld metal, but if added in excess of 0.02% by mass, Lead to the occurrence of welding defects such as pits. Therefore, in the present invention, the N content is 0.001 to 0.02 mass%. Even in the case of a weld metal, by containing 0.005% by mass or more of N, the tensile strength is increased, and it is preferable. However, if a large amount of N exceeding 0.08% by mass is contained, In order to cause welding defects such as pits, the upper limit of the amount of N in the weld metal is defined as 0.08% by mass.
  • Si: 0.70 mass% or less per total mass improves the cleanliness in the alloy by adding it as a deoxidizer. In order to acquire this effect, it is preferable to add 0.15 mass% or more of Si. However, when added in a large amount, the hot cracking resistance decreases, so the upper limit of the Si content is defined as 0.70 mass% or less.
  • Mg: 0.0010 mass% or less per total mass If the coated arc welding rod contains a large amount of Mg, welding workability such as slag peelability deteriorates. Therefore, in the present invention, the upper limit value of the Mg amount is defined as 0.0010% by mass.
  • Al, Ti, and Cu 0.50% by mass or less per total mass
  • the content of Al, Ti and Cu is specified to be 0.50% by mass or less in order to satisfy the range specified in AWS A5.11 ENiCrFe-7.
  • Mo 0.50 mass% or less per total mass
  • Mo is added to improve the strength of the weld metal.
  • the Mo content satisfies the range specified in AWS A5.11 ENiCrFe-7.
  • Nb and Ta 1.0 to 2.0 mass% in total per total mass
  • Nb and Ta both preferentially combine with C in the alloy to form stable carbides such as NbC and TaC.
  • the reheat cracking susceptibility improves remarkably by suppressing the production
  • Laves phase intermetallic compound phase
  • the content of Nb and Ta is 1.0 to 1.7% by mass in total amount per total mass of the core wire or the weld metal.
  • B and Zr Restricted to 0.0010% by mass or less per total mass
  • B and Zr in the Ni-based alloy have the effect of improving the grain boundary strength by adding a small amount, improving the hot rolling property, and improving the reheat cracking resistance of the weld metal, and making wire processing easy. It is generally said that you can.
  • B and Zr are not positively added but are used as restricted components. That is, when a large amount of B and Zr is added to the coated arc welding rod and the weld metal, the solidification cracking susceptibility of the weld metal increases, so the content of these components is restricted to 0.0010% by mass or less.
  • Co in inevitable impurities restricted to 0.10% by mass or less per total mass
  • Co contained as an inevitable impurity is changed to the isotope Co60 having a long half-life by neutron irradiation in the furnace and becomes a radiation source. Therefore, the content is preferably as small as possible.
  • the Co content is restricted to 0.10% by mass or less.
  • the Co content is regulated to 0.05% by mass or less.
  • P and S in inevitable impurities regulated to 0.015 mass% or less per total mass
  • P and S in an unavoidable impurity are controlled to 0.015 mass% or less.
  • the slag forming agent in the flux is added in an amount of 3.5% by mass or more in order to ensure good welding workability such as arc stability, spatter generation amount, slag peelability, and bead shape.
  • the addition amount of a slag formation agent is controlled in the range of 3.5 to 6.5 mass% with respect to the total mass of a covering arc welding rod.
  • the slag forming agent SiO 2 , TiO 2 , MgO, Al 2 O 3 or the like can be used.
  • Metal fluoride (F value converted value): 2 to 5 mass% per total mass of coated arc welding rod” Metal fluoride increases arc strength, lowers slag viscosity and solidification temperature, improves fluidity, improves slag peelability, prevents fusion failure, and prevents pits and blowholes. Add 2% by mass or more in terms of F amount per total mass. However, when the addition amount of the metal fluoride is excessive, the arc strength becomes too strong and the spatter increases, undercut is likely to occur, and the bead shape becomes convex. Therefore, in the present invention, the upper limit value of the metal fluoride content is defined as 5 mass% in terms of F amount.
  • the metal fluoride preferably contains sodium fluoride (NaF) in an amount of 0.7 to 1.8% by mass in terms of the F amount per the total mass of the coated arc welding rod, thereby significantly improving the slag removability.
  • the addition of carbonate contributes to optimizing the slag flow and is effective for ensuring good welding workability.
  • the carbonate content is set to 2.5% by mass or more in terms of CO 2 equivalent per total mass of the coated arc welding rod.
  • the addition of a large amount of carbonate deteriorates the slag peelability and the bead appearance. Therefore, in the present invention, the upper limit value of the carbonate content is expressed as a CO 2 conversion value per total mass of the coated arc welding rod. 6.5% by mass.
  • Alkali metal oxide 0.7 to 1.8% by mass based on the total mass of the coated arc welding rod
  • Addition of alkali metal oxides such as Li 2 O, Na 2 O and K 2 O in an appropriate range improves arc stability and contributes to reduction of spatter generation and improvement of slag encapsulation.
  • the appropriate range of the alkali metal is defined as 0.7 to 1.8% by mass with respect to the total mass of the coated arc welding rod.
  • an oxide of an alkali metal the oxide of the alkali metal derived from the water glass contained in the coating agent of a covering arc welding rod is also included.
  • Mn in flux 2.0% by mass or less per total mass of coated arc welding rod
  • content of Mn in a flux is controlled to 2.0 mass% or less per total mass of a covering arc welding rod.
  • Nb and Ta in flux Restricted to 1.5% by mass or less in total per total mass of coated arc welding rod” Nb in the flux deteriorates welding workability such as slag removability by addition in the same manner as Mn. Therefore, in the present invention, the Nb content in the flux is regulated to 1.5% by mass or less per the total mass of the coated arc welding rod.
  • Fe in flux 2.5% by mass or less per total mass of coated arc welding rod
  • Fe in the flux like Mn, Nb, and Ta, deteriorates welding workability such as slag peelability when added. Therefore, in this invention, content of Fe in a flux is controlled to 2.5 mass% or less with respect to the total mass of a covering arc welding rod.
  • Mn, Nb, Ta, and Fe in the coating agent are used as regulating components in order to prevent deterioration of welding workability such as slag peelability. That is, it is assumed that Mn, Nb, Ta and Fe components in the coating agent affect the melting method of the coating agent (protective cylinder), thereby reducing the slag peelability. Or it is guessed that the Mn, Nb, Ta, Fe component added as a raw material of a coating agent, and the impurity component contained in these alloys have affected the fall of slag peelability.
  • Example 1 effects of the embodiment of the present invention will be described in comparison with a comparative example that is out of the scope of the present invention.
  • a vacuum melting furnace a Ni alloy ingot containing 28.0 to 31.5% by mass of Cr was melted and then subjected to forging and rolling, followed by wire drawing to produce a core wire for a coated arc welding rod.
  • the concentration of each element of Ni, Cr, Fe, Mn, Ti, Si, Cu, N, Al, C, and Nb + Ta is adjusted by changing the addition ratio of the raw materials to be used.
  • the concentration of each of the regulatory elements Mo, Co, Zr, B, and Mg was adjusted by the purity of the main raw materials (Ni and Cr) used.
  • the concentration of each of the regulatory elements Mo, Co, Zr, B, and Mg was adjusted by the purity of the main raw materials (Ni and Cr) used.
  • nine types of core wires having various compositions were produced.
  • the compositions of the cores A to I are shown in Table 1-1 and Table 1-2.
  • the coated core wires A to I were coated with coating agents having various compositions and then dried to obtain coated arc welding rods of Examples and Comparative Examples.
  • the diameter of the produced coated arc welding rod is 4.0 mm, and the coverage is 34.1%.
  • Tables 2-1 to 2-4 show the types of the cores A to I, the composition of the coating component, and the composition of the metal component of the entire coated arc welding rod.
  • the symbol “A” in the column of “welding rod” in the table does not satisfy the preferable conditions of the present invention. Is indicated with a symbol “B” in the column of “welding rod”.
  • the welding workability and the bead appearance at the time of welding using the coated arc welding rods of the examples and comparative examples were evaluated. Moreover, about the weld metal by the covering arc welding rod of each Example and a comparative example, the reheat cracking resistance, the presence or absence of a hot crack, and the occurrence frequency of pits were evaluated.
  • the evaluation test method is as follows.
  • Multilayer overlay welding test As shown in FIG. 1, ASTM A533B CL. Using the Mn—Ni—Mo based low-alloy steel plate for pressure vessels specified in 2 (corresponding JIS standard: JIS G 3120 / SQV2B) as the base material 1, overlay welding of five layers was performed thereon.
  • the welding conditions are as follows: polarity is DC +, welding current is 130 A, welding voltage is 25 V, and welding speed is 150 to 200 mm / min.
  • the thickness of the base material is 50 mm, the depth of overlay welding is 25 mm, and the width of the bottom is 50 mm.
  • Tables 3-1 and 3-2 show the composition of the weld metal by the coated arc welding rods of the examples and comparative examples.
  • Example and a comparative example 5 pieces of 6.5-mm-thick test pieces were cut out to the perpendicular direction with respect to the surface of a weld bead, and the penetration inspection test was carried out about the cross section which gave the bending process on the conditions whose bending radius is about 50 mm. And the occurrence frequency of cracks was evaluated. And about 10 cross sections of a bending test piece, the number of the cracks whose length is 0.1 mm or more is counted, and when the total number of cracks of 10 cross sections is less than 1, A, 1.0 or more and 5.0 The reheat cracking resistance was evaluated with B being less than B, C being 5.0 or more and less than 15 and D being 15 or more.
  • the number of pits generated was also counted in the same manner and evaluated in the same manner as described above.
  • the spatter generation amount, the bead appearance of the weld metal, and the slag peelability were visually evaluated at the time of welding work with the coated arc welding rods of the examples and comparative examples.
  • A was evaluated when it was small, and B was evaluated when it was slightly large.
  • the bead appearance and slag peelability were evaluated based on the closest evaluation criteria below.
  • the evaluation A since the familiarity is good, the bead alignment is good, the bead line is straight, and the slag peelability is also good.
  • the evaluation B the familiarity is slightly bad and the alignment of the beads is disturbed. Therefore, the bead line is slightly wavy and the slag peelability is also slightly deteriorated.
  • Evaluation C is very unfamiliar and the bead alignment is greatly disturbed, so that the bead line is wavy and the slag peelability is poor.
  • the hot cracking test was performed according to JIS Z3153.
  • the shape of the sample used for this hot cracking test is shown in FIG.
  • Two test pieces shown in FIG. 2 were used to form a T-shaped joint, and fillet welding was performed over the entire length of the two fillet portions.
  • the diameter of the test rod is 4.0 mm
  • the welding conditions are DC polarity, welding current 150 A, welding voltage 25 V, and welding speed 300 mm / min.
  • the incidence rate of the hot crack in a fillet weld part was evaluated.
  • the comprehensive judgment column is x when there is an evaluation of C or D in any of reheat cracking resistance, presence or absence of hot cracking, bead appearance and slag peelability, spatter generation amount, and pit occurrence frequency. , C or D was not evaluated, and ⁇ was assigned when all evaluations were A.
  • Example No. Examples 1 to 7 are examples in which the composition of the coated arc welding rod used for welding satisfies the preferable conditions of the present invention. Therefore, during welding work, the amount of spatter generated was small, and the obtained weld metal had good bead appearance and slag peelability, and good weldability.
  • Comparative Example No. 15 to 25 since the composition of the weld metal does not satisfy the scope of the present invention, in one or more items of reheat cracking resistance, hot cracking resistance, bead appearance / slag peelability, pit generation and spatter generation amount Degradation of performance was observed. That is, Comparative Example No. No. 15, among the compositions of the coated arc welding rod used for welding, the amount of Mn in the flux was large, the content of Mn in the obtained weld metal exceeded the range of the present invention, and the slag peelability was lowered. Comparative Example No. No. 16 used a coated arc welding rod in which the Mn content in the core wire is less than the range of the present invention, so that the Mn content in the obtained weld metal is less than the range of the present invention, Reheat cracking resistance decreased.
  • Comparative Example No. No. 17 is a coated arc welding rod in which the total amount of Nb and Ta in the core wire is less than the range of the present invention, so the total amount of Nb and Ta in the weld metal is also less than the range of the present invention, Reheat cracking property decreased.
  • Comparative Example No. No. 18 the total amount of Nb and Ta in the flux of the coated arc welding rod is large, the slag peelability is deteriorated, and in the obtained weld metal, the total amount of Nb and Ta exceeds the range of the present invention, Reheat cracking property decreased and hot cracking property also decreased. Comparative Example No. For No.
  • Comparative Example No. No. 21 the amount of B in the core wire of the coated arc welding rod was large, the amount of B in the obtained weld metal was excessive, and the hot crack resistance was lowered.
  • Comparative Example No. 22 the amount of Zr in the core wire of the coated arc welding rod was large, the amount of Zr in the weld metal was excessive, and the hot crack resistance was lowered.
  • Comparative Example No. No. 23 used a coated arc welding rod in which the Mg content in the core wire exceeded the range of the present invention, so that the slag peelability deteriorated due to the excessive amount of Mg in the weld metal, and the welding workability deteriorated.
  • Comparative Example No. 24 the content of Fe in the flux is large in the composition of the coated arc welding rod, the amount of Fe in the obtained weld metal becomes excessive, the reheat cracking resistance and the hot cracking resistance decrease, and the slag The peelability also deteriorated. Comparative Example No. For No. 25, since a coated arc welding rod containing a large amount of N in the core wire was used, the amount of N in the weld metal was excessive and the number of generated pits was increased.
  • FIG. 3 shows a case where the length of the Ni-based alloy-coated arc welding rod and the Ni-based alloy weld metal is 0.1 mm in length by a multilayer overlay welding test similar to Example 1 above when the Mn content is variously changed. The number of occurrences of the above cracks is shown.
  • the Ni-base alloy-coated arc welding rod and Ni-base alloy weld metal shown in FIG. 3 satisfy the range specified in AWS A5.11 ENiCrFe-7 for the contents other than Mn and Nb + Ta, The total amount satisfies the range of the present invention (1.0 to 2.0% by mass per total mass).
  • the cracking resistance of a weld metal can be improved by forming the weld metal which contains Mn 4.0 mass% or more (preferably 4.5 mass% or more).

Abstract

 Ni基合金溶接金属中のCr、Fe、Mn、Ti、Si、Cu、N、Al、C、Mg、Mo、B、Zr、Nb+Taの含有量を適正に規定し、不可避的不純物中のCo、P及びS量を規制する。特に、Mnの含有量を適正な範囲で規定することにより、耐割れ性が高い溶接金属が得られ、B及びZrを規制成分として適正に規制することにより、ピット及びブローホール等の溶接欠陥の発生も抑制される。Ni基合金被覆アーク溶接棒については、フラックス成分としてのスラグ形成剤、金属弗化物及び炭酸塩の含有量を適正な範囲で規定し、フラックス中のMn、Nb+Ta及びFe量を規制することにより、溶接作業性が良好であり、良好なビード外観を有する溶接金属が得られる。

Description

Ni基合金溶接金属、Ni基合金被覆アーク溶接棒
 本発明は、原子炉及び圧力容器等の溶接に好適なNi基合金溶接金属及びこれを得るために使用されるNi基合金被覆アーク溶接棒に関し、特に、良好な耐割れ性及びビード外観を有するNi基合金溶接金属、及びこれを得るために使用され溶接作業性が良好なNi基合金被覆アーク溶接棒に関する。
 従来、加圧水型原子力発電プラント等に代表される高温高圧用容器の材料としては、高温高圧水中の環境下で耐応力腐食割れ性が優れたNi-15Cr系合金が使用されてきた。しかし、近時、更なる耐応力腐食割れ性の向上を目的として、Ni-30Cr系合金等のNi基高Cr合金が採用されている。この高圧用容器の溶接には、母材と同等の耐食性が求められることから、母材と同一成分系の溶加材が必要となる。
 しかしながら、Ni-30Cr系溶加材を使用して肉盛溶接又は継手溶接をした場合、多パス溶接による溶着金属が積層される溶接部の内部において、微小な割れが発生しやすいという問題点がある。この粒界割れは、溶接金属が凝固する過程で発生する凝固割れと区別して、「延性低下再熱割れ」と呼ばれ、凝固が完了した温度域において発生するという特質がある。この延性低下再熱割れは、約30%以上のCrを含む高Cr系Ni基合金の溶接金属において、溶接時に繰り返し再熱を受けると、結晶粒界に粗大なCr炭化物が析出し、粒界強度、即ち隣り合う結晶粒同士の結合力が弱くなった結果、溶接時に引張熱応力又は剪断熱応力が粒界に作用すると、粒界が開口するというものである。
 この延性低下再熱割れを防止する従来技術として、特許文献1においては、Mn及びNbを添加している。この特許文献1には、Cr:27乃至31質量%、Fe:6乃至11質量%、C:0.01乃至0.04質量%、Mn:1.5乃至4.0質量%、Nb:1乃至3質量%、Ta:3質量%以下、Nb+Ta:1乃至3質量%、Ti:0.01乃至0.50質量%、Zr:0.0003乃至0.02質量%、B:0.0005乃至0.004質量%、Si:0.50質量%未満、Al:最大0.50質量%、Cu:0.50質量%未満、W:1.0質量%未満、Mo:1.0質量%未満、Co:0.12質量%未満、S:0.015質量%未満、P:0.015質量%以下、Mg:0.004乃至0.01質量%を含有し、残部がNi及び不可避的不純物からなるNi-Cr-Fe合金溶接金属が開示されている。
 特許文献2には、ボイラ等の高温装置に使用されるオーステナイト系溶接継手及び溶接材料が開示されており、1乃至5質量%のCuを添加することによって耐食性を確保する技術が開示されている。また、特許文献2の技術においては、脱酸剤として添加するMnの含有量を溶接継手又は溶接材料の全質量あたり3.0質量%以下とすることにより、高温長時間の使用における金属間化合物の生成を抑制し、脆化を防止することが開示されている。
 特許文献3には、耐溶接割れ性が優れた溶接金属を得るために、被覆アーク溶接棒に添加するSi、Mn、Cu、Nb、W、V等の成分範囲を規定している。また、不可避的不純物としてNを積極的に(0.03乃至0.3質量%)添加することにより、Ti等との間にTiN等の窒化物を生成させて、溶接金属の引張強度を向上させることが開示されている。
特表2008-528806号公報 特開2001-107196号公報 特開平8-174270号公報
 しかしながら、上述の特許文献1の溶接金属は、脱酸剤として添加されるMg量が多く、溶接作業時に、スラグの被包性及び剥離性等の溶接作業性が劣化する。また、特許文献1の溶接金属は、Mnの含有量が少なく、耐再熱割れ性を十分に確保できるものではない。また、特許文献1の溶接金属は、B及びZrを多量に含有させた場合には、溶接金属の耐凝固割れ性が低下してしまう場合がある。
 一般的に、母材と同様の化学組成を有する溶接材料を使用して溶接する場合においては、溶接金属の耐食性及び強度が母材に比して劣化したり、硫酸環境下における溶接継手の耐食性が十分に得られないという問題点がある。特許文献2においては、1乃至5質量%のCuを添加することによって耐食性を確保しているが、Cuを含有するオーステナイト鋼は、溶接割れ感受性が高く、凝固割れ以外に、多層盛り溶接した際、溶接金属内に極めて微少な割れが発生し、健全な溶接継手が得られないという問題点がある。また、特許文献2の溶接継手及び溶接材料も、特許文献1と同様に、Mnの含有量が少なく、耐再熱割れ性を十分に確保できるものではない。
 そして、上記特許文献1,2の技術は、溶接材料として被覆アーク溶接棒も包含する技術であると考えられるが、被覆アーク溶接棒に適用した場合におけるスラグ剤等についての記載が十分ではない。よって、スラグ剤の構成によっては、良好な溶接作業性を確保することが困難である。
 特許文献3の被覆アーク溶接棒は、溶接金属の引張強度を高めるためにNを添加しているものの、その添加量が多く、高温環境下における窒化物の析出量が多量になり、溶接金属の脆化の原因となる。また、Nの多量の添加により、ブローホール等の溶接欠陥が発生しやすくなる。
 本発明はかかる問題点に鑑みてなされたものであって、良好な耐割れ性及びビード外観を有するNi基合金溶接金属、及びこれを得るために使用され溶接作業性が良好なNi基合金被覆アーク溶接棒を提供することを目的とする。
 本発明に係るNi基合金溶接金属は、Ni基合金溶接金属全質量当たり、Cr:28.0乃至31.5質量%、Fe:7.0乃至11.0質量%、Nb及びTa:総量で1.0乃至2.0質量%、C:0.05質量%以下、Mn:4.0乃至5.5質量%、N:0.005乃至0.08質量%、Si:0.70%質量以下、Mg:0.0010%質量以下、Al:0.50%質量以下、Ti:0.50%質量以下、Mo:0.50%質量以下及びCu:0.50%質量以下を含有し、Bの含有量をB:0.0010%質量以下、Zrの含有量をZr:0.0010質量%以下に規制した組成を有し、残部がNi及び不可避的不純物からなり、前記不可避的不純物中のCoの含有量をCo:0.10質量%以下、Pの含有量をP:0.015質量%以下、Sの含有量をS:0.015質量%以下に規制した組成を有することを特徴とする。
 本発明に係るNi基合金被覆アーク溶接棒は、フラックス成分を含有する被覆剤をNi基合金からなる心線の外周に被覆してなるNi基合金被覆アーク溶接棒において、前記心線は、心線の全質量あたりCr:28.0乃至31.5質量%、Fe:7.0乃至11.0質量%、Nb及びTa:総量で1.0乃至2.0質量%、C:0.05質量%以下、Mn:4.0乃至5.5質量%、N:0.001乃至0.02質量%、Si:0.70質量%以下、Mg:0.0010質量%以下、Al:0.50質量%以下、Ti:0.50質量%以下、Mo:0.50質量%以下、Cu:0.50質量%以下を含有し、Bの含有量をB:0.0010質量%以下、Zrの含有量をZr:0.0010質量%以下に規制した組成を有し、残部がNi及び不可避的不純物からなり、前記不可避的不純物中のCoの含有量をCo:0.10質量%以下、Pの含有量をP:0.015質量%以下、Sの含有量をS:0.015質量%以下に規制した組成を有し、前記被覆剤は、前記フラックス成分として、被覆アーク溶接棒の全質量あたりスラグ形成剤:3.5乃至6.5質量%、金属弗化物(F量換算値):2乃至5質量%、炭酸塩(CO量換算値):2.5乃至6.5質量%を含有し、前記フラックス中のMnの含有量をMn:2.0質量%以下、Nb及びTaの含有量を総量でNb+Ta:1.5質量%以下、Feの含有量をFe:2.5質量%以下に規制した組成を有することを特徴とする。本発明においては、前記被覆剤は、前記フラックス成分として、被覆アーク溶接棒の全質量あたりアルカリ金属の酸化物:0.7乃至1.8質量%を含有することが好ましい。
 本発明に係るNi基合金溶接金属は、Cr、Fe、Mn、Ti、Si、Cu、N、Al、C、Mg、Mo、B、Zr、Nb+Taの含有量が適正に規定されており、不可避的不純物中のCo、P及びSの含有量も適正な範囲で規制されている。そして、これらの成分のうち、Mnの含有量を適正な範囲で規定し、更にB及びZrを規制成分として、適正に規制している。これにより、溶接金属の耐割れ性は良好であり、溶接欠陥も抑制され、また、ビード外観も良好である。
 本発明に係るNi基合金被覆アーク溶接棒は、B及びZrの量が適正な範囲で規制されており、N量も少ないため、ピット及びブローホール等の溶接欠陥の発生が抑制され、耐割れ性が良好な溶接金属を得ることができる。
 また、本発明に係るNi基合金被覆アーク溶接棒は、被覆剤がフラックス成分として含有するスラグ形成剤、金属弗化物、炭酸塩及びアルカリ金属の酸化物の含有量が適正な範囲で規定されており、フラックス中のMn、Fe、Nb及びTaを規制成分として、適正に規制している。これにより、溶接作業性も良好であり、良好なビード外観を有する溶接金属が得られる。
多層肉盛り溶接を説明する図である。 高温割れ試験におけるT字継手を示す図である。 Mn含有量と多層肉盛溶接において発生した割れの個数との関係を示すグラフ図である。
 以下、本発明について、詳細に説明する。本願発明者等は、従来の溶接材料を使用した場合に、良好な耐割れ性が確保できないという問題点を解決するために、種々実験検討を行った。そして、溶接金属の耐割れ性を向上させる成分として、Mn、B及びZrの含有量に着目し、Mnを従来よりも多く含有させることにより、耐再熱割れ性が向上し、B及びZrを規制成分として、その含有量を適正な範囲で規制すれば、耐凝固割れ性の低下も防止できることを見出し、本発明を完成するに至った。
 また、本願発明者等は、被覆アーク溶接棒においては、被覆剤中が含有するスラグ形成剤、金属弗化物、炭酸塩及びアルカリ金属の酸化物を適正な範囲で規定することにより、上記のような耐割れ性が優れた溶接金属を得る際に、溶接作業性の低下も防止できることを見出した。
 以下、本発明のNi基合金溶接金属及びNi基合金被覆アーク溶接棒の組成限定理由について説明する。溶接金属及び被覆アーク溶接棒の心線の組成は、Nを除いて他の元素は同一である。先ず、この溶接金属及びワイヤ心線の組成限定理由について説明する。なお、組成限定理由について述べる以下の段落において、被覆アーク溶接棒の心線の組成については、心線の全質量あたりの含有量とし、溶接金属の組成については、溶接金属の全質量あたりの含有量として記載する。
 「Cr:全質量あたり28.0乃至31.5質量%」
 Crは、高温高圧水中での耐応力腐食割れ性を向上させる主要元素であり、また耐酸化性および耐食性の確保のために有効であり、その効果を十分に発揮させるためには、全質量あたり28.0質量%以上が必要である。一方、被覆アーク溶接棒に、Crを心線の全質量あたり31.5%を超えて添加すると、被覆アーク溶接棒の製造時における心線の加工性が劣化する。よって、本発明においては、Crの含有量を心線の全質量あたり28.0乃至31.5質量%と規定する。このCrの含有量は、AWS A5.11 ENiCrFe-7に規定される範囲を満足する。
 「Fe:全質量あたり7.0乃至11.0質量%」
 Ni合金に固溶したFeは、引張強度を向上させるため、7.0質量%以上を添加する。しかし、Feは低融点のラーベス相FeNbとして粒界に析出し、多パス溶接時の再熱により、再溶融して粒界の再熱液化割れの原因となる。このため、Feは11.0質量%以下とする。
 「C:全質量あたり0.05質量%以下」
 Ni合金中のCは固溶強化元素であり、引張強度及びクリープ破断強度の向上に有効である。しかし、Cは、Cr及びMoと炭化物を生成し、溶着金属の耐粒界腐食性及び耐高温割れ性を劣化させるので、Cは0.05質量%を超えて添加しない。Cの添加による固溶強化の効果を得るには、Cの含有量は0.03乃至0.05質量%であることが好ましい。
 「Mn:全質量あたり4.0乃至5.5質量%」
 溶接時の組織が完全なオーステナイト系であるNi基合金においては、その凝固時に、粒界に不純物が偏析して粒界の融点を低下させ、再熱割れ発生の原因となる。本発明においては、被覆アーク溶接棒の心線中のMnの含有量が4.0質量%以上である場合に、溶接凝固部における低融点化合物の生成が抑制され、同様の組成を有する溶接金属において、耐再熱割れ性が著しく向上する。一方、被覆アーク溶接棒がMnを心線の全質量あたり5.5質量%を超えて多量に含有すると、被覆アーク溶接棒の製造時における心線の加工が困難となり、また、溶接後のスラグ剥離性が劣化する。よって、Mnの含有量は、4.0乃至5.5質量%と規定する。本発明においては、Mnの含有量は、心線又は溶接金属の全質量あたり4.5乃至5.5質量%以下であることが好ましい。この理由については、実施例2にて後述するが、Mnの含有量を4.5質量%以上とすることにより、溶接金属の耐割れ性が飛躍的に向上する。
 「N:全質量あたり0.001乃至0.02質量%(心線)、0.005乃至0.08質量%(溶接金属)」
 Ni合金中のNは固溶強化元素であり、0.001質量%含有させることにより、溶接金属の引張強度の向上に寄与するが、0.02質量%を超えて多量に添加すると、ブローホール、ピット等の溶接欠陥の発生に繋がる。よって、本発明においては、Nの含有量は0.001乃至0.02質量%とする。なお、溶接金属の場合においても、0.005質量%以上のNを含有させることにより、その引張強度が高くなり、好ましいが、0.08質量%を超える多量のNを含有させると、ブローホール、ピット等の溶接欠陥の発生原因となるため、溶接金属中のN量の上限値を0.08質量%と規定する。
 「Si:全質量あたり0.70質量%以下」
 Siは、脱酸剤として添加することにより、合金内の清浄度を高める。この効果を得るためには、Siを0.15質量%以上添加することが好ましい。しかし、多量に添加すると、耐高温割れ性が低下するため、Siの含有量の上限値を0.70質量%以下と規定する。
 「Mg:全質量あたり0.0010質量%以下」
 被覆アーク溶接棒が多量のMgを含有すると、スラグ剥離性等の溶接作業性が劣化する。従って、本発明においては、Mg量の上限値を0.0010質量%と規定する。
 「Al、Ti及びCu:全質量あたり夫々0.50質量%以下」
 Al、Ti及びCuの含有量は、AWS A5.11 ENiCrFe-7に規定される範囲を満足させるため、夫々0.50質量%以下と規定する。
 「Mo:全質量あたり0.50質量%以下」
 Moは、溶接金属の強度を向上させるために添加する。しかし、0.50質量%を超える多量のMoを添加すると、溶接金属の耐高温割れ感受性が低下する。なお、このMoの含有量は、AWS A5.11 ENiCrFe-7に規定される範囲を満足する。
 「Nb及びTa:全質量あたり総量で1.0乃至2.0質量%」
 Nb及びTaは、いずれも合金中のCと優先的に結合してNbC及びTaC等の安定な炭化物を形成する。そして、粒界における粗大Cr炭化物の生成を抑制することにより、耐再熱割れ感受性が著しく向上する。よって、本発明においては、Nb及びTaを総量で1.0質量%以上含有させる。しかし、Nb及びTaを総量で2.0%を超えて多量に含有させると、凝固偏析により粒界に濃化し、低融点の金属間化合物相(ラーベス相)を形成するため、溶接時の凝固割れや、再熱割れの原因となる。また、Nb炭化物の粗大化による靭性及び加工性の劣化が発生しやすくなる。好ましくは、Nb及びTaの含有量は、心線又は溶接金属の全質量あたり総量で1.0乃至1.7質量%である。
 「B及びZr:全質量あたり夫々0.0010質量%以下に規制」
 Ni基合金中のB及びZrは、微量添加により粒界の強度を向上させ、熱間圧延性を良好にし、溶接金属の耐再熱割れ性を向上させる効果があり、ワイヤの加工を容易にすることができると一般的にいわれている。しかし、本発明においては、B及びZrは積極的には添加せず、規制成分とする。即ち、B及びZrを被覆アーク溶接棒及び溶接金属に多量に添加すると、溶接金属の凝固割れ感受性が高くなるため、これらの成分の含有量を夫々0.0010質量%以下に規制する。
 「不可避的不純物中のCo:全質量あたり0.10質量%以下に規制」
 不可避的不純物として含まれるCoは、炉内における中性子照射により、半減期の長い同位体Co60に変化し、放射線源となるため、その含有量は少ないほど好ましい。本発明においては、Coの含有量を0.10質量%以下に規制する。好ましくは、Coの含有量は、0.05質量%以下に規制する。
 「不可避的不純物中のP及びS:全質量あたり0.015質量%以下に規制」
 不可避的不純物として含まれるP及びSは、溶接金属の凝固時に粒界に偏析して、偏析(高濃度に濃縮した)部分に低融点化合物を形成しやすくなり、溶接割れ感受性を高め、凝固割れの原因となる。よって、本発明においては、不可避的不純物中のP及びSを0.015質量%以下に規制する。
 次に、本発明のNi基合金被覆アーク溶接棒における被覆剤中のフラックス成分の組成限定理由を説明する。
 「スラグ形成剤:被覆アーク溶接棒の全質量あたり3.5乃至6.5質量%」
 フラックス中のスラグ形成剤は、アークの安定性、スパッタ発生量、スラグの剥離性、ビード形状等、良好な溶接作業性を確保するために、3.5質量%以上添加する。一方、フラックス成分として被覆アーク溶接棒の全質量あたり6.5質量%を超える多量のスラグ形成剤を含有させると、スパッタの発生量が過多となったり、アーク安定性が低下する等、溶接作業性が低下する。従って、本発明においては、スラグ形成剤の添加量を被覆アーク溶接棒の全質量あたり3.5乃至6.5質量%の範囲でコントロールする。スラグ形成剤としては、SiO、TiO、MgO、Al等を用いることができる。
 「金属弗化物(F量換算値):被覆アーク溶接棒の全質量あたり2乃至5質量%」
 金属弗化物はアーク強度を高めると共に、スラグの粘性及び凝固温度を下げて流動性を向上させ、スラグ剥離性の向上、融合不良防止、ピット・ブローホール防止に効果があるので、被覆アーク溶接棒の全質量あたりF量換算値で2質量%以上添加する。しかし、金属弗化物の添加量が過多になると、アーク強度が強くなり過ぎてスパッタが増加し、アンダーカットが生じ易くなって、ビード形状が凸になる。よって、本発明においては、金属弗化物の含有量の上限値をF量換算値で5質量%と規定する。金属弗化物は、フッ化ソーダ(NaF)を被覆アーク溶接棒の全質量あたりF量換算値0.7乃至1.8質量%含有することが好ましく、これにより、スラグ剥離性が著しく向上する。
 「炭酸塩(CO量換算値):被覆アーク溶接棒の全質量あたり2.5乃至6.5質量%」
 炭酸塩は、高温分解により発生したガスにより、アークをシールドし、また、溶接金属を高塩基性に保って、健全な溶接金属を確保する。また、炭酸塩の添加は、スラグの流動正の適正化に寄与し、良好な溶接作業性の確保に有効である。本発明においては、これらの効果を十分に得るために、炭酸塩の含有量は、被覆アーク溶接棒の全質量あたりCO量換算値で2.5質量%以上とする。一方、炭酸塩の多量の添加は、スラグ剥離性及びビード外観等を劣化させるため、本発明においては、炭酸塩の含有量の上限値を被覆アーク溶接棒の全質量あたりCO量換算値で6.5質量%とする。
 「アルカリ金属の酸化物:被覆アーク溶接棒の全質量あたり0.7乃至1.8質量%」
 LiO、NaO及びKO等のアルカリ金属の酸化物は、適正範囲で添加することにより、アーク安定性が向上し、スパッタ発生量の低減及びスラグ被包性の改善に寄与する。本発明においては、アルカリ金属の上記適正範囲を被覆アーク溶接棒の全質量あたり0.7乃至1.8質量%と規定する。なお、アルカリ金属の酸化物としては、被覆アーク溶接棒の被覆剤中に含まれる水ガラス由来のアルカリ金属の酸化物も含まれる。
 「フラックス中のMn:被覆アーク溶接棒の全質量あたり2.0質量%以下に規制」
 フラックス中のMnは、添加によりスラグ剥離性等の溶接作業性を劣化させる。よって、本発明においては、フラックス中のMnの含有量を、被覆アーク溶接棒の全質量あたり2.0質量%以下に規制する。
 「フラックス中のNb及びTa:被覆アーク溶接棒の全質量あたり総量で1.5質量%以下に規制」
 フラックス中のNbは、Mnと同様に、添加によりスラグ剥離性等の溶接作業性を劣化させる。よって、本発明においては、フラックス中のNbの含有量を、被覆アーク溶接棒の全質量あたり1.5質量%以下に規制する。
 「フラックス中のFe:被覆アーク溶接棒の全質量あたり2.5質量%以下に規制」
 フラックス中のFeは、Mn、Nb及びTaと同様に、添加によりスラグ剥離性等の溶接作業性を劣化させる。よって、本発明においては、フラックス中のFeの含有量を、被覆アーク溶接棒の全質量あたり2.5質量%以下に規制する。
 このように、本発明においては、スラグ剥離性等の溶接作業性の劣化を防止するために、被覆剤中のMn、Nb、Ta及びFeを規制成分としている。即ち、被覆剤中のMn、Nb、Ta及びFe成分は、被覆剤(保護筒)の溶け方に影響し、これにより、スラグ剥離性が低下すると推察される。又は、被覆剤の原料として添加されるMn、Nb、Ta、Fe成分及びこれらの合金に含まれる不純物成分がスラグ剥離性の低下に影響していると推察される。
 「被覆率:25乃至45重量%」
 溶接棒全重量に対する被覆剤の重量比率を示す被覆率は、25重量%未満であると、アーク安定性が悪くなると共に、棒焼け現象が発生して保護筒が劣化するので、良好な溶接作業性を得ることができない。また被覆剤からの合金成分の添加が制限される。一方、被覆率が45重量%を超えると、スラグが過剰になって、スラグが先行するので、開先内の溶接に不適であり、スラグ剥離性も低下する。従って、被覆率は25乃至45重量%とする。
 (実施例1)
 次に、本発明の実施例の効果について、本発明の範囲から外れる比較例と比較して説明する。真空溶解炉において、Crを28.0乃至31.5質量%含有するNi合金インゴットを溶製した後、鍛造及び圧延を経て、伸線加工を行い、被覆アーク溶接棒用の心線を作製した。溶製工程では、使用する原料の添加比率を変更することにより、Ni、Cr、Fe、Mn、Ti、Si、Cu、N、Al、C、Nb+Taの各元素の濃度を調整し、P、S、Mo、Co、Zr、B、Mgの各規制元素については、原料の添加比率の変更の他に、使用する主原料(Ni及びCr)の純度によってもその濃度を調整した。これにより、種々の組成を有する9種類の心線を作製した。各心線A乃至Iの組成を表1-1及び表1-2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 作製した心線A乃至Iに種々の組成を有する被覆剤を被覆した後、乾燥させて、実施例及び比較例の被覆アーク溶接棒とした。作製した被覆アーク溶接棒の直径は4.0mm、被覆率は34.1%である。各心線A乃至Iの種類、被覆剤成分の組成及び被覆アーク溶接棒全体の金属成分の組成について、表2-1乃至表2-4に示す。なお、被覆アーク溶接棒の心線及び被覆剤の組成が本発明の好ましい条件を満たすものについては、表中の「溶接棒」の欄に符号「A」、本発明の好ましい条件を満たさないものについては、「溶接棒」の欄に符号「B」を付して示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 各実施例及び比較例の被覆アーク溶接棒を用いて溶接した際の溶接作業性及びビード外観等について、評価した。また、各実施例及び比較例の被覆アーク溶接棒による溶接金属について、耐再熱割れ性、高温割れの有無及びピットの発生頻度の評価を行った。評価試験の方法は以下のとおりである。
 「多層肉盛溶接試験」
 図1に示すように、ASTM A533B CL.2(対応JIS規格:JIS G 3120/SQV2B)に規定されているMn-Ni-Mo系の圧力容器用低合金鋼板を母材1として、その上に5層の肉盛溶接を行った。溶接条件は、極性がDC+、溶接電流が130A、溶接電圧が25V、溶接速度が150乃至200mm/分である。なお、母材の厚さは50mm、肉盛溶接の深さは25mm、底部の幅は50mmである。各実施例及び比較例の被覆アーク溶接棒による溶接金属の組成について、表3-1及び表3-2に示す。そして、各実施例及び比較例について、溶接ビード表面に対して垂直方向に6.5mm厚の試験片5枚を切り出し、曲げ半径が約50mmの条件で曲げ加工を施した断面について、浸透探傷試験を施して、割れの発生頻度を評価した。そして、曲げ試験片の10断面について、長さが0.1mm以上の割れの個数をカウントし、10断面の総割れ個数が、1個未満の場合をA、1.0個以上5.0個未満の場合をB、5.0個以上15個未満の場合をC、15個以上の場合をDとして、耐再熱割れ性を評価した。この際に、ピットの発生個数についても、同様にカウントし、上記と同様の評価を行った。なお、各実施例及び比較例の被覆アーク溶接棒による溶接作業時には、スパッタ発生量、溶接金属のビード外観及びスラグ剥離性を目視にて評価した。スパッタ発生量については、少なかった場合をA、やや多かった場合をBと評価した。ビード外観及びスラグ剥離性については、以下の評価基準に最も近いものにより評価した。評価Aは、なじみが良好であるため、ビードの揃いが良く、ビードのラインが直線であり、スラグ剥離性も良好である。評価Bは、なじみがやや悪く、ビードの揃いが乱れるため、ビードラインがやや波打ち、スラグ剥離性もやや劣化している。評価Cは、なじみが極めて悪く、ビードの揃いが大きく乱れるため、ビードラインが波打ち、スラグ剥離性も悪い。
 「高温割れ試験」
 高温割れ試験は、JIS Z3153に準じて行った。この高温割れ試験に使用した試料の形状を図2に示す。図2に示す2枚の試験片によりT字状の継手を形成し、隅肉部の2箇所を全長にわたって隅肉溶接した。供試棒の直径は4.0mm、溶接条件は、極性がDC、溶接電流が150A、溶接電圧が25V、溶接速度が300mm/分である。そして、隅肉溶接部における高温割れの発生率を評価した。なお、割れが発生しなかった場合をA、割れが発生し、溶接部の全長に対する割れ率が5.0%未満であった場合をB、割れ率が5.0%以上10.0%未満であった場合をC、割れ率が10.0%以上で有った場合をDと評価した。各実施例及び比較例の試験片について、高温割れ試験結果を表3-3にあわせて示す。
 そして、総合判定欄は、耐再熱割れ性、高温割れの有無、ビード外観及びスラグ剥離性、スパッタ発生量、並びにピットの発生頻度のいずれかでC又はDの評価がある場合に、×とし、C又はDの評価がない場合を○とし、全ての評価がAの場合を◎とした。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表3-1乃至表3-3に示すように、実施例No.1乃至14は、溶接金属の組成が本発明の範囲を満足するので、耐再熱割れ性、耐高温割れ性が優れており、ピットも発生しなかった。これらの実施例のうち、実施例No.1乃至7は、溶接に使用した被覆アーク溶接棒の組成が、本発明の好ましい条件を満たす実施例である。よって、溶接作業時に、スパッタの発生量が少なく、得られた溶接金属は、ビード外観及びスラグ剥離性も良好であり、溶接作業性が良好であった。このように、本発明の必須条件を満たす良好な耐割れ性及びビード外観を有するNi基合金溶接金属を得る際に、本発明の好ましい条件を満たすNi基合金被覆アーク溶接棒を使用すれば、その溶接作業性も良好である。
 これに対して、比較例No.15乃至25は、溶接金属の組成が本発明の範囲を満足しないので、耐再熱割れ性、耐高温割れ性、ビード外観/スラグ剥離性、ピットの発生及びスパッタ発生量の1以上の項目において、性能の劣化が見られた。即ち、比較例No.15は、溶接に使用した被覆アーク溶接棒の組成のうち、フラックス中のMn量が多く、得られた溶接金属中のMnの含有量も本発明の範囲を超え、スラグ剥離性が低下した。比較例No.16は、心線中のMnの含有量が本発明の範囲未満である被覆アーク溶接棒を使用したので、得られた溶接金属中のMnの含有量が本発明の範囲未満となり、溶接金属の耐再熱割れ性が低下した。
 比較例No.17は、心線中のNb及びTaの総量が本発明の範囲未満である被覆アーク溶接棒を使用したので、溶接金属中のNb及びTaの総量も本発明の範囲未満となり、溶接金属の耐再熱割れ性が低下した。比較例No.18は、被覆アーク溶接棒のフラックス中のNb及びTaの総量が多く、スラグ剥離性が劣化し、得られた溶接金属において、Nb及びTaの含有量の総量が本発明の範囲を超え、耐再熱割れ性が低下し、高温割れ性も低下した。比較例No.19は、心線中に多量のCを含有する被覆アーク溶接棒を使用したので、得られた溶接金属中のC量が過多となり、耐高温割れ性が低下した。比較例No.20は、心線中に多量のSiを含有する被覆アーク溶接棒を使用したので、得られた溶接金属中のSi量が過多となり、耐高温割れ性が低下した。
 比較例No.21は、被覆アーク溶接棒の心線中のB量が多く、得られた溶接金属中のB量が過多となり、耐高温割れ性が低下した。同様に、比較例No.22は、被覆アーク溶接棒の心線中のZr量が多く、溶接金属中のZr量が過多となり、耐高温割れ性が低下した。
 比較例No.23は、心線中のMgの含有量が本発明の範囲を超える被覆アーク溶接棒を使用したので、溶接金属中のMg量過多により、スラグ剥離性が劣化し、溶接作業性が劣化した。比較例No.24は、被覆アーク溶接棒の組成のうち、フラックス中のFeの含有量が多く、得られた溶接金属中のFe量が過多となり、耐再熱割れ性及び耐高温割れ性が低下し、スラグ剥離性も劣化した。比較例No.25は、心線中に多量のNを含有する被覆アーク溶接棒を使用したので、溶接金属中のN量が過多となり、発生したピットの数が多くなった。
 (実施例2)
 次に、本発明のNi基合金被覆アーク溶接棒及び溶接金属におけるMnの含有量について説明する。図3は、Ni基合金被覆アーク溶接棒及びNi基合金溶接金属について、Mnの含有量を種々変化させた場合に、上記実施例1と同様の多層肉盛溶接試験によって長さが0.1mm以上の割れが発生した個数を示す。この図3に示すNi基合金被覆アーク溶接棒及びNi基合金溶接金属は、Mn、Nb+Ta以外の含有量については、AWS A5.11 ENiCrFe-7に規定される範囲を満足し、Nb及びTaの総量は、本発明の範囲(全質量あたり1.0乃至2.0質量%)を満足する。
 図3に示すように、Mnを全質量あたり4.0乃至5.0質量%含有する溶接金属において、耐割れ性が向上し、特にMnの含有量が4.5以上である場合に、耐割れ性が著しく向上していることが分かる。このように、本発明においては、Mnを4.0質量%以上(好ましくは4.5質量%以上)含有する溶接金属を形成することにより、溶接金属の耐割れ性を向上させることができる。
  1…母材
  2…肉盛溶接

Claims (2)

  1.  Ni基合金溶接金属全質量当たり、Cr:28.0乃至31.5質量%、Fe:7.0乃至11.0質量%、Nb及びTa:総量で1.0乃至2.0質量%、C:0.05質量%以下、Mn:4.0乃至5.5質量%、N:0.005乃至0.08質量%、Si:0.70%質量以下、Mg:0.0010%質量以下、Al:0.50%質量以下、Ti:0.50%質量以下、Mo:0.50%質量以下及びCu:0.50%質量以下を含有し、Bの含有量をB:0.0010%質量以下、Zrの含有量をZr:0.0010質量%以下に規制した組成を有し、残部がNi及び不可避的不純物からなり、前記不可避的不純物中のCoの含有量をCo:0.10質量%以下、Pの含有量をP:0.015質量%以下、Sの含有量をS:0.015質量%以下に規制した組成を有することを特徴とするNi基合金溶接金属。
  2.  フラックス成分を含有する被覆剤をNi基合金からなる心線の外周に被覆してなるNi基合金被覆アーク溶接棒において、
     前記心線は、心線の全質量あたりCr:28.0乃至31.5質量%、Fe:7.0乃至11.0質量%、Nb及びTa:総量で1.0乃至2.0質量%、C:0.05質量%以下、Mn:4.0乃至5.5質量%、N:0.001乃至0.02質量%、Si:0.70質量%以下、Mg:0.0010質量%以下、Al:0.50質量%以下、Ti:0.50質量%以下、Mo:0.50質量%以下、Cu:0.50質量%以下を含有し、Bの含有量をB:0.0010質量%以下、Zrの含有量をZr:0.0010質量%以下に規制した組成を有し、残部がNi及び不可避的不純物からなり、前記不可避的不純物中のCoの含有量をCo:0.10質量%以下、Pの含有量をP:0.015質量%以下、Sの含有量をS:0.015質量%以下に規制した組成を有し、
     前記被覆剤は、前記フラックス成分として、被覆アーク溶接棒の全質量あたりスラグ形成剤:3.5乃至6.5質量%、金属弗化物(F量換算値):2乃至5質量%、炭酸塩(CO量換算値):2.5乃至6.5質量%を含有し、前記フラックス中のMnの含有量をMn:2.0質量%以下、Nb及びTaの含有量を総量でNb+Ta:1.5質量%以下、Feの含有量をFe:2.5質量%以下に規制した組成を有することを特徴とするNi基合金被覆アーク溶接棒。
PCT/JP2011/075431 2010-12-02 2011-11-04 Ni基合金溶接金属、Ni基合金被覆アーク溶接棒 WO2012073646A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180004526.1A CN102639285B (zh) 2010-12-02 2011-11-04 Ni基合金焊接金属、Ni基合金涂药焊条
KR1020127029318A KR101443480B1 (ko) 2010-12-02 2011-11-04 Ni기 합금 용접 금속 및 Ni기 합금 피복 아크 용접봉
US13/520,583 US9969033B2 (en) 2010-12-02 2011-11-04 Ni-base alloy weld metal and Ni-base alloy covered electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-269775 2010-12-02
JP2010269775A JP5389000B2 (ja) 2010-12-02 2010-12-02 Ni基合金溶接金属、Ni基合金被覆アーク溶接棒

Publications (1)

Publication Number Publication Date
WO2012073646A1 true WO2012073646A1 (ja) 2012-06-07

Family

ID=46171595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075431 WO2012073646A1 (ja) 2010-12-02 2011-11-04 Ni基合金溶接金属、Ni基合金被覆アーク溶接棒

Country Status (5)

Country Link
US (1) US9969033B2 (ja)
JP (1) JP5389000B2 (ja)
KR (1) KR101443480B1 (ja)
CN (1) CN102639285B (ja)
WO (1) WO2012073646A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109693027A (zh) * 2018-12-28 2019-04-30 常熟市金诺精工模具有限公司 铸铁玻璃模具内腔喷焊镍基合金的方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5977998B2 (ja) 2012-05-15 2016-08-24 株式会社神戸製鋼所 Ni基合金溶接金属、帯状電極及び溶接方法
CN102962603B (zh) * 2012-11-08 2014-11-19 中国船舶重工集团公司第七二五研究所 一种镍铬钼合金系的镍基焊条
CN103240544B (zh) * 2013-05-23 2015-04-22 哈尔滨工业大学 钎焊C/C及C/SiC复合材料的高温钎料及其制备方法
JP6257193B2 (ja) * 2013-07-12 2018-01-10 株式会社神戸製鋼所 肉盛溶接用フラックス入りワイヤ
ES2803574T3 (es) * 2014-01-27 2021-01-28 Nippon Steel Corp Material de soldadura para aleación a base de níquel resistente al calor y metal soldado y unión soldada formada usando los mismos
JP6396574B2 (ja) * 2014-04-04 2018-09-26 スペシャル メタルズ コーポレーションSpecial Metals Corporation 高強度Ni−Cr−Mo−W−Nb−Ti溶接用生成物、溶接方法およびこれを使用する溶着物
JP5858512B1 (ja) * 2014-04-11 2016-02-10 福田金属箔粉工業株式会社 耐食性に優れたニッケルろう材
JP6296550B2 (ja) 2014-08-25 2018-03-20 株式会社神戸製鋼所 Ni基合金被覆アーク溶接棒
CA2987569C (en) * 2015-06-26 2019-12-24 Nippon Steel & Sumitomo Metal Corporation Ni-based alloy pipe or tube for nuclear power
CN105965176B (zh) * 2016-07-20 2018-02-23 江苏科技大学 用于钎焊钨铜合金与不锈钢的Ni基急冷钎料及钎焊工艺
CN106141494B (zh) * 2016-07-26 2018-02-23 江苏科技大学 用于钎焊钼铼合金箔材的钎料及制备方法和钎焊工艺
CN106695173B (zh) * 2017-03-17 2019-09-20 中国石油天然气集团公司 一种焊接钛-钢复合板近钛层的焊接材料及其制备方法
EP3778109A4 (en) 2018-03-27 2021-12-15 Nippon Steel Corporation NI-BASED ALLOY FOR UNDERWATER ARC WELDING AND METHOD FOR PRODUCING A WELDED JOINT
EP3778108B1 (en) 2018-03-27 2022-08-03 Nippon Steel Corporation Ni-based alloy core wire for covered electrode, covered electrode, and method of manufacturing covered electrode
CN112935619B (zh) * 2020-12-01 2023-04-18 四川大西洋焊接材料股份有限公司 一种用于焊接长期服役于630℃马氏体钢的配套焊条及其制备方法
CN114535859B (zh) * 2022-01-11 2023-08-08 康硕(山西)低应力制造系统技术研究院有限公司 镍-钢复合材料电弧3d打印焊丝及制备与增材制造方法
CN115870591B (zh) * 2023-02-20 2023-06-23 天津市金桥焊材科技有限公司 一种用于钛-钢异种金属mig焊接工艺方法及使用的焊丝

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08174270A (ja) * 1994-12-28 1996-07-09 Mitsubishi Heavy Ind Ltd Ni基高Cr合金用被覆アーク溶接棒
JPH11347790A (ja) * 1998-06-08 1999-12-21 Mitsubishi Heavy Ind Ltd Ni基高Cr合金用被覆アーク溶接棒
JP2003311473A (ja) * 2002-04-18 2003-11-05 Mitsubishi Heavy Ind Ltd Ni基高Cr合金用溶加材
WO2005070612A1 (ja) * 2004-01-21 2005-08-04 Mitsubishi Heavy Industries, Ltd. Ni基高Cr合金溶加材及び被覆アーク溶接用溶接棒
JP2009022989A (ja) * 2007-07-20 2009-02-05 Kobe Steel Ltd Ni基高Cr合金用溶接材料

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4135919A (en) * 1978-04-25 1979-01-23 Carondelet Foundry Company Alloy resistant to sulfuric acid corrosion
JP3258135B2 (ja) * 1993-05-24 2002-02-18 株式会社神戸製鋼所 高強度Cr−Mo鋼用サブマージアーク溶接方法
JP3329261B2 (ja) * 1998-03-26 2002-09-30 住友金属工業株式会社 高温高強度鋼用溶接材料および溶接継手
JP2001107196A (ja) 1999-10-07 2001-04-17 Sumitomo Metal Ind Ltd 耐溶接割れ性と耐硫酸腐食性に優れたオーステナイト鋼溶接継手およびその溶接材料
JP5253817B2 (ja) 2005-01-25 2013-07-31 ハンチントン、アロイス、コーポレーション 延性低下割れ耐性を有する被覆された溶接電極、およびそれから製造された溶着物
US7678203B2 (en) 2005-03-04 2010-03-16 Lincoln Global, Inc. Welding flux
US9138831B2 (en) * 2008-06-27 2015-09-22 Lincoln Global, Inc. Addition of rare earth elements to improve the performance of self shielded electrodes
US8330078B2 (en) * 2009-06-05 2012-12-11 Lincoln Global, Inc. Electrodes incorporating aluminum coated particles and methods thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08174270A (ja) * 1994-12-28 1996-07-09 Mitsubishi Heavy Ind Ltd Ni基高Cr合金用被覆アーク溶接棒
JPH11347790A (ja) * 1998-06-08 1999-12-21 Mitsubishi Heavy Ind Ltd Ni基高Cr合金用被覆アーク溶接棒
JP2003311473A (ja) * 2002-04-18 2003-11-05 Mitsubishi Heavy Ind Ltd Ni基高Cr合金用溶加材
WO2005070612A1 (ja) * 2004-01-21 2005-08-04 Mitsubishi Heavy Industries, Ltd. Ni基高Cr合金溶加材及び被覆アーク溶接用溶接棒
JP2009022989A (ja) * 2007-07-20 2009-02-05 Kobe Steel Ltd Ni基高Cr合金用溶接材料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109693027A (zh) * 2018-12-28 2019-04-30 常熟市金诺精工模具有限公司 铸铁玻璃模具内腔喷焊镍基合金的方法

Also Published As

Publication number Publication date
KR101443480B1 (ko) 2014-09-22
JP5389000B2 (ja) 2014-01-15
US9969033B2 (en) 2018-05-15
US20120276384A1 (en) 2012-11-01
JP2012115889A (ja) 2012-06-21
CN102639285A (zh) 2012-08-15
CN102639285B (zh) 2016-10-12
KR20130016331A (ko) 2013-02-14

Similar Documents

Publication Publication Date Title
JP5389000B2 (ja) Ni基合金溶接金属、Ni基合金被覆アーク溶接棒
JP5977998B2 (ja) Ni基合金溶接金属、帯状電極及び溶接方法
JP5441870B2 (ja) 溶接用Ni基合金ソリッドワイヤ
JP3758040B2 (ja) 低合金耐熱鋼用ガスシールドアーク溶接用フラックス入りワイヤ
JP5270043B2 (ja) Ni基高Cr合金溶接ワイヤ、被覆アーク溶接棒及び被覆アーク溶着金属
US10710201B2 (en) Ni-based alloy solid wire for welding and Ni-based alloy weld metal
JP5763859B1 (ja) Ni基合金フラックス入りワイヤ
JP5928726B2 (ja) 被覆アーク溶接棒
KR20150074934A (ko) 내열강용 용접재료
JP5744816B2 (ja) サブマージアーク溶接用ボンドフラックス
US20220288724A1 (en) Ni-based alloy flux-cored wire
WO2017013965A1 (ja) ガスシールドアーク溶接用フラックス入りワイヤ
WO2016009903A1 (ja) 高Cr系CSEF鋼のシングルサブマージアーク溶接方法
WO2016010121A1 (ja) 高Cr系CSEF鋼のシングルサブマージアーク溶接方法
KR101760828B1 (ko) Ni계 플럭스 코어드 와이어 용접재료
JP7215911B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ
JP7401345B2 (ja) Ni基合金フラックス入りワイヤ
KR20180076088A (ko) 이종용접용 전자세 용접이 가능한 Ni계 플럭스 코어드 와이어 용접재료
WO2022172666A1 (ja) フラックス入りワイヤ
WO2022050400A1 (ja) フラックス入りワイヤ
JPH01299792A (ja) 耐高温割れ性に優れたNi基合金被覆アーク溶接棒

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004526.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 13520583

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844755

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127029318

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844755

Country of ref document: EP

Kind code of ref document: A1