WO2023037842A1 - トランス型ポリイソプレノイドの製造方法、ベクター、形質転換生物、空気入りタイヤの製造方法及びゴム製品の製造方法 - Google Patents
トランス型ポリイソプレノイドの製造方法、ベクター、形質転換生物、空気入りタイヤの製造方法及びゴム製品の製造方法 Download PDFInfo
- Publication number
- WO2023037842A1 WO2023037842A1 PCT/JP2022/031290 JP2022031290W WO2023037842A1 WO 2023037842 A1 WO2023037842 A1 WO 2023037842A1 JP 2022031290 W JP2022031290 W JP 2022031290W WO 2023037842 A1 WO2023037842 A1 WO 2023037842A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- trans
- producing
- product
- protein
- polyisoprenoid
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 74
- 229920001971 elastomer Polymers 0.000 title claims description 117
- 239000005060 rubber Substances 0.000 title claims description 116
- 239000013598 vector Substances 0.000 title claims description 44
- 230000009261 transgenic effect Effects 0.000 title description 2
- 239000012528 membrane Substances 0.000 claims abstract description 280
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 267
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 208
- 150000002632 lipids Chemical class 0.000 claims abstract description 205
- 101710158136 Trans-prenyltransferase Proteins 0.000 claims abstract description 137
- 102100022299 All trans-polyprenyl-diphosphate synthase PDSS1 Human genes 0.000 claims abstract description 134
- 238000000034 method Methods 0.000 claims abstract description 109
- 238000000338 in vitro Methods 0.000 claims abstract description 11
- 241000196324 Embryophyta Species 0.000 claims description 75
- 230000014616 translation Effects 0.000 claims description 55
- 238000004898 kneading Methods 0.000 claims description 44
- 238000001243 protein synthesis Methods 0.000 claims description 41
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 38
- 238000000465 moulding Methods 0.000 claims description 27
- 239000000654 additive Substances 0.000 claims description 22
- 238000004073 vulcanization Methods 0.000 claims description 22
- 235000011339 Manilkara zapota Nutrition 0.000 claims description 20
- 108020004999 messenger RNA Proteins 0.000 claims description 19
- 230000000996 additive effect Effects 0.000 claims description 16
- 240000001794 Manilkara zapota Species 0.000 claims description 5
- 230000002194 synthesizing effect Effects 0.000 claims description 5
- 229920003212 trans-1,4-polyisoprene Polymers 0.000 abstract description 8
- 125000003473 lipid group Chemical group 0.000 abstract 1
- 239000000047 product Substances 0.000 description 190
- 235000018102 proteins Nutrition 0.000 description 179
- 238000006243 chemical reaction Methods 0.000 description 53
- 239000000243 solution Substances 0.000 description 52
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 48
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 47
- 150000001413 amino acids Chemical group 0.000 description 47
- 108020004414 DNA Proteins 0.000 description 46
- 210000004027 cell Anatomy 0.000 description 30
- 241000195585 Chlamydomonas Species 0.000 description 29
- 238000005119 centrifugation Methods 0.000 description 28
- 241000195493 Cryptophyta Species 0.000 description 27
- 239000003921 oil Substances 0.000 description 27
- 239000002773 nucleotide Substances 0.000 description 25
- 125000003729 nucleotide group Chemical group 0.000 description 25
- 238000003752 polymerase chain reaction Methods 0.000 description 23
- 102000004190 Enzymes Human genes 0.000 description 22
- 108090000790 Enzymes Proteins 0.000 description 22
- 230000000694 effects Effects 0.000 description 22
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 20
- 235000001014 amino acid Nutrition 0.000 description 20
- 244000005700 microbiome Species 0.000 description 19
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 18
- 238000000502 dialysis Methods 0.000 description 18
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 16
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 16
- 229940024606 amino acid Drugs 0.000 description 16
- 239000002245 particle Substances 0.000 description 16
- 244000061354 Manilkara achras Species 0.000 description 15
- 230000008569 process Effects 0.000 description 15
- 238000013519 translation Methods 0.000 description 14
- 244000043261 Hevea brasiliensis Species 0.000 description 13
- 239000002299 complementary DNA Substances 0.000 description 13
- 238000000605 extraction Methods 0.000 description 13
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 108091008146 restriction endonucleases Proteins 0.000 description 12
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 11
- 238000005227 gel permeation chromatography Methods 0.000 description 11
- 241000588724 Escherichia coli Species 0.000 description 10
- 238000009396 hybridization Methods 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- 238000007792 addition Methods 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 210000001589 microsome Anatomy 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- 238000007711 solidification Methods 0.000 description 9
- 230000008023 solidification Effects 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- 101710149959 Small rubber particle protein Proteins 0.000 description 8
- 239000012634 fragment Substances 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 241000224474 Nannochloropsis Species 0.000 description 7
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 7
- -1 isoprenoid compound Chemical class 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 102100031261 Perilipin-1 Human genes 0.000 description 6
- 108010067162 Perilipin-1 Proteins 0.000 description 6
- 244000025272 Persea americana Species 0.000 description 6
- 235000008673 Persea americana Nutrition 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000000284 extract Substances 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- 241000219195 Arabidopsis thaliana Species 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 5
- 240000001548 Camellia japonica Species 0.000 description 5
- 244000000231 Sesamum indicum Species 0.000 description 5
- 235000003434 Sesamum indicum Nutrition 0.000 description 5
- 241000209140 Triticum Species 0.000 description 5
- 235000021307 Triticum Nutrition 0.000 description 5
- 229920003052 natural elastomer Polymers 0.000 description 5
- 229920001194 natural rubber Polymers 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 229910021642 ultra pure water Inorganic materials 0.000 description 5
- 239000012498 ultrapure water Substances 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 241000972773 Aulopiformes Species 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 241000195649 Chlorella <Chlorellales> Species 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- 206010020649 Hyperkeratosis Diseases 0.000 description 4
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical group CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- 108010052285 Membrane Proteins Proteins 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 241001495453 Parthenium argentatum Species 0.000 description 4
- 241000206731 Phaeodactylum Species 0.000 description 4
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 235000000914 Solidago virgaurea Nutrition 0.000 description 4
- 244000197975 Solidago virgaurea Species 0.000 description 4
- 241000245665 Taraxacum Species 0.000 description 4
- 241000341871 Taraxacum kok-saghyz Species 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 235000018597 common camellia Nutrition 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000012217 deletion Methods 0.000 description 4
- 230000037430 deletion Effects 0.000 description 4
- 244000237330 gutta percha tree Species 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- NUHSROFQTUXZQQ-UHFFFAOYSA-N isopentenyl diphosphate Chemical compound CC(=C)CCO[P@](O)(=O)OP(O)(O)=O NUHSROFQTUXZQQ-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 4
- 229920001550 polyprenyl Polymers 0.000 description 4
- 125000001185 polyprenyl group Polymers 0.000 description 4
- 235000019515 salmon Nutrition 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 3
- LOVYCUYJRWLTSU-UHFFFAOYSA-N 2-(3,4-dichlorophenoxy)-n,n-diethylethanamine Chemical compound CCN(CC)CCOC1=CC=C(Cl)C(Cl)=C1 LOVYCUYJRWLTSU-UHFFFAOYSA-N 0.000 description 3
- 102000013563 Acid Phosphatase Human genes 0.000 description 3
- 108010051457 Acid Phosphatase Proteins 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- 241000208688 Eucommia Species 0.000 description 3
- 241000206602 Eukaryota Species 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- 102000018697 Membrane Proteins Human genes 0.000 description 3
- 241000159660 Nannochloropsis oculata Species 0.000 description 3
- 241000218196 Persea Species 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 235000009367 Sesamum alatum Nutrition 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229920003211 cis-1,4-polyisoprene Polymers 0.000 description 3
- 108010069282 cis-prenyl transferase Proteins 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000004807 localization Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 210000003463 organelle Anatomy 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 210000001938 protoplast Anatomy 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 150000003613 toluenes Chemical class 0.000 description 3
- 238000003260 vortexing Methods 0.000 description 3
- VWFJDQUYCIWHTN-YFVJMOTDSA-N 2-trans,6-trans-farnesyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CO[P@](O)(=O)OP(O)(O)=O VWFJDQUYCIWHTN-YFVJMOTDSA-N 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 2
- 241000219198 Brassica Species 0.000 description 2
- 235000011331 Brassica Nutrition 0.000 description 2
- 240000002791 Brassica napus Species 0.000 description 2
- 235000011293 Brassica napus Nutrition 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 102100035409 Dehydrodolichyl diphosphate synthase complex subunit NUS1 Human genes 0.000 description 2
- 101710095708 Dehydrodolichyl diphosphate synthase complex subunit NUS1 Proteins 0.000 description 2
- 102000016911 Deoxyribonucleases Human genes 0.000 description 2
- 108010053770 Deoxyribonucleases Proteins 0.000 description 2
- 108010006731 Dimethylallyltranstransferase Proteins 0.000 description 2
- 102000005454 Dimethylallyltranstransferase Human genes 0.000 description 2
- VWFJDQUYCIWHTN-FBXUGWQNSA-N Farnesyl diphosphate Natural products CC(C)=CCC\C(C)=C/CC\C(C)=C/COP(O)(=O)OP(O)(O)=O VWFJDQUYCIWHTN-FBXUGWQNSA-N 0.000 description 2
- 240000003537 Ficus benghalensis Species 0.000 description 2
- 244000286663 Ficus elastica Species 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- 235000003222 Helianthus annuus Nutrition 0.000 description 2
- 244000020551 Helianthus annuus Species 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 235000003228 Lactuca sativa Nutrition 0.000 description 2
- 240000008415 Lactuca sativa Species 0.000 description 2
- 102000000020 Lipid Droplet Associated Proteins Human genes 0.000 description 2
- 108010080221 Lipid Droplet Associated Proteins Proteins 0.000 description 2
- 241000220218 Manilkara Species 0.000 description 2
- 235000000551 Mimusops kauki Nutrition 0.000 description 2
- 241001250129 Nannochloropsis gaditana Species 0.000 description 2
- 239000006057 Non-nutritive feed additive Substances 0.000 description 2
- 238000000636 Northern blotting Methods 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 241001495454 Parthenium Species 0.000 description 2
- AVFIYMSJDDGDBQ-UHFFFAOYSA-N Parthenium Chemical compound C1C=C(CCC(C)=O)C(C)CC2OC(=O)C(=C)C21 AVFIYMSJDDGDBQ-UHFFFAOYSA-N 0.000 description 2
- 241001077924 Parthenium hysterophorus Species 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 108700008625 Reporter Genes Proteins 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- 239000004902 Softening Agent Substances 0.000 description 2
- 241000488874 Sonchus Species 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 241000192707 Synechococcus Species 0.000 description 2
- 241000192584 Synechocystis Species 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 210000000577 adipose tissue Anatomy 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000003712 anti-aging effect Effects 0.000 description 2
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 2
- 239000002021 butanolic extract Substances 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229910052570 clay Inorganic materials 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 210000000172 cytosol Anatomy 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 229960000633 dextran sulfate Drugs 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 238000009630 liquid culture Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000011070 membrane recovery Methods 0.000 description 2
- 230000003228 microsomal effect Effects 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 2
- 235000019799 monosodium phosphate Nutrition 0.000 description 2
- 239000002107 nanodisc Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 210000002706 plastid Anatomy 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 108010054624 red fluorescent protein Proteins 0.000 description 2
- 239000012763 reinforcing filler Substances 0.000 description 2
- 238000003757 reverse transcription PCR Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- 235000011008 sodium phosphates Nutrition 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000005987 sulfurization reaction Methods 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 230000005945 translocation Effects 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- 238000002525 ultrasonication Methods 0.000 description 2
- 108010028731 undecaprenyl pyrophosphate synthetase Proteins 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- OINNEUNVOZHBOX-QIRCYJPOSA-N 2-trans,6-trans,10-trans-geranylgeranyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\COP(O)(=O)OP(O)(O)=O OINNEUNVOZHBOX-QIRCYJPOSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- 244000036975 Ambrosia artemisiifolia Species 0.000 description 1
- 235000003129 Ambrosia artemisiifolia var elatior Nutrition 0.000 description 1
- 244000105975 Antidesma platyphyllum Species 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 240000008100 Brassica rapa Species 0.000 description 1
- 235000011292 Brassica rapa Nutrition 0.000 description 1
- 235000006467 Camellia japonica Nutrition 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 241000088885 Chlorops Species 0.000 description 1
- 208000032544 Cicatrix Diseases 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 235000005956 Cosmos caudatus Nutrition 0.000 description 1
- 241000219992 Cuphea Species 0.000 description 1
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 1
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 240000005636 Dryobalanops aromatica Species 0.000 description 1
- 240000003133 Elaeis guineensis Species 0.000 description 1
- 235000001950 Elaeis guineensis Nutrition 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 241000672609 Escherichia coli BL21 Species 0.000 description 1
- 241000221017 Euphorbiaceae Species 0.000 description 1
- 244000292825 Ficus ampelas Species 0.000 description 1
- 241000161770 Ficus benguetensis Species 0.000 description 1
- 241000161771 Ficus irisana Species 0.000 description 1
- 240000001973 Ficus microcarpa Species 0.000 description 1
- 240000005915 Ficus septica Species 0.000 description 1
- 102000053187 Glucuronidase Human genes 0.000 description 1
- 108010060309 Glucuronidase Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 240000005262 Helianthus argophyllus Species 0.000 description 1
- 241001262580 Helianthus atrorubens Species 0.000 description 1
- 244000255763 Helianthus debilis Species 0.000 description 1
- 241001262559 Helianthus decapetalus Species 0.000 description 1
- 235000018122 Helianthus giganteus Nutrition 0.000 description 1
- 244000061944 Helianthus giganteus Species 0.000 description 1
- 101800002189 Hevein Proteins 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241001048891 Jatropha curcas Species 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 101000763602 Manilkara zapota Thaumatin-like protein 1 Proteins 0.000 description 1
- 101000763586 Manilkara zapota Thaumatin-like protein 1a Proteins 0.000 description 1
- 102000003939 Membrane transport proteins Human genes 0.000 description 1
- 108090000301 Membrane transport proteins Proteins 0.000 description 1
- 241000218231 Moraceae Species 0.000 description 1
- 241001558147 Mortierella sp. Species 0.000 description 1
- 101000966653 Musa acuminata Glucan endo-1,3-beta-glucosidase Proteins 0.000 description 1
- 241000159655 Nannochloropsis granulata Species 0.000 description 1
- 241001300629 Nannochloropsis oceanica Species 0.000 description 1
- 241000224476 Nannochloropsis salina Species 0.000 description 1
- 241000509521 Nannochloropsis sp. Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 101710089395 Oleosin Proteins 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 102000002508 Peptide Elongation Factors Human genes 0.000 description 1
- 108010068204 Peptide Elongation Factors Proteins 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 102000019337 Prenyltransferases Human genes 0.000 description 1
- 108050006837 Prenyltransferases Proteins 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 241000221523 Rhodotorula toruloides Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000003621 Solidago canadensis var scabra Nutrition 0.000 description 1
- 240000003774 Solidago canadensis var. scabra Species 0.000 description 1
- 240000002802 Solidago gigantea Species 0.000 description 1
- 244000113423 Sonchus asper Species 0.000 description 1
- 235000006744 Sonchus asper Nutrition 0.000 description 1
- 241000489357 Sonchus brachyotus Species 0.000 description 1
- 244000113428 Sonchus oleraceus Species 0.000 description 1
- 235000006745 Sonchus oleraceus Nutrition 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 241001482317 Taraxacum brevicorniculatum Species 0.000 description 1
- 241000902986 Taraxacum japonicum Species 0.000 description 1
- 240000001949 Taraxacum officinale Species 0.000 description 1
- 235000006754 Taraxacum officinale Nutrition 0.000 description 1
- 235000005187 Taraxacum officinale ssp. officinale Nutrition 0.000 description 1
- 241000691199 Taraxacum platycarpum Species 0.000 description 1
- 241000292542 Taraxacum platycarpum subsp. hondoense Species 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 241000722921 Tulipa gesneriana Species 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 235000007244 Zea mays Nutrition 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- ZVQOOHYFBIDMTQ-UHFFFAOYSA-N [methyl(oxido){1-[6-(trifluoromethyl)pyridin-3-yl]ethyl}-lambda(6)-sulfanylidene]cyanamide Chemical compound N#CN=S(C)(=O)C(C)C1=CC=C(C(F)(F)F)N=C1 ZVQOOHYFBIDMTQ-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- NTXGVHCCXVHYCL-RDQGWRCRSA-N all-trans-undecaprenyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CC\C(C)=C\COP(O)(=O)OP(O)(O)=O NTXGVHCCXVHYCL-RDQGWRCRSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 235000003484 annual ragweed Nutrition 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 230000011681 asexual reproduction Effects 0.000 description 1
- 238000013465 asexual reproduction Methods 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 108010083912 bleomycin N-acetyltransferase Proteins 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 235000006263 bur ragweed Nutrition 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 238000010805 cDNA synthesis kit Methods 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000003488 common ragweed Nutrition 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- SQNZJJAZBFDUTD-UHFFFAOYSA-N durene Chemical compound CC1=CC(C)=C(C)C=C1C SQNZJJAZBFDUTD-UHFFFAOYSA-N 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000012156 elution solvent Substances 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 238000003028 enzyme activity measurement method Methods 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 210000002468 fat body Anatomy 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 235000009424 haa Nutrition 0.000 description 1
- WKMZPSWMEXVKKG-XITFREQTSA-N hevein Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CS)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(=O)NCC(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CS)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CS)C(=O)NCC(=O)OC(=O)CC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CO)[C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CS)C(=O)N[C@@H](CO)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1N=CN=C1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(O)=O)CC1=CNC2=CC=CC=C12 WKMZPSWMEXVKKG-XITFREQTSA-N 0.000 description 1
- 239000002035 hexane extract Substances 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000009061 membrane transport Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000007857 nested PCR Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 230000037039 plant physiology Effects 0.000 description 1
- 238000004161 plant tissue culture Methods 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000000941 radioactive substance Substances 0.000 description 1
- 235000009736 ragweed Nutrition 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000037387 scars Effects 0.000 description 1
- 230000014639 sexual reproduction Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000012485 toluene extract Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 1
- 229960001005 tuberculin Drugs 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/10—Cells modified by introduction of foreign genetic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/405—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from algae
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L21/00—Compositions of unspecified rubbers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N11/00—Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
- C12N11/02—Enzymes or microbial cells immobilised on or in an organic carrier
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1025—Acyltransferases (2.3)
- C12N9/1029—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1085—Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/007—Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/02—Preparation of hydrocarbons or halogenated hydrocarbons acyclic
Definitions
- the present invention relates to a method for producing a trans-polyisoprenoid, a vector, a transformed organism, a method for producing a pneumatic tire, and a method for producing a rubber product.
- natural rubber used in industrial rubber products is produced by cultivating rubber-producing plants such as Hevea brasiliensis of the Euphorbiaceae family and Indian rubber tree (Ficus elastica) of the Moraceae family.
- Such natural rubber is a polyisoprenoid (cis-type natural rubber) in which isoprene units are linked in cis-type.
- trans polyisoprenoids trans rubbers
- Trans-polyisoprenoid is known to be naturally produced by a small number of plants such as Eucommia ulmoides (Eucommia eucommia), a deciduous tall tree native to China. It can be obtained by extracting it from tissue or the like. It can also be obtained by chemical synthesis. Such trans-rubber has properties different from those of cis-type natural rubber, and is used as a hard-to-crack golf ball and as a filling material for dental treatment scars.
- Chemically synthesized trans polyisoprenoids contain not 100% trans content but 1.2 to 4% cis bonds. Moreover, the molecular weight is about 250,000, and it is very difficult to synthesize an ultra-high molecular weight of 1,000,000 or more. In addition, chemical synthesis requires the supply of raw materials, and since raw materials derived from petroleum are required, it is difficult to say that this is an environmentally friendly procurement method.
- the trans-type polyisoprenoid extracted and purified from the plant Eucommia ulmoides is a polyisoprenoid with a weight average molecular weight of about 1.8 ⁇ 10 6 in which 99% or more of the linear chains are linked in trans-type, and is an eucommia elastomer. is used as
- Trans-polyisoprenoids are biosynthesized in plants through the addition polymerization of isopentenyl diphosphate (IPP) to starting substrates such as farnesyl diphosphate (FPP) and geranylgeranyl diphosphate (GGPP). , trans-1,4-polyisoprene structure, and trans-prenyltransferase (tPT) is believed to be involved in the biosynthesis of trans-rubber.
- IPP isopentenyl diphosphate
- FPP farnesyl diphosphate
- GGPP geranylgeranyl diphosphate
- tPT trans-1,4-polyisoprene structure, and trans-prenyltransferase
- An object of the present invention is to solve the above problems and to provide a method for enzymatically producing a trans-polyisoprenoid (trans-1,4-polyisoprene) having a molecular weight exceeding 10 5 .
- Another object of the present invention is to solve the above-mentioned problems and to provide a vector capable of enzymatically producing a trans-polyisoprenoid having a molecular weight exceeding 10 5 by introducing it into an organism by gene recombination technology. aim.
- Another object of the present invention is to provide a transformed organism into which the vector has been introduced, and a method for enzymatically producing a trans-polyisoprenoid having a molecular weight of more than 10 5 using the transformed organism.
- the present inventors isolated two genes having two conserved trans-prenyltransferase motifs from Sapodilla, a plant that biosynthesizes trans-1,4-polyisoprene. released.
- one trans-prenyltransferase (Sapodilla-derived tPT1, nucleotide sequence and amino acid sequence are represented by SEQ ID NOS: 1 and 2, respectively) It was found to be active and capable of synthesizing a product with a molecular weight of about 10 3 .
- the other trans-prenyltransferase (Sapodilla-derived tPT2, the nucleotide sequence and amino acid sequence of which are represented by SEQ ID NOs: 3 and 4, respectively) did not show any activity in the full-length sequence when not bound to the lipid membrane, but the membrane-bound peptide
- SEQ ID NO: 6 the region (the base sequence of MztPT2 ⁇ N, which is Sapodilla-derived tPT2 with the membrane-binding peptide region deleted, is represented by SEQ ID NO: 6), a product with a molecular weight of about 10 4 is synthesized even without binding to the lipid membrane. found to exhibit the ability to
- trans-prenyltransferase which has the ability to synthesize a product with a molecular weight of about 10 4 , synthesizes a product with a molecular weight of over 10 5 when expressed in the presence of a lipid membrane while having a membrane-bound peptide region. I have found it to be capable.
- fusing a membrane-bound peptide to trans-prenyltransferase which is active even when not bound to a lipid membrane and has the ability to synthesize a product with a molecular weight of about 10 3 , produces a product with a molecular weight of about 10 3 even in the presence of a lipid membrane. I also discovered that it was limited to synthesizing things.
- trans-prenyltransferase which has the ability to synthesize a product with a molecular weight of 10 4 or more without binding to a lipid membrane, can be produced by binding to the lipid membrane and accumulating the product in the membrane.
- the inventors have completed the present invention by discovering that it is possible to increase the molecular weight of a substance.
- the present invention provides a trans-polyisoprenoid comprising a binding step of binding a trans-prenyltransferase (tPT) family protein capable of producing a product having a molecular weight of 10 4 or more in the absence of lipid membrane binding to a lipid membrane in vitro. related to the manufacturing method of
- tPT trans-prenyltransferase
- a trans-polyisoprenoid comprising a binding step of binding a trans-prenyltransferase (tPT) family protein capable of producing a product having a molecular weight of 10 4 or more without binding to a lipid membrane to a lipid membrane in vitro. Therefore, by binding the tPT family protein to the lipid membrane, it is possible to synthesize a trans polyisoprenoid having a molecular weight of more than 10 5 in the lipid membrane. It is possible to provide a method for enzymatically producing polyisoprenoids.
- tPT trans-prenyltransferase
- the method for producing a pneumatic tire of the present invention includes a kneading step of kneading the trans-polyisoprenoid obtained by the above-mentioned trans-polyisoprenoid production method and an additive to obtain a kneaded product, and a raw tire from the kneaded product. Since the method for manufacturing a pneumatic tire includes a raw tire molding step of molding and a vulcanization step of vulcanizing the raw tire, in order to manufacture a pneumatic tire from a trans-type polyisoprenoid having a molecular weight exceeding 10 5 , Pneumatic tires can be made using trans-polyisoprenoids with molecular weights greater than 10 5 .
- the method for producing a rubber product of the present invention includes a kneading step of kneading the trans-polyisoprenoid obtained by the above-mentioned method for producing a trans-polyisoprenoid and an additive to obtain a kneaded product, and forming a raw rubber product from the kneaded product. and a vulcanization step of vulcanizing the raw rubber product. Rubber products can be made using trans-polyisoprenoids with molecular weights above.
- the vector of the present invention is a vector containing a gene encoding a trans-prenyltransferase (tPT) family protein capable of producing a product with a molecular weight of 10 4 or more without binding to a lipid membrane.
- tPT trans-prenyltransferase
- the method for producing a pneumatic tire of the present invention includes a kneading step of kneading a trans-polyisoprenoid obtained from the transformed organism and an additive to obtain a kneaded product, and a raw tire molding of forming a raw tire from the kneaded product. and a vulcanization step of vulcanizing the raw tire, so that the pneumatic tire is manufactured from the trans-polyisoprenoid having a molecular weight exceeding 10 5 , so that the molecular weight exceeds 10 5
- the method for producing a rubber product of the present invention includes a kneading step of kneading a trans-polyisoprenoid obtained from the transformed organism and an additive to obtain a kneaded product, and a raw rubber product forming step of forming a raw rubber product from the kneaded product. , and a vulcanization step of vulcanizing the crude rubber product .
- type polyisoprenoid can be used to manufacture rubber products.
- FIG. 2 is a schematic diagram showing a part of the trans-polyisoprenoid biosynthetic pathway.
- FIG. 4 is a diagram showing an example of TLC results; It is a figure which shows an example of the result of GPC. It is a figure which shows an example of an activity measurement result. It is a figure which shows an example of the result of GPC. It is a figure which shows an example of an activity measurement result. It is a figure which shows an example of an activity measurement result. It is a figure which shows an example of an activity measurement result. It is a figure which shows an example of the result of GPC.
- the method for producing a trans-polyisoprenoid of the present invention includes a binding step of binding a trans-prenyltransferase (tPT) family protein capable of producing a product having a molecular weight of 10 4 or more without binding to a lipid membrane to a lipid membrane in vitro. including.
- tPT trans-prenyltransferase
- the lipid membrane Trans-polyisoprenoids can be synthesized (enzymatically produced) with molecular weights in excess of 10 5 .
- the production method of the present invention may include other steps as long as it includes the bonding step, and each step may be performed once or may be repeated multiple times. Moreover, in the present invention, the amount of tPT family protein that binds to the lipid membrane is not particularly limited.
- trans-polyisoprenoids can be produced with molecular weights exceeding
- the vector of the present invention is a vector containing a gene encoding a trans-prenyltransferase (tPT) family protein capable of producing a product having a molecular weight of 10 4 or more without binding to a lipid membrane, it can be obtained by gene recombination technology. By introducing it into an organism, it is possible to enzymatically produce a trans-polyisoprenoid having a molecular weight of more than 10 5 in the organism.
- tPT trans-prenyltransferase
- trans-polyisoprenoids having a molecular weight of more than 10 5 can be enzymatically produced in vivo by transforming an organism with the gene encoding the tPT family protein. can.
- trans-polyisoprenoid (trans-1,4-polyisoprene) having a molecular weight exceeding 10 5 can be enzymatically produced in vitro or in vivo.
- a tPT family protein capable of producing a product having a molecular weight of 10 4 or more without binding to the lipid membrane is bound to the lipid membrane, thereby accumulating the product in the lipid membrane, thereby reducing the molecular weight of the product. It is possible to synthesize (enzymatically produce) a trans-polyisoprenoid that can be polymerized and has a molecular weight greater than 10 5 , which is a molecular weight greater than that without lipid membrane binding.
- the product chain length which is not controlled by the enzyme structure, is thought to be controlled by the reaction environment.
- the product chain length is controlled by the reaction environment, one of the factors determining the product chain length is the solubility of the product.
- the reaction is carried out in an aqueous solution without binding to the lipid membrane, the product is exposed to the aqueous solution outside the enzyme as the elongation reaction of the product proceeds.
- the longer the product chain length the lower the hydrophilicity and the lower the stability in an aqueous solution. Therefore, it is thought that product elongation stops when the chain length reaches a certain level.
- an enzyme that has the ability to synthesize a product with a molecular weight of about 10 4 in an aqueous solution is considered to be an enzyme that can be controlled in the reaction environment.
- enzymes that can only synthesize products of less than 10 4 are considered to be enzymes that structurally control the product chain length.
- enzymes that are controlled by the reaction environment it is expected that changing the reaction environment will change the chain length of the product.
- an enzyme that is polymerized and structurally controlled it is thought that the enzyme structurally synthesized a product with the same molecular weight regardless of the reaction environment.
- the molecular weight is a molecular weight measured by gel permeation chromatography (GPC), specifically by the method described in Examples.
- a tPT family protein capable of producing a product having a molecular weight of 10 4 or more in the absence of lipid membrane binding refers to, for example, expression of the tPT family protein in Escherichia coli, which is in the absence of lipid membrane binding, and the tPT Production of a molecular weight of 10 4 or more by performing an enzymatic reaction of a family protein, more specifically, by performing an enzymatic reaction of the tPT family protein under conditions in which the tPT family protein is not bound to a lipid membrane.
- a protein capable of producing a product means a protein capable of producing a product.
- binding of a tPT family protein to a lipid membrane means that all or part of the tPT family protein is incorporated into the lipid membrane or inserted into the membrane structure of the lipid membrane. However, it also means localization on the surface or inside of the lipid membrane. Furthermore, a protein bound to a lipid membrane and a tPT family protein form a complex and exist on the lipid membrane as a complex, which is also included in the conceptual scope of being bound to the lipid membrane.
- membrane-binding domain refers to a membrane transport signal sequence or a hydrophobic amino acid sequence necessary for binding to a membrane.
- transmembrane peptide region also referred to as a transmembrane peptide region or a transmembrane peptide
- the transmembrane region means a highly hydrophobic region for penetrating the lipid membrane, such as a region forming an ⁇ -helical structure in which the hydrophobic amino acids for penetrating the lipid membrane are located outside. It means a region containing many amino acids.
- to be in a solubilized state means to be in a state of being stably present in an aqueous solution, and means to be in a state of not being precipitated by centrifugation or the like. If not solubilized in water, it can be solubilized by deleting the membrane binding domain from the membrane protein.
- a trans-prenyltransferase (tPT) family protein is an enzyme that catalyzes a reaction that extends the chain length of an isoprenoid compound to trans-type.
- trans-polyisoprenoids are biosynthesized through the trans-polyisoprenoid biosynthetic pathway shown in FIG. is thought to be the enzyme that catalyzes the reaction in the boxed portion of
- the tPT family protein is characterized by having an amino acid sequence included in the trans IPPS HT domain (NCBI Accession No. cd00685).
- the trans-type polyisoprenoid is a general term for polymers composed of isoprene units (C 5 H 8 ) bound in a trans-type (particularly, the proportion of trans-type bonds in all bonds is 90% or more is preferred, 95% or more is more preferred, and 97% or more is even more preferred.).
- trans-polyisoprenoids include polymers such as trans-sesterpene (C 25 ), trans-triterpene (C 30 ), trans-tetraterpene (C 40 ), and trans-rubber such as trans-1,4-polyisoprene. is mentioned.
- isoprenoid means a compound having an isoprene unit (C 5 H 8 ), and is a concept including polyisoprenoid.
- the present invention relates to the production of trans-polyisoprenoids comprising a step of binding a trans-prenyltransferase (tPT) family protein capable of producing a product with a molecular weight of 10 4 or more without binding to a lipid membrane, to a lipid membrane in vitro. Regarding the method.
- tPT trans-prenyltransferase
- the lipid membrane is not particularly limited, and examples thereof include oil droplets (oil bodies, lipid droplets), rubber particles, liposomes, nanodiscs, organelles, and endoplasmic reticulum (microsomes).
- the lipid membrane may be a single lipid membrane or a double lipid membrane, but a single lipid membrane is preferred. These may be used alone or in combination of two or more. In addition, a naturally occurring one or an artificially synthesized one may be used. Among them, oil droplets, rubber particles, nanodiscs, and endoplasmic reticulum (microsomes) are preferred, and oil droplets and endoplasmic reticulum (microsomes) are more preferred.
- oil droplets are composed of phospholipids and membrane proteins (for example, oleosin and lipid-droplet associated protein (LDAP)/proteins belonging to the small rubber particle protein (SRPP) family), as shown in FIG. It is an inclusion body or organelle with a tightly packed membrane structure in which triacylglycerol is stored, and is present in both prokaryotes and eukaryotes and in all plants. Oil droplets are also referred to as lipid droplets, lipid droplets, oil bodies, and LDs.
- membrane proteins for example, oleosin and lipid-droplet associated protein (LDAP)/proteins belonging to the small rubber particle protein (SRPP) family
- SRPP small rubber particle protein
- Oil droplets are also referred to as lipid droplets, lipid droplets, oil bodies, and LDs.
- the origin of the oil droplets is not particularly limited, and may be derived from microorganisms (including algae and microalgae), animals, or plants.
- the plant is not particularly limited, and examples include the genus Hevea such as Hevea brasiliensis; the genus Sonchus such as Sonchus oleraceus, Sonchus asper, and Sonchus brachyotus; Solidago altissima ⁇ (Solidago virgaurea subsp. asiatica) ⁇ (Solidago virgaurea subsp. leipcarpa) ⁇ (Solidago virgaurea subsp. leipcarpa f. paludosa) ⁇ (Solidago virgaurea subsp. gigantea) ⁇ (Solidago gigantea Ait. var. leiophylla Fernald) ⁇ Solidago ⁇ ; ⁇ (Helianthus annuus) ⁇ (Helianthus argophyllus) ⁇ (Helianthus atrorubens) ⁇ (Helianthus debilis) ⁇ (Helianthus decapetalus) ⁇ (Helianthus giganteus ) ⁇ Helianthus
- Ficus benguetensis Merr. Ficus irisana Elm.
- banyan tree Ficus microcarpa L.f.
- Ficus septica Burm.f. Ficus benghalensis, etc.
- Parthenium such as guayule (Parthenium argentatum), American tulip (Parthenium hysterophorus), and ragweed (Parthenium hysterophorus); rubber-producing plants such as lettuce (Lactuca sativa) and Bengal Bodaiju; Examples of plants other than rubber-producing plants include plants belonging to the genus Persea such as Arabidopsis thaliana and avocado (Persea americana), plants belonging to the genus Sesamum such as sesame (Sesamum indicum), and rape (Brassica napus). and plants belonging to the genus Camellia such as camellia (Camellia japonica).
- Persea such as Arabidopsis thaliana and avocado
- Persea americana plants belonging to the genus Sesamum such as sesame (Sesamum indicum), and rape (Brassica napus
- Camellia such as camellia
- the microorganisms may be either prokaryotes or eukaryotes, prokaryotes such as microorganisms belonging to the genus Bacillus, microorganisms belonging to the genus Synechocystis, microorganisms belonging to the genus Synechococcus, or yeast, Examples include eukaryotic microorganisms such as filamentous fungi.
- algae belonging to the genus Chlamydomonas from the viewpoint of the establishment of genetic recombination techniques, algae belonging to the genus Chlamydomonas, algae belonging to the genus Chlorella, algae belonging to the genus Phaeodactylum, or nanochloroalgae Algae of the genus Psis are preferred, and algae of the genus Chlamydomonas are more preferred.
- the oil droplets are preferably derived from plants, and more preferably derived from plants belonging to at least one genus selected from the group consisting of the genus Persea, the genus Sesamum, the genus Brassica, and the genus Camellia. It is more preferably derived from the plant to which it belongs, and particularly preferably derived from avocado.
- oil droplets are preferably derived from microorganisms, more preferably derived from algae and microalgae, such as algae of the genus Chlamydomonas, algae of the genus Chlorella, and the genus Phaeodactylum. algae, or algae of the genus Nannochloropsis, and particularly preferably from algae of the genus Chlamydomonas.
- a method for preparing oil droplets is not particularly limited, and a known method can be used. For example, plant pieces may be crushed in a buffer solution, filtered and centrifuged to collect fat pads. Also, the fat pad may be washed if necessary. Then, the oil droplets can be separated from the fat body by centrifugation. In the centrifugation treatment, for example, treatment may be performed at 15,000 to 20,000 ⁇ g for 15 to 60 minutes.
- the treatment temperature for centrifugation treatment is preferably 0 to 10°C, more preferably 2 to 8°C, and particularly preferably 4°C.
- avocado-derived oil droplets can be prepared, for example, by the method described in WO2021/010101.
- endoplasmic reticulum refers to a non-reticular membrane system having a filamentous or mesh-like structure present in cells, and includes membrane vesicles that are torn off when the cells are crushed.
- the origin of the endoplasmic reticulum is not particularly limited, it may be derived from microorganisms, animals, or plants.
- a method for preparing the endoplasmic reticulum (microsomes) is not particularly limited, and a known method can be used.
- cells may be disrupted by ultrasonication or French press, and then recovered by centrifugation such as density gradient centrifugation.
- the origin of the rubber particles is not particularly limited, and may be derived from, for example, the latex of rubber-producing plants such as Hevea brasiliensis, Russian dandelion, guayule, Nogeshi, and Hevea indica.
- the particle size of the rubber particles is not particularly limited. Even if rubber particles having a predetermined particle size are fractionated and used, small rubber particles (SRP) with a small particle size may be used as rubber particles, or large rubber particles (SRP) with a large particle size may be used. (LRP) may be used.
- a method of sequentially performing centrifugation treatment at ⁇ 60000 ⁇ g can be mentioned.
- the treatment time for each centrifugation treatment is preferably 20 minutes or longer, more preferably 30 minutes or longer, and even more preferably 40 minutes or longer. On the other hand, it is preferably 120 minutes or less, more preferably 90 minutes or less.
- the treatment temperature for each centrifugation treatment is preferably 0 to 10°C, more preferably 2 to 8°C, and particularly preferably 4°C.
- trans-prenyltransferase (tPT) family protein capable of producing a product with a molecular weight of 10 4 or more without binding to a lipid membrane a trans-prenyltransferase (tPT) family protein capable of producing a product having a molecular weight of 10 4 or more without binding to a lipid membrane.
- a trans-prenyltransferase (tPT) family protein capable of producing a product having a molecular weight of 10 4 or more without binding to a lipid membrane is a tPT family protein capable of producing a product having a molecular weight of 10 4 or more without binding to a lipid membrane.
- One embodiment of the tPT family protein capable of producing a product with a molecular weight of 10 4 or more in the absence of lipid membrane binding is a protein having a membrane binding domain, which is solubilized to form a water It is a protein capable of forming products with a molecular weight of 10 4 or more in layers.
- a protein having a membrane-binding domain membrane protein
- the solubilized protein may be a protein capable of forming a product having a molecular weight of 10 4 or more in the aqueous layer below the non-lipid membrane binding.
- a tPT family protein capable of producing a product with a molecular weight of 10 4 or more without binding to a lipid membrane has no membrane-binding domain and has a molecular weight of 10 4 or more in an aqueous layer without binding to a lipid membrane. It is a protein that has the ability to bind to lipid membranes by fusing a membrane-binding peptide to a protein capable of producing a product. If a protein without a membrane-binding domain can produce a product with a molecular weight of 10 4 or more in the aqueous layer below the lipid membrane, the protein without a membrane-binding domain does not have the ability to bind to the lipid membrane.
- a membrane-binding peptide to a protein that does not have a membrane-binding domain and can generate a product with a molecular weight of 10 4 or more in the aqueous layer below the lipid membrane, the ability to bind to the lipid membrane is enhanced. can be granted.
- the present invention is characterized by the use of a trans-prenyltransferase (tPT) family protein capable of producing a product with a molecular weight of 10 4 or more without binding to lipid membranes.
- the tPT family protein is preferably a protein originally having a membrane-binding peptide, but a protein that does not originally have a membrane-binding peptide and is genetically engineered to fuse with a membrane-binding peptide may also be used. good.
- the tPT family protein is not particularly limited as long as it can produce a product with a molecular weight of 10 4 or more without binding to lipid membranes and has the ability to bind to lipid membranes innately or acquiredly.
- a tPT family protein capable of producing a product with a molecular weight of 10 4 or more without binding to a lipid membrane, a protein having no membrane-binding domain and capable of producing a product with a molecular weight of 10 4 or more in an aqueous layer without binding to a lipid membrane
- Plants that produce trans gum include, but are not limited to, plants belonging to the genus Manilkara such as Sapodilla (Manilkara zapota) and plants belonging to the genus Eucommia such as Eucommia ulmoides. Among them, plants belonging to the genus Manilkara are preferred, and Manilkara zapota is more preferred.
- trans-prenyltransferase (tPT) family protein capable of producing a product with a molecular weight of 10 4 or more without binding to lipid membranes include the following [1].
- proteins sometimes have their original functions even when they contain one or more amino acid substitutions, deletions, insertions or additions in the original amino acid sequence.
- specific examples of the tPT family proteins also include the following [2]. [2] consisting of a sequence containing one or more amino acid substitutions, deletions, insertions, and/or additions in the amino acid sequence represented by SEQ ID NO: 4, and extending the chain length of the isoprenoid compound to the trans type; A protein that can catalyze a reaction and produce a product with a molecular weight of 10 4 or more without binding to a lipid membrane
- amino acids in the amino acid sequence represented by SEQ ID NO: 4, preferably one or more amino acids, more preferably 1 to 95 amino acids, still more preferably 1 Substitution of ⁇ 71 amino acids, even more preferably 1 to 47 amino acids, particularly preferably 1 to 24 amino acids, most preferably 1 to 9 amino acids, most preferably 1 to 5 amino acids, Amino acid sequences containing deletions, insertions and/or additions are preferred.
- amino acid substitutions are preferably conservative substitutions, specifically substitutions within the following bracketed groups.
- (glycine, alanine) valine, isoleucine, leucine) (aspartic acid, glutamic acid) (asparagine, glutamine) (serine, threonine) (lysine, arginine) (phenylalanine, tyrosine).
- [3] consists of an amino acid sequence having 80% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 4, catalyzes a reaction that extends the chain length of an isoprenoid compound to the trans type, and is not bound to a lipid membrane; Protein capable of producing a product with a molecular weight of 10 4 or more
- sequence identity with the amino acid sequence represented by SEQ ID NO: 4 is preferably 85% or more, more preferably 90% or more, still more preferably 95%. above, particularly preferably 98% or more, most preferably 99% or more.
- sequence identity of amino acid sequences and nucleotide sequences is determined by algorithm BLAST [Pro. Natl. Acad. Sci. USA, 90, 5873 (1993)] and FASTA [Methods Enzymol. , 183, 63 (1990)].
- a conventionally known method can be used. , expresses the target protein, catalyzes the reaction of extending the chain length of the isoprenoid compound to the trans type, and determines whether or not a product having a molecular weight of 10 4 or more can be produced without binding to the lipid membrane.
- tPT family proteins are found not only in rubber-producing plants, but also in plants, animals, and microorganisms other than rubber-producing plants. Not involved in synthesis. Nevertheless, in the present invention, any tPT family protein can be bound to a lipid membrane to synthesize a trans rubber in the lipid membrane regardless of its origin, type, or the like. That is, in the present invention, regardless of whether the gene encoding the tPT family protein is derived from a rubber-producing plant, is derived from other organisms, or is involved in rubber synthesis in a natural state. , tPT family proteins can synthesize trans-rubber in lipid membranes.
- CPT cis-prenyltransferase
- the tPT family protein used in the present invention preferably has a transmembrane region on the N-terminal side in order to increase affinity with lipid membranes. may be fused with transmembrane regions.
- the amino acid sequence of the transmembrane domain to be fused is not particularly limited, it is preferably the amino acid sequence of the transmembrane domain of a protein originally bound to a lipid membrane in nature.
- the gene encoding the tPT family protein is particularly limited as long as it encodes the tPT family protein, is expressed, and is capable of producing a product with a molecular weight of 10 4 or more without binding to a lipid membrane.
- Specific examples of the gene include the following [1] or [2].
- DNA consisting of the nucleotide sequence represented by SEQ ID NO: 3 [2] a lipid that hybridizes under stringent conditions with a DNA consisting of a nucleotide sequence complementary to the nucleotide sequence represented by SEQ ID NO: 3, and catalyzes a reaction that extends the chain length of an isoprenoid compound to the trans type; DNA encoding a protein capable of producing a product with a molecular weight of 10 4 or more in the absence of membrane binding
- hybridize refers to a step in which DNA hybridizes to a DNA having a specific base sequence or a portion of the DNA. Therefore, the DNA having the specific nucleotide sequence or the partial nucleotide sequence of the DNA is useful as a probe for Northern or Southern blot analysis, or can be used as an oligonucleotide primer for PCR (Polymerase Chain Reaction) analysis. It may be the same DNA.
- DNAs used as probes include DNAs of at least 100 bases or more, preferably 200 bases or more, and more preferably 500 bases or more. DNAs of at least 10 bases or more, preferably 15 bases or more may also be used. .
- the stringent conditions are, for example, DNA-immobilized filters and probe DNAs mixed with 50% formamide, 5 ⁇ SSC (750 mM sodium chloride, 75 mM sodium citrate), 50 mM sodium phosphate (pH 7.6). ), 5 ⁇ Denhardt's solution, 10% dextran sulfate, and 20 ⁇ g/l denatured salmon sperm DNA after overnight incubation at 42° C., followed by e.g. 0.2 ⁇ SSC solution at about 65° C. Conditions in which the filter is washed can be used, but lower stringency conditions can also be used. Stringent conditions can be changed by adjusting the concentration of formamide (the lower the concentration of formamide, the lower the stringency), and by changing the salt concentration and temperature conditions.
- Low stringency conditions include, for example, 6 ⁇ SSCE (20 ⁇ SSCE is 3 mol/l sodium chloride, 0.2 mol/l sodium dihydrogen phosphate, 0.02 mol/l EDTA, pH 7.4), 0 After overnight incubation at 37°C in a solution containing 5% SDS, 30% formamide, 100 ⁇ g/l denatured salmon sperm DNA, 1 x SSC, 0.1% SDS solution at 50°C.
- Conditions for washing using include conditions in which hybridization is performed using a solution of high salt concentration (eg, 5 ⁇ SSC) under the above-described low stringency conditions, followed by washing.
- the various conditions described above can also be set by adding or altering blocking reagents used to reduce background in hybridization experiments. Addition of blocking reagents as described above may be accompanied by alteration of the hybridization conditions in order to match the conditions.
- the DNA that can hybridize under the stringent conditions is at least 80% of the base sequence represented by SEQ ID NO: 3 when calculated based on the parameters using programs such as BLAST and FASTA.
- DNA comprising a nucleotide sequence having sequence identity of preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, particularly preferably 99% or more can be mentioned.
- the DNA that hybridizes with the above DNA under stringent conditions is DNA encoding a protein having a given enzymatic activity
- conventionally known methods can be used.
- the target protein is expressed by a transformant into which a gene encoding the target protein has been introduced, and the presence or absence of the function of the target protein is measured by each activity measurement method.
- a conventionally known method can be used as a method for identifying the amino acid sequence and base sequence of the protein.
- the reaction synthesizes cDNA.
- degenerate primers are designed and RT-PCR is performed to partially amplify the DNA fragment and partially identify the sequence.
- the RACE method or the like is performed to identify the full-length base sequence and amino acid sequence.
- the RACE method (Rapid Amplification of cDNA Ends method) is a method in which when the base sequence of cDNA is partially known, PCR is performed based on the base sequence information of the known region to identify the unknown region up to the end of the cDNA.
- the degenerate primer is preferably prepared from a plant-derived sequence having a sequence region highly common to the target protein.
- a primer containing an initiation codon and a primer containing a termination codon are designed from the known nucleotide sequence, and RT-PCR is performed using the synthesized cDNA as a template. By doing so, the full-length base and amino acid sequences can be identified.
- membrane binding peptide As described above, when a protein without a membrane-binding domain can produce a product with a molecular weight of 10 4 or more in the aqueous layer below the lipid membrane, the protein without a membrane-binding domain can bind to the lipid membrane. Since it does not have binding ability, by fusing the membrane-binding peptide to "a protein that does not have a membrane-binding domain and can generate a product with a molecular weight of 10 4 or more in the aqueous layer below the lipid membrane," of binding capacity.
- the origin of the membrane-binding peptide is the same as the origin of the lipid membrane, including preferred embodiments.
- the membrane-binding peptide is preferably derived from a plant, and more preferably derived from a plant belonging to at least one genus selected from the group consisting of the genus Persea, the genus Sesamum, the genus Brassica, and the genus Camellia. is more preferably derived from a plant belonging to the genus Avocado, and particularly preferably derived from avocado.
- the membrane-bound peptide is preferably derived from microorganisms, more preferably derived from algae and microalgae, such as algae belonging to the genus Chlamydomonas, algae belonging to the genus Chlorella, and Phaeodactylum. more preferably from algae of the genus Chlamydomonas, or from algae of the genus Nannochloropsis, particularly preferably from algae of the genus Chlamydomonas.
- the origin of the lipid membrane to be used and the origin of the membrane-binding peptide are the same.
- the protein fused with the membrane-binding peptide preferably has the ability to bind to lipid membranes.
- the membrane-binding peptide is not particularly limited as long as it can impart binding ability to the lipid membrane, but is preferably a peptide derived from a protein capable of binding to the lipid membrane. More preferably, it is a peptide derived from a protein belonging to Here, the peptide derived from the protein capable of binding to the lipid membrane may be all or part of the peptide of the protein capable of binding to the lipid membrane, as long as it has the ability to bind to the lipid membrane. may be Although the peptide capable of binding to the lipid membrane is not particularly limited, it is preferably a peptide in the transmembrane domain of a protein originally bound to the lipid membrane in nature.
- a protein belonging to Class II means an oil droplet-binding protein that has the ability to bind to oil droplets and is characterized by localization in the cytosol when oil droplets are not present in cells (Gidda et al. , Plant Physiology, April 2016, Vol. 170, pp. 2052-2071).
- Proteins belonging to Class I are proteins that are localized in the ER fraction in the absence of oil droplets, while proteins belonging to Class II are capable of translocating between the cytosol and oil droplets.
- Proteins that can bind to oil droplets and belong to Class II include, but are not limited to, proteins belonging to the lipid-droplet associated protein (LDAP)/small rubber particle protein (SRPP) family. Among them, proteins belonging to the lipid-droplet associated protein (LDAP)/small rubber particle protein (SRPP) family are preferred.
- LDAP lipid-droplet associated protein
- SRPP small rubber particle protein
- membrane-binding peptides include, for example, membrane-binding regions derived from major lipid droplet protein (MLDP).
- MLDP major lipid droplet protein
- hybridize refers to a step in which DNA hybridizes to a DNA having a specific base sequence or a portion of the DNA. Therefore, the DNA having the specific nucleotide sequence or the partial nucleotide sequence of the DNA is useful as a probe for Northern or Southern blot analysis, or can be used as an oligonucleotide primer for PCR (Polymerase Chain Reaction) analysis. It may be the same DNA.
- DNAs used as probes include DNAs of at least 100 bases or more, preferably 200 bases or more, and more preferably 500 bases or more. DNAs of at least 10 bases or more, preferably 15 bases or more may also be used. .
- the stringent conditions are, for example, DNA-immobilized filters and probe DNAs mixed with 50% formamide, 5 ⁇ SSC (750 mM sodium chloride, 75 mM sodium citrate), 50 mM sodium phosphate (pH 7.6). ), 5 ⁇ Denhardt's solution, 10% dextran sulfate, and 20 ⁇ g/l denatured salmon sperm DNA after overnight incubation at 42° C., followed by e.g. 0.2 ⁇ SSC solution at about 65° C. Conditions in which the filter is washed can be used, but lower stringency conditions can also be used. Stringent conditions can be changed by adjusting the concentration of formamide (the lower the concentration of formamide, the lower the stringency), and by changing the salt concentration and temperature conditions.
- Low stringency conditions include, for example, 6 ⁇ SSCE (20 ⁇ SSCE is 3 mol/l sodium chloride, 0.2 mol/l sodium dihydrogen phosphate, 0.02 mol/l EDTA, pH 7.4), 0 After overnight incubation at 37°C in a solution containing 5% SDS, 30% formamide, 100 ⁇ g/l denatured salmon sperm DNA, 1 x SSC, 0.1% SDS solution at 50°C.
- Conditions for washing using include conditions in which hybridization is performed using a solution of high salt concentration (eg, 5 ⁇ SSC) under the above-described low stringency conditions, followed by washing.
- the various conditions described above can also be set by adding or altering blocking reagents used to reduce background in hybridization experiments. Addition of blocking reagents as described above may be accompanied by alteration of the hybridization conditions in order to match the conditions.
- the DNA that can hybridize under the stringent conditions is at least 80% of the nucleotide sequence represented by SEQ ID NO: 5 when calculated based on the parameters using programs such as BLAST and FASTA.
- DNA comprising a nucleotide sequence having sequence identity of preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, particularly preferably 99% or more can be mentioned.
- the DNA that hybridizes with the above-described DNA under stringent conditions is a DNA that encodes a protein having a desired function
- conventionally known methods can be used, such as Escherichia coli. is used to express the protein of interest using a transformant into which a gene encoding the protein of interest has been introduced, and to confirm the presence or absence of the function of the protein of interest.
- Binding process In the binding step, as long as the trans-prenyltransferase (tPT) family protein capable of producing a product having a molecular weight of 10 4 or more without binding to the lipid membrane is bound to the lipid membrane in vitro, other proteins may be added. may be combined.
- tPT trans-prenyltransferase
- the origin of the other protein is not particularly limited, it is preferably derived from the above-described plant, more preferably derived from a rubber-producing plant, and is selected from the group consisting of Hevea, Sonchus, Taraxacum, and Parthenium. More preferably derived from plants belonging to at least one genus of Among them, it is more preferably derived from at least one plant selected from the group consisting of Hevea brasiliensis, Nogeshi, guayule and Russian dandelion, and particularly preferably derived from Hevea brasiliensis.
- the other proteins are not particularly limited and may be any proteins, but from the viewpoint of the rubber-synthesizing ability of lipid membranes, proteins that are originally present on lipid membranes in rubber-producing plants are preferred.
- the protein present on the lipid membrane may be a protein that largely binds to the membrane surface of the lipid membrane, a protein that binds to the lipid membrane so as to be inserted into the membrane, or a protein that binds to the membrane of the lipid membrane. It may be a protein that forms a complex with a protein that binds to the membrane and exists on the membrane surface.
- NgBR Nogo-B receptor
- REF Rubber Elongation Factor
- SRPP Small Rubber Particle Protein
- ⁇ -1,3-glucanase Hevein and the like.
- the binding step is not particularly limited as long as the tPT family protein capable of producing a product having a molecular weight of 10 4 or more without binding to the lipid membrane can be bound to the lipid membrane in vitro.
- Examples thereof include a method in which a cell-free protein synthesis solution containing mRNA encoding a tPT family protein is allowed to coexist with a lipid membrane to synthesize the protein, and the tPT family protein is bound to the lipid membrane.
- the binding step is, among others, a step in which a cell-free protein synthesis solution containing the mRNA encoding the tPT family protein is allowed to coexist with a lipid membrane to synthesize the protein, and the tPT family protein is bound to the lipid membrane.
- a cell-free protein synthesis solution containing mRNA encoding a tPT family protein and a lipid membrane are allowed to coexist (more specifically, a cell-free protein synthesis solution containing the mRNA encoding the tPT family protein and a lipid membrane are allowed to coexist). are mixed) to obtain a lipid membrane to which tPT family proteins are bound.
- Protein synthesis carried out in the coexistence of a cell-free protein synthesis solution containing mRNA encoding the tPT family protein and a lipid membrane is synthesis of a tPT family protein using a so-called cell-free protein synthesis method.
- a tPT family protein carrying a function in a native state
- the synthesized tPT family protein can be bound to the lipid membrane in a native state. It becomes possible.
- the binding of the tPT family protein to the lipid membrane by synthesizing the protein in the presence of the cell-free protein synthesis solution and the lipid membrane means that all of the tPT family proteins synthesized by the protein synthesis Or, it means that a part thereof is incorporated into the lipid membrane or inserted into the membrane structure of the lipid membrane, but is not limited to this, and also means localization on the surface or inside of the lipid membrane.
- the concept of binding to a lipid membrane also includes the case where a complex is formed with a protein bound to the lipid membrane and exists on the lipid membrane as a complex.
- Each of the mRNAs encoding the tPT family proteins is a translation template that can be translated to synthesize a tPT family protein.
- the bonding step can be appropriately carried out by those skilled in the art.
- the methods described in WO2021/010101 and WO2018/116726 can be used.
- protein synthesis is preferably carried out in the presence of a cell-free protein synthesis solution containing mRNA encoding a tPT family protein and a lipid membrane. at an appropriate time, preferably before protein synthesis, by adding a lipid membrane to the cell-free protein synthesis solution.
- concentration of the lipid membrane coexisting with the cell-free protein synthesis solution is preferably 5 to 50 g/L. That is, it is preferable to allow 5 to 50 g of lipid membrane to coexist with 1 L of cell-free protein synthesis solution.
- the concentration of the lipid membrane to be coexisted with the cell-free protein synthesis solution is less than 5 g/L, separation treatment such as ultracentrifugation is performed to recover the lipid membrane to which the synthesized tPT family protein is bound. In some cases, it may be difficult to recover the lipid membrane to which the synthesized tPT family protein is bound without forming a rubber layer.
- the concentration of the lipid membrane to be coexisted with the cell-free protein synthesis solution exceeds 50 g/L, the lipid membranes may aggregate and the synthesized tPT family proteins may not bind well to the lipid membrane.
- the concentration of the lipid membrane is more preferably 10-40 g/L, still more preferably 15-35 g/L, and particularly preferably 15-30 g/L.
- the lipid membrane may be added appropriately as the reaction progresses.
- the cell-free protein synthesis is performed while the cell-free protein synthesis system is active, such as 3 to 48 hours (preferably 3 to 30 hours, more preferably 3 to 24 hours) after adding the lipid membrane to the cell-free protein synthesis solution. It is preferable to allow the solution and the lipid membrane to coexist.
- reaction system or apparatus for protein synthesis in the cell-free protein synthesis As a reaction system or apparatus for protein synthesis in the cell-free protein synthesis, a batch method (Pratt, JM et al., Transcription and Transcription, Hames, 179-209, BD & Higgins, SJ, eds, IRL Press, Oxford (1984)) and a continuous cell-free protein synthesis system that continuously supplies amino acids, energy sources, etc. to a reaction system (Spirin, AS et al., Science).
- the bilayer method has the advantage that the operation is simple, but the lipid membrane is dispersed in the reaction solution, and it is difficult to efficiently bind the synthesized tPT family protein to the lipid membrane. Therefore, in the dialysis method, the amino acids that are the raw materials for the synthesized tPT family proteins can permeate the dialysis membrane but not the lipid membrane, so that they can be prevented from dispersing in the lipid membrane and efficiently synthesized in the lipid membrane.
- the dialysis method is preferred because it can bind tPT family proteins.
- the synthetic reaction solution for protein synthesis in the cell-free protein synthesis is used as the dialysis inner fluid, and protein synthesis is performed using a device that is isolated from the dialysis outer fluid by a dialysis membrane capable of mass transfer.
- the method Specifically, for example, after preincubating the synthesis reaction solution from which the translation template has been removed for an appropriate period of time as necessary, the translation template is added and placed in a suitable dialysis vessel to form a reaction internal solution.
- the dialysis container include a container with a dialysis membrane attached to the bottom (dialysis cup 12,000 manufactured by Daiichi Kagaku Co., Ltd.) and a dialysis tube (12,000 manufactured by Sanko Junyaku Co., Ltd.).
- the dialysis membrane used has a molecular weight limit of 10,000 daltons or more, and preferably has a molecular weight limit of about 12,000 daltons.
- a buffer containing amino acids is used as the dialysate. Dialysis efficiency can be increased by exchanging the dialysate with fresh one when the reaction rate has decreased.
- the reaction temperature and time are appropriately selected according to the protein synthesis system used. °C for 10 minutes to 48 hours (preferably 10 minutes to 30 hours, more preferably 10 minutes to 24 hours).
- the mRNA encoding the tPT family protein contained in the cell-free protein synthesis solution is easily degraded, protein synthesis can be performed more efficiently by appropriately adding the mRNA during the protein synthesis reaction. be able to. That is, it is also one of the preferred embodiments of the present invention to further add mRNA encoding the tPT family protein during the protein synthesis reaction.
- the addition time, the number of additions, the amount of addition, etc. of the mRNA are not particularly limited and can be set as appropriate.
- a step of recovering the lipid membrane may be performed as necessary.
- the lipid membrane recovery step is not particularly limited as long as the lipid membrane can be recovered, and can be performed by a commonly used method for recovering the lipid membrane. Specifically, for example, a method using centrifugation may be used.
- the centrifugal force, the centrifugation treatment time, and the centrifugation treatment temperature can be appropriately set so as to recover the lipid membrane.
- the centrifugal force is too large, a corresponding separation effect cannot be expected.
- the centrifugation treatment time is preferably 20 minutes or longer, more preferably 30 minutes or longer, and even more preferably 40 minutes or longer.
- the upper limit of the centrifugation treatment time is preferably 120 minutes or less, more preferably 90 minutes or less.
- the centrifugation temperature is preferably 0 to 10°C, more preferably 2 to 8°C, and particularly preferably 4°C, from the viewpoint of maintaining the protein activity of the tPT family protein bound to the lipid membrane.
- the centrifugal separation separates the lipid membrane into the upper layer and the cell-free protein synthesis solution into the lower layer. Thereafter, the lipid membrane to which the tPT family proteins are bound can be recovered by removing the underlying cell-free protein synthesis solution. The collected lipid membranes can be preserved by resuspending them in an appropriate neutral pH buffer.
- the lipid membrane recovered after the lipid membrane recovery step can be used for the production of trans-polyisoprenoid without further special treatment.
- trans-polyisoprenoid obtained by the method for producing the trans-polyisoprenoid can be recovered by subjecting the lipid membrane to the following solidification step.
- the solidification method is not particularly limited, and a method of adding the lipid membrane to a solvent such as ethanol, methanol, acetone, etc. that does not dissolve the trans polyisoprenoid (trans rubber), or adding an acid to the lipid membrane. methods and the like.
- a solvent such as ethanol, methanol, acetone, etc. that does not dissolve the trans polyisoprenoid (trans rubber), or adding an acid to the lipid membrane. methods and the like.
- the rubber By performing the solidification step, the rubber can be recovered as a solid content from the lipid membrane. The obtained rubber may be used after being dried, if necessary.
- the method for producing a rubber product of the present invention includes a kneading step of kneading the trans-polyisoprenoid obtained by the method for producing a trans-polyisoprenoid of the present invention and an additive to obtain a kneaded product, and raw rubber from the kneaded product.
- a method for producing a rubber product comprising: a raw rubber product molding step for forming a product; and a vulcanization step for vulcanizing the raw rubber product.
- the rubber product is not particularly limited as long as it can be manufactured using rubber (preferably natural rubber). Examples include pneumatic tires, rubber rollers, rubber fenders, gloves, and medical rubber tubes. be done.
- the raw rubber product molding step includes forming a raw tire from the kneaded product.
- the vulcanization process corresponds to the vulcanization process of vulcanizing the raw tire.
- the method for producing a pneumatic tire of the present invention includes a kneading step of kneading the trans-polyisoprenoid obtained by the above-mentioned method for producing a trans-polyisoprenoid and an additive to obtain a kneaded product
- a method for manufacturing a pneumatic tire includes a raw tire molding step of molding a tire and a vulcanization step of vulcanizing the raw tire.
- the trans-polyisoprenoid obtained by the trans-polyisoprenoid production method and additives are kneaded to obtain a kneaded product.
- Additives are not particularly limited, and additives used in the production of rubber products can be used.
- rubber components other than the trans-type polyisoprenoid such as carbon black, silica, calcium carbonate, alumina, clay, and talc, silane coupling agents, and zinc oxide.
- reinforcing fillers such as carbon black, silica, calcium carbonate, alumina, clay, and talc
- silane coupling agents such as silane coupling agents
- zinc oxide such as carbon black, silica, calcium carbonate, alumina, clay, and talc
- silane coupling agents such as silane coupling agents
- zinc oxide such as stearic acid
- processing aids such as processing aids, various anti-aging agents, softening agents such as oils, waxes, vulcanizing agents such as sulfur, and vulcanization accelerators.
- Kneading in the kneading step may be performed using a rubber kneading device such as an open roll, Banbury mixer, or internal kneader.
- a rubber kneading device such as an open roll, Banbury mixer, or internal kneader.
- a raw rubber product (raw tire in the case of a tire) is formed from the kneaded material obtained in the kneading step.
- the method for molding raw rubber products is not particularly limited, and methods used for molding raw rubber products may be applied as appropriate.
- the rubber product is a pneumatic tire
- the kneaded product obtained by the kneading process is extruded according to the shape of each tire member, molded by a normal method on a tire molding machine, and each tire member are pasted together to form a raw tire (unvulcanized tire).
- a rubber product is obtained by vulcanizing the raw rubber product obtained in the raw rubber product molding step.
- the method for vulcanizing raw rubber products is not particularly limited, and methods used for vulcanizing raw rubber products may be appropriately applied.
- the rubber product is a pneumatic tire
- the raw tire (unvulcanized tire) obtained by the raw rubber product molding process is heated and pressurized in a vulcanizer to vulcanize the pneumatic tire.
- the vector of the present invention is a vector containing a gene encoding a trans-prenyltransferase (tPT) family protein capable of producing a product with a molecular weight of 10 4 or more without binding to a lipid membrane.
- tPT trans-prenyltransferase
- the vector of the present invention comprises a vector generally known as a transformation vector, a nucleotide sequence of a gene encoding the tPT family protein (preferably a nucleotide sequence of a promoter, and a gene encoding the tPT family protein). base sequence) can be prepared by inserting by a conventionally known method.
- vectors examples include pBI-based vectors, binary vectors such as pGA482, pGAH and pBIG, intermediate plasmids such as pLGV23Neo, pNCAT and pMON200, and GATEWAY cassettes. including pH35GS.
- promoters examples include promoters commonly used in the field of genetic recombination, such as CaMV35 promoter and NOS promoter.
- the vector of the present invention may contain other nucleotide sequences as long as it contains the nucleotide sequence of the gene encoding the tPT family protein.
- vectors usually contain vector-derived sequences, and further contain restriction enzyme recognition sequences, spacer sequences, marker gene sequences, reporter gene sequences and the like.
- the vector of the present invention may contain the nucleotide sequence of a gene encoding an auxiliary enzyme, if necessary.
- the marker gene examples include drug resistance genes such as kanamycin resistance gene, hygromycin resistance gene and bleomycin resistance gene.
- the reporter gene is introduced in order to confirm the expression site in the plant body, for example, luciferase gene, GUS ( ⁇ -glucuronidase) gene, GFP (green fluorescent protein), RFP (red fluorescent protein) etc.
- a transformed organism transformed cell transformed to express the tPT family protein
- a transformed organism transformed cell transformed to express the tPT family protein
- a transformed organism transformed cell transformed to express the tPT family protein
- a transformed organism transformed cell transformed to express the tPT family protein
- a transformed organism transformed cell transformed to express the tPT family protein
- a transformed organism transformed cell transformed to express the tPT family protein
- trans-polyisoprenoid having a molecular weight exceeding 10 5 can be enzymatically produced in the transformed organism.
- the synthesized trans-polyisoprenoid then accumulates in intracellular lipid membranes.
- the host into which the gene encoding the tPT family protein is introduced is not particularly limited as long as it is an organism having a lipid membrane, and examples thereof include microorganisms (including algae and microalgae), plants and animals. Among them, the host is preferably a microorganism or a plant, more preferably a microorganism, and even more preferably a microalgae. Synthesis of trans-polyisoprenoids using living organisms is generally difficult, but trans-polyisoprenoids can be easily synthesized by introducing a gene encoding the tPT family protein into the host. become.
- the microorganisms may be either prokaryotes or eukaryotes, and include microorganisms belonging to the genus Escherichia, microorganisms belonging to the genus Bacillus, microorganisms belonging to the genus Synechocystis, microorganisms belonging to the genus Synechococcus, and the like.
- Prokaryotes or eukaryotic microbes such as yeast and filamentous fungi can be used. Among them, Escherichia coli, Bacillus subtilis, Rhodosporidium toruloides, or Mortierella sp. are preferred, and Escherichia coli is more preferred.
- algae belonging to the genus Chlamydomonas are preferred, and algae belonging to the genus Chlorella, algae belonging to the genus Phaeodactylum, or nanochloroalgae Algae of the genus Psis are preferred, and algae of the genus Nannochloropsis are more preferred.
- Nannochloropsis oculata examples include Nannochloropsis oculata, Nannochloropsis gaditana, Nannochloropsis salina, Nannochloropsis oceanica, Nannochloropsis Examples include Nannochloropsis atomus, Nannochloropsis maculata, Nannochloropsis granulata, Nannochloropsis sp. Among them, Nannochloropsis oculata or Nannochloropsis gaditana is preferable, and Nannochloropsis oculata is more preferable.
- Examples of the plants include Arabidopsis thaliana, Brassica napus, Brassica rapa, Cocos nucifera, Elaeis guineensis, cuphea, soybean (Glycine max), corn (Zea mays), Oryza sativa, Helianthus annuus, Cinnamomum camphora, or Jatropha curcas are preferred, and Arabidopsis thaliana is more preferred.
- Such a transformed organism can be produced by a conventionally known method.
- any method for introducing DNA into plant cells can be used.
- a method using Agrobacterium JP-A-59-140885, JP-A-60-70080, WO 94/00977, electroporation method (JP-A-60-251887) Publication
- a method using a particle gun Japanese Patent No. 2606856, Japanese Patent No. 2517813
- Japanese Patent No. 2517813 Japanese Patent No. 2517813
- the vector of the present invention can be used in organisms such as microorganisms, yeast, animal cells, insect cells, parts of organisms, organs, tissues, cultured cells, spheroplasts, etc., by the method of introducing the DNA. , protoplasts, etc., to prepare transformed organisms.
- the transformed organism can be obtained by the above method and the like.
- the transformed organism is not limited in its form as long as it contains a transformed cell, and may be a single cell, a tissue in which cells are combined, or a transformant.
- the term "transformed organism” is a concept that includes not only the transformed organisms obtained by the above-described method, but also their progeny or clones, and all progeny organisms obtained by subculturing them.
- progeny or clones are obtained from the transformed plant cell by sexual reproduction, asexual reproduction, tissue culture, cell culture, cell fusion, or the like. Is possible.
- propagation materials for example, seeds, fruits, cuttings, tubers, tuberous roots, stocks, adventitious buds, adventitious embryos, callus, protoplasts, etc.
- mass-produce the transformed plant for example, seeds, fruits, cuttings, tubers, tuberous roots, stocks, adventitious buds, adventitious embryos, callus, protoplasts, etc.
- Methods for regenerating plant bodies (transformed plants) from transformed plant cells include, for example, the method of Dohi et al. Plant Tissue Culture Lett., vol.2: p74-), the method of Shillito et al. ), Theor. Appl. Genet., vol.78: p589-), and for Arabidopsis thaliana, the method of Akama et al. If so, plants can be regenerated from transformed plant cells by referring to these.
- Expression of the target protein gene can be confirmed in the regenerated plant using a well-known technique.
- the expression of the protein of interest may be analyzed by Western blot analysis.
- the transformed plant As a method for obtaining seeds from the transformed plant, for example, the transformed plant is allowed to root in an appropriate medium, and the rooted body is transplanted into a pot containing moisture-containing soil. Seeds are obtained by growing under suitable cultivation conditions and finally forming seeds.
- the seed derived from the transformed plant obtained as described above is sown in moisture-containing soil, and the plant body is grown under suitable cultivation conditions. can be obtained.
- the vector of the present invention by introducing the vector of the present invention into a cell such as a plant, the gene encoding the tPT family protein contained in the vector is expressed, and the trans-polyisoprenoid having a molecular weight of more than 10 5 in the cell. can be produced enzymatically.
- transformed organisms obtained by the above-described method, callus obtained from transformed plant cells, cells redifferentiated from the callus, etc. are cultured in an appropriate medium, or redifferentiated from transformed plant cells.
- trans-polyisoprenoid having a molecular weight of more than 10 5 by growing a transformed plant obtained from the transformed plant, a plant body obtained from a seed obtained from the transformed plant, or the like under appropriate cultivation conditions; can be done.
- the method for producing a rubber product of the present invention includes a kneading step of kneading a trans-polyisoprenoid obtained from the transformed organism and an additive to obtain a kneaded product, and a raw rubber product forming step of forming a raw rubber product from the kneaded product. and a vulcanization step of vulcanizing the raw rubber product.
- the rubber products are the same as those mentioned above.
- the raw rubber product molding step includes forming a raw tire from the kneaded product.
- the vulcanization process corresponds to the vulcanization process of vulcanizing the raw tire. That is, the method for producing a pneumatic tire of the present invention includes a kneading step of kneading a trans-polyisoprenoid obtained from the transformed organism and an additive to obtain a kneaded product;
- a pneumatic tire manufacturing method includes a tire molding step and a vulcanization step of vulcanizing the raw tire.
- kneading process In the kneading step, the trans-polyisoprenoid obtained from the transformed organism and additives are kneaded to obtain a kneaded product.
- the trans-polyisoprenoid obtained from the transformed organism is obtained by collecting a lipid membrane from the transformed organism and subjecting the collected lipid membrane to the following solidification step.
- the method for collecting the lipid membrane from the transformed organism is not particularly limited, and a commonly used method can be adopted. It can be collected by extraction using an organic solvent.
- the collected lipid membrane is subjected to a solidification step.
- the solidification method is not particularly limited, and includes a method of adding a lipid membrane to a solvent such as ethanol, methanol, and acetone that does not dissolve trans polyisoprenoid (trans rubber), and a method of adding an acid to the lipid membrane. .
- the rubber can be recovered as a solid content from the lipid membrane. The obtained rubber may be used after being dried, if necessary.
- Additives are not particularly limited, and additives used in the production of rubber products can be used.
- a rubber component other than the rubber obtained from the latex reinforcing fillers such as carbon black, silica, calcium carbonate, alumina, clay, and talc, a silane coupling agent, Zinc oxide, stearic acid, processing aids, various anti-aging agents, softening agents such as oils, waxes, vulcanizing agents such as sulfur, and vulcanization accelerators.
- Kneading in the kneading step may be performed using a rubber kneading device such as an open roll, Banbury mixer, or internal kneader.
- a rubber kneading device such as an open roll, Banbury mixer, or internal kneader.
- vulcanization process is similar to the process described above.
- PCR was performed using (3769 Fw: 5′-ATGTTATTTTCCAGGGGATTTTC-3′ (SEQ ID NO: 7) and 3769 Rv: 5′-CTACTTTGCTCTTGTAATGACTCTG-3′ (SEQ ID NO: 8)).
- the PCR product was electrophoresed using 0.8% agarose gel, and the agarose gel containing the target band was excised and collected, and then purified using Fast Gene Gel/PCR Extraction Kit (Nippon Genetics) (hereinafter, this The operation is described as gel recovery).
- RNA prepared from sapodilla leaves was used as a template to synthesize cDNA using GeneRacer Kit (Invitrogen).
- GeneRacer Kit Invitrogen
- PCR By performing PCR using a primer set (GeneRacer 5' Primer: 5'-CGACTGGAGCACGAGGACACTGA-3' (SEQ ID NO: 9) and 4033 Rv GSP Race: 5'-CTTGGGAAAGTGGCCTTATTGCTGAC-3' (SEQ ID NO: 10)), The 5' unknown region was amplified.
- the target sequence was amplified more specifically.
- the primers used at that time were GeneRacer 5′ Nested Primer (5′-GGACACTGACATGGACTGAAGGAGTA-3′ (SEQ ID NO: 11)) and 4033 Rv GSP nested Race (5′-CTGCCTCACTAGCCCCTCCAACTATGG-3′ (SEQ ID NO: 12)).
- a primer set designed based on the sequence information (R4033 SLi XhoI Fw: 5′-TCAGGGCGGATATCTCGAGATGGCCTTGACCTTTTTC-3′ (SEQ ID NO: 13), and R4033 SLi KpnI Rv: 5'-CTAGTGCGGCCGCGGTACCATTAATATTGACGGTTATTAATGTAATG-3' (SEQ ID NO: 14)) was used to amplify the full-length coding sequence of MztPT2 by performing PCR using the 1st strand cDNA of the leaf as a template, and gel-recovered.
- MztPT1 was predicted to be a plastid translocation sequence at amino acid positions 1-75 on the N-terminal side by the plastid translocation sequence prediction algorithm ChloroP1.1 (http://www.cbs.dtu.dk/services/ChloroP/).
- the gene sequence encoding the mutant enzyme MztPT1 ⁇ N with deletion of that region was amplified by PCR.
- the template used at that time was pGEM-MztPT1, and the primer set was MztPT1DN NdepColdISLi Fw (5′-TATCGAAGGTAGGCATATGGAGGAGCACAGGATC-3′ (SEQ ID NO: 15)), pCold 3769 KpnSLi Rv (5′-CGGATCCCTCCGAGGGTACCCCTACTTGACTTGACTTGACTTGACT3 (SEQ ID NO: 15)) 16)).
- the amplified gene was gel recovered, dA added, and subcloned into the pGEM-T Easy vector to create pGEM-MztPT1 ⁇ N.
- MztPT2opt a sequence optimized for the codon frequency of E. coli was chemically synthesized.
- the gene sequence (SEQ ID NO: 6) encoding the mutant MztPT2 ⁇ N lacking amino acids 1 to 158 on the N-terminal side was obtained by PCR. amplified.
- the template used at that time was MztPT2opt, and the primer set was tPT2opt 159 NdeSLi Fw (5′-CATATCGAAGGTAGGCATATGCTGGCACATGTTATTAGC-3′ (SEQ ID NO: 17)), tPT2opt 159 KpnSLi Rv (5′-CGGATCCCTCCGAGGATACCTGATAGATGAGTGATACCTGATACTG3 (SEQ ID NO: 17)) )).
- the amplified gene was gel recovered, dA added, and subcloned into the pGEM-T Easy vector to create pGEM-MztPT2 ⁇ N.
- each gene sequence was amplified by PCR.
- the template at that time is the pGEM-T Easy vector into which each gene has been introduced.
- the primer set for amplifying MztPT1 is pCold 3769 NdeSLi Fw (5′-CATATCGAAGGTAGGCATATGTTATTTTCCAGGGGATTTTC-3′ (SEQ ID NO: 19)) and pCold 3769 KpnSLi Rv (5′-CGGATCCCTCGAGGGTACCCTACTTTGCTCCTTGTACTGACT-2) (SEQ ID NO:2).
- the primer set for amplifying MztPT2 is 4033 NdeI Fw (5′-CATATGATGGCCTTGAACCTTTTTTC-3′ (SEQ ID NO: 21)) and R4033 SLi KpnI Rv (5′-CTAGTGCGGCCGCGGTACCATTAATATTGACGGTTATTAATGTAATG-3′ (SEQ ID NO: 22)).
- Each PCR product and pGEM-MztPT1 ⁇ N and pGEM-MztPT2 ⁇ N were digested with restriction enzymes NdeI and KpnI, and gene fragments containing each protein coding sequence were gel-recovered.
- the pCold I vector was also digested with NdeI and KpnI, gel recovered, and then ligated with each coding sequence fragment using Ligation High (TOYOBO) to create pCold I-MztPT1, pCold I-MztPT2, pCold I-MztPT1 ⁇ N, pCold I-MztPT2 ⁇ N were constructed.
- TOYOBO Ligation High
- Escherichia coli BL21 was transformed with each of the prepared constructs (pCold I-MztPT1, pCold I-MztPT2, pCold I-MztPT1 ⁇ N, pCold I-MztPT2 ⁇ N).
- the transformed Escherichia coli was cultured, and enzyme expression was induced by adding IPTG. After collecting the cells by centrifugation, the cells were crushed by ultrasonication, and centrifuged at 10,000 ⁇ g at 4° C. for 10 minutes to collect soluble and insoluble fractions.
- MztPT1 ⁇ N and MztPT2 ⁇ N obtained as soluble proteins were purified from the soluble fraction by Ni 2+ -affinity chromatography using HisTrapHP (Cytiva).
- the eluted fraction containing the target protein was concentrated by substituting imidazole-free buffer (50 mM Tris-Cl (pH 7.5), 2 mM DTT) with a centrifugal ultrafiltration filter Amicon Ultra (Merck).
- Purified MztPT1 ⁇ N was subjected to activity measurement using the following reaction solution. After reacting at 30° C. for 2 hours, the product was extracted with butanol, followed by toluene/hexane extraction.
- Purified MztPT2 ⁇ N was subjected to activity measurement using the following reaction solution. After reacting at 30° C. for 16 hours, the product was extracted with butanol, followed by toluene/hexane extraction.
- reaction was terminated by adding 200 ⁇ L of saturated saline and stirring. Add 1 mL of saturated saline saturated n-butanol, stir by vortex for 1 minute, and collect the upper butanol layer after centrifugation at 15,000 rpm for 1 minute at room temperature. Polyisoprenoid [about C 120 (molecular weight 1.81 ⁇ 10 3 )] was extracted. This extraction procedure can extract polyisoprenoids with a molecular weight of up to about 3 ⁇ 10 3 .
- the TLC plate covered with a plastic film and the imaging plate were brought into contact with each other and exposed to light, and then signal detection was performed using a fluoro imaging analyzer FLA2000 (Fuji film).
- FLA2000 Fluji film
- the molecular weight of the product extracted with toluene/hexane was confirmed by GPC.
- the measurement conditions of GPC were performed under the conditions described later.
- the product was extracted in the toluene/hexane extraction layer, and as a result of GPC analysis, the molecular weight of the product was about 10 4 , and the molecular weight was 10 4 or more when not bound to the lipid membrane. It was found that the product of In addition, the measurement conditions of GPC were performed under the conditions described later.
- MztPT1 is a product with a molecular weight of less than 10 4 when not bound to the lipid membrane
- MztPT2 shows no activity when not bound to the lipid membrane
- MztPT2 ⁇ N is a product with a molecular weight of 10 4 or more when not bound to the lipid membrane.
- Example 1 (Obtaining a gene encoding an MLDP membrane-binding peptide) In order to fuse a membrane-binding peptide to MztPT2 ⁇ N, the membrane-binding domain derived from major lipid droplet protein (MLDP) was obtained.
- MLDP major lipid droplet protein
- RNAiso Plus was added to Chlamydomonas cells stored at -80°C, vortexed for 5 minutes, and centrifuged at 4°C and 12,000 xg for 3 minutes. After collecting the supernatant, 200 ⁇ L of chloroform was added and mixed by vortexing. After standing at room temperature for 5 minutes, it was centrifuged at 4°C and 12,000 xg for 15 minutes.
- the upper aqueous layer was recovered, 500 ⁇ L of isopropanol was added, and mixed by vortexing. After standing at room temperature for 10 minutes, the mixture was centrifuged at 12,000 ⁇ g at 4° C. for 15 minutes to precipitate RNA and the upper layer was discarded. The pellet was washed by adding 750 ⁇ L of 75% ethanol, centrifuged at 4° C. and 12,000 ⁇ g for 5 minutes to remove the upper layer, and then allowed to stand at room temperature for 5 minutes to dry. Finally, it was dissolved in 50 ⁇ L of DEPC-treated water. DNase treatment was performed to remove contaminating genomic DNA from the extracted total RNA.
- DNase I recombinant RNase-free (Roche) was used for DNase treatment, the following reaction mixture was prepared, and incubated at 37° C. for 30 minutes. After the reaction, 350 ⁇ L of DEPC-treated water and 400 ⁇ L of phenol were added and mixed, and centrifuged at room temperature at 15,000 rpm for 15 minutes. The upper layer was collected, 30 ⁇ L of 3M NaOAc and 660 ⁇ L of ethanol were added, mixed, and allowed to stand at ⁇ 30° C. for 1 hour. Centrifuge at 15,000 rpm for 15 minutes at 4° C. to precipitate RNA and discard the upper layer. The pellet was washed by adding 700 ⁇ L of 70% ethanol, centrifuged at 4° C. and 12,000 ⁇ g for 5 minutes to remove the upper layer, and then allowed to stand at room temperature for 5 minutes to dry. The resulting precipitate was dissolved in 50 ⁇ L of DEPC-treated water.
- Chlamydomonas-derived MLDP cDNA The cDNA of Chlamydomonas MLDP (Accetion no. PNW79191.1) was obtained by synthesizing the total RNA of Chlamydomonas using Fast Gene Scriptase II (NIPPON Genetics EUROPE) and MLDP 1 EcoRV Fw (5′-AGTCAGATATCTCCATGGCGCGAG3T) as a template. ' (SEQ ID NO: 23)) and MLDP noend 765 BamHI Rv (5'-TGACTGGATCCTCGGGGCCGGGTTGCAC-3' (SEQ ID NO: 24)) were used to amplify by PCR.
- the nucleotide sequence of the obtained Chlamydomonas-derived MLDP is shown in SEQ ID NO:5.
- the amplified gene was gel recovered, dA added, and subcloned into the pGEM-T Easy vector to create pGEM-MLDP.
- MLDP-linker EcoRV 1 Fw 5′-AGTCAGATATCTCATGGCCGAGTCTGCTGGAAG-3′
- MLDP+Linker MLDP 765 Rv 5′-CCGTCAGCGGAATTACCGGTGGGGGCCGGGTTGCACG2′
- a primer set (MLDP + Linker Linker 1 Fw: 5'-CGTGCAACCCGGCCCCACCGGTAATTCCGCTGACGG-3' (SEQ ID NO: 28), and MLDP-linker 837 BamHI Rv: 5'-TGACTGGATCCGACCCTTGGGTCGATCCTCC-3' (SEQ ID NO: 29) was used to amplify the linker sequence.
- a primer set (MLDP-linker EcoRV 1 Fw: 5′-AGTCAGATATCTCATGGCCGAGTCTGCTGGAAAG-3′ (SEQ ID NO: 30), and MLDP-linker 837 BamHI Rv: 5′-TGACTGGATCCGACCCTTGGGTCGATCCTCC-3 ' (SEQ ID NO: 31)) was performed to generate a gene in which the coding sequences of MLDP and linker were fused.
- This fusion gene was digested with restriction enzymes EcoRV and BamHI, and the gel-recovered fragment was mixed with pEU-N2 digested with the same set of restriction enzymes and gel-recovered, and ligated using Ligation High to obtain pEU-N2. - Created MLDP-linker.
- MztPT2 159 SmaI Fw 5′-AGTCACCCGGGCTAGCCCATGTAATCAGCAACATCAAG-3′ (SEQ ID NO:32), and MztPT2 1422 NotI Rv: 5′-TGACTGCGGCCGCGTTAATATTGACGGTTATTAATGTANATGAG-3′ (SEQ ID NO:33)) was used to amplify the gene with Mztpt2 PCR. After purifying this, the fragment digested with restriction enzymes SmaI and NotI and gel-recovered is mixed with pEU-N2-MLDP-linker digested with the same set of restriction enzymes and gel-recovered, and ligated using Ligation High. Thus, pEU-N2-MLDP-MztPT2 ⁇ N was constructed.
- Chlamydomonas-derived oil droplets (Acquisition of Chlamydomonas-derived oil droplets) (Culturing of Chlamydomonas) Chlamydomonas strain sta6 (CC-4348, sta6-1 mt+) and its parent strain cw15 (CC-4349, cw15 mt+) were obtained from the Chlamydomonas Resource Center. Liquid culture of Chlamydomonas was performed at 22° C. under continuous light irradiation with a photon flux density of 100 ⁇ mol m ⁇ 2 s ⁇ 1 and rotation culture at 120 rpm. A TAP liquid medium was used as the medium, and passage was performed every week.
- Chlamydomonas cells were collected by centrifugation at 2,000 ⁇ g for 5 minutes when the density reached 2.6 ( ⁇ 1.2) ⁇ 10 6 cells/mL. Subsequently, the cells were resuspended in 100 mL of HSM (N-free) medium and cultured again. Two days later, 1.3 mL of 1.5M KOAc was added and cultured for another 2 days. The culture was harvested, the medium was removed by centrifugation at 2,000 xg for 5 minutes, flash frozen in liquid nitrogen and stored at -80°C.
- the recovered lower layer suspension was centrifuged at 20,000 x g for 30 minutes at 4°C to remove the lower aqueous phase, and the LD layer remaining in the tube was added with TD Buffer [0.1M Tris-Cl ( pH 7.5), 5 mM DTT] was added and resuspended in 60 ⁇ L using an absorbance microplate reader (SpectraMax ABS Plus, Molecular Devices) to indicate the amount of LD to be added to the cell-free expression system, using a Bradford The protein concentration of the LD suspension was measured by the method. In addition, in order to confirm the collected LD, observation was performed using a fluorescence microscope BX40 (OLYMPUS).
- the reaction solution was collected, 50 ⁇ L of which was transferred to a 1.5 mL tube, 50 ⁇ L of TD Buffer (+ glycerol 20% (w/v)) was added, and the mixture was heated at 20,000 ⁇ g and 4° C. for 30 minutes. Centrifuged. Among the LD fraction, soluble fraction, and precipitated fraction thus obtained, the LD fraction was transferred to a new tube together with the soluble fraction, and further centrifuged at 20,000 xg and 4°C for 30 minutes. .
- the aqueous layer was extracted with a syringe (injection needle, NN-2719S; 1 mL tuberculin syringe, SS-01T, Terumo, Tokyo, Jaqpna) and collected in another tube (as a soluble fraction).
- 100 ⁇ L of TD Buffer (+ glycerol 10% (w/v)) was added to the LD layer left inside, and further centrifuged at 20,000 ⁇ g at 4° C. for 30 minutes (wash operation).
- the aqueous layer was removed with a syringe and suspended in 100 ⁇ L of TD Buffer containing a protease inhibitor cocktail (cOmplete mini EDTA free Protease Inhibitor Cocktail Tablets, Roche) to obtain a purified LD fraction. Also, first, 100 ⁇ L of TD Buffer was added to the tube from which the LD layer and water layer were removed (the precipitated fraction remained), and the tube was resuspended to obtain the precipitated fraction.
- a protease inhibitor cocktail cOmplete mini EDTA free Protease Inhibitor Cocktail Tablets, Roche
- reaction was terminated by adding 200 ⁇ L of saturated saline and stirring. Add 1 mL of saturated saline saturated n-butanol, stir by vortex for 1 minute, and collect the upper butanol layer after centrifugation at 15,000 rpm for 1 minute at room temperature. Polyisoprenoid [about C 120 (molecular weight 1.81 ⁇ 10 3 )] was extracted. This extraction procedure can extract polyisoprenoids with a molecular weight of up to about 3 ⁇ 10 3 .
- Comparative Example 1 Comparative Example 1 was carried out in the same manner as in Example 1, except that the MztPT2 ⁇ N gene was directly introduced into a cell-free expression vector to prepare an expression vector without fusion with MLDP.
- a primer set (MztPT2 159 SmaI Fw: 5′-AGTCACCCGGGCTAGCCCATGTAATCAGCAACATCAAG-3′ (SEQ ID NO: 34) and MztPT2 1422 NotI Rv: 5′-TGACTGCGGCCGCGTTAATATTGACGGTTATTAATGTAATGAG PCR) (SEQ ID NO: 3-3) was used.
- Example 1 As a result of activity measurement, in Comparative Example 1, no product was extracted in either the butanol extraction layer or the toluene/hexane layer. As a result of measuring the molecular weight of the product extracted in this toluene/hexane layer, in Example 1 , as shown in FIG. Since MztPT2 ⁇ N does not have membrane-binding ability in Comparative Example 1 (3 in FIG. 5), it is considered that the enzyme did not bind to the LD and no activity was observed. In Example 1 (4 in FIG. 5), fusion of the MLDP membrane-binding peptide to MztPT2 ⁇ N gave it membrane-binding ability, and the enzyme is thought to bind to LDs. Furthermore, it was found that membrane-bound products synthesized higher molecular weight products than those without lipid membrane-bound.
- Comparative Example 2 Comparative Example 2 was carried out in the same manner as in Example 1, except that the protein to be fused with the MLDP membrane-binding peptide was changed from MztPT ⁇ 2 to MztPT1.
- the primer set (MztPT1 1 SmaI Fw: 5′-AGTCACCCGGGATGTTATTTTTCCAGGGGATTTTTCTCGG-3′ (SEQ ID NO: 36) and MztPT1 1263 NotI Rv: 5′-TGACTGCGGCCGCGCTACTTTGCTCTTGTAATGACT (SEQ ID NO: 37) was used.
- the MzTPT1 gene was amplified by PCR.
- Example 2 In Example 2, by cloning the full-length MztPT2 into a cell-free expression vector, the enzyme was expressed with the membrane-binding peptide originally possessed by MztPT2, and the enzyme was bound to the LD.
- the primer set (MztPT2 1 SmaI Fw: 5′-AGTCACCCGGGATGGCCTTGAACCTTTTTTC-3′ (SEQ ID NO: 38) and MztPT2 1422 NotI Rv: 5′-TGACTGCGGCCGCGTTAATATTGACGGTTATTATGTAATGAG-3′ PCR) was used (SEQ ID NO: 39).
- any amino acid sequence of the membrane-binding peptide may be used as long as it has membrane-binding ability. I found out.
- Example 3 was carried out in the same manner as in Example 1, except that the lipid membrane of Chlamydomonas-derived LD was changed to microsomes contained in the cell-free expression solution derived from wheat germ.
- the reaction solution contains microsomes (membrane vesicles derived from organelle membranes including the endoplasmic reticulum) derived from the wheat germ extract. If the target protein has a membrane-binding domain or a highly hydrophobic domain, it may bind to the microsomal membrane in the reaction system after being expressed in a cell-free translation system. .
- MLDP-MztPT2 ⁇ N was expressed using a wheat germ-derived cell-free protein expression kit in the same manner as the protein introduction system into LD, except that LD was not added to the reaction system.
- the reaction solution was recovered, 50 ⁇ L of which was transferred to a 1.5 mL tube, 50 ⁇ L of TD Buffer (+ glycerol 20% (w/v)) was added, and centrifuged at 20,000 ⁇ g at 4° C. for 30 minutes. separated. Of the soluble fraction and the precipitated fraction thus obtained, the soluble fraction was transferred to a new tube and further centrifuged at 100,000 xg at 4°C for 30 minutes.
- the aqueous layer was collected in another tube (as a soluble fraction), and 100 ⁇ L of TD Buffer (+ glycerol 10% (w/v)) was added to the precipitated fraction remaining in the tube and suspended. Turbid and centrifuged at 100,000 xg for 30 min at 4°C (wash run). The aqueous layer was removed and suspended in 100 ⁇ L of TD Buffer containing a protease inhibitor cocktail (cOmplete mini EDTA free Protease Inhibitor Cocktail Tablets, Roche) to obtain a microsomal fraction.
- a protease inhibitor cocktail cOmplete mini EDTA free Protease Inhibitor Cocktail Tablets, Roche
- Example 3 As shown in FIG. 9, in Example 3, the lipid membrane was changed from Chlamydomonas-derived LDs to microsomes, but the production of trans-polyisoprenoids having a molecular weight of more than 10 5 was still confirmed.
- the present invention (1) provides a trans-prenyltransferase (tPT) family protein capable of producing a product having a molecular weight of 10 4 or more in the absence of lipid membrane binding, which comprises a binding step of binding to a lipid membrane in vitro.
- tPT trans-prenyltransferase
- the present invention relates to a method for producing isoprenoids.
- the present invention (2) is characterized in that the tPT family protein is a protein having a membrane-binding domain, and is capable of producing a product having a molecular weight of 10 4 or more in the aqueous layer below the lipid membrane-unbound state by making it solubilized.
- the present invention (3) is the method for producing a trans polyisoprenoid according to the present invention (1) or (2), wherein the tPT family protein is derived from a trans rubber-producing plant.
- the present invention (4) is the method for producing a trans-polyisoprenoid according to the present invention (1) or (2), wherein the tPT family protein is derived from Manilakara zapota (Sapodilla).
- the present invention (5) is that the tPT family protein does not have a membrane-binding region and is capable of producing a product having a molecular weight of 10 4 or more in an aqueous layer under non-binding to a lipid membrane, and a membrane-binding peptide is fused to the protein.
- the present invention (6) is characterized in that the protein that does not have a membrane-binding domain and is capable of producing a product with a molecular weight of 10 4 or more in the aqueous layer below the lipid membrane is derived from a trans gum-producing plant ( 5) is a method for producing a trans-polyisoprenoid.
- a cell-free protein synthesis solution containing the mRNA encoding the tPT family protein and a lipid membrane are allowed to coexist to synthesize the protein, and the tPT family protein is bound to the lipid membrane.
- the present invention (8) also provides a kneaded product obtained by kneading the trans-polyisoprenoid obtained by the method for producing a trans-polyisoprenoid according to any one of the inventions (1) to (7) and an additive.
- the present invention relates to a pneumatic tire manufacturing method including a kneading step to obtain a kneaded product, a green tire forming step of forming a green tire from the kneaded material, and a vulcanizing step of vulcanizing the raw tire.
- the present invention (9) also provides a kneaded product obtained by kneading the trans-polyisoprenoid obtained by the method for producing a trans-polyisoprenoid according to any one of the inventions (1) to (7) and an additive.
- the present invention relates to a rubber product manufacturing method including a kneading step of obtaining a raw rubber product, a raw rubber product forming step of forming a raw rubber product from the kneaded product, and a vulcanizing step of vulcanizing the raw rubber product.
- the present invention (10) also relates to a vector containing a gene encoding a trans-prenyltransferase (tPT) family protein capable of producing a product with a molecular weight of 10 4 or more without binding to lipid membranes.
- tPT trans-prenyltransferase
- the present invention (11) also relates to a transformed organism introduced with the vector according to the present invention (10).
- the present invention (12) also relates to a method for producing a trans-polyisoprenoid using the transformed organism according to the present invention (11).
- the present invention (13) also provides a kneading step of obtaining a kneaded product by kneading a trans-polyisoprenoid obtained from the transformed organism according to the present invention (11) and an additive, and molding a green tire from the kneaded product. and a vulcanization step of vulcanizing the raw tire.
- the present invention (14) also provides a kneading step of obtaining a kneaded product by kneading the trans-polyisoprenoid obtained from the transformed organism according to the present invention (11) and an additive, and molding a raw rubber product from the kneaded product.
- the present invention relates to a rubber product manufacturing method including a raw rubber product molding step and a vulcanization step of vulcanizing the raw rubber product.
- SEQ ID NO: 1 base sequence of gene encoding Sapodilla-derived tPT1 (MztPT1)
- SEQ ID NO: 2 amino acid sequence of Sapodilla-derived tPT1 (MztPT1)
- SEQ ID NO: 3 base sequence of gene encoding Sapodilla-derived tPT2 (MztPT2)
- SEQ ID NO: 4 Amino acid sequence of Sapodilla-derived tPT2 (MztPT2)
- SEQ ID NO: 5 Nucleotide sequence of gene encoding Chlamydomonas-derived MLDP
- SEQ ID NO: 6 Nucleotide sequence of MztPT2 ⁇ N, Sapodilla-derived tPT2 lacking the membrane-binding peptide region
- SEQ ID NO: 9 Primer 3
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biophysics (AREA)
- Polymers & Plastics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Gastroenterology & Hepatology (AREA)
- General Chemical & Material Sciences (AREA)
- Nutrition Science (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Botany (AREA)
- Mechanical Engineering (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Tires In General (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Description
脂質膜非結合下で分子量104以上の生成物を生成可能なtPTファミリー蛋白質を、生体外で(例えば、反応槽(試験管、プラントなど)内で)脂質膜に結合させることで、脂質膜中に105を超える分子量を有するトランス型ポリイソプレノイドを合成(酵素反応的に製造)することができる。
なお、本発明の製造方法は、前記結合工程を含む限りその他の工程を含んでいてもよく、また、各工程は1回行われてもよいし、複数回繰り返し行われてもよい。
また、本発明において、脂質膜に結合するtPTファミリー蛋白質の量は特に限定されない。
一方、前記の通り、脂質膜非結合下で分子量103程度の生成物しか生成できないtPTファミリー蛋白質を脂質膜に結合させても、分子量103程度の生成物を合成するに留まる。
この両者の相違は、明らかではないが、以下のように推測される。
分子量104未満の生成物を合成するプレニルトランスフェラーゼでの、生成物鎖長は生成物伸長部位の空間的な大きさによって制御されている。例えば、ウンデカプレニル二リン酸合成酵素(UPPS)において、生成物鎖長が炭素数55のウンデカプレニル二リン酸(分子量約926)で反応が止まる理由は、生成物鎖長の空間(クレフト)の底にあたるアミノ酸にぶつかるためと考えられている。しかしながら、このメカニズムでの生成物の分子量の制御は、生成物の鎖長が酵素の大きさより小さい場合に限られる。そのため、トランス型イソプレンゴムのような酵素よりも大きい分子量の生成物を作る酵素においては、この生成物鎖長を決定づける底がなく、空間的に貫通することで酵素サイズよりも大きい生成物を合成できていると考えられている。
そして、生成物鎖長が酵素構造で制御されていない生成物の鎖長は、反応環境によって制御を受けていると考えられる。
反応環境的に生成物鎖長が制御されている場合、生成物の鎖長を決定づける因子の1つとして生成物の可溶性が考えられる。つまり、脂質膜非結合の状態で水溶液中で反応させた場合、生成物の伸長反応が進むにつれて、生成物は酵素外の水溶液中に露出することになる。一方で、生成物鎖長が延びるほど親水性が低くなり、水溶液中での安定性は低くなっていくと考えられる。そのため、ある程度の鎖長になると生成物伸長が停止すると考えられる。
トランス型ポリイソプレノイドの場合、実験結果からこの水溶液中において生成物伸長が停止する生成物の分子量が104程度であると考えられた。そのため、水溶液中で分子量104程度の生成物を合成する能力を有する酵素は反応環境的に制御する酵素であると考える。一方で、104未満の生成物しか合成できない酵素は酵素構造的に生成物鎖長を制御する酵素であると考えられる。
反応環境的に制御する酵素の場合、反応環境を変更することで生成物の鎖長が変化することが予想され、今回脂質膜と結合させ、反応環境を変更させたことで生成物の分子量が高分子化し、酵素構造的に制御する酵素の場合、反応環境によらず、酵素構造的に同じ分子量の生成物を合成したと考えられる。
また、本明細書において、脂質膜非結合下で分子量104以上の生成物を生成可能なtPTファミリー蛋白質とは、例えば、脂質膜非結合下である大腸菌においてtPTファミリー蛋白質を発現させ、該tPTファミリー蛋白質の酵素反応を行うことにより、より具体的には、該tPTファミリー蛋白質の酵素反応を、該tPTファミリー蛋白質が脂質膜に結合していない状況下で行うことにより、分子量104以上の生成物を生成可能な蛋白質を意味する。
また、本明細書において、可溶化状態にするとは、水溶液中に安定的に存在している状態にすることであり、遠心分離等によって沈殿化しない状態のことを意味し、例えば、膜蛋白質が水に可溶化しない場合に、膜蛋白質から膜結合領域を欠損させることにより可溶化することができる。
本発明は、脂質膜非結合下で分子量104以上の生成物を生成可能なトランス型プレニルトランスフェラーゼ(tPT)ファミリー蛋白質を、生体外で脂質膜に結合させる結合工程を含むトランス型ポリイソプレノイドの製造方法に関する。
脂質膜としては特に限定されず、例えば、油滴(オイルボディ、lipid droplet)、ゴム粒子、リポソーム、ナノディスク、オルガネラ、小胞体(ミクロソーム)等が挙げられる。また、脂質膜は、脂質一重膜でも、脂質二重膜でもよいが、脂質一重膜が好ましい。これらは、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。また、天然由来のものを使用しても人工的に合成したものを使用してもよい。なかでも、油滴、ゴム粒子、ナノディスク、小胞体(ミクロソーム)が好ましく、油滴、小胞体(ミクロソーム)がより好ましい。
また、油滴は、脂質滴、脂肪滴、油体(oil body、oil bodies)、LDとも言う。
遠心分離処理では、例えば、15,000~20,000×g、15分~60分の処理を行えばよい。
また、遠心分離処理の処理温度としては、0~10℃が好ましく、2~8℃がより好ましく、4℃が特に好ましい。
アボカド由来の油滴は、例えば、WO2021/010101号公報に記載の方法等により調製できる。
次に、脂質膜非結合下で分子量104以上の生成物を生成可能なトランス型プレニルトランスフェラーゼ(tPT)ファミリー蛋白質について説明する。
脂質膜非結合下で分子量104以上の生成物を生成可能なトランス型プレニルトランスフェラーゼ(tPT)ファミリー蛋白質としては、脂質膜非結合下で分子量104以上の生成物を生成可能なtPTファミリー蛋白質であれば特に限定されない。
膜結合領域を有する蛋白質(膜蛋白質)は、通常水層に可溶化しないが、例えば、膜蛋白質から膜結合領域を欠損させることにより可溶化することができる。そして、可溶化後の蛋白質が脂質膜非結合下の水層で分子量104以上の生成物を生成可能な蛋白質であればよい。
膜結合領域を有さない蛋白質が、脂質膜非結合下の水層で分子量104以上の生成物を生成可能な場合、膜結合領域を有さない蛋白質は、脂質膜への結合能力が無いため、「膜結合領域を有さず、脂質膜非結合下の水層で分子量104以上の生成物を生成可能な蛋白質」に膜結合ペプチドを融合させることで、脂質膜への結合能力を付与できる。
トランスゴムを産出する植物としては、特に限定されないが、例えば、サポジラ(Manilkara zapota)等のManilkara属に属する植物、トチュウ(Eucommia ulmoides)等のEucommia属に属する植物等が挙げられる。なかでも、Manilkara属に属する植物が好ましく、Manilkara zapota(サポジラ)であることがより好ましい。
[1]配列番号4で表されるアミノ酸配列(サポジラ由来のtPT2のアミノ酸配列)からなる蛋白質
[2]配列番号4で表されるアミノ酸配列において、1若しくは複数個のアミノ酸の置換、欠失、挿入、及び/又は付加を含む配列からなり、かつイソプレノイド化合物の鎖長をtrans型に延長する反応を触媒し、脂質膜非結合下で分子量104以上の生成物を生成可能な蛋白質
[3]配列番号4で表されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつイソプレノイド化合物の鎖長をtrans型に延長する反応を触媒し、脂質膜非結合下で分子量104以上の生成物を生成可能な蛋白質
[1]配列番号3で表される塩基配列からなるDNA
[2]配列番号3で表される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつイソプレノイド化合物の鎖長をtrans型に延長する反応を触媒し、脂質膜非結合下で分子量104以上の生成物を生成可能な蛋白質をコードするDNA
なお、縮重プライマーは、前記目的蛋白質と共通性の高い配列部位を有する植物由来の配列から作製することが好ましい。
また、前記蛋白質をコードする塩基配列が既知の場合には、その知られている塩基配列から開始コドンを含むプライマー及び終止コドンを含むプライマーを設計し、合成したcDNAを鋳型にしてRT-PCRを行うことで全長の塩基配列及びアミノ酸配列を同定することができる。
前記の通り、膜結合領域を有さない蛋白質が、脂質膜非結合下の水層で分子量104以上の生成物を生成可能な場合、膜結合領域を有さない蛋白質は、脂質膜への結合能力が無いため、「膜結合領域を有さず、脂質膜非結合下の水層で分子量104以上の生成物を生成可能な蛋白質」に膜結合ペプチドを融合させることで、脂質膜への結合能力を付与できる。
また、使用する脂質膜の由来と、膜結合ペプチドの由来が同一であることが好ましい。これにより、膜結合ペプチドが融合された蛋白質が、好適に脂質膜への結合能力を有することとなる。
[1]配列番号5で表される塩基配列(クラミドモナス由来MLDPの塩基配列)からなるDNA
[2]配列番号5で表される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ脂質膜への結合能力を有する蛋白質をコードするDNA
前記結合工程においては、脂質膜非結合下で分子量104以上の生成物を生成可能なトランス型プレニルトランスフェラーゼ(tPT)ファミリー蛋白質が、生体外で脂質膜に結合される限り、更にその他の蛋白質が結合されてもよい。
すなわち、tPTファミリー蛋白質をコードするmRNAを含む無細胞蛋白合成溶液と脂質膜とを共存させて(より具体的には、前記tPTファミリー蛋白質をコードするmRNAを含む無細胞蛋白合成溶液と脂質膜とを混合して)蛋白質合成を行うことで、tPTファミリー蛋白質の結合した脂質膜を得ることが好ましい。
また、無細胞蛋白合成溶液と共存させる脂質膜の濃度は、5~50g/Lであることが好ましい。すなわち、無細胞蛋白合成溶液1Lに対して脂質膜を5~50g共存させることが好ましい。無細胞蛋白合成溶液と共存させる脂質膜の濃度が5g/L未満であると、合成されたtPTファミリー蛋白質が結合した脂質膜を回収するために、超遠心分離等による分離処理を行った際に、ゴム層が形成されず、合成されたtPTファミリー蛋白質が結合した脂質膜を回収することが困難になる場合がある。一方、無細胞蛋白合成溶液と共存させる脂質膜の濃度が50g/Lを超えると、脂質膜同士が凝集し、合成されたtPTファミリー蛋白質がうまく脂質膜に結合できなくなるおそれがある。前記脂質膜の濃度としてより好ましくは10~40g/L、更に好ましくは15~35g/L、特に好ましくは15~30g/Lである。
なお、前記mRNAの添加時間、添加回数、添加量等は特に制限されず、適宜設定することができる。
また、遠心分離処理温度としては、脂質膜に結合したtPTファミリー蛋白質のタンパク活性を維持するという観点から、0~10℃が好ましく、2~8℃がより好ましく、4℃が特に好ましい。
本発明のゴム製品の製造方法は、前記本発明のトランス型ポリイソプレノイドの製造方法により得られたトランス型ポリイソプレノイドと、添加剤とを混練して混練物を得る混練工程、前記混練物から生ゴム製品を成形する生ゴム製品成形工程、及び前記生ゴム製品を加硫する加硫工程を含むゴム製品の製造方法である。
混練工程では、前記トランス型ポリイソプレノイドの製造方法により得られたトランス型ポリイソプレノイドと、添加剤とを混練して混練物を得る。
生ゴム製品成形工程では、混練工程により得られた混練物から生ゴム製品(タイヤの場合は生タイヤ)を成形する。
生ゴム製品の成形方法としては特に限定されず、生ゴム製品の成形に用いられる方法を適宜適用すればよい。例えば、ゴム製品が空気入りタイヤの場合、混練工程により得られた混練物を、各タイヤ部材の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形し、各タイヤ部材を貼り合わせ、生タイヤ(未加硫タイヤ)を成形すればよい。
加硫工程では、生ゴム製品成形工程により得られた生ゴム製品を加硫することにより、ゴム製品が得られる。
生ゴム製品を加硫する方法としては特に限定されず、生ゴム製品の加硫に用いられる方法を適宜適用すればよい。例えば、ゴム製品が空気入りタイヤの場合、生ゴム製品成形工程により得られた生タイヤ(未加硫タイヤ)を加硫機中で加熱加圧して加硫することにより空気入りタイヤが得られる。
本発明のベクターは、脂質膜非結合下で分子量104以上の生成物を生成可能なトランス型プレニルトランスフェラーゼ(tPT)ファミリー蛋白質をコードする遺伝子を含むベクターである。このようなベクターを生物に導入して形質転換を行うことにより、当該ベクターに含まれる、脂質膜非結合下で分子量104以上の生成物を生成可能なtPTファミリー蛋白質をコードする遺伝子が発現し、当該生物において、105を超える分子量を有するトランス型ポリイソプレノイドを酵素反応的に製造することが可能となる。
また、本発明のベクターは、必要に応じて、補助酵素をコードする遺伝子の塩基配列を含んでいてもよい。
例えば、本発明のベクターを植物等の細胞に導入することにより、前記tPTファミリー蛋白質を発現するように形質転換された形質転換生物(形質転換細胞)が得られる。すなわち、前記tPTファミリー蛋白質をコードする遺伝子を導入した形質転換生物が得られる。そして、当該形質転換生物では、前記tPTファミリー蛋白質が発現することにより、105を超える分子量を有するトランス型ポリイソプレノイドを酵素反応的に製造することができる。そして、合成されたトランス型ポリイソプレノイドは細胞内の脂質膜内に蓄積する。
一般的に生物を用いたトランス型ポリイソプレノイドの合成は困難であるが、前記宿主に前記tPTファミリー蛋白質をコードする遺伝子を導入することにより、容易にトランス型ポリイソプレノイドの合成を行うことができるようになる。
なお更には、本発明のベクターを、前記DNAを導入する方法などにより、微生物、酵母、動物細胞、昆虫細胞等の、生物体、生物体の一部、器官、組織や培養細胞、スフェロプラスト、プロトプラストなどに導入することによって、形質転換生物を調製することも可能である。
本発明のゴム製品の製造方法は、前記形質転換生物から得られるトランス型ポリイソプレノイドと、添加剤とを混練して混練物を得る混練工程、前記混練物から生ゴム製品を成形する生ゴム製品成形工程、及び前記生ゴム製品を加硫する加硫工程を含むゴム製品の製造方法である。
混練工程では、前記形質転換生物から得られるトランス型ポリイソプレノイドと、添加剤とを混練して混練物を得る。
なお、前記形質転換生物からの脂質膜の採取方法は特に制限されず、通常行われる方法を採用することができるが、例えば、形質転換細胞の一部を切断し、切断した組織を粉砕し、有機溶媒を用いて抽出して採取したりすることができる。
前記採取された脂質膜は、固化工程に供される。固化する方法としては、特に限定されず、エタノール、メタノール、アセトン等のトランス型ポリイソプレノイド(トランスゴム)を溶解しない溶媒に脂質膜を添加する方法や脂質膜に酸を添加する方法等が挙げられる。固化工程を行うことにより、脂質膜からゴムを固形分として回収できる。得られたゴムは、必要に応じて乾燥してから使用すればよい。
生ゴム製品成形工程では、上述した工程と同様である。
加硫工程は、上述した工程と同様である。
高分子トランス-1、4-ポリイソプレンを合成するトランス型プレニルトランスフェラーゼの遺伝子を取得するため、高分子トランス-1、4-ポリイソプレンを合成するサポジラのトランスクリプトームデータに対してde novoアセンブリを行うことでcontig配列を作製し、そこからシロイヌナズナ由来のトランス型プレニルトランスフェラーゼ遺伝子と類似する遺伝子を探索し、2種類の遺伝子(MztPT1[配列番号1]、MztPT2[配列番号3])を発見した。
MztPT1およびMztPT2のcDNAを単離するため、サポジラの各種組織を採取し、液体窒素中で乳鉢と乳棒を用いて粉末状になるまで破砕したのち、NucleoSpin RNA Plant and Fungi(MACHEREY-NAGEL,Duren,Germany)を用いてtotal RNAを抽出した。得られたtotal RNAは、DEPC水50μLに溶解させた。
MztPT1のcDNAを取得するため、サポジラの葉柄から調製したtotal RNAを鋳型として、PrimeScriptII 1st strand cDNA Synthesis Kit(TaKaRa Bio)を用いて逆転写し、それにより得られた1st strand cDNAを鋳型として、プライマーセット(3769 Fw:5’-ATGTTATTTTCCAGGGGATTTTC-3’(配列番号7)、および3769 Rv:5’-CTACTTTGCTCTTGTAATGACTCTG-3’(配列番号8))を用いてPCRを行なった。PCR産物は0.8%アガロースゲルを用いて電気泳動し、目的バンドを含むアガロースゲルを切り出して回収したのち、Fast Gene Gel/PCR Extraction Kit(日本ジェネティクス)を用いて精製した(以降、この操作をゲル回収と記載する)。
また、MztPT2に対応するcontig配列は、5’末端側がアセンブルされていなかったため、サポジラの葉から調製したtotal RNAを鋳型として、GeneRacer Kit(Invitrogen)を用いてcDNAを合成し、それを鋳型として、プライマーセット(GeneRacer 5’ Primer: 5’-CGACTGGAGCACGAGGACACTGA-3’(配列番号9)、および4033 Rv GSP Race:5’-CTTGGGGAAAGTGGCCTTATTGCTGAC-3’(配列番号10))を使用してPCRを行うことで、5’側未知領域を増幅した。これを鋳型としてnested PCRを行うことで、目的配列をより特異的に増幅した。その際に使用したプライマーは、GeneRacer 5′Nested Primer(5’-GGACACTGACATGGACTGAAGGAGTA-3’(配列番号11))および4033 Rv GSP nested Race(5’-CTGCCTCACTAGCCCCTCCAACTATGG-3’(配列番号12))である。増幅された5’側未知領域の配列を決定後、その配列情報をもとにデザインしたプライマーセット(R4033 SLi XhoI Fw:5’-TCAGGGCGGATATCTCGAGATGGCCTTGAACCTTTTTC-3’(配列番号13)、およびR4033 SLi KpnI Rv:5’-CTAGTGCGGCCGCGGTACCATTAATATTGACGGTTATTAATGTAATG-3’(配列番号14))を使用し、葉の1st strand cDNAを鋳型としてPCRを行うことで、全長のMztPT2のコード配列を増幅し、これをゲル回収した。
全長MztPT1およびMztPT2のコード配列を含むPCR産物に対し10×A-attachment mix(TOYOBO)を用いてdA付加を行い、それぞれpGEM-T Easyベクター(Clontech)にサブクローニングすることで、pGEM-MztPT1、pGEM-MztPT2が作製された。
MztPT1は、色素体移行配列予想アルゴリズムChloroP1.1(http://www.cbs.dtu.dk/services/ChloroP/)によってN末端側のアミノ酸1-75位が色素体移行配列と予測されたため、その領域を欠損させた変異酵素MztPT1ΔNをコードする遺伝子配列をPCRによって増幅した。その際に使用した鋳型はpGEM-MztPT1であり、プライマーセットは、MztPT1DN NdepColdISLi Fw(5’-TATCGAAGGTAGGCATATGGAGGAGCAACAGGATC-3’(配列番号15))、pCold 3769 KpnSLi Rv(5’-CGGATCCCTCGAGGGTACCCTACTTTGCTCTTGTAATGACTCTG-3’(配列番号16))である。増幅された遺伝子をゲル回収し、dA付加を行い、pGEM-T Easyベクターにサブクローニングすることで、pGEM-MztPT1ΔNを作製した。
MztPT2については、大腸菌のコドン頻度に合わせて最適化した配列(MztPT2opt)を化学合成した。また、MztPT2は、N末端側に膜結合に関わるアミノ酸配列が見られたため、N末端側のアミノ酸1-158位を欠損させた変異体MztPT2ΔNをコードする遺伝子配列(配列番号6)をPCRにて増幅した。その際に使用した鋳型はMztPT2optであり、プライマーセットは、tPT2opt 159 NdeSLi Fw(5’-CATATCGAAGGTAGGCATATGCTGGCACATGTTATTAGC-3’(配列番号17))、tPT2opt 159 KpnSLi Rv(5’-CGGATCCCTCGAGGGTACCTTAATACTGGCGGTTATTGATATAATG-3’(配列番号18))である。増幅された遺伝子をゲル回収し、dA付加を行い、pGEM-T Easyベクターにサブクローニングすることで、pGEM-MztPT2ΔNを作製した。
大腸菌発現用プラスミドpCold IのNdeIーKpnIサイトにそれぞれの遺伝子(MztPT1、MztPT2)をクローニングするため、PCRによって各遺伝子配列を増幅した。その際の鋳型は、各遺伝子が導入されたpGEM-T Easyベクターである。MztPT1を増幅するプライマーセットは、pCold 3769 NdeSLi Fw(5’-CATATCGAAGGTAGGCATATGTTATTTTCCAGGGGATTTTC-3’(配列番号19))およびpCold 3769 KpnSLi Rv(5’-CGGATCCCTCGAGGGTACCCTACTTTGCTCTTGTAATGACTCTG-3’(配列番号20))である。MztPT2を増幅するプライマーセットは、4033 NdeI Fw(5’-CATATGATGGCCTTGAACCTTTTTC -3’(配列番号21))およびR4033 SLi KpnI Rv(5’-CTAGTGCGGCCGCGGTACCATTAATATTGACGGTTATTAATGTAATG -3’(配列番号22))である。各PCR産物、およびpGEM-MztPT1ΔN、pGEM-MztPT2ΔNを制限酵素NdeI、KpnIで消化し、各タンパク質コード配列を含む遺伝子断片をゲル回収した。pCold Iベクターも同様にNdeI、KpnIで消化し、ゲル回収したのちに、Ligation High(TOYOBO)を使用してそれぞれのコード配列断片と連結することで、pCold I-MztPT1、pCold I-MztPT2、pCold I-MztPT1ΔN、pCold I-MztPT2ΔNを作製した。
作製したコンストラクト(pCold I-MztPT1、pCold I-MztPT2、pCold I-MztPT1ΔN、pCold I-MztPT2ΔN)それぞれを用いて、大腸菌BL21を形質転換した。形質転換した大腸菌を培養し、IPTG添加により酵素発現誘導を行った。遠心分離により菌体を回収した後、超音波破砕により、菌体を破砕後、4℃、10000×g、10分間の遠心分離を行い、可溶性画分と不溶性画分それぞれを回収した。
可溶性タンパク質として得られたMztPT1ΔNとMztPT2ΔNは、HisTrapHP(Cytiva)を使用したNi2+-アフィニティークロマトグラフィーにより可溶性画分から精製された。目的タンパク質を含む溶出画分は、遠心式限外ろ過フィルターAmicon Ultra(Merck)によってイミダゾールを含まないバッファー(50mM Tris-Cl (pH7.5)、2mM DTT)に置換され、濃縮された。
ブタノール抽出液に含まれる反応物(ポリプレニル二リン酸)の重合度を逆相TLCにより解析するため、酸性ホスファターゼ処理によりポリプレニルアルコールに変換した。ブタノール抽出液に超純水を500μLを加え、15,000rpm、室温、1分間遠心後に上層のブタノール層を別のチューブに回収した。遠心エバポレーターを用いてブタノールを留去し、反応生成物を200μLまで濃縮した。濃縮した反応生成物は、酸性ホスファターゼ(Potato acid phosphatase、Sigma)を含む以下に示す反応組成で、37℃、18時間反応させた。
トルエン/ヘキサンで抽出した生成物は、GPCにより分子量を確認した。なお、GPCの測定条件は後述の条件にて行った。
大腸菌で発現させたMztPT1の大部分は不溶性画分に分画されたため、その画分を用いた活性測定の結果、MztPT1はブタノール抽出層に生成物が抽出され、逆相TLCの結果、C55-C60(分子量 約700~800)の生成物であることが確認できた。また、精製MztPT1ΔNにおいても同様に、ブタノール抽出層に生成物が抽出され、図3に示す通り、逆相TLCの結果、C55-C60(分子量 約700~800)の生成物であることが確認できた。
一方で、MztPT2は活性が確認されてなかった。また、精製MztPT2ΔNでは、図4に示す通り、トルエン/ヘキサン抽出層に生成物が抽出され、GPC解析の結果、生成物の分子量は104程度であり、脂質膜非結合下で分子量104以上の生成物を生成可能なことが分かった。なお、GPCの測定条件は後述の条件にて行った。
(MLDP膜結合ペプチドをコードした遺伝子の取得)
MztPT2ΔNに膜結合ペプチドを融合させるために、major lipid droplet protein(MLDP)由来の膜結合領域の取得を行った。
Chlamydomonas Resource Centerより入手した、クラミドモナスsta6株(CC-4348、sta6-1 mt+)からRNAiso(TaKaRa BIO)を用いてRNA抽出を行った。-80℃で保存してあったクラミドモナス細胞に、RNAiso Plusを1mL加えて5分間ボルテックスし、4℃、12,000×gで3分間遠心分離した。上清を回収後、クロロホルムを200μL加えてボルテックスにより混合させた。室温で5分静置後、4℃、12,000×gで15分間遠心分離した。上層の水層を回収し、イソプロパノールを500μL加えてボルテックスにより混合させた。室温で10分静置後、4℃、12,000×gで15分遠心分離し、RNAを沈殿させて上層を捨てた。75%エタノールを750μL加えてペレットを洗浄し、4℃、12,000×gで5分間遠心分離して上層を除去した後、室温5分間静置し乾燥させた。最後にDEPC処理水50μLに溶解した。
抽出したtotal RNAから混入したゲノムDNAを除去するため、DNase処理を行った。DNase処理にはDNase I recombinant、RNase-free(Roche)を使用し、以下の反応液を調製し、37℃で30分間インキュベートした。
反応後にDEPC処理水を350μLとフェノールと400μL加え混合し、室温15,000rpmで15分間遠心分離した。上層を回収し、3M NaOAcを30μL、エタノールを660μL加え混合し、-30℃で1時間静置した。4℃、15,000rpmで15分間遠心分離し、RNAを沈殿させて上層を捨てた。70%エタノールを700μL加えてペレットを洗浄し、4℃、12,000×gで5分間遠心分離して上層を除去した後、室温5分間静置し乾燥させた。得られた沈殿を50μLのDEPC処理水に溶解した。
クラミドモナスのMLDP(Accetion no.PNW79191.1)のcDNAは、クラミドモナスのtotal RNAをFast Gene Scriptase II(NIPPON Genetics EUROPE)を使用して合成したcDNAを鋳型としてMLDP 1 EcoRV Fw(5’―AGTCAGATATCTCATGGCCGAGTCTGCTG-3’(配列番号23))とMLDP noend 765 BamHI Rv(5’-TGACTGGATCCTCGGGGCCGGGTTGCAC-3’(配列番号24))のプライマーを使用し、PCRによって増幅した。得られたクラミドモナス由来MLDPの塩基配列を配列番号5に示す。増幅された遺伝子をゲル回収し、dA付加を行い、pGEM-T Easyベクターにサブクローニングすることで、pGEM-MLDPを作製した。
無細胞翻訳系でMLDPとMztPT2ΔNを24アミノ酸からなるリンカー配列(N末端-TGNSADGGGGSGGSGGSGGGSTQG-C末端(配列番号25))により連結させた融合タンパク質を発現させるため、まず、MLDPとリンカー配列を融合させた遺伝子をpEU-E01-His-TEV-MCS-N2(CellFree Science、Matsuyama、Japan)(以降、pEU-N2と記載する)の制限酵素サイトに導入した。
pGEM―MLDPを鋳型として、プライマーセット(MLDP-linker EcoRV 1 Fw:5’-AGTCAGATATCTCATGGCCGAGTCTGCTGGAAAG-3’(配列番号26)、およびMLDP+Linker MLDP 765 Rv:5’-CCGTCAGCGGAATTACCGGTGGGGCCGGGTTGCACG-3’(配列番号27))を使用したPCRでMLDP配列を増幅した。次に、リンカー配列を含むpGFP-L4HPBを鋳型として、プライマーセット(MLDP+Linker Linker 1 Fw:5’-CGTGCAACCCGGCCCCACCGGTAATTCCGCTGACGG-3’(配列番号28)、およびMLDP-linker 837 BamHI Rv:5’-TGACTGGATCCGACCCTTGGGTCGATCCTCC-3’(配列番号29))を使用したPCRでリンカー配列を増幅した。これら2つのPCR産物を混合した溶液を鋳型として、プライマーセット(MLDP-linker EcoRV 1 Fw:5’-AGTCAGATATCTCATGGCCGAGTCTGCTGGAAAG-3’(配列番号30)、およびMLDP-linker 837 BamHI Rv:5’-TGACTGGATCCGACCCTTGGGTCGATCCTCC-3’(配列番号31))を使用したPCRを行うことで、MLDPとリンカーのコード配列を融合させた遺伝子を作製した。この融合遺伝子を制限酵素EcoRVおよびBamHIで消化しゲル回収した断片を、同制限酵素のセットで消化しゲル回収したpEU-N2と混合し、Ligation Highを使用して連結することで、pEU-N2―MLDP-linkerを作製した。
N末端側からC末端側に向かって、MLDP、リンカー、MztPT2ΔNの順で融合させたタンパク質(MLDP-MztPT2ΔN)をコードする遺伝子をpEU-N2に導入するため、pGEM-Mztpt2ΔNを鋳型として、プライマーセット(MztPT2 159 SmaI Fw:5’-AGTCACCCGGGCTAGCCCATGTAATCAGCAACATCAAG-3’(配列番号32)、およびMztPT2 1422 NotI Rv:5’-TGACTGCGGCCGCGTTAATATTGACGGTTATTAATGTAATGAG-3’(配列番号33))を使用したPCRでMztpt2ΔN遺伝子を増幅した。これを精製したのち、制限酵素SmaIおよびNotIで消化しゲル回収した断片を、同制限酵素のセットで消化しゲル回収したpEU-N2―MLDP-linkerと混合し、Ligation Highを使用して連結することで、pEU-N2―MLDP-MztPT2ΔNを作製した。
(クラミドモナスの培養)
クラミドモナスsta6株(CC-4348、sta6-1 mt+)、及びその親株であるcw15株(CC-4349、cw15 mt+)は、Chlamydomonas Resource Centerより入手した。クラミドモナスの液体培養は、22℃、光量子束密度100μmol m-2 s―1の連続光照射下で、120rpmの旋回培養で行なった。培地はTAP液体培地を用い、1週間ごとに継代を行った。
無細胞翻訳系で使用する油滴(LD)を精製するためには、窒素欠乏状態で生育する必要がある。その場合は、前記の液体培地で7日間液体培養した培養液5mLを以下のHSM液体培地95mLに添加し、光量子束密度30μmol m-2 s―1、120rpm、22℃で培養を行った。2、3日後に、サンプル2μLを血球計算盤(サンリード硝子)に乗せ、顕微鏡BX40(OLYMPUS)を用いて観察することで、細胞密度を算出した。密度が2.6(±1.2)×106個/mLになった時点で、2,000×g、5分間遠心分離することで、クラミドモナス細胞を回収した。続いて、HSM(Nーfree)培地100mLで再懸濁し、再度培養を行った。その2日後に、1.5MのKOAcを1.3mL添加し、更に2日間培養した。その培養液を回収し、2,000×g、5分間の遠心分離によって、培地を除去し、液体窒素で瞬間冷凍したのちに-80℃で保存した。
以下に示すBuffer A 5mLで培養したクラミドモナス細胞を懸濁し、5分間静置した。その後、30mlのBuffer Bを加え、20,000×g、4℃で30分遠心分離した。最上層のLD(油滴)を含む層をピペットで回収し、3mlのBuffer Bを加えて懸濁し、1,000×g、4℃で10分遠心分離した後、シリンジを用いて下層の溶液を回収することで、主に壊れたLDに由来する中性脂質層を分離除去した。回収した下層の懸濁液を20,000×g、4℃で30分遠心分離し、下層の水相を除去したのち、チューブに残されたLD層にTD Buffer[0.1M Tris-Cl(pH7.5)、5mM DTT]を60μL添加し再懸濁した、無細胞発現系へ添加するLDの量の指標とするため、吸光マイクロプレートリーダー(SpectraMax ABS Plus,Molecular Devices)を使用し、Bradford法にてLD懸濁液のタンパク質濃度を測定した。また、回収されたLDを確認するため、蛍光顕微鏡BX40(OLYMPUS)を用いて、観察した。
(無細胞発現に用いるmRNA合成及び抽出)
WEPRO7240H Expression Kit(CellFree Sciences, Matsuyama, Japan)を用いて、作製したコンストラクトからmRNAを合成した。以下の組成で37℃、3時間反応させた。反応後、エタノール沈殿を行い、得られたペレットを25μLの1×DB Bufferで溶解させた。回収したmRNAは-80℃で保存した。
無細胞翻訳系にて翻訳・フォールディングと共役させながらLDへ外来タンパク質を導入するため、コムギ胚芽由来無細胞タンパク質発現キットWEPRO7240H Expression Kit(CellFree Sciences)を用いて翻訳反応を行った。
7.5μLの作製したmRNAに15μLの1×DB Bufferを加え、mRNA Premixを調製した。その後、以下の組成で翻訳反応溶液を調製した。
無細胞翻訳系で外来タンパク質が導入され精製されたLDの懸濁液のプレニルトランスフェラーゼの活性を測定するため、以下に示す反応組成で30℃、18時間浴槽内にて振とうした。ただし、アッセイに持ち込む精製LDの量をそろえるため、2μgのタンパク質を含む量のLD懸濁液を反応系に添加するようにした。また、プレニルトランスフェラーゼ活性のバックグランドを測定するために精製LD溶液の代わりに超純水を加えたサンプルも調製し、同様に振とうした。
抽出したトルエン/ヘキサン抽出物をエバポレーターにより溶媒を留去し、テトラヒドロフラン(THF)を190μL加えた。シリンジに接続したフィルターユニット(MS PTFE Syringe Filter、Pore Size:0.45μm、Membrane Solutions)に通し、遮光瓶に移すことで凝集物等を除去した。このうち、50μLをGPC-8020(TOSOH)で分離、解析を行った。分析条件は以下の通りである。
カラム構成 : ガードカラム TSKguardcolumn MP (XL)(TOSOH社製)
溶媒カラム TSKgel Multipore HXL-M (TOSOH社製)(2本連結)
測定温度 : 40℃
溶出溶媒 : THF(テトラヒドロフラン)
流速 : 0.8mL/min
検出 : 示差屈折計
分子量標準 : 標準ポリスチレン
インジェクトしてから12~30分の間、カラムから流出したTHFを30秒ごとに回収し、それぞれにクリアゾル3mL加えた後、液体シンチレーションカウンターにて放射活性を測定した。
比較例1では無細胞発現用ベクターにMztPT2ΔN遺伝子をそのまま導入し、MLDPと融合しないで発現するベクターを作製した以外は、実施例1と同様に行った。
pGEM-MztPT2を鋳型として、プライマーセット(MztPT2 159 SmaI Fw:5’-AGTCACCCGGGCTAGCCCATGTAATCAGCAACATCAAG-3’(配列番号34)およびMztPT2 1422 NotI Rv:5’-TGACTGCGGCCGCGTTAATATTGACGGTTATTAATGTAATGAG-3’(配列番号35))を使用したPCRで増幅した。これを精製したのち、SmaIおよびNotIで消化しゲル回収した断片を、同制限酵素のセットで消化しゲル回収したpEU-N2と混合し、Ligation Highを使用して連結することで、pEU-N2―MztPT2ΔNを作製した。
pEU-N2にMLDPのみを導入した構築については、前記(クラミドモナス由来MLDP cDNAの取得)で増幅した配列をEcoRVおよびBamHIで消化し、ゲル回収したのち、同制限酵素のセットで消化しゲル回収したpEU-N2と混合し、Ligation Highを使用して連結することで、pEU-N2―MLDPを作製した。
活性測定の結果、比較例1ではブタノール抽出層、トルエン/ヘキサン層のいずれも生成物が抽出されなかった一方で、実施例1ではトルエン/ヘキサン層に生成物由来のカウントが確認出た。
このトルエン/ヘキサン層に抽出された生成物の分子量を測定した結果、実施例1では、図6に示す通り、105を超える分子量を有するトランス型ポリイソプレノイドの生成が確認できた。比較例1(図5の3)ではMztPT2ΔNは膜結合能を有さないことから、LD上に酵素が結合せず、活性が見られなかったと考えられる。実施例1(図5の4)では、MztPT2ΔNにMLDP膜結合ペプチドを融合させたことで膜結合能を有するようになり、酵素がLD上に結合するようになったと考えられる。更に、膜に結合することで脂質膜非結合下よりも高分子量の生成物を合成することが分かった。
比較例2ではMLDPの膜結合ペプチドと融合させるタンパクをMztPTΔ2からMztPT1に変更した以外は、実施例1と同様に行った。
pGEM-Mztpt1を鋳型として、プライマーセット(MztPT1 1 SmaI Fw:5’-AGTCACCCGGGATGTTATTTTCCAGGGGATTTTCTCGG-3’(配列番号36)、およびMztPT1 1263 NotI Rv:5’-TGACTGCGGCCGCGCTACTTTGCTCTTGTAATGACTCTG-3’(配列番号37))を使用したPCRでMzTPT1遺伝子を増幅した。これを精製したのち、制限酵素SmaIおよびNotIで消化しゲル回収した断片を、同制限酵素のセットで消化しゲル回収したpEU-N2―MLDP-linkerと混合し、Ligation Highを使用して連結することで、pEU-N2―MLDP-MztPT1を作製した。
実施例2では全長のMztPT2を無細胞発現ベクターにクローニングすることで、MztPT2がもともと有する膜結合ペプチドを有する状態で酵素を発現させ、LDに酵素を結合させた。
pGEM-MztPT2を鋳型として、プライマーセット(MztPT2 1 SmaI Fw:5’-AGTCACCCGGGATGGCCTTGAACCTTTTTC-3’(配列番号38)およびMztPT2 1422 NotI Rv:5’-TGACTGCGGCCGCGTTAATATTGACGGTTATTAATGTAATGAG-3’(配列番号39))を使用したPCRで増幅した。これを精製したのち、SmaIおよびNotIで消化しゲル回収した断片を、同制限酵素のセットで消化しゲル回収したpEU-N2と混合し、Ligation Highを使用して連結することで、pEU-N2―MztPT2を作製した。
比較例2(図7の3)ではMLDP-MztPT1ではLDと結合させても、ブタノール層にしか活性は出ず、トルエン/ヘキサン層には活性が得られなかった。一方で、MztPT2の全長(実施例2、図8の3)では、MztPT2ΔN-MLDPと同様にトルエン/ヘキサン層に活性が得られた。このことから、脂質膜非結合下で104未満の生成物しか生成できないtPTを膜に結合させても生成物は高分子化せず、膜に結合させ生成物を高分子化するためには脂質膜非結合下で分子量104以上の生成物を生成するtPTを膜に結合する必要があることが分かった。また、MztPT2のもともとの膜結合領域でもMLDP由来の膜結合ペプチドを融合した時と同様の結果が得られたことから、膜結合ペプチドのアミノ酸配列は膜結合能を有していればいずれでも良いことが分かった。
実施例3では実施例1の脂質膜をクラミドモナス由来LDからコムギ胚芽由来の無細胞発現溶液中に含まれるミクロソームに脂質膜を変更した点以外は同様に行った。
コムギ胚芽由来無細胞タンパク質発現系では、反応溶液中にコムギ胚芽抽出液に由来するミクロソーム(小胞体をはじめとするオルガネラ膜に由来する膜小胞)が含まれる。対象タンパク質が膜結合性のドメインを有している場合や、疎水性が高いドメインを有している場合は、無細胞翻訳系で発現したのちに反応系内のミクロソーム膜に結合する場合がある。そこで、反応系にLDを添加しないこと以外はLDへのタンパク質導入系と同様の手順により、コムギ胚芽由来無細胞タンパク質発現キットでMLDP-MztPT2ΔNを発現させた。翻訳反応後に反応溶液を回収し、そのうち50μLを1.5mL用チューブに移し、TD Buffer(+グリセロール20%(w/v))を50μLを加え、20,000×g、4℃で30分遠心分離した。これにより得られた可溶性画分、沈殿画分のうち、可溶性画分を新たなチューブに移し、更に100,000×g、4℃で30分遠心分離した。遠心分離溶液のうち、水層を別のチューブに回収し(可溶性画分とする)、チューブ内に残された沈殿画分にTD Buffer(+グリセロール10%(w/v))100μLを加え懸濁し、100,000×g、4℃で30分遠心分離した(wash作業)。水層を除去し、プロテアーゼ阻害剤カクテル(cOmplete mini EDTA free Protease Inhibitor Cocktail Tablets,Roche)入りのTD Buffer100μLで懸濁し、これをミクロソーム画分とした。
図9に示す通り、実施例3では脂質膜をクラミドモナス由来のLDからミクロソームに脂質膜を変更したが、それでも105を超える分子量を有するトランス型ポリイソプレノイドの生成が確認できた。
配列番号1:サポジラ由来のtPT1(MztPT1)をコードする遺伝子の塩基配列
配列番号2:サポジラ由来のtPT1(MztPT1)のアミノ酸配列
配列番号3:サポジラ由来のtPT2(MztPT2)をコードする遺伝子の塩基配列
配列番号4:サポジラ由来のtPT2(MztPT2)のアミノ酸配列
配列番号5:クラミドモナス由来MLDPをコードする遺伝子の塩基配列
配列番号6:膜結合ペプチド領域を欠損させたサポジラ由来のtPT2であるMztPT2ΔNの塩基配列
配列番号7:プライマー1
配列番号8:プライマー2
配列番号9:プライマー3
配列番号10:プライマー4
配列番号11:プライマー5
配列番号12:プライマー6
配列番号13:プライマー7
配列番号14:プライマー8
配列番号15:プライマー9
配列番号16:プライマー10
配列番号17:プライマー11
配列番号18:プライマー12
配列番号19:プライマー13
配列番号20:プライマー14
配列番号21:プライマー15
配列番号22:プライマー16
配列番号23:プライマー17
配列番号24:プライマー18
配列番号25:プライマー19
配列番号26:プライマー20
配列番号27:プライマー21
配列番号28:プライマー22
配列番号29:プライマー23
配列番号30:プライマー24
配列番号31:プライマー25
配列番号32:プライマー26
配列番号33:プライマー27
配列番号34:プライマー28
配列番号35:プライマー29
配列番号36:プライマー30
配列番号37:プライマー31
配列番号38:プライマー32
配列番号39:プライマー33
Claims (14)
- 脂質膜非結合下で分子量104以上の生成物を生成可能なトランス型プレニルトランスフェラーゼ(tPT)ファミリー蛋白質を、生体外で脂質膜に結合させる結合工程を含むトランス型ポリイソプレノイドの製造方法。
- 前記tPTファミリー蛋白質が、膜結合領域を有する蛋白質であって、可溶化状態にすることで脂質膜非結合下の水層で分子量104以上の生成物を生成可能な蛋白質である請求項1記載のトランス型ポリイソプレノイドの製造方法。
- 前記tPTファミリー蛋白質が、トランスゴムを産出する植物由来である請求項1又は2記載のトランス型ポリイソプレノイドの製造方法。
- 前記tPTファミリー蛋白質が、Manilkara zapota(サポジラ)由来である請求項1又は2記載のトランス型ポリイソプレノイドの製造方法。
- 前記tPTファミリー蛋白質が、膜結合領域を有さず、脂質膜非結合下の水層で分子量104以上の生成物を生成可能な蛋白質に膜結合ペプチドを融合させることで脂質膜への結合能力を付与した蛋白質である請求項1記載のトランス型ポリイソプレノイドの製造方法。
- 膜結合領域を有さず、脂質膜非結合下の水層で分子量104以上の生成物を生成可能な蛋白質が、トランスゴムを産出する植物由来である請求項5記載のトランス型ポリイソプレノイドの製造方法。
- 前記結合工程が、前記tPTファミリー蛋白質をコードするmRNAを含む無細胞蛋白合成溶液と脂質膜とを共存させて蛋白質合成を行い、脂質膜に、tPTファミリー蛋白質を結合させる工程である請求項1~6のいずれかに記載のトランス型ポリイソプレノイドの製造方法。
- 請求項1~7のいずれかに記載のトランス型ポリイソプレノイドの製造方法により得られたトランス型ポリイソプレノイドと、添加剤とを混練して混練物を得る混練工程、前記混練物から生タイヤを成形する生タイヤ成形工程、及び前記生タイヤを加硫する加硫工程を含む空気入りタイヤの製造方法。
- 請求項1~7のいずれかに記載のトランス型ポリイソプレノイドの製造方法により得られたトランス型ポリイソプレノイドと、添加剤とを混練して混練物を得る混練工程、前記混練物から生ゴム製品を成形する生ゴム製品成形工程、及び前記生ゴム製品を加硫する加硫工程を含むゴム製品の製造方法。
- 脂質膜非結合下で分子量104以上の生成物を生成可能なトランス型プレニルトランスフェラーゼ(tPT)ファミリー蛋白質をコードする遺伝子を含むベクター。
- 請求項10記載のベクターが導入された形質転換生物。
- 請求項11記載の形質転換生物を用いてトランス型ポリイソプレノイドを製造するトランス型ポリイソプレノイドの製造方法。
- 請求項11記載の形質転換生物から得られるトランス型ポリイソプレノイドと、添加剤とを混練して混練物を得る混練工程、前記混練物から生タイヤを成形する生タイヤ成形工程、及び前記生タイヤを加硫する加硫工程を含む空気入りタイヤの製造方法。
- 請求項11記載の形質転換生物から得られるトランス型ポリイソプレノイドと、添加剤とを混練して混練物を得る混練工程、前記混練物から生ゴム製品を成形する生ゴム製品成形工程、及び前記生ゴム製品を加硫する加硫工程を含むゴム製品の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22867164.0A EP4400587A1 (en) | 2021-09-10 | 2022-08-19 | Method for producing trans-polyisoprenoid, vector, transgenic organism, method for producing pneumatic tire, and method for producing rubber product |
CN202280057891.7A CN117897496A (zh) | 2021-09-10 | 2022-08-19 | 用于制备反式聚类异戊二烯的方法、载体、转基因生物、用于制造充气轮胎的方法及用于制造橡胶制品的方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021147831A JP2023040705A (ja) | 2021-09-10 | 2021-09-10 | トランス型ポリイソプレノイドの製造方法、ベクター、形質転換生物、空気入りタイヤの製造方法及びゴム製品の製造方法 |
JP2021-147831 | 2021-09-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023037842A1 true WO2023037842A1 (ja) | 2023-03-16 |
Family
ID=85507552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/031290 WO2023037842A1 (ja) | 2021-09-10 | 2022-08-19 | トランス型ポリイソプレノイドの製造方法、ベクター、形質転換生物、空気入りタイヤの製造方法及びゴム製品の製造方法 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4400587A1 (ja) |
JP (1) | JP2023040705A (ja) |
CN (1) | CN117897496A (ja) |
WO (1) | WO2023037842A1 (ja) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59140885A (ja) | 1983-01-13 | 1984-08-13 | マツクス・プランク・ゲゼルシヤフト・ツア・フエルデルング・デア・ヴイツセンシヤフテン・エ−・フアウ | 植物細胞ゲノムへの発現可能な遺伝子の導入法 |
JPS6070080A (ja) | 1983-02-24 | 1985-04-20 | レイクスニベルシテイト ライデン | 双子葉植物の染色体への外来性dνaの組込方法 |
JPS60251887A (ja) | 1984-05-11 | 1985-12-12 | ノバルティス アクチエンゲゼルシャフト | 植物のプロトプラストの形質転換法 |
WO1994000977A1 (en) | 1992-07-07 | 1994-01-20 | Japan Tobacco Inc. | Method of transforming monocotyledon |
JP2517813B2 (ja) | 1990-05-29 | 1996-07-24 | イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー | 生きている細胞に生物学的物質を導入するための改良された方法および装置 |
JP2606856B2 (ja) | 1986-12-05 | 1997-05-07 | アグラシータス | 生細胞中に遺伝物質担持担体粒子を注入するための装置 |
JPH11127025A (ja) | 1997-10-24 | 1999-05-11 | Kobe Steel Ltd | アンテナ装置 |
JP5645366B2 (ja) | 2009-02-25 | 2014-12-24 | 日立造船株式会社 | 長鎖トランス型プレニル二リン酸合成酵素遺伝子 |
JP5870464B2 (ja) | 2014-08-12 | 2016-03-01 | 日立造船株式会社 | 長鎖トランス型プレニル二リン酸合成酵素遺伝子 |
JP2016093186A (ja) * | 2015-12-25 | 2016-05-26 | 日立造船株式会社 | 長鎖トランス型プレニル二リン酸合成酵素遺伝子 |
JP2018099100A (ja) * | 2016-12-21 | 2018-06-28 | 住友ゴム工業株式会社 | トランス型ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法 |
WO2021010101A1 (ja) | 2019-07-16 | 2021-01-21 | 住友ゴム工業株式会社 | 融合タンパク質、物質製造方法、ベクター、形質転換細胞、空気入りタイヤの製造方法及びゴム製品の製造方法 |
JP2021080204A (ja) * | 2019-11-19 | 2021-05-27 | 住友ゴム工業株式会社 | 融合タンパク質、物質製造方法、ベクター、形質転換細胞、空気入りタイヤの製造方法及びゴム製品の製造方法 |
-
2021
- 2021-09-10 JP JP2021147831A patent/JP2023040705A/ja active Pending
-
2022
- 2022-08-19 EP EP22867164.0A patent/EP4400587A1/en active Pending
- 2022-08-19 CN CN202280057891.7A patent/CN117897496A/zh active Pending
- 2022-08-19 WO PCT/JP2022/031290 patent/WO2023037842A1/ja active Application Filing
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59140885A (ja) | 1983-01-13 | 1984-08-13 | マツクス・プランク・ゲゼルシヤフト・ツア・フエルデルング・デア・ヴイツセンシヤフテン・エ−・フアウ | 植物細胞ゲノムへの発現可能な遺伝子の導入法 |
JPS6070080A (ja) | 1983-02-24 | 1985-04-20 | レイクスニベルシテイト ライデン | 双子葉植物の染色体への外来性dνaの組込方法 |
JPS60251887A (ja) | 1984-05-11 | 1985-12-12 | ノバルティス アクチエンゲゼルシャフト | 植物のプロトプラストの形質転換法 |
JP2606856B2 (ja) | 1986-12-05 | 1997-05-07 | アグラシータス | 生細胞中に遺伝物質担持担体粒子を注入するための装置 |
JP2517813B2 (ja) | 1990-05-29 | 1996-07-24 | イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー | 生きている細胞に生物学的物質を導入するための改良された方法および装置 |
WO1994000977A1 (en) | 1992-07-07 | 1994-01-20 | Japan Tobacco Inc. | Method of transforming monocotyledon |
JPH11127025A (ja) | 1997-10-24 | 1999-05-11 | Kobe Steel Ltd | アンテナ装置 |
JP5645366B2 (ja) | 2009-02-25 | 2014-12-24 | 日立造船株式会社 | 長鎖トランス型プレニル二リン酸合成酵素遺伝子 |
JP5870464B2 (ja) | 2014-08-12 | 2016-03-01 | 日立造船株式会社 | 長鎖トランス型プレニル二リン酸合成酵素遺伝子 |
JP2016093186A (ja) * | 2015-12-25 | 2016-05-26 | 日立造船株式会社 | 長鎖トランス型プレニル二リン酸合成酵素遺伝子 |
JP6090700B2 (ja) | 2015-12-25 | 2017-03-08 | 日立造船株式会社 | 長鎖トランス型プレニル二リン酸合成酵素遺伝子 |
JP2018099100A (ja) * | 2016-12-21 | 2018-06-28 | 住友ゴム工業株式会社 | トランス型ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法 |
WO2018116726A1 (ja) | 2016-12-21 | 2018-06-28 | 住友ゴム工業株式会社 | トランス型ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法 |
WO2021010101A1 (ja) | 2019-07-16 | 2021-01-21 | 住友ゴム工業株式会社 | 融合タンパク質、物質製造方法、ベクター、形質転換細胞、空気入りタイヤの製造方法及びゴム製品の製造方法 |
JP2021013365A (ja) * | 2019-07-16 | 2021-02-12 | 住友ゴム工業株式会社 | 融合タンパク質、物質製造方法、ベクター、形質転換細胞、空気入りタイヤの製造方法及びゴム製品の製造方法 |
JP2021080204A (ja) * | 2019-11-19 | 2021-05-27 | 住友ゴム工業株式会社 | 融合タンパク質、物質製造方法、ベクター、形質転換細胞、空気入りタイヤの製造方法及びゴム製品の製造方法 |
Non-Patent Citations (13)
Title |
---|
"Methods for General and Molecular Bacteriology", 1994, ASM PRESS |
"Molecular Cloning", 2001 |
AKAMA ET AL., PLANT CELL REP., vol. 12, 1992, pages 7 |
FUJIMURA ET AL., PLANT TISSUE CULTURE LETT., vol. 2, 1995, pages 74 |
GIDDA ET AL., PLANT PHYSIOLOGY, vol. 170, April 2016 (2016-04-01), pages 2052 - 2071 |
KIGAWA ET AL., 21ST ANNUAL MEETING OF THE MOLECULAR BIOLOGY SOCIETY OF JAPAN, WID 6 |
METHODS ENZYMOL., vol. 183, 1990, pages 63 |
MIWA, KOSUKE; HIROMORI, MIKI; AOKI, YUICHI; WAKI, TOSHIYUKI; KOJIMA, KOUJI; YAMASHITA, SATOSHI; YAMAGUCHI, HARUHIKO; MIYAGI, YUKIN: "4I01-08 In vitro biosynthesis of isoprenoid polymers by trans-prenyltransferases identified from Manilkara zapota", PROCEEDINGS OF THE ANNUAL MEETING OF JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY (JSBBA 2021); MARCH 18-21, 2021, vol. 2021, 5 March 2021 (2021-03-05) - 21 March 2021 (2021-03-21), pages 1303, XP009544382 * |
PRATT, J.M. ET AL.: "Transcription and Translation, Hames", 1984, IRL PRESS, pages: 179 - 209 |
PRO. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873 |
SHILLITO ET AL., BIO/TECHNOLOGY, vol. 7, 1989, pages 581 |
SPIRIN, A.S. ET AL., SCIENCE, vol. 242, 1988, pages 1162 - 1164 |
VISSER ET AL., THEOR. APPL. GENET., vol. 78, 1989, pages 589 |
Also Published As
Publication number | Publication date |
---|---|
CN117897496A (zh) | 2024-04-16 |
JP2023040705A (ja) | 2023-03-23 |
EP4400587A1 (en) | 2024-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017002818A1 (ja) | ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法 | |
RU2682047C2 (ru) | Трансформант для экспрессии цис-пренилтрансферазы и рецептора Nogo-B | |
JP6090700B2 (ja) | 長鎖トランス型プレニル二リン酸合成酵素遺伝子 | |
WO2014007285A1 (ja) | 特定の蛋白質の発現を光応答転写因子により調整する方法、光応答転写因子をコードする遺伝子が導入されたイソプレノイド産生植物、及び該イソプレノイド産生植物を用いたポリイソプレノイドの製造方法 | |
US20210395785A1 (en) | Method for producing trans-polyisoprenoid, vector, transgenic plant, method for producing pneumatic tire and method for producing rubber product | |
JP6066654B2 (ja) | 特定の蛋白質の発現をサイトカイニン応答転写因子により調整する方法、サイトカイニン応答転写因子をコードする遺伝子が導入されたイソプレノイド産生植物、及び該イソプレノイド産生植物を用いたポリイソプレノイドの製造方法 | |
WO2021010101A1 (ja) | 融合タンパク質、物質製造方法、ベクター、形質転換細胞、空気入りタイヤの製造方法及びゴム製品の製造方法 | |
JP5645366B2 (ja) | 長鎖トランス型プレニル二リン酸合成酵素遺伝子 | |
Kwon et al. | New insights into natural rubber biosynthesis from rubber‐deficient lettuce mutants expressing goldenrod or guayule cis‐prenyltransferase | |
WO2014152747A1 (en) | Engineering rubber production in plants | |
WO2023037842A1 (ja) | トランス型ポリイソプレノイドの製造方法、ベクター、形質転換生物、空気入りタイヤの製造方法及びゴム製品の製造方法 | |
WO2021100419A1 (ja) | 融合タンパク質、物質製造方法、ベクター、形質転換細胞、空気入りタイヤの製造方法及びゴム製品の製造方法 | |
EP1032694A2 (en) | Fatty acid hydroperoxide lyase nucleic acid sequences | |
JP7168955B2 (ja) | ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法 | |
US20200377901A1 (en) | Method for producing natural rubber, transgenic plant, method for producing pneumatic tire, and method for producing rubber product | |
CN115160422A (zh) | 甘薯耐盐抗旱相关蛋白IbMYB44及其编码基因与应用 | |
Xin et al. | Overexpression of the EuFPS5 gene in Hevea brasiliensis fails to produce Eucommia rubber but affects the biosynthesis of natural rubber | |
Yoonram et al. | cDNA, from Hevea brasiliensis latex, encoding 1-deoxy-d-xylulose-5-phosphate reductoisomerase | |
US20230167465A1 (en) | Method for producing polyisoprenoid, vector, transformed plant, method for producing pneumatic tire, and method for producing rubber product | |
US20230279369A1 (en) | Mutant cis-prenyltransferase (cpt) family protein, method for producing polyisoprenoid, vector, transgenic plant, method for producing pneumatic tire, and method for producing rubber product | |
CN115197307B (zh) | 调控植物抗逆性的蛋白IbGER5及其编码基因与用途 | |
JP2015015953A (ja) | 長鎖トランス型プレニル二リン酸合成酵素遺伝子 | |
CN118308313A (zh) | 大豆脂氧合酶及其编码基因在调控植物耐盐性能中的应用 | |
JP2023127870A (ja) | 変異シス型プレニルトランスフェラーゼ(cpt)ファミリー蛋白質、ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法 | |
WO2015016768A1 (en) | Jatropha curcas casbene synthase genes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22867164 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280057891.7 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022867164 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022867164 Country of ref document: EP Effective date: 20240410 |