WO2017002818A1 - ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法 - Google Patents

ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法 Download PDF

Info

Publication number
WO2017002818A1
WO2017002818A1 PCT/JP2016/069172 JP2016069172W WO2017002818A1 WO 2017002818 A1 WO2017002818 A1 WO 2017002818A1 JP 2016069172 W JP2016069172 W JP 2016069172W WO 2017002818 A1 WO2017002818 A1 WO 2017002818A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
rubber
derived
protein
family protein
Prior art date
Application number
PCT/JP2016/069172
Other languages
English (en)
French (fr)
Inventor
山口 晴彦
ゆき乃 井之上
伏原 和久
高橋 征司
哲 山下
中山 亨
Original Assignee
住友ゴム工業株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社, 国立大学法人東北大学 filed Critical 住友ゴム工業株式会社
Priority to US15/579,434 priority Critical patent/US10907179B2/en
Priority to JP2016563140A priority patent/JP6778372B2/ja
Priority to CN201680035245.5A priority patent/CN107709565B/zh
Priority to EP16817926.5A priority patent/EP3309257B1/en
Publication of WO2017002818A1 publication Critical patent/WO2017002818A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/026Unsaturated compounds, i.e. alkenes, alkynes or allenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F136/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/8223Vegetative tissue-specific promoters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y504/00Intramolecular transferases (5.4)
    • C12Y504/99Intramolecular transferases (5.4) transferring other groups (5.4.99)

Definitions

  • the present invention relates to a method of producing a polyisoprenoid, a vector, a transformed plant, a method of producing a pneumatic tire, and a method of producing a rubber product.
  • natural rubber one kind of polyisoprenoid used for industrial rubber products cultivates rubber-producing plants such as Hevea brasiliensis (Hevea brasiliensis) and Limonaceous plant Ficus elastica.
  • the natural rubber is biosynthesized in the ductal cells of the plant body, and the natural rubber is obtained by manual collection from the plant.
  • Hevea brasiliensis is a plant that can grow only in limited areas such as Southeast Asia and South America. Furthermore, Hevea brasiliensis takes about 7 years to become a mature tree from which trees can be collected, and the period for which natural rubber can be collected is limited to 20 to 30 years. In the future, demand for natural rubber is expected to increase mainly in developing countries, but for the above reasons it is difficult to significantly increase production of natural rubber by Hevea brasiliensis. Therefore, there is concern about the exhaustion of natural rubber resources, and there is a demand for a stable natural rubber supply source other than Hevea brasiliensis mature trees and improvement of the production efficiency of natural rubber in Hevea brasiliensis.
  • Natural rubber has isopentenyl diphosphate (IPP) as a basic unit and has a cis-1,4-polyisoprene structure, and the biosynthesis of natural rubber is related to cis-prenyltransferase (CPT) because of its structure
  • CPT cis-prenyltransferase
  • Patent Document 1 states that improvement in rubber productivity can be expected by introducing a gene encoding a prenyltransferase of Hevea brasiliensis into a plant for transformation.
  • An object of the present invention is to provide a method for producing a polyisoprenoid, which solves the above-mentioned problems, enhances the rubber synthesis activity of rubber particles in vitro and enables an increase in production of natural rubber.
  • Another object of the present invention is to provide a vector capable of solving the above-mentioned problems and improving the production amount of polyisoprenoid by introducing it into a plant by genetic recombination technology.
  • Another object of the present invention is to provide a transformed plant into which the vector has been introduced, and a method for improving the production amount of cis-type isoprenoid and polyisoprenoid in the plant by introducing the vector into the plant.
  • the present invention provides a rubber particle with a protein in which a gene encoding a protein encoding a cis-prenyltransferase (CPT) family is expressed in vitro, and a protein expressing a gene encoding a Nogo-B receptor (NgBR) family protein in vitro
  • CPT cis-prenyltransferase
  • NgBR Nogo-B receptor
  • CPT cis-prenyltransferase family protein
  • the above-mentioned cis-prenyltransferase (CPT) family protein has an aspartic acid residue at position 41 in the Hevea braiensis HRT1 shown in SEQ ID NO: 2 and a position corresponding thereto, in the Hevea brasiliensis HRT1 shown in SEQ ID NO: 2 A glycine residue at position 42 and the corresponding position, a position 45 in HRT1 derived from Hevea brasiliensis as shown in SEQ ID NO: 2, and an arginine residue at the position corresponding thereto, It is preferable to have an asparagine residue at position 89 in the derived HRT1 and the corresponding position.
  • CPT cis-prenyltransferase family protein
  • A amino acid sequence of the following amino acid sequence (A) at the positions 41 to 49 and the position corresponding thereto in HRT1 derived from Hevea brasiliensis shown in SEQ ID NO: 2: DGNX 1 RX 2 AKK (A)
  • X 1 and X 2 are the same or different and represent any amino acid residue
  • the amino acid sequence (A) and 7 amino acid residues other than X 1 and X 2 It is preferable that it is an amino acid sequence which has sequence identity in which five or more amino acid residues of
  • CPT cis-prenyltransferase family protein
  • B amino acid sequence in the amino acid sequence of positions 81 to 97 and the position corresponding thereto in HRT1 derived from Hevea brasiliensis shown in SEQ ID NO: 2: TX 11 X 12 AFSX 13 X 14 NX 15 X 16 RX 17 X 18 X 19 EV (B)
  • X 11 to X 19 are the same or different and represent any amino acid residue
  • the amino acid sequence (B) and 8 amino acid residues other than X 11 to X 19 It is preferable that it is an amino acid sequence which has the sequence identity in which five or more amino acid residues among them are identical.
  • At least one selected from the group consisting of the gene encoding the cis-type prenyltransferase (CPT) family protein and the gene encoding the Nogo-B receptor (NgBR) family protein be derived from a plant.
  • At least one selected from the group consisting of the gene encoding the above-mentioned cis-prenyltransferase (CPT) family protein and the gene encoding Nogo-B receptor (NgBR) family protein is Hevea brasiliensis origin.
  • a cell-free protein synthesis solution containing an mRNA encoding a cis-prenyltransferase (CPT) family protein and an mRNA encoding a Nogo-B receptor (NgBR) family protein coexists with a rubber particle for protein synthesis And the step of binding the CPT family protein and the NgBR family protein to the rubber particle.
  • CPT cis-prenyltransferase
  • NgBR Nogo-B receptor
  • the cell-free protein synthesis solution contains an embryo extract.
  • the embryo extract is preferably derived from wheat.
  • the concentration of the rubber particles coexisting with the above cell-free protein synthesis solution is preferably 5 to 50 g / L.
  • the first invention of the present invention is also a kneading step of kneading a polyisoprenoid obtained by the method of producing a polyisoprenoid according to the first invention of the first invention and an additive to obtain a kneaded product, and molding a green tire from the kneaded product.
  • the present invention relates to a method of manufacturing a pneumatic tire including a green tire forming process and a vulcanization process of vulcanizing the green tire.
  • the first invention of the present invention is also a kneading step of kneading a polyisoprenoid obtained by the method of producing a polyisoprenoid of the first invention of the first invention and an additive to obtain a kneaded product, and molding a raw rubber product from the kneaded product.
  • the present invention relates to a method for producing a rubber product including a raw rubber product forming step and a vulcanization step of vulcanizing the raw rubber product.
  • the present invention also relates to a vector comprising a promoter having a promoter activity that specifically expresses a gene in the mammary duct and a gene encoding a Nogo-B receptor (NgBR) family protein functionally linked to the promoter.
  • NgBR Nogo-B receptor
  • the second aspect of the present invention is also a promoter having a promoter activity for expressing a gene specifically in the mammary duct, and a gene encoding a cis-prenyltransferase (CPT) family protein functionally linked to the promoter and Nogo-
  • CPT cis-prenyltransferase
  • the present invention also relates to a vector containing a gene encoding a B receptor (NgBR) family protein.
  • the promoter having a promoter activity that specifically expresses a gene in the mammary duct is a promoter of a gene encoding Rubber Elongation Factor (REF), a promoter of a gene encoding Small Rubber Particle Protein (SRPP), Hevein 2.1 (HEV2. It is preferable that at least one selected from the group consisting of a promoter of a gene encoding 1) and a promoter of a gene encoding MYC1 transcription factor (MYC1).
  • REF Rubber Elongation Factor
  • SRPP Small Rubber Particle Protein
  • HEV2 Hevein 2.1
  • MYC1 transcription factor MYC1 transcription factor
  • the second invention also relates to a transformed plant into which any of the above-described vectors has been introduced.
  • the second aspect of the present invention also relates to a method for enhancing the production amount of cis-isoprenoid in a plant by introducing any of the vectors described above into the plant.
  • the second aspect of the present invention also relates to a method for enhancing the production of polyisoprenoid in a plant by introducing any of the vectors described above into the plant.
  • the second aspect of the present invention also relates to a kneading step of kneading a polyisoprenoid obtained from a transformed plant obtained by introducing any of the vectors described above into a plant and an additive to obtain a kneaded product;
  • the present invention relates to a method of manufacturing a pneumatic tire including a green tire molding step of molding a green tire and a vulcanization step of vulcanizing the green tire.
  • the second aspect of the present invention also relates to a kneading step of kneading a polyisoprenoid obtained from a transformed plant obtained by introducing any of the vectors described above into a plant and an additive to obtain a kneaded product;
  • the present invention relates to a method for producing a rubber product, including a raw rubber product forming step for forming a raw rubber product, and a vulcanization step for vulcanizing the raw rubber product.
  • a protein in which a gene encoding a cis-prenyltransferase (CPT) family protein is expressed and a gene encoding a Nogo-B receptor (NgBR) family protein are expressed in vitro Since the method for producing a polyisoprenoid including a binding step of binding a protein to a rubber particle, the activity of the CPT family protein is stabilized and enhanced by binding the CPT family protein and the NgBR family protein to the rubber particle Is expected. As a result, the rubber synthesis ability of the rubber particles can be enhanced, and rubber can be produced more efficiently in the reaction tank (test tube, plant, etc.).
  • a method of producing a pneumatic tire the step of kneading the polyisoprenoid obtained by the method of producing polyisoprenoid of the first invention and an additive to obtain a kneaded product; Since it is a manufacturing method of a pneumatic tire including a green tire molding process of molding a green tire from the above and a vulcanization process of vulcanizing the green tire, a polyisoprenoid obtained by a method with high manufacturing efficiency at the time of polyisoprenoid manufacture In order to manufacture a pneumatic tire from the above, plant resources can be effectively utilized, and a pneumatic tire can be manufactured in consideration of the environment.
  • the method for producing a rubber product according to the first aspect of the present invention comprises the steps of: kneading the polyisoprenoid obtained by the method for producing a polyisoprenoid according to the first aspect of the present invention with an additive to obtain a kneaded product; Since it is a method of producing a rubber product including a raw rubber product forming step of forming a raw rubber product and a vulcanization step of vulcanizing the raw rubber product, rubber is obtained from a polyisoprenoid obtained by a method having high production efficiency during polyisoprenoid production. In order to manufacture a product, plant resources can be effectively used and rubber products can be manufactured in consideration of the environment.
  • the second vector of the present invention comprises a promoter having a promoter activity for expressing a gene specifically in mammary duct, and a gene encoding a Nogo-B receptor (NgBR) family protein functionally linked to the promoter. It is a vector.
  • a gene encoding a protein involved in polyisoprenoid biosynthesis, which is contained in the vector, is expressed specifically in a milk duct, and the production amount of cis-type isoprenoid and polyisoprenoid in the plant Can be improved.
  • a kneaded product is obtained by kneading a polyisoprenoid obtained from a transformed plant obtained by introducing the vector of the second invention into a plant and an additive.
  • a process for producing a pneumatic tire including a kneading step to obtain, a green tire molding step of molding a green tire from the above-mentioned kneaded product, and a vulcanization step of vulcanizing the green tire, so that the transformation with improved polyisoprenoid production amount
  • plant resources can be effectively used, and a pneumatic tire can be manufactured in consideration of the environment.
  • a kneaded product is obtained by kneading a polyisoprenoid obtained from a transformed plant obtained by introducing the vector of the second present invention into a plant and an additive.
  • a process for producing a rubber product comprising a kneading step, a raw rubber product forming step for forming a raw rubber product from the above-mentioned kneaded product, and a vulcanization step for vulcanizing the raw rubber product
  • plant resources can be effectively used, and rubber products can be produced in consideration of the environment.
  • FIG. 4 (a) Very long chain polyisoprenoid synthesized in Examples 1 to 3 (FIG. 4 (a)), Reference Examples 1 to 4 (FIG. 4 (b)), and Reference Examples 5 to 6 (FIG. 4 (c)). It is a graph showing the measurement result of the molecular weight distribution of (natural rubber). It is the schematic which shows a mode that the multiple sequence alignment of CPT family protein derived from various organisms was performed.
  • a first method for producing a polyisoprenoid of the present invention is a protein in which a gene encoding a cis-prenyltransferase (CPT) family protein is expressed in vitro, and a gene encoding a Nogo-B receptor (NgBR) family protein And a binding step of binding the expressed protein to the rubber particle.
  • CPT cis-prenyltransferase
  • NgBR Nogo-B receptor
  • the present inventors have found for the first time that the combination of CPT family protein and NgBR family protein is directly involved in rubber synthesis.
  • the CPT family protein and the NgBR family protein are assumed to be disposed on rubber particles as shown in FIG. 1 and performing rubber synthesis.
  • FIG. 1 as an example, CPT is depicted as a CPT family protein
  • NgBR is depicted as an NgBR family protein
  • IPP isopentenyl diphosphate
  • the production method of the present invention by binding CPT family protein and NgBR family protein to rubber particles in vitro (for example, in a reaction vessel (test tube, plant, etc.)), The rubber synthesis ability of the rubber particles can be enhanced, and rubber can be produced more efficiently in the reaction tank (test tube, plant, etc.).
  • the production method of the first invention may include other steps as long as the above-mentioned bonding step is included, and each step may be performed once or may be repeated plural times. .
  • the amount of CPT family protein and NgBR family protein binding to the rubber particles is not particularly limited.
  • the CPT family protein and the NgBR family protein are bound to the rubber particle means that all or a part of the CPT family protein and the NgBR family protein are incorporated into the rubber particle or the membrane structure of the rubber particle
  • the present invention is not limited to this, and means such as localized on the surface or inside of the rubber particles.
  • the protein bound to the rubber particle and the CPT family protein and the NgBR family protein form a complex as described above and are present on the rubber particle as a complex, they are also bound to the rubber particle It is included in the concept scope of
  • the origin of the rubber particles is not particularly limited.
  • the rubber particles may be derived from a latex of a rubber-producing plant such as Hevea brasiliensis, Russian daffodil, Guayule, Nogesi, Gambira.
  • the particle diameter of the rubber particles is not particularly limited, either one having a predetermined particle diameter may be separated and used, or one having various particle diameters may be used. Even when the particles having a predetermined particle diameter are separated and used, Small Rubber Particles (SRP) having a small particle diameter may be used as the rubber particles to be used, or Large Rubber Particles having a large particle diameter may be used. (LRP) may be used.
  • SRP Small Rubber Particles
  • LRP Large Rubber Particles having a large particle diameter
  • a method which is usually performed can be adopted, for example, a method of performing centrifugal treatment, more preferably multistage centrifugal treatment, etc.
  • a method of performing centrifugal treatment for example, a method of performing centrifugal treatment, more preferably multistage centrifugal treatment, etc.
  • a method of sequentially performing centrifugation at ⁇ 60000 ⁇ g there may be mentioned a method of sequentially performing centrifugation at ⁇ 60000 ⁇ g.
  • processing time of each centrifugation process 20 minutes or more are preferable, 30 minutes or more are more preferable, and 40 minutes or more are still more preferable.
  • 120 minutes or less are preferable and 90 minutes or less are more preferable.
  • the treatment temperature of each centrifugation
  • a protein in which a gene encoding a cis-prenyltransferase (CPT) family protein is expressed in vitro and a protein in which a gene encoding a Nogo-B receptor (NgBR) family protein is expressed as Bound to particles.
  • CPT cis-prenyltransferase
  • NgBR Nogo-B receptor
  • CPT cis-prenyltransferase
  • NgBR Nogo-B receptor
  • the gene encoding the above-mentioned cis-prenyltransferase (CPT) family protein and the gene encoding the Nogo-B receptor (NgBR) family protein are the same species.
  • Hevea such as Hevea brasiliensis; Sonchus oleraceus; Sonchus asper; Sonchus such as Hachijona (Sonchus brachyotus); Solidago altissima (Solidago altissima) , Solidago virgaurea subsp. Asiatica, Solidago virgaurea subsp. Leipcarpa, Solidago virgaurea subsp. Leipcarpa f. Paludosa, Ookinokirin Solidago genus such as C. (Solidago virgaurea subsp.
  • Helianthus such as debilis), sunflower (Helianthus decapetalus), giant sunflower (Helianthus gigantes) etc .; dandelion (Taraxacum), ezo dandelion (Tar) H. Koidz), dandelion (Taraxacum hondoense Nakai), dandelion (Taraxacum platycarpum Dahlst), dandelion (Taraxacum japonicum), dandelion (Taraxacum officinale Weber), Russian dandelion (Taraxacumitraci ci at 7: Figs (Ficus carica), Hevea brasiliensis (Ficus elastica), Eurasian finch (Ficus pumila L.), broomfly (Ficus erecta Thumb.), Hosobamucui Novi (Ficus ampelas Burm.
  • Ficus benguetensis Merr. Ficus irisana Elm., Ficus microcarpa L. f., Ficus septica Burm. F., Ficus benghalensis etc.
  • Ficus genus Parthenium genus such as guayule (Parthenium argentatum), black flea tree (Parthenium hysterophorus), ragweed (Parthenium hysterophorus) etc .; Lettuce (Lactuca sativa), Bengal gallage, Arabidopsis thaliana (Arabidopsis thaliana) etc. And the like.
  • a cis-prenyltransferase (CPT) family protein is an enzyme that catalyzes a reaction for extending the chain length of an isoprenoid compound to a cis form.
  • CPT cis-prenyltransferase
  • a polyisoprenoid is biosynthesized by a polyisoprenoid biosynthetic pathway as shown in FIG. 2, and among the pathways, CPT family proteins are surrounded by a dotted frame in FIG. It is believed to be an enzyme that catalyzes the reaction of the A feature of the CPT family protein is that it has an amino acid sequence contained in Cis IPPS domain (NCBI Accession No. cd00475).
  • an isoprenoid compound means a compound having an isoprene unit (C 5 H 8 ).
  • the cis-type isoprenoid is a compound having an isoprenoid compound in which an isoprene unit is linked in a cis-type, and examples thereof include cis-farnesyl diphosphate, undecaprenyl diphosphate, and natural rubber.
  • FIG. al. Biochimica et Biophysica Acta no. 1625 (2003) p. 291-295, Masahiro Fujihashi et. al. , PNAS, Vol. 98, no. 8 (2001) p. From documents such as 4337-4342, box A in FIG.
  • box B parasitisum tree-derived HRT1 shown in SEQ ID NO: 2 (The corresponding positions 81 to 97) are part of CPT family proteins from various organisms, which are part of highly conserved conserved regions, and the conserved regions mean sites having similar sequences (structures). This is a region presumed to be a site having the same function in protein. In particular, the aspartic acid residue is conserved in the position corresponding to position 41 in Hevea gram-derived HRT1 shown in SEQ ID NO: 2 ((1) in FIG.
  • amino acids are CPT family proteins Amino acids that are essential for the enzymatic reaction of the enzyme, and any protein having these amino acids at that position has a function as a CPT family protein Considered.
  • the above multiple sequence alignment can be performed by the method of the embodiment described later.
  • the CPT family protein has the aspartic acid residue at position 41 in HRT1 derived from Hevea brasiliensis as shown in SEQ ID NO: 2, and the position 42 in HRT1 derived from Hevea brasiliensis shown in SEQ ID NO: 2 and A glycine residue at a position corresponding to this, a position 45 in HRT1 derived from Hevea brasiliensis shown in SEQ ID NO: 2, and an arginine residue at a position corresponding thereto, and a HRT1 derived from Hevea brasiliensis shown in SEQ ID NO: 2 It is preferable to have an asparagine residue at position 89 and the corresponding position.
  • the above CPT family protein has such a sequence, it is considered to have a function as a CPT family protein, and as an enzyme catalyzing a reaction for extending the chain length of an isoprenoid compound to a cis form It can function, and by being combined with the rubber particles together with the NgBR family protein, the rubber synthesis ability of the rubber particles can be enhanced, and it becomes possible to synthesize natural rubber in the rubber particles.
  • the CPT family protein has the following amino acid sequence (A) in which the amino acid sequence of positions 41 to 49 in HRT1 derived from Hevea brasiliensis shown in SEQ ID NO: 2, and the position corresponding thereto: DGNX 1 RX 2 AKK (A) (In the above amino acid sequence (A), X 1 and X 2 are the same or different and represent any amino acid residue) or the amino acid sequence (A) and 7 amino acid residues other than X 1 and X 2 More preferably, it is an amino acid sequence having a sequence identity in which five or more of the amino acid residues are the same. More preferably, in the above amino acid sequence (A), X 1 represents H, G or R, and X 2 represents W, F or Y.
  • amino acid sequence having the same sequence identity as the above amino acid sequence (A) and 5 amino acid residues or more among 7 amino acid residues excluding X 1 and X 2 has 7 amino acid residues other than X 1 and X 2 More preferably, at least six amino acid residues in the group are identical.
  • the amino acid sequence of positions 81 to 97 in HRT1 derived from Hevea brasiliensis shown in SEQ ID NO: 2 and the position corresponding thereto has the following amino acid sequence (B): TX 11 X 12 AFSX 13 X 14 NX 15 X 16 RX 17 X 18 X 19 EV (B) (In the above amino acid sequence (B), X 11 to X 19 are the same or different and represent any amino acid residue) or the amino acid sequence (B) and 8 amino acid residues other than X 11 to X 19 More preferably, it is an amino acid sequence having a sequence identity in which five or more of the amino acid residues are the same.
  • X 11 represents L, V, A or I
  • X 12 represents Y, F or H and X 13 is S, T or I , M or L
  • X 14 represents E, D or H
  • X 15 represents W or F
  • X 16 represents N, S, K, G or R.
  • X 17 represents P, S, H, G, R, K or Q
  • X 18 represents A, K, S or P
  • X 19 represents Q, D, R, To represent I, E, H, or S.
  • amino acid sequence having the same identity as the above amino acid sequence (B) and 5 amino acid residues or more among 8 amino acid residues except X 11 to X 19 has 8 amino acid residues other than X 11 to X 19 It is more preferable that 6 or more amino acid residues among the groups are identical, and it is further preferable that 7 or more amino acid residues are identical.
  • the CPT family protein has the amino acid sequence from position 41 to position 49 in HRT1 derived from Hevea brasiliensis shown in SEQ ID NO: 2 and the amino acid sequence at a position corresponding thereto shown in SEQ ID NO: 2 It is particularly preferred to have a sequence identity in which at least six amino acid residues of the nine amino acid residues are identical to the amino acid sequence (DGNRRFAKK (SEQ ID NO: 51)) of As the said sequence
  • arrangement identity it is more preferable that 7 amino acid residues or more of 9 amino acid residues are the same, and it is still more preferable that 8 amino acid residues or more are the same.
  • the CPT family protein has the amino acid sequence from position 81 to position 97 in HRT1 derived from Hevea brasiliensis shown in SEQ ID NO: 2, and the position 81 to 97 in HRT1 derived from Hevea brasiliensis shown in SEQ ID NO: 2 It is particularly preferable to have sequence identity in which 14 amino acid residues or more of the 17 amino acid residues are identical to the amino acid sequence of position (TIYAFSIDNFRRKPHEV (SEQ ID NO: 52)). As the said sequence
  • arrangement identity it is more preferable that 15 amino acid residues or more of 17 amino acid residues are identical, and it is still more preferable that 16 amino acid residues or more are identical.
  • the conserved region corresponding to positions 41 to 49 in Hevea gram-derived HRT1 shown in SEQ ID NO: 2 is, for example, the undecaprenyl phosphate synthetase (UPPS) derived from E.
  • UPPS undecaprenyl phosphate synthetase
  • coli shown in SEQ ID NO: 45 It corresponds to the 25th to the 33rd position, and in the Undecaprenyl diphosphate synthetase (UPS) derived from the genus Micrococca shown in SEQ ID NO: 46, corresponds to the 29th to 37th position, and is derived from the yeast shown in SEQ ID NO: 47 Corresponds to positions 75 to 83 in SRT1 and corresponds to positions 79 to 87 in AtCPT5 derived from Arabidopsis thaliana shown in SEQ ID NO: 44, and corresponds to positions 43 to 51 in AtCPT8 derived from Arabidopsis thaliana shown in SEQ ID NO: 22 Corresponding to positions 42 to 50 in the tobacco-derived DDPS represented by SEQ ID NO: 48 and represented by SEQ ID NO: 32 It corresponds to the 41st to 49th positions in HRT2 derived from Hevea brasiliensis, and corresponds to the 41st to 49th positions in CPT3 derived from Hevea
  • the conserved region corresponding to positions 81 to 97 in Hevea brasiliensis HRT1 shown in SEQ ID NO: 2 is, for example, the 65th position in undecaprenyl phosphate synthetase (UPPS) derived from E.
  • UPPS undecaprenyl phosphate synthetase
  • coli shown in SEQ ID NO: 45 It corresponds to the 81st position and corresponds to the 69th to the 85th position in Undecaprenyl diphosphate synthetase (UPS) derived from the genus Micrococca shown in SEQ ID NO: 46, and in the SRT1 derived from yeast shown in SEQ ID NO: 47 It corresponds to positions 115 to 131, and corresponds to positions 119 to 135 in AtCPT5 derived from Arabidopsis thaliana represented by SEQ ID NO: 44, and corresponds to positions 84 to 100 in AtCPT8 derived from Arabidopsis thaliana represented by SEQ ID NO: 22; It corresponds to the 82nd to 98th positions in the tobacco-derived DDPS shown by No.
  • UPS Undecaprenyl diphosphate synthetase
  • the aspartic acid residue corresponding to position 41 in Hevea gram-derived HRT1 represented by SEQ ID NO: 2 is, for example, the asparagine at position 25 in the undecaprenyl phosphate synthetase (UPPS) derived from Escherichia coli represented by SEQ ID NO: 45 It corresponds to an acid residue, and corresponds to an aspartic acid residue at position 29 in the Undecaprenyl diphosphate synthetase (UPS) derived from Micrococcus sp.
  • UPPS undecaprenyl phosphate synthetase
  • SEQ ID NO: 46 Represented by SEQ ID NO: 46, and is derived from a yeast represented by SEQ ID NO: 47 Corresponds to the aspartic acid residue at position 75 in SRT1, corresponds to the aspartic acid residue at position 79 in AtCPT5 derived from Arabidopsis thaliana shown in SEQ ID NO: 44, and 43 in the AtCPT8 derived from Arabidopsis thaliana shown in SEQ ID NO: 22
  • tobacco-derived DDPS which corresponds to an aspartic acid residue and is represented by SEQ ID NO: 48 It corresponds to the aspartic acid residue at position 2, and corresponds to the aspartic acid residue at position 41 in HRT2 derived from Hevea brasiliensis as shown in SEQ ID NO: 32, and aspartate residue 41 in CPT3 derived from Hevea brasiliensis as shown in SEQ ID NO: 36
  • CPT4 derived from Hevea brasiliensis as shown in SEQ ID NO: 37 corresponds to the
  • a glycine residue corresponding to position 42 in Hevea brasiliensis HRT1 shown in SEQ ID NO: 2 is, for example, a glycine residue at position 26 in the undecaprenyl phosphate synthetase (UPPS) derived from E. coli shown in SEQ ID NO: 45 Group, which corresponds to the glycine residue at position 30 in the Undecaprenyl diphosphate synthetase (UPS) derived from Micrococca sp.
  • UPPS undecaprenyl phosphate synthetase
  • SEQ ID NO: 46 Shown in SEQ ID NO: 46, and in the yeast SRT1 shown in SEQ ID NO: 47 It corresponds to a glycine residue at position 76, and corresponds to a glycine residue at position 80 in AtCPT5 derived from Arabidopsis thaliana shown in SEQ ID NO: 44, and corresponds to a glycine residue at position 44 in AtCPT8 derived from Arabidopsis thaliana shown in SEQ ID NO: 22
  • SEQ ID NO: 48 Corresponding to a glycine residue at position 43 in the tobacco-derived DDPS represented by SEQ ID NO: 48, It corresponds to the glycine residue at position 42 in HRT2 derived from Hevea brasiliensis, and corresponds to the glycine residue at position 42 in CPT3 derived from Hevea brasiliensis shown in SEQ ID NO: 36, and CPT4 derived from Hevea brasiliensis shown in SEQ ID NO: 37 Correspond
  • an arginine residue corresponding to position 45 in Hevea brasiliensis HRT1 shown in SEQ ID NO: 2 is, for example, an arginine residue at position 29 in the undecaprenyl phosphate synthetase (UPPS) derived from E. coli shown in SEQ ID NO: 45 Group, which corresponds to the arginine residue at position 33 in the Undecaprenyl diphosphate synthetase (UPS) derived from Micrococca sp.
  • UPPS undecaprenyl phosphate synthetase
  • SEQ ID NO: 46 Shown in SEQ ID NO: 46, and in the yeast SRT1 shown in SEQ ID NO: 47 It corresponds to an arginine residue at position 79 and corresponds to an arginine residue at position 83 in AtCPT5 derived from Arabidopsis thaliana shown in SEQ ID NO: 44 and corresponds to an arginine residue at position 47 in AtCPT8 derived from Arabidopsis thaliana shown in SEQ ID NO: 22
  • SEQ ID NO: 48 Corresponds to the arginine residue at position 45 in HRT2 derived from Hevea brasiliensis shown in SEQ ID NO: 32, and corresponds to the arginine residue at position 45 in CPT3 derived from Hevea brasiliensis shown in SEQ ID NO: 36, shown in SEQ ID NO: 37 It corresponds to the arginine residue at position 46 in CPT4 derived from Hevea brasiliensis, corresponds to the arginine residue at position 45 in
  • the asparagine residue corresponding to position 89 in Hevea gram-derived HRT1 shown in SEQ ID NO: 2 has, for example, an asparagine residue at position 73 in the undecaprenyl phosphate synthetase (UPPS) derived from E.
  • UPPS undecaprenyl phosphate synthetase
  • SEQ ID NO: 45 Group which corresponds to the asparagine residue at position 77 in the undecaprenyl diphosphate synthetase (UPS) derived from the genus Micrococca shown in SEQ ID NO: 46, and in the yeast SRT1 shown in SEQ ID NO: 47 It corresponds to the asparagine residue at position 123, and corresponds to the asparagine residue at position 127 in AtCPT5 derived from Arabidopsis thaliana represented by SEQ ID NO: 44, and corresponds to the asparagine residue at position 92 derived from Arabidopsis thaliana represented by SEQ ID NO: 22
  • the tobacco-derived DDPS shown in SEQ ID NO: 48 It corresponds to a Sparagin residue, and corresponds to an asparagine residue at position 89 in HRT2 derived from Hevea brasiliensis as shown in SEQ ID NO: 32, and corresponds to an asparagine residue at position 89 in CPT3 derived from
  • CPT family proteins examples include CPT (HRT1, HRT2, CPT3 to 5) derived from Hevea brasiliensis, AtCPT1 to 9 derived from Arabidopsis thaliana, CPT1 to 3 derived from lettuce, CPT1 to 3 derived from Taraxacum brevicorniculatum, and undecaprenylrin derived from E. coli Examples include acid synthetase (UPPS), undecaprenyl diphosphate synthetase (UPS) derived from Micrococcus bacteria, SRT1 derived from yeast, DDPS derived from tobacco, DDPS derived from mouse, HDS derived from human and the like.
  • UPPS acid synthetase
  • UPS undecaprenyl diphosphate synthetase
  • the gene encoding the CPT family protein includes not only rubber-producing plants that produce rubber, but also plants, animals, microorganisms and the like other than rubber-producing plants, and naturally CPT family proteins derived from these are naturally rubber in the natural state Not involved in synthesis. Nevertheless, in the present invention, if it is a CPT family protein, it is possible to enhance the rubber synthesis ability of the rubber particles by bonding to the rubber particles regardless of the origin, type, etc. Natural rubber can be synthesized. Furthermore, it is considered that by binding the CPT family protein to the rubber particle together with the NgBR family protein, it is possible to further enhance the rubber synthesis ability of the rubber particle. This is considered to be due to the interaction between the CPT family protein and the NgBR family protein.
  • the gene encoding the CPT family protein is derived from a plant that produces rubber, is derived from another organism, or is naturally involved in rubber synthesis, etc.
  • the rubber synthesis ability of rubber particles can be enhanced, and natural rubber can be synthesized in the rubber particles.
  • the present inventors have introduced into which host the gene has been introduced rather than the origin and type of the CPT family protein, that is, under what environment did the CPT family protein be expressed? But they are considered to be important in rubber synthesis activity.
  • the present inventors anticipate the following mechanism. That is, it is thought that the degree of hydrophobicity and space (spatial breadth) at which the product synthesized by the CPT family protein is accumulated determines the chain length of the product synthesized.
  • the CPT family protein is hydrophobic to the CPT family protein even though the CPT family protein exhibits an activity that can not confirm the reaction product or exhibits the activity and can synthesize the product.
  • the chain length of the product extends only to a size that can be accommodated in the cleft structure.
  • the product synthesized by the CPT family protein is transferred from the hydrophobic cleft structure of the CPT family protein into the lipid bilayer membrane in the cell (eg, between endoplasmic reticulum membranes, etc.)
  • the product chain is accumulated because it is accumulated in the lipid bilayer membrane, and the environment is a hydrophobic environment, but is accumulated in a space not so wide as a space in the lipid bilayer membrane in cells. There is a limit to the growth of the length.
  • the product synthesized by the CPT family protein is accumulated in a space not so wide as a lipid bilayer membrane in cells, and is also synthetic There is a limit to the chain length extension of the product.
  • the product synthesized by the CPT family protein is accumulated in the rubber particle, and the environment is Because it is a hydrophobic environment and is much wider than in lipid bilayer membranes in cells, it is a hydrophobic environment and has less space constraints, so the product chain length is sufficiently extended It is possible to synthesize very long chain polyisoprenoid (natural rubber).
  • the CPT family protein used in the present invention have a transmembrane region on the N-terminal side in order to increase the affinity to rubber particles, and if it is not possessed as a wild type, the CPT family protein N
  • the transmembrane region may be artificially fused on the distal side.
  • the amino acid sequence of the transmembrane domain to be fused is not particularly limited, but it is desirable that it be the amino acid sequence of the transmembrane domain possessed by a protein naturally bound to a rubber particle in nature.
  • the Nogo-B receptor (NgBR) family protein has a function of binding to the membrane at one or more transmembrane regions at the N-terminal side, and interacting with the CPT family protein or other proteins at the C-terminal side It is a protein and supports functions by holding CPT family proteins on a membrane.
  • the feature of the NgBR family protein is that it has a transmembrane domain at the N-terminal side, and has an amino acid sequence contained in the Cis IPPS superfamily domain (NCBI Accession No. COG0020) at the C-terminal side.
  • NgBR family proteins examples include NgBR (HRTBP) derived from Hevea brasiliensis, AtLEW1 derived from Arabidopsis thaliana, LsCPTL1 and L2 derived from lettuce, and TbRTA derived from dandelion.
  • HRTBP HRTBP
  • AtLEW1 derived from Arabidopsis thaliana
  • LsCPTL1 and L2 derived from lettuce
  • TbRTA derived from dandelion.
  • a protein may have a function originally possessed even if it contains substitution, deletion, insertion or addition of one or more amino acids in the original amino acid sequence. Therefore, the following [2] is also mentioned as a specific example of the above-mentioned CPT family protein.
  • [2] Consists of a sequence comprising substitution, deletion, insertion and / or addition of one or more amino acids in the amino acid sequence represented by SEQ ID NO: 2, and extending the chain length of the isoprenoid compound to cis form Protein having enzyme activity catalyzing reaction
  • amino acid sequence represented by SEQ ID NO: 2 preferably one or more amino acids, more preferably 1 to 58 amino acids, still more preferably 1 Substitution of-44 amino acids, even more preferably 1-29 amino acids, particularly preferably 1-15 amino acids, most preferably 1-6 amino acids, most preferably 1-3 amino acids, It is preferred that the amino acid sequence comprises deletion, insertion and / or addition.
  • amino acid substitution conservative substitution is preferred, and specifically, substitution within a group in parentheses below is mentioned.
  • (glycine, alanine) valine, isoleucine, leucine) (aspartic acid, glutamic acid) (asparagine, glutamine) (serine, threonine) (lysine, arginine) (phenylalanine, tyrosine).
  • a protein having an amino acid sequence having high sequence identity to the original amino acid sequence may have the same function. Therefore, the following [3] is also mentioned as a specific example of the above-mentioned CPT family protein.
  • sequence identity with the amino acid sequence represented by SEQ ID NO: 2 is preferably 85% or more, more preferably 90% or more, still more preferably 95% Or more, particularly preferably 98% or more, and most preferably 99% or more.
  • a protein consisting of the amino acid sequence represented by SEQ ID NO: 32, 36, 41, 22, 14, 43, 47, or 50
  • CPT family proteins also include the following [12].
  • It consists of an amino acid sequence having 80% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 32, 36, 41, 22, 14, 43, 47, or 50, and the chain length of the isoprenoid compound is cis
  • sequence identity with the amino acid sequence represented by SEQ ID NO: 32, 36, 41, 22, 14, 43, 47, or 50 is preferably 85. %, More preferably 90% or more, still more preferably 95% or more, particularly preferably 98% or more, and most preferably 99% or more.
  • sequence identity of amino acid sequences and base sequences can be determined according to the algorithm BLAST [Pro. Natl. Acad. Sci. USA, 90, 5873 (1993)] or FASTA [Methods Enzymol. , 183, 63 (1990)] can be used.
  • a conventionally known method can be used, and for example, a transformant in which a gene encoding a target protein is introduced using E. coli etc. And a method of expressing the target protein and measuring the presence or absence of the function of the target protein by the respective activity measurement methods.
  • a protein may have a function originally possessed even if it contains substitution, deletion, insertion or addition of one or more amino acids in the original amino acid sequence. Therefore, the following [5] is also mentioned as a specific example of the said NgBR family protein.
  • One or more membranes consisting of a sequence including substitution, deletion, insertion and / or addition of one or more amino acids in the amino acid sequence represented by SEQ ID NO: 4 and having N-terminal side A protein that has the function of binding to the membrane in the penetrating region and interacting with other proteins at the C-terminal side
  • amino acid sequence represented by SEQ ID NO: 4 preferably one or more amino acids, more preferably 1 to 52 amino acids, further preferably 1 Substitution of ⁇ 39 amino acids, even more preferably 1 to 26 amino acids, particularly preferably 1 to 13 amino acids, most preferably 1 to 6 amino acids, most preferably 1 to 3 amino acids, It is preferred that the amino acid sequence comprises deletion, insertion and / or addition.
  • amino acid substitution conservative substitution is preferred, and specifically, substitution within a group in parentheses below is mentioned.
  • (glycine, alanine) valine, isoleucine, leucine) (aspartic acid, glutamic acid) (asparagine, glutamine) (serine, threonine) (lysine, arginine) (phenylalanine, tyrosine).
  • sequence identity with the amino acid sequence represented by SEQ ID NO: 4 is preferably 85% or more, more preferably 90% or more, still more preferably 95% Or more, particularly preferably 98% or more, and most preferably 99% or more.
  • NgBR family proteins also include the following [15].
  • One or more transmembrane regions consisting of an amino acid sequence having 80% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 24 or 16, and bound to the membrane at one or more transmembrane regions; A protein having a function to interact with other proteins at the C-terminal side
  • sequence identity with the amino acid sequence represented by SEQ ID NO: 24 or 16 is preferably 85% or more, more preferably 90% or more, further preferably Is preferably at least 95%, particularly preferably at least 98%, most preferably at least 99%.
  • NgBR family protein As a method of confirming that the above NgBR family protein is used, a conventionally known method can be used. For example, an amino acid sequence is identified, and the amino acid sequence contained in Cis IPPS superfamily domain (NCBI Accession No. COG0020) is contained. There is a way to check if it is.
  • the gene encoding the CPT family protein is not particularly limited as long as it encodes a CPT family protein and can be expressed to produce a CPT family protein, and the gene is specifically the following [1] or [2] is mentioned.
  • DNA consisting of the nucleotide sequence represented by SEQ ID NO: 1 [2] An enzyme that catalyzes a reaction that hybridizes under stringent conditions with DNA consisting of a nucleotide sequence complementary to the nucleotide sequence shown in SEQ ID NO: 1 under stringent conditions, and extends the chain length of the isoprenoid compound to a cis form Encoding a protein having
  • hybridize is a step of hybridizing DNA to a DNA having a specific base sequence or a part of the DNA. Therefore, the DNA having the specific base sequence or the base sequence of a part of the DNA is useful as a probe for Northern or Southern blot analysis, or long enough to be used as an oligonucleotide primer for PCR (Polymerase Chain Reaction) analysis.
  • the DNA may be The DNA used as a probe may be DNA of at least 100 bases or more, preferably 200 bases or more, more preferably 500 bases or more, but may be DNA of at least 10 bases or more, preferably 15 bases or more .
  • the above-mentioned stringent conditions include, for example, a filter on which DNA is immobilized and a probe DNA in 50% formamide, 5 ⁇ SSC (750 mM sodium chloride, 75 mM sodium citrate), 50 mM sodium phosphate (pH 7.6) After overnight incubation at 42 ° C. in a solution containing 5 ⁇ Denhardt's solution, 10% dextran sulfate, and 20 ⁇ g / l denatured salmon sperm DNA, eg 0.2 ⁇ SSC solution at about 65 ° C. Conditions can be mentioned to wash the filter in, but lower stringency conditions can also be used.
  • the change of stringent conditions is possible by adjusting the concentration of formamide (the lower the concentration of formamide, the lower the stringency), and the change of salt concentration and temperature conditions.
  • low stringent conditions for example, 6 ⁇ SSCE (20 ⁇ SSCE, 3 mol / l sodium chloride, 0.2 mol / l sodium dihydrogen phosphate, 0.02 mol / l EDTA, pH 7.4), 0 After overnight incubation at 37 ° C. in a solution containing .5% SDS, 30% formamide, 100 ⁇ g / l denatured salmon sperm DNA, 50 ° C. 1 ⁇ SSC, 0.1% SDS solution The conditions used for washing can be mentioned. Further, as further lower stringency conditions, hybridization conditions may be performed using a solution of high salt concentration (for example, 5 ⁇ SSC) under the above-described low stringency conditions, followed by washing conditions.
  • high salt concentration for example, 5 ⁇ SSC
  • the various conditions described above can also be set by adding or changing the blocking reagent used to reduce the background of the hybridization experiment.
  • the addition of blocking reagents described above may involve changes in hybridization conditions in order to adapt the conditions.
  • the DNA hybridizable under the above-described stringent conditions is, for example, at least 80% of the base sequence represented by SEQ ID NO: 1 when calculated based on the above parameters using a program such as BLAST and FASTA.
  • the DNA comprising a base sequence having a sequence identity of 90% or more, more preferably 95% or more, still more preferably 98% or more, particularly preferably 99% or more can be mentioned.
  • genes encoding the CPT family protein include the following [11] or [12].
  • [11] A DNA consisting of the nucleotide sequence represented by SEQ ID NO: 31, 35, 40, 21, 13, 42, 63 or 64
  • [12] isoprenoid compound which hybridizes under stringent conditions with DNA consisting of a nucleotide sequence complementary to the nucleotide sequence represented by SEQ ID NO: 31, 35, 40, 21, 13, 42, 63, or 64; Encoding a protein having an enzymatic activity catalyzing a reaction for extending the chain length of the protein to cis
  • hybridize as used herein is the same as described above.
  • stringent conditions are also the same as described above.
  • DNAs hybridizable under the above stringent conditions for example, SEQ ID NO: 31, 35, 40, 21, 13, 42, when calculated based on the above parameters using a program such as BLAST and FASTA.
  • the DNA that hybridizes with the above-mentioned DNA under stringent conditions is a DNA encoding a protein having a predetermined enzyme activity
  • a conventionally known method can be used, for example, E. coli.
  • the target protein is expressed by a transformant into which a gene encoding a target protein has been introduced, and the activity of the target protein is measured by the respective activity measurement methods.
  • the gene encoding the above NgBR family protein include the following [3] or [4].
  • hybridize as used herein is the same as described above.
  • stringent conditions are also the same as described above.
  • the DNA hybridizable under the above-described stringent conditions is, for example, at least 80% of the base sequence represented by SEQ ID NO: 3 when calculated based on the above parameters using a program such as BLAST and FASTA.
  • the DNA comprising a base sequence having a sequence identity of 90% or more, more preferably 95% or more, still more preferably 98% or more, particularly preferably 99% or more can be mentioned.
  • genes encoding the above NgBR family protein also include the following [13] or [14].
  • hybridize as used herein is the same as described above.
  • stringent conditions are also the same as described above.
  • the DNA capable of hybridizing under the above stringent conditions is, for example, at least a nucleotide sequence represented by SEQ ID NO: 23 or 15 when calculated based on the above parameters using a program such as BLAST and FASTA.
  • a DNA consisting of a base sequence having a sequence identity of 80% or more, preferably 90% or more, more preferably 95% or more, more preferably 98% or more, particularly preferably 99% or more can be mentioned.
  • the DNA hybridizing with the above-mentioned DNA under stringent conditions is a DNA encoding an NgBR family protein
  • a conventionally known method can be used.
  • the DNA may be used as an amino acid sequence
  • RNA is extracted from a growing plant, mRNA is purified as necessary, and reverse transcription is performed. CDNA is synthesized by reaction. Next, degenerate primers are designed based on the amino acid sequence of a known protein corresponding to the target protein, RT-PCR is performed, a DNA fragment is partially amplified, and a sequence is partially identified. Then, the RACE method or the like is performed to identify the full-length nucleotide sequence and amino acid sequence.
  • RACE Rapid Amplification of cDNA Ends method
  • PCR is performed based on the base sequence information of the known region to determine the unknown region up to the cDNA end.
  • the degenerate primer is preferably prepared from a plant-derived sequence having a sequence site highly common to the target protein.
  • a primer containing an initiation codon and a primer containing a termination codon are designed from the known nucleotide sequence, and RT-PCR is performed using the synthesized cDNA as a template. By doing this, the full-length base sequence and amino acid sequence can be identified.
  • a protein in which a gene encoding a cis-prenyltransferase (CPT) family protein is expressed in vitro and a protein in which a gene encoding a Nogo-B receptor (NgBR) family protein is expressed in vitro
  • other proteins may be bound as long as it is bound to the rubber particles.
  • the origin of the above-mentioned other proteins is not particularly limited, but is preferably derived from the above-mentioned plant, and is derived from a plant belonging to at least one genus selected from the group consisting of Hevea, Sonchus, Taraxacum, and Parthenium. It is more preferable that Among them, it is more preferable that it is derived from at least one kind of plant selected from the group consisting of Hevea brasiliensis, Nogeshi, guayule and russian dander, and it is more preferably that it is derived from Hevea brasiliensis.
  • the above-mentioned other proteins are not particularly limited and may be any protein, but from the viewpoint of enhancing the rubber synthesis ability of the rubber particles, it is a protein originally present on the rubber particles in the rubber producing plant body preferable.
  • the protein present on the rubber particle may be a protein which is largely bound to the film surface of the rubber particle, or may be a protein which is bound to be inserted into the film of the rubber particle, or the above-mentioned film Or a protein that forms a complex with the protein bound to the protein and will be present on the membrane surface.
  • Examples of the protein originally present on rubber particles in the rubber-producing plant include Rubber Elongation Factor (REF), Small Rubber Particle Protein (SRPP), ⁇ -1,3-glucanase, Hevein and the like.
  • REF Rubber Elongation Factor
  • SRPP Small Rubber Particle Protein
  • ⁇ -1,3-glucanase Hevein and the like.
  • the means for binding the CPT family protein and the NgBR family protein to the rubber particle is not particularly limited in vitro, as long as the rubber particle can bind the CPT family protein, for example, an mRNA encoding the CPT family protein and NgBR family protein.
  • a cell-free protein synthesis solution containing an mRNA encoding CPT family protein and an mRNA encoding NgBR family protein and a rubber particle are subjected to protein synthesis in coexistence with CPT family protein in the rubber particle.
  • NgBR family proteins are preferably bound.
  • a cell-free protein synthesis solution containing mRNA encoding CPT family protein and NgBR family protein coexists with rubber particles (more specifically, it contains mRNA encoding CPT family protein and NgBR family protein It is preferable to obtain a rubber particle to which a CPT family protein and an NgBR family protein are bound by performing protein synthesis by mixing a cell-free protein synthesis solution and a rubber particle.
  • the liposome is artificially produced as a lipid bilayer membrane composed of phospholipid, glyceroglycolipid, cholesterol and the like, no protein is bound to the surface of the produced liposome, whereas
  • the rubber particles collected from the latex of the production plant are also particles covered with a lipid membrane, but since the membrane is a membrane of natural origin, the protein synthesized in the plant is already bound to its surface . From this, it is expected that it is difficult to further bind the protein to the rubber particle in which the protein is already bound and covered with the protein, as compared to the liposome or the like to which the protein is not bound. .
  • proteins already bound to rubber particles may inhibit cell-free protein synthesis.
  • the protein synthesis carried out in the coexistence of a cell-free protein synthesis solution containing the above CPT family protein and the mRNA encoding the NgBR family protein with a rubber particle is a CPT family protein using a so-called cell-free protein synthesis method, and NgBR. It is a synthesis of family proteins, CPT family proteins carrying a biological function (in native state), and NgBR family proteins can be synthesized, and the cell-free protein synthesis method is carried out in the coexistence of rubber particles. CPT family protein and NgBR family protein can be bound to rubber particles in the native state.
  • the CPT family protein and the NgBR family protein are bound to the rubber particle by performing protein synthesis in the coexistence of the above-mentioned cell-free protein synthesis solution and the rubber particle, the CPT family protein synthesized by the protein synthesis.
  • all or part of each protein of the NgBR family proteins is incorporated into the rubber particles or inserted into the film structure of the rubber particles, but not limited thereto. It also means the case of existence.
  • a complex is formed with a protein bound to a rubber particle, and when it is present on the rubber particle as a complex, it is included in the conceptual range of being bound to the rubber particle.
  • the CPT family protein and the mRNA encoding the NgBR family protein are translation templates that can be translated to synthesize a CPT family protein and an NgBR family protein, respectively.
  • the origin of the mRNA encoding the CPT family protein and the NgBR family protein is not particularly limited, and may be from microorganisms, animals, or plants, but may be plants. Preferably, it is more preferably derived from the above-mentioned plant, and still more preferably derived from a plant belonging to at least one genus selected from the group consisting of Hevea, Sonchus, Taraxacum, and Parthenium.
  • the mRNA encoding the CPT family protein and the mRNA encoding the NgBR family protein are derived from the same species.
  • the mRNA encoding the CPT family protein and the NgBR family protein is a translation template which can be translated to synthesize the CPT family protein and the NgBR family protein, respectively, and the preparation method is not particularly limited.
  • the total RNA is extracted from the latex of the human body by the hot phenol method etc., and cDNA is synthesized from the obtained total RNA, and CPT is prepared using the primer prepared based on the nucleotide sequence information of the gene encoding CPT family protein and NgBR family protein.
  • a DNA fragment of a gene encoding a family protein, NgBR family protein can be obtained, and the DNA fragment can be prepared by carrying out an in vitro transcription reaction usually carried out based on the DNA fragment.
  • the above-mentioned cell-free protein synthesis solution may contain mRNAs encoding other proteins, as long as it contains the above-mentioned CPT family protein and mRNA encoding NgBR family protein.
  • mRNAs encoding the above-mentioned other proteins those which can be translated and can express other proteins can be used.
  • other proteins the same ones as described above can be mentioned.
  • cell-free protein synthesis of CPT family protein and NgBR family protein is preferably performed in the coexistence of rubber particles, and the cell-free protein synthesis is the above-mentioned cell-free protein synthesis.
  • the solution can be used in a conventional manner.
  • a cell-free protein synthesis system to be used a cell-free protein synthesis means usually used can be adopted.
  • Rapid Translation System RTS 500 manufactured by Roshe Diagnostics
  • the origin of the above-mentioned embryo extract is not particularly limited. However, from the viewpoint of translation efficiency, it is preferable to use a plant-derived embryo extract when a protein of a plant is synthesized by a cell-free protein synthesis method. It is particularly preferable to use wheat germ extract. That is, it is also one of the preferred embodiments of the first present invention that the above-mentioned embryo extract is derived from wheat.
  • the method for preparing the above-mentioned embryo extract is not particularly limited, and a usual method for preparing embryo extract can be adopted.
  • a usual method for preparing embryo extract can be adopted.
  • the method described in JP-A-2005-218357 may be adopted.
  • the cell-free protein synthesis solution preferably further contains a cyclic nucleoside monophosphate derivative or a salt thereof (hereinafter, also simply referred to as "activity enhancer").
  • activity enhancer a cyclic nucleoside monophosphate derivative or a salt thereof
  • the cyclic nucleoside monophosphate derivative or a salt thereof is not particularly limited as long as it can enhance cell-free protein synthesis activity, and, for example, adenosine-3 ′, 5 ′ cyclic monophosphate and a salt thereof Adenosine-3 ', 5' cyclic thiomonophosphate (Sp isomer) and a salt thereof, adenosine-3 ', 5' cyclic thiomonophosphate (Rp isomer) and a salt thereof, guanosine-3 ', 5' thyro Click monophosphate and its salt, guanosine-3 ', 5' cyclic thiomonophosphate (Sp isomer) and its salt, guanosine-3 ', 5' cyclic thiomonophosphate (Rp isomer) and its salt, 8-bromoadenosine-3 ', 5'-cyclic monophosphate (bromocAMP) and its salts
  • the base for forming a salt with the cyclic nucleoside monophosphate derivative is not particularly limited as long as it is biochemically acceptable, and forms a salt with the derivative. Among them, preferred is, among them, a preferred one. Examples thereof include alkali metal atoms such as sodium and potassium, and organic bases such as trishydroxyaminomethane.
  • adenosine-3 ', 5'cyclic monophosphate and adenosine-3', 5'cyclic monophosphate sodium are particularly preferable as the activity enhancer.
  • These activity enhancers may be used alone or in combination of two or more.
  • the activity enhancing substance may be added in advance to the cell-free protein synthesis solution, but if it is unstable in the solution, the cell-free protein synthesis solution and the rubber particles are made to coexist and the protein synthesis reaction is performed. It is preferable to add it when
  • the amount of the activity enhancer to be added is not particularly limited as long as the protein synthesis reaction by the cell-free protein synthesis solution can be activated (increased).
  • the final concentration in the reaction system may usually be 0.1 mmol / l or more.
  • the lower limit of the concentration is preferably 0.2 millimoles / liter, more preferably 0.4 millimoles / liter, and particularly preferably 0.8 millimoles / liter.
  • the upper limit of concentration is preferably 24 millimoles / liter, more preferably 6.4 millimoles / liter, and particularly preferably 3.2 millimoles / liter.
  • the temperature of the cell-free protein synthesis solution at the time of adding the activity enhancing substance to the cell-free protein synthesis solution is not particularly limited, but it is preferably 0-30 ° C., more preferably 10-26 ° C.
  • the above-mentioned cell-free protein synthesis solution contains, in addition to mRNA (translation template) encoding CPT family protein and NgBR family protein, ATP, GTP, creatine phosphate, creatine kinase, L-type amino acid which is an essential component for protein synthesis, It contains potassium ion, magnesium ion and the like, and further contains an activity enhancing substance as required.
  • mRNA translation template
  • the first binding process of the present invention it is preferable to carry out protein synthesis in the coexistence of a cell-free protein synthesis solution containing mRNA encoding CPT family protein and NgBR family protein and a rubber particle.
  • a cell-free protein synthesis solution containing mRNA encoding CPT family protein and NgBR family protein and a rubber particle.
  • it can be carried out by adding rubber particles to the above-mentioned cell-free protein synthesis solution at an appropriate time before or after protein synthesis, preferably before protein synthesis.
  • the concentration of the rubber particles coexisting with the cell-free protein synthesis solution is preferably 5 to 50 g / L. That is, it is preferable that 5 to 50 g of rubber particles be allowed to coexist in 1 L of the cell-free protein synthesis solution.
  • the concentration of the rubber particles coexisting with the cell-free protein synthesis solution is less than 5 g / L, separation processing by ultracentrifugation etc. is performed to recover the rubber particles to which the synthesized CPT family protein and NgBR family protein are bound. In some cases, it is difficult to recover the rubber particles to which the CPT family protein synthesized and the NgBR family protein are bound because the rubber layer is not formed.
  • the concentration of the rubber particles to be made to coexist with the cell-free protein synthesis solution exceeds 50 g / L, the rubber particles will aggregate and there is a possibility that the synthesized CPT family protein and NgBR family protein can not be successfully bound to the rubber particles. is there.
  • the concentration of the rubber particles is more preferably 10 to 40 g / L, still more preferably 15 to 35 g / L, and particularly preferably 15 to 30 g / L.
  • rubber particles may be appropriately added as the reaction progresses. While the cell-free protein synthesis system is active, eg, 3 to 48 hours (preferably 3 to 30 hours, more preferably 3 to 24 hours) after adding the rubber particles to the cell-free protein synthesis solution, It is preferable to make the solution and the rubber particles coexist.
  • the rubber particles do not need to be subjected to any special treatment such as pretreatment before being used in the bonding step of the first invention (more preferably, before being allowed to coexist with the cell-free protein synthesis solution).
  • any special treatment such as pretreatment before being used in the bonding step of the first invention (more preferably, before being allowed to coexist with the cell-free protein synthesis solution).
  • the protein was previously removed from the rubber particle with a surfactant. May be
  • the rubber particles used in the first invention are washed with a surfactant before being used in the binding step in the first invention (more preferably, before being allowed to coexist with the cell-free protein synthesis solution). It is also one of the preferred embodiments of the first present invention.
  • the surfactant is not particularly limited, and examples thereof include nonionic surfactants and amphoteric surfactants.
  • nonionic surfactants and amphoteric surfactants are preferably used, and amphoteric surfactants are particularly preferably used, from the viewpoint that the denatured action of the protein on the membrane is small. That is, it is also one of the preferred embodiments of the first present invention that the surfactant is an amphoteric surfactant.
  • These surfactants may be used alone or in combination of two or more.
  • nonionic surfactants examples include polyoxyalkylene ether-based, polyoxyalkylene ester-based, polyhydric alcohol fatty acid ester-based, sugar fatty acid ester-based, alkyl polyglycoside-based and polyoxyalkylene polyglucoside-based nonionic.
  • Surfactants polyoxyalkylene alkyl amines, alkyl alkanolamides and the like.
  • polyoxyalkylene ether nonionic surfactants and polyhydric alcohol fatty acid ester nonionic surfactants are preferable.
  • polyoxyalkylene ether nonionic surfactant examples include polyoxyalkylene alkyl ether, polyoxyalkylene alkyl phenyl ether, polyoxyalkylene polyol alkyl ether, polyoxyalkylene mono-, di- or tris-tyryl phenyl ether. Etc. Among these, polyoxyalkylene alkyl phenyl ether is suitably used.
  • the polyol is preferably a polyhydric alcohol having a carbon number of 2 to 12, and examples thereof include ethylene glycol, propylene glycol, glycerin, sorbitol, glucose, sucrose, pentaerythritol, sorbitan and the like.
  • polyoxyalkylene ester nonionic surfactant examples include polyoxyalkylene fatty acid esters and polyoxyalkylene alkyl rosin esters.
  • polyhydric alcohol fatty acid ester nonionic surfactant examples include fatty acid esters of polyhydric alcohols having 2 to 12 carbon atoms, and fatty acid esters of polyoxyalkylene polyhydric alcohols. More specifically, examples thereof include sorbitol fatty acid ester, sorbitan fatty acid ester, glycerin fatty acid ester, polyglycerin fatty acid ester, pentaerythritol fatty acid ester and the like.
  • these polyalkylene oxide adducts can also be used.
  • sorbitan fatty acid ester is preferably used.
  • sugar fatty acid ester nonionic surfactants include sucrose, glucose, maltose, fructose, fatty acid esters of polysaccharides and the like, and polyalkylene oxide adducts of these can also be used.
  • alkyl polyglycoside nonionic surfactant examples include glucose, maltose, fructose and sucrose as glycosides, and examples thereof include alkyl glucoside, alkyl polyglucoside, polyoxyalkylene alkyl glucoside and polyoxyalkylene alkyl poly.
  • alkyl polyglycoside nonionic surfactant examples include glucose, maltose, fructose and sucrose as glycosides, and examples thereof include alkyl glucoside, alkyl polyglucoside, polyoxyalkylene alkyl glucoside and polyoxyalkylene alkyl poly.
  • a glucoside etc. are mentioned and these fatty acid esters are also mentioned.
  • all these polyalkylene oxide adducts can be used.
  • the alkyl group in these nonionic surfactants includes, for example, a linear or branched saturated or unsaturated alkyl group having 4 to 30 carbon atoms.
  • a linear or branched saturated or unsaturated alkyl group having 4 to 30 carbon atoms As the polyoxyalkylene group, one having an alkylene group having 2 to 4 carbon atoms can be mentioned, and for example, one having an addition mole number of ethylene oxide of about 1 to 50 moles can be mentioned.
  • examples of the fatty acid include linear or branched saturated or unsaturated fatty acids having 4 to 30 carbon atoms.
  • polyoxyethylene ethylene oxide is particularly preferable because the membrane bound protein can be removed appropriately in a state where the film of rubber particles is stabilized and in a state where the denatured action of the protein is small.
  • Octyl phenyl ether Triton X-100
  • sorbitan monolaurate Span 20
  • amphoteric surfactant examples include quaternary ammonium base / sulfonic acid group (—SO 3 H) type, quaternary ammonium base / phosphoric acid group type (soluble in water), quaternary ammonium base / phosphoric acid Zwitterionic surfactants such as acid group type (insoluble in water) and quaternary ammonium base / carboxyl group type can be mentioned.
  • the acid group may be a salt.
  • the zwitterionic surfactant preferably has both + and-charges in one molecule, and the acid dissociation constant (pKa) of the acid group is preferably 5 or less, and 4 or less. It is more preferable that it be 3 or less.
  • amphoteric surfactant 3-[(3-cholamidopropyl) dimethylamino] -2-hydroxy-1-propanesulfonic acid (CHAPSO), 3-[(3-cholamidopropyl) Dimethylamino] -propanesulfonic acid (CHAPS), N, N-bis (3-D-gluconamidopropyl) -cholamide, n-octadecyl-N, N'-dimethyl-3-amino-1-propanesulfonic acid, n-decyl-N, N'-dimethyl-3-amino-1-propanesulfonic acid, n-dodecyl-N, N'-dimethyl-3-amino-1-propanesulfonic acid, n-tetradecyl-N, N ' -Dimethyl-3-amino-1-propanesulfonic acid ⁇ ZwittergentTM-3-14 ⁇ ,
  • the processing concentration of the surfactant is preferably within 3 times the critical micelle concentration (CMC) of the surfactant used.
  • CMC critical micelle concentration
  • the membrane stability of the rubber particles may be reduced. More preferably, it is within 2.5 times, more preferably within 2.0 times.
  • the lower limit is preferably 0.05 times or more, more preferably 0.1 times or more, and still more preferably 0.3 times or more.
  • reaction system or apparatus for protein synthesis in the above cell-free protein synthesis As a reaction system or apparatus for protein synthesis in the above cell-free protein synthesis, a batch (batch) method (Pratt, J. M. et al., Transcription and Transcription, Hames, 179-209, B. D. & Higgins, S. J., eds, IRL Press, Oxford (1984)), a continuous cell-free protein synthesis system for continuously supplying amino acids, energy sources and the like to reaction systems (Spirin, AS et al., Science , 242,1162-1164 (1988)), etc.
  • a method such as supplying template RNA, amino acid, energy source and the like to a protein synthesis reaction system as needed, and discharging a synthesized product or a degradation product as needed can also be used.
  • the overlay method has the advantage of easy operation, the rubber particles are dispersed in the reaction solution, and it is difficult to efficiently couple the CPT family protein to be synthesized and the NgBR family protein to the rubber particles.
  • the CPT family protein to be synthesized and the amino acid used as the raw material of the NgBR family protein can permeate the dialysis membrane but not the rubber particles, thereby preventing the dispersion of the rubber particles,
  • the dialysis method is preferred because it can bind CPT family proteins and NgBR family proteins efficiently synthesized to rubber particles.
  • the synthesis reaction solution for protein synthesis in the cell-free protein synthesis is used as a dialysis internal fluid, and protein synthesis is performed using an apparatus isolated by a dialysis membrane capable of mass transfer with the dialysis external fluid. It is a method. Specifically, for example, after the above-mentioned synthesis reaction solution from which the translation template has been removed is pre-incubated for an appropriate time as necessary, the translation template is added, and it is put into a suitable dialysis container to make a reaction inner solution. As a dialysis container, the container (The dialysis cup 12000 grade
  • the tube for dialysis (12,000 grade
  • etc., Sanko Junyaku Co., Ltd. make the tube for dialysis (12,000 grade
  • the dialysis membrane one having a molecular weight limit of 10,000 daltons or more is used, but one having a molecular weight limit of about 12,000 daltons is preferable.
  • a buffer solution containing an amino acid is used as the above-mentioned dialysis external fluid.
  • the dialysate can be replaced with fresh one when the reaction rate decreases, to increase the dialysis efficiency.
  • the reaction temperature and time are appropriately selected in the protein synthesis system to be used, but for example, in a system using a wheat germ extract, the temperature is usually 10 to 40 ° C., preferably 18 to 30 ° C., more preferably 20 to 26 C. for 10 minutes to 48 hours (preferably 10 minutes to 30 hours, more preferably 10 minutes to 24 hours).
  • the synthesis of the protein can be carried out by appropriately adding the mRNA during the above protein synthesis reaction. It can be done more efficiently. That is, it is also one of the preferred embodiments of the first invention to further add mRNA encoding the CPT family protein and the NgBR family protein during the protein synthesis reaction.
  • the addition time, the number of additions, the addition amount, and the like of the mRNA are not particularly limited, and can be set as appropriate.
  • a protein in which a gene encoding a cis-prenyltransferase (CPT) family protein is expressed in vitro, and a gene encoding a Nogo-B receptor (NgBR) family protein are expressed in vitro After carrying out the binding step of binding the thus obtained protein to the rubber particles, a step of recovering the rubber particles may be carried out, if necessary.
  • CPT cis-prenyltransferase
  • NgBR Nogo-B receptor
  • the rubber particle recovery step is not particularly limited as long as the rubber particles can be recovered, and the rubber particle recovery step can be performed by a method which is usually performed to recover rubber particles. Specifically, for example, a method of performing centrifugation and the like can be mentioned.
  • the rubber particles are recovered by the centrifugation, the centrifugal force, the centrifugal treatment time, and the centrifugal treatment temperature can be appropriately set so that the rubber particles can be recovered, for example, as the centrifugal force of the centrifugal treatment 15000 ⁇ g or more is preferable, 20000 ⁇ g or more is more preferable, and 25000 ⁇ g or more is more preferable.
  • the centrifugal force is preferably 50000 ⁇ g or less, more preferably 45000 ⁇ g or less, as the upper limit of the centrifugal force can not be expected even if the centrifugal force is too large.
  • a centrifugation process time 20 minutes or more are preferable, 30 minutes or more are more preferable, and 40 minutes or more are still more preferable.
  • the upper limit of the centrifugal treatment time is preferably 120 minutes or less, more preferably 90 minutes or less.
  • the centrifugation temperature is preferably 0 to 10 ° C., more preferably 2 to 8 ° C., and 4 ° C., from the viewpoint of maintaining the protein activity of CPT family protein bound to rubber particles and NgBR family protein. Particularly preferred.
  • the rubber particles are separated in the upper layer and the cell-free protein synthesis solution is separated in the lower layer when the centrifugation is performed. Thereafter, by removing the lower cell-free protein synthesis solution, it is possible to recover the rubber particles to which the CPT family protein and the NgBR family protein are bound.
  • the recovered rubber particles can be stored by resuspending in an appropriate pH neutral buffer.
  • the rubber particles recovered after the rubber particle recovery step can be used in the same manner as ordinary natural rubber without further special treatment.
  • the polyisoprenoid obtained by the method for producing a polyisoprenoid according to the first aspect of the present invention can be recovered by subjecting the rubber particles to the following solidifying step.
  • the method for solidifying the above-mentioned solidifying step is not particularly limited.
  • a method of adding rubber particles to a solvent which does not dissolve polyisoprenoid (natural rubber) such as ethanol, methanol, acetone etc., a method of adding an acid to rubber particles, etc. can be mentioned.
  • rubber natural rubber
  • the obtained rubber may be dried before use, as necessary.
  • a protein in which a gene encoding a cis-prenyltransferase (CPT) family protein is expressed in vitro, and a gene encoding a Nogo-B receptor (NgBR) family protein can be enhanced by binding the protein that has been expressed to the rubber particles, whereby the rubber synthesis ability of the rubber particles can be enhanced, and thereby the rubber (polyisoprenoid) can be more efficiently contained in the reaction tank (test tube, plant, etc.) It is possible to produce 1).
  • CPT cis-prenyltransferase
  • NgBR Nogo-B receptor
  • a method for synthesizing a polyisoprenoid which comprises expressing a gene encoding a cis-prenyltransferase (CPT) family protein in vitro (for example, in a reaction vessel (test tube, plant, etc.)) And a method of synthesizing a polyisoprenoid including a binding step of binding a protein expressing a gene encoding a Nogo-B receptor (NgBR) family protein to a rubber particle, which is also one of the first present inventions It is.
  • CPT cis-prenyltransferase
  • a protein in which a gene encoding a cis-prenyltransferase (CPT) family protein is expressed in vitro, and a protein in which a gene encoding a Nogo-B receptor (NgBR) family protein is expressed are bound to rubber particles.
  • the bonding step to be carried out is as described above.
  • polyisoprenoid is a generic term for polymers composed of isoprene units (C 5 H 8 ).
  • examples of the polyisoprenoid include polymers of sesterterpene (C 25 ), triterpene (C 30 ), tetraterpene (C 40 ), natural rubber and the like.
  • isoprenoid means a compound having an isoprene unit (C 5 H 8 ), and is a concept also including polyisoprenoid.
  • the method for producing a rubber product according to the first aspect of the present invention comprises the step of kneading the polyisoprenoid obtained by the method for producing a polyisoprenoid according to the first aspect of the present invention with an additive to obtain a kneaded product; A raw rubber product forming step, and a vulcanizing step of vulcanizing the raw rubber product.
  • the rubber product is not particularly limited as long as it can be manufactured using rubber (preferably natural rubber), and examples thereof include pneumatic tires, rubber rollers, rubber fenders, gloves, medical rubber tubes and the like.
  • the raw rubber product forming step corresponds to the vulcanization process which vulcanizes the above-mentioned green tire to the green tire formation process which molds a tire.
  • a kneading step of kneading a polyisoprenoid obtained by the above-mentioned method of manufacturing polyisoprenoid and an additive to obtain a kneaded product a kneading step of kneading a polyisoprenoid obtained by the above-mentioned method of manufacturing polyisoprenoid and an additive to obtain a kneaded product.
  • the polyisoprenoid obtained by the above-described method for producing polyisoprenoid and the additive are kneaded to obtain a kneaded product.
  • the additive is not particularly limited, and additives used for producing a rubber product can be used.
  • examples thereof include acids, processing aids, various anti-aging agents, softeners such as oils, waxes, vulcanizing agents such as sulfur, and vulcanization accelerators.
  • Kneading in the kneading step may be performed using a rubber kneading apparatus such as an open roll, a Banbury mixer, or a closed-type kneader.
  • a rubber kneading apparatus such as an open roll, a Banbury mixer, or a closed-type kneader.
  • a raw rubber product (green tire in the case of a tire) is formed from the kneaded product obtained in the kneading step. It does not specifically limit as a shaping
  • the rubber product is a pneumatic tire
  • the kneaded product obtained in the kneading step is extruded according to the shape of each tire member, and molded by a usual method on a tire molding machine.
  • a green tire (unvulcanized tire) may be molded.
  • a rubber product is obtained by vulcanizing the raw rubber product obtained by the raw rubber product forming step.
  • the method for vulcanizing the crude rubber product is not particularly limited, and the method used for vulcanizing the crude rubber product may be appropriately applied.
  • the rubber product is a pneumatic tire
  • a green tire (unvulcanized tire) obtained by the raw rubber product forming step is heated and pressurized in a vulcanizer to cure the green tire, thereby obtaining a pneumatic tire.
  • the vector according to the second aspect of the present invention is a gene encoding Nogo-B receptor (NgBR) family protein or a promoter of cis-type prenyltransferase (CPT) family protein, with a promoter having promoter activity to express a gene specifically in mammary duct And a nucleotide sequence obtained by functionally linking a gene encoding a Nogo-B receptor (NgBR) family protein.
  • NgBR Nogo-B receptor
  • CPT cis-type prenyltransferase
  • a gene encoding a protein involved in polyisoprenoid biosynthesis which is contained in the vector, is expressed specifically in the mammary duct, and cis-isoprenoid in the plant, It becomes possible to improve the production amount of polyisoprenoid. This is presumed to be because if the expression of the foreign gene introduced to improve the productivity of the emulsion is promoted at a site other than the milk duct, the metabolism of the plant and the production of the emulsion will be adversely affected. .
  • a promoter having promoter activity that causes a gene to be expressed specifically in a mammary duct means that the desired gene is a gene of interest when it is functionally linked to the promoter and introduced into a plant. It means having an activity to control gene expression so as to be specifically expressed in the mammary duct.
  • expression of a gene in a duct-specific manner means that the gene is not expressed at all or hardly at any site other than the duct in the plant, and it can be said that the gene is substantially exclusively expressed in the duct.
  • to functionally link a gene to a promoter means to link the gene sequence downstream of the promoter so as to be under the control of the promoter.
  • the vector of the second invention of the present invention is a vector generally known as a vector for transformation of plants, a nucleotide sequence of a promoter having a promoter activity that causes a gene to be expressed specifically in the mammary duct and Nogo-B receptor.
  • NgBR A nucleotide sequence of a gene encoding a family protein or a nucleotide sequence of a gene encoding a cis prenyltransferase (CPT) family protein and a nucleotide sequence of a gene encoding a Nogo-B receptor (NgBR) family protein It can produce by inserting by.
  • the vector of the second invention of the present invention is a nucleotide sequence of a promoter having a promoter activity that specifically expresses a gene in breast duct, and a nucleotide sequence of a gene encoding a Nogo-B receptor (NgBR) family protein, or a cis-type Other base sequences may be included as long as they contain the base sequences of the gene encoding the prenyltransferase (CPT) family protein and the gene encoding the Nogo-B receptor (NgBR) family protein.
  • the vector contains sequences derived from the vector, and further includes restriction enzyme recognition sequences, spacer sequences, sequences of marker genes, sequences of reporter genes, and the like.
  • the marker gene examples include drug resistant genes such as kanamycin resistant gene, hygromycin resistant gene and bleomycin resistant gene.
  • the reporter gene is introduced to confirm the expression site in the plant, and, for example, luciferase gene, GUS ( ⁇ glucuronidase) gene, GFP (green fluorescent protein), RFP (red fluorescent protein) Etc.
  • the gene encoding the above-mentioned cis-prenyltransferase (CPT) family protein and the gene encoding the Nogo-B receptor (NgBR) family protein are not particularly limited in their origin, and they may be of animal origin, even if they are microorganisms. Also, it may be derived from a plant, but is preferably derived from a plant, more preferably from the above-mentioned plant, and at least selected from the group consisting of the genera Hevea, Sonchus, Taraxacum, and Parthenium. More preferably, they are derived from plants belonging to one genus.
  • the gene encoding the above-mentioned cis-prenyltransferase (CPT) family protein and the gene encoding the Nogo-B receptor (NgBR) family protein are derived from the same species.
  • CPT cis-prenyltransferase
  • NgBR Nogo-B receptor
  • a nucleotide sequence of a promoter having a promoter activity that specifically expresses a gene in breast duct and a nucleotide sequence of a gene encoding a Nogo-B receptor (NgBR) family protein, or cis
  • NgBR Nogo-B receptor
  • it may further comprise a nucleotide sequence of a gene encoding another protein .
  • genes encoding the other proteins include the same as those described above in the first aspect of the present invention.
  • the promoter having a promoter activity for expressing a gene specifically in the mammary duct is a promoter of a gene encoding Rubber Elongation Factor (REF), a promoter of a gene encoding Small Rubber Particle Protein (SRPP), Hevein 2.1 (HEV2)
  • REF Rubber Elongation Factor
  • SRPP Small Rubber Particle Protein
  • HEV2 Hevein 2.1
  • it is at least one selected from the group consisting of the promoter of the gene encoding .1) and the promoter of the gene encoding MYC1 transcription factor (MYC1).
  • Rubber Elongation Factor refers to a rubber particle-binding protein that binds to rubber particles present in the latex of rubber-producing plants such as Hevea brasiliensis, and the rubber particles are stabilized.
  • Contribute to Small Rubber Particle Protein is a rubber particle binding protein which binds to rubber particles present in the latex of rubber producing plants such as Hevea brasiliensis.
  • Hevein 2.1 (HEV 2.1) is a protein that is abundantly expressed in the ductal cells of rubber-producing plants such as Hevea brasiliensis, and is involved in the aggregation of rubber particles and has antifungal activity It is.
  • MYC1 transcription factor is a transcription factor involved in the jasmonic acid signal which is frequently expressed in the latex of rubber-producing plants such as Hevea brasiliensis.
  • transcription factor transcription factor means a protein having an activity to increase or decrease (preferably, increase) the transcription amount of a gene. That is, in the present specification, MYC1 is a protein having an activity (transcription factor activity) to increase or decrease (preferably increase) the transcription amount of a gene encoding at least one protein of proteins involved in jasmonate signal. It is.
  • the promoter of the gene encoding REF is not particularly limited, but is preferably derived from the above-mentioned plant, and is at least one selected from the group consisting of Hevea, Sonchus, Taraxacum, and Parthenium. More preferably, they are derived from plants belonging to the genus of Among them, it is more preferable that it is derived from at least one kind of plant selected from the group consisting of Hevea brasiliensis, Nogeshi, guayule and russian dander, and it is more preferably that it is derived from Hevea brasiliensis.
  • the promoter of the gene encoding REF is preferably a DNA represented by any of the following [A1] to [A3].
  • hybridize as used herein is the same as described above.
  • stringent conditions are also the same as described above.
  • the base sequence of the promoter may also have promoter activity if it has a certain degree of sequence identity with the original base sequence. It is known that there is.
  • the sequence identity with the base sequence represented by SEQ ID NO: 9 for maintaining promoter activity is at least 60% or more, preferably 80% or more, more preferably 90% or more, still more preferably 95% or more Still more preferably, it is 98% or more, particularly preferably 99% or more.
  • the promoter of the above-mentioned SRPP-encoding gene is not particularly limited in its origin, but is preferably from the above-mentioned plant, and is at least one selected from the group consisting of Hevea, Sonchus, Taraxacum, and Parthenium. More preferably, they are derived from plants belonging to the genus of Among them, it is more preferable that it is derived from at least one kind of plant selected from the group consisting of Hevea brasiliensis, Nogeshi, guayule and russian dander, and it is more preferably that it is derived from Hevea brasiliensis.
  • the promoter of the gene encoding SRPP is preferably a DNA represented by any of the following [B1] to [B3].
  • B3 A DNA consisting of a nucleotide sequence having a sequence identity of 60% or more with the nucleotide sequence represented by SEQ ID NO: 10, and having a promoter activity for expressing a gene specifically in the milk duct
  • hybridize as used herein is the same as described above.
  • stringent conditions are also the same as described above.
  • the base sequence of the promoter may also have promoter activity if it has a certain degree of sequence identity with the original base sequence. It is known that there is.
  • the sequence identity with the base sequence represented by SEQ ID NO: 10 for maintaining promoter activity is at least 60% or more, preferably 80% or more, more preferably 90% or more, still more preferably 95% or more Still more preferably, it is 98% or more, particularly preferably 99% or more.
  • the promoter of the gene encoding HEV2.1 is not particularly limited in its origin, but is preferably derived from the above-mentioned plant, and is at least selected from the group consisting of Hevea, Sonchus, Taraxacum, and Parthenium. More preferably, they are derived from plants belonging to one genus. Among them, it is more preferable that it is derived from at least one kind of plant selected from the group consisting of Hevea brasiliensis, Nogeshi, guayule and russian dander, and it is more preferably that it is derived from Hevea brasiliensis.
  • the promoter of the gene encoding HEV2.1 is preferably a DNA represented by any one of the following [C1] to [C3].
  • [C3] A DNA consisting of a nucleotide sequence having a sequence identity of 60% or more with the nucleotide sequence represented by SEQ ID NO: 11 and having a promoter activity to express a gene specifically in the milk duct
  • hybridize as used herein is the same as described above.
  • stringent conditions are also the same as described above.
  • the base sequence of the promoter may also have promoter activity if it has a certain degree of sequence identity with the original base sequence. It is known that there is.
  • the sequence identity with the base sequence represented by SEQ ID NO: 11 for maintaining the promoter activity is at least 60% or more, preferably 80% or more, more preferably 90% or more, still more preferably 95% or more Still more preferably, it is 98% or more, particularly preferably 99% or more.
  • the promoter of the gene encoding MYC1 is not particularly limited in its origin, but is preferably derived from the above-mentioned plant, and is at least one selected from the group consisting of Hevea, Sonchus, Taraxacum, and Parthenium. More preferably, they are derived from plants belonging to the genus of Among them, it is more preferable that it is derived from at least one kind of plant selected from the group consisting of Hevea brasiliensis, Nogeshi, guayule and russian dander, and it is more preferably that it is derived from Hevea brasiliensis.
  • the promoter of the gene encoding MYC1 is preferably a DNA represented by any of the following [D1] to [D3].
  • [D3] A DNA consisting of a nucleotide sequence having a sequence identity of 60% or more with the nucleotide sequence represented by SEQ ID NO: 12, and having a promoter activity for expressing a gene specifically in breast ducts
  • hybridize as used herein is the same as described above.
  • stringent conditions are also the same as described above.
  • the base sequence of the promoter may also have promoter activity if it has a certain degree of sequence identity with the original base sequence. It is known that there is.
  • the sequence identity with the base sequence represented by SEQ ID NO: 12 for maintaining promoter activity is at least 60% or more, preferably 80% or more, more preferably 90% or more, still more preferably 95% or more Still more preferably, it is 98% or more, particularly preferably 99% or more.
  • the DNA that hybridizes with the above-mentioned DNA under stringent conditions or the DNA having a sequence identity of 60% or more with the above-mentioned DNA is a DNA having a promoter activity that causes a gene to be expressed specifically in the milk duct
  • Examples of the method of confirmation include a method of confirmation by a reporter assay using, as a reporter gene, ⁇ -galactosidase, luciferase, GFP (Green Fluorescent Protein) or the like, which is a conventionally known method.
  • a conventionally known method can be used as a method of identifying the base sequence of the above-mentioned promoter. For example, genomic DNA is extracted from a growing plant by CTAB (Cetyl Trimethyl Ammonium Bromide) method. Next, a primer specific to the known base sequence of the promoter and a random primer are designed, and the extracted genomic DNA is used as a template to perform TAIL (Thermal Asymmetric Interlaced) -PCR method, and the gene containing the promoter And identify the nucleotide sequence.
  • CTAB Chip Trimethyl Ammonium Bromide
  • Second vector of the present invention in a promoter having promoter activity that specifically expresses a gene in the mammary duct, a gene encoding a Nogo-B receptor (NgBR) family protein or a cis-prenyltransferase (CPT) family protein
  • NgBR Nogo-B receptor
  • CPT cis-prenyltransferase
  • a predetermined protein involved in polyisoprenoid biosynthesis is specifically expressed in the mammary duct, whereby the predetermined protein of the second present invention is newly contained in the plant body into which the vector of the present invention has been introduced.
  • the functions such as enzyme activity can be enhanced in the intraductal duct to enhance a part of the biosynthetic pathway of polyisoprenoid, and as a result, the production amount of cis-type isoprenoid and polyisoprenoid in plants can be improved.
  • the present inventors have found for the first time that in vitro binding of CPT family protein and NgBR family protein to rubber particles activates rubber synthesis of the rubber particles. From this, it is predicted that co-expression of CPT family protein and NgBR family protein in a plant body enhances rubber synthesis activity. Therefore, it can be expected that the production amount of polyisoprenoid can be further increased by producing polyisoprenoid using a transformed plant co-expressed with CPT family protein and NgBR family protein.
  • a vector comprising a nucleotide sequence in which a gene encoding a Nogo-B receptor (NgBR) family protein is functionally linked to a promoter having a promoter activity that specifically expresses a gene in the above-mentioned transformed plant is expressed.
  • NgBR Nogo-B receptor
  • a nucleotide sequence in which a gene encoding a cis-prenyltransferase (CPT) family protein is functionally linked to a promoter having a promoter activity that specifically expresses a gene in the mammary duct It is preferable to use in combination a vector containing
  • a promoter encoding a gene specific to the mammary duct and a gene encoding a cis-prenyltransferase (CPT) family protein and a gene encoding a Nogo-B receptor (NgBR) family protein are functionally added
  • a Nogo-B receptor (NgBR) family protein is encoded as a transformed plant obtained by introducing a vector containing a linked base sequence into a plant, and a promoter having a promoter activity that specifically expresses a gene in the breast duct Gene encoding a cis-prenyltransferase (CPT) family protein,
  • the above-mentioned milk duct is a vector comprising a nucleotide sequence in which a gene encoding a cis-prenyltransferase (CPT) family protein is functionally linked to a promoter having promoter activity that specifically expresses a gene in the above breast duct.
  • CPT cis-prenyltransferase
  • CPT cis-prenyl transferase
  • Such a transformed plant can be produced by a conventionally known method.
  • the plant into which the vector of the second invention of the present invention is introduced to produce the above-mentioned transformed plants is not particularly limited.
  • CPT family proteins and NgBR family proteins are expressed in plants capable of biosynthesizing polyisoprenoids.
  • rubber-producing plants are preferable as the above-mentioned plant, since the improvement of the productivity of polyisoprenoid and the increase of the production amount of polyisoprenoid can be expected in particular.
  • at least one rubber-producing plant selected from the group consisting of Hevea brasiliensis, Nogeshi, Guayule and Russian dandelion is more preferable, and the Hevea brasiliensis is particularly preferable.
  • any method of introducing DNA into plant cells may be used.
  • methods using Agrobacterium JP-A-59-140885, JP-A-60-70080, WO 94/00977
  • electroporation JP-A-60
  • a method using a particle gun Gene gun
  • the vector of the second invention of the present invention may be introduced into the above-mentioned DNA, etc. to produce an organism, part of an organism, an organ, a tissue or a cultured cell such as a microorganism, yeast, animal cell or insect cell.
  • a tissue or a cultured cell such as a microorganism, yeast, animal cell or insect cell.
  • the above-mentioned transformed plant (transformed plant cell) can be obtained by the above method and the like.
  • the above-mentioned transformed plant is a concept including not only the transformed plant cell obtained by the above-mentioned method, but also all the progeny or clones thereof, and the progeny plants obtained by further passing them.
  • progeny or clones are obtained from the transformed plant cell by sexual reproduction, asexual reproduction, tissue culture, cell culture, cell fusion, etc. It is possible to get.
  • propagation materials eg, seeds, fruits, chopped ears, tubers, tuberous roots, strains, adventitious shoots, somatic embryos, calli, protoplasts, etc.
  • propagation materials eg, seeds, fruits, chopped ears, tubers, tuberous roots, strains, adventitious shoots, somatic embryos, calli, protoplasts, etc.
  • a method for regenerating a plant (transformed plant) from a transformed plant cell for example, the method of Toi et al. (Japanese Patent Application No. 11-127025) for Eucalyptus (Japanese Patent Application No. 11-127025), the method of Fujimura et al. , Plant Tissue Culture Lett., Vol. 2: p74-), the method of Shillito et al. (Shillito et al. (1989), Bio / Technology, vol. 7: p581-) for corn, the method of Visser et al. 1989), Theor. Appl. Genet., Vol.
  • expression of the target protein gene can be confirmed by using a known method.
  • the expression of the target protein may be analyzed by western blot.
  • the transformed plant is allowed to root in an appropriate medium, and the rooted body is transplanted to a pot containing a soil containing water.
  • the seeds are grown under appropriate cultivation conditions and finally formed into seeds to obtain the seeds.
  • a seed derived from a transformed plant obtained as described above is sowed on soil containing water and grown under appropriate cultivation conditions. You can get
  • a gene encoding a protein involved in polyisoprenoid biosynthesis included in the vector by introducing the vector of the second aspect of the present invention into a plant (particularly preferably a gene encoding a CPT family protein) And genes encoding NgBR family proteins) can be expressed specifically in the mammary duct, and the production amount of cis-type isoprenoid and polyisoprenoid in the plant can be improved.
  • the transformed plant cells obtained by the above-mentioned method, the callus obtained from the transformed plant cells, the cells redifferentiated from the callus, etc. are cultured in an appropriate medium, or A cis-type isoprenoid or polyisoprenoid can be produced by growing a differentiated transformed plant, a plant obtained from a seed obtained from the transformed plant, etc. under appropriate cultivation conditions.
  • a method of improving the amount of production of cis-isoprenoid in a plant by introducing the vector of the second present invention into a plant is also one of the second present invention.
  • a method of improving the production amount of polyisoprenoid in a plant by introducing the vector of the second present invention into a plant is also one of the second present invention.
  • a kneaded product is obtained by kneading a polyisoprenoid obtained from a transformed plant obtained by introducing the vector of the second present invention into a plant and an additive. It is a manufacturing method of a rubber product including a kneading step to be obtained, a raw rubber product forming step of molding a raw rubber product from the above-mentioned kneaded product, and a vulcanization step of vulcanizing the raw rubber product.
  • the rubber product is the same as that described above in the first invention.
  • the raw rubber product forming step corresponds to the vulcanization process which vulcanizes the above-mentioned green tire to the green tire formation process which molds a tire. That is, in the method for producing a pneumatic tire according to the second aspect of the present invention, a polyisoprenoid obtained from a transformed plant obtained by introducing the vector according to the second aspect of the present invention into a plant is kneaded with an additive.
  • It is a manufacturing method of a pneumatic tire including a kneading step of obtaining a kneaded material, a green tire molding step of molding a green tire from the kneaded material, and a vulcanization step of vulcanizing the green tire.
  • kneading process a polyisoprenoid obtained from a transformed plant obtained by introducing the vector of the second invention of the present invention into a plant and an additive are kneaded to obtain a kneaded product.
  • the polyisoprenoid obtained from the transformed plant obtained by introducing the vector of the second invention of the present invention into the plant is obtained by collecting latex from the above-mentioned transformed plant and subjecting the collected latex to the following solidification step.
  • the method for collecting latex from the above-mentioned transformed plant is not particularly limited, and a commonly used method can be adopted.
  • the emulsion that damages the stem of the plant and oozes out is collected (tapping), roots, etc.
  • a part of the transformed plant can be cut, and the emulsion exuding from the cut portion can be collected, or the cut tissue can be crushed and extracted and collected using an organic solvent.
  • the collected latex is subjected to a solidification step.
  • the method for solidifying is not particularly limited, and a method of adding the latex to a solvent which does not dissolve polyisoprenoid (natural rubber) such as ethanol, methanol and acetone, a method of adding an acid to the latex, and the like can be mentioned.
  • a solvent which does not dissolve polyisoprenoid natural rubber
  • a method of adding an acid to the latex, and the like can be mentioned.
  • rubber natural rubber
  • the obtained rubber may be dried before use, as necessary.
  • the additive is not particularly limited, and additives used for producing a rubber product can be used.
  • rubber components other than rubber obtained from the above latex carbon black, silica, calcium carbonate, alumina, clay, reinforcing filler such as talc, silane coupling agent, Examples thereof include zinc oxide, stearic acid, processing aids, various anti-aging agents, softeners such as oils, waxes, vulcanizing agents such as sulfur, and vulcanization accelerators.
  • Kneading in the kneading step may be performed using a rubber kneading apparatus such as an open roll, a Banbury mixer, or a closed-type kneader.
  • a rubber kneading apparatus such as an open roll, a Banbury mixer, or a closed-type kneader.
  • the raw rubber product forming step is the same as the step described above in the first invention.
  • the vulcanization process is the same as the process described above in the first invention.
  • RNA was extracted from Hevea brasiliensis latex by the hot phenol method.
  • 6 mL of a 100 mM sodium acetate buffer solution and 1 mL of a 10% SDS solution were added, and further 12 mL of water-saturated phenol preheated at 65 ° C. was added. After incubating for 5 minutes at 65 ° C., the mixture was vortexed and centrifuged at 7,000 rpm for 10 minutes at room temperature. After centrifugation, the supernatant was transferred to a new tube, and 12 mL of a phenol: chloroform (1: 1) solution was added and shaken for 2 minutes.
  • CPT and NgBR Genes from cDNA were obtained using the prepared 1st strand cDNA as a template. PCR was carried out using KOD-plus-Neo (manufactured by TOYOBO) according to the instruction. PCR was performed for 35 cycles, 10 seconds at 98 ° C., 30 seconds at 58 ° C., and 1 minute at 68 ° C.
  • the CPT gene (HRT1) and the NgBR gene (HRTBP) were obtained.
  • the sequences of the resulting genes were identified, and the full-length nucleotide and amino acid sequences were identified.
  • the nucleotide sequence of HRT1 is shown in SEQ ID NO: 1.
  • the amino acid sequence of HRT1 is shown in SEQ ID NO: 2.
  • the nucleotide sequence of HRTBP is shown in SEQ ID NO: 3.
  • the amino acid sequence of HRTBP is shown in SEQ ID NO: 4.
  • E. coli DH5 ⁇ is transformed using the vector prepared above, the transformant is cultured on LB agar medium containing ampicillin and X-gal, and E. coli into which the target gene has been introduced is selected by blue / white screening method.
  • E. coli transformed with the plasmid containing the target gene was cultured overnight at 37 ° C. on LB liquid medium, and then the cells were recovered to recover the plasmid.
  • the plasmid was recovered using Fast Gene plasmid mini kit (manufactured by Japan Genetics). Sequence analysis confirmed that there was no mutation in the base sequence of the gene inserted into the recovered plasmid.
  • E. coli DH5 ⁇ was transformed using the vector prepared above, and the transformant was cultured on LB agar medium containing ampicillin and X-gal, and E. coli into which the target gene had been introduced was selected by colony PCR.
  • E. coli transformed with the plasmid containing the target gene was cultured overnight at 37 ° C. on LB liquid medium, and then the cells were recovered to recover the plasmid.
  • the plasmid was recovered using Fast Gene plasmid mini kit (manufactured by Japan Genetics).
  • Rubber particles were prepared from Hevea latex by five steps of centrifugation. To 900 mL of Hevea latex, 100 mL of 1 M Tris buffer (pH 7.5) containing 20 mM dithiothreitol (DTT) was added to prepare a latex solution. The resulting latex solution was stepwise centrifuged at different centrifugation speeds of 1000 ⁇ g, 2000 ⁇ g, 8000 ⁇ g, 20000 ⁇ g, 50000 ⁇ g. All centrifugations were performed at 4 ° C. for 45 minutes.
  • Tris buffer pH 7.5
  • DTT dithiothreitol
  • Cell-free protein synthesis reaction (STEP1 mRNA transcription reaction)
  • STEP1 mRNA transcription reaction Cell-free protein synthesis reaction was performed using WEPRO7240H Expression kit (manufactured by Cell Free Science Co., Ltd.).
  • WEPRO7240H Expression kit manufactured by Cell Free Science Co., Ltd.
  • mRNA transcription reaction was performed according to the protocol of WEPRO7240H Expression kit.
  • the rubber synthesis activity of the recovered rubber particles after reaction was measured by the following method. First, 50 mM Tris-HCl (pH 7.5), 2 mM DTT, 5 mM MgCl 2 , 15 ⁇ M farnesyl diphosphate (FPP), 100 ⁇ M 1-14 C isopentenyl diphosphate ([1-14 C] IPP) (specific activity: 5 Ci) / Mol), a reaction solution (Total 100 ⁇ L) in which 10 ⁇ L of rubber particle solution was mixed was prepared, and reacted at 30 ° C. for 16 hours.
  • Cell-free protein synthesis reaction (STEP1 mRNA transcription reaction)
  • STEP1 mRNA transcription reaction Cell-free protein synthesis reaction was performed using WEPRO7240H Expression kit (manufactured by Cell Free Science Co., Ltd.).
  • WEPRO7240H Expression kit manufactured by Cell Free Science Co., Ltd.
  • mRNA transcription reaction was performed according to the protocol of WEPRO7240H Expression kit.
  • Example 2 Cell-free protein synthesis was carried out in the same manner as in Example 1 except that pEU-C1-HRTBP obtained in [Preparation of a cell-free protein synthesis method] in Example 1 was used as a template, and after recovery reaction The rubber synthesis activity of the rubber particles was measured in the same manner as in Example 1. The results are shown in Table 1.
  • Example 2 [Synthesis of lettuce (Lactuca sativa) CPT and NgBR gene] Based on the information published in BLAST, lettuce (Lactuca sativa) CPT gene (LsCPT3) and NgBR gene (LsCPTL2), the gene synthesis service of Genscript Japan Co. Composed and created.
  • the Xho I site is added to the 5 'end of LsCPT3 and the Kpn I site is added to the 3' end, and the EcoRV is added to the 5 'end of LsCPTL2 for cloning into a vector for cell-free protein synthesis described later.
  • the Xho I site was added to the 3 'end of the site.
  • the CPT gene (LsCPT3) and the NgBR gene (LsCPTL2) were obtained by the method described above. The sequences of the resulting genes were identified, and the full-length nucleotide and amino acid sequences were identified.
  • the base sequence of LsCPT3 is shown in SEQ ID NO: 13.
  • the amino acid sequence of LsCPT3 is shown in SEQ ID NO: 14.
  • the nucleotide sequence of LsCPTL2 is shown in SEQ ID NO: 15.
  • the amino acid sequence of LsCPTL2 is shown in SEQ ID NO: 16.
  • Cell-free protein synthesis reaction (STEP1 mRNA transcription reaction)
  • STEP1 mRNA transcription reaction Cell-free protein synthesis reaction was performed using WEPRO7240H Expression kit (manufactured by Cell Free Science Co., Ltd.).
  • WEPRO7240H Expression kit manufactured by Cell Free Science Co., Ltd.
  • mRNA transcription reaction was performed according to the protocol of WEPRO7240H Expression kit.
  • RNA extraction from Arabidopsis thaliana was extracted from Arabidopsis thaliana by the hot phenol method. After freezing the seedlings with liquid nitrogen and crushing in a mortar, water saturated phenol at 80 ° C, RNA extraction buffer at 80 ° C (100 mM LiCl, 100 mM Tris-HCl (pH 8.0), 10 mM EDTA, 1% SDS) respectively 400 ⁇ L of each was added and vortexed for 30 seconds. Further, 400 ⁇ L of chloroform / isoamyl alcohol (24: 1) was added and vortexed for 30 seconds.
  • the upper layer was collected by centrifugation at 15,000 rpm for 15 minutes at 4 ° C.
  • 500 ⁇ L of 4 M LiCl was added and mixed, and allowed to stand at -80 ° C for 1 hour.
  • the mixture was centrifuged at 15,000 rpm for 15 minutes at 4 ° C., and the precipitate obtained after removing the supernatant was dissolved in 400 ⁇ L of DEPC-treated water. 880 ⁇ L of ethanol and 40 ⁇ L of 3 M NaOAc were added and mixed.
  • the mixture was centrifuged at 15,000 rpm for 15 minutes at 4 ° C., and the precipitate obtained after removing the supernatant was washed with 300 ⁇ L of 70% ethanol.
  • the mixture was centrifuged at 15,000 rpm for 5 minutes at 4 ° C., and the precipitate obtained after removing the supernatant was dissolved in 30 ⁇ L of DEPC-treated water.
  • DNase treatment was performed.
  • DNase I TaKaRa
  • DNase I recombinant RNase-free (Roche) was used.
  • 50 ⁇ L of the reaction solution was prepared according to the conditions recommended by the manufacturer, and incubated at 37 ° C. for 30 minutes.
  • CPT and NgBR Genes from cDNA were obtained using the prepared 1st strand cDNA as a template. PCR was carried out using KOD-plus-Neo (manufactured by TOYOBO) according to the instruction. PCR was carried out for 35 cycles with 10 seconds at 98 ° C., 15 seconds at 55-60 ° C., and 30 seconds at 68 ° C. as one cycle.
  • the CPT gene (AtCPT8) and the NgBR gene (AtLEW1) were obtained by the method described above.
  • the resulting gene was treated with restriction enzymes BamH I, and then inserted into pBluescript IISK (-) similarly treated with BamH I to prepare pBS-AtCPT8 and pBS-AtLEW1.
  • the sequences of each gene in the obtained plasmid were identified, and the full-length base sequence and amino acid sequence were identified.
  • the nucleotide sequence of AtCPT8 is shown in SEQ ID NO: 21.
  • the amino acid sequence of AtCPT8 is shown in SEQ ID NO: 22.
  • the nucleotide sequence of AtLEW1 is shown in SEQ ID NO: 23.
  • the amino acid sequence of AtLEW1 is shown in SEQ ID NO: 24.
  • the CPT and NgBR genes were obtained using the obtained pBS-AtCPT8 and pBS-AtLEW1 as a template. PCR was carried out using KOD-plus-Neo (manufactured by TOYOBO) according to the instruction. PCR was carried out for 35 cycles with 10 seconds at 98 ° C., 15 seconds at 55-60 ° C., and 30 seconds at 68 ° C. as one cycle. Acquisition of CPT gene as a primer Primer 23: 5'- tatcccggggatgaatacc-3 ' Primer 24: 5'- tgaactagtctaatcgagctttttc-3 ' It was used. Acquisition of NgBR gene is used as a primer Primer 25: 5'- acccgggatggattcg-3 ' Primer 26: 5'-cgcggactagtttaagttccatag-3 ' It was used.
  • Cell-free protein synthesis reaction (STEP1 mRNA transcription reaction)
  • STEP1 mRNA transcription reaction Cell-free protein synthesis reaction was performed using WEPRO7240H Expression kit (manufactured by Cell Free Science Co., Ltd.).
  • WEPRO7240H Expression kit manufactured by Cell Free Science Co., Ltd.
  • mRNA transcription reaction was performed according to the protocol of WEPRO7240H Expression kit.
  • the rubber synthesis ability of the rubber particle can be remarkably enhanced as compared with the case where each of the CPT family protein and the NgBR family protein is individually bonded to the rubber particle.
  • the combination of CPT family protein and NgBR family protein is such that the rubber synthesis activity is suppressed as compared to Comparative Example 1 in which nothing is bonded.
  • the effect is a synergetic effect that combines each single effect, it is possible that the rubber synthesis ability of rubber particles can be significantly enhanced only by using a specific combination of CPT family protein and NgBR family protein. An effect is an effect that can not be predicted even by those skilled in the art.
  • the natural rubber synthesized in Examples 1 to 3 has a peak top at the same GPC elution time, and a natural rubber which can be said to be equivalent in molecular weight distribution pattern is synthesized. It can be said that In addition, since the result of FIG. 4 is not standardized among samples, it can not compare activity by the height of a peak.
  • Example 4 [Acquisition of REF gene from cDNA]
  • the REF gene was obtained using the 1st strand cDNA prepared in [Synthesis of cDNA from Total RNA] in Example 1 as a template.
  • PCR was carried out using KOD-plus-Neo (manufactured by TOYOBO) according to the instruction. PCR was performed for 35 cycles, 10 seconds at 98 ° C., 30 seconds at 58 ° C., and 1 minute at 68 ° C.
  • the REF gene was obtained by the method described above. The sequences of the resulting genes were identified, and the full-length nucleotide and amino acid sequences were identified.
  • the nucleotide sequence of REF is shown in SEQ ID NO: 27.
  • the amino acid sequence of REF is shown in SEQ ID NO: 28.
  • Cell-free protein synthesis reaction (STEP1 mRNA transcription reaction)
  • Cell-free protein synthesis was performed using WEPRO7240H Expression kit (manufactured by Cell Free Science Co., Ltd.).
  • mRNA transcription reaction was performed according to the protocol of WEPRO7240H Expression kit.
  • Example 5 [Acquisition of CPT gene from cDNA]
  • the CPT gene was obtained using the 1st strand cDNA prepared in [Synthesis of cDNA from Total RNA] in Example 1 as a template.
  • PCR was carried out using KOD-plus-Neo (manufactured by TOYOBO) according to the instruction. PCR was performed for 35 cycles, 10 seconds at 98 ° C., 30 seconds at 58 ° C., and 1 minute at 68 ° C.
  • the CPT gene (HRT2) was obtained by the method described above. The sequences of the resulting genes were identified, and the full-length nucleotide and amino acid sequences were identified.
  • the nucleotide sequence of HRT2 is shown in SEQ ID NO: 31.
  • the amino acid sequence of HRT2 is shown in SEQ ID NO: 32.
  • Cell-free protein synthesis reaction (STEP1 mRNA transcription reaction)
  • Cell-free protein synthesis was performed using WEPRO7240H Expression kit (manufactured by Cell Free Science Co., Ltd.).
  • the vector pEU-His-N2-HRT2 obtained in the above [Preparation of a vector for cell-free protein synthesis method]
  • the vector pEU-C1-HRTBP obtained in [Preparation of a cell-free protein synthesis method of Example 1]
  • mRNA transcription reaction was performed according to the protocol of WEPRO7240H Expression kit.
  • Example 6 [Acquisition of CPT gene from cDNA]
  • the CPT gene was obtained using the 1st strand cDNA prepared in [Synthesis of cDNA from Total RNA] in Example 1 as a template.
  • PCR was carried out using KOD-plus-Neo (manufactured by TOYOBO) according to the instruction. PCR was performed for 35 cycles, 10 seconds at 98 ° C., 30 seconds at 58 ° C., and 1 minute at 68 ° C. Acquisition of CPT gene as a primer Primer 13: 5'- atacccgggatggaaatatatac-3 ' Primer 14: 5'- actcccgggttattttaatattc-3 ' It was used.
  • CPT3 The CPT gene (CPT3) was obtained by the method described above. The sequences of the resulting genes were identified, and the full-length nucleotide and amino acid sequences were identified.
  • the nucleotide sequence of CPT3 is shown in SEQ ID NO: 35.
  • the amino acid sequence of CPT3 is shown in SEQ ID NO: 36.
  • Cell-free protein synthesis reaction (STEP1 mRNA transcription reaction)
  • Cell-free protein synthesis was performed using WEPRO7240H Expression kit (manufactured by Cell Free Science Co., Ltd.).
  • the vector pEU-His-N2-CPT3 obtained in the above [Preparation of a vector for cell-free protein synthesis method] the vector pEU-C1-HRTBP obtained in [Preparation of a cell-free protein synthesis method of Example 1]
  • mRNA transcription reaction was performed according to the protocol of WEPRO7240H Expression kit.
  • Example 7 [Acquisition of CPT gene from cDNA]
  • the CPT gene was obtained using the 1st strand cDNA prepared in [Synthesis of cDNA from Total RNA] in Example 1 as a template.
  • PCR was carried out using KOD-plus-Neo (manufactured by TOYOBO) according to the instruction. PCR was performed for 35 cycles, 10 seconds at 98 ° C., 30 seconds at 58 ° C., and 1 minute at 68 ° C. Acquisition of CPT gene as a primer Primer 15: 5'- tatcccgggatggaaata-3 ' Primer 16: 5'- atacccgggttacaactgc-3 ' It was used.
  • the CPT gene (CPT5) was obtained by the method described above. The sequences of the resulting genes were identified, and the full-length nucleotide and amino acid sequences were identified.
  • the nucleotide sequence of CPT5 is shown in SEQ ID NO: 40.
  • the amino acid sequence of CPT5 is shown in SEQ ID NO: 41.
  • Cell-free protein synthesis reaction (STEP1 mRNA transcription reaction)] Cell-free protein synthesis was performed using WEPRO7240H Expression kit (manufactured by Cell Free Science Co., Ltd.).
  • WEPRO7240H Expression kit manufactured by Cell Free Science Co., Ltd.
  • the vector pEU-C1-HRTBP obtained in [Preparation of a cell-free protein synthesis method of Example 1]
  • mRNA transcription reaction was performed according to the protocol of WEPRO7240H Expression kit.
  • Taraxacum brevicorniculatum CPT gene (TbCPT1) was created by synthesizing the region from the start codon to the stop codon based on the gene synthesis service of Genscript Japan Co., Ltd. The Xho I site was added to the 5 'end of TbCPT1 and the Kpn I site was added to the 3' end for cloning into a vector for cell-free protein synthesis described later.
  • TbCPT1 The CPT gene (TbCPT1) was obtained by the method described above. The sequences of the resulting genes were identified, and the full-length nucleotide and amino acid sequences were identified.
  • the nucleotide sequence of TbCPT1 is shown in SEQ ID NO: 42.
  • the amino acid sequence of TbCPT1 is shown in SEQ ID NO: 43.
  • Cell-free protein synthesis reaction (STEP1 mRNA transcription reaction)
  • STEP1 mRNA transcription reaction Cell-free protein synthesis reaction was performed using WEPRO7240H Expression kit (manufactured by Cell Free Science Co., Ltd.).
  • WEPRO7240H Expression kit manufactured by Cell Free Science Co., Ltd.
  • mRNA transcription reaction was performed according to the protocol of WEPRO7240H Expression kit.
  • Cell-free protein synthesis reaction (STEP1 mRNA transcription reaction)
  • STEP1 mRNA transcription reaction Cell-free protein synthesis was performed using WEPRO7240H Expression kit (manufactured by Cell Free Science Co., Ltd.).
  • WEPRO7240H Expression kit manufactured by Cell Free Science Co., Ltd.
  • mRNA transcription reaction was performed according to the protocol of WEPRO7240H Expression kit.
  • Cell-free protein synthesis reaction (STEP1 mRNA transcription reaction)
  • STEP1 mRNA transcription reaction Cell-free protein synthesis reaction was performed using WEPRO7240H Expression kit (manufactured by Cell Free Science Co., Ltd.).
  • WEPRO7240H Expression kit manufactured by Cell Free Science Co., Ltd.
  • mRNA transcription reaction was performed according to the protocol of WEPRO7240H Expression kit.
  • Cell-free protein synthesis reaction (STEP1 mRNA transcription reaction)
  • STEP1 mRNA transcription reaction Cell-free protein synthesis reaction was performed using WEPRO7240H Expression kit (manufactured by Cell Free Science Co., Ltd.).
  • WEPRO7240H Expression kit manufactured by Cell Free Science Co., Ltd.
  • mRNA transcription reaction was performed according to the protocol of WEPRO7240H Expression kit.
  • the human (Homo sapiens) CPT gene was created by synthesizing the region from the start codon to the stop codon based on the gene synthesis service of Genscript Japan Ltd. based on the information published in BLAST .
  • the XmaI site was added to the 5 'end of the HDS and the SpeI site was added to the 3' end of the HDS for cloning into a vector for cell-free protein synthesis described later.
  • the CPT gene was obtained by the method described above. The sequences of the resulting genes were identified, and the full-length nucleotide and amino acid sequences were identified.
  • the nucleotide sequence of HDS is shown in SEQ ID NO: 64.
  • the amino acid sequence of HDS is shown in SEQ ID NO: 50.
  • Cell-free protein synthesis reaction (STEP1 mRNA transcription reaction)
  • STEP1 mRNA transcription reaction Cell-free protein synthesis reaction was performed using WEPRO7240H Expression kit (manufactured by Cell Free Science Co., Ltd.).
  • WEPRO7240H Expression kit manufactured by Cell Free Science Co., Ltd.
  • mRNA transcription reaction was performed according to the protocol of WEPRO7240H Expression kit.
  • yeast (Saccharomyces cerevisiae) CPT gene was created by synthesizing the region from the start codon to the stop codon based on the gene synthesis service of Genscript Japan Ltd. based on the information disclosed in BLAST .
  • the XmaI site was added to the 5 'end of SRT1 and the SpeI site was added to the 3' end, for cloning into a vector for cell-free protein synthesis described later.
  • the CPT gene (SRT1) was obtained by the method described above. The sequences of the resulting genes were identified, and the full-length nucleotide and amino acid sequences were identified.
  • the nucleotide sequence of SRT1 is shown in SEQ ID NO: 63.
  • the amino acid sequence of SRT1 is shown in SEQ ID NO: 47.
  • Cell-free protein synthesis reaction (STEP1 mRNA transcription reaction)
  • STEP1 mRNA transcription reaction Cell-free protein synthesis reaction was performed using WEPRO7240H Expression kit (manufactured by Cell Free Science Co., Ltd.).
  • WEPRO7240H Expression kit manufactured by Cell Free Science Co., Ltd.
  • mRNA transcription reaction was performed according to the protocol of WEPRO7240H Expression kit.
  • Primer 17 5'- ttaggatccatggatattacaacgg-3 '
  • Primer 18 5'- aacggatccttttaagtatctctatg-3 ' It was used.
  • Example 3 the pBS-AtCPT8 obtained in Example 3 was treated with a restriction enzyme Bam HI to obtain an AtCPT8 gene in which the restriction enzymes at the 5 'end and the 3' end were Bam HI.
  • PCR is performed using pGEM-HRTBP and pBS-AtLEW1 obtained in Examples 1 and 3 as a template using the following primers, and they can be cloned into yeast expression vectors pGK415 and pGK425, respectively, at the 5 'end, 3'
  • An HRTBP was obtained in which both restriction enzymes were Xho I at the terminal side, an AtLEW1 gene in which the restriction enzyme at the 5 'end was Sal I, and the restriction enzyme at the 3' end was Bam HI.
  • PCR was carried out using KOD-plus-Neo (manufactured by TOYOBO) according to the instruction.
  • PCR was performed for 35 cycles, 10 seconds at 98 ° C., 30 seconds at 58 ° C., and 1 minute at 68 ° C.
  • Primer 19 5'- tttctcgagatggatttgaaacctggagctg-3 '
  • Primer 20 5'- tttctcgagtcatgtaccataatttt gctgcac-3 ' It was used.
  • Primer 21 5'- gtcgacatggattcgaatcaatcg-3 '
  • Primer 22 5'- ggatccttaagttccatagttttgg-3 ' It was used.
  • each pGEM-NgBR series obtained in the above [Construction of vector] is treated with restriction enzyme Xho I, and then inserted into the expression vector pGK425 for expression of yeast digested with Sal I, pGK425-HRTBP and pGK425-AtLEW1 Made.
  • E. coli DH5 ⁇ was transformed using the vector prepared above, and both were cultured in LB medium containing Amp.
  • the supernatant was removed by centrifugation, and the cells were suspended in Breakage Buffer, and then the cells were disrupted three times using a 0.5 mm glass bead and repeating a cycle of 30 seconds vortex 30 seconds on ice.
  • the supernatant was recovered by centrifugation at 300 ⁇ g for 5 minutes to remove unbroken cells.
  • the supernatant was separated into supernatant and pellet by centrifuging at 17400 ⁇ g.
  • the pellet was suspended in Breakage Buffer to obtain a crude enzyme solution of the insoluble fraction.
  • the compositions of Zymolyase buffer and Breakage Buffer are as follows.
  • Zymolyase buffer Tris-HCl (pH 7.5) 50 mM MgCl 2 10 mM Sorbitol 1M DTT 1x
  • Breakage Buffer Tris-HCl (pH 8.0) 100 mM NaCl 150 mM DTT 1 mM Protease Inhibitor Cocktail (Nacalai tesque) 1x
  • the reaction was stopped by adding 200 ⁇ L of saturated saline, and 1 mL of diethyl ether was added and vortexed. After centrifuging at 15000 rpm for 1 minute, the upper layer (ether layer) was collected in another tube.
  • the reaction product was extracted by adding 1 mL of water-saturated butanol to the aqueous layer and stirring, and then centrifuging at 15000 rpm for 1 minute to recover the upper layer (butanol layer).
  • reaction composition (Total 100 mL): Acetate buffer (pH 5.6) 40 mM Triton X-100 0.1% (v / v) Methanol 40% (v / v) Butanol layer (reaction product) 20% (v / v) Potato acid phosphatase (Roche) 10U
  • the reaction was stopped by adding 120 ⁇ L of 5 M NaOH, and the hydrolysis reaction was performed at 37 ° C. for 30 minutes. 0.7 mL of pentane was added and stirred to extract polyprenol into the pentane layer.
  • the upper layer (pentane layer) was recovered by centrifugation at 15000 rpm for 1 minute, and the product was developed using a reverse phase TLC plate (LKC-18, manufactured by Whatman).
  • the developing solvent was acetone / water (39: 1).
  • the present inventors predict the following mechanism. That is, it is thought that the degree of hydrophobicity and space (spatial breadth) at which the product synthesized by the CPT family protein is accumulated determines the chain length of the product synthesized.
  • the CPT family protein is hydrophobic to the CPT family protein even though the CPT family protein exhibits an activity that can not confirm the reaction product or exhibits the activity and can synthesize the product.
  • the chain length of the product extends only to a size that can be accommodated in the cleft structure.
  • the product synthesized by the CPT family protein is transferred from the hydrophobic cleft structure of the CPT family protein into the lipid bilayer membrane in the cell (eg, between endoplasmic reticulum membranes, etc.)
  • the product chain is accumulated because it is accumulated in the lipid bilayer membrane, and the environment is a hydrophobic environment, but is accumulated in a space not so wide as a space in the lipid bilayer membrane in cells.
  • There is a limit to the extension of the length this is considered to be an isoprene polymer having a chain length of about 90 carbons synthesized as described above).
  • the product synthesized by the CPT family protein is accumulated in a space not so wide as a space within a lipid bilayer membrane in cells, It is also believed that there is a limit to the chain length extension of the product being synthesized.
  • the product synthesized by the CPT family protein is accumulated in the rubber particle, and the environment is Because it is a hydrophobic environment and is much wider than in lipid bilayer membranes in cells, it is a hydrophobic environment and has less space constraints, so the product chain length is sufficiently extended It is possible to synthesize very long chain polyisoprenoid (natural rubber).
  • UDP pyrophosphate synthetase (Escherichia coli CPT) is an excerpt from position 7 to position 125 of undecaprenyl phosphate synthetase (UPPS) derived from Escherichia coli shown by SEQ ID NO: 45.
  • UDP M. gluteus B-P 26 CPT
  • UDP is an excerpt from position 11 to position 129 of Undecaprenyl diphosphate synthetase (UPS) derived from the genus Micrococcus, as shown in SEQ ID NO: 46.
  • SRT1 (Yeast CPT) is an excerpt from positions 57 to 175 of SRT1 derived from yeast shown in SEQ ID NO: 47.
  • AtCPT5 (Arabidopsis thaliana CPT5) is an excerpt from positions 61 to 179 of AtCPT5 derived from Arabidopsis thaliana shown by SEQ ID NO: 44.
  • AtCPT8 (Arabidopsis thaliana CPT8) is an excerpt from positions 25 to 142 of AtCPT8 derived from Arabidopsis thaliana shown by SEQ ID NO: 22.
  • DDPS Naturala sylvestris CPT
  • SEQ ID NO: 48 is an excerpt from positions 24 to 140 of tobacco-derived DDPS represented by SEQ ID NO: 48.
  • HbCPT1 (Hevea brasiliensis CPT) is an excerpt from positions 23 to 139 of HRT1 derived from Hevea brasiliensis shown in SEQ ID NO: 2.
  • HbCPT2 (Hevea brasiliensis CPT) is an excerpt from positions 23 to 139 of HRT2 derived from Hevea brasiliensis shown in SEQ ID NO: 32.
  • HbCPT3 (Hevea brasiliensis CPT) is an excerpt from positions 23 to 139 of CPT3 derived from Hevea brasiliensis shown in SEQ ID NO: 36.
  • HbCPT4 (Hevea brasiliensis CPT) is an excerpt from positions 24 to 140 of CPT4 derived from Hevea brasiliensis shown in SEQ ID NO: 37.
  • HbCPT5 (Hevea brasiliensis CPT) is an excerpt from positions 23 to 139 of CPT5 derived from Hevea brasiliensis shown in SEQ ID NO: 41.
  • LsCPT3 (Lactuca sativa CPT) is an excerpt from positions 40 to 156 of LsCPT3 derived from lettuce represented by SEQ ID NO: 14.
  • TbCPT1 (Taraxacum brevicorniculatum CPT) is an excerpt from positions 40 to 154 of TbCPT1 derived from Taraxacum brevicorniculatum represented by SEQ ID NO: 43.
  • DDPS (Mouse CPT) is an excerpt from positions 16 to 132 of mouse-derived DDPS represented by SEQ ID NO: 49.
  • HDS Human CPT is an excerpt from positions 16 to 132 of human-derived HDS represented by SEQ ID NO: 50.
  • box B (parasitisum tree-derived HRT1 shown in SEQ ID NO: 2) (Corresponding to positions 81 to 97) is part of CPT family proteins from various organisms and is part of a highly conserved conserved region, particularly corresponding to position 41 in HRT1 derived from Hevea brasiliensis as shown in SEQ ID NO: 2 Position is conserved asparagine residue ((1) in FIG. 5), and a position corresponding to position 42 in Hevea gram-derived HRT1 shown in SEQ ID NO: 2 is a glycine residue (as shown in FIG.
  • the conserved region of box A corresponding to positions 41 to 49 in Hevea brasiliensis HRT1 shown in SEQ ID NO: 2 corresponds to the position 25 to 33 in the undecaprenyl phosphate synthetase (UPPS) derived from E. coli shown in SEQ ID NO: 45 Equivalent to a rank, It corresponds to positions 29 to 37 in the undecaprenyl diphosphate synthetase (UPS) derived from Micrococcus sp.
  • UPPS undecaprenyl phosphate synthetase
  • AtCPT5 derived from Arabidopsis thaliana shown in SEQ ID NO: 44 corresponds to positions 79 to 87
  • AtCPT8 derived from Arabidopsis thaliana shown in SEQ ID NO: 22 corresponds to positions 43 to 51, 42 to 50 in tobacco-derived DDPS represented by SEQ ID NO: 48
  • HRT2 derived from Hevea brasiliensis shown in SEQ ID NO: 32 corresponds to positions 41 to 49
  • In CPT3 derived from Hevea brasiliensis shown in SEQ ID NO: 36 this corresponds to positions 41 to 49
  • In CPT4 derived from Hevea brasiliensis shown in SEQ ID NO: 37 this corresponds to positions 42 to 50
  • In CPT5 derived from Hevea brasiliensis shown in SEQ ID NO: 41 this corresponds to positions 41 to 49
  • LsCPT3 derived from Arabidopsis thaliana shown in SEQ ID NO: 44 corresponds to positions 79 to 87
  • the conserved region in box B corresponding to the 81st to 97th positions in HRT1 derived from Hevea brasiliensis shown in SEQ ID NO: 2 corresponds to the 65th to 81st positions in undecaprenyl phosphate synthetase (UPPS) derived from E.
  • UPPS undecaprenyl phosphate synthetase
  • the aspartic acid residue (1) corresponding to position 41 in HRT1 derived from Hevea brasiliensis shown in SEQ ID NO: 2 is the aspartic acid in position 25 in the undecaprenyl phosphate synthetase (UPPS) derived from Escherichia coli shown in SEQ ID NO: 45 Corresponds to the residue, In undecaprenyl diphosphate synthetase (UPS) derived from Micrococcus sp.
  • UPPS undecaprenyl phosphate synthetase
  • SEQ ID NO: 46 this corresponds to the aspartate residue at position 29; It corresponds to the aspartic acid residue at position 75 in yeast-derived SRT1 represented by SEQ ID NO: 47, AtCPT5 derived from Arabidopsis thaliana represented by SEQ ID NO: 44 corresponds to the aspartic acid residue at position 79, AtCPT8 derived from Arabidopsis thaliana represented by SEQ ID NO: 22 corresponds to an aspartic acid residue at position 43, It corresponds to an aspartic acid residue at position 42 in tobacco-derived DDPS represented by SEQ ID NO: 48, HRT2 derived from Hevea brasiliensis as shown in SEQ ID NO: 32 corresponds to the aspartic acid residue at position 41, In CPT3 derived from Hevea brasiliensis as shown in SEQ ID NO: 36, this corresponds to the aspartic acid residue at position 41, In CPT4 derived from Hevea brasiliensis as shown in SEQ ID NO: 37
  • a glycine residue (2) corresponding to position 42 in Hevea gram-derived HRT1 shown in SEQ ID NO: 2 is a glycine residue at position 26 in the undecaprenyl phosphate synthetase (UPPS) derived from E. coli shown in SEQ ID NO: 45 Equivalent to In undecaprenyl diphosphate synthetase (UPS) derived from Micrococcus sp.
  • UPPS undecaprenyl phosphate synthetase
  • SEQ ID NO: 46 corresponds to a glycine residue at position 30; Corresponds to a glycine residue at position 76 in yeast-derived SRT1 represented by SEQ ID NO: 47, AtCPT5 derived from Arabidopsis thaliana represented by SEQ ID NO: 44 corresponds to a glycine residue at position 80, AtCPT8 derived from Arabidopsis thaliana represented by SEQ ID NO: 22 corresponds to a glycine residue at position 44, It corresponds to a glycine residue at position 43 in tobacco-derived DDPS represented by SEQ ID NO: 48, HRT2 derived from Hevea brasiliensis as shown in SEQ ID NO: 32 corresponds to a glycine residue at position 42, In CPT3 derived from Hevea brasiliensis shown in SEQ ID NO: 36, this corresponds to a glycine residue at position 42, CPT4 derived from Hevea brasiliensis as shown in
  • An arginine residue (3) corresponding to position 45 in Hevea brasiliensis HRT1 shown in SEQ ID NO: 2 is an arginine residue at position 29 in the undecaprenyl phosphate synthetase (UPPS) derived from E. coli shown in SEQ ID NO: 45 Equivalent to In undecaprenyl diphosphate synthetase (UPS) derived from Micrococcus sp.
  • UPPS undecaprenyl phosphate synthetase
  • SEQ ID NO: 46 this corresponds to an arginine residue at position 33, which corresponds to an arginine residue at position 79 in yeast-derived SRT1 represented by SEQ ID NO: 47, AtCPT5 derived from Arabidopsis thaliana represented by SEQ ID NO: 44 corresponds to an arginine residue at position 83, AtCPT8 derived from Arabidopsis thaliana represented by SEQ ID NO: 22 corresponds to an arginine residue at position 47, It corresponds to an arginine residue at position 46 in tobacco-derived DDPS represented by SEQ ID NO: 48, HRT2 derived from Hevea brasiliensis as shown in SEQ ID NO: 32 corresponds to an arginine residue at position 45, In CPT3 derived from Hevea brasiliensis as shown in SEQ ID NO: 36, this corresponds to an arginine residue at position 45, In CPT4 derived from Hevea brasiliensis as shown in SEQ ID NO:
  • the asparagine residue (4) corresponding to position 89 in Hevea gram-derived HRT1 represented by SEQ ID NO: 2 is the asparagine residue at position 73 in the undecaprenyl phosphate synthetase (UPPS) derived from Escherichia coli shown in SEQ ID NO: 45 Equivalent to In undecaprenyl diphosphate synthetase (UPS) derived from Micrococcus sp.
  • UPPS undecaprenyl phosphate synthetase
  • SEQ ID NO: 46 this corresponds to the asparagine residue at position 77
  • the yeast-derived SRT1 represented by SEQ ID NO: 47 corresponds to an asparagine residue at position 123
  • AtCPT5 derived from Arabidopsis thaliana represented by SEQ ID NO: 44 corresponds to an asparagine residue at position 127
  • AtCPT8 derived from Arabidopsis thaliana represented by SEQ ID NO: 22 corresponds to an asparagine residue at position 92
  • HRT2 derived from Hevea brasiliensis as shown in SEQ ID NO: 32 corresponds to the asparagine residue at position 89
  • In CPT3 derived from Hevea brasiliensis as shown in SEQ ID NO: 36 this corresponds to the asparagine residue at position 89
  • SEQ ID NO: 1 Nucleotide sequence of the gene encoding HRT1 derived from Hevea brasiliensis SEQ ID NO: 2 amino acid sequence of HRT1 derived from Hevea brasiliensis SEQ ID NO: 3: Nucleotide sequence of the gene encoding HRTBP derived from Hevea brasiliensis SEQ ID NO: 4: HRTBP derived from Hevea brasiliensis Amino acid sequence SEQ ID NO: 5: primer 1 Sequence number 6: Primer 2 Sequence number 7: Primer 3 Sequence number 8: Primer 4 SEQ ID NO: 9: Base sequence of promoter of gene encoding Rubber Elongation Factor from Hevea brasiliensis SEQ ID NO: 10: Base sequence of promoter of gene encoding Small Rubber Particle Protein from Hevea brasiliensis SEQ ID NO: 11: Code Hevien 2.1 from Hevea brasiliensis SEQ ID NO: 12 of the promoter of the
  • SEQ ID NO: 46 Undecaprenyl diphosphate from Micrococcus Amino acid sequence of acid synthase (UPS) SEQ ID NO: 47: Amino acid sequence of yeast-derived SRT1 SEQ ID NO: 48: amino acid sequence of tobacco-derived DDPS SEQ ID NO: 49: Amino acid sequence of mouse-derived DDPS SEQ ID NO: 50: Amino acid sequence of human-derived HDS SEQ ID NO: 51: Amino acid sequence from position 41 to 49 in HRT1 derived from Hevea brasiliensis SEQ ID NO: 52: position 81 in HRT1 derived from Hevea brasiliensis SEQ ID NO: 53: Primer 17 SEQ ID NO: 54: Primer 18 SEQ ID NO: 55: Primer 19 SEQ ID NO: 56: Primer 20 SEQ ID NO: 57: Primer 21 SEQ ID NO: 58: Primer 22 SEQ ID NO: 59: Primer 23 SEQ ID NO: 60: Primer 24 SEQ ID NO:

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Botany (AREA)
  • Mechanical Engineering (AREA)
  • Nutrition Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Tires In General (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Tyre Moulding (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Physiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)

Abstract

本発明は、ゴム粒子のゴム合成活性を増強させ、天然ゴムの増産を可能にする、ポリイソプレノイドの製造方法を提供する。 本発明は、シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子、及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子を利用し、これら遺伝子がコードする蛋白質を結合させたゴム粒子を利用した生体外でのポリイソプレノイドの製造方法、または乳管特異的に遺伝子を発現させるプロモーター活性を有するプロモーターに、CPTファミリー蛋白質をコードする遺伝子、NgBRファミリー蛋白質をコードする遺伝子を結合させたベクターを植物に導入し、乳管特異的にこれらの遺伝子がコードする蛋白質を発現させることによるポリイソプレノイドの製造方法である。

Description

ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法
本発明は、ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法、及びゴム製品の製造方法に関する。
現在、工業用ゴム製品に用いられている天然ゴム(ポリイソプレノイドの1種)は、トウダイグサ科のパラゴムノキ(Hevea brasiliensis)や桑科植物のインドゴムノキ(Ficus elastica)などのゴム産生植物を栽培し、その植物体が有する乳管細胞で天然ゴムを生合成させ、該天然ゴムを植物から手作業により採取することにより得られる。
現在、工業用ゴム製品に用いられている天然ゴムは、パラゴムノキをほぼ唯一の採取源としている。パラゴムノキは東南アジアや南米などの限られた地域でのみ生育可能な植物である。更に、パラゴムノキは、植樹からゴムの採取が可能な成木になるまでに7年程度を要し、また、天然ゴムを採取できる期間は20~30年に限られる。今後、開発途上国を中心に天然ゴムの需要の増大が見込まれているが、上述の理由によりパラゴムノキによる天然ゴムの大幅な増産は困難である。そのため、天然ゴム資源の枯渇が懸念されており、パラゴムノキの成木以外の安定的な天然ゴムの供給源やパラゴムノキにおける天然ゴムの生産効率の改善が望まれている。
天然ゴムは、イソペンテニル二リン酸(IPP)を基本単位とし、シス-1,4-ポリイソプレン構造をとっており、天然ゴムの生合成にはその構造からシス型プレニルトランスフェラーゼ(CPT)が関係していると考えられている。例えば、パラゴムノキでは複数のCPTの存在が確認されており、Hevea Rubber transferase 1(HRT1)、Hevea Rubber transferase 2(HRT2)などが知られている(例えば、非特許文献1、2参照。)。また、タンポポの一種であるゴムタンポポ(Taraxacum brevicorniculatum)ではCPTの発現量を抑えることにより、ゴムの合成量が低下することが知られている(例えば、非特許文献3参照。)。
また、これまでに天然ゴムの生合成に関わるタンパク質の研究として、Rubber Elongation Factor(REF)、Small Rubber Particle Protein(SRPP)が注目されてきた(例えば、非特許文献4、5参照。)。しかしながら、これらのタンパク質とCPTとの関係は解明されていない。
他方、ヒトCPTにおけるドリコール生合成において、Nogo-B receptor(NgBR)が関与していることが示唆されている(例えば、非特許文献6参照。)。
他方、近年の遺伝子工学の発展に伴い、天然の植物体に所望の外来遺伝子を導入することによって形質の改変を図ることが可能となってきている。例えば、特許文献1では、パラゴムノキのプレニルトランスフェラーゼをコードする遺伝子を植物に導入して形質転換することで、ゴムの生産性の向上が期待できるとしている。
ただし、植物体への外来遺伝子の導入として、乳管以外の部位で遺伝子発現が促されると、植物体の代謝や乳液の生産に負荷をかけ、悪影響を及ぼす可能性がある。そのため、乳管で特異的に遺伝子発現を促すプロモーターの探索が行われている(例えば、特許文献2、非特許文献7及び8参照)。
特許第5035871号公報 特開2010-119373号公報
Rahaman他、BMC Genomics、2013年、第14巻 Asawatreratanakul他、EuropeanJournal of Biochemistry、2003年、第270巻、4671~4680ページ Post他、Plant Physiology、2012年、第158巻、1406~1417ページ Hillebrand他、PLoS ONE、2012年、第7巻 Priya他、Plant Cell Reports、2007年、第26巻、1833~1838ページ K.D.Harrison他、The EMBO Journal、2011年、第30巻、2490~2500ページ P.Priya他、Plant Science、2006年、第171巻、470~480ページ Sandeep Kumar Tata他、Industrial Crops and Products、2012年、第40巻、219~224ページ
上述のように、パラゴムノキの成木以外の安定的な天然ゴムの供給源の開発やパラゴムノキにおける天然ゴムの生産効率の改善が望まれており、また、天然ゴムの生産量を向上させることを目的として、遺伝子組換え技術の開発が検討されているが、現状、天然ゴムの生合成機構、特にその調節機構には未解明の部分が多く、天然ゴムの大幅な増産のためにはまだまだ多くの工夫の余地がある。そのような中で、上記課題を解決するための一つのアプローチとして、天然ゴムの生合成においてCPTの活性の安定化及び増強を図ることにより天然ゴムの増産を目指す方法が考えられる。
本発明は、前記課題を解決し、生体外で、ゴム粒子のゴム合成活性を増強させ、天然ゴムの増産を可能にする、ポリイソプレノイドの製造方法を提供することを目的とする。
本発明はまた、前記課題を解決し、遺伝子組換え技術により植物体に導入することでポリイソプレノイドの生産量を向上させることができるベクターを提供することを目的とする。また、該ベクターが導入された形質転換植物、並びに、該ベクターを植物に導入することにより、該植物におけるシス型イソプレノイド、ポリイソプレノイドの生産量を向上させる方法を提供することも目的とする。
本発明は、生体外で、シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子を発現させた蛋白質、及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子を発現させた蛋白質をゴム粒子に結合させる結合工程を含むポリイソプレノイドの製造方法に関する。以降、この発明を本発明の第1の発明とし、第1の本発明とも称する。
上記シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質は、配列番号2で示されるパラゴムノキ由来のHRT1における41位、及びこれに相当する位置にアスパラギン酸残基を、配列番号2で示されるパラゴムノキ由来のHRT1における42位、及びこれに相当する位置にグリシン残基を、配列番号2で示されるパラゴムノキ由来のHRT1における45位、及びこれに相当する位置にアルギニン残基を、並びに、配列番号2で示されるパラゴムノキ由来のHRT1における89位、及びこれに相当する位置にアスパラギン残基を、有するものであることが好ましい。
上記シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質は、配列番号2で示されるパラゴムノキ由来のHRT1における41位から49位、及びこれに相当する位置のアミノ酸配列が、以下のアミノ酸配列(A):
DGNXRXAKK   (A)
(上記アミノ酸配列(A)中、X及びXは同一又は異なって任意のアミノ酸残基を表す。)、又は、該アミノ酸配列(A)と、X及びXを除く7アミノ酸残基のうちの5アミノ酸残基以上が同一である配列同一性を有するアミノ酸配列であることが好ましい。
上記シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質は、配列番号2で示されるパラゴムノキ由来のHRT1における81位から97位、及びこれに相当する位置のアミノ酸配列が、以下のアミノ酸配列(B):
TX1112AFSX1314NX1516RX171819EV   (B)
(上記アミノ酸配列(B)中、X11~X19は同一又は異なって任意のアミノ酸残基を表す。)、又は、該アミノ酸配列(B)と、X11~X19を除く8アミノ酸残基のうちの5アミノ酸残基以上が同一である配列同一性を有するアミノ酸配列であることが好ましい。
上記シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子、及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子からなる群より選択される少なくとも1種は、植物由来であることが好ましい。
上記シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子、及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子からなる群より選択される少なくとも1種は、パラゴムノキ由来であることが好ましい。
上記結合工程は、シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードするmRNA、及びNogo-B receptor(NgBR)ファミリー蛋白質をコードするmRNAを含む無細胞蛋白合成溶液とゴム粒子とを共存させて蛋白質合成を行い、ゴム粒子に、CPTファミリー蛋白質、及びNgBRファミリー蛋白質を結合させる工程であることが好ましい。
上記無細胞蛋白合成溶液は、胚芽抽出物を含むことが好ましい。
上記胚芽抽出物は、小麦由来であることが好ましい。
上記無細胞蛋白合成溶液と共存させるゴム粒子の濃度は、5~50g/Lであることが好ましい。
第1の本発明はまた、上記第1の本発明のポリイソプレノイドの製造方法により得られたポリイソプレノイドと、添加剤とを混練して混練物を得る混練工程、上記混練物から生タイヤを成形する生タイヤ成形工程、及び上記生タイヤを加硫する加硫工程を含む空気入りタイヤの製造方法に関する。
第1の本発明はまた、上記第1の本発明のポリイソプレノイドの製造方法により得られたポリイソプレノイドと、添加剤とを混練して混練物を得る混練工程、上記混練物から生ゴム製品を成形する生ゴム製品成形工程、及び上記生ゴム製品を加硫する加硫工程を含むゴム製品の製造方法に関する。
本発明はまた、乳管特異的に遺伝子を発現させるプロモーター活性を有するプロモーター、及び、該プロモーターに機能的に連結されたNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子を含むベクターに関する。以降、この発明を本発明の第2の発明とし、第2の本発明とも称する。
第2の本発明はまた、乳管特異的に遺伝子を発現させるプロモーター活性を有するプロモーター、並びに、該プロモーターに機能的に連結されたシス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子を含むベクターにも関する。
上記乳管特異的に遺伝子を発現させるプロモーター活性を有するプロモーターは、Rubber Elongation Factor(REF)をコードする遺伝子のプロモーター、Small Rubber Particle Protein(SRPP)をコードする遺伝子のプロモーター、Hevein2.1(HEV2.1)をコードする遺伝子のプロモーター、及び、MYC1 transcription factor(MYC1)をコードする遺伝子のプロモーターからなる群より選択される少なくとも1種であることが好ましい。
第2の本発明はまた、上記いずれかのベクターが導入された形質転換植物に関する。
第2の本発明はまた、上記いずれかのベクターを植物に導入することにより、該植物におけるシス型イソプレノイドの生産量を向上させる方法に関する。
第2の本発明はまた、上記いずれかのベクターを植物に導入することにより、該植物におけるポリイソプレノイドの生産量を向上させる方法に関する。
第2の本発明はまた、上記いずれかのベクターを植物に導入することにより得られる形質転換植物から得られるポリイソプレノイドと、添加剤とを混練して混練物を得る混練工程、上記混練物から生タイヤを成形する生タイヤ成形工程、及び上記生タイヤを加硫する加硫工程を含む空気入りタイヤの製造方法に関する。
第2の本発明はまた、上記いずれかのベクターを植物に導入することにより得られる形質転換植物から得られるポリイソプレノイドと、添加剤とを混練して混練物を得る混練工程、上記混練物から生ゴム製品を成形する生ゴム製品成形工程、及び上記生ゴム製品を加硫する加硫工程を含むゴム製品の製造方法に関する。
第1の本発明によれば、生体外で、シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子を発現させた蛋白質、及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子を発現させた蛋白質をゴム粒子に結合させる結合工程を含むポリイソプレノイドの製造方法であるので、ゴム粒子にCPTファミリー蛋白質、及びNgBRファミリー蛋白質を結合させることで、CPTファミリー蛋白質の活性が安定化、増強されることが予想される。その結果、ゴム粒子のゴム合成能力を増強させることができ、より効率的に反応槽(試験管、プラントなど)内でゴムを生産することが可能となる。
第1の本発明の空気入りタイヤの製造方法は、第1の本発明のポリイソプレノイドの製造方法により得られたポリイソプレノイドと、添加剤とを混練して混練物を得る混練工程、上記混練物から生タイヤを成形する生タイヤ成形工程、及び上記生タイヤを加硫する加硫工程を含む空気入りタイヤの製造方法であるので、ポリイソプレノイド製造時の製造効率が高い手法で得られたポリイソプレノイドから空気入りタイヤを製造するため、植物資源を有効に利用でき、環境に配慮して空気入りタイヤを製造することができる。
第1の本発明のゴム製品の製造方法は、第1の本発明のポリイソプレノイドの製造方法により得られたポリイソプレノイドと、添加剤とを混練して混練物を得る混練工程、上記混練物から生ゴム製品を成形する生ゴム製品成形工程、及び上記生ゴム製品を加硫する加硫工程を含むゴム製品の製造方法であるので、ポリイソプレノイド製造時の製造効率が高い手法で得られたポリイソプレノイドからゴム製品を製造するため、植物資源を有効に利用でき、環境に配慮してゴム製品を製造することができる。
第2の本発明のベクターは、乳管特異的に遺伝子を発現させるプロモーター活性を有するプロモーター、及び、該プロモーターに機能的に連結されたNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子を含むベクターである。また、乳管特異的に遺伝子を発現させるプロモーター活性を有するプロモーター、並びに、該プロモーターに機能的に連結されたシス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子を含むベクターである。そして、該ベクターを植物に導入することにより、該ベクターに含まれる、ポリイソプレノイド生合成に関わる蛋白質をコードする遺伝子が乳管特異的に発現し、当該植物におけるシス型イソプレノイド、ポリイソプレノイドの生産量を向上させることができる。
第2の本発明の空気入りタイヤの製造方法は、第2の本発明のベクターを植物に導入することにより得られる形質転換植物から得られるポリイソプレノイドと、添加剤とを混練して混練物を得る混練工程、上記混練物から生タイヤを成形する生タイヤ成形工程、及び上記生タイヤを加硫する加硫工程を含む空気入りタイヤの製造方法であるので、ポリイソプレノイド生産量の向上した形質転換植物から得られるポリイソプレノイドから空気入りタイヤを製造するため、植物資源を有効に利用でき、環境に配慮して空気入りタイヤを製造することができる。
第2の本発明のゴム製品の製造方法は、第2の本発明のベクターを植物に導入することにより得られる形質転換植物から得られるポリイソプレノイドと、添加剤とを混練して混練物を得る混練工程、上記混練物から生ゴム製品を成形する生ゴム製品成形工程、及び上記生ゴム製品を加硫する加硫工程を含むゴム製品の製造方法であるので、ポリイソプレノイド生産量の向上した形質転換植物から得られるポリイソプレノイドから空気入りタイヤを製造するため、植物資源を有効に利用でき、環境に配慮してゴム製品を製造することができる。
CPT、及びNgBRがゴム粒子上でゴム合成を行っている様子を示す推測図である。 ポリイソプレノイドの生合成経路の一部を示す模式図である。 実施例において透析法を行っている様子を示す概略図である。 実施例1~3(図4の(a))、参考例1~4(図4の(b))、参考例5~6(図4の(c))において合成された超長鎖ポリイソプレノイド(天然ゴム)の分子量分布の測定結果を表すグラフである。 種々の生物由来のCPTファミリー蛋白質のマルチプルシーケンスアライメントを行った様子を示す概略図である。
本明細書においては、第1の本発明と第2の本発明を合わせて本発明ともいう。まず、第1の本発明について説明し、続いて第2の本発明について説明する。
(第1の本発明)
第1の本発明のポリイソプレノイドの製造方法は、生体外で、シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子を発現させた蛋白質、及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子を発現させた蛋白質をゴム粒子に結合させる結合工程を含む。
本発明者らは、生体外で、ゴム粒子にCPTファミリー蛋白質、及びNgBRファミリー蛋白質を結合させることで、ゴム粒子のゴム合成が活性化することを初めて見出した。なお、CPTファミリー蛋白質、及びNgBRファミリー蛋白質の組み合わせが直接的にゴム合成に関与していることは本発明者らが今回初めて見出したことである。CPTファミリー蛋白質、及びNgBRファミリー蛋白質は、図1に示すようにゴム粒子上に配置され、ゴム合成を行っているものと推測される。図1には、一例として、CPTファミリー蛋白質としてCPTが、NgBRファミリー蛋白質としてNgBRが描かれており、基質のイソペンテニル二リン酸(IPP)がCPTにより重合され、ゴム粒子中に天然ゴムが合成される様子が模式的に示されている。
したがって、第1の本発明の製造方法のように、生体外で(例えば、反応槽(試験管、プラントなど)内で)、ゴム粒子にCPTファミリー蛋白質、及びNgBRファミリー蛋白質を結合させることで、ゴム粒子のゴム合成能力を増強させることができ、より効率的に反応槽(試験管、プラントなど)内でゴムを生産することができる。
なお、第1の本発明の製造方法は、上記結合工程を含む限りその他の工程を含んでいてもよく、また、各工程は1回行われてもよいし、複数回繰り返し行われてもよい。
また、第1の本発明において、ゴム粒子に結合するCPTファミリー蛋白質、NgBRファミリー蛋白質の量は特に限定されない。
ここで、本明細書において、ゴム粒子にCPTファミリー蛋白質、及びNgBRファミリー蛋白質が結合するとは、CPTファミリー蛋白質、及びNgBRファミリー蛋白質の全部又は一部がゴム粒子中に取り込まれる又はゴム粒子の膜構造に挿入される、といったことを意味するが、これに限らず、ゴム粒子表面又は内部に局在する等の場合をも意味する。また更には、上述のようにゴム粒子に結合している蛋白質とCPTファミリー蛋白質、NgBRファミリー蛋白質が複合体を形成し、複合体としてゴム粒子上に存在する場合もゴム粒子に結合しているとの概念範囲に含まれる。
上記ゴム粒子の由来は特に限定されず、例えば、パラゴムノキ、ロシアンタンポポ、グアユール、ノゲシ、インドゴムノキなどのゴム産生植物のラテックス由来であればよい。
また、上記ゴム粒子の粒子径も特に限定されず、所定の粒子径のものを分取して用いてもよいし、様々な粒子径のものが含まれた状態のものを使用してもよく、所定の粒子径のものを分取して用いる場合であっても、用いられるゴム粒子としては、粒子径の小さいSmall Rubber Particles(SRP)を用いてもよいし、粒子径の大きいLarge Rubber Particles(LRP)を用いてもよい。
上記所定の粒子径のゴム粒子を分取する方法としては、通常行われる方法を採用することができるが、例えば、遠心分離処理、より好ましくは多段階の遠心分離処理、を行う方法などが挙げられる。具体的には、500~1500×gでの遠心分離処理、1700~2500×gでの遠心分離処理、7000~9000×gでの遠心分離処理、15000~25000×gでの遠心分離処理、40000~60000×gでの遠心分離処理を順に行う方法が挙げられる。なお、各遠心分離処理の処理時間としては、20分以上が好ましく、30分以上がより好ましく、40分以上が更に好ましい。一方、120分以下が好ましく、90分以下がより好ましい。また、各遠心分離処理の処理温度としては、0~10℃が好ましく、2~8℃がより好ましく、4℃が特に好ましい。
上記結合工程においては、生体外で、シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子を発現させた蛋白質、及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子を発現させた蛋白質がゴム粒子に結合される。
上記シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子、Nogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子は、その由来は特に制限されず、微生物由来であっても、動物由来であっても、植物由来であってもよいが、植物由来であることが好ましく、Hevea属、Sonchus属、Taraxacum属、及びParthenium属からなる群より選択される少なくとも1種の属に属する植物由来であることがより好ましい。中でも、パラゴムノキ、ノゲシ、グアユール及びロシアンタンポポからなる群より選択される少なくとも1種の植物由来であることが更に好ましく、特に好ましくは、パラゴムノキ由来であることである。最も好ましくはいずれもパラゴムノキ由来であることである。また、上記シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子、及び、Nogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子の由来が同じ種であることも好適な形態の1つである。
上記植物としては、特に限定されず、例えば、パラゴムノキ(Hevea brasiliensis)等のHevea属;ノゲシ(Sonchus oleraceus)、オニノゲシ(Sonchus asper)、ハチジョウナ(Sonchus brachyotus)等のSonchus属;セイタカアワダチソウ(Solidago altissima)、アキノキリンソウ(Solidago virgaurea subsp. asiatica)、ミヤマアキノキリンソウ(Solidago virgaurea subsp. leipcarpa)、キリガミネアキノキリンソウ(Solidago virgaurea subsp. leipcarpa f. paludosa)、オオアキノキリンソウ(Solidago virgaurea subsp. gigantea)、オオアワダチソウ(Solidago gigantea Ait. var. leiophylla Fernald)等のSolidago属;ヒマワリ(Helianthus annuus)、シロタエヒマワリ(Helianthus argophyllus)、ヘリアンサス・アトロルベンス(Helianthus atrorubens)、ヒメヒマワリ(Helianthus debilis)、コヒマワリ(Helianthus decapetalus)、ジャイアントサンフラワー(Helianthus giganteus)等のHelianthus属;タンポポ(Taraxacum)、エゾタンポポ(Taraxacum venustum H.Koidz)、シナノタンポポ(Taraxacum hondoense Nakai)、カントウタンポポ(Taraxacum platycarpum Dahlst)、カンサイタンポポ(Taraxacum japonicum)、セイヨウタンポポ(Taraxacum officinale Weber)、ロシアンタンポポ(Taraxacum koksaghyz)、Taraxacum brevicorniculatum等のTaraxacum属;イチジク(Ficus carica)、インドゴムノキ(Ficus elastica)、オオイタビ(Ficus pumila L.)、イヌビワ(Ficus erecta Thumb.)、ホソバムクイヌビワ(Ficus ampelas Burm.f.)、コウトウイヌビワ(Ficus benguetensis Merr.)、ムクイヌビワ(Ficus irisana Elm.)、ガジュマル(Ficus microcarpa L.f.)、オオバイヌビワ(Ficus septica Burm.f.)、ベンガルボダイジュ(Ficus benghalensis)等のFicus属;グアユール(Parthenium argentatum)、アメリカブクリョウサイ(Parthenium hysterophorus)、ブタクサ(Parthenium hysterophorus)等のParthenium属;レタス(Lactuca sativa)、ベンガルボダイジュ、シロイヌナズナ(Arabidopsis thaliana)等が挙げられる。
なお、本明細書において、シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質は、イソプレノイド化合物の鎖長をcis型に延長する反応を触媒する酵素である。具体的には、例えば、植物では、図2に示すようなポリイソプレノイド生合成経路によってポリイソプレノイドが生合成されるが、当該経路のうち、CPTファミリー蛋白質は、図2中の点線の枠で囲まれた部分の反応を触媒する酵素と考えられている。CPTファミリー蛋白質の特徴としては、Cis IPPS domain(NCBI Accession No.cd00475)に含まれるアミノ酸配列を有することである。
本明細書において、イソプレノイド化合物とは、イソプレン単位(C)を有する化合物を意味する。また、cis型イソプレノイドは、イソプレン単位がシス型に結合したイソプレノイド化合物を有する化合物であり、例えば、cis-ファルネシル二リン酸、ウンデカプレニル二リン酸、天然ゴムなどが挙げられる。
ここで、種々の生物由来のCPTファミリー蛋白質のマルチプルシーケンスアライメントを行った様子を示す概略図を図5に示すが、Shota Endo et.al.,Biochimica et Biophysica Acta,No.1625(2003)p.291-295や、Masahiro Fujihashi et.al.,PNAS,Vol.98,No.8(2001)p.4337-4342等の文献から、図5中の囲みA(配列番号2で示されるパラゴムノキ由来のHRT1においては、41位から49位に相当)、囲みB(配列番号2で示されるパラゴムノキ由来のHRT1においては、81位から97位に相当)が種々の生物由来のCPTファミリー蛋白質で保存性の高い保存領域の一部であり、保存領域とは、同様の配列(構造)を有する部位を意味し、蛋白質において同様の機能を有する部位であると推察される領域である。そして特に、配列番号2で示されるパラゴムノキ由来のHRT1における41位に相当する位置はアスパラギン酸残基が保存され(図5中の(1))、配列番号2で示されるパラゴムノキ由来のHRT1における42位に相当する位置はグリシン残基が保存され(図5中の(2))、配列番号2で示されるパラゴムノキ由来のHRT1における45位に相当する位置はアルギニン残基が保存され(図5中の(3))、配列番号2で示されるパラゴムノキ由来のHRT1における89位に相当する位置はアスパラギン残基が保存されており(図5中の(4))、これらのアミノ酸が、CPTファミリー蛋白質の酵素反応に必須のアミノ酸であり、当該位置にこれらのアミノ酸を有する蛋白質であればCPTファミリー蛋白質としての機能を有すると考えられる。
なお、上記マルチプルシーケンスアライメントは、後述の実施例の方法により実施できる。
すなわち、上記CPTファミリー蛋白質は、配列番号2で示されるパラゴムノキ由来のHRT1における41位、及びこれに相当する位置にアスパラギン酸残基を、配列番号2で示されるパラゴムノキ由来のHRT1における42位、及びこれに相当する位置にグリシン残基を、配列番号2で示されるパラゴムノキ由来のHRT1における45位、及びこれに相当する位置にアルギニン残基を、並びに、配列番号2で示されるパラゴムノキ由来のHRT1における89位、及びこれに相当する位置にアスパラギン残基を、有するものであることが好ましい。上述したように、上記CPTファミリー蛋白質がこのような配列を有していれば、CPTファミリー蛋白質としての機能を有すると考えられ、イソプレノイド化合物の鎖長をcis型に延長する反応を触媒する酵素として機能することができ、ゴム粒子にNgBRファミリー蛋白質と共に結合させることで、ゴム粒子のゴム合成能力を増強させることができ、ゴム粒子中に天然ゴムを合成することが可能となる。
上記CPTファミリー蛋白質は、配列番号2で示されるパラゴムノキ由来のHRT1における41位から49位、及びこれに相当する位置のアミノ酸配列が、以下のアミノ酸配列(A):
DGNXRXAKK   (A)
(上記アミノ酸配列(A)中、X及びXは同一又は異なって任意のアミノ酸残基を表す。)、又は、該アミノ酸配列(A)と、X及びXを除く7アミノ酸残基のうちの5アミノ酸残基以上が同一である配列同一性を有するアミノ酸配列であることがより好ましい。更に好ましくは、上記アミノ酸配列(A)中、XがH、GもしくはRを表し、また、XがW、F、もしくはYを表すことである。
上記アミノ酸配列(A)と、X及びXを除く7アミノ酸残基のうちの5アミノ酸残基以上が同一である配列同一性を有するアミノ酸配列は、X及びXを除く7アミノ酸残基のうちの6アミノ酸残基以上が同一であることがより好ましい。
また、上記CPTファミリー蛋白質は、配列番号2で示されるパラゴムノキ由来のHRT1における81位から97位、及びこれに相当する位置のアミノ酸配列が、以下のアミノ酸配列(B):
TX1112AFSX1314NX1516RX171819EV   (B)
(上記アミノ酸配列(B)中、X11~X19は同一又は異なって任意のアミノ酸残基を表す。)、又は、該アミノ酸配列(B)と、X11~X19を除く8アミノ酸残基のうちの5アミノ酸残基以上が同一である配列同一性を有するアミノ酸配列であることがより好ましい。
更に好ましくは、上記アミノ酸配列(B)中、X11がL、V、A、もしくはIを表し、また、X12がY、F、もしくはHを表し、また、X13がS、T、I、M、もしくはLを表し、また、X14がE、D、もしくはHを表し、また、X15がWもしくはFを表し、また、X16がN、S、K、G、もしくはRを表し、また、X17がP、S、H、G、R、K、もしくはQを表し、また、X18がA、K、S、もしくはPを表し、また、X19がQ、D、R、I、E、H、もしくはSを表すことである。
上記アミノ酸配列(B)と、X11~X19を除く8アミノ酸残基のうちの5アミノ酸残基以上が同一である配列同一性を有するアミノ酸配列は、X11~X19を除く8アミノ酸残基のうちの6アミノ酸残基以上が同一であることがより好ましく、7アミノ酸残基以上が同一であることが更に好ましい。
更に、CPTファミリー蛋白質は、配列番号2で示されるパラゴムノキ由来のHRT1における41位から49位、及びこれに相当する位置のアミノ酸配列が、配列番号2で示されるパラゴムノキ由来のHRT1における41位から49位のアミノ酸配列(DGNRRFAKK(配列番号51))と、9アミノ酸残基のうちの6アミノ酸残基以上が同一である配列同一性を有することが特に好ましい。当該配列同一性としては、9アミノ酸残基のうちの7アミノ酸残基以上が同一であることがより好ましく、8アミノ酸残基以上が同一であることが更に好ましい。
更に、CPTファミリー蛋白質は、配列番号2で示されるパラゴムノキ由来のHRT1における81位から97位、及びこれに相当する位置のアミノ酸配列が、配列番号2で示されるパラゴムノキ由来のHRT1における81位から97位のアミノ酸配列(TIYAFSIDNFRRKPHEV(配列番号52))と、17アミノ酸残基のうちの14アミノ酸残基以上が同一である配列同一性を有することが特に好ましい。当該配列同一性としては、17アミノ酸残基のうちの15アミノ酸残基以上が同一であることがより好ましく、16アミノ酸残基以上が同一であることが更に好ましい。
具体的には、配列番号2で示されるパラゴムノキ由来のHRT1において41位から49位に相当する保存領域は、例えば、配列番号45で示される大腸菌由来のウンデカプレニルリン酸合成酵素(UPPS)では25位から33位に相当し、配列番号46で示されるマイクロコッカス属菌由来のウンデカプレニル二リン酸合成酵素(UPS)では29位から37位に相当し、配列番号47で示される酵母由来のSRT1では75位から83位に相当し、配列番号44で示されるシロイヌナズナ由来のAtCPT5では79位から87位に相当し、配列番号22で示されるシロイヌナズナ由来のAtCPT8では43位から51位に相当し、配列番号48で示されるタバコ由来のDDPSでは42位から50位に相当し、配列番号32で示されるパラゴムノキ由来のHRT2では41位から49位に相当し、配列番号36で示されるパラゴムノキ由来のCPT3では41位から49位に相当し、配列番号37で示されるパラゴムノキ由来のCPT4では42位から50位に相当し、配列番号41で示されるパラゴムノキ由来のCPT5では41位から49位に相当し、配列番号14で示されるレタス由来のLsCPT3では58位から66位に相当し、配列番号43で示されるTaraxacum brevicorniculatum由来のTbCPT1では58位から66位に相当し、配列番号49で示されるマウス由来のDDPSでは34位から42位に相当し、配列番号50で示されるヒト由来のHDSでは34位から42位に相当する。
また、配列番号2で示されるパラゴムノキ由来のHRT1において81位から97位に相当する保存領域は、例えば、配列番号45で示される大腸菌由来のウンデカプレニルリン酸合成酵素(UPPS)では65位から81位に相当し、配列番号46で示されるマイクロコッカス属菌由来のウンデカプレニル二リン酸合成酵素(UPS)では69位から85位に相当し、配列番号47で示される酵母由来のSRT1では115位から131位に相当し、配列番号44で示されるシロイヌナズナ由来のAtCPT5では119位から135位に相当し、配列番号22で示されるシロイヌナズナ由来のAtCPT8では84位から100位に相当し、配列番号48で示されるタバコ由来のDDPSでは82位から98位に相当し、配列番号32で示されるパラゴムノキ由来のHRT2では81位から97位に相当し、配列番号36で示されるパラゴムノキ由来のCPT3では81位から97位に相当し、配列番号37で示されるパラゴムノキ由来のCPT4では82位から98位に相当し、配列番号41で示されるパラゴムノキ由来のCPT5では81位から97位に相当し、配列番号14で示されるレタス由来のLsCPT3では98位から114位に相当し、配列番号43で示されるTaraxacum brevicorniculatum由来のTbCPT1では98位から114位に相当し、配列番号49で示されるマウス由来のDDPSでは74位から90位に相当し、配列番号50で示されるヒト由来のHDSでは74位から90位に相当する。
また、配列番号2で示されるパラゴムノキ由来のHRT1において41位に相当するアスパラギン酸残基は、例えば、配列番号45で示される大腸菌由来のウンデカプレニルリン酸合成酵素(UPPS)では25位のアスパラギン酸残基に相当し、配列番号46で示されるマイクロコッカス属菌由来のウンデカプレニル二リン酸合成酵素(UPS)では29位のアスパラギン酸残基に相当し、配列番号47で示される酵母由来のSRT1では75位のアスパラギン酸残基に相当し、配列番号44で示されるシロイヌナズナ由来のAtCPT5では79位のアスパラギン酸残基に相当し、配列番号22で示されるシロイヌナズナ由来のAtCPT8では43位のアスパラギン酸残基に相当し、配列番号48で示されるタバコ由来のDDPSでは42位のアスパラギン酸残基に相当し、配列番号32で示されるパラゴムノキ由来のHRT2では41位のアスパラギン酸残基に相当し、配列番号36で示されるパラゴムノキ由来のCPT3では41位のアスパラギン酸残基に相当し、配列番号37で示されるパラゴムノキ由来のCPT4では42位のアスパラギン酸残基に相当し、配列番号41で示されるパラゴムノキ由来のCPT5では41位のアスパラギン酸残基に相当し、配列番号14で示されるレタス由来のLsCPT3では58位のアスパラギン酸残基に相当し、配列番号43で示されるTaraxacum brevicorniculatum由来のTbCPT1では58位のアスパラギン酸残基に相当し、配列番号49で示されるマウス由来のDDPSでは34位のアスパラギン酸残基に相当し、配列番号50で示されるヒト由来のHDSでは34位のアスパラギン酸残基に相当する。
また、配列番号2で示されるパラゴムノキ由来のHRT1において42位に相当するグリシン残基は、例えば、配列番号45で示される大腸菌由来のウンデカプレニルリン酸合成酵素(UPPS)では26位のグリシン残基に相当し、配列番号46で示されるマイクロコッカス属菌由来のウンデカプレニル二リン酸合成酵素(UPS)では30位のグリシン残基に相当し、配列番号47で示される酵母由来のSRT1では76位のグリシン残基に相当し、配列番号44で示されるシロイヌナズナ由来のAtCPT5では80位のグリシン残基に相当し、配列番号22で示されるシロイヌナズナ由来のAtCPT8では44位のグリシン残基に相当し、配列番号48で示されるタバコ由来のDDPSでは43位のグリシン残基に相当し、配列番号32で示されるパラゴムノキ由来のHRT2では42位のグリシン残基に相当し、配列番号36で示されるパラゴムノキ由来のCPT3では42位のグリシン残基に相当し、配列番号37で示されるパラゴムノキ由来のCPT4では43位のグリシン残基に相当し、配列番号41で示されるパラゴムノキ由来のCPT5では42位のグリシン残基に相当し、配列番号14で示されるレタス由来のLsCPT3では59位のグリシン残基に相当し、配列番号43で示されるTaraxacum brevicorniculatum由来のTbCPT1では59位のグリシン残基に相当し、配列番号49で示されるマウス由来のDDPSでは35位のグリシン残基に相当し、配列番号50で示されるヒト由来のHDSでは35位のグリシン残基に相当する。
また、配列番号2で示されるパラゴムノキ由来のHRT1において45位に相当するアルギニン残基は、例えば、配列番号45で示される大腸菌由来のウンデカプレニルリン酸合成酵素(UPPS)では29位のアルギニン残基に相当し、配列番号46で示されるマイクロコッカス属菌由来のウンデカプレニル二リン酸合成酵素(UPS)では33位のアルギニン残基に相当し、配列番号47で示される酵母由来のSRT1では79位のアルギニン残基に相当し、配列番号44で示されるシロイヌナズナ由来のAtCPT5では83位のアルギニン残基に相当し、配列番号22で示されるシロイヌナズナ由来のAtCPT8では47位のアルギニン残基に相当し、配列番号48で示されるタバコ由来のDDPSでは46位のアルギニン残基に相当し、配列番号32で示されるパラゴムノキ由来のHRT2では45位のアルギニン残基に相当し、配列番号36で示されるパラゴムノキ由来のCPT3では45位のアルギニン残基に相当し、配列番号37で示されるパラゴムノキ由来のCPT4では46位のアルギニン残基に相当し、配列番号41で示されるパラゴムノキ由来のCPT5では45位のアルギニン残基に相当し、配列番号14で示されるレタス由来のLsCPT3では62位のアルギニン残基に相当し、配列番号43で示されるTaraxacum brevicorniculatum由来のTbCPT1では62位のアルギニン残基に相当し、配列番号49で示されるマウス由来のDDPSでは38位のアルギニン残基に相当し、配列番号50で示されるヒト由来のHDSでは38位のアルギニン残基に相当する。
また、配列番号2で示されるパラゴムノキ由来のHRT1において89位に相当するアスパラギン残基は、例えば、配列番号45で示される大腸菌由来のウンデカプレニルリン酸合成酵素(UPPS)では73位のアスパラギン残基に相当し、配列番号46で示されるマイクロコッカス属菌由来のウンデカプレニル二リン酸合成酵素(UPS)では77位のアスパラギン残基に相当し、配列番号47で示される酵母由来のSRT1では123位のアスパラギン残基に相当し、配列番号44で示されるシロイヌナズナ由来のAtCPT5では127位のアスパラギン残基に相当し、配列番号22で示されるシロイヌナズナ由来のAtCPT8では92位のアスパラギン残基に相当し、配列番号48で示されるタバコ由来のDDPSでは90位のアスパラギン残基に相当し、配列番号32で示されるパラゴムノキ由来のHRT2では89位のアスパラギン残基に相当し、配列番号36で示されるパラゴムノキ由来のCPT3では89位のアスパラギン残基に相当し、配列番号37で示されるパラゴムノキ由来のCPT4では90位のアスパラギン残基に相当し、配列番号41で示されるパラゴムノキ由来のCPT5では89位のアスパラギン残基に相当し、配列番号14で示されるレタス由来のLsCPT3では106位のアスパラギン残基に相当し、配列番号43で示されるTaraxacum brevicorniculatum由来のTbCPT1では106位のアスパラギン残基に相当し、配列番号49で示されるマウス由来のDDPSでは82位のアスパラギン残基に相当し、配列番号50で示されるヒト由来のHDSでは82位のアスパラギン残基に相当する。
上記CPTファミリー蛋白質としては、パラゴムノキ由来のCPT(HRT1、HRT2、CPT3~5)、シロイヌナズナ由来のAtCPT1~9、レタス由来のCPT1~3、Taraxacum brevicorniculatum由来のCPT1~3、大腸菌由来のウンデカプレニルリン酸合成酵素(UPPS)、マイクロコッカス属菌由来のウンデカプレニル二リン酸合成酵素(UPS)、酵母由来のSRT1、タバコ由来のDDPS、マウス由来のDDPS、ヒト由来のHDSなどが挙げられる。
上記CPTファミリー蛋白質をコードする遺伝子は、ゴムを産生するゴム産生植物の他、ゴム産生植物以外の植物、動物、微生物等も有しており、これら由来のCPTファミリー蛋白質は当然、自然状態ではゴム合成に関与していない。にもかかわらず、本発明においては、CPTファミリー蛋白質であれば、その由来、種類等に関わらず、ゴム粒子に結合させることで、ゴム粒子のゴム合成能力を増強させることができ、ゴム粒子中に天然ゴムを合成することができる。そして更に、CPTファミリー蛋白質をNgBRファミリー蛋白質と共にゴム粒子に結合させることで、さらにゴム粒子のゴム合成能力を増強させることが可能となると考えられる。これは、CPTファミリー蛋白質とNgBRファミリー蛋白質の相互作用によるものと考えられる。
すなわち、CPTファミリー蛋白質をコードする遺伝子がゴムを産生する植物由来であるか、それ以外の生物由来であるか、または、自然状態でゴム合成に関与しているかなどに関わらず、本発明においては、CPTファミリー蛋白質でありさえすれば、ゴム粒子のゴム合成能力を増強させることができ、ゴム粒子中に天然ゴムを合成することができる。これは驚くべきことであるが、本発明者らは、CPTファミリー蛋白質の由来や種類よりも、どのような宿主に導入したのか、すなわち、CPTファミリー蛋白質をどのような環境下に発現させたのかが、ゴム合成活性においては重要である、と考えている。
上記点について、本発明者らは、次のようなメカニズムを予想している。
すなわち、CPTファミリー蛋白質が合成する生成物が蓄積される場の、疎水度及びスペース(空間的広さ)が、合成される生成物の鎖長を決定している、と考えている。
具体的には、大腸菌のような原核生物中では、CPTファミリー蛋白質は反応生成物を確認できない程度の活性しか示さないか、活性を示し生成物を合成できたとしても、CPTファミリー蛋白質の疎水性クレフト構造内に収容可能な程度の大きさまでしか生成物の鎖長は延びない。
また、酵母のような真核生物中では、CPTファミリー蛋白質が合成した生成物はCPTファミリー蛋白質の疎水性クレフト構造から細胞中の脂質二重膜内(例えば、小胞体膜間など)へ移行し、脂質二重膜内に蓄積されることになり、当該環境は疎水性環境であるが、細胞中の脂質二重膜内というスペースとしてはあまり広くないところに蓄積されることから生成物の鎖長の伸長には限度がある。
シロイヌナズナのようなゴム産生植物でない植物中でも、酵母のときと同様に、CPTファミリー蛋白質が合成した生成物は、細胞中の脂質二重膜内というスペースとしてはあまり広くないところに蓄積され、やはり合成される生成物の鎖長の伸長には限度がある。
これに対して、CPTファミリー蛋白質をゴム粒子に結合させた場合には、図1に示したように、CPTファミリー蛋白質が合成した生成物はゴム粒子中に蓄積されることになり、当該環境は疎水性環境であり、かつ、スペースとしても細胞中の脂質二重膜内よりもずっと広いことから、疎水性環境であり、かつ、スペースの制約も少ないため、生成物の鎖長は充分に延びることができ、超長鎖のポリイソプレノイド(天然ゴム)を合成できる。
この原理のため、本発明において用いるCPTファミリー蛋白質はゴム粒子との親和性を上げるためN末端側に膜貫通領域を持っていることが望ましく、野生型として持っていない場合はCPTファミリー蛋白質のN末端側に人工的に膜貫通領域を融合させても良い。融合させる膜貫通領域のアミノ酸配列は特に限定されないが、自然界で本来ゴム粒子に結合している蛋白質が持つ膜貫通領域のアミノ酸配列であることが望ましい。
また、Nogo-B receptor(NgBR)ファミリー蛋白質は、N末端側に有する1つ又は複数の膜貫通領域で膜に結合し、C末端側でCPTファミリー蛋白質又は他の蛋白質と相互作用する機能を有する蛋白質であり、CPTファミリー蛋白質を膜上に保持することにより機能を補助する。上記NgBRファミリー蛋白質の特徴としては、N末端側に膜貫通ドメインを有し、C末端側にCis IPPS superfamily domain(NCBI Accession No.COG0020)に含まれるアミノ酸配列を有することである。
上記NgBRファミリー蛋白質としては、パラゴムノキ由来のNgBR(HRTBP)、シロイヌナズナ由来のAtLEW1、レタス由来のLsCPTL1~2、タンポポ由来のTbRTAなどが挙げられる。
上記CPTファミリー蛋白質の具体例としては、下記[1]が挙げられる。
[1]配列番号2で表されるアミノ酸配列からなる蛋白質
また、蛋白質は、元のアミノ酸配列において、1若しくは複数個のアミノ酸の置換、欠失、挿入、又は付加を含む場合であっても本来持つ機能を有する場合があることが知られている。従って、上記CPTファミリー蛋白質の具体例としては、下記[2]も挙げられる。
[2]配列番号2で表されるアミノ酸配列において、1若しくは複数個のアミノ酸の置換、欠失、挿入、及び/又は付加を含む配列からなり、かつイソプレノイド化合物の鎖長をcis型に延長する反応を触媒する酵素活性を有する蛋白質
なお、上記CPTファミリー蛋白質としての機能を維持するためには、配列番号2で表されるアミノ酸配列において、好ましくは1若しくは複数個のアミノ酸、より好ましくは1~58個のアミノ酸、更に好ましくは1~44個のアミノ酸、更により好ましくは1~29個のアミノ酸、特に好ましくは1~15個のアミノ酸、最も好ましくは1~6個のアミノ酸、より最も好ましくは1~3個のアミノ酸の置換、欠失、挿入、及び/又は付加を含むアミノ酸配列であることが好ましい。
アミノ酸置換の例としては、保存的置換が好ましく、具体的には以下のカッコ内のグループ内での置換が挙げられる。例えば、(グリシン、アラニン)(バリン、イソロイシン、ロイシン)(アスパラギン酸、グルタミン酸)(アスパラギン、グルタミン)(セリン、トレオニン)(リジン、アルギニン)(フェニルアラニン、チロシン)である。
また、蛋白質は、元のアミノ酸配列と配列同一性の高いアミノ酸配列を有する蛋白質も同様の機能を有する場合があることが知られている。従って、上記CPTファミリー蛋白質の具体例としては、下記[3]も挙げられる。
[3]配列番号2で表されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつイソプレノイド化合物の鎖長をcis型に延長する反応を触媒する酵素活性を有する蛋白質
なお、上記CPTファミリー蛋白質としての機能を維持するためには、配列番号2で表されるアミノ酸配列との配列同一性は、好ましくは85%以上、より好ましくは90%以上、更に好ましくは95%以上、特に好ましくは98%以上、最も好ましくは99%以上である。
上記CPTファミリー蛋白質の具体例としてはまた、下記[11]が挙げられる。
[11]配列番号32、36、41、22、14、43、47、又は50で表されるアミノ酸配列からなる蛋白質
また、蛋白質は、元のアミノ酸配列と配列同一性の高いアミノ酸配列を有する蛋白質も同様の機能を有する場合があることが知られている。従って、上記CPTファミリー蛋白質の具体例としてはまた、下記[12]も挙げられる。
[12]配列番号32、36、41、22、14、43、47、又は50で表されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつイソプレノイド化合物の鎖長をcis型に延長する反応を触媒する酵素活性を有する蛋白質
なお、上記CPTファミリー蛋白質としての機能を維持するためには、配列番号32、36、41、22、14、43、47、又は50で表されるアミノ酸配列との配列同一性は、好ましくは85%以上、より好ましくは90%以上、更に好ましくは95%以上、特に好ましくは98%以上、最も好ましくは99%以上である。
本明細書において、アミノ酸配列や塩基配列の配列同一性は、Karlin and AltschulによるアルゴリズムBLAST[Pro. Natl. Acad. Sci. USA, 90, 5873(1993)]やFASTA[Methods Enzymol., 183, 63 (1990)]を用いて決定することができる。
上記酵素活性を有する蛋白質であることを確認する方法としては、例えば、従来公知の方法を用いることができ、例えば、大腸菌などを用いて、目的の蛋白質をコードする遺伝子を導入した形質転換体により、目的蛋白質を発現させ、目的蛋白質の機能の有無をそれぞれの活性測定法により、活性測定等を行う方法が挙げられる。
上記NgBRファミリー蛋白質の具体例としては、下記[4]が挙げられる。
[4]配列番号4で表されるアミノ酸配列からなる蛋白質
また、蛋白質は、元のアミノ酸配列において、1若しくは複数個のアミノ酸の置換、欠失、挿入、又は付加を含む場合であっても本来持つ機能を有する場合があることが知られている。従って、上記NgBRファミリー蛋白質の具体例としては、下記[5]も挙げられる。
[5]配列番号4で表されるアミノ酸配列において、1若しくは複数個のアミノ酸の置換、欠失、挿入、及び/又は付加を含む配列からなり、かつN末端側に有する1つ又は複数の膜貫通領域で膜に結合し、C末端側で他の蛋白質と相互作用する機能を有する蛋白質
なお、上記NgBRファミリー蛋白質としての機能を維持するためには、配列番号4で表されるアミノ酸配列において、好ましくは1若しくは複数個のアミノ酸、より好ましくは1~52個のアミノ酸、更に好ましくは1~39個のアミノ酸、更により好ましくは1~26個のアミノ酸、特に好ましくは1~13個のアミノ酸、最も好ましくは1~6個のアミノ酸、より最も好ましくは1~3個のアミノ酸の置換、欠失、挿入、及び/又は付加を含むアミノ酸配列であることが好ましい。
アミノ酸置換の例としては、保存的置換が好ましく、具体的には以下のカッコ内のグループ内での置換が挙げられる。例えば、(グリシン、アラニン)(バリン、イソロイシン、ロイシン)(アスパラギン酸、グルタミン酸)(アスパラギン、グルタミン)(セリン、トレオニン)(リジン、アルギニン)(フェニルアラニン、チロシン)である。
また、上述したように、蛋白質は、元のアミノ酸配列と配列同一性の高いアミノ酸配列を有する蛋白質も同様の機能を有する場合があることが知られている。従って、上記NgBRファミリー蛋白質の具体例としては、下記[6]も挙げられる。
[6]配列番号4で表されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつN末端側に有する1つ又は複数の膜貫通領域で膜に結合し、C末端側で他の蛋白質と相互作用する機能を有する蛋白質
なお、上記NgBRファミリー蛋白質としての機能を維持するためには、配列番号4で表されるアミノ酸配列との配列同一性は、好ましくは85%以上、より好ましくは90%以上、更に好ましくは95%以上、特に好ましくは98%以上、最も好ましくは99%以上である。
上記NgBRファミリー蛋白質の具体例としてはまた、下記[14]が挙げられる。
[14]配列番号24、又は16で表されるアミノ酸配列からなる蛋白質
また、上述したように、蛋白質は、元のアミノ酸配列と配列同一性の高いアミノ酸配列を有する蛋白質も同様の機能を有する場合があることが知られている。従って、上記NgBRファミリー蛋白質の具体例としてはまた、下記[15]も挙げられる。
[15]配列番号24、又は16で表されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつN末端側に有する1つ又は複数の膜貫通領域で膜に結合し、C末端側で他の蛋白質と相互作用する機能を有する蛋白質
なお、上記NgBRファミリー蛋白質としての機能を維持するためには、配列番号24、又は16で表されるアミノ酸配列との配列同一性は、好ましくは85%以上、より好ましくは90%以上、更に好ましくは95%以上、特に好ましくは98%以上、最も好ましくは99%以上である。
上記NgBRファミリー蛋白質であることを確認する方法としては、従来公知の方法を用いることができ、例えば、アミノ酸配列を同定し、Cis IPPS superfamily domain(NCBI Accession No.COG0020)に含まれるアミノ酸配列を有しているかどうかを確認する方法が挙げられる。
上記CPTファミリー蛋白質をコードする遺伝子は、CPTファミリー蛋白質をコードし、発現させてCPTファミリー蛋白質を産出できるものであれば特に制限されないが、該遺伝子としては、具体的には、下記[1]又は[2]が挙げられる。
[1]配列番号1で表される塩基配列からなるDNA
[2]配列番号1で表される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつイソプレノイド化合物の鎖長をcis型に延長する反応を触媒する酵素活性を有する蛋白質をコードするDNA
ここでいう「ハイブリダイズする」とは、特定の塩基配列を有するDNAまたは該DNAの一部にDNAがハイブリダイズする工程である。したがって、該特定の塩基配列を有するDNAまたは該DNAの一部の塩基配列は、ノーザンまたはサザンブロット解析のプローブとして有用であるか、またはPCR(Polymerase Chain Reaction)解析のオリゴヌクレオチドプライマーとして使用できる長さのDNAであってもよい。プローブとして用いるDNAとしては、少なくとも100塩基以上、好ましくは200塩基以上、より好ましくは500塩基以上のDNAをあげることができるが、少なくとも10塩基以上、好ましくは15塩基以上のDNAであってもよい。
DNAのハイブリダイゼーション実験の方法はよく知られており、例えばモレキュラー・クローニング第2版、第3版(2001年)、Methods for General and Molecular Bacteriology, ASM Press(1994)、Immunology methods manual, Academic press(Molecular)に記載の他、多数の他の標準的な教科書に従ってハイブリダイゼーションの条件を決定し、実験を行うことができる。
上記のストリンジェントな条件とは、例えばDNAを固定化したフィルターとプローブDNAとを50%ホルムアミド、5×SSC(750mMの塩化ナトリウム、75mMのクエン酸ナトリウム)、50mMのリン酸ナトリウム(pH7.6)、5×デンハルト溶液、10%の硫酸デキストラン、および20μg/lの変性させたサケ精子DNAを含む溶液中で42℃で一晩、インキュベートした後、例えば約65℃の0.2×SSC溶液中で該フィルターを洗浄する条件をあげることができるが、より低いストリンジェント条件を用いることもできる。ストリンジェントな条件の変更は、ホルムアミドの濃度調整(ホルムアミドの濃度を下げるほど低ストリンジェントになる)、塩濃度および温度条件の変更により可能である。低ストリンジェント条件としては、例えば6×SSCE(20×SSCEは、3mol/lの塩化ナトリウム、0.2mol/lのリン酸二水素ナトリウム、0.02mol/lのEDTA、pH7.4)、0.5%のSDS、30%のホルムアミド、100μg/lの変性させたサケ精子DNAを含む溶液中で、37℃で一晩インキュベートした後、50℃の1×SSC、0.1%SDS溶液を用いて洗浄する条件をあげることができる。また、さらに低いストリンジェントな条件としては、上記した低ストリンジェント条件において、高塩濃度(例えば5×SSC)の溶液を用いてハイブリダイゼーションを行った後、洗浄する条件をあげることができる。
上記した様々な条件は、ハイブリダイゼーション実験のバックグラウンドを抑えるために用いるブロッキング試薬を添加、または変更することにより設定することもできる。上記したブロッキング試薬の添加は、条件を適合させるために、ハイブリダイゼーション条件の変更を伴ってもよい。
上記したストリンジェントな条件下でハイブリダイズ可能なDNAとしては、例えばBLASTおよびFASTA等のプログラムを用いて、上記パラメータに基づいて計算したときに、配列番号1で表される塩基配列と少なくとも80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、特に好ましくは99%以上の配列同一性を有する塩基配列からなるDNAをあげることができる。
上記CPTファミリー蛋白質をコードする遺伝子としてはまた、具体的には、下記[11]又は[12]が挙げられる。
[11]配列番号31、35、40、21、13、42、63、又は64で表される塩基配列からなるDNA
[12]配列番号31、35、40、21、13、42、63、又は64で表される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつイソプレノイド化合物の鎖長をcis型に延長する反応を触媒する酵素活性を有する蛋白質をコードするDNA
ここでいう「ハイブリダイズする」とは、上述したのと同様である。また、上記ストリンジェントな条件についても、上述したのと同様である。
上記ストリンジェントな条件下でハイブリダイズ可能なDNAとしては、例えばBLASTおよびFASTA等のプログラムを用いて、上記パラメータに基づいて計算したときに、配列番号31、35、40、21、13、42、63、又は64で表される塩基配列と少なくとも80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、特に好ましくは99%以上の配列同一性を有する塩基配列からなるDNAをあげることができる。
上記したDNAとストリンジェントな条件下でハイブリダイズするDNAが、所定の酵素活性を有する蛋白質をコードするDNAであることを確認する方法としては、従来公知の方法を用いることができ、例えば、大腸菌などを用いて、目的の蛋白質をコードする遺伝子を導入した形質転換体により、目的蛋白質を発現させ、目的蛋白質の機能の有無をそれぞれの活性測定法により、活性測定等を行う方法が挙げられる。
上記NgBRファミリー蛋白質をコードする遺伝子としては、具体的には、下記[3]又は[4]が挙げられる。
[3]配列番号3で表される塩基配列からなるDNA
[4]配列番号3で表される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつN末端側に有する1つ又は複数の膜貫通領域で膜に結合し、C末端側で他の蛋白質と相互作用する機能を有する蛋白質をコードするDNA
ここでいう「ハイブリダイズする」とは、上述したのと同様である。また、上記ストリンジェントな条件についても、上述したのと同様である。
上記したストリンジェントな条件下でハイブリダイズ可能なDNAとしては、例えばBLASTおよびFASTA等のプログラムを用いて、上記パラメータに基づいて計算したときに、配列番号3で表される塩基配列と少なくとも80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、特に好ましくは99%以上の配列同一性を有する塩基配列からなるDNAをあげることができる。
上記NgBRファミリー蛋白質をコードする遺伝子としてはまた、具体的には、下記[13]又は[14]が挙げられる。
[13]配列番号23、又は15で表される塩基配列からなるDNA
[14]配列番号23、又は15で表される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつN末端側に有する1つ又は複数の膜貫通領域で膜に結合し、C末端側で他の蛋白質と相互作用する機能を有する蛋白質をコードするDNA
ここでいう「ハイブリダイズする」とは、上述したのと同様である。また、上記ストリンジェントな条件についても、上述したのと同様である。
上記ストリンジェントな条件下でハイブリダイズ可能なDNAとしては、例えばBLASTおよびFASTA等のプログラムを用いて、上記パラメータに基づいて計算したときに、配列番号23、又は15で表される塩基配列と少なくとも80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、特に好ましくは99%以上の配列同一性を有する塩基配列からなるDNAをあげることができる。
上記したDNAとストリンジェントな条件下でハイブリダイズするDNAが、NgBRファミリー蛋白質をコードするDNAであることを確認する方法としては、従来公知の方法を用いることができ、例えば、DNAをアミノ酸配列に翻訳した際に、Cis IPPS superfamily domain(NCBI Accession No.COG0020)に含まれるアミノ酸配列を有しているかどうかを確認する方法が挙げられる。
また、上記蛋白質のアミノ酸配列及び塩基配列を同定する方法は、従来公知の方法を用いることができ、例えば、生育する植物から、Total RNAを抽出し、必要に応じてmRNAを精製し、逆転写反応によりcDNAを合成する。次に目的蛋白質に相当する既知の蛋白質のアミノ酸配列をもとに、縮重プライマーを設計し、RT-PCRを行い、部分的にDNA断片の増幅を行い、部分的に配列を同定する。次いで、RACE法などを行い、全長の塩基配列及びアミノ酸配列を同定する。RACE法(Rapid Amplification of cDNA Ends法)とは、cDNAの塩基配列が部分的に把握されているときに、その既知領域の塩基配列情報を基にPCRを行って、cDNA末端までの未知領域をクローニングする方法で、cDNAライブラリーの作製を経ずに、PCR法によって全長のcDNAをクローニングすることができる方法である。
なお、縮重プライマーは、上記目的蛋白質と共通性の高い配列部位を有する植物由来の配列から作製することが好ましい。
また、上記蛋白質をコードする塩基配列が既知の場合には、その知られている塩基配列から開始コドンを含むプライマー及び終止コドンを含むプライマーを設計し、合成したcDNAを鋳型にしてRT-PCRを行うことで全長の塩基配列及びアミノ酸配列を同定することができる。
なお、上記結合工程においては、生体外で、シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子を発現させた蛋白質、及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子を発現させた蛋白質がゴム粒子に結合される限り、更にその他の蛋白質が結合されてもよい。
上記その他の蛋白質の由来は特に制限されないが、上述した植物由来であることが好ましく、Hevea属、Sonchus属、Taraxacum属、及びParthenium属からなる群より選択される少なくとも1種の属に属する植物由来であることがより好ましい。中でも、パラゴムノキ、ノゲシ、グアユール及びロシアンタンポポからなる群より選択される少なくとも1種の植物由来であることが更に好ましく、特に好ましくは、パラゴムノキ由来であることである。
上記その他の蛋白質としては、何ら制限されずいかなる蛋白質であってもよいが、ゴム粒子のゴム合成能力を増強させる観点からは、ゴム産生植物体内でもともとゴム粒子上に存在する蛋白質であることが好ましい。なお、ゴム粒子上に存在する蛋白質は、大きくゴム粒子の膜表面に結合する蛋白質であってもよいし、ゴム粒子の膜に挿入されるように結合する蛋白質であってもよいし、上記膜に結合している蛋白質と複合体を形成して膜表面上に存在することになる蛋白質であってもよい。
上記ゴム産生植物体内でもともとゴム粒子上に存在する蛋白質としては、例えば、Rubber Elongation Factor(REF)、Small Rubber Particle Protein(SRPP)、β-1,3-グルカナーゼ、Heveinなどが挙げられる。
上記結合工程は、生体外で、ゴム粒子にCPTファミリー蛋白質、及びNgBRファミリー蛋白質を結合させることができればその手段は特に制限されず、例えば、CPTファミリー蛋白質をコードするmRNA、及びNgBRファミリー蛋白質をコードするmRNAを含む無細胞蛋白合成溶液とゴム粒子とを共存させて蛋白質合成を行い、ゴム粒子にCPTファミリー蛋白質、及びNgBRファミリー蛋白質を結合させる方法などが挙げられる。
上記結合工程としては、中でも、CPTファミリー蛋白質をコードするmRNA、及びNgBRファミリー蛋白質をコードするmRNAを含む無細胞蛋白合成溶液とゴム粒子とを共存させて蛋白質合成を行い、ゴム粒子にCPTファミリー蛋白質、及びNgBRファミリー蛋白質を結合させる工程であることが好ましい。
すなわち、CPTファミリー蛋白質、及びNgBRファミリー蛋白質をコードするmRNAを含む無細胞蛋白合成溶液とゴム粒子とを共存させて(より具体的には、CPTファミリー蛋白質、及びNgBRファミリー蛋白質をコードするmRNAを含む無細胞蛋白合成溶液とゴム粒子とを混合して)蛋白質合成を行うことで、CPTファミリー蛋白質、及びNgBRファミリー蛋白質の結合したゴム粒子を得ることが好ましい。
なお、リポソームはリン脂質、グリセロ糖脂質、コレステロール等から構成される脂質二重膜として人工的に製造されるため、製造されたリポソームの表面には蛋白質は結合していないのに対して、ゴム産生植物のラテックスから採取されるゴム粒子も脂質膜で覆われた粒子であるが、その膜は天然由来の膜であるため、その表面には植物体内で合成された蛋白質が既に結合している。このことから、蛋白質が結合していないリポソームなどに比べて、既に蛋白質が結合しており、蛋白質で覆われた状態にあるゴム粒子に更に蛋白質を結合させるのは困難であることが予想される。また、ゴム粒子に既に結合している蛋白質が無細胞蛋白合成を阻害することも懸念される。以上のような点から、ゴム粒子共存下での無細胞蛋白合成は実現が困難であると考えられてきた。このような状況下、本発明者らは、これまでに試みられていなかった、CPTファミリー蛋白質、及びNgBRファミリー蛋白質の無細胞蛋白合成をゴム粒子の共存下で行ったところ、CPTファミリー蛋白質、及びNgBRファミリー蛋白質の結合したゴム粒子を製造することができることを見出した。
上記CPTファミリー蛋白質、及びNgBRファミリー蛋白質をコードするmRNAを含む無細胞蛋白合成溶液とゴム粒子とを共存させて行われる蛋白質合成は、いわゆる、無細胞蛋白合成法を用いたCPTファミリー蛋白質、及びNgBRファミリー蛋白質の合成であり、生物学的機能を担持した(native状態の)CPTファミリー蛋白質、及びNgBRファミリー蛋白質を合成でき、当該無細胞蛋白合成法をゴム粒子の共存下で行うことにより、合成されるCPTファミリー蛋白質、及びNgBRファミリー蛋白質をnative状態でゴム粒子に結合することが可能となる。
ここで、上記無細胞蛋白合成溶液とゴム粒子との共存下、蛋白質合成を行うことで、ゴム粒子にCPTファミリー蛋白質、及びNgBRファミリー蛋白質が結合するとは、当該蛋白質合成により合成されたCPTファミリー蛋白質、及びNgBRファミリー蛋白質の各蛋白質の全部又は一部がゴム粒子中に取り込まれる又はゴム粒子の膜構造に挿入される、といったことを意味するが、これに限らず、ゴム粒子表面又は内部に局在する等の場合をも意味する。また更には、上述のようにゴム粒子に結合している蛋白質と複合体を形成し、複合体としてゴム粒子上に存在する場合もゴム粒子に結合しているとの概念範囲に含まれる。
上記CPTファミリー蛋白質、及びNgBRファミリー蛋白質をコードするmRNAはそれぞれ、翻訳されてCPTファミリー蛋白質、及びNgBRファミリー蛋白質を合成しうる翻訳鋳型である。
上記CPTファミリー蛋白質、及びNgBRファミリー蛋白質をコードするmRNAの由来は特に制限されず、微生物由来であっても、動物由来であっても、植物由来であってもよいが、植物由来であることが好ましく、上述した植物由来であることがより好ましく、Hevea属、Sonchus属、Taraxacum属、及びParthenium属からなる群より選択される少なくとも1種の属に属する植物由来であることが更に好ましい。中でも、パラゴムノキ、ノゲシ、グアユール及びロシアンタンポポからなる群より選択される少なくとも1種の植物由来であることが特に好ましく、最も好ましくは、パラゴムノキ由来であることである。また、上記CPTファミリー蛋白質をコードするmRNA、及び、NgBRファミリー蛋白質をコードするmRNAの由来が同じ種であることも好適な形態の1つである。
上記CPTファミリー蛋白質、及びNgBRファミリー蛋白質をコードするmRNAはそれぞれ、翻訳されてCPTファミリー蛋白質、及びNgBRファミリー蛋白質を合成しうる翻訳鋳型であればその調製方法は特に制限されないが、例えば、ゴム産生植物のラテックスからホットフェノール法などによりTotal RNAを抽出し、得られたTotal RNAからcDNAを合成し、CPTファミリー蛋白質、NgBRファミリー蛋白質をコードする遺伝子の塩基配列情報を元に作製したプライマーを用いてCPTファミリー蛋白質、NgBRファミリー蛋白質をコードする遺伝子のDNA断片を取得して、該DNA断片を元に通常行われるインビトロでの転写反応を行うことにより調製することができる。
上記無細胞蛋白合成溶液は、上記CPTファミリー蛋白質、及びNgBRファミリー蛋白質をコードするmRNAを含む限り、その他の蛋白質をコードするmRNAを含んでいてもよい。
上記その他の蛋白質をコードするmRNAとしては、翻訳されてその他の蛋白質を発現することができるものを用いることができる。なお、その他の蛋白質としては、上述したものと同様のものを挙げることができる。
第1の本発明における結合工程においては、ゴム粒子の共存下でCPTファミリー蛋白質、及びNgBRファミリー蛋白質の無細胞蛋白合成が行われることが好ましいが、当該無細胞蛋白合成は、上記無細胞蛋白合成溶液を用いて、従来と同様の方法で行うことができる。用いられる無細胞蛋白合成系としては、通常用いられる無細胞蛋白質合成手段を採用することができる。例えば、Rapid Translation System RTS500(Roshe Diagnostics社製)やProc.Natl.Acad.Sci.USA,97:559-564(2000)、特開2000-236896号公報、特開2002-125693号公報、特開2002-204689号公報に従って調製された小麦胚芽抽出液及びその無細胞蛋白質合成系(特開2002-204689号公報、Proc.Natl.Acad.Sci.USA,99:14652-14657(2002))を使用することができる。中でも、胚芽抽出物を用いる系が好ましい。すなわち、上記無細胞蛋白合成溶液が、胚芽抽出物を含むこともまた、第1の本発明の好適な実施形態の1つである。
上記胚芽抽出物の由来は特に限定されないが、翻訳効率の観点からは、植物の蛋白質を無細胞蛋白合成法で合成する場合には植物由来の胚芽抽出物を用いることが好ましい。特に好ましくは小麦由来の胚芽抽出物を用いることである。すなわち、上記胚芽抽出物が小麦由来であることもまた、第1の本発明の好適な実施形態の1つである。
上記胚芽抽出物の調製方法としては特に制限されず、通常の胚芽抽出物調製方法を採用することができるが、例えば、特開2005-218357号公報に記載された方法を採用すればよい。
上記無細胞蛋白合成溶液は、更にサイクリックヌクレオシド一リン酸誘導体又はその塩(以降、単に「活性増強物質」とも称する。)を含むことが好ましい。該活性増強物質を含有することにより、蛋白質合成活性を更に増強させることができる。
上記サイクリックヌクレオシド一リン酸誘導体又はその塩としては、無細胞蛋白合成活性を増強しうるものであれば特に制限されず、例えば、アデノシン-3’,5’サイクリック一リン酸及びその塩、アデノシン-3’,5’サイクリックチオ一リン酸(Spアイソマー)及びその塩、アデノシン-3’,5’サイクリックチオ一リン酸(Rpアイソマー)及びその塩、グアノシン-3’,5’サイクリック一リン酸及びその塩、グアノシン-3’,5’サイクリックチオ一リン酸(Spアイソマー)及びその塩、グアノシン-3’,5’サイクリックチオ一リン酸(Rpアイソマー)及びその塩、8-ブロモアデノシン-3’,5’-サイクリック一リン酸(ブロモcAMP)及びその塩、8-(4-クロロフェニルチオ)アデノシン-3’,5’-サイクリック一リン酸(クロロフェニルチオcAMP)及びその塩、5,6-ジクロロ-1-β-D-リボフラノシルべンジミダゾルアデノシン-3’,5’-サイクリック一リン酸(ジクロロリボフラノシルべンジミダゾルcAMP)及びその塩、アデノシン-2’,5’サイクリック一リン酸及びその塩、アデノシン-2’,5’サイクリックチオ一リン酸(Spアイソマー)及びその塩、アデノシン-2’,5’サイクリックチオ一リン酸(Rpアイソマー)及びその塩、グアノシン-2’,5’サイクリック一リン酸及びその塩、グアノシン-2’,5’サイクリックチオ一リン酸(Spアイソマー)及びその塩、グアノシン-2’,5’サイクリックチオ一リン酸(Rpアイソマー)及びその塩等が挙げられる。
上記サイクリックヌクレオシド一リン酸誘導体との塩を形成する塩基としては、生化学的に許容しうるもので、当該誘導体と塩を形成するものであれば特に制限されないが、中でも好ましいものとしては、例えば、ナトリウム、カリウム等のアルカリ金属原子、トリスヒドロキシアミノメタン等の有機塩基が挙げられる。
上記活性増強物質としては、中でも、アデノシン-3’,5’サイクリック一リン酸、アデノシン-3’,5’サイクリック一リン酸ナトリウムが特に好ましい。また、これら活性増強物質は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
上記活性増強物質は、あらかじめ上記無細胞蛋白合成溶液に加えておいてもよいが、当該溶液中で不安定である場合には、無細胞蛋白合成溶液とゴム粒子とを共存させて蛋白質合成反応を行う際に加えるのが好ましい。
上記活性増強物質の添加量としては、上記無細胞蛋白合成溶液による蛋白質合成反応が活性化(増加)しうる濃度であれば特に制限されない。具体的には、反応系中の最終濃度として、通常0.1ミリモル/リットル以上であればよい。濃度の下限は、好ましくは0.2ミリモル/リットル、より好ましくは0.4ミリモル/リットル、特に好ましくは0.8ミリモル/リットルである。他方、濃度の上限は、好ましくは24ミリモル/リットル、より好ましくは6.4ミリモル/リットル、特に好ましくは3.2ミリモル/リットルである。
上記活性増強物質を上記無細胞蛋白合成溶液に加える際の無細胞蛋白合成溶液の温度としては特に限定されないが、0~30℃が好ましく、10~26℃がより好ましい。
上記無細胞蛋白合成溶液は、CPTファミリー蛋白質、及びNgBRファミリー蛋白質をコードするmRNA(翻訳鋳型)に加え、蛋白質合成に必須の成分であるATP、GTP、クレアチンリン酸、クレアチンキナーゼ、L型アミノ酸、カリウムイオン及びマグネシウムイオン等を含有し、更には必要に応じて活性増強物質を含むものであり、このような無細胞蛋白合成溶液を用いることにより無細胞蛋白合成反応系とすることができる。
なお、上記特開2005-218357号公報に記載された方法で調製された胚芽抽出物には蛋白質合成反応に必要とされる量のtRNAが含まれているため、当該方法により調製された胚芽抽出物を無細胞蛋白合成溶液に用いる場合には、別途調製したtRNAを追加することは必須要件ではない。すなわち、無細胞蛋白合成溶液には、必要に応じてtRNAを追加すればよい。
第1の本発明における結合工程は、CPTファミリー蛋白質、及びNgBRファミリー蛋白質をコードするmRNAを含む無細胞蛋白合成溶液とゴム粒子とを共存させて蛋白質合成を行うことが好ましいものであるが、具体的には蛋白質の合成前又は合成後の適当な時期に、好ましくは蛋白質合成前に、上記無細胞蛋白合成溶液にゴム粒子を加えることにより行うことができる。
また、無細胞蛋白合成溶液と共存させるゴム粒子の濃度は、5~50g/Lであることが好ましい。すなわち、無細胞蛋白合成溶液1Lに対してゴム粒子を5~50g共存させることが好ましい。無細胞蛋白合成溶液と共存させるゴム粒子の濃度が5g/L未満であると、合成されたCPTファミリー蛋白質、及びNgBRファミリー蛋白質が結合したゴム粒子を回収するために、超遠心分離等による分離処理を行った際に、ゴム層が形成されず、合成されたCPTファミリー蛋白質、及びNgBRファミリー蛋白質が結合したゴム粒子を回収することが困難になる場合がある。一方、無細胞蛋白合成溶液と共存させるゴム粒子の濃度が50g/Lを超えると、ゴム粒子同士が凝集し、合成されたCPTファミリー蛋白質、及びNgBRファミリー蛋白質がうまくゴム粒子に結合できなくなるおそれがある。上記ゴム粒子の濃度としてより好ましくは10~40g/L、更に好ましくは15~35g/L、特に好ましくは15~30g/Lである。
また、上記無細胞蛋白合成溶液とゴム粒子との共存下での蛋白質合成は、その反応の進展に伴い、適宜ゴム粒子を追加していってもよい。ゴム粒子を上記無細胞蛋白合成溶液に加えてから例えば3~48時間(好ましくは3~30時間、より好ましくは3~24時間)など無細胞蛋白合成系が活性な間、上記無細胞蛋白合成溶液とゴム粒子とが共存するようにしておくことが好ましい。
上記ゴム粒子は、第1の本発明における結合工程に用いる前に(より好ましくは前記無細胞蛋白合成溶液と共存させる前に)前処理等の特段の処理を行う必要はない。ただし、ゴム粒子上に存在する蛋白質の内、第1の本発明の方法により結合させたいCPTファミリー蛋白質、及びNgBRファミリー蛋白質の割合を高めるために、予め界面活性剤によりゴム粒子から蛋白質を除去してもよい。このように、第1の本発明において用いられるゴム粒子が、第1の本発明における結合工程に用いる前に(より好ましくは前記無細胞蛋白合成溶液と共存させる前に)、界面活性剤で洗浄されたものであることもまた、第1の本発明の好適な実施形態の1つである。
上記界面活性剤としては特に限定されず、非イオン性界面活性剤、両性界面活性剤などが挙げられる。これらの中でも、膜上の蛋白質の変性作用が小さい点で、非イオン性界面活性剤、両性界面活性剤が好適に用いられ、両性界面活性剤が特に好適に用いられる。すなわち、上記界面活性剤が、両性界面活性剤であることもまた、第1の本発明の好適な実施形態の1つである。
これら界面活性剤は、単独で用いてもよいし、2種以上を併用してもよい。
上記非イオン性界面活性剤としては、例えば、ポリオキシアルキレンエーテル系、ポリオキシアルキレンエステル系、多価アルコール脂肪酸エステル系、糖脂肪酸エステル系、アルキルポリグリコシド系、ポリオキシアルキレンポリグルコシド系の非イオン性界面活性剤や、ポリオキシアルキレンアルキルアミン、アルキルアルカノールアミド等が挙げられる。
これらの中でも、ポリオキシアルキレンエーテル系の非イオン性界面活性剤、多価アルコール脂肪酸エステル系の非イオン性界面活性剤が好ましい。
上記ポリオキシアルキレンエーテル系の非イオン性界面活性剤としては、例えば、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシアルキレンポリオールアルキルエーテル、ポリオキシアルキレンモノ、ジ、又はトリスチリルフェニルエーテル等が挙げられる。これらの中でも、ポリオキシアルキレンアルキルフェニルエーテルが好適に使用される。なお、前記ポリオールとしては、炭素数2~12の多価アルコールが好ましく、例えば、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、グルコース、スクロース、ペンタエリトリトール、ソルビタン等が挙げられる。
上記ポリオキシアルキレンエステル系の非イオン性界面活性剤としては、例えば、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレンアルキルロジン酸エステル等が挙げられる。
上記多価アルコール脂肪酸エステル系の非イオン性界面活性剤としては、例えば、炭素数2~12の多価アルコールの脂肪酸エステル又はポリオキシアルキレン多価アルコールの脂肪酸エステル等が挙げられる。より具体的には、例えば、ソルビトール脂肪酸エステル、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ペンタエリトリトール脂肪酸エステル等が挙げられる。また、これらのポリアルキレンオキサイド付加物(例えば、ポリオキシアルキレンソルビタン脂肪酸エステル、ポリオキシアルキレングリセリン脂肪酸エステル等)も使用可能である。これらの中でも、ソルビタン脂肪酸エステルが好適に使用される。
上記糖脂肪酸エステル系の非イオン性界面活性剤としては、例えば、ショ糖、グルコース、マルトース、フルクトース、多糖類の脂肪酸エステル等が挙げられ、これらのポリアルキレンオキサイド付加物も使用可能である。
上記アルキルポリグリコシド系の非イオン性界面活性剤としては、グリコシドとしてグルコース、マルトース、フルクトース、ショ糖などが挙げられ、例えば、アルキルグルコシド、アルキルポリグルコシド、ポリオキシアルキレンアルキルグルコシド、ポリオキシアルキレンアルキルポリグルコシドなどが挙げられ、これらの脂肪酸エステル類も挙げられる。また、これらすべてのポリアルキレンオキサイド付加物も使用可能である。
これら非イオン性界面活性剤におけるアルキル基としては、例えば、炭素数4~30の直鎖又は分岐した飽和若しくは不飽和のアルキル基が挙げられる。また、ポリオキシアルキレン基としては、炭素数2~4のアルキレン基を有するものが挙げられ、例えば、酸化エチレンの付加モル数が1~50モル程度のものが挙げられる。また、前記脂肪酸としては、例えば、炭素数4~30の直鎖又は分岐した飽和若しくは不飽和の脂肪酸が挙げられる。
上記非イオン性界面活性剤としては、中でも、ゴム粒子の膜を安定化させた状態で、かつ蛋白質の変性作用が小さい状態で、適度に膜結合蛋白質を除去できるという理由から、ポリオキシエチレンエチレン(10)オクチルフェニルエーテル(Triton X-100)、ソルビタンモノラウレート(Span 20)が特に好ましい。
上記両性界面活性剤としては、例えば、四級アンモニウム塩基/スルホン酸基(-SOH)タイプ、四級アンモニウム塩基/リン酸酸基タイプ(水に可溶)、四級アンモニウム塩基/リン酸酸基タイプ(水に不溶)、四級アンモニウム塩基/カルボキシル基タイプなどの両性イオン界面活性剤が挙げられる。なお、前記の酸基は塩であってもよい。
特に、前記の両性イオン界面活性剤が一分子中に+と-の両電荷を有することが好ましく、前記の酸基の酸解離定数(pKa)が、5以下であることが好ましく、4以下であることがより好ましく、3以下であることが更に好ましい。
上記両性界面活性剤としては、具体的には、3-[(3-コラミドプロピル)ジメチルアミノ]-2-ヒドロキシ-1-プロパンスルホン酸(CHAPSO)、3-[(3-コラミドプロピル)ジメチルアミノ]-プロパンスルホン酸(CHAPS)、N,N-ビス(3-D-グルコナミドプロピル)-コラミド、n-オクタデシル-N,N’-ジメチル-3-アミノ-1-プロパンスルホン酸、n-デシル-N,N’-ジメチル-3-アミノ-1-プロパンスルホン酸、n-ドデシル-N,N’-ジメチル-3-アミノ-1-プロパンスルホン酸、n-テトラデシル-N,N’-ジメチル-3-アミノ-1-プロパンスルホン酸{Zwittergent(商標)-3-14}、n-ヘキサデシル-N,N’-ジメチル-3-アミノ-1-プロパンスルホン酸、n-オクタデシル-N,N’-ジメチル-3-アミノ-1-プロパンスルホン酸等のアンモニウムスルホベタイン類、n-オクチルホスホコリン、n-ノニルホスホコリン、n-デシルホスホコリン、n-ドデシルホスホコリン、n-テトラデシルホスホコリン、n-ヘキサデシルホスホコリン等のホスホコリン類、ジラウロイルホスファチジルコリン、ジミリストイルホスファチジルコリン、ジパルミトイルホスファチジルコリン、ジステアロイルホスファチジルコリン、ジオレオイルホスファチジルコリン、ジリノレオイルホスファチジルコリン等のホスファチジルコリン類が挙げられる。これらの中でも、ゴム粒子の膜を安定化させた状態で適度に蛋白質を除去できるという理由から、3-[(3-コラミドプロピル)ジメチルアミノ]-プロパンスルホン酸(CHAPS)が特に好ましい。
上記界面活性剤の処理濃度は、使用する界面活性剤の臨界ミセル濃度(CMC)の3倍以内であることが好ましい。臨界ミセル濃度の3倍を超える濃度の界面活性剤で処理するとゴム粒子の膜安定性が低下するおそれがある。より好ましくは2.5倍以内であり、更に好ましくは2.0倍以内である。また下限としては、0.05倍以上であることが好ましく、0.1倍以上であることがより好ましく、0.3倍以上であることが更に好ましい。
上記無細胞蛋白合成における蛋白質合成のための反応システムまたは装置としては、バッチ(回分)法(Pratt,J.M.et al.,Transcription and Tranlation,Hames,179-209,B.D.&Higgins,S.J.,eds,IRL Press,Oxford(1984))や、アミノ酸、エネルギー源等を連続的に反応系に供給する連続式無細胞蛋白質合成システム(Spirin,A.S.et al.,Science,242,1162-1164(1988))、透析法(木川等、第21回日本分子生物学会、WID6)、重層法(PROTEIOSTM Wheat germ cell-free protein synthesis core kit取扱説明書:TOYOBO社製)等が挙げられる。その他、蛋白質合成反応系に、鋳型のRNA、アミノ酸、エネルギー源等を必要時に供給し、合成物や分解物を必要時に排出する方法等も用いることができる。
中でも、重層法は操作が簡便であるという利点はあるものの反応溶液中でゴム粒子が分散してしまい、合成されるCPTファミリー蛋白質、及びNgBRファミリー蛋白質をゴム粒子に効率よく結合させることが困難であるのに対して、透析法では、合成されるCPTファミリー蛋白質、及びNgBRファミリー蛋白質の原料となるアミノ酸は透析膜を透過できるがゴム粒子は透過しないため、ゴム粒子の分散を防ぐことができ、効率的にゴム粒子に合成されるCPTファミリー蛋白質、及びNgBRファミリー蛋白質を結合させることができることから、透析法が好ましい。
なお、上記透析法とは、上記無細胞蛋白合成における蛋白質合成の合成反応液を透析内液とし、透析外液と物質移動が可能な透析膜によって隔離される装置を用いて、蛋白質合成を行う方法である。具体的には、例えば、翻訳鋳型を除いた上記合成反応液を必要に応じて適当時間プレインキュベートした後、翻訳鋳型を添加して、適当な透析容器に入れ反応内液とする。透析容器としては、底部に透析膜が付加されている容器(第一化学社製の透析カップ12,000等)や、透析用チューブ(三光純薬社製の12,000等)が挙げられる。透析膜は、10,000ダルトン以上の分子量限界を有するものが用いられるが、12,000ダルトン程度の分子量限界を有するものが好ましい。
上記透析外液としては、アミノ酸を含む緩衝液が用いられる。透析外液は反応速度が低下した時点で、新鮮なものと交換することにより透析効率を上昇させることができる。反応温度及び時間は用いる蛋白質合成系において適宜選択されるが、例えば、小麦由来の胚芽抽出物を用いた系においては、通常10~40℃、好ましくは18~30℃、より好ましくは20~26℃で、10分~48時間(好ましくは10分~30時間、より好ましくは10分~24時間)行うことができる。
また、上記無細胞蛋白合成溶液に含まれるCPTファミリー蛋白質、及びNgBRファミリー蛋白質をコードするmRNAは、分解されやすいことから、上記蛋白質合成反応中に適宜当該mRNAを追加することで、蛋白質の合成をより効率的に行うことができる。すなわち、上記蛋白質合成反応中に、上記CPTファミリー蛋白質、及びNgBRファミリー蛋白質をコードするmRNAを更に加えることもまた、第1の本発明の好適な実施形態の1つである。
なお、上記mRNAの添加時間、添加回数、添加量等は特に制限されず、適宜設定することができる。
第1の本発明の製造方法においては、生体外で、シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子を発現させた蛋白質、及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子を発現させた蛋白質をゴム粒子に結合させる結合工程を行った後、必要に応じてゴム粒子を回収する工程を行ってもよい。
上記ゴム粒子回収工程は、ゴム粒子を回収することができればその手法は特に制限されず、ゴム粒子を回収する通常行われる方法により行うことができる。具体的には、例えば、遠心分離により行う方法などが挙げられる。当該遠心分離によりゴム粒子を回収する場合、その遠心力や、遠心分離処理時間、遠心分離処理温度はゴム粒子を回収できるよう適宜設定することができるが、例えば、遠心分離処理の遠心力としては、15000×g以上が好ましく、20000×g以上がより好ましく、25000×g以上が更に好ましい。一方、遠心力は大きくしすぎてもそれに見合うだけの分離効果が望めないことから、遠心力の上限としては、50000×g以下が好ましく、45000×g以下がより好ましい。遠心分離処理時間としては、20分以上が好ましく、30分以上がより好ましく、40分以上が更に好ましい。一方、遠心分離処理時間を長くしすぎてもそれに見合うだけの分離効果が望めないことから、遠心分離処理時間の上限としては、120分以下が好ましく、90分以下がより好ましい。
また、遠心分離処理温度としては、ゴム粒子に結合したCPTファミリー蛋白質、及びNgBRファミリー蛋白質のタンパク活性を維持するという観点から、0~10℃が好ましく、2~8℃がより好ましく、4℃が特に好ましい。
例えば、上記無細胞蛋白合成を行った場合には、上記遠心分離処理を行うと、ゴム粒子が上層に、無細胞蛋白合成溶液が下層に分離される。その後、下層の無細胞蛋白合成溶液を除去することで、CPTファミリー蛋白質、及びNgBRファミリー蛋白質を結合させたゴム粒子を回収することができる。回収したゴム粒子はpHが中性の適当な緩衝液に再懸濁することで保存することができる。
なお、上記ゴム粒子回収工程を行った後に回収されたゴム粒子は更なる特別な処理を経ずに通常の天然ゴムと同様に用いることができる。
更に、第1の本発明のポリイソプレノイドの製造方法により得られたポリイソプレノイドは、上記ゴム粒子を以下の固化工程に供することで回収することができる。
上記固化工程において、固化する方法としては、特に限定されず、エタノール、メタノール、アセトン等のポリイソプレノイド(天然ゴム)を溶解しない溶媒にゴム粒子を添加する方法やゴム粒子に酸を添加する方法等が挙げられる。固化工程を行うことにより、ゴム粒子からゴム(天然ゴム)を固形分として回収できる。得られたゴム(天然ゴム)は、必要に応じて乾燥してから使用すればよい。
このように、第1の本発明によれば、生体外で、シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子を発現させた蛋白質、及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子を発現させた蛋白質をゴム粒子に結合させることで、ゴム粒子のゴム合成能力を増強させることができ、これにより、より効率的に反応槽(試験管、プラントなど)内でゴム(ポリイソプレノイドの1種)を生産することが可能となる。
すなわち、ポリイソプレノイドを合成する方法であって、該方法は、生体外(例えば、反応槽(試験管、プラントなど)内)で、シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子を発現させた蛋白質、及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子を発現させた蛋白質を、ゴム粒子に結合させる結合工程を含むポリイソプレノイドを合成する方法もまた、第1の本発明の1つである。
なお、生体外で、シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子を発現させた蛋白質、及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子を発現させた蛋白質を、ゴム粒子に結合させる結合工程については、上述したとおりである。
なお、本明細書において、ポリイソプレノイドは、イソプレン単位(C)で構成された重合体の総称である。ポリイソプレノイドとしては、例えばセスタテルペン(C25)、トリテルペン(C30)、テトラテルペン(C40)、天然ゴムなどの重合体が挙げられる。また、本明細書において、イソプレノイドは、イソプレン単位(C)を有する化合物を意味し、ポリイソプレノイドをも含む概念である。
(ゴム製品の製造方法)
第1の本発明のゴム製品の製造方法は、上記第1の本発明のポリイソプレノイドの製造方法により得られたポリイソプレノイドと、添加剤とを混練して混練物を得る混練工程、上記混練物から生ゴム製品を成形する生ゴム製品成形工程、及び上記生ゴム製品を加硫する加硫工程を含むゴム製品の製造方法である。
ゴム製品としては、ゴム(好ましくは天然ゴム)を使用して製造できるゴム製品であれば特に限定されず、例えば、空気入りタイヤ、ゴムローラ、ゴム防舷材、手袋、医療用ゴムチューブ等が挙げられる。
ゴム製品が空気入りタイヤの場合、すなわち、第1の本発明のゴム製品の製造方法が第1の本発明の空気入りタイヤの製造方法の場合、上記生ゴム製品成形工程は、上記混練物から生タイヤを成形する生タイヤ成形工程に、上記加硫工程は、上記生タイヤを加硫する加硫工程に相当する。すなわち、第1の本発明の空気入りタイヤの製造方法は、上記ポリイソプレノイドの製造方法により得られたポリイソプレノイドと、添加剤とを混練して混練物を得る混練工程、上記混練物から生タイヤを成形する生タイヤ成形工程、及び上記生タイヤを加硫する加硫工程を含む空気入りタイヤの製造方法である。
<混練工程>
混練工程では、上記ポリイソプレノイドの製造方法により得られたポリイソプレノイドと、添加剤とを混練して混練物を得る。
添加剤としては特に限定されず、ゴム製品の製造に用いられる添加剤を使用できる。例えば、ゴム製品が空気入りタイヤの場合、例えば、上記ポリイソプレノイド以外のゴム成分、カーボンブラック、シリカ、炭酸カルシウム、アルミナ、クレー、タルクなどの補強用充填剤、シランカップリング剤、酸化亜鉛、ステアリン酸、加工助剤、各種老化防止剤、オイルなどの軟化剤、ワックス、硫黄などの加硫剤、加硫促進剤等が挙げられる。
混練工程における混練は、オープンロール、バンバリーミキサー、密閉式混練機などのゴム混練装置を用いて行えばよい。
<生ゴム製品成形工程(タイヤの場合は生タイヤ成形工程)>
生ゴム製品成形工程では、混練工程により得られた混練物から生ゴム製品(タイヤの場合は生タイヤ)を成形する。
生ゴム製品の成形方法としては特に限定されず、生ゴム製品の成形に用いられる方法を適宜適用すればよい。例えば、ゴム製品が空気入りタイヤの場合、混練工程により得られた混練物を、各タイヤ部材の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形し、各タイヤ部材を貼り合わせ、生タイヤ(未加硫タイヤ)を成形すればよい。
<加硫工程>
加硫工程では、生ゴム製品成形工程により得られた生ゴム製品を加硫することにより、ゴム製品が得られる。
生ゴム製品を加硫する方法としては特に限定されず、生ゴム製品の加硫に用いられる方法を適宜適用すればよい。例えば、ゴム製品が空気入りタイヤの場合、生ゴム製品成形工程により得られた生タイヤ(未加硫タイヤ)を加硫機中で加熱加圧して加硫することにより空気入りタイヤが得られる。
(第2の本発明)
(ベクター)
第2の本発明のベクターは、乳管特異的に遺伝子を発現させるプロモーター活性を有するプロモーターに、Nogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子、又は、シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子を機能的に連結させた塩基配列を含むベクターである。このようなベクターを植物に導入して形質転換を行うことにより、当該ベクターに含まれる、ポリイソプレノイド生合成に関わる蛋白質をコードする遺伝子が乳管特異的に発現し、当該植物におけるシス型イソプレノイド、ポリイソプレノイドの生産量を向上させることが可能となる。これは、乳液の生産性向上のために導入した外来遺伝子の発現が乳管以外の部位で促進されると、植物体の代謝や乳液の生産に負荷がかかり、悪影響を及ぼすためと推測される。
なお、本明細書において、プロモーターが乳管特異的に遺伝子を発現させるプロモーター活性を有するとは、所望の遺伝子を当該プロモーターと機能的に連結させて植物に導入した場合に、当該所望の遺伝子が乳管で特異的に発現されるように遺伝子発現を制御する活性を有することを意味する。ここで、乳管特異的に遺伝子が発現するとは、当該遺伝子が植物中、乳管以外の部位では全く又はほとんど発現せず、当該遺伝子が実質的に乳管でのみ専ら発現しているといえる状態を意味する。また、遺伝子をプロモーターと機能的に連結させるとは、当該プロモーターの制御を受けるように、当該プロモーターの下流に当該遺伝子配列を連結することを意味する。
第2の本発明のベクターは、一般的に植物の形質転換用ベクターとして知られているベクターに、乳管特異的に遺伝子を発現させるプロモーター活性を有するプロモーターの塩基配列、並びに、Nogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子の塩基配列、又は、シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子の塩基配列を従来公知の方法により挿入することで作製することができる。第2の本発明のベクターを作製するために使用することができるベクターとしては、例えば、pBI系のベクターや、pGA482、pGAH、pBIGなどのバイナリーベクター、pLGV23Neo、pNCAT、pMON200などの中間系プラスミド、GATEWAYカセットを含むpH35GSなどが挙げられる。
第2の本発明のベクターは、乳管特異的に遺伝子を発現させるプロモーター活性を有するプロモーターの塩基配列、並びに、Nogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子の塩基配列、又は、シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子の塩基配列を含む限り、その他の塩基配列を含んでいてもよい。通常、ベクターにはこれらの塩基配列に加えて、ベクター由来の配列が含まれており、更に、制限酵素認識配列、スペーサ―配列、マーカー遺伝子の配列、レポーター遺伝子の配列などが含まれる。
上記マーカー遺伝子としては、例えば、カナマイシン耐性遺伝子、ハイグロマイシン耐性遺伝子、ブレオマイシン耐性遺伝子等の薬剤耐性遺伝子が挙げられる。また、上記レポーター遺伝子は、植物体中での発現部位を確認するために導入するものであり、例えば、ルシフェラーゼ遺伝子、GUS(βグルクロニダーゼ)遺伝子、GFP(緑色蛍光タンパク質)、RFP(赤色蛍光タンパク質)等が挙げられる。
上記シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子、Nogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子は、その由来は特に制限されず、微生物由来であっても、動物由来であっても、植物由来であってもよいが、植物由来であることが好ましく、上述した植物由来であることがより好ましく、Hevea属、Sonchus属、Taraxacum属、及びParthenium属からなる群より選択される少なくとも1種の属に属する植物由来であることが更に好ましい。中でも、パラゴムノキ、ノゲシ、グアユール及びロシアンタンポポからなる群より選択される少なくとも1種の植物由来であることがより更に好ましく、特に好ましくは、パラゴムノキ由来であることである。最も好ましくはいずれもパラゴムノキ由来であることである。また、上記シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子、及び、Nogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子の由来が同じ種であることも好適な形態な1つである。
なお、第2の本発明におけるシス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子、Nogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子、CPTファミリー蛋白質、NgBRファミリー蛋白質については、上述の第1の本発明で述べたとおりである。
第2の本発明のベクターにおいては、乳管特異的に遺伝子を発現させるプロモーター活性を有するプロモーターの塩基配列、並びに、Nogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子の塩基配列、又は、シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子の塩基配列を含む限り、更にその他の蛋白質をコードする遺伝子の塩基配列を含んでいてもよい。
上記その他の蛋白質をコードする遺伝子としては、第1の本発明において上述したものと同様のものが挙げられる。
上記乳管特異的に遺伝子を発現させるプロモーター活性を有するプロモーターとしては、Rubber Elongation Factor(REF)をコードする遺伝子のプロモーター、Small Rubber Particle Protein(SRPP)をコードする遺伝子のプロモーター、Hevein2.1(HEV2.1)をコードする遺伝子のプロモーター、及び、MYC1 transcription factor(MYC1)をコードする遺伝子のプロモーターからなる群より選択される少なくとも1種であることが好ましい。
なお、本明細書において、Rubber Elongation Factor(REF)は、パラゴムノキ(Hevea brasiliensis)等のゴム産生植物のラテックスに存在するゴム粒子に結合するゴム粒子結合蛋白質のことであり、ゴム粒子が安定化するのに寄与する。
Small Rubber Particle Protein(SRPP)は、パラゴムノキ(Hevea brasiliensis)等のゴム産生植物のラテックスに存在するゴム粒子に結合するゴム粒子結合蛋白質のことである。
Hevein2.1(HEV2.1)は、パラゴムノキ(Hevea brasiliensis)等のゴム産生植物の乳管細胞に多く発現している蛋白質のことであり、ゴム粒子の凝集に関与し、抗真菌活性を有するものである。
また、MYC1 transcription factor(MYC1)は、パラゴムノキ(Hevea brasiliensis)等のゴム産生植物のラテックスで多く発現している、ジャスモン酸シグナルに関わる転写因子のことである。ここで、transcription factor(転写因子)とは、遺伝子の転写量を増加若しくは減少(好ましくは増加)させる活性を有する蛋白質を意味する。すなわち、本明細書において、MYC1は、ジャスモン酸シグナルに関わる蛋白質のうち少なくとも1種の蛋白質をコードする遺伝子の転写量を増加若しくは減少(好ましくは増加)させる活性(転写因子活性)を有する蛋白質のことである。
(Rubber Elongation Factor(REF)をコードする遺伝子のプロモーター)
上記REFをコードする遺伝子のプロモーターは、その由来は特に制限されないが、上述した植物由来であることが好ましく、Hevea属、Sonchus属、Taraxacum属、及びParthenium属からなる群より選択される少なくとも1種の属に属する植物由来であることがより好ましい。中でも、パラゴムノキ、ノゲシ、グアユール及びロシアンタンポポからなる群より選択される少なくとも1種の植物由来であることが更に好ましく、特に好ましくは、パラゴムノキ由来であることである。
上記REFをコードする遺伝子のプロモーターは、下記[A1]~[A3]のいずれかで表されるDNAであることが好ましい。
[A1]配列番号9で表される塩基配列からなるDNA
[A2]配列番号9で表される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ乳管特異的に遺伝子を発現させるプロモーター活性を有するDNA
[A3]配列番号9で表される塩基配列と60%以上の配列同一性を有する塩基配列からなり、かつ乳管特異的に遺伝子を発現させるプロモーター活性を有するDNA
ここでいう「ハイブリダイズする」とは、上述したのと同様である。また、上記ストリンジェントな条件についても、上述したのと同様である。
上記したストリンジェントな条件下でハイブリダイズ可能なDNAのように、プロモーターの塩基配列は、元の塩基配列とある程度の配列同一性を有している場合には、同様にプロモーター活性を有する場合があることが知られている。プロモーター活性を維持するための、配列番号9で表される塩基配列との配列同一性としては、少なくとも60%以上、好ましくは80%以上、より好ましくは90%以上、更に好ましくは95%以上、より更に好ましくは98%以上、特に好ましくは99%以上である。
(SRPPをコードする遺伝子のプロモーター)
上記SRPPをコードする遺伝子のプロモーターは、その由来は特に制限されないが、上述した植物由来であることが好ましく、Hevea属、Sonchus属、Taraxacum属、及びParthenium属からなる群より選択される少なくとも1種の属に属する植物由来であることがより好ましい。中でも、パラゴムノキ、ノゲシ、グアユール及びロシアンタンポポからなる群より選択される少なくとも1種の植物由来であることが更に好ましく、特に好ましくは、パラゴムノキ由来であることである。
上記SRPPをコードする遺伝子のプロモーターは、下記[B1]~[B3]のいずれかで表されるDNAであることが好ましい。
[B1]配列番号10で表される塩基配列からなるDNA
[B2]配列番号10で表される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ乳管特異的に遺伝子を発現させるプロモーター活性を有するDNA
[B3]配列番号10で表される塩基配列と60%以上の配列同一性を有する塩基配列からなり、かつ乳管特異的に遺伝子を発現させるプロモーター活性を有するDNA
ここでいう「ハイブリダイズする」とは、上述したのと同様である。また、上記ストリンジェントな条件についても、上述したのと同様である。
上記したストリンジェントな条件下でハイブリダイズ可能なDNAのように、プロモーターの塩基配列は、元の塩基配列とある程度の配列同一性を有している場合には、同様にプロモーター活性を有する場合があることが知られている。プロモーター活性を維持するための、配列番号10で表される塩基配列との配列同一性としては、少なくとも60%以上、好ましくは80%以上、より好ましくは90%以上、更に好ましくは95%以上、より更に好ましくは98%以上、特に好ましくは99%以上である。
(HEV2.1をコードする遺伝子のプロモーター)
上記HEV2.1をコードする遺伝子のプロモーターは、その由来は特に制限されないが、上述した植物由来であることが好ましく、Hevea属、Sonchus属、Taraxacum属、及びParthenium属からなる群より選択される少なくとも1種の属に属する植物由来であることがより好ましい。中でも、パラゴムノキ、ノゲシ、グアユール及びロシアンタンポポからなる群より選択される少なくとも1種の植物由来であることが更に好ましく、特に好ましくは、パラゴムノキ由来であることである。
上記HEV2.1をコードする遺伝子のプロモーターは、下記[C1]~[C3]のいずれかで表されるDNAであることが好ましい。
[C1]配列番号11で表される塩基配列からなるDNA
[C2]配列番号11で表される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ乳管特異的に遺伝子を発現させるプロモーター活性を有するDNA
[C3]配列番号11で表される塩基配列と60%以上の配列同一性を有する塩基配列からなり、かつ乳管特異的に遺伝子を発現させるプロモーター活性を有するDNA
ここでいう「ハイブリダイズする」とは、上述したのと同様である。また、上記ストリンジェントな条件についても、上述したのと同様である。
上記したストリンジェントな条件下でハイブリダイズ可能なDNAのように、プロモーターの塩基配列は、元の塩基配列とある程度の配列同一性を有している場合には、同様にプロモーター活性を有する場合があることが知られている。プロモーター活性を維持するための、配列番号11で表される塩基配列との配列同一性としては、少なくとも60%以上、好ましくは80%以上、より好ましくは90%以上、更に好ましくは95%以上、より更に好ましくは98%以上、特に好ましくは99%以上である。
(MYC1をコードする遺伝子のプロモーター)
上記MYC1をコードする遺伝子のプロモーターは、その由来は特に制限されないが、上述した植物由来であることが好ましく、Hevea属、Sonchus属、Taraxacum属、及びParthenium属からなる群より選択される少なくとも1種の属に属する植物由来であることがより好ましい。中でも、パラゴムノキ、ノゲシ、グアユール及びロシアンタンポポからなる群より選択される少なくとも1種の植物由来であることが更に好ましく、特に好ましくは、パラゴムノキ由来であることである。
上記MYC1をコードする遺伝子のプロモーターは、下記[D1]~[D3]のいずれかで表されるDNAであることが好ましい。
[D1]配列番号12で表される塩基配列からなるDNA
[D2]配列番号12で表される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ乳管特異的に遺伝子を発現させるプロモーター活性を有するDNA
[D3]配列番号12で表される塩基配列と60%以上の配列同一性を有する塩基配列からなり、かつ乳管特異的に遺伝子を発現させるプロモーター活性を有するDNA
ここでいう「ハイブリダイズする」とは、上述したのと同様である。また、上記ストリンジェントな条件についても、上述したのと同様である。
上記したストリンジェントな条件下でハイブリダイズ可能なDNAのように、プロモーターの塩基配列は、元の塩基配列とある程度の配列同一性を有している場合には、同様にプロモーター活性を有する場合があることが知られている。プロモーター活性を維持するための、配列番号12で表される塩基配列との配列同一性としては、少なくとも60%以上、好ましくは80%以上、より好ましくは90%以上、更に好ましくは95%以上、より更に好ましくは98%以上、特に好ましくは99%以上である。
上記したDNAとストリンジェントな条件下でハイブリダイズするDNAや、上記したDNAと60%以上の配列同一性を有するDNAが、乳管特異的に遺伝子を発現させるプロモーター活性を有するDNAであることを確認する方法としては、例えば、従来公知の方法である、β-ガラクトシダーゼ、ルシフェラーゼ、又はGFP(Green Fluorescent Protein)等をレポーター遺伝子としたレポーターアッセイなどにより確認する方法が挙げられる。
また、上記プロモーターの塩基配列を同定する方法は、従来公知の方法を用いることができ、例えば、生育する植物から、CTAB(Cetyl Trimethyl Ammonium Bromide)法によりゲノムDNAを抽出する。次に上記プロモーターの既知の塩基配列を基に特異的なプライマーと、ランダムプライマーを設計し、抽出したゲノムDNAを鋳型にしてTAIL(Thermal Asymmetric Interlaced)-PCR法を行って、上記プロモーターを含む遺伝子の増幅を行い、塩基配列を同定する。
第2の本発明のベクター(乳管特異的に遺伝子を発現させるプロモーター活性を有するプロモーターに、Nogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子、又は、シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子を機能的に連結させた塩基配列を含むベクター)を植物に導入することにより、ポリイソプレノイド生合成に関わる所定の蛋白質を乳管特異的に発現するように形質転換された形質転換植物が得られる。そして、当該形質転換植物では、ポリイソプレノイド生合成に関わる所定の蛋白質が乳管特異的に発現することにより、第2の本発明のベクターが導入された植物体内で新たに該蛋白質が有する所定の酵素活性等の機能が乳管内で増強されてポリイソプレノイドの生合成経路の一部が増強され、結果的に植物体でのシス型イソプレノイド、ポリイソプレノイドの生産量を向上させることができる。
更に、本発明者らは、生体外で、ゴム粒子にCPTファミリー蛋白質、及びNgBRファミリー蛋白質を結合させることで、ゴム粒子のゴム合成が活性化することを初めて見出した。このことから、植物体内でCPTファミリー蛋白質、及びNgBRファミリー蛋白質を共発現させると、ゴム合成活性が増強することが予想される。したがって、CPTファミリー蛋白質、及びNgBRファミリー蛋白質を共発現させた形質転換植物を用いて、ポリイソプレノイドの製造を行うことで、ポリイソプレノイドの製造量を更に増大できることが期待できる。
したがって、上記形質転換植物を、乳管特異的に遺伝子を発現させるプロモーター活性を有するプロモーターに、Nogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子を機能的に連結させた塩基配列を含むベクターを植物に導入することにより作出する場合には、乳管特異的に遺伝子を発現させるプロモーター活性を有するプロモーターに、シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子を機能的に連結させた塩基配列を含むベクターを併用することが好ましい。これにより、乳管特異的に遺伝子を発現させるプロモーター活性を有するプロモーターに、シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子を機能的に連結させた塩基配列を含むベクターを植物に導入することで得られる形質転換植物、及び、乳管特異的に遺伝子を発現させるプロモーター活性を有するプロモーターに、Nogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子を機能的に連結させた塩基配列を含むベクターと、乳管特異的に遺伝子を発現させるプロモーター活性を有するプロモーターに、シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子を機能的に連結させた塩基配列を含むベクターとを植物に導入することで得られる形質転換植物いずれにおいても、CPTファミリー蛋白質、及びNgBRファミリー蛋白質が共発現することとなるため、CPTファミリー蛋白質の活性が安定化、増強されると予想される。その結果、CPTファミリー蛋白質、及びNgBRファミリー蛋白質を共発現させた形質転換植物は、ゴム合成活性が継続的に増強し、該形質転換植物を用いて、ポリイソプレノイドの製造を行うことで、ポリイソプレノイドの製造量をより好適に増大できるものと期待される。
なお、上記乳管特異的に遺伝子を発現させるプロモーター活性を有するプロモーターに、シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子を機能的に連結させた塩基配列を含むベクターとは、上記乳管特異的に遺伝子を発現させるプロモーター活性を有するプロモーターの制御を受けるように、当該プロモーターの下流に上記シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子の塩基配列を連結したものを意味し、第2の本発明のベクターと同様の方法で得られる。
次に、上記形質転換植物の作製方法について簡単に説明するが、このような形質転換植物は従来公知の方法により作製することができる。
上記形質転換植物を作出するために、第2の本発明のベクターが導入される植物としては、特に限定されないが、中でも、ポリイソプレノイドを生合成できる植物でCPTファミリー蛋白質、及びNgBRファミリー蛋白質を発現させることにより、ポリイソプレノイドの生産性の向上、ポリイソプレノイドの製造量の増大が特に期待できることから、上記植物としては、ゴム産生植物が好ましい。中でも、パラゴムノキ、ノゲシ、グアユール及びロシアンタンポポからなる群より選択される少なくとも1種のゴム産生植物であることがより好ましく、特に好ましくは、パラゴムノキであることである。
第2の本発明のベクターを植物(カルスや、培養細胞、スフェロプラスト、プロトプラストといった植物細胞を含む)に導入する方法としては、植物細胞にDNAを導入する方法であればいずれも用いることができ、例えば、アグロバクテリウム(Agrobacterium)を用いる方法(特開昭59-140885号公報、特開昭60-70080号公報、国際公開第94/00977号)、エレクトロポレーション法(特開昭60-251887号公報)、パーティクルガン(遺伝子銃)を用いる方法(特許第2606856号、特許第2517813号)等を挙げることができる。中でも、アグロバクテリウムを用いる方法(アグロバクテリウム法)を用いて第2の本発明のベクターを植物に導入して形質転換植物(形質転換植物細胞)を作製するのが好ましい。
なお更には、第2の本発明のベクターを、上記DNAを導入する方法などにより、微生物、酵母、動物細胞、昆虫細胞等の、生物体、生物体の一部、器官、組織や培養細胞、スフェロプラスト、プロトプラストなどに導入することによって、シス型イソプレノイド、ポリイソプレノイドを生産することも可能である。
以上の方法等により、上記形質転換植物(形質転換植物細胞)が得られる。なお、上記形質転換植物は、上述の方法で得られた形質転換植物細胞のみならず、その子孫又はクローン、さらにそれらを継代させて得られる子孫植物の全てを含む概念である。一旦、第2の本発明のベクターが導入された形質転換植物細胞が得られれば、該形質転換植物細胞から有性生殖、無性生殖、組織培養、細胞培養、細胞融合等により子孫又はクローンを得ることが可能である。また、該形質転換植物細胞やその子孫あるいはクローンから繁殖材料(例えば、種子、果実、切穂、塊茎、塊根、株、不定芽、不定胚、カルス、プロトプラスト等)を得て、それらを基に該形質転換植物を量産することも可能である。
形質転換植物細胞から植物体(形質転換植物)を再生する方法としては、例えば、ユーカリでは土肥らの方法(特願平11-127025号公報)、イネではFujimuraらの方法(Fujimuraら(1995), Plant Tissue Culture Lett.,vol.2:p74-)、トウモロコシではShillitoらの方法(Shillitoら(1989), Bio/Technology,vol.7:p581-)、ジャガイモではVisserらの方法(Visserら(1989), Theor.Appl.Genet.,vol.78:p589-)、シロイヌナズナではAkamaらの方法(Akamaら(1992), Plant Cell Rep.,vol.12:p7-)が知られており、当業者であれば、これらを参照して形質転換植物細胞から植物体を再生できる。
再生した植物体において、周知の手法を用いることで、目的の蛋白質遺伝子の発現を確認することが出来る。例えば、目的の蛋白質の発現をウエスタンブロット解析すればよい。
上記形質転換植物から種子を得る方法としては、例えば、形質転換植物を適当な培地において発根させ、その発根体を水分含有の土を入れたポットに移植する。適当な栽培条件下で生育させ、最終的に種子を形成させて、該種子を得る。また、種子から植物体を得る方法としては、例えば、前記のようにして得られた形質転換植物由来の種子を、水分含有の土に播種し、適当な栽培条件下で生育させることにより植物体を得ることができる。
第2の本発明では、第2の本発明のベクターを植物に導入することにより、該ベクターに含まれるポリイソプレノイド生合成に関わる蛋白質をコードする遺伝子(特に好ましくは、CPTファミリー蛋白質をコードする遺伝子及びNgBRファミリー蛋白質をコードする遺伝子)が乳管特異的に発現し、当該植物におけるシス型イソプレノイド、ポリイソプレノイドの生産量を向上させることができる。具体的には、上述の方法で得られた形質転換植物細胞、形質転換植物細胞から得られたカルス、該カルスから再分化した細胞等を適当な培地で培養したり、形質転換植物細胞から再分化した形質転換植物、該形質転換植物から得られた種子から得られた植物体等を適当な栽培条件下で生育させたりすることにより、シス型イソプレノイド、ポリイソプレノイドを製造することができる。
このように、第2の本発明のベクターを植物に導入することにより、該植物におけるシス型イソプレノイドの生産量を向上させる方法もまた、第2の本発明の1つである。また、第2の本発明のベクターを植物に導入することにより、該植物におけるポリイソプレノイドの生産量を向上させる方法もまた、第2の本発明の1つである。
(ゴム製品の製造方法)
第2の本発明のゴム製品の製造方法は、上記第2の本発明のベクターを植物に導入することにより得られる形質転換植物から得られるポリイソプレノイドと、添加剤とを混練して混練物を得る混練工程、上記混練物から生ゴム製品を成形する生ゴム製品成形工程、及び上記生ゴム製品を加硫する加硫工程を含むゴム製品の製造方法である。
ゴム製品としては、第1の本発明において上述したものと同様である。
ゴム製品が空気入りタイヤの場合、すなわち、第2の本発明のゴム製品の製造方法が第2の本発明の空気入りタイヤの製造方法の場合、上記生ゴム製品成形工程は、上記混練物から生タイヤを成形する生タイヤ成形工程に、上記加硫工程は、上記生タイヤを加硫する加硫工程に相当する。すなわち、第2の本発明の空気入りタイヤの製造方法は、上記第2の本発明のベクターを植物に導入することにより得られる形質転換植物から得られるポリイソプレノイドと、添加剤とを混練して混練物を得る混練工程、上記混練物から生タイヤを成形する生タイヤ成形工程、及び上記生タイヤを加硫する加硫工程を含む空気入りタイヤの製造方法である。
<混練工程>
混練工程では、上記第2の本発明のベクターを植物に導入することにより得られる形質転換植物から得られるポリイソプレノイドと、添加剤とを混練して混練物を得る。
上記第2の本発明のベクターを植物に導入することにより得られる形質転換植物から得られるポリイソプレノイドは、上記形質転換植物からラテックスを採取し、採取したラテックスを以下の固化工程に供することにより得られる。
なお、上記形質転換植物からのラテックスの採取方法は特に制限されず、通常行われる方法を採用することができるが、例えば、植物の幹を傷つけてにじみ出る乳液を回収したり(タッピング)、根など形質転換植物の一部を切断し、切断した部分からにじみ出る乳液を回収したり、切断した組織を粉砕し、有機溶媒を用いて抽出して採取したりすることができる。
<固化工程>
上記採取されたラテックスは、固化工程に供される。固化する方法としては、特に限定されず、エタノール、メタノール、アセトン等のポリイソプレノイド(天然ゴム)を溶解しない溶媒にラテックスを添加する方法やラテックスに酸を添加する方法等が挙げられる。固化工程を行うことにより、ラテックスからゴム(天然ゴム)を固形分として回収できる。得られたゴム(天然ゴム)は、必要に応じて乾燥してから使用すればよい。
添加剤としては特に限定されず、ゴム製品の製造に用いられる添加剤を使用できる。例えば、ゴム製品が空気入りタイヤの場合、例えば、上記ラテックスから得られたゴム以外のゴム成分、カーボンブラック、シリカ、炭酸カルシウム、アルミナ、クレー、タルクなどの補強用充填剤、シランカップリング剤、酸化亜鉛、ステアリン酸、加工助剤、各種老化防止剤、オイルなどの軟化剤、ワックス、硫黄などの加硫剤、加硫促進剤等が挙げられる。
混練工程における混練は、オープンロール、バンバリーミキサー、密閉式混練機などのゴム混練装置を用いて行えばよい。
<生ゴム製品成形工程(タイヤの場合は生タイヤ成形工程)>
生ゴム製品成形工程では、第1の本発明において上述した工程と同様である。
<加硫工程>
加硫工程は、第1の本発明において上述した工程と同様である。
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
(実施例1)
〔HeveaラテックスからのTotal RNA抽出〕
パラゴムノキのラテックスからホットフェノール法により、Total RNAを抽出した。ラテックス6mLに100mM酢酸ナトリウム緩衝液6mL、10%SDS溶液1mLを添加し、さらに65℃で予温しておいた水飽和フェノールを12mL添加した。65℃で5分間インキュベートしたのち、ボルテックスで撹拌し、室温、7000rpmで10分間遠心分離を行った。遠心後、上清を新しいチューブに移し、フェノール:クロロホルム(1:1)溶液12mLを添加し、2分間振盪撹拌した。撹拌後、再度、室温、7000rpmで10分間遠心分離を行った後、上清を新しいチューブに移し、クロロホルム:イソアミルアルコール(24:1)溶液12mLを添加し、2分間振盪撹拌した。撹拌後、再度、室温、7000rpmで10分間遠心分離を行った後、上清を新しいチューブに移し、3M酢酸ナトリウム溶液1.2mLとイソプロパノール13mLを添加し、ボルテックスで撹拌した。Total RNAを沈殿させるために、-20℃で30分間インキュベートした。インキュベート後、4℃、15000rpmで10分間遠心し、上清を取除くことでTotal RNAの沈殿を回収した。回収したTotal RNAは70%エタノールで2度洗浄したのち、RNase freeの水で溶解させた。
〔Total RNAからcDNAの合成〕
回収したTotal RNAをもとに、cDNAを合成した。cDNAの合成はPrimeScript II 1st strand cDNA Synthesis Kit(Takara)の説明書に従って行った。
〔cDNAからCPT、及びNgBR遺伝子の取得〕
作製した1st strand cDNAを鋳型にCPT、及びNgBR遺伝子の取得を行った。PCRはKOD-plus-Neo(TOYOBO社製)を使用し、説明書に従って行った。PCRは、98℃で10秒、58℃で30秒、68℃で1分を1サイクルとして、35サイクル行った。
CPT遺伝子の取得は、プライマーとして、
プライマー1:5’- tttggatccgatggaattatacaacggtgagagg-3’
プライマー2:5’- tttgcggccgcttattttaagtattccttatgtttctcc-3’
を使用した。
NgBR遺伝子の取得は、プライマーとして、
プライマー3:5’- tttctcgagatggatttgaaacctggagctg -3’
プライマー4:5’- tttctcgagtcatgtaccataattttgctgcac -3’
を使用した。
上述の方法により、CPT遺伝子(HRT1)、及びNgBR遺伝子(HRTBP)が得られた。得られた遺伝子について、その配列を同定し、全長の塩基配列及びアミノ酸配列を同定した。HRT1の塩基配列を配列番号1に示した。HRT1のアミノ酸配列を配列番号2に示した。また、HRTBPの塩基配列を配列番号3に示した。HRTBPのアミノ酸配列を配列番号4に示した。
〔ベクターの構築〕
上記取得したDNA断片にdA付加を行った後、pGEM-T Easy Vector System(Promega)を利用してpGEM-T Easy Vectorに挿入し、pGEM-HRT1、及びpGEM-HRTBPを作製した。
〔大腸菌の形質転換〕
上記作製したVectorを用いて大腸菌DH5αの形質転換を行い、形質転換体はアンピシリンとX-galを含むLB寒天培地上で培養し、青/白スクリーニング法によって目的遺伝子を導入した大腸菌の選別を行った。
〔プラスミドの抽出〕
目的遺伝子を含むプラスミドで形質転換された大腸菌は、LB液体培地上で37℃で一晩培養したのち、菌体を回収し、プラスミドの回収を行った。プラスミドの回収はFast Geneプラスミドミニキット(日本ジェネティクス社製)を使用した。
回収したプラスミドに挿入された遺伝子の塩基配列に変異がないことをシークエンス解析により確認した。
〔無細胞蛋白合成法用ベクターの作製〕
上記〔ベクターの構築〕で獲得したpGEM-HRT1を制限酵素Bam HIとNot Iで処理したのち、同様にBam HIとNot Iで制限酵素処理した無細胞発現用ベクターpEU-E01-His-TEV-MCS―N2に挿入し、pEU-His-N2-HRT1を作製した。
同様に、pGEM-HRTBPを制限酵素Xho Iで処理したのち、同様にXho Iで制限酵素処理した無細胞発現用ベクターpEU-E01-MCS-TEV-His-C1に挿入し、pEU-C1-HRTBPを作製した。
〔大腸菌の形質転換〕
上記作製したVectorを用いて大腸菌DH5αの形質転換を行い、形質転換体はアンピシリンとX-galを含むLB寒天培地上で培養し、コロニーPCRによって目的遺伝子を導入した大腸菌の選別を行った。
〔プラスミドの抽出〕
目的遺伝子を含むプラスミドで形質転換された大腸菌は、LB液体培地上で37℃で一晩培養したのち、菌体を回収し、プラスミドの回収を行った。プラスミドの回収はFast Geneプラスミドミニキット(日本ジェネティクス社製)を使用した。
〔ゴム粒子の調製〕
ゴム粒子は、5段階の遠心分離によってHeveaラテックスから調製した。Heveaラテックス900mLに、20mMのジチオスレイトール(DTT)を含む1M Tris緩衝液(pH7.5)100mLを添加し、ラテックス溶液を調製した。得られたラテックス溶液を、1000×g、2000×g、8000×g、20000×g、50000×gの異なる遠心速度で段階的に遠心分離した。遠心分離はいずれも4℃、45分で行った。50000×gでの遠心分離で残ったゴム粒子層に、3-[(3-コラミドプロピル)ジメチルアミノ]-プロパンスルホン酸(CHAPS)を終濃度0.1~2.0×CMC(臨界ミセル濃度CMCの0.1~2.0倍)になるように加え、ゴム粒子を洗浄した。洗浄処理後、洗浄されたゴム粒子を超遠心分離(40000×g、4℃、45分)によって回収し、等量の2mMのジチオスレイトール(DTT)を含む100M Tris緩衝液(pH7.5)に再懸濁した。
〔無細胞蛋白合成反応(STEP1 mRNAの転写反応)〕
無細胞蛋白合成は、WEPRO7240H Expression kit((株)セルフリーサイエンス製)を使用して行った。上記〔無細胞蛋白合成法用ベクターの作製〕で獲得したベクターを鋳型に、WEPRO7240H Expression kitのプロトコルに従って、mRNAの転写反応を行った。
〔mRNAの精製〕
転写反応後、得られたmRNAはエタノール沈殿により精製した。
〔無細胞蛋白合成反応(STEP2 透析法による蛋白合成)〕
透析カップ(MWCO 12000)(Bio-Teck社製)中に、以下の量をそれぞれ添加した。WEPRO7240H Expression kitのプロトコルに従って全量60μLで反応溶液を調整した。反応溶液にゴム粒子を1~2mg添加した。さらに、PP容器No.2(マルエム容器)にSUB-AMIX 650μLを添加した。
透析カップをPP容器No.2にはめ、26℃で蛋白合成反応を開始した。反応開始から2度のmRNAの追加と透析外液(SUB-AMIX)の交換を行った。反応は24時間行った。透析法を行っている様子の概略図を図3に示す。
〔反応後のゴム粒子の回収〕
透析カップの溶液を新しい1.5μLチューブに移し、反応後のゴム粒子を超遠心分離(40000×g、4℃、45分)によって回収し、等量の2mMのジチオスレイトール(DTT)を含む100M Tris緩衝液(pH7.5)に再懸濁した。
〔反応後のゴム粒子のゴム合成活性の測定〕
回収した反応後のゴム粒子のゴム合成活性を以下の方法により測定した。
まず、50mM Tris-HCl(pH7.5)、2mM DTT、5mM MgCl、15μM ファルネシル二リン酸(FPP)、100μM 1-14Cイソペンテニル二リン酸([1-14C]IPP)(比活性:5Ci/mol)、10μL ゴム粒子溶液を混合した反応溶液(Total 100μL)を調製し、30℃で16時間反応させた。
反応後、飽和NaClを200μL加え、1mLのジエチルエーテルでイソペンテノールなどを抽出した。次に、水相のポリプレニル二リン酸を1mLの食塩水飽和BuOHで抽出し、その後さらに、水相の超長鎖ポリイソプレノイド(天然ゴム)を1mLのトルエン/ヘキサン(1:1)で抽出し、放射活性を計測した。各層の放射活性は液体シンチレーションカウンターで14Cのカウントを計測した。放射活性(dpm)が高いほど、天然ゴムが多く生産されており、ゴム合成活性が高いことを示す。
結果を表1に示す。
〔合成した超長鎖ポリイソプレノイド(天然ゴム)の分子量分布測定〕
上記合成した超長鎖ポリイソプレノイド(天然ゴム)の分子量分布を下記の条件でRadio HPLCにより測定した。結果を図4の(a)に示す。
HPLCシステム:GILSON社製
カラム:TOSOH社製のTSKguardcolumn MP(XL),TSKgel Multipore HXL-M(2本)
カラム温度:40℃
溶媒:Merck社製のTHF
流速:1ml/分
UV検出:215nm
RI検出:Ramona Star(Raytest GmbH)
(比較例1)
〔ゴム粒子の調製〕
実施例1と同様にして行った。
〔無細胞蛋白合成反応(STEP1 mRNAの転写反応)〕
無細胞蛋白合成は、WEPRO7240H Expression kit((株)セルフリーサイエンス製)を使用して行った。無細胞発現用ベクターpEU-E01-His-TEV-MCS-N2を鋳型に、WEPRO7240H Expression kitのプロトコルに従って、mRNAの転写反応を行った。
〔mRNAの精製〕
転写反応後、得られたmRNAはエタノール沈殿により精製した。
〔無細胞蛋白合成反応(STEP2 透析法による蛋白合成)〕
上記mRNAを用いた以外は、実施例1と同様にして行った。
〔反応後のゴム粒子の回収〕
実施例1と同様にして反応後のゴム粒子を回収し、等量の2mMのジチオスレイトール(DTT)を含む100M Tris緩衝液(pH7.5)に再懸濁した。
〔反応後のゴム粒子のゴム合成活性の測定〕
回収した反応後のゴム粒子のゴム合成活性を、実施例1と同様にして測定した。
結果を表1に示す。
(比較例2)
無細胞蛋白合成において、実施例1の〔無細胞蛋白合成法用ベクターの作製〕で獲得したpEU-C1-HRTBPを鋳型に用いた以外は実施例1と同様にして行い、回収した反応後のゴム粒子のゴム合成活性を、実施例1と同様にして測定した。
結果を表1に示す。
(実施例2)
〔レタス(Lactuca sativa)CPT、及びNgBR遺伝子の合成〕
レタス(Lactuca sativa)CPT遺伝子(LsCPT3)、及びNgBR遺伝子(LsCPTL2)はBLASTに公開されている情報をもとに、開始コドンから終始コドンまでの領域をジェンスクリプトジャパン株式会社の遺伝子合成サービスをもとに合成して作成した。後述する無細胞蛋白合成法用ベクターにクローニングするため、LsCPT3の5′末端側にはXho Iサイトを3′末端側にはKpn Iサイトを付加し、また、LsCPTL2の5′末端側にはEcoRVサイトを3′末端側にはXho Iサイトを付加した。
上述の方法により、CPT遺伝子(LsCPT3)、及びNgBR遺伝子(LsCPTL2)が得られた。得られた遺伝子について、その配列を同定し、全長の塩基配列及びアミノ酸配列を同定した。LsCPT3の塩基配列を配列番号13に示した。LsCPT3のアミノ酸配列を配列番号14に示した。また、LsCPTL2の塩基配列を配列番号15に示した。LsCPTL2のアミノ酸配列を配列番号16に示した。
〔ベクターの構築〕
上記取得したDNA断片は、pUC57に挿入し、pUC57-LsCPT3及びpUC57-LsCPTL2を作製した。
〔大腸菌の形質転換〕
上記作製したVectorを用いて、実施例1と同様にして行った。
〔プラスミドの抽出〕
実施例1と同様にして行った。
〔無細胞蛋白合成法用ベクターの作製〕
上記〔ベクターの構築〕で獲得したpUC57-LsCPT3を制限酵素Xho IとKpn Iで処理したのち、同様にXho IとKpn Iで制限酵素処理した無細胞発現用ベクターpEU-E01-His-TEV-MCS―N2に挿入し、pEU-His-N2-LsCPT3を作製した。
同様に、pUC57-LsCPTL2を制限酵素EcoRVとXho Iで処理したのち、同様にEcoRVとXho Iで制限酵素処理した無細胞発現用ベクターpEU-E01-MCS-TEV-His-C1に挿入し、pEU-C1-LsCPTL2を作製した。
〔大腸菌の形質転換〕
上記作製したVectorを用いて、実施例1と同様にして行った。
〔プラスミドの抽出〕
実施例1と同様にして行った。
〔ゴム粒子の調製〕
実施例1と同様にして行った。
〔無細胞蛋白合成反応(STEP1 mRNAの転写反応)〕
無細胞蛋白合成は、WEPRO7240H Expression kit((株)セルフリーサイエンス製)を使用して行った。上記〔無細胞蛋白合成法用ベクターの作製〕で獲得したベクターを鋳型に、WEPRO7240H Expression kitのプロトコルに従って、mRNAの転写反応を行った。
〔mRNAの精製〕
転写反応後、得られたmRNAはエタノール沈殿により精製した。
〔無細胞蛋白合成反応(STEP2 透析法による蛋白合成)〕
上記mRNAを用いた以外は、実施例1と同様にして行った。
〔反応後のゴム粒子の回収〕
実施例1と同様にして反応後のゴム粒子を回収し、等量の2mMのジチオスレイトール(DTT)を含む100M Tris緩衝液(pH7.5)に再懸濁した。
〔反応後のゴム粒子のゴム合成活性の測定〕
回収した反応後のゴム粒子のゴム合成活性を、実施例1と同様にして測定した。結果を表1に示す。
〔合成した超長鎖ポリイソプレノイド(天然ゴム)の分子量分布測定〕
上記〔反応後のゴム粒子のゴム合成活性の測定〕で合成した超長鎖ポリイソプレノイド(天然ゴム)の分子量分布を、実施例1と同様にして測定した。結果を図4の(a)に示す。
(実施例3)
〔シロイヌナズナ(Arabidopsis thaliana)からのTotal RNA抽出〕
シロイヌナズナからホットフェノール法により、Total RNAを抽出した。実生を液体窒素で凍結後、乳鉢で破砕した後、80℃の水飽和フェノール、80℃のRNA抽出バッファー(100mM LiCl、100mM Tris-HCl(pH8.0)、10mM EDTA、1%SDS)をそれぞれ400μLずつ加え30秒間ボルテックスした。さらにクロロホルム/イソアミルアルコール(24:1)を400μL加え30秒間ボルテックスした。4℃、15,000rpmで15分間遠心分離し、上層を回収した。4M LiClを500μL加え混合し、-80℃で1時間静置した。4℃、15,000rpmで15分間遠心分離し、上清を除去後に得られた沈殿を400μLのDEPC処理水に溶解した。エタノールを880μL、3M NaOAcを40μL加え混合した。4℃、15,000rpmで15分間遠心分離し、上清を除去後に得られた沈殿を300μLの70%エタノールで洗浄した。4℃、15,000rpmで5分間遠心分離し、上清を除去後に得られた沈殿を30μLのDEPC処理水に溶解した。抽出したTotal RNAから混入したゲノムDNAを除去するため、DNase処理を行った。DNase処理にはDNase I(TaKaRa社製)もしくはDNase I recombinant,RNase-free(Roche社製)を使用した。いずれの場合もメーカー推奨の条件に従い50μLの反応溶液を調製し、37℃で30分間インキュベートした。反応後にDEPC処理水を350μLとフェノールを400μL加え混合し、室温、15,000rpmで15分間遠心分離した。上層を回収し、エタノールを880μL、3M NaOAcを40μL加え混合した。4℃、15,000rpmで15分間遠心分離し、上清を除去後に得られた沈殿を300μLの70%エタノールで洗浄した。4℃、15,000rpmで遠心分離し、上清を除去後に得られた沈殿を50μLのDEPC処理水に溶解した。
〔Total RNAからcDNAの合成〕
実施例1と同様にして行った。
〔cDNAからCPT、及びNgBR遺伝子の取得〕
作製した1st strand cDNAを鋳型にCPT、及びNgBR遺伝子の取得を行った。PCRはKOD-plus-Neo(TOYOBO社製)を使用し、説明書に従って行った。PCRは、98℃で10秒、55~60℃で15秒、68℃で30秒を1サイクルとして、35サイクル行った。
CPT遺伝子の取得は、プライマーとして、
プライマー5:5’- ctaggatccgagatgaataccctagaag -3’
プライマー6:5’- aacggatccaactatctaatcgagc -3’
NgBR遺伝子の取得は、プライマーとして、
プライマー7:5’- cgggatccatggattcgaatcaatcgatgcggctcctc -3’
プライマー8:5’- gcggatccaattgggaacagtagtggctgcactgactc -3’
を使用した。
〔ベクターの構築〕
上述の方法により、CPT遺伝子(AtCPT8)、及びNgBR遺伝子(AtLEW1)が得られた。得られた遺伝子について、制限酵素BamH Iで処理したのち、同様にBamH Iで制限酵素処理したpBluescript IISK(-)に挿入し、pBS-AtCPT8及びpBS-AtLEW1を作製した。
〔大腸菌の形質転換〕
上記作製したVectorを用いて、実施例1と同様にして行った。
〔プラスミドの抽出〕
実施例1と同様にして行った。
得られたプラスミド内の各遺伝子の配列を同定し、全長の塩基配列及びアミノ酸配列を同定した。AtCPT8の塩基配列を配列番号21に示した。AtCPT8のアミノ酸配列を配列番号22に示した。また、AtLEW1の塩基配列を配列番号23に示した。AtLEW1のアミノ酸配列を配列番号24に示した。
上記取得したpBS-AtCPT8及びpBS-AtLEW1を鋳型にCPT、及びNgBR遺伝子の取得を行った。PCRはKOD-plus-Neo(TOYOBO社製)を使用し、説明書に従って行った。PCRは、98℃で10秒、55~60℃で15秒、68℃で30秒を1サイクルとして、35サイクル行った。
CPT遺伝子の取得は、プライマーとして、
プライマー23:5’- tatcccgggatgaatacc -3’
プライマー24:5’- tgaactagtctaatcgagctttttc -3’
を使用した。
NgBR遺伝子の取得は、プライマーとして、
プライマー25:5’- acccgggatggattcg -3’
プライマー26:5’- cgcggactagtttaagttccatag -3’
を使用した。
〔無細胞蛋白合成法用ベクターの作製〕
上述の方法により得られた遺伝子について、制限酵素Xma IとSpe Iで処理したのち、同様にXma IとSpe Iで制限酵素処理した無細胞発現用ベクターpEU-E01-His-TEV-MCS―N2に挿入し、pEU-His-N2-AtCPT8、pEU-His-N2-AtLEW1を作製した。
〔大腸菌の形質転換〕
上記作製したVectorを用いて、実施例1と同様にして行った。
〔プラスミドの抽出〕
実施例1と同様にして行った。
〔ゴム粒子の調製〕
実施例1と同様にして行った。
〔無細胞蛋白合成反応(STEP1 mRNAの転写反応)〕
無細胞蛋白合成は、WEPRO7240H Expression kit((株)セルフリーサイエンス製)を使用して行った。上記〔無細胞蛋白合成法用ベクターの作製〕で獲得したベクターを鋳型に、WEPRO7240H Expression kitのプロトコルに従って、mRNAの転写反応を行った。
〔mRNAの精製〕
転写反応後、得られたmRNAはエタノール沈殿により精製した。
〔無細胞蛋白合成反応(STEP2 透析法による蛋白合成)〕
上記mRNAを用いた以外は、実施例1と同様にして行った。
〔反応後のゴム粒子の回収〕
実施例1と同様にして反応後のゴム粒子を回収し、等量の2mMのジチオスレイトール(DTT)を含む100M Tris緩衝液(pH7.5)に再懸濁した。
〔反応後のゴム粒子のゴム合成活性の測定〕
回収した反応後のゴム粒子のゴム合成活性を、実施例1と同様にして測定した。結果を表1に示す。
〔合成した超長鎖ポリイソプレノイド(天然ゴム)の分子量分布測定〕
上記〔反応後のゴム粒子のゴム合成活性の測定〕で合成した超長鎖ポリイソプレノイド(天然ゴム)の分子量分布を、実施例1と同様にして測定した。結果を図4の(a)に示す。
Figure JPOXMLDOC01-appb-T000001
表1より、CPTファミリー蛋白質、及びNgBRファミリー蛋白質をゴム粒子に結合させることにより、それぞれを単独でゴム粒子に結合された場合に比べて、ゴム粒子のゴム合成能力を顕著に増強させることができることが分かる。更に、ゴム粒子にNgBRを単独で結合させた比較例2では、何も結合させなかった比較例1に比べてゴム合成活性が抑制されているように、CPTファミリー蛋白質、NgBRファミリー蛋白質の組合せによる効果は、それぞれの単独の効果を足し合わせた以上の相乗効果といえ、CPTファミリー蛋白質とNgBRファミリー蛋白質という特定の組合せとすることによって初めてゴム粒子のゴム合成能力を顕著に増強することができるという効果は、当業者であっても予測することのできない効果である。
また、図4の(a)より、実施例1~3において合成される天然ゴムは、同程度のGPC溶出時間のところにピークトップがきており、分子量分布パターンとして同等といえる天然ゴムが合成されているといえる。なお、図4の結果は、サンプル間で規格化されていないため、ピークの高さで活性を比較することはできないものである。
(実施例4)
〔cDNAからREF遺伝子の取得〕
実施例1の〔Total RNAからcDNAの合成〕で作製した1st strand cDNAを鋳型にREF遺伝子の取得を行った。PCRはKOD-plus-Neo(TOYOBO社製)を使用し、説明書に従って行った。PCRは、98℃で10秒、58℃で30秒、68℃で1分を1サイクルとして、35サイクル行った。
REF遺伝子の取得は、プライマーとして、
プライマー9:5’- tttctcgagatggctgaagacgaagac -3’
プライマー10:5’- tttggatcctcaattctctccataaaac -3’
を使用した。
上述の方法により、REF遺伝子が得られた。得られた遺伝子について、その配列を同定し、全長の塩基配列及びアミノ酸配列を同定した。REFの塩基配列を配列番号27に示した。REFのアミノ酸配列を配列番号28に示した。
〔ベクターの構築〕
上記取得したDNA断片にdA付加を行った後、pGEM-T Easy Vector System(Promega)を利用してpGEM-T Easy Vectorに挿入し、pGEM-REFを作製した。
〔大腸菌の形質転換〕
上記作製したVectorを用いて、実施例1と同様にして行った。
〔プラスミドの抽出〕
実施例1と同様にして行った。
〔無細胞蛋白合成法用ベクターの作製〕
上記〔ベクターの構築〕で獲得したpGEM-REFを制限酵素Xho IとBam HIで処理したのち、同様にXho IとBam HIで制限酵素処理した無細胞発現用ベクターpEU-E01-MCS-TEV-His-C1に挿入し、pEU-C1-REFを作製した。
〔大腸菌の形質転換〕
上記作製したVectorを用いて、実施例1と同様にして行った。
〔プラスミドの抽出〕
実施例1と同様にして行った。
〔ゴム粒子の調製〕
実施例1と同様にして行った。
〔無細胞蛋白合成反応(STEP1 mRNAの転写反応)〕
無細胞蛋白合成は、WEPRO7240H Expression kit((株)セルフリーサイエンス製)を使用して行った。上記〔無細胞蛋白合成法用ベクターの作製〕で獲得したベクターpEU-C1-REF、並びに、実施例1の〔無細胞蛋白合成法用ベクターの作製〕で獲得したベクターpEU-His-N2-HRT1及びpEU-C1-HRTBPを鋳型に、WEPRO7240H Expression kitのプロトコルに従って、mRNAの転写反応を行った。
〔mRNAの精製〕
転写反応後、得られたmRNAはエタノール沈殿により精製した。
〔無細胞蛋白合成反応(STEP2 透析法による蛋白合成)〕
上記mRNAを用いた以外は、実施例1と同様にして行った。
〔反応後のゴム粒子の回収〕
実施例1と同様にして反応後のゴム粒子を回収し、等量の2mMのジチオスレイトール(DTT)を含む100M Tris緩衝液(pH7.5)に再懸濁した。
〔反応後のゴム粒子のゴム合成活性の測定〕
回収した反応後のゴム粒子のゴム合成活性を、実施例1と同様にして測定した。
測定の結果、天然ゴムが合成されており、回収した反応後のゴム粒子がゴム合成活性を有していることが確認された。
(実施例5)
〔cDNAからCPT遺伝子の取得〕
実施例1の〔Total RNAからcDNAの合成〕で作製した1st strand cDNAを鋳型にCPT遺伝子の取得を行った。PCRはKOD-plus-Neo(TOYOBO社製)を使用し、説明書に従って行った。PCRは、98℃で10秒、58℃で30秒、68℃で1分を1サイクルとして、35サイクル行った。
CPT遺伝子の取得は、プライマーとして、
プライマー11:5’- tttggatccgatggaattatacaacggtgagagg-3’
プライマー12:5’- tttgcggccgcttattttaagtattccttatgtttctcc-3’
を使用した。
上述の方法により、CPT遺伝子(HRT2)が得られた。得られた遺伝子について、その配列を同定し、全長の塩基配列及びアミノ酸配列を同定した。HRT2の塩基配列を配列番号31に示した。HRT2のアミノ酸配列を配列番号32に示した。
〔ベクターの構築〕
上記取得したDNA断片にdA付加を行った後、pGEM-T Easy Vector System(Promega)を利用してpGEM-T Easy Vectorに挿入し、pGEM-HRT2を作製した。
〔大腸菌の形質転換〕
上記作製したVectorを用いて、実施例1と同様にして行った。
〔プラスミドの抽出〕
実施例1と同様にして行った。
〔無細胞蛋白合成法用ベクターの作製〕
上記〔ベクターの構築〕で獲得したpGEM-HRT2を制限酵素Bam HIとNot Iで処理したのち、同様にBam HIとNot Iで制限酵素処理した無細胞発現用ベクターpEU-E01-His-TEV-MCS-N2に挿入し、pEU-His-N2-HRT2を作製した。
〔大腸菌の形質転換〕
上記作製したVectorを用いて、実施例1と同様にして行った。
〔プラスミドの抽出〕
実施例1と同様にして行った。
〔ゴム粒子の調製〕
実施例1と同様にして行った。
〔無細胞蛋白合成反応(STEP1 mRNAの転写反応)〕
無細胞蛋白合成は、WEPRO7240H Expression kit((株)セルフリーサイエンス製)を使用して行った。上記〔無細胞蛋白合成法用ベクターの作製〕で獲得したベクターpEU-His-N2-HRT2、実施例1の〔無細胞蛋白合成法用ベクターの作製〕で獲得したベクターpEU-C1-HRTBP、及び、実施例4の〔無細胞蛋白合成法用ベクターの作製〕で獲得したベクターpEU-C1-REFを鋳型に、WEPRO7240H Expression kitのプロトコルに従って、mRNAの転写反応を行った。
〔mRNAの精製〕
転写反応後、得られたmRNAはエタノール沈殿により精製した。
〔無細胞蛋白合成反応(STEP2 透析法による蛋白合成)〕
上記mRNAを用いた以外は、実施例1と同様にして行った。
〔反応後のゴム粒子の回収〕
実施例1と同様にして反応後のゴム粒子を回収し、等量の2mMのジチオスレイトール(DTT)を含む100M Tris緩衝液(pH7.5)に再懸濁した。
〔反応後のゴム粒子のゴム合成活性の測定〕
回収した反応後のゴム粒子のゴム合成活性を、実施例1と同様にして測定した。
測定の結果、天然ゴムが合成されており、回収した反応後のゴム粒子がゴム合成活性を有していることが確認された。
(実施例6)
〔cDNAからCPT遺伝子の取得〕
実施例1の〔Total RNAからcDNAの合成〕で作製した1st strand cDNAを鋳型にCPT遺伝子の取得を行った。PCRはKOD-plus-Neo(TOYOBO社製)を使用し、説明書に従って行った。PCRは、98℃で10秒、58℃で30秒、68℃で1分を1サイクルとして、35サイクル行った。
CPT遺伝子の取得は、プライマーとして、
プライマー13:5’- atacccgggatggaaatatatac -3’
プライマー14:5’- actcccgggttattttaaatattc -3’
を使用した。
上述の方法により、CPT遺伝子(CPT3)が得られた。得られた遺伝子について、その配列を同定し、全長の塩基配列及びアミノ酸配列を同定した。CPT3の塩基配列を配列番号35に示した。CPT3のアミノ酸配列を配列番号36に示した。
〔ベクターの構築〕
上記取得したDNA断片にdA付加を行った後、pGEM-T Easy Vector System(Promega)を利用してpGEM-T Easy Vectorに挿入し、pGEM-CPT3を作製した。
〔大腸菌の形質転換〕
上記作製したVectorを用いて、実施例1と同様にして行った。
〔プラスミドの抽出〕
実施例1と同様にして行った。
〔無細胞蛋白合成法用ベクターの作製〕
上記〔ベクターの構築〕で獲得したpGEM-CPT3を制限酵素Xma Iで処理したのち、同様にXma Iで制限酵素処理した無細胞発現用ベクターpEU-E01-His-TEV-MCS-N2に挿入し、pEU-His-N2-CPT3を作製した。
〔大腸菌の形質転換〕
上記作製したVectorを用いて、実施例1と同様にして行った。
〔プラスミドの抽出〕
実施例1と同様にして行った。
〔ゴム粒子の調製〕
実施例1と同様にして行った。
〔無細胞蛋白合成反応(STEP1 mRNAの転写反応)〕
無細胞蛋白合成は、WEPRO7240H Expression kit((株)セルフリーサイエンス製)を使用して行った。上記〔無細胞蛋白合成法用ベクターの作製〕で獲得したベクターpEU-His-N2-CPT3、実施例1の〔無細胞蛋白合成法用ベクターの作製〕で獲得したベクターpEU-C1-HRTBP、及び、実施例4の〔無細胞蛋白合成法用ベクターの作製〕で獲得したベクターpEU-C1-REFを鋳型に、WEPRO7240H Expression kitのプロトコルに従って、mRNAの転写反応を行った。
〔mRNAの精製〕
転写反応後、得られたmRNAはエタノール沈殿により精製した。
〔無細胞蛋白合成反応(STEP2 透析法による蛋白合成)〕
上記mRNAを用いた以外は、実施例1と同様にして行った。
〔反応後のゴム粒子の回収〕
実施例1と同様にして反応後のゴム粒子を回収し、等量の2mMのジチオスレイトール(DTT)を含む100M Tris緩衝液(pH7.5)に再懸濁した。
〔反応後のゴム粒子のゴム合成活性の測定〕
回収した反応後のゴム粒子のゴム合成活性を、実施例1と同様にして測定した。
測定の結果、天然ゴムが合成されており、回収した反応後のゴム粒子がゴム合成活性を有していることが確認された。
(実施例7)
〔cDNAからCPT遺伝子の取得〕
実施例1の〔Total RNAからcDNAの合成〕で作製した1st strand cDNAを鋳型にCPT遺伝子の取得を行った。PCRはKOD-plus-Neo(TOYOBO社製)を使用し、説明書に従って行った。PCRは、98℃で10秒、58℃で30秒、68℃で1分を1サイクルとして、35サイクル行った。
CPT遺伝子の取得は、プライマーとして、
プライマー15:5’- tatcccgggatggaaata -3’
プライマー16:5’- atacccgggttacaactgc -3’
を使用した。
上述の方法により、CPT遺伝子(CPT5)が得られた。得られた遺伝子について、その配列を同定し、全長の塩基配列及びアミノ酸配列を同定した。CPT5の塩基配列を配列番号40に示した。CPT5のアミノ酸配列を配列番号41に示した。
〔ベクターの構築〕
上記取得したDNA断片にdA付加を行った後、pGEM-T Easy Vector System(Promega)を利用してpGEM-T Easy Vectorに挿入し、pGEM-CPT5を作製した。
〔大腸菌の形質転換〕
上記作製したVectorを用いて、実施例1と同様にして行った。
〔プラスミドの抽出〕
実施例1と同様にして行った。
〔無細胞蛋白合成法用ベクターの作製〕
上記〔ベクターの構築〕で獲得したpGEM-CPT5を制限酵素Xma Iで処理したのち、同様にXma Iで制限酵素処理した無細胞発現用ベクターpEU-E01-His-TEV-MCS-N2に挿入し、pEU-His-N2-CPT5を作製した。
〔大腸菌の形質転換〕
上記作製したVectorを用いて、実施例1と同様にして行った。
〔プラスミドの抽出〕
実施例1と同様にして行った。
〔ゴム粒子の調製〕
実施例1と同様にして行った。
〔無細胞蛋白合成反応(STEP1 mRNAの転写反応)〕
無細胞蛋白合成は、WEPRO7240H Expression kit((株)セルフリーサイエンス製)を使用して行った。上記〔無細胞蛋白合成法用ベクターの作製〕で獲得したベクターpEU-His-N2-CPT5、実施例1の〔無細胞蛋白合成法用ベクターの作製〕で獲得したベクターpEU-C1-HRTBP、及び、実施例4の〔無細胞蛋白合成法用ベクターの作製〕で獲得したベクターpEU-C1-REFを鋳型に、WEPRO7240H Expression kitのプロトコルに従って、mRNAの転写反応を行った。
〔mRNAの精製〕
転写反応後、得られたmRNAはエタノール沈殿により精製した。
〔無細胞蛋白合成反応(STEP2 透析法による蛋白合成)〕
上記mRNAを用いた以外は、実施例1と同様にして行った。
〔反応後のゴム粒子の回収〕
実施例1と同様にして反応後のゴム粒子を回収し、等量の2mMのジチオスレイトール(DTT)を含む100M Tris緩衝液(pH7.5)に再懸濁した。
〔反応後のゴム粒子のゴム合成活性の測定〕
回収した反応後のゴム粒子のゴム合成活性を、実施例1と同様にして測定した。
測定の結果、天然ゴムが合成されており、回収した反応後のゴム粒子がゴム合成活性を有していることが確認された。
(参考例1)
〔Taraxacum brevicorniculatum CPT遺伝子の合成〕
Taraxacum brevicorniculatum CPT遺伝子(TbCPT1)はBLASTに公開されている情報をもとに、開始コドンから終始コドンまでの領域をジェンスクリプトジャパン株式会社の遺伝子合成サービスをもとに合成して作成した。後述する無細胞蛋白合成法用ベクターにクローニングするため、TbCPT1の5′末端側にはXho Iサイトを3′末端側にはKpn Iサイトを付加した。
上述の方法により、CPT遺伝子(TbCPT1)が得られた。得られた遺伝子について、その配列を同定し、全長の塩基配列及びアミノ酸配列を同定した。TbCPT1の塩基配列を配列番号42に示した。TbCPT1のアミノ酸配列を配列番号43に示した。
〔ベクターの構築〕
上記取得したDNA断片は、pUC57に挿入し、pUC57-TbCPT1を作製した。
〔大腸菌の形質転換〕
上記作製したVectorを用いて、実施例1と同様にして行った。
〔プラスミドの抽出〕
実施例1と同様にして行った。
〔無細胞蛋白合成法用ベクターの作製〕
上記〔ベクターの構築〕で獲得したpUC57-TbCPT1を制限酵素Xho IとKpn Iで処理したのち、同様にXho IとKpn Iで制限酵素処理した無細胞発現用ベクターpEU-E01-His-TEV-MCS―N2に挿入し、pEU-His-N2-TbCPT1を作製した。
〔大腸菌の形質転換〕
上記作製したVectorを用いて、実施例1と同様にして行った。
〔プラスミドの抽出〕
実施例1と同様にして行った。
〔ゴム粒子の調製〕
実施例1と同様にして行った。
〔無細胞蛋白合成反応(STEP1 mRNAの転写反応)〕
無細胞蛋白合成は、WEPRO7240H Expression kit((株)セルフリーサイエンス製)を使用して行った。上記〔無細胞蛋白合成法用ベクターの作製〕で獲得したベクターを鋳型に、WEPRO7240H Expression kitのプロトコルに従って、mRNAの転写反応を行った。
〔mRNAの精製〕
転写反応後、得られたmRNAはエタノール沈殿により精製した。
〔無細胞蛋白合成反応(STEP2 透析法による蛋白合成)〕
上記mRNAを用いた以外は、実施例1と同様にして行った。
〔反応後のゴム粒子の回収〕
実施例1と同様にして反応後のゴム粒子を回収し、等量の2mMのジチオスレイトール(DTT)を含む100M Tris緩衝液(pH7.5)に再懸濁した。
〔反応後のゴム粒子のゴム合成活性の測定〕
回収した反応後のゴム粒子のゴム合成活性を、実施例1と同様にして測定した。
測定の結果、天然ゴムが合成されており、回収した反応後のゴム粒子がゴム合成活性を有していることが確認された。
〔合成した超長鎖ポリイソプレノイド(天然ゴム)の分子量分布測定〕
上記〔反応後のゴム粒子のゴム合成活性の測定〕で合成した超長鎖ポリイソプレノイド(天然ゴム)の分子量分布を、実施例1と同様にして測定した。結果を図4の(b)に示す。図4の(b)より、参考例1において合成される天然ゴムは、実施例1~3において合成される天然ゴムと同程度のGPC溶出時間のところにピークトップがきており、分子量分布パターンとして同等といえる天然ゴムが合成されているといえる。
これらの結果から、更にNgBRファミリー蛋白質をゴム粒子に結合させ、TbCPT1蛋白質とNgBRファミリー蛋白質とをゴム粒子に結合させると、ゴム粒子上でのTbCPT1蛋白質の活性が安定化、増強され、結果、ゴム粒子のゴム合成能力が増強されることが強く示唆される。
(参考例2)
〔ゴム粒子の調製〕
実施例1と同様にして行った。
〔無細胞蛋白合成反応(STEP1 mRNAの転写反応)〕
無細胞蛋白合成は、WEPRO7240H Expression kit((株)セルフリーサイエンス製)を使用して行った。実施例5の〔無細胞蛋白合成法用ベクターの作製〕で獲得したベクターpEU-His-N2-HRT2を鋳型に、WEPRO7240H Expression kitのプロトコルに従って、mRNAの転写反応を行った。
〔mRNAの精製〕
転写反応後、得られたmRNAはエタノール沈殿により精製した。
〔無細胞蛋白合成反応(STEP2 透析法による蛋白合成)〕
上記mRNAを用いた以外は、実施例1と同様にして行った。
〔反応後のゴム粒子の回収〕
実施例1と同様にして反応後のゴム粒子を回収し、等量の2mMのジチオスレイトール(DTT)を含む100M Tris緩衝液(pH7.5)に再懸濁した。
〔反応後のゴム粒子のゴム合成活性の測定〕
回収した反応後のゴム粒子のゴム合成活性を、実施例1と同様にして測定した。
測定の結果、天然ゴムが合成されており、回収した反応後のゴム粒子がゴム合成活性を有していることが確認された。
〔合成した超長鎖ポリイソプレノイド(天然ゴム)の分子量分布測定〕
上記〔反応後のゴム粒子のゴム合成活性の測定〕で合成した超長鎖ポリイソプレノイド(天然ゴム)の分子量分布を、実施例1と同様にして測定した。結果を図4の(b)に示す。図4の(b)より、参考例2において合成される天然ゴムは、実施例1~3において合成される天然ゴムと同程度のGPC溶出時間のところにピークトップがきており、分子量分布パターンとして同等といえる天然ゴムが合成されているといえる。
この結果から、更にNgBRファミリー蛋白質及びREFをゴム粒子に結合させた実施例5においても、分子量分布パターンとして同等の天然ゴムが合成されていることが強く示唆される。
(参考例3)
〔ゴム粒子の調製〕
実施例1と同様にして行った。
〔無細胞蛋白合成反応(STEP1 mRNAの転写反応)〕
無細胞蛋白合成は、WEPRO7240H Expression kit((株)セルフリーサイエンス製)を使用して行った。実施例6の〔無細胞蛋白合成法用ベクターの作製〕で獲得したベクターpEU-His-N2-CPT3を鋳型に、WEPRO7240H Expression kitのプロトコルに従って、mRNAの転写反応を行った。
〔mRNAの精製〕
転写反応後、得られたmRNAはエタノール沈殿により精製した。
〔無細胞蛋白合成反応(STEP2 透析法による蛋白合成)〕
上記mRNAを用いた以外は、実施例1と同様にして行った。
〔反応後のゴム粒子の回収〕
実施例1と同様にして反応後のゴム粒子を回収し、等量の2mMのジチオスレイトール(DTT)を含む100M Tris緩衝液(pH7.5)に再懸濁した。
〔反応後のゴム粒子のゴム合成活性の測定〕
回収した反応後のゴム粒子のゴム合成活性を、実施例1と同様にして測定した。
測定の結果、天然ゴムが合成されており、回収した反応後のゴム粒子がゴム合成活性を有していることが確認された。
〔合成した超長鎖ポリイソプレノイド(天然ゴム)の分子量分布測定〕
上記〔反応後のゴム粒子のゴム合成活性の測定〕で合成した超長鎖ポリイソプレノイド(天然ゴム)の分子量分布を、実施例1と同様にして測定した。結果を図4の(b)に示す。図4の(b)より、参考例3において合成される天然ゴムは、実施例1~3において合成される天然ゴムと同程度のGPC溶出時間のところにピークトップがきており、分子量分布パターンとして同等といえる天然ゴムが合成されているといえる。
この結果から、更にNgBRファミリー蛋白質及びREFをゴム粒子に結合させた実施例6においても、分子量分布パターンとして同等の天然ゴムが合成されていることが強く示唆される。
(参考例4)
〔ゴム粒子の調製〕
実施例1と同様にして行った。
〔無細胞蛋白合成反応(STEP1 mRNAの転写反応)〕
無細胞蛋白合成は、WEPRO7240H Expression kit((株)セルフリーサイエンス製)を使用して行った。実施例7の〔無細胞蛋白合成法用ベクターの作製〕で獲得したベクターpEU-His-N2-CPT5を鋳型に、WEPRO7240H Expression kitのプロトコルに従って、mRNAの転写反応を行った。
〔mRNAの精製〕
転写反応後、得られたmRNAはエタノール沈殿により精製した。
〔無細胞蛋白合成反応(STEP2 透析法による蛋白合成)〕
上記mRNAを用いた以外は、実施例1と同様にして行った。
〔反応後のゴム粒子の回収〕
実施例1と同様にして反応後のゴム粒子を回収し、等量の2mMのジチオスレイトール(DTT)を含む100M Tris緩衝液(pH7.5)に再懸濁した。
〔反応後のゴム粒子のゴム合成活性の測定〕
回収した反応後のゴム粒子のゴム合成活性を、実施例1と同様にして測定した。
測定の結果、天然ゴムが合成されており、回収した反応後のゴム粒子がゴム合成活性を有していることが確認された。
〔合成した超長鎖ポリイソプレノイド(天然ゴム)の分子量分布測定〕
上記〔反応後のゴム粒子のゴム合成活性の測定〕で合成した超長鎖ポリイソプレノイド(天然ゴム)の分子量分布を、実施例1と同様にして測定した。結果を図4の(b)に示す。図4の(b)より、参考例4において合成される天然ゴムは、実施例1~3において合成される天然ゴムと同程度のGPC溶出時間のところにピークトップがきており、分子量分布パターンとして同等といえる天然ゴムが合成されているといえる。
この結果から、更にNgBRファミリー蛋白質及びREFをゴム粒子に結合させた実施例7においても、分子量分布パターンとして同等の天然ゴムが合成されていることが強く示唆される。
(参考例5)
〔ヒト(Homo sapiens)CPT遺伝子の合成〕
ヒト(Homo sapiens)CPT遺伝子(HDS)はBLASTに公開されている情報をもとに、開始コドンから終始コドンまでの領域をジェンスクリプトジャパン株式会社の遺伝子合成サービスをもとに合成して作成した。後述する無細胞蛋白合成法用ベクターにクローニングするため、HDSの5′末端側にはXmaIサイトを3′末端側にはSpeIサイトを付加した。
上述の方法により、CPT遺伝子(HDS)が得られた。得られた遺伝子について、その配列を同定し、全長の塩基配列及びアミノ酸配列を同定した。HDSの塩基配列を配列番号64に示した。HDSのアミノ酸配列を配列番号50に示した。
〔ベクターの構築〕
上記取得したDNA断片は、pUC57に挿入し、pUC57-HDSを作製した。
〔大腸菌の形質転換〕
上記作製したVectorを用いて、実施例1と同様にして行った。
〔プラスミドの抽出〕
実施例1と同様にして行った。
〔無細胞蛋白合成法用ベクターの作製〕
上記〔ベクターの構築〕で獲得したpUC57-HDSを制限酵素XmaIとSpeIで処理したのち、同様にXmaIとSpeIで制限酵素処理した無細胞発現用ベクターpEU-E01-His-TEV-MCS―N2に挿入し、pEU-His-N2-HDSを作製した。
〔大腸菌の形質転換〕
上記作製したVectorを用いて、実施例1と同様にして行った。
〔プラスミドの抽出〕
実施例1と同様にして行った。
〔ゴム粒子の調製〕
実施例1と同様にして行った。
〔無細胞蛋白合成反応(STEP1 mRNAの転写反応)〕
無細胞蛋白合成は、WEPRO7240H Expression kit((株)セルフリーサイエンス製)を使用して行った。上記〔無細胞蛋白合成法用ベクターの作製〕で獲得したベクターを鋳型に、WEPRO7240H Expression kitのプロトコルに従って、mRNAの転写反応を行った。
〔mRNAの精製〕
転写反応後、得られたmRNAはエタノール沈殿により精製した。
〔無細胞蛋白合成反応(STEP2 透析法による蛋白合成)〕
上記mRNAを用いた以外は、実施例1と同様にして行った。
〔反応後のゴム粒子の回収〕
実施例1と同様にして反応後のゴム粒子を回収し、等量の2mMのジチオスレイトール(DTT)を含む100M Tris緩衝液(pH7.5)に再懸濁した。
〔反応後のゴム粒子のゴム合成活性の測定〕
回収した反応後のゴム粒子のゴム合成活性を、実施例1と同様にして測定した。ただし、反応時間を16時間から4時間に変更した。測定の結果、天然ゴムが合成されており、回収した反応後のゴム粒子がゴム合成活性を有していることが確認された。
〔合成した超長鎖ポリイソプレノイド(天然ゴム)の分子量分布測定〕
上記〔反応後のゴム粒子のゴム合成活性の測定〕で合成した超長鎖ポリイソプレノイド(天然ゴム)の分子量分布を、実施例1と同様にして測定した。結果を図4の(c)に示す。図4の(c)より、参考例5において合成される天然ゴムは、実施例1~3において合成される天然ゴムと同程度のGPC溶出時間のところにピークトップがきており、分子量分布パターンとして同等といえる天然ゴムが合成されているといえる。
これらの結果から、更にNgBRファミリー蛋白質をゴム粒子に結合させ、HDS蛋白質とNgBRファミリー蛋白質とをゴム粒子に結合させると、ゴム粒子上でのHDS蛋白質の活性が安定化、増強され、結果、ゴム粒子のゴム合成能力が増強されることが強く示唆される。
(参考例6)
〔酵母(Saccharomyces cerevisiae)CPT遺伝子の合成〕
酵母(Saccharomyces cerevisiae)CPT遺伝子(SRT1)はBLASTに公開されている情報をもとに、開始コドンから終始コドンまでの領域をジェンスクリプトジャパン株式会社の遺伝子合成サービスをもとに合成して作成した。後述する無細胞蛋白合成法用ベクターにクローニングするため、SRT1の5′末端側にはXmaIサイトを3′末端側にはSpeIサイトを付加した。
上述の方法により、CPT遺伝子(SRT1)が得られた。得られた遺伝子について、その配列を同定し、全長の塩基配列及びアミノ酸配列を同定した。SRT1の塩基配列を配列番号63に示した。SRT1のアミノ酸配列を配列番号47に示した。
〔ベクターの構築〕
上記取得したDNA断片は、pUC57に挿入し、pUC57-SRT1を作製した。
〔大腸菌の形質転換〕
上記作製したVectorを用いて、実施例1と同様にして行った。
〔プラスミドの抽出〕
実施例1と同様にして行った。
〔無細胞蛋白合成法用ベクターの作製〕
上記〔ベクターの構築〕で獲得したpUC57-SRT1を制限酵素XmaIとSpeIで処理したのち、同様にXmaIとSpeIで制限酵素処理した無細胞発現用ベクターpEU-E01-His-TEV-MCS―N2に挿入し、pEU-His-N2-SRT1を作製した。
〔大腸菌の形質転換〕
上記作製したVectorを用いて、実施例1と同様にして行った。
〔プラスミドの抽出〕
実施例1と同様にして行った。
〔ゴム粒子の調製〕
実施例1と同様にして行った。
〔無細胞蛋白合成反応(STEP1 mRNAの転写反応)〕
無細胞蛋白合成は、WEPRO7240H Expression kit((株)セルフリーサイエンス製)を使用して行った。上記〔無細胞蛋白合成法用ベクターの作製〕で獲得したベクターを鋳型に、WEPRO7240H Expression kitのプロトコルに従って、mRNAの転写反応を行った。
〔mRNAの精製〕
転写反応後、得られたmRNAはエタノール沈殿により精製した。
〔無細胞蛋白合成反応(STEP2 透析法による蛋白合成)〕
上記mRNAを用いた以外は、実施例1と同様にして行った。
〔反応後のゴム粒子の回収〕
実施例1と同様にして反応後のゴム粒子を回収し、等量の2mMのジチオスレイトール(DTT)を含む100M Tris緩衝液(pH7.5)に再懸濁した。
〔反応後のゴム粒子のゴム合成活性の測定〕
回収した反応後のゴム粒子のゴム合成活性を、実施例1と同様にして測定した。ただし、反応時間を16時間から4時間に変更した。測定の結果、天然ゴムが合成されており、回収した反応後のゴム粒子がゴム合成活性を有していることが確認された。
〔合成した超長鎖ポリイソプレノイド(天然ゴム)の分子量分布測定〕
上記〔反応後のゴム粒子のゴム合成活性の測定〕で合成した超長鎖ポリイソプレノイド(天然ゴム)の分子量分布を、実施例1と同様にして測定した。結果を図4の(c)に示す。図4の(c)より、参考例6において合成される天然ゴムは、実施例1~3において合成される天然ゴムと同程度のGPC溶出時間のところにピークトップがきており、分子量分布パターンとして同等といえる天然ゴムが合成されているといえる。
これらの結果から、更にNgBRファミリー蛋白質をゴム粒子に結合させ、SRT1蛋白質とNgBRファミリー蛋白質とをゴム粒子に結合させると、ゴム粒子上でのSRT1蛋白質の活性が安定化、増強され、結果、ゴム粒子のゴム合成能力が増強されることが強く示唆される。
<酵母に導入した場合のCPTファミリー蛋白質のゴム合成能>
(参考例7)
〔酵母発現用遺伝子の取得〕
実施例1、5で得たpGEM-HRT1、pGEM-HRT2を鋳型に以下のプライマーを用いてPCRを行い、酵母発現用ベクターpJR1133にクローニングできるよう、5′末端側、3′末端側の制限酵素を共にBam HIとした、HRT1、HRT2遺伝子を得た。
HRT1及びHRT2用のプライマーとしては、
プライマー17:5’- ttaggatccatggaattatacaacgg-3’
プライマー18:5’- aacggatccttttaagtattccttatg-3’
を使用した。
また、実施例3で得たpBS-AtCPT8を制限酵素Bam HIで処理することで、5′末端側、3′末端側の制限酵素を共にBam HIとしたAtCPT8遺伝子を得た。
また、実施例1、3で得たpGEM-HRTBP、pBS-AtLEW1を鋳型に以下のプライマーを用いてPCRを行い、酵母発現用ベクターpGK415及びpGK425にそれぞれクローニングできるよう、5′末端側、3′末端側の制限酵素を共にXho IとしたHRTBP、5′末端側の制限酵素をSal I、3′末端側の制限酵素をBam HIとしたAtLEW1遺伝子を得た。PCRはKOD-plus-Neo(TOYOBO社製)を使用し、説明書に従って行った。PCRは、98℃で10秒、58℃で30秒、68℃で1分を1サイクルとして、35サイクル行った。
HRTBP用のプライマーとしては、
プライマー19:5’- tttctcgagatggatttgaaacctggagctg-3’
プライマー20:5’- tttctcgagtcatgtaccataattttgctgcac-3’
を使用した。
AtLEW1用のプライマーとしては、
プライマー21:5’- gtcgacatggattcgaatcaatcg -3’
プライマー22:5’- ggatccttaagttccatagttttgg -3’
を使用した。
〔ベクターの構築〕
上記取得したDNA断片にdA付加を行った後、pGEM-T Easy Vector System(Promega)を利用してpGEM-T Easy Vectorに挿入し、pGEM-HRT1(pJR1133用)、pGEM-HRT2(pJR1133用)、pGEM-AtCPT8(pJR1133用)、pGEM-HRTBP(pGK425用)、pGEM-AtLEW1(pGK425用)を作製した。
〔大腸菌の形質転換〕
上記作製したVectorを用いて、実施例1と同様にして行った。
〔プラスミドの抽出〕
実施例1と同様にして行った。
〔酵母発現用ベクターの作製〕
上記〔ベクターの構築〕で獲得した各pGEM-CPTシリーズを制限酵素Bam HIで処理したのち、同様にBam HIで制限酵素処理した酵母発現用ベクターpJR1133に挿入し、pJR1133-HRT1、pJR1133-HRT2、pJR1133-AtCPT8を作製した。
同様に上記〔ベクターの構築〕で獲得した各pGEM-NgBRシリーズを制限酵素Xho Iで処理したのち、Sal Iで制限酵素処理した酵母発現用ベクターpGK425に挿入し、pGK425-HRTBP、pGK425-AtLEW1を作製した。
〔大腸菌の形質転換〕
上記作製したVectorを用いて、大腸菌DH5αを形質転換し、共にAmpを含むLB培地で培養した。
〔プラスミドの抽出〕
実施例1と同様にして行った。
〔酵母の形質転換〕
上記で得たプラスミドを用いて、以下の組合せで酵母SNH23-7D(MAT-α rer2-2 mf-1::ADE2 mf-2::TRP1 bar1::HIS3 ade2 trp1 his3 leu2 ura3 lys2)に形質転換した。
(1)pJR1133-HRT1&pGK425-HRTBP
(2)pJR1133-HRT2&pGK425-HRTBP
(3)pJR1133-AtCPT8&pGK425-AtLEW1
形質転換した酵母はウラシル(pJR1133セレクション用)とロイシン(pGK425セレクション用)を抜いたSD寒天培地で培養し、形質転換体を得た。
〔酵素発現〕
上記形質転換で得られた各酵母を50mLのSC(+Lys)培地に加え、23℃、180rpmで振盪培養した。OD546=0.8に達したところで、45mLの菌液を50mLサンプリングチューブに回収した。5000×gで10分遠心後、上清を捨て、-80℃で冷凍保存した。
なお、SC(+Lys)培地の組成は以下のとおりである。
硫安:5.0g
Yeast Nitrogen Base w/o Amino acids:1.7g
Lysine HCl:30mg
Glucose:20g
滅菌水:1Lまで
[粗酵素溶液の調製]
冷凍保存していたサンプルを氷上で溶かし、100μLのZymolyase bufferに懸濁し、23℃で15分静置した。遠心して上清を除去し、Zymolyase 100Tを2mg/mLで加えたZymolyase bufferを300μL加え、30℃、40分酵素反応させスフェロプラスト化した。遠心して上清を除去し、300μLのZymolyase bufferに懸濁した。遠心して上清を除去し、菌体をBreakage Bufferに懸濁した後、0.5mm Glass Beadsを用いて、30秒ボルテックス→30秒氷上のサイクルを3回繰り返し、細胞を破砕した。300×g、5分で遠心し未破砕細胞を除き、上清を回収した。この上清を17400×gで遠心することで、上清とペレットに分けた。ペレットをBreakage Bufferで懸濁したものを不溶性画分の粗酵素溶液とした。Zymolyase buffer、Breakage Bufferの組成は以下のとおりである。
Zymolyase buffer:
Tris-HCl(pH 7.5)  50mM
MgCl  10mM
ソルビトール  1M
DTT  1x
Breakage Buffer:
Tris-HCl(pH 8.0)  100mM
NaCl  150mM
DTT  1mM
Protease Inhibitor Cocktail(nacalai tesque)  1x
〔ゴム合成活性の測定(逆相TLCによる反応生成物の分析(ポリプレニル二リン酸))〕
回収した粗酵素溶液中のゴム合成活性を以下の方法により測定した。
まず、Potassium Phosphate Buffer(pH 7.5)25mM、β-メルカプトエタノール 25mM、KF 20mM、MgCl 4mM、ファルネシル二リン酸(FPP) 10μM、1-14Cイソペンテニル二リン酸([1-14C]IPP)(比活性:60Ci/mol)50μM、粗酵素溶液 50μgを混合した反応溶液(Total 100μL)を調製し、30℃で20時間反応させた。
飽和食塩水200μLを加えて反応を停止し、ジエチルエーテルを1mL加えてボルテックスした。15000rpmで1分間遠心した後に上層(エーテル層)を別のチューブに回収した。水層に水飽和ブタノール1mLを加えて攪拌し、その後15000rpmで1分間遠心分離して上層(ブタノール層)を回収することで、酵素反応生成物を抽出した。
上記ブタノール層を水で洗浄した後、遠心エバポレーターを用いて溶媒を留去し、反応生成物を濃縮した。濃縮した反応生成物は以下に示す反応組成で37℃、12時間反応させることで脱リン酸化させ、対応するポリプレノールにした。
反応組成(Total 100mL):
Acetate buffer(pH 5.6)  40mM
Triton X-100  0.1%(v/v)
メタノール  40%(v/v)
ブタノール層(反応生成物)  20%(v/v)
Potato acid phosphatase(Roche)  10U
5M NaOHを120μL加えることで反応を停止させるとともに、37℃で30分間加水分解反応を行った。ペンタンを0.7mL加えて攪拌し、ポリプレノールをペンタン層に抽出させた。15000rpmで1分間遠心分離して上層(ペンタン層)を回収し、逆相TLCプレート(LKC-18、Whatman社製)を用いて生成物を展開した。展開溶媒はアセトン/水(39:1)とした。14C標識放射性物質を含むインクでOriginとSolvent Frontの位置をマークし、Typhoon FLA 7000(GEヘルスケア・ジャパン株式会社製)によるオートラジオグラフィーを行い、放射性反応生成物のスポットの位置を標準物質の位置と比較することで生成物の鎖長を分析した。
結果、上記(1)~(3)のいずれのプラスミドを用いた場合にも、炭素数90程度のイソプレン重合体が合成されていることが確認された。
<大腸菌に導入した場合のCPTファミリー蛋白質のゴム合成能>
(参考例8)
〔大腸菌の形質転換〕
実施例1、3、5で得たpGEM-HRT1、pBS-AtCPT8、pGEM-HRT2、及び、実施例1、3で得たpGEM-HRTBP、pBS-AtLEW1を用いて当該各遺伝子をpCOLADuet1ベクターにそれぞれ導入し、それらベクターを用いて以下の組み合わせとなるよう大腸菌BL21(DE3)の形質転換を行った。
(1)HRT1-HRTBP
(2)HRT2-HRTBP
(3)AtCPT8-AtLEW1
〔大腸菌内でのゴム合成活性の測定〕
上記〔大腸菌の形質転換〕で得た形質転換された大腸菌を用いて、参考例7と同様にして、ゴム合成活性の測定を行った。結果、上記(1)~(3)のいずれのプラスミドを用いた場合にも、反応生成物が少なく、検出することができなかった。
参考例7~8のように、パラゴムノキ、又はシロイヌナズナ由来のCPTファミリー蛋白質(HRT1、HRT2、AtCPT8)を大腸菌に導入した場合には、反応生成物を確認することができなかった。次に、上記CPTファミリー蛋白質を酵母に導入した場合には、イソプレン重合体の合成が確認されたが、その鎖長は炭素数90程度であった。
これに対して、実施例1~7、参考例1、5、6のように、上記CPTファミリー蛋白質をゴム粒子に結合させてゴム合成活性を測定すると、いずれのCPTファミリー蛋白質を用いた場合にも超長鎖ポリイソプレノイド(天然ゴム)の合成が見られた。すなわち、ゴム産生植物由来であって、乳管で発現しているといわれているCPTファミリー蛋白質(HRT1、HRT2、CPT3、CPT5、LsCPT3、TbCPT1)だけでなく、ゴム産生植物ではないシロイヌナズナ由来のAtCPT8、酵母由来のSRT1、ヒト由来のHDSを用いた場合であっても、ゴム粒子に結合させると天然ゴムを合成することが可能であった。
これらの結果から、CPTファミリー蛋白質の由来や種類よりも、どのような宿主に導入したのか、すなわち、CPTファミリー蛋白質をどのような環境下に発現させたのかが、ゴム合成活性においては重要である、ということが示唆された。
上記内容から、本発明者らは、次のようなメカニズムを予想している。
すなわち、CPTファミリー蛋白質が合成する生成物が蓄積される場の、疎水度及びスペース(空間的広さ)が、合成される生成物の鎖長を決定している、と考えている。
具体的には、大腸菌のような原核生物中では、CPTファミリー蛋白質は反応生成物を確認できない程度の活性しか示さないか、活性を示し生成物を合成できたとしても、CPTファミリー蛋白質の疎水性クレフト構造内に収容可能な程度の大きさまでしか生成物の鎖長は延びない。
また、酵母のような真核生物中では、CPTファミリー蛋白質が合成した生成物はCPTファミリー蛋白質の疎水性クレフト構造から細胞中の脂質二重膜内(例えば、小胞体膜間など)へ移行し、脂質二重膜内に蓄積されることになり、当該環境は疎水性環境であるが、細胞中の脂質二重膜内というスペースとしてはあまり広くないところに蓄積されることから生成物の鎖長の伸長には限度がある(このようにして合成されたのが、上述した炭素数が90程度の鎖長のイソプレン重合体と考えられる)。
また、シロイヌナズナのようなゴム産生植物でない植物中でも、酵母のときと同様に、CPTファミリー蛋白質が合成した生成物は、細胞中の脂質二重膜内というスペースとしてはあまり広くないところに蓄積され、やはり合成される生成物の鎖長の伸長には限度があると考えられる。
これに対して、CPTファミリー蛋白質をゴム粒子に結合させた場合には、図1に示したように、CPTファミリー蛋白質が合成した生成物はゴム粒子中に蓄積されることになり、当該環境は疎水性環境であり、かつ、スペースとしても細胞中の脂質二重膜内よりもずっと広いことから、疎水性環境であり、かつ、スペースの制約も少ないため、生成物の鎖長は充分に延びることができ、超長鎖のポリイソプレノイド(天然ゴム)を合成できる。
これらのことから、CPTファミリー蛋白質であれば、その由来、種類等に関わらず、NgBRファミリー蛋白質と共にゴム粒子に結合させることで、ゴム粒子のゴム合成能力を増強させることができ、本発明の効果を得ることができることが強く示唆される。
<in silicoによるCPTファミリー蛋白質の保存領域の推定>
図5で示される種々の生物由来のCPTファミリー蛋白質のマルチプルシーケンスアライメントを行い、保存性の高い配列部分(保存領域)を検索した。保存領域周辺のアライメントの結果を図5に示す。
なお、マルチプルシーケンスアライメントは、Genetyx Ver.11と呼ばれるソフトを用いて行った。
図5中、UDP pyrophosphate synthase (Escherichia coli CPT)は、配列番号45で示される大腸菌由来のウンデカプレニルリン酸合成酵素(UPPS)の7位から125位を抜粋したものである。
UDP(Micrococcus luteus B-P 26 CPT)は、配列番号46で示されるマイクロコッカス属菌由来のウンデカプレニル二リン酸合成酵素(UPS)の11位から129位を抜粋したものである。
SRT1(Yeast CPT)は、配列番号47で示される酵母由来のSRT1の57位から175位を抜粋したものである。
AtCPT5(Arabidopsis thaliana CPT5)は、配列番号44で示されるシロイヌナズナ由来のAtCPT5の61位から179位を抜粋したものである。
AtCPT8(Arabidopsis thaliana CPT8)は、配列番号22で示されるシロイヌナズナ由来のAtCPT8の25位から142位を抜粋したものである。
DDPS(Nicotiana sylvestris CPT)は、配列番号48で示されるタバコ由来のDDPSの24位から140位を抜粋したものである。
HbCPT1(Hevea brasiliensis CPT)は、配列番号2で示されるパラゴムノキ由来のHRT1の23位から139位を抜粋したものである。
HbCPT2(Hevea brasiliensis CPT)は、配列番号32で示されるパラゴムノキ由来のHRT2の23位から139位を抜粋したものである。
HbCPT3(Hevea brasiliensis CPT)は、配列番号36で示されるパラゴムノキ由来のCPT3の23位から139位を抜粋したものである。
HbCPT4(Hevea brasiliensis CPT)は、配列番号37で示されるパラゴムノキ由来のCPT4の24位から140位を抜粋したものである。
HbCPT5(Hevea brasiliensis CPT)は、配列番号41で示されるパラゴムノキ由来のCPT5の23位から139位を抜粋したものである。
LsCPT3(Lactuca sativa CPT)は、配列番号14で示されるレタス由来のLsCPT3の40位から156位を抜粋したものである。
TbCPT1(Taraxacum brevicorniculatum CPT)は、配列番号43で示されるTaraxacum brevicorniculatum由来のTbCPT1の40位から154位を抜粋したものである。
DDPS(Mouse CPT)は、配列番号49で示されるマウス由来のDDPSの16位から132位を抜粋したものである。
HDS(Human CPT)は、配列番号50で示されるヒト由来のHDSの16位から132位を抜粋したものである。
Shota Endo et.al.,Biochimica et Biophysica Acta,No.1625(2003)p.291-295や、Masahiro Fujihashi et.al.,PNAS,Vol.98,No.8(2001)p.4337-4342等の文献から、図5中の囲みA(配列番号2で示されるパラゴムノキ由来のHRT1においては、41位から49位に相当)、囲みB(配列番号2で示されるパラゴムノキ由来のHRT1においては、81位から97位に相当)が種々の生物由来のCPTファミリー蛋白質で保存性の高い保存領域の一部であり、特に、配列番号2で示されるパラゴムノキ由来のHRT1における41位に相当する位置はアスパラギン酸残基が保存され(図5中の(1))、配列番号2で示されるパラゴムノキ由来のHRT1における42位に相当する位置はグリシン残基が保存され(図5中の(2))、配列番号2で示されるパラゴムノキ由来のHRT1における45位に相当する位置はアルギニン残基が保存され(図5中の(3))、パラゴムノキ由来のHRT1における89位に相当する位置はアスパラギン残基が保存されており(図5中の(4))、これらのアミノ酸が、CPTファミリー蛋白質の酵素反応に必須のアミノ酸であり、当該位置にこれらのアミノ酸を有する蛋白質であればCPTファミリー蛋白質としての機能を有すると考えられる。
図5から、以下のことが分かる。
配列番号2で示されるパラゴムノキ由来のHRT1において41位から49位に相当する囲みAの保存領域は、配列番号45で示される大腸菌由来のウンデカプレニルリン酸合成酵素(UPPS)では25位から33位に相当し、
配列番号46で示されるマイクロコッカス属菌由来のウンデカプレニル二リン酸合成酵素(UPS)では29位から37位に相当し、
配列番号47で示される酵母由来SRT1では75位から83位に相当し、
配列番号44で示されるシロイヌナズナ由来のAtCPT5では79位から87位に相当し、
配列番号22で示されるシロイヌナズナ由来のAtCPT8では43位から51位に相当し、
配列番号48で示されるタバコ由来のDDPSでは42位から50位に相当し、
配列番号32で示されるパラゴムノキ由来のHRT2では41位から49位に相当し、
配列番号36で示されるパラゴムノキ由来のCPT3では41位から49位に相当し、
配列番号37で示されるパラゴムノキ由来のCPT4では42位から50位に相当し、
配列番号41で示されるパラゴムノキ由来のCPT5では41位から49位に相当し、
配列番号14で示されるレタス由来のLsCPT3では58位から66位に相当し、
配列番号43で示されるTaraxacum brevicorniculatum由来のTbCPT1では58位から66位に相当し、
配列番号49で示されるマウス由来のDDPSでは34位から42位に相当し、
配列番号50で示されるヒト由来のHDSでは34位から42位に相当する。
配列番号2で示されるパラゴムノキ由来のHRT1において81位から97位に相当する囲みBの保存領域は、配列番号45で示される大腸菌由来のウンデカプレニルリン酸合成酵素(UPPS)では65位から81位に相当し、
配列番号46で示されるマイクロコッカス属菌由来のウンデカプレニル二リン酸合成酵素(UPS)では69位から85位に相当し、
配列番号47で示される酵母由来SRT1では115位から131位に相当し、
配列番号44で示されるシロイヌナズナ由来のAtCPT5では119位から135位に相当し、
配列番号22で示されるシロイヌナズナ由来のAtCPT8では84位から100位に相当し、
配列番号48で示されるタバコ由来のDDPSでは82位から98位に相当し、
配列番号32で示されるパラゴムノキ由来のHRT2では81位から97位に相当し、
配列番号36で示されるパラゴムノキ由来のCPT3では81位から97位に相当し、
配列番号37で示されるパラゴムノキ由来のCPT4では82位から98位に相当し、
配列番号41で示されるパラゴムノキ由来のCPT5では81位から97位に相当し、
配列番号14で示されるレタス由来のLsCPT3では98位から114位に相当し、
配列番号43で示されるTaraxacum brevicorniculatum由来のTbCPT1では98位から114位に相当し、
配列番号49で示されるマウス由来のDDPSでは74位から90位に相当し、
配列番号50で示されるヒト由来のHDSでは74位から90位に相当する。
配列番号2で示されるパラゴムノキ由来のHRT1において41位に相当するアスパラギン酸残基(1)は、配列番号45で示される大腸菌由来のウンデカプレニルリン酸合成酵素(UPPS)では25位のアスパラギン酸残基に相当し、
配列番号46で示されるマイクロコッカス属菌由来のウンデカプレニル二リン酸合成酵素(UPS)では29位のアスパラギン酸残基に相当し、
配列番号47で示される酵母由来のSRT1では75位のアスパラギン酸残基に相当し、
配列番号44で示されるシロイヌナズナ由来のAtCPT5では79位のアスパラギン酸残基に相当し、
配列番号22で示されるシロイヌナズナ由来のAtCPT8では43位のアスパラギン酸残基に相当し、
配列番号48で示されるタバコ由来のDDPSでは42位のアスパラギン酸残基に相当し、
配列番号32で示されるパラゴムノキ由来のHRT2では41位のアスパラギン酸残基に相当し、
配列番号36で示されるパラゴムノキ由来のCPT3では41位のアスパラギン酸残基に相当し、
配列番号37で示されるパラゴムノキ由来のCPT4では42位のアスパラギン酸残基に相当し、
配列番号41で示されるパラゴムノキ由来のCPT5では41位のアスパラギン酸残基に相当し、
配列番号14で示されるレタス由来のLsCPT3では58位のアスパラギン酸残基に相当し、
配列番号43で示されるTaraxacum brevicorniculatum由来のTbCPT1では58位のアスパラギン酸残基に相当し、
配列番号49で示されるマウス由来のDDPSでは34位のアスパラギン酸残基に相当し、
配列番号50で示されるヒト由来のHDSでは34位のアスパラギン酸残基に相当する。
配列番号2で示されるパラゴムノキ由来のHRT1において42位に相当するグリシン残基(2)は、配列番号45で示される大腸菌由来のウンデカプレニルリン酸合成酵素(UPPS)では26位のグリシン残基に相当し、
配列番号46で示されるマイクロコッカス属菌由来のウンデカプレニル二リン酸合成酵素(UPS)では30位のグリシン残基に相当し、
配列番号47で示される酵母由来のSRT1では76位のグリシン残基に相当し、
配列番号44で示されるシロイヌナズナ由来のAtCPT5では80位のグリシン残基に相当し、
配列番号22で示されるシロイヌナズナ由来のAtCPT8では44位のグリシン残基に相当し、
配列番号48で示されるタバコ由来のDDPSでは43位のグリシン残基に相当し、
配列番号32で示されるパラゴムノキ由来のHRT2では42位のグリシン残基に相当し、
配列番号36で示されるパラゴムノキ由来のCPT3では42位のグリシン残基に相当し、
配列番号37で示されるパラゴムノキ由来のCPT4では43位のグリシン残基に相当し、
配列番号41で示されるパラゴムノキ由来のCPT5では42位のグリシン残基に相当し、
配列番号14で示されるレタス由来のLsCPT3では59位のグリシン残基に相当し、
配列番号43で示されるTaraxacum brevicorniculatum由来のTbCPT1では59位のグリシン残基に相当し、
配列番号49で示されるマウス由来のDDPSでは35位のグリシン残基に相当し、
配列番号50で示されるヒト由来のHDSでは35位のグリシン残基に相当する。
配列番号2で示されるパラゴムノキ由来のHRT1において45位に相当するアルギニン残基(3)は、配列番号45で示される大腸菌由来のウンデカプレニルリン酸合成酵素(UPPS)では29位のアルギニン残基に相当し、
配列番号46で示されるマイクロコッカス属菌由来のウンデカプレニル二リン酸合成酵素(UPS)では33位のアルギニン残基に相当し、
配列番号47で示される酵母由来のSRT1では79位のアルギニン残基に相当し、
配列番号44で示されるシロイヌナズナ由来のAtCPT5では83位のアルギニン残基に相当し、
配列番号22で示されるシロイヌナズナ由来のAtCPT8では47位のアルギニン残基に相当し、
配列番号48で示されるタバコ由来のDDPSでは46位のアルギニン残基に相当し、
配列番号32で示されるパラゴムノキ由来のHRT2では45位のアルギニン残基に相当し、
配列番号36で示されるパラゴムノキ由来のCPT3では45位のアルギニン残基に相当し、
配列番号37で示されるパラゴムノキ由来のCPT4では46位のアルギニン残基に相当し、
配列番号41で示されるパラゴムノキ由来のCPT5では45位のアルギニン残基に相当し、
配列番号14で示されるレタス由来のLsCPT3では62位のアルギニン残基に相当し、
配列番号43で示されるTaraxacum brevicorniculatum由来のTbCPT1では62位のアルギニン残基に相当し、
配列番号49で示されるマウス由来のDDPSでは38位のアルギニン残基に相当し、
配列番号50で示されるヒト由来のHDSでは38位のアルギニン残基に相当する。
配列番号2で示されるパラゴムノキ由来のHRT1において89位に相当するアスパラギン残基(4)は、配列番号45で示される大腸菌由来のウンデカプレニルリン酸合成酵素(UPPS)では73位のアスパラギン残基に相当し、
配列番号46で示されるマイクロコッカス属菌由来のウンデカプレニル二リン酸合成酵素(UPS)では77位のアスパラギン残基に相当し、
配列番号47で示される酵母由来のSRT1では123位のアスパラギン残基に相当し、
配列番号44で示されるシロイヌナズナ由来のAtCPT5では127位のアスパラギン残基に相当し、
配列番号22で示されるシロイヌナズナ由来のAtCPT8では92位のアスパラギン残基に相当し、
配列番号48で示されるタバコ由来のDDPSでは90位のアスパラギン残基に相当し、
配列番号32で示されるパラゴムノキ由来のHRT2では89位のアスパラギン残基に相当し、
配列番号36で示されるパラゴムノキ由来のCPT3では89位のアスパラギン残基に相当し、
配列番号37で示されるパラゴムノキ由来のCPT4では90位のアスパラギン残基に相当し、
配列番号41で示されるパラゴムノキ由来のCPT5では89位のアスパラギン残基に相当し、
配列番号14で示されるレタス由来のLsCPT3では106位のアスパラギン残基に相当し、
配列番号43で示されるTaraxacum brevicorniculatum由来のTbCPT1では106位のアスパラギン残基に相当し、
配列番号49で示されるマウス由来のDDPSでは82位のアスパラギン残基に相当し、
配列番号50で示されるヒト由来のHDSでは82位のアスパラギン残基に相当する。
(配列表フリーテキスト)
配列番号1:パラゴムノキ由来のHRT1をコードする遺伝子の塩基配列
配列番号2:パラゴムノキ由来のHRT1のアミノ酸配列
配列番号3:パラゴムノキ由来のHRTBPをコードする遺伝子の塩基配列
配列番号4:パラゴムノキ由来のHRTBPのアミノ酸配列
配列番号5:プライマー1
配列番号6:プライマー2
配列番号7:プライマー3
配列番号8:プライマー4
配列番号9:パラゴムノキ由来のRubber Elongation Factorをコードする遺伝子のプロモーターの塩基配列
配列番号10:パラゴムノキ由来のSmall Rubber ParticleProteinをコードする遺伝子のプロモーターの塩基配列
配列番号11:パラゴムノキ由来のHevien2.1をコードする遺伝子のプロモーターの塩基配列
配列番号12:パラゴムノキ由来のMYC1 transcription factorをコードする遺伝子のプロモーターの塩基配列
配列番号13:レタス由来のLsCPT3をコードする遺伝子の塩基配列
配列番号14:レタス由来のLsCPT3のアミノ酸配列
配列番号15:レタス由来のLsCPTL2をコードする遺伝子の塩基配列
配列番号16:レタス由来のLsCPTL2のアミノ酸配列
配列番号17:プライマー5
配列番号18:プライマー6
配列番号19:プライマー7
配列番号20:プライマー8
配列番号21:シロイヌナズナ由来のAtCPT8をコードする遺伝子の塩基配列
配列番号22:シロイヌナズナ由来のAtCPT8のアミノ酸配列
配列番号23:シロイヌナズナ由来のAtLEW1をコードする遺伝子の塩基配列
配列番号24:シロイヌナズナ由来のAtLEW1のアミノ酸配列
配列番号25:プライマー9
配列番号26:プライマー10
配列番号27:パラゴムノキ由来のREFをコードする遺伝子の塩基配列
配列番号28:パラゴムノキ由来のREFのアミノ酸配列
配列番号29:プライマー11
配列番号30:プライマー12
配列番号31:パラゴムノキ由来のHRT2をコードする遺伝子の塩基配列
配列番号32:パラゴムノキ由来のHRT2のアミノ酸配列
配列番号33:プライマー13
配列番号34:プライマー14
配列番号35:パラゴムノキ由来のCPT3をコードする遺伝子の塩基配列
配列番号36:パラゴムノキ由来のCPT3のアミノ酸配列
配列番号37:パラゴムノキ由来のCPT4のアミノ酸配列
配列番号38:プライマー15
配列番号39:プライマー16
配列番号40:パラゴムノキ由来のCPT5をコードする遺伝子の塩基配列
配列番号41:パラゴムノキ由来のCPT5のアミノ酸配列
配列番号42:Taraxacum brevicorniculatum由来のTbCPT1をコードする遺伝子の塩基配列
配列番号43:Taraxacum brevicorniculatum由来のTbCPT1のアミノ酸配列
配列番号44:シロイヌナズナ由来のAtCPT5のアミノ酸配列
配列番号45:大腸菌由来のウンデカプレニルリン酸合成酵素(UPPS)のアミノ酸配列
配列番号46:マイクロコッカス属菌由来のウンデカプレニル二リン酸合成酵素(UPS)のアミノ酸配列
配列番号47:酵母由来のSRT1のアミノ酸配列
配列番号48:タバコ由来のDDPSのアミノ酸配列
配列番号49:マウス由来のDDPSのアミノ酸配列
配列番号50:ヒト由来のHDSのアミノ酸配列
配列番号51:パラゴムノキ由来のHRT1における41位から49位のアミノ酸配列
配列番号52:パラゴムノキ由来のHRT1における81位から97位のアミノ酸配列
配列番号53:プライマー17
配列番号54:プライマー18
配列番号55:プライマー19
配列番号56:プライマー20
配列番号57:プライマー21
配列番号58:プライマー22
配列番号59:プライマー23
配列番号60:プライマー24
配列番号61:プライマー25
配列番号62:プライマー26
配列番号63:酵母由来のSRT1をコードする遺伝子の塩基配列
配列番号64:ヒト由来のHDSをコードする遺伝子の塩基配列
 

Claims (19)

  1. 生体外で、シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子を発現させた蛋白質、及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子を発現させた蛋白質をゴム粒子に結合させる結合工程を含むポリイソプレノイドの製造方法。
  2. 前記シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質が、配列番号2で示されるパラゴムノキ由来のHRT1における41位、及びこれに相当する位置にアスパラギン酸残基を、配列番号2で示されるパラゴムノキ由来のHRT1における42位、及びこれに相当する位置にグリシン残基を、配列番号2で示されるパラゴムノキ由来のHRT1における45位、及びこれに相当する位置にアルギニン残基を、並びに、配列番号2で示されるパラゴムノキ由来のHRT1における89位、及びこれに相当する位置にアスパラギン残基を、有するものである請求項1記載のポリイソプレノイドの製造方法。
  3. 前記シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質は、配列番号2で示されるパラゴムノキ由来のHRT1における41位から49位、及びこれに相当する位置のアミノ酸配列が、以下のアミノ酸配列(A):
    DGNXRXAKK   (A)
    (上記アミノ酸配列(A)中、X及びXは同一又は異なって任意のアミノ酸残基を表す。)、又は、該アミノ酸配列(A)と、X及びXを除く7アミノ酸残基のうちの5アミノ酸残基以上が同一である配列同一性を有するアミノ酸配列である請求項1又は2記載のポリイソプレノイドの製造方法。
  4. 前記シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質は、配列番号2で示されるパラゴムノキ由来のHRT1における81位から97位、及びこれに相当する位置のアミノ酸配列が、以下のアミノ酸配列(B):
    TX1112AFSX1314NX1516RX171819EV   (B)
    (上記アミノ酸配列(B)中、X11~X19は同一又は異なって任意のアミノ酸残基を表す。)、又は、該アミノ酸配列(B)と、X11~X19を除く8アミノ酸残基のうちの5アミノ酸残基以上が同一である配列同一性を有するアミノ酸配列である請求項1~3のいずれかに記載のポリイソプレノイドの製造方法。
  5. 前記シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子、及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子からなる群より選択される少なくとも1種が、植物由来である請求項1~4のいずれかに記載のポリイソプレノイドの製造方法。
  6. 前記シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子、及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子からなる群より選択される少なくとも1種が、パラゴムノキ由来である請求項5記載のポリイソプレノイドの製造方法。
  7. 前記結合工程が、シス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードするmRNA、及びNogo-B receptor(NgBR)ファミリー蛋白質をコードするmRNAを含む無細胞蛋白合成溶液とゴム粒子とを共存させて蛋白質合成を行い、ゴム粒子にCPTファミリー蛋白質、及びNgBRファミリー蛋白質を結合させる工程である請求項1~6のいずれかに記載のポリイソプレノイドの製造方法。
  8. 前記無細胞蛋白合成溶液が、胚芽抽出物を含む請求項7記載のポリイソプレノイドの製造方法。
  9. 前記胚芽抽出物が、小麦由来である請求項8記載のポリイソプレノイドの製造方法。
  10. 前記無細胞蛋白合成溶液と共存させるゴム粒子の濃度が、5~50g/Lである請求項7~9のいずれかに記載のポリイソプレノイドの製造方法。
  11. 請求項1~10のいずれかに記載のポリイソプレノイドの製造方法により得られたポリイソプレノイドと、添加剤とを混練して混練物を得る混練工程、前記混練物から生タイヤを成形する生タイヤ成形工程、及び前記生タイヤを加硫する加硫工程を含む空気入りタイヤの製造方法。
  12. 請求項1~10のいずれかに記載のポリイソプレノイドの製造方法により得られたポリイソプレノイドと、添加剤とを混練して混練物を得る混練工程、前記混練物から生ゴム製品を成形する生ゴム製品成形工程、及び前記生ゴム製品を加硫する加硫工程を含むゴム製品の製造方法。
  13. 乳管特異的に遺伝子を発現させるプロモーター活性を有するプロモーター、及び、該プロモーターに機能的に連結されたNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子を含むベクター。
  14. 乳管特異的に遺伝子を発現させるプロモーター活性を有するプロモーター、並びに、該プロモーターに機能的に連結されたシス型プレニルトランスフェラーゼ(CPT)ファミリー蛋白質をコードする遺伝子及びNogo-B receptor(NgBR)ファミリー蛋白質をコードする遺伝子を含むベクター。
  15. 前記乳管特異的に遺伝子を発現させるプロモーター活性を有するプロモーターが、Rubber Elongation Factor(REF)をコードする遺伝子のプロモーター、Small Rubber Particle Protein(SRPP)をコードする遺伝子のプロモーター、Hevein2.1(HEV2.1)をコードする遺伝子のプロモーター、及び、MYC1 transcription factor(MYC1)をコードする遺伝子のプロモーターからなる群より選択される少なくとも1種である請求項13又は14記載のベクター。
  16. 請求項13~15のいずれかに記載のベクターが導入された形質転換植物。
  17. 請求項13~15のいずれかに記載のベクターを植物に導入することにより、該植物におけるポリイソプレノイドの生産量を向上させる方法。
  18. 請求項13~15のいずれかに記載のベクターを植物に導入することにより得られる形質転換植物から得られるポリイソプレノイドと、添加剤とを混練して混練物を得る混練工程、前記混練物から生タイヤを成形する生タイヤ成形工程、及び前記生タイヤを加硫する加硫工程を含む空気入りタイヤの製造方法。
  19. 請求項13~15のいずれかに記載のベクターを植物に導入することにより得られる形質転換植物から得られるポリイソプレノイドと、添加剤とを混練して混練物を得る混練工程、前記混練物から生ゴム製品を成形する生ゴム製品成形工程、及び前記生ゴム製品を加硫する加硫工程を含むゴム製品の製造方法。
PCT/JP2016/069172 2015-06-30 2016-06-28 ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法 WO2017002818A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/579,434 US10907179B2 (en) 2015-06-30 2016-06-28 Production method for polyisoprenoid, vector, transgenic plant, production method for pneumatic tire, and production method for rubber product
JP2016563140A JP6778372B2 (ja) 2015-06-30 2016-06-28 ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法
CN201680035245.5A CN107709565B (zh) 2015-06-30 2016-06-28 聚类异戊二烯、载体、转基因植物的制造方法,充气轮胎的制造方法及橡胶制品的制造方法
EP16817926.5A EP3309257B1 (en) 2015-06-30 2016-06-28 Production method for polyisoprenoid, vector, transgenic plant, production method for pneumatic tire, and production method for rubber product

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015131024 2015-06-30
JP2015-131024 2015-06-30
JP2016054541 2016-03-17
JP2016-054541 2016-03-17

Publications (1)

Publication Number Publication Date
WO2017002818A1 true WO2017002818A1 (ja) 2017-01-05

Family

ID=57608441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069172 WO2017002818A1 (ja) 2015-06-30 2016-06-28 ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法

Country Status (5)

Country Link
US (1) US10907179B2 (ja)
EP (1) EP3309257B1 (ja)
JP (1) JP6778372B2 (ja)
CN (1) CN107709565B (ja)
WO (1) WO2017002818A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020036560A (ja) * 2018-09-05 2020-03-12 住友ゴム工業株式会社 ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法
WO2021010101A1 (ja) 2019-07-16 2021-01-21 住友ゴム工業株式会社 融合タンパク質、物質製造方法、ベクター、形質転換細胞、空気入りタイヤの製造方法及びゴム製品の製造方法
WO2021100419A1 (ja) 2019-11-19 2021-05-27 住友ゴム工業株式会社 融合タンパク質、物質製造方法、ベクター、形質転換細胞、空気入りタイヤの製造方法及びゴム製品の製造方法
WO2021177074A1 (ja) * 2020-03-05 2021-09-10 住友ゴム工業株式会社 ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法
WO2022091932A1 (ja) * 2020-10-30 2022-05-05 住友理工株式会社 イソプレン重合活性を有するタンパク質組成物及びその用途
RU2811542C1 (ru) * 2020-10-30 2024-01-15 Сумитомо Рико Компани Лимитед Композиция белков с активностью полимеризации изопрена и ее применение

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6706813B2 (ja) 2015-06-30 2020-06-10 住友ゴム工業株式会社 膜結合蛋白質を結合させたゴム粒子の製造方法、空気入りタイヤの製造方法及びゴム製品の製造方法
WO2017002818A1 (ja) * 2015-06-30 2017-01-05 住友ゴム工業株式会社 ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法
JP6586693B2 (ja) 2015-06-30 2019-10-09 住友ゴム工業株式会社 ポリイソプレノイドの製造方法、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法
EP3650542A1 (en) * 2018-11-08 2020-05-13 Fraunhofer Gesellschaft zur Förderung der Angewand Method to obtain low triterpene/triterpenoid-containing natural rubber latex
JP2020195326A (ja) * 2019-06-03 2020-12-10 住友ゴム工業株式会社 天然ゴムの製造方法、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法
JP2023127869A (ja) * 2022-03-02 2023-09-14 住友ゴム工業株式会社 変異シス型プレニルトランスフェラーゼ(cpt)ファミリー蛋白質、ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法
JP2023127868A (ja) * 2022-03-02 2023-09-14 住友ゴム工業株式会社 変異シス型プレニルトランスフェラーゼ(cpt)ファミリー蛋白質、ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法
JP2023127870A (ja) * 2022-03-02 2023-09-14 住友ゴム工業株式会社 変異シス型プレニルトランスフェラーゼ(cpt)ファミリー蛋白質、ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法
CN116426536B (zh) * 2023-03-07 2024-03-08 贵州大学 橡胶延长因子HbREF258基因、蛋白及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221306A (ja) * 2008-03-14 2009-10-01 Hitachi Zosen Corp トチュウ由来のバイオポリマー
JP2011052146A (ja) * 2009-09-03 2011-03-17 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及び空気入りタイヤ
JP2014227487A (ja) * 2013-05-23 2014-12-08 住友ゴム工業株式会社 スタッドレスタイヤ用ゴム組成物及びスタッドレスタイヤ
JP2015136296A (ja) * 2014-01-20 2015-07-30 住友ゴム工業株式会社 シス型プレニルトランスフェラーゼをコードする遺伝子、及び、NogoBreceptorをコードする遺伝子を宿主に導入することにより、該宿主において、シス型プレニルトランスフェラーゼ及びNogoBreceptorを発現させた形質転換体、並びに該形質転換体を用いたポリイソプレノイドの製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4838957B2 (ja) 2001-05-02 2011-12-14 独立行政法人理化学研究所 無細胞タンパク質合成系を用いたタンパク質の製造方法
US6998471B2 (en) 2001-07-25 2006-02-14 E.I. Du Pont De Nemours And Company Polynucleotides encoding an acetyl-CoA acetyltransferase from Hevea brasiliensis, related products, and methods
JP2003310295A (ja) 2002-04-30 2003-11-05 Invitrotech Co Ltd 蛋白質の製造方法
JP2005225796A (ja) 2004-02-12 2005-08-25 Wakenyaku Kk リポソームを用いたタンパク質の製造方法
JP2005312436A (ja) 2004-03-29 2005-11-10 Shimadzu Corp 無細胞タンパク質合成方法
JP2005308412A (ja) 2004-04-16 2005-11-04 Olympus Corp 無細胞タンパク質合成系で作られた蛍光を利用した効率的なタンパク質の機能解析スクリーニングの方法
JP5035871B2 (ja) 2005-09-16 2012-09-26 株式会社ブリヂストン パラゴムノキのプレニルトランスフェラーゼの遺伝子群
WO2007053655A2 (en) 2005-10-31 2007-05-10 The Board Of Trustees Of The Leland Stanford Junior University Cell-free synthesis of membrane bound polypeptides
JP2010119373A (ja) 2008-11-21 2010-06-03 Bridgestone Corp プロモーターの乳管特異性評価方法
JP2010132594A (ja) 2008-12-04 2010-06-17 Tokyo Institute Of Technology 膜タンパク質の固定化方法
JP2011188776A (ja) 2010-03-12 2011-09-29 Takuya Ueda invitro再構成タンパク質合成系による膜タンパク質合成方法
JP5827601B2 (ja) 2012-07-04 2015-12-02 住友ゴム工業株式会社 特定の蛋白質の発現を光応答転写因子により調整する方法、光応答転写因子をコードする遺伝子が導入されたイソプレノイド産生植物、及び該イソプレノイド産生植物を用いたポリイソプレノイドの製造方法
JP5536840B2 (ja) 2012-09-07 2014-07-02 住友ゴム工業株式会社 タイヤ用ゴム組成物、タイヤ部材、及び空気入りタイヤ
JP6440520B2 (ja) 2015-02-17 2018-12-19 住友ゴム工業株式会社 ラテックスの採取方法、キク科に属する植物の栽培方法、空気入りタイヤの製造方法及びゴム製品の製造方法
JP6557990B2 (ja) 2015-02-23 2019-08-14 住友ゴム工業株式会社 特定のプロモーター及び特定の蛋白質をコードする遺伝子を含むベクター、該ベクターが導入された形質転換植物、並びに、該ベクターを植物に導入することにより、ポリイソプレノイドの生産量を向上させる方法
WO2017002818A1 (ja) * 2015-06-30 2017-01-05 住友ゴム工業株式会社 ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法
JP6586693B2 (ja) * 2015-06-30 2019-10-09 住友ゴム工業株式会社 ポリイソプレノイドの製造方法、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法
JP6090700B2 (ja) 2015-12-25 2017-03-08 日立造船株式会社 長鎖トランス型プレニル二リン酸合成酵素遺伝子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221306A (ja) * 2008-03-14 2009-10-01 Hitachi Zosen Corp トチュウ由来のバイオポリマー
JP2011052146A (ja) * 2009-09-03 2011-03-17 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及び空気入りタイヤ
JP2014227487A (ja) * 2013-05-23 2014-12-08 住友ゴム工業株式会社 スタッドレスタイヤ用ゴム組成物及びスタッドレスタイヤ
JP2015136296A (ja) * 2014-01-20 2015-07-30 住友ゴム工業株式会社 シス型プレニルトランスフェラーゼをコードする遺伝子、及び、NogoBreceptorをコードする遺伝子を宿主に導入することにより、該宿主において、シス型プレニルトランスフェラーゼ及びNogoBreceptorを発現させた形質転換体、並びに該形質転換体を用いたポリイソプレノイドの製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ASAWATRERATANAKUL KASEM ET AL.: "Molecular cloning, expression and characterization of cDNA encoding cis-prenyltransferases from Hevea brasiliens is.", A KEY FACTOR PARTICIPATING IN NATURAL RUBBER BIOSYNTHESIS, EUR.J. BIOCHEM., vol. 270, no. 23, 2003, pages 4671 - 80, XP002299740 *
BRASHER MEGAN I. ET AL.: "A two-component enzyme complex is required for dolichol biosynthesis in tomato", PLANT J., vol. 82, no. 6, 2015, pages 903 - 14, XP055343416 *
HARRISON KENNETH D. ET AL.: "Nogo-B receptor is necessary for cellular dolichol biosynthesis and protein N-glycosylation", EMBO J., vol. 30, no. 12, 2011, pages 2490 - 500, XP055213277 *
QU YANG ET AL.: "A lettuce (Lactuca sativa) homolog of human Nogo-B receptor interacts with cis-prenyltransferase and is necessary for natural rubber biosynthesis", J.BIOL.CHEM., vol. 290, no. 4, 29 January 2015 (2015-01-29), pages 1898 - 914, XP055213281 *
SATOSHI YAMASHITA ET AL.: "Para Gomunoki no Gomu Ryushi ni Fukumareru Tennen Gomu Gosei Koso no Kaiseki", THE SOCIETY FOR ISOPRENOIDS, JAPAN REIKAI KOEN YOSHISHU, vol. 24, 12 September 2014 (2014-09-12), pages 17, XP009507900 *
SEIJI TAKAHASHI: "Tennen Gomu Koseisan e Hazumi o Tsukeru", JOURNAL OF THE SOCIETY FOR BIOSCIENCE AND BIOENGINEERING, vol. 93, no. 3, 2015, Japan, pages 155, XP009507894 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020036560A (ja) * 2018-09-05 2020-03-12 住友ゴム工業株式会社 ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法
JP7168955B2 (ja) 2018-09-05 2022-11-10 住友ゴム工業株式会社 ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法
WO2021010101A1 (ja) 2019-07-16 2021-01-21 住友ゴム工業株式会社 融合タンパク質、物質製造方法、ベクター、形質転換細胞、空気入りタイヤの製造方法及びゴム製品の製造方法
JP2021013365A (ja) * 2019-07-16 2021-02-12 住友ゴム工業株式会社 融合タンパク質、物質製造方法、ベクター、形質転換細胞、空気入りタイヤの製造方法及びゴム製品の製造方法
WO2021100419A1 (ja) 2019-11-19 2021-05-27 住友ゴム工業株式会社 融合タンパク質、物質製造方法、ベクター、形質転換細胞、空気入りタイヤの製造方法及びゴム製品の製造方法
EP4050024A1 (en) 2019-11-19 2022-08-31 Sumitomo Rubber Industries, Ltd. Fusion protein, method for producing substance, vector, transformed cell, method for manufacturing pneumatic tire, and method for manufacturing rubber product
WO2021177074A1 (ja) * 2020-03-05 2021-09-10 住友ゴム工業株式会社 ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法
WO2022091932A1 (ja) * 2020-10-30 2022-05-05 住友理工株式会社 イソプレン重合活性を有するタンパク質組成物及びその用途
RU2811542C1 (ru) * 2020-10-30 2024-01-15 Сумитомо Рико Компани Лимитед Композиция белков с активностью полимеризации изопрена и ее применение

Also Published As

Publication number Publication date
US20180171364A1 (en) 2018-06-21
EP3309257A4 (en) 2018-10-31
US10907179B2 (en) 2021-02-02
EP3309257A1 (en) 2018-04-18
CN107709565B (zh) 2021-09-14
CN107709565A (zh) 2018-02-16
JP6778372B2 (ja) 2020-11-04
JPWO2017002818A1 (ja) 2018-04-19
EP3309257B1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
WO2017002818A1 (ja) ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法
US11236365B2 (en) Method for producing polyisoprenoid, transformed plant, method for producing pneumatic tire and method for producing rubber product
US20210395785A1 (en) Method for producing trans-polyisoprenoid, vector, transgenic plant, method for producing pneumatic tire and method for producing rubber product
RU2682047C2 (ru) Трансформант для экспрессии цис-пренилтрансферазы и рецептора Nogo-B
WO2021010101A1 (ja) 融合タンパク質、物質製造方法、ベクター、形質転換細胞、空気入りタイヤの製造方法及びゴム製品の製造方法
JP7168955B2 (ja) ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法
WO2021100419A1 (ja) 融合タンパク質、物質製造方法、ベクター、形質転換細胞、空気入りタイヤの製造方法及びゴム製品の製造方法
US10889623B2 (en) Production method for rubber particles having membrane-binding protein bound thereto, production method for pneumatic tire, and production method for rubber product
US10059780B2 (en) Method for producing rubber particles with reduced coagulation tendency, method for producing pneumatic tire, and method for producing rubber product
WO2021177074A1 (ja) ポリイソプレノイドの製造方法、ベクター、形質転換植物、空気入りタイヤの製造方法及びゴム製品の製造方法
US20230279369A1 (en) Mutant cis-prenyltransferase (cpt) family protein, method for producing polyisoprenoid, vector, transgenic plant, method for producing pneumatic tire, and method for producing rubber product
US20230279371A1 (en) Mutant cis-prenyltransferase (cpt) family protein, method for producing polyisoprenoid, vector, transgenic plant, method for producing pneumatic tire, and method for producing rubber product
US20230279370A1 (en) Mutant cis-prenyltransferase (cpt) family protein, method for producing polyisoprenoid, vector, transgenic plant, method for producing pneumatic tire, and method for producing rubber product

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016563140

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817926

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15579434

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016817926

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017026616

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017026616

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171211