WO2023036317A1 - 降低烟气中SOx与NOx的催化剂及其制备方法以及烟气脱SOx和NOx的方法 - Google Patents

降低烟气中SOx与NOx的催化剂及其制备方法以及烟气脱SOx和NOx的方法 Download PDF

Info

Publication number
WO2023036317A1
WO2023036317A1 PCT/CN2022/118245 CN2022118245W WO2023036317A1 WO 2023036317 A1 WO2023036317 A1 WO 2023036317A1 CN 2022118245 W CN2022118245 W CN 2022118245W WO 2023036317 A1 WO2023036317 A1 WO 2023036317A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
component
content
catalyst
terms
Prior art date
Application number
PCT/CN2022/118245
Other languages
English (en)
French (fr)
Inventor
姜秋桥
宋海涛
凤孟龙
赵东越
曲亚坤
沙昊
Original Assignee
中国石油化工股份有限公司
中石化石油化工科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111055118.0A external-priority patent/CN115770587A/zh
Priority claimed from CN202111054717.0A external-priority patent/CN115770585A/zh
Priority claimed from CN202111055913.XA external-priority patent/CN115779924A/zh
Priority claimed from CN202111055151.3A external-priority patent/CN115779923A/zh
Application filed by 中国石油化工股份有限公司, 中石化石油化工科学研究院有限公司 filed Critical 中国石油化工股份有限公司
Priority to CA3232113A priority Critical patent/CA3232113A1/en
Publication of WO2023036317A1 publication Critical patent/WO2023036317A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation

Definitions

  • the invention relates to a catalyst for simultaneously reducing SOx and NOx in flue gas, a preparation method and application thereof, and a method for simultaneously removing SOx and NOx from flue gas.
  • the main technical measures to reduce the emission of flue gas pollutants from catalytic cracking regeneration include: regenerator optimization, use of additives and post-treatment of flue gas.
  • the method of adding additives is widely used because of its advantages of flexible operation and no investment in facility costs.
  • desulfurization and denitrification additives are mainly used to remove one kind of flue gas pollutants alone.
  • CN1334316A discloses a sulfur transfer agent containing a composition of magnesium aluminum spinel and an oxide of cerium/vanadium, which is used to remove SOx in catalytic cracking flue gas
  • CN104399478A discloses a sulfur transfer agent and its preparation And an evaluation method for removing SOx in catalytic cracking flue gas
  • CN101311248B provides a composition capable of reducing NOx emissions in catalytic cracking regeneration flue gas, used for reducing NOx in catalytic cracking flue gas.
  • the invention starts from the purpose of combined removal of SOx and NOx, and develops a novel catalyst for combined removal of flue gas pollutants.
  • the purpose of the present invention is to overcome the defects that the existing desulfurization and denitrification technology cannot remove nitrogen oxides and sulfur oxides at the same time and the cost is too high, and provide a method for simultaneously reducing flue gas (especially catalytic cracking regeneration flue gas)
  • the catalyst provided by the invention has high activity, can effectively reduce the emission of SOx and NOx in flue gas, and the preparation method of the catalyst provided by the invention is simple.
  • the first aspect of the present invention provides a catalyst for (simultaneously) reducing NOx and SOx emissions in flue gas, the catalyst comprising a carrier and a first active catalyst selected from rare earth metals loaded on the carrier Components, a second active component selected from Group VIII non-noble metals and a noble metal component; based on the total weight of the catalyst, the content of the carrier is 25-95% by weight, in terms of oxides, the first active The content of the component is 4-60% by weight, the content of the second active component is 2-12% by weight, and the content of the precious metal component is 0.01-2% by weight;
  • the molar ratio of the first active component to the second active component is (0.5-15):1; for example (1-10):1, or (2-5):1.
  • the second aspect of the present invention provides a (simultaneous) desulfurization and denitration catalyst, based on the total weight of the catalyst, including by weight percentage,
  • oxides 25-92% by weight, or 40-85% by weight, or 45-80% by weight of inorganic oxide matrix
  • rare earth metal components preferably, the rare earth metal components are selected from the group consisting of lanthanum, cerium, praseodymium and neodymium One or a mixture of several, more preferably lanthanum);
  • non-noble metal components selected from groups VB, VIII, IB, and IIB (preferably, One or more non-noble metal components of the VB, VIII, IB, IIB groups are selected from the mixture of one or more of iron, cobalt, nickel, copper, zinc and vanadium, more preferably cobalt);
  • a non-noble metal component selected from Group VIIB (preferably, the non-noble metal component of Group VIIB is manganese);
  • noble metal components preferably said noble metal components are selected from ruthenium, rhodium, rhenium, platinum, palladium, silver, iridium and a mixture of one or more of gold, more preferably a mixture of one or more of platinum, palladium and rhodium, most preferably palladium).
  • the third aspect of the present invention provides a catalyst capable of simultaneously reducing SOx and NOx in flue gas.
  • the catalyst includes a carrier and a first active component selected from rare earth metals supported on the carrier. From the second active component of VB, VIII, IB, IIB group non-noble metal, the third active component selected from IIA group metal and noble metal component; based on the total weight of the catalyst, the content of the carrier is 25-93 % by weight, based on oxides, the content of the first active component is 4-60% by weight, the content of the second active component is 2-30% by weight, the content of the third active component is 1-30% by weight, based on elements, the content of the noble metal component is 0.01-2% by weight.
  • the molar ratio of the first active component to the second active component is (0.4-12):1, preferably (0.5-8):1, more preferably (1 -4):1.
  • a fourth aspect of the present invention provides a catalyst for simultaneously reducing SOx and NOx in flue gas, based on the total weight of the catalyst, containing 25-95% by weight of an inorganic oxide matrix; 2-70% by weight of the rare earth metal component; 1-30% by weight of the IIA metal component by oxide; 1-15% by weight of the oxide selected from VB, VIII, IB, One or more non-noble metal components of group IIB; 1-10% by weight of non-noble metal components of group VIIB in terms of oxides; 0.01-1.5% by weight of noble metal components in terms of elements.
  • the molar ratio of the rare earth metal component to one or more non-noble metal components selected from groups VB, VIII, IB, and IIB is (0.4-18):1, for example (0.5 -12):1, or (1-6):1.
  • a fifth aspect of the present invention provides a method for preparing a catalyst for (simultaneously) reducing NOx and SOx emissions in flue gas according to the first aspect, the method comprising:
  • step (3) mixing and beating the solid product obtained in step (2) with the carrier and/or the precursor of the carrier to obtain a slurry, and drying and roasting the slurry;
  • step (3) The solid product obtained in step (3) is impregnated with the solution containing the precursor of the noble metal component as the impregnating liquid, and then dried and/or roasted.
  • a sixth aspect of the present invention provides a method for preparing a desulfurization and denitration catalyst, comprising the following steps:
  • catalyst semi-finished products mixing the active metal precursor with the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix and optionally the precursor of the noble metal component to obtain a slurry, drying and roasting the slurry;
  • the method also optionally includes: S3. Using the solution containing the precursor of the noble metal component as an impregnating liquid, impregnating the catalyst semi-finished product obtained in step S2 to obtain a solid product, drying and roasting the solid product;
  • the active metal in the active metal precursor includes a rare earth metal component, one or more non-noble metal components selected from VB, VIII, IB, IIB groups and VIIB group non-noble metal components;
  • the amount of the active metal precursor, the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix and the noble metal component precursor makes the prepared catalyst, based on the total weight of the catalyst, include by weight percent, in terms of oxidation In terms of material: 25-92% by weight of inorganic oxide matrix, 6-70% by weight of rare earth metal components, 1-12% by weight of one or more non-precious metal components selected from VB, VIII, IB, and IIB groups , 1-10% by weight of non-precious metal components selected from Group VIIB; in terms of elements: 0.01-1.5% by weight of noble metal components.
  • the seventh aspect of the present invention provides a method for preparing a catalyst capable of simultaneously reducing SOx and NOx in flue gas, the method comprising the steps of:
  • step (3) mixing and beating the solid product obtained in step (2) with the carrier and/or the precursor of the carrier and optionally the precursor of the noble metal component to obtain a slurry, which is dried and calcined;
  • the method also optionally includes: (4) using a solution containing a noble metal component precursor as an impregnating liquid, impregnating the solid product obtained in step (3), and then drying and/or roasting;
  • the amount of the precursor of the first active component precursor, the second active component precursor, the third active component precursor, the carrier and/or the carrier and the noble metal component precursor makes the catalyst prepared by the total weight of the catalyst
  • the content of the carrier is 25-93% by weight, based on oxides
  • the content of the first active component is 4-60% by weight
  • the content of the second active component is 2-30% by weight %
  • the content of the third active component is 1-30% by weight
  • the content of the noble metal component is 0.01-2% by weight in terms of elements.
  • the eighth aspect of the present invention provides a catalyst preparation method for simultaneously reducing SOx and NOx in flue gas, the method comprising the following steps:
  • the method also optionally includes: (3) using the solution containing the precursor of the noble metal component as the impregnating liquid, impregnating the composition obtained in step (2) to obtain a solid product, and then drying and/or Roasting;
  • the active metal in the active metal precursor includes rare earth metal components, IIA metal components, one or more non-noble metal components selected from VB, VIII, IB, IIB groups and VIIB non-noble metal groups point;
  • the amount of the active metal precursor, the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix and the precursor of the noble metal component makes the prepared catalyst contain 25-95% by weight based on the total weight of the catalyst Inorganic oxide matrix; 2-70% by weight of rare earth metal components as oxides; 1-30% by weight of group IIA metal components as oxides; 1-15% by weight of One or more non-noble metal components selected from groups VB, VIII, IB, and IIB; 1-10% by weight of non-noble metal components of Group VIIB in terms of oxides; 0.01-1.5% by weight in terms of elements precious metal components.
  • the ninth aspect of the present invention provides the application of the catalyst of any one of the preceding aspects to simultaneously remove SOx and NOx in flue gas.
  • the present invention provides a method for simultaneously removing SOx and NOx from flue gas containing SOx and NOx, the method comprising: making the flue gas containing SOx and NOx Contacted with the catalyst of any of the preceding aspects.
  • the conditions for simultaneous removal of SOx and NOx are: temperature 500-800°C, pressure 0.02-4MPa, flue gas volume space velocity 100-50000h -1 .
  • the content of SOx in the flue gas is 0.001-0.5% by volume
  • the content of NOx is 0.001-0.3% by volume.
  • the inventors of the present invention have found in the course of research that a specific amount of rare earth metal elements (such as La) and Group VIII non-noble metals (such as Co) are used as active components in combination with at least one noble metal element (such as Pt), and the combination
  • the specific ratio of rare earth metals to group VIII non-noble metals can effectively reduce the emissions of SOx and NOx in flue gas at the same time.
  • group IIA metal components such as Mg
  • group VIIB metal components such as Mn
  • the sulfur element can be converted into different valence states, wherein the sulfur element in a low valence state is conducive to the conversion of NOx in the flue gas, so that the whole process can promote SOx and NOx towards Conducive to the transformation of the direction of pollution reduction.
  • the preparation method of the catalyst provided by the invention is simple and easy to realize, and can effectively reduce the emission of SOx and NOx in the regenerated flue gas of catalytic cracking.
  • pressure refers to gauge pressure unless otherwise specified.
  • the catalyst capable of simultaneously reducing SOx and NOx in flue gas refers to that the catalyst can be used to simultaneously remove SOx and NOx in flue gas and reduce the content of SOx and NOx in flue gas.
  • SOx refers to a mixture of sulfur oxides (such as a mixture of SO2 and SO3 , the molar ratio of which is not particularly limited, such as 1:10 to 10:1)
  • NOx refers to a mixture of nitrogen oxides ( For example, a mixture of NO 2 and NO, the molar ratio of which is not particularly limited, such as 1:10 to 10:1).
  • catalysts for reducing NOx and SOx emissions in flue gas "catalyst for (simultaneously) reducing NOx and SOx emissions in flue gas", “catalyst for desulfurization and denitrification”, “capable of simultaneously reducing smoke Catalysts for SOx and NOx in flue gas”, “catalysts for simultaneously reducing SOx and NOx in flue gas” and other expressions have the same meaning, which means that these catalysts can be used to simultaneously remove SOx and NOx in flue gas, reduce flue gas The content of SOx and NOx in the air.
  • the present invention provides a catalyst for reducing NOx and SOx emissions in flue gas, the catalyst comprising a carrier and a first active component selected from rare earth metals loaded on the carrier, The second active component selected from the group VIII non-noble metal and the noble metal component; based on the total weight of the catalyst, the content of the carrier is 25-95% by weight, in terms of oxides, the content of the first active component The content is 4-60% by weight, the content of the second active component is 2-12% by weight, and the content of the precious metal component is 0.01-2% by weight in terms of elements;
  • the molar ratio of the first active component to the second active component is (0.5-15):1, such as (1-10):1, or (1-6):1, (2-5):1, or (2.5-3.5):1, or (2.6-3.4):1, or (2.7-3.3):1, or (2.8-3.2):1, or (2.9-3.1) :1, or (2.95-3.05):1.
  • the carrier can be selected from a wide range.
  • the carrier is selected from alumina, silica-alumina, zeolite, spinel, kaolin, diatomaceous earth, perlite and calcium At least one of titanium ores, more preferably alumina.
  • crystal form of the alumina in the present invention including but not limited to ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina and ⁇ -alumina.
  • conventionally defined rare earth components are all used in the present invention, and the first active component is lanthanum and/or cerium, preferably lanthanum. Adopting this method can further improve the performance of the catalyst for removing SOx and NOx.
  • the second active component may be selected from at least one of Group VIII metals, preferably cobalt and/or iron, more preferably cobalt.
  • the noble metal has a conventional definition in the field.
  • the noble metal component is selected from one or more of platinum, palladium and rhodium, most preferably palladium.
  • the inventors of the present invention found in the research process that the use of noble metal palladium and other active components can greatly improve the removal effect of SOx and NOx in flue gas.
  • the first active component and the second active component are used in a molar ratio of (0.5-15): 1.
  • the first active component and the second active component are used in a molar ratio of (0.5-15): 1.
  • the first active component and the second active component are used in a specific ratio.
  • the synergistic effect of the components can improve the removal effect of SOx and NOx in the flue gas.
  • the molar ratio of the first active component to the second active component is (1-10):1, preferably (2-5): 1.
  • the content of the carrier is 40-90% by weight, and the content of the first active component is 8-50% by weight in terms of oxides,
  • the content of the second active component is 2-12% by weight, and the content of the noble metal component is 0.02-1.5% by weight in terms of elements.
  • the content of the carrier is 50-88% by weight
  • the content of the first active component is 8-40% by weight in terms of oxides
  • the content of the second active component is
  • the content of the noble metal component is 2-10% by weight
  • the content of the noble metal component is 0.03-1.2% by weight in terms of elements.
  • the present invention provides a catalyst for desulfurization and denitrification, based on the total weight of the catalyst, including by weight percentage,
  • oxides 25-92% by weight of inorganic oxide matrix, 6-70% by weight of rare earth metal components, one or more non-precious metal components selected from VB, VIII, IB, and IIB groups 1-12 % by weight, 1-10% by weight of non-noble metal components selected from Group VIIB;
  • precious metal component 0.01-1.5% by weight.
  • the present invention preferably, based on the total weight of the catalyst, it includes by weight percentage,
  • oxides 40-85% by weight of inorganic oxide matrix, 12-60% by weight of rare earth metal components, 2-10% of non-precious metal components selected from one or more of VB, VIII, IB, and IIB groups % by weight, 1-8% by weight of non-noble metal components selected from Group VIIB;
  • precious metal component 0.02-1.2% by weight.
  • oxides 45-80% by weight of inorganic oxide matrix, 12-48% by weight of rare earth metal components, 2-8 non-noble metal components selected from one or more of VB, VIII, IB, and IIB groups % by weight, 2-5% by weight of non-noble metal components selected from Group VIIB;
  • precious metal components 0.02-1.0% by weight
  • oxides 50-80% by weight of inorganic oxide matrix, 12-43% by weight of rare earth metal components, 2-5 non-precious metal components selected from one or more of VB, VIII, IB, and IIB groups % by weight, 2-5% by weight of non-noble metal components selected from Group VIIB;
  • precious metal component 0.02-0.05% by weight.
  • all rare earth metal components can be used in the present invention, in order to further improve the performance of removing SOx and NOx of the catalyst, preferably the rare earth metal components are selected from one or more of lanthanum, cerium, praseodymium and neodymium species, more preferably lanthanum.
  • the VB group non-noble metal component can be selected from one or a mixture of vanadium, niobium and tantalum; the VIII group non-noble metal component can be selected from one or more of iron, cobalt and nickel A mixture of several types; the IB group non-noble metal component can be copper; the IIB group non-noble metal component can be selected from one or a mixture of zinc, cadmium and mercury.
  • one or more non-noble metal components of VB, VIII, IB, IIB groups are selected from one or more mixtures of iron, cobalt, nickel, copper, zinc and vanadium, Cobalt is more preferred.
  • the Group VIIB non-noble metal component is manganese.
  • the noble metal component is selected from one or more of ruthenium, rhodium, rhenium, platinum, palladium, silver, iridium and gold, more preferably one of platinum, palladium and rhodium or a mixture of several, most preferably palladium.
  • the inorganic oxide substrate is various inorganic oxide substrates conventionally used in the field, such as selected from alumina, silica-alumina, zeolite, spinel, kaolin, diatomaceous earth , perlite and perovskite or a mixture of several.
  • the spinel is various spinels commonly used in the field, such as one or a mixture of magnesium aluminum spinel, zinc aluminum spinel and titanium aluminum spinel.
  • the inorganic oxide matrix is alumina.
  • alumina is selected from one or a mixture of ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina and ⁇ -alumina , the present invention is not particularly limited thereto.
  • the mol ratio of the rare earth metal component and one or more non-noble metal components selected from VB, VIII, IB, and IIB groups is (0.6- 18): 1, more preferably (2-12): 1, more preferably (3-6): 1, such as (1-10): 1, or (1-6): 1, (2-5 ):1, or (2.5-3.5):1, or (2.6-3.4):1, or (2.7-3.3):1, or (2.8-3.2):1, or (2.9-3.1):1, or (2.95-3.05):1.
  • the molar ratio of lanthanum to cobalt is (3-6):1 or (1-6):1, (2-5) :1, or (2.5-3.5):1, or (2.6-3.4):1, or (2.7-3.3):1, or (2.8-3.2):1, or (2.9-3.1):1, or ( 2.95-3.05):1.
  • the inventors of the present invention have found in the course of their research that, in a particularly preferred embodiment, at least one of the rare earth metal element lanthanum and non-noble metal elements containing cobalt and manganese coordinated with noble metal elements is selected as an active component, Applying the active component to a desulfurization and denitrification catalyst can particularly effectively reduce flue gas NOx and SOx emissions.
  • the present invention provides a catalyst capable of simultaneously reducing SOx and NOx in flue gas, the catalyst comprising a carrier and a first active component selected from rare earth metals loaded on the carrier, selected From the second active component of VB, VIII, IB, IIB group non-noble metal, the third active component selected from IIA group metal and noble metal component; based on the total weight of the catalyst, the content of the carrier is 25-93 % by weight, based on oxides, the content of the first active component is 4-60% by weight, the content of the second active component is 2-30% by weight, the content of the third active component is 1-30% by weight, based on elements, the content of the noble metal component is 0.01-2% by weight.
  • the first active component is selected from one or more of lanthanum, cerium, praseodymium and neodymium, more preferably lanthanum and/or Cerium, most preferably lanthanum. Adopting this method can further improve the performance of the catalyst for removing SOx and NOx.
  • the VB group non-noble metal component can be selected from at least one of vanadium, niobium and tantalum; the VIII group non-noble metal component can be selected from at least one of iron, cobalt and nickel; the IB group non-noble metal The component may be copper; the Group IIB non-noble metal component may be selected from at least one of zinc, cadmium and mercury.
  • the second active component is selected from one or more of iron, cobalt, nickel, copper, zinc and vanadium, more preferably cobalt and/or iron, most preferably cobalt.
  • the third active component may be selected from one or more of beryllium, magnesium, calcium, strontium and barium, more preferably magnesium.
  • the noble metal component can be selected from one or more of ruthenium, rhodium, rhenium, platinum, palladium, silver, iridium and gold, preferably one or more of platinum, palladium and rhodium, most preferably palladium .
  • the inventors of the present invention found in the course of research that the use of palladium in combination with other active components is more conducive to the removal of SOx and NOx in flue gas.
  • the carrier can be selected from a wide range.
  • the carrier is selected from alumina, silica-alumina, zeolite, spinel, kaolin, diatomaceous earth, perlite and calcium At least one of titanium ores, more preferably alumina.
  • crystal form of the alumina including but not limited to ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina and ⁇ -alumina.
  • the content of the carrier is 40-87% by weight, and the content of the first active component is 8-50% by weight in terms of oxides,
  • the content of the second active component is 3-20% by weight, the content of the third active component is 1-20% by weight, and the content of the noble metal component is 0.02-1.5% by weight in terms of elements;
  • the content of the carrier is 45-80% by weight
  • the content of the first active component is 8-40% by weight in terms of oxides
  • the content of the second active component is The content of the active component is 3-15% by weight
  • the content of the third active component is 2-15% by weight
  • the content of the noble metal component is 0.03-1.2% by weight in terms of elements.
  • the molar ratio of the first active component to the second active component is (0.4-12):1, preferably (0.5-8):1, further Preferably (1-4):1, such as (1-6):1, (2-5):1, or (2.5-3.5):1, or (2.6-3.4):1, or (2.7-3.3 ):1, or (2.8-3.2):1, or (2.9-3.1):1, or (2.95-3.05):1.
  • the inventors of the present invention found in the research process that the combination of the two in a specific ratio can achieve a better synergistic effect and is more conducive to the removal of SOx and NOx in flue gas.
  • the present invention provides a catalyst for simultaneously reducing SOx and NOx in flue gas, characterized in that, based on the total weight of the catalyst, it contains 25-95% by weight of an inorganic oxide matrix 2-70% by weight of rare earth metal components in terms of oxides; 1-30% by weight of group IIA metal components in terms of oxides; 1-15% by weight in terms of oxides selected from VB, One or more non-noble metal components of Group VIII, IB, IIB; 1-10% by weight of non-noble metal components of Group VIIB in terms of oxides; 0.01-1.5% by weight of noble metal components in terms of elements.
  • the catalyst preferably, based on the total weight of the catalyst, it contains 40-90% by weight of inorganic oxide matrix; 4-50% by weight of rare earth metal components in terms of oxides; 1- 20% by weight of Group IIA metal components; 2-12% by weight of non-noble metal components selected from VB, VIII, IB, and IIB groups in terms of oxides; 1- 8% by weight of the non-noble metal component of Group VIIB; 0.02-1.2% by weight of the noble metal component on an elemental basis; more preferably, based on the total weight of the catalyst, containing 50-80% by weight of the inorganic oxide substrate; 4-40% by weight of rare earth metal components in terms of substances; 2-15% by weight of group IIA metal components in terms of oxides; 2-10% by weight in terms of oxides selected from VB, VIII, IB , one or more non-noble metal components of Group IIB; 2-5% by weight of VIIB Group non-noble metal components in terms of oxides; 0.02-1.0% by weight of
  • the rare-earth metal component is selected from one of lanthanum, cerium, praseodymium and neodymium. One or more, more preferably lanthanum and/or cerium, most preferably lanthanum.
  • the group IIA metal component is selected from one or more of beryllium, magnesium, calcium, strontium and barium, more preferably magnesium.
  • the VB group non-noble metal component can be selected from at least one of vanadium, niobium and tantalum; the VIII group non-noble metal component can be selected from at least one of iron, cobalt and nickel; the IB group non-noble metal The component may be copper; the Group IIB non-noble metal component may be selected from at least one of zinc, cadmium and mercury.
  • one or more non-noble metal components of the VB, VIII, IB, IIB groups are selected from one or more of iron, cobalt, nickel, copper, zinc and vanadium, more preferably cobalt and/or iron, most preferably cobalt.
  • the group VIIB non-noble metal component is manganese.
  • the precious metal component is selected from one or more of ruthenium, rhodium, rhenium, platinum, palladium, silver, iridium and gold, more preferably one or more of platinum, palladium and rhodium, Most preferred is palladium.
  • the inorganic oxide substrate can be various inorganic oxide substrates conventionally used in the art, such as selected from alumina, silica-alumina, zeolite, spinel, kaolin, diatomaceous earth , at least one of perlite and perovskite.
  • the spinel may be various commonly used spinels, such as at least one of magnesium aluminum spinel, zinc aluminum spinel and titanium aluminum spinel.
  • the inorganic oxide matrix is alumina.
  • the alumina can be selected from at least one of ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina and ⁇ -alumina. There is no particular limitation.
  • the mol ratio of the rare earth metal component and one or more non-noble metal components selected from VB, VIII, IB, and IIB groups is (0.4-18 ):1, more preferably (0.5-12):1, more preferably (1-6):1, such as (2-5):1, or (2.5-3.5):1, or (2.6-3.4 ):1, or (2.7-3.3):1, or (2.8-3.2):1, or (2.9-3.1):1, or (2.95-3.05):1.
  • the catalyst contains 50-80% by weight of alumina; 7-38% by weight of lanthanum as oxide; 2-8% by weight as oxide % magnesium; 2-7 wt % cobalt as oxide; 2-5 wt % manganese as oxide; 0.02-0.05 wt % palladium as element; more preferably, lanthanum and cobalt
  • the molar ratio is (1-6): 1, such as (2-5): 1, or (2.5-3.5): 1, or (2.6-3.4): 1, or (2.7-3.3): 1, or ( 2.8-3.2):1, or (2.9-3.1):1, or (2.95-3.05):1.
  • the inventors of the present invention have found in the research process that using at least one of the rare earth element La, the IIA group element Mg, and the transition non-noble metal elements containing Co and Mn as an active component can effectively reduce the Catalytic cracking regeneration flue gas NOx and SOx emissions.
  • the present invention provides a method for preparing a catalyst for reducing NOx and SOx emissions in flue gas according to the 1st aspect of the present invention, the method comprising:
  • step (3) mixing and beating the solid product obtained in step (2) with the carrier and/or the precursor of the carrier to obtain a slurry, and drying and roasting the slurry;
  • step (3) Using the solution containing the precursor of the noble metal component as the impregnating liquid, impregnating the solid product obtained in step (3), and then drying and/or roasting.
  • the selection range of the specific types of the first active component, the second active component and the precious metal component and carrier has been mentioned in the first aspect above, and will not be repeated here repeat.
  • the method of providing the precursor solution in step (1) in the present invention is not particularly limited, as long as the precursors of each metal component are mixed uniformly.
  • each metal component precursor can be dissolved in water and fully stirred evenly.
  • the first active component precursor and the second active component precursor can be independently selected from water-soluble salts of each metal component, such as nitrate, chloride, chlorine salt or sulfate, etc., preferably nitrate and/or chloride.
  • the noble metal component precursor is selected from at least one of palladium nitrate, palladium chloride, platinum chlorate and rhodium chloride, preferably palladium nitrate and/or palladium chloride.
  • a co-precipitation method is used to carry out a co-precipitation reaction on the precursor solution.
  • the present invention has no particular limitation on the type and amount of the coprecipitant, as long as the coprecipitation reaction can proceed smoothly.
  • the kind of described co-precipitating agent can be conventional selection in this field, preferably, described co-precipitating agent is carbonate, more preferably at least one selected from ammonium carbonate, potassium carbonate and sodium carbonate, more preferably carbonic acid Ammonium.
  • the co-precipitating agent may be introduced in the form of a solution to perform a co-precipitation reaction with the precursor solution.
  • concentration of the precursor solution and the coprecipitant solution there is no special limitation on the concentration of the precursor solution and the coprecipitant solution, as long as the solution concentration is lower than the solubility during preparation, so as to ensure that the coprecipitation reaction can fully occur.
  • the co-precipitation reaction is carried out at a pH of 8-10, preferably 8.5-9.5.
  • the pH of the co-precipitation reaction can be adjusted by adding acid and/or base, and its specific type is not particularly limited, for example, it can be ammonia water.
  • the present invention also includes performing solid-liquid separation (for example, filtration or centrifugation) on the reaction product obtained from the co-precipitation reaction to obtain a solid product, and then performing the drying and roasting.
  • solid-liquid separation for example, filtration or centrifugation
  • the roasting conditions in step (2) include: the temperature is 300-800°C, and the time is 1-8h.
  • the carrier precursor can be any substance that can be converted into a carrier through subsequent calcination, and those skilled in the art can make appropriate selections based on the specific type of carrier, and the present invention will not repeat them here.
  • the precursor of alumina can be selected from various sols or gels of aluminum, or aluminum hydroxide.
  • the aluminum hydroxide may be selected from at least one of gibbsite, pyrenite, diaspore, diaspore, boehmite and pseudoboehmite.
  • the carrier is alumina.
  • the carrier and/or the precursor of the carrier are subjected to acidification treatment, and the acidification treatment can be performed according to conventional technical means in the art.
  • the acid used in the acidification treatment is hydrochloric acid.
  • the present invention has a wide range of options for the conditions of the acidification treatment.
  • the conditions of the acidification treatment include: the ratio of acid to aluminum is 0.12-0.22:1, and the time is 20-40 minutes.
  • the acid-aluminum ratio refers to the mass ratio of hydrochloric acid calculated as 36% by weight of concentrated hydrochloric acid to the precursor of alumina calculated on a dry basis.
  • a specific implementation of the acidification and peptization treatment may be: adding the alumina precursor into water for beating and dispersing.
  • the method of mixing and beating the solid product obtained in step (2), the carrier and/or the precursor of the carrier, and the order of adding the above-mentioned substances is also not limited, as long as the above-mentioned substances and water are contacted Mix well and serve.
  • the solid content of the slurry in step (3) is 7-35% by weight.
  • the drying in step (3) is preferably spray drying.
  • the spray drying can be performed according to conventional technical means in the field, and the present invention has no special limitation on this.
  • Those skilled in the art can select appropriate spray-drying conditions according to the average particle size of the target catalyst.
  • the spray-drying conditions are preferably such that the average particle size of the spray-dried particles is 60-80 ⁇ m, and the particle size distribution range is mainly 20-100 ⁇ m.
  • the slurry obtained by mixing and beating can be roasted in step (3).
  • the roasting conditions in step (3) include: the temperature is 300-800°C, and the time is 1-5h.
  • the impregnation in step (4) is not particularly limited, and can be carried out according to conventional technical means in the art, which can be saturated impregnation or excessive impregnation, preferably excessive impregnation.
  • a person skilled in the art can select an appropriate operation according to the content of the noble metal in the target product.
  • the precursor of the noble metal component is hydrolyzed in an acid solution to provide the immersion solution.
  • dilution can be added with water
  • concentration can be evaporated
  • the acid is selected from water-soluble inorganic and/or organic acids, preferably at least one selected from hydrochloric acid, nitric acid, phosphoric acid and acetic acid.
  • the acid is used in such an amount that the pH of the dipping solution is less than 5.0, preferably 2-5.
  • the use of this preferred embodiment is more conducive to the uniform dispersion of the active components, and can improve the wear resistance of the finished catalyst.
  • the solid product can be obtained by filtering the mixture obtained after soaking.
  • the filtering can be carried out according to conventional technical means in the art.
  • only the solid product can be dried, or only the solid product can be roasted, and the solid product can also be dried and then roasted.
  • the present invention has no special limitation on this, preferably the The solid product is dried and then calcined.
  • the drying conditions of step (2), step (3) and step (4) are not particularly limited, and can be carried out according to conventional technical means in the art.
  • the drying conditions may each independently include: a temperature of 60-200° C. and a time of 2-10 hours.
  • the present invention has no special limitation on the calcination conditions, and can be carried out according to conventional technical means in the art, and the calcination can be carried out in air or an inert atmosphere (including but not limited to nitrogen), preferably, the calcination in step (4)
  • the conditions include: temperature 300-700°C, time 0.1-5h.
  • the present invention provides a method for preparing a catalyst for desulfurization and denitrification according to the second aspect of the present invention, comprising the following steps:
  • catalyst semi-finished products mixing the active metal precursor with the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix and optionally the precursor of the noble metal component to obtain a slurry, drying and roasting the slurry;
  • the method also optionally includes: S3. Using the solution containing the precursor of the noble metal component as an impregnating liquid, impregnating the catalyst semi-finished product obtained in step S2 to obtain a solid product, drying and roasting the solid product;
  • the active metal in the active metal precursor includes a rare earth metal component, one or more non-noble metal components selected from VB, VIII, IB, IIB groups and VIIB group non-noble metal components;
  • the amount of the active metal precursor, the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix and the noble metal component precursor makes the prepared catalyst, based on the total weight of the catalyst, include by weight percentage, In terms of oxides: 25-92% by weight of inorganic oxide matrix, 6-70% by weight of rare earth metal components, 1-12% by weight of one or more non-precious metal components selected from VB, VIII, IB, and IIB groups %, 1-10% by weight of non-noble metal components selected from Group VIIB; in terms of elements: 0.01-1.5% by weight of noble metal components.
  • the amount of the active metal precursor, the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix and the noble metal component precursor is such that in the prepared catalyst, based on the total weight of the catalyst, Included by weight percentage, in terms of oxides: 40-85% by weight of inorganic oxide matrix, 12-60% by weight of rare earth metal components, one or more non- 2-10% by weight of precious metal components, 1-8% by weight of non-noble metal components selected from Group VIIB; in terms of elements: 0.02-1.2% by weight of precious metal components;
  • the amount of the active metal precursor, the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix and the noble metal component precursor is such that in the prepared catalyst, based on the total weight of the catalyst, by weight percentage include,
  • oxides 45-80% by weight of inorganic oxide matrix, 12-48% by weight of rare earth metal components, 2-8 non-noble metal components selected from one or more of VB, VIII, IB, and IIB groups % by weight, 2-5% by weight of non-noble metal components selected from Group VIIB;
  • precious metal components 0.02-1.0% by weight
  • the amount of the active metal precursor, the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix and the precursor of the noble metal component is such that in the prepared catalyst, based on the total weight of the catalyst, by weight percentage Count includes,
  • oxides 50-80% by weight of inorganic oxide matrix, 12-43% by weight of rare earth metal components, 2-5 non-precious metal components selected from one or more of VB, VIII, IB, and IIB groups % by weight, 2-5% by weight of non-noble metal components selected from Group VIIB;
  • precious metal component 0.02-0.05% by weight.
  • the molar ratio of the rare earth metal component to one or more non-noble metal components selected from VB, VIII, IB, and IIB groups is (0.6 -18): 1, more preferably (2-12): 1, more preferably (3-6): 1, such as (1-10): 1, or (1-6): 1, (2- 5): 1, or (2.5-3.5): 1, or (2.6-3.4): 1, or (2.7-3.3): 1, or (2.8-3.2): 1, or (2.9-3.1): 1, Or (2.95-3.05):1.
  • the rare earth metal component one or more non-noble metal components selected from VB, VIII, IB, IIB groups, VIIB group non-noble metal components, noble metal components and inorganic oxides
  • the selection range of the specific type of matrix is as described in the second aspect above, and will not be repeated here.
  • the preparation method provided by the present invention can be a co-precipitation method or a sol-gel method, more preferably a co-precipitation method.
  • step S1 an active metal precursor is obtained by co-precipitation;
  • the coprecipitation method comprises:
  • the method for obtaining the first solution in step S11 is not particularly limited, as long as the precursors of each metal component are mixed uniformly.
  • the various metal component precursors in step S11 are dissolved in water and fully stirred evenly.
  • the rare earth metal component precursor one or more non-noble metal component precursors selected from VB, VIII, IB, IIB groups, VIIB group non-noble metal component precursors and noble metal group
  • the sub-precursors can be independently selected from water-soluble salts of each metal component, such as nitrates, chlorides, chlorates or sulfates, etc., preferably nitrates and/or chlorides.
  • the precursor of manganese is potassium permanganate and/or manganese chloride.
  • the present invention has no particular limitation on the type and amount of the coprecipitant, as long as the coprecipitation reaction can proceed smoothly.
  • the co-precipitating agent can be the conventional co-precipitating agent selected in the art, preferably, the co-precipitating agent is carbonate, more preferably the mixture of one or more of ammonium carbonate, potassium carbonate and sodium carbonate, more preferably ammonium carbonate.
  • the co-precipitating agent may be introduced in the form of a solution, and undergo a co-precipitation reaction with the first solution.
  • concentrations of the first solution and the coprecipitant solution there is no special limitation on the concentrations of the first solution and the coprecipitant solution, as long as the dissolved concentration is lower than the solubility during preparation, so as to ensure that the coprecipitation reaction can fully occur.
  • the co-precipitation reaction is carried out at a pH of 8-10, preferably at a pH of 8.5-9.5.
  • the pH of the co-precipitation reaction can be adjusted by adding acid and/or base, and there is no special limitation on the type of acid and/or base, such as ammonia water.
  • the present invention also includes solid-liquid separation of the reaction product obtained by the co-precipitation reaction to obtain a solid product.
  • the method of solid-liquid separation is not particularly limited in the present invention, as long as the solid-liquid separation of the reaction product can be achieved.
  • the solid-liquid separation method can be filtration or centrifugation.
  • the drying conditions in step S13 include: a temperature of 60-300° C. and a time of 0.5-6 hours.
  • the conditions for firing in step S13 include: a temperature of 300-800° C. and a time of 1-8 hours.
  • the precious metal component can be introduced in step S2, can also be introduced in step S3, can also be partly introduced in step S2, partly introduced in step S3, preferably by introducing in step S3, this kind of preferred embodiment is more Conducive to the dispersion of precious metals.
  • the precursor of the inorganic oxide matrix is any substance that can be converted into an oxide matrix through subsequent calcination.
  • the precursor of alumina can be selected from various sols or gels of aluminum, or aluminum hydroxide.
  • the aluminum hydroxide may be selected from one or a mixture of gibbsite, pyrenite, diaspore, diaspore, boehmite and pseudo-boehmite. Most preferably the precursor of alumina is pseudoboehmite.
  • the inorganic oxide matrix is alumina, preferably, before beating, it is necessary to acidify the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix, and the acidification treatment can be Using conventional technical means in the field, further preferably, the acid used in the acidification treatment is hydrochloric acid.
  • the present invention has a wide range of options for acidification treatment conditions, preferably, the acidification treatment conditions include: the acid-aluminum ratio is (0.12-0.22):1, and the time is 20-40min.
  • the acid-aluminum ratio refers to the mass ratio of hydrochloric acid calculated as 36% by weight of concentrated hydrochloric acid to the precursor of alumina calculated on a dry basis.
  • a specific embodiment of the acidification and peptization treatment may be: placing the alumina precursor in water for beating and dispersing.
  • the method of mixing and beating the active metal precursor and the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix and optionally the precious metal component precursor there is no special limitation on the method of mixing and beating the active metal precursor and the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix and optionally the precious metal component precursor.
  • the active metal precursor and the inorganic oxide The order of addition of the precursor of the active metal matrix and/or the inorganic oxide matrix and optionally the precursor of the noble metal component is likewise not limited as long as the active metal precursor is combined with the precursor of the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix and Optionally, contacting the precursor of the noble metal component and water is sufficient.
  • the specific mixing and beating process may include: adding the precursor of the noble metal component (which can be introduced in the form of a solution) to the acidified inorganic oxide matrix for mixing and beating, and then adding the active metal precursor After adding, the slurry is dried and calcined to obtain the finished catalyst.
  • the solid content of the slurry in step S2 is 5-40% by weight.
  • the drying method in step S2 is preferably spray drying.
  • spray drying can be carried out according to conventional technical means in the field, and the present invention has no special limitation on this.
  • Those skilled in the art can select appropriate spray drying conditions according to the average particle size of the target catalyst, preferably the spray drying conditions make the average particle size of the particles obtained by spray drying be 60-80 ⁇ m, and the particle size distribution range is mainly 20-100 ⁇ m.
  • the firing conditions in step S2 include: the temperature is 300-800°C, and the time is 1-5h.
  • the impregnation method in step S3 can be carried out according to conventional technical means in the field, and the present invention has no special limitation on this.
  • the impregnation method may be saturated impregnation or excessive impregnation, preferably excessive impregnation.
  • the immersion solution is obtained by hydrolyzing the precursor of the noble metal component in an acid solution. Specifically, after hydrolysis, it can be diluted (water can be added) or concentrated (evaporation can be performed), and then impregnated to provide a desulfurization and denitration catalyst with a specific loading of noble metal components.
  • the acid is a water-soluble inorganic acid and/or organic acid, preferably one or a mixture of hydrochloric acid, nitric acid, phosphoric acid and acetic acid.
  • the acid is used in such an amount that the impregnation solution has a pH of less than 6.0, preferably less than 5.0.
  • the advantage of adopting this preferred embodiment is that it is more conducive to the uniform dispersion of active components and improves the wear resistance of the finished catalyst.
  • the solid product can be obtained by filtering the mixture obtained after soaking. Filtration can be performed according to conventional technical means in the art.
  • Step S3 of the present invention can not only dry the solid product, but also only roast the solid product, or dry the solid product and then roast the solid product.
  • the present invention has no special limitation on this, and it is preferred to dry the solid product before roasting .
  • the present invention has no special limitation on the conditions of drying and roasting, which can be carried out according to conventional technical means in the field.
  • the drying conditions may include: a temperature of 60-150° C. and a time of 2-10 hours.
  • the present invention does not have special limitation to the condition of roasting, and roasting can be carried out in air or inert atmosphere (such as nitrogen), and the present invention has no special limitation to this, preferably, the condition of step S3 roasting is: temperature is 300-800 °C , the time is 0.1-5h.
  • the present invention provides a method for preparing a catalyst capable of simultaneously reducing SOx and NOx in flue gas according to the 3rd aspect of the present invention, the method comprising the steps of:
  • step (3) mixing and beating the solid product obtained in step (2) with the carrier and/or the precursor of the carrier and optionally the precursor of the noble metal component to obtain a slurry, which is dried and calcined;
  • the method also optionally includes: (4) using a solution containing a noble metal component precursor as an impregnating liquid, impregnating the solid product obtained in step (3), and then drying and/or roasting;
  • the amount of the precursor of the first active component precursor, the second active component precursor, the third active component precursor, the carrier and/or the carrier and the noble metal component precursor makes the catalyst prepared by the total weight of the catalyst
  • the content of the carrier is 25-93% by weight, based on oxides
  • the content of the first active component is 4-60% by weight
  • the content of the second active component is 2-30% by weight %
  • the content of the third active component is 1-30% by weight
  • the content of the noble metal component is 0.01-2% by weight in terms of elements.
  • the amount of the first active component precursor, the second active component precursor, the third active component precursor, the carrier and/or the precursor of the carrier and the precious metal component precursor For the prepared catalyst, based on the total weight of the catalyst, the content of the carrier is 40-87% by weight, the content of the first active component is 8-50% by weight in terms of oxides, and the content of the second The content of the active component is 3-20% by weight, the content of the third active component is 1-20% by weight, and the content of the precious metal component is 0.02-1.5% by weight;
  • the amount of the first active component precursor, the second active component precursor, the third active component precursor, the carrier and/or the precursor of the carrier and the noble metal component precursor makes the prepared catalyst, with Based on the total weight of the catalyst, the content of the carrier is 45-80% by weight, in terms of oxides, the content of the first active component is 8-40% by weight, and the content of the second active component is 3 -15% by weight, the content of the third active component is 2-15% by weight, and the content of the noble metal component is 0.03-1.2% by weight in terms of elements.
  • the selection range of the first active component, the second active component, the third active component and the specific types of the precious metal component and the carrier is as described in the third aspect above, and is not mentioned here. Let me repeat.
  • the molar ratio of the first active component precursor to the second active component precursor is (0.4-12): 1, preferably (0.5-8): 1, more preferably (1-4):1.
  • the method of providing the precursor solution in step (1) there is no special limitation on the method of providing the precursor solution in step (1), as long as the precursors of each metal component are mixed uniformly.
  • the metal component precursors can be dissolved in water and fully stirred evenly.
  • the first active component precursor, the second active component precursor and the third active component precursor can be independently selected from water-soluble salts of each metal component, such as nitrate, chlorine compounds, chlorates or sulfates, etc., preferably nitrates and/or chlorides.
  • the noble metal component precursor is selected from at least one of palladium nitrate, palladium chloride, platinum chlorate and rhodium chloride, preferably palladium nitrate and/or palladium chloride.
  • the present invention has no particular limitation on the type and amount of the coprecipitant, as long as the coprecipitation reaction can proceed smoothly.
  • the kind of described co-precipitating agent can be conventional selection in this field, preferably, described co-precipitating agent is carbonate, more preferably at least one selected from ammonium carbonate, potassium carbonate and sodium carbonate, more preferably carbonic acid Ammonium.
  • the co-precipitating agent may be introduced in the form of a solution to perform a co-precipitation reaction with the precursor solution.
  • concentration of the precursor solution and the coprecipitant solution there is no special limitation on the concentration of the precursor solution and the coprecipitant solution, as long as the solution concentration is lower than the solubility during preparation, so as to ensure that the coprecipitation reaction can fully occur.
  • the co-precipitation reaction is carried out at a pH of 8-10, preferably 8.5-9.5.
  • the pH of the co-precipitation reaction can be adjusted by adding acid and/or base, and its specific type is not particularly limited, for example, it can be ammonia water.
  • the present invention also includes performing solid-liquid separation (for example, filtration or centrifugation) on the reaction product obtained from the co-precipitation reaction to obtain a solid product, and then performing the drying and roasting.
  • solid-liquid separation for example, filtration or centrifugation
  • the precious metal component described in the present invention can be introduced in step (3), also can be introduced in step (4), can also be partly introduced in step (3), partly introduced in step (4), preferably through in step ( 4), this preferred embodiment is more conducive to the dispersion of precious metals.
  • the carrier precursor can be any substance that can be converted into a carrier through subsequent calcination, and those skilled in the art can make an appropriate selection based on the specific type of carrier, and the present invention will not repeat it here.
  • the precursor of alumina can be selected from various sols or gels of aluminum, or aluminum hydroxide.
  • the aluminum hydroxide may be selected from at least one of gibbsite, pyrenite, diaspore, diaspore, boehmite and pseudoboehmite.
  • the carrier is alumina.
  • the carrier and/or the precursor of the carrier are subjected to acidification treatment.
  • the acidification treatment can be carried out according to conventional technical means in the art, and further preferably , the acid used in the acidification treatment is hydrochloric acid.
  • the present invention has a wide range of options for the conditions of the acidification treatment.
  • the conditions of the acidification treatment include: the ratio of acid to aluminum is 0.12-0.22:1, and the time is 20-40 minutes.
  • the acid-aluminum ratio refers to the mass ratio of hydrochloric acid calculated as 36% by weight of concentrated hydrochloric acid to the precursor of alumina calculated on a dry basis.
  • a specific implementation of the acidification and peptization treatment may be: adding the alumina precursor into water for beating and dispersing.
  • the method provided by the present invention has no special limitation on the method of mixing and beating the solid product obtained in the step (2), the precursor of the carrier and/or the carrier and optionally the precursor of the precious metal component, and the order of adding the above materials There is also no limitation, as long as the above materials and water are contacted and mixed uniformly.
  • the specific mixing and beating process can include: adding the precursor of the noble metal component (which can be introduced in the form of a solution) to the acidified carrier for mixing and beating, and then mixing the solid obtained in step (2) The product is added, and the slurry is then dried and calcined.
  • the solid content of the slurry in step (3) is 6-38% by weight.
  • the drying in step (3) is preferably spray drying.
  • the spray drying can be carried out according to conventional technical means in the field, and the present invention has no special limitation on this.
  • Those skilled in the art can select appropriate spray drying conditions according to the average particle size of the target catalyst, preferably the spray drying conditions make the average particle size of the particles obtained by spray drying be 60-80 ⁇ m, and the particle size distribution range is mainly 20-100 ⁇ m.
  • the impregnation in step (4) is not particularly limited, and can be carried out according to conventional technical means in the art, which can be saturated impregnation or excessive impregnation, preferably excessive impregnation.
  • a person skilled in the art can select an appropriate operation according to the content of the noble metal in the target product.
  • the precursor of the noble metal component is hydrolyzed in an acid solution to provide the immersion solution.
  • dilution can be added with water
  • concentration can be evaporated
  • the acid is selected from water-soluble inorganic and/or organic acids, preferably at least one selected from hydrochloric acid, nitric acid, phosphoric acid and acetic acid.
  • the acid is used in such an amount that the pH of the dipping solution is less than 6.0, preferably 2-5.
  • the use of this preferred embodiment is more conducive to the uniform dispersion of active components and the improvement of the wear resistance of the finished catalyst.
  • the solid product can be obtained by filtering the mixture obtained after soaking.
  • the filtering can be carried out according to conventional technical means in the art.
  • the drying and roasting conditions are not particularly limited, and can be carried out according to conventional technical means in the field.
  • the drying conditions may include: a temperature of 60-200° C. and a time of 2-10 hours.
  • the roasting conditions in different steps are the same or different, preferably, the roasting conditions described in step (2), step (3) and step (4) each independently include: temperature is 300-800 ° C, time 0.5-8h.
  • the calcination can be carried out in air or an inert atmosphere (such as nitrogen), which is not particularly limited in the present invention, and is preferably carried out in an air atmosphere.
  • the present invention provides a catalyst preparation method for simultaneously reducing SOx and NOx in flue gas according to the 4th aspect of the present invention, the method comprising the following steps:
  • the method also optionally includes: (3) using the solution containing the precursor of the noble metal component as the impregnating liquid, impregnating the composition obtained in step (2) to obtain a solid product, and then drying and/or Roasting;
  • the active metal in the active metal precursor includes rare earth metal components, IIA metal components, one or more non-noble metal components selected from VB, VIII, IB, IIB groups and VIIB non-noble metal groups point;
  • the amount of the active metal precursor, the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix and the precursor of the noble metal component makes the prepared catalyst contain 25-95% by weight based on the total weight of the catalyst Inorganic oxide matrix; 2-70% by weight of rare earth metal components as oxides; 1-30% by weight of group IIA metal components as oxides; 1-15% by weight of One or more non-noble metal components selected from groups VB, VIII, IB, and IIB; 1-10% by weight of non-noble metal components of Group VIIB in terms of oxides; 0.01-1.5% by weight in terms of elements precious metal components.
  • the amount of the active metal precursor, the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix and the noble metal component precursor is such that in the prepared catalyst, based on the total weight of the catalyst, Containing 40-90% by weight of inorganic oxide matrix; 4-50% by weight of rare earth metal components calculated as oxides; 1-20% by weight of group IIA metal components calculated as oxides; calculated as oxides 2-12% by weight of one or more non-noble metal components selected from VB, VIII, IB, and IIB groups; 1-8% by weight of VIIB group non-noble metal components in terms of oxides; calculated as elements 0.02-1.2% by weight of the noble metal component; more preferably, the amount of the active metal precursor, the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix and the noble metal component precursor is such that in the prepared catalyst , based on the total weight of the catalyst, containing 5-80% by weight of inorganic oxide matrix; 4-40% by weight of rare earth metal components
  • the molar ratio of the rare earth metal component to one or more non-noble metal components selected from VB, VIII, IB, and IIB groups is (0.4 -18): 1, more preferably (0.5-12): 1, even more preferably (1-6): 1.
  • the rare earth metal component, the metal component of the IIA group, one or more non-noble metal components of the VB, VIII, IB, and IIB groups, the VIIB group non-noble metal group is as described in the fourth aspect above, and will not be repeated here.
  • the method provided by the present invention can be a co-precipitation method or a sol-gel method, more preferably a co-precipitation method.
  • step (1) adopts a co-precipitation method to obtain the active metal precursor; more preferably, the co-precipitation method includes:
  • (1-1) Provide precursors containing rare earth metal components, group IIA metal component precursors, one or more non-noble metal component precursors selected from VB, VIII, IB, and IIB groups, and VIIB non-noble metal components a first solution of a noble metal component precursor;
  • the method for obtaining the first solution in step (1-1) is not particularly limited, as long as the metal component precursors are uniformly mixed.
  • the metal component precursors can be dissolved in water and fully stirred evenly.
  • rare earth metal component precursors, IIA metal component precursors, one or more non-noble metal component precursors selected from VB, VIII, IB, IIB groups and VIIB group non- Precursors of noble metal components can be independently selected from water-soluble salts of metal components, such as nitrates, chlorides, chlorates or sulfates, etc., preferably nitrates and/or chlorides.
  • the precursor of manganese may be potassium permanganate and/or manganese chloride.
  • the precursor of the noble metal component can be selected from any water-soluble compound containing the noble metal component, preferably, the precursor of the noble metal component is selected from palladium nitrate, palladium chloride, platinum chlorate and chlorine At least one of rhodium chloride, more preferably palladium nitrate and/or palladium chloride.
  • the present invention has no particular limitation on the type and amount of the coprecipitant, as long as the coprecipitation reaction can proceed smoothly.
  • the kind of described co-precipitating agent can be conventional selection in this field, preferably, described co-precipitating agent is carbonate, more preferably at least one selected from ammonium carbonate, potassium carbonate and sodium carbonate, more preferably carbonic acid Ammonium.
  • the co-precipitating agent may be introduced in the form of a solution, and undergo a co-precipitation reaction with the first solution.
  • concentrations of the first solution and the coprecipitant solution there is no special limitation on the concentrations of the first solution and the coprecipitant solution, as long as the concentration of the solution is lower than the solubility at the time of preparation, so as to ensure that the coprecipitation reaction can fully occur.
  • the co-precipitation reaction is carried out at a pH of 8-10, preferably 8.5-9.5.
  • the pH of the co-precipitation reaction can be adjusted by adding acid and/or base, and its specific type is not particularly limited, for example, it can be ammonia water.
  • the present invention also includes subjecting the reaction product obtained from the co-precipitation reaction to solid-liquid separation (eg, filtration or centrifugation) to obtain the solid product.
  • solid-liquid separation eg, filtration or centrifugation
  • the drying conditions in the step (1-3) include: the temperature is 60-150°C, and the time is 4-12h.
  • the roasting conditions in step (1-3) include: the temperature is 300-800°C, and the time is 1-8h.
  • the precious metal component described in the present invention can be introduced in step (2), also can be introduced in step (3), can also be partly introduced in step (2), partly introduced in step (3), preferably through in step ( 3), this preferred embodiment is more conducive to the dispersion of precious metals.
  • the precursor of the inorganic oxide matrix is any substance that can be converted into an oxide matrix through subsequent calcination. Those skilled in the art can make appropriate selections based on the specific type of the inorganic oxide matrix, and the present invention will not repeat them here.
  • the precursor of alumina can be selected from various sols or gels of aluminum, or aluminum hydroxide.
  • the aluminum hydroxide may be selected from at least one of gibbsite, pyrenite, diaspore, diaspore, boehmite and pseudoboehmite. Most preferably the precursor of alumina is pseudoboehmite.
  • the inorganic oxide matrix is alumina, preferably, before beating, the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix are subjected to acidification treatment, and the acidification treatment can be carried out according to It is carried out by conventional technical means in the field, and further preferably, the acid used in the acidification treatment is hydrochloric acid.
  • the present invention has a wide range of options for the conditions of the acidification treatment.
  • the conditions of the acidification treatment include: the ratio of acid to aluminum is 0.12-0.22:1, and the time is 20-40 minutes.
  • the acid-aluminum ratio refers to the mass ratio of hydrochloric acid calculated as 36% by weight of concentrated hydrochloric acid to the precursor of alumina calculated on a dry basis.
  • a specific implementation of the acidification and peptization treatment may be: adding the alumina precursor into water for beating and dispersing.
  • the method for mixing and beating the active metal precursor with the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix and optionally the noble metal component precursor is not particularly limited.
  • the order of addition of the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix and optionally the precursor of the noble metal component is likewise not limited as long as the active metal precursor is combined with the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix body and optionally the precursor of the noble metal component and water.
  • the specific mixing and beating process may include: adding the precursor of the noble metal component (which can be introduced in the form of a solution) to the acidified inorganic oxide matrix for mixing and beating, and then adding the active metal precursor added, and then the slurry is dried and/or calcined to obtain a finished catalyst.
  • the solid content of the slurry in step (2) is 5-40% by weight.
  • the drying in step (2) is preferably spray drying.
  • the spray drying can be carried out according to conventional technical means in the field, and the present invention has no special limitation on this.
  • Those skilled in the art can select appropriate spray-drying conditions according to the average particle size of the target catalyst.
  • the spray-drying conditions are preferably such that the average particle size of the spray-dried particles is 60-80 ⁇ m, and the particle size distribution range is mainly 20-100 ⁇ m.
  • the roasting conditions in step (2) include: the temperature is 300-800°C, and the time is 1-5h.
  • the impregnation in step (3) is not particularly limited, and can be carried out according to conventional technical means in the art, which can be saturated impregnation or excessive impregnation, preferably excessive impregnation.
  • the precursor of the noble metal component is hydrolyzed in an acid solution to provide the immersion solution.
  • dilution can be added with water
  • concentration can be evaporated
  • the acid is selected from water-soluble inorganic and/or organic acids, preferably at least one selected from hydrochloric acid, nitric acid, phosphoric acid and acetic acid.
  • the acid is used in such an amount that the pH of the impregnation solution is less than 6.0, preferably less than 5.0.
  • the use of this preferred embodiment is more conducive to the uniform dispersion of active components and the improvement of the wear resistance of the finished catalyst.
  • the solid product can be obtained by filtering the mixture obtained after soaking.
  • the filtering can be carried out according to conventional technical means in the art.
  • the drying and roasting conditions are not particularly limited, and can be carried out according to conventional technical means in the field.
  • the drying conditions may include: a temperature of 60-150° C. and a time of 2-10 hours.
  • the present invention is not particularly limited to the condition of described roasting, and described roasting can be carried out in air or inert atmosphere (such as nitrogen), and the present invention has no special limitation to this, and the condition of described roasting of step (3) preferably comprises:
  • the temperature is 300-800°C, and the time is 0.1-5h.
  • the method for providing the precursor of the active metal component may be a co-precipitation method, or a sol-gel method, and more preferably a co-precipitation method.
  • the sol-gel method is also within the protection scope of the present invention.
  • the catalyst provided by the invention is suitable for the treatment of any flue gas containing SOx and NOx, and is especially suitable for removing SOx and NOx in catalytic cracking regenerated flue gas.
  • the present invention provides a method for simultaneously removing SOx and NOx from flue gas, comprising: under the condition of simultaneously removing SOx and NOx, combining SOx and NOx-containing flue gas with the present invention Invented Catalyst Contacts.
  • the conditions for simultaneously removing SOx and NOx include:
  • the temperature is 500-800°C, for example, 550-780°C, 550-750°C,
  • the pressure is 0.01-4MPa, for example, 0.02-4MPa, 0.02-1MPa, 0.03-2MPa, 0.02-0.1MPa,
  • the volumetric space velocity of the flue gas is 100-50000h -1 , for example, 200-20000h -1 , 500-10000h -1 .
  • the pressure is gauge pressure.
  • the content of SOx is 0.001-0.5% by volume, 0.002-0.2% by volume
  • the content of NOx is 0.001-0.3% by volume, 0.002-0.2% by volume, and 0.001-0.03% by volume.
  • the volume content ratio of SOx to NOx is 1-1.4:1, preferably 1-1.2:1. This preferred embodiment is more conducive to improving the removal efficiency of the two.
  • the present invention has a wide selection range for the flue gas, and the method provided by the present invention is applicable to any flue gas containing both SOx and NOx.
  • the flue gas (eg flue gas regenerated from catalytic cracking) may also contain CO, CO 2 , and H 2 O components.
  • the flue gas is regenerated flue gas from catalytic cracking.
  • the invention provides the following technical solutions:
  • a catalyst for simultaneously reducing SOx and NOx in flue gas characterized in that, based on the total weight of the catalyst, it contains 25-95% by weight of an inorganic oxide matrix; 2-70% by weight in terms of oxides 1-30% by weight of group IIA metal components in terms of oxides; 1-15% by weight in terms of oxides of one or more selected from groups VB, VIII, IB, and IIB 1-10% by weight of group VIIB non-noble metal components in terms of oxides; 0.01-1.5% by weight of noble metal components in terms of elements.
  • the catalyst according to technical solution 1 wherein, based on the total weight of the catalyst, it contains 40-90% by weight of inorganic oxide matrix; 4-50% by weight of rare earth metal components in terms of oxides; 1-20% by weight of the metal component of Group IIA in terms of oxides; 2-12% by weight in terms of oxides of one or more non-noble metal components selected from Groups VB, VIII, IB, and IIB; 1-8% by weight of non-noble metal components of group VIIB as oxides; 0.02-1.2% by weight of noble metal components as elements;
  • the catalyst contains 50-80% by weight of inorganic oxide matrix; 4-40% by weight of rare earth metal components as oxides; 2-15% by weight of Group IIA metal components; 2-10% by weight of non-noble metal components selected from VB, VIII, IB, and IIB groups in terms of oxides; 2-5% by weight in terms of oxides Group VIIB non-noble metal component; 0.02-1.0 wt. % noble metal component based on element.
  • the rare earth metal component is selected from one or more of lanthanum, cerium, praseodymium and neodymium, more preferably lanthanum and/or cerium;
  • the Group IIA metal component is selected from one or more of beryllium, magnesium, calcium, strontium and barium, more preferably magnesium;
  • One or more non-noble metal components of the VB, VIII, IB, IIB groups are selected from one or more of iron, cobalt, nickel, copper, zinc and vanadium, more preferably cobalt and/or iron ;
  • the VIIB group non-noble metal component is manganese
  • the noble metal component is selected from one or more of ruthenium, rhodium, rhenium, platinum, palladium, silver, iridium and gold, more preferably one or more of platinum, palladium and rhodium, most preferably palladium ;
  • the inorganic oxide matrix is at least one selected from alumina, silica-alumina, zeolite, spinel, kaolin, diatomaceous earth, perlite and perovskite, preferably alumina.
  • the molar ratio of minutes is (0.4-18):1, more preferably (0.5-12):1, and even more preferably (1-6):1.
  • a catalyst preparation method for simultaneously reducing SOx and NOx in flue gas comprising the following steps:
  • the method also optionally includes: (3) using the solution containing the precursor of the noble metal component as the impregnating liquid, impregnating the composition obtained in step (2) to obtain a solid product, and then drying and/or Roasting;
  • the active metal in the active metal precursor includes rare earth metal components, IIA metal components, one or more non-noble metal components selected from VB, VIII, IB, IIB groups and VIIB non-noble metal groups point;
  • the amount of the active metal precursor, the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix and the precursor of the noble metal component makes the prepared catalyst contain 25-95% by weight based on the total weight of the catalyst Inorganic oxide matrix; 2-70% by weight of rare earth metal components as oxides; 1-30% by weight of group IIA metal components as oxides; 1-15% by weight of One or more non-noble metal components selected from groups VB, VIII, IB, and IIB; 1-10% by weight of non-noble metal components of Group VIIB in terms of oxides; 0.01-1.5% by weight in terms of elements precious metal components.
  • the amount of the active metal precursor, the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix and the precursor of the noble metal component is such that in the prepared catalyst, Based on the total weight of the catalyst, it contains 40-90% by weight of inorganic oxide matrix; 4-50% by weight of rare earth metal components as oxides; 1-20% by weight of group IIA metals as oxides Components; 2-12% by weight of non-noble metal components selected from VB, VIII, IB, and IIB groups in terms of oxides; 1-8% by weight of non-noble metal components of Group VIIB in terms of oxides Precious metal component; 0.02-1.2% by weight of precious metal component based on element;
  • the amount of the active metal precursor, the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix and the precursor of the noble metal component makes the prepared catalyst contain 50-80 % by weight of inorganic oxide matrix; 4-40% by weight of rare earth metal components as oxides; 2-15% by weight of Group IIA metal components as oxides; 2-10% by weight as oxides % by weight of one or more non-noble metal components selected from Groups VB, VIII, IB, and IIB; 2-5% by weight of non-noble metal components of Group VIIB in terms of oxides; 0.02-1.0 in terms of elements % by weight of precious metal components;
  • the molar ratio of the rare earth metal component to one or more non-noble metal components selected from VB, VIII, IB, and IIB groups is (0.4 -18): 1, more preferably (0.5-12): 1, even more preferably (1-6): 1.
  • the rare earth metal component is selected from one or more of lanthanum, cerium, praseodymium and neodymium, more preferably lanthanum and/or cerium;
  • the group IIA metal component is selected from one or more of beryllium, magnesium, calcium, strontium and barium, more preferably magnesium;
  • One or more non-noble metal components of the VB, VIII, IB, IIB groups are selected from one or more of iron, cobalt, nickel, copper, zinc and vanadium, more preferably cobalt and/or iron ;
  • the VIIB group non-noble metal component is manganese
  • the noble metal component is selected from one or more of ruthenium, rhodium, rhenium, platinum, palladium, silver, iridium and gold, more preferably one or more of platinum, palladium and rhodium, most preferably palladium ;
  • the inorganic oxide matrix is at least one selected from alumina, silica-alumina, zeolite, spinel, kaolin, diatomaceous earth, perlite and perovskite, preferably alumina.
  • step (1) adopts a co-precipitation method to obtain the active metal precursor; preferably, the co-precipitation method includes:
  • (1-1) Provide precursors containing rare earth metal components, group IIA metal component precursors, one or more non-noble metal component precursors selected from VB, VIII, IB, and IIB groups, and VIIB non-noble metal components a first solution of a noble metal component precursor;
  • the co-precipitating agent is carbonate, more preferably at least one selected from ammonium carbonate, potassium carbonate and sodium carbonate;
  • the co-precipitation reaction is carried out at a pH of 8-10;
  • the roasting conditions in step (1-3) include: the temperature is 300-800°C, and the time is 1-8h.
  • the roasting conditions in step (2) include: the temperature is 300-800°C, and the time is 1-5h.
  • step (3) the precursor of the noble metal component is hydrolyzed in an acid solution to provide the impregnation solution;
  • the acid is selected from water-soluble inorganic acids and/or organic acids, preferably selected from at least one of hydrochloric acid, nitric acid, phosphoric acid and acetic acid;
  • the acid is used in an amount such that the pH of the immersion solution is less than 6.0, preferably less than 5.0;
  • the roasting conditions in the step (3) include: the temperature is 300-800°C, and the time is 0.1-5h.
  • a method for simultaneous removal of SOx and NOx from flue gas comprising: under the condition of removing SOx and NOx, make flue gas containing SOx and NOx and the catalyst or technical solution described in any one of technical solutions 1-4 Catalyst contact that the preparation method described in any one of 5-11 makes;
  • the conditions for removing SOx and NOx include: the temperature is 500-800°C, the pressure is 0.02-4MPa, and the volume space velocity of flue gas is 100-50000h -1 ;
  • the content of SOx is 0.001-0.5% by volume, and the content of NOx is 0.001-0.3% by volume;
  • the flue gas is regenerated flue gas from catalytic cracking.
  • the invention provides the following technical solutions:
  • a desulfurization and denitrification catalyst characterized in that, based on the total weight of the catalyst, it includes by weight percentage,
  • oxides 25-92% by weight of inorganic oxide matrix, 6-70% by weight of rare earth metal components, one or more non-precious metal components selected from VB, VIII, IB, and IIB groups 1-12 % by weight, 1-10% by weight of non-noble metal components selected from Group VIIB;
  • precious metal component 0.01-1.5% by weight.
  • oxides 40-85% by weight of inorganic oxide matrix, 12-60% by weight of rare earth metal components, 2-10% of non-precious metal components selected from one or more of VB, VIII, IB, and IIB groups % by weight, 1-8% by weight of non-noble metal components selected from Group VIIB;
  • precious metal components 0.02-1.2% by weight
  • the catalyst Preferably, based on the total weight of the catalyst, it includes by weight percentage,
  • oxides 45-80% by weight of inorganic oxide matrix, 12-48% by weight of rare earth metal components, 2-8 non-noble metal components selected from one or more of VB, VIII, IB, and IIB groups % by weight, 2-5% by weight of non-noble metal components selected from Group VIIB;
  • precious metal component 0.02-1.0% by weight.
  • One or more non-noble metal components of the VB, VIII, IB, IIB groups are selected from one or more mixtures of iron, cobalt, nickel, copper, zinc and vanadium, more preferably cobalt;
  • the VIIB group non-noble metal component is manganese
  • the noble metal component is selected from one or more mixtures of ruthenium, rhodium, rhenium, platinum, palladium, silver, iridium and gold, more preferably one or more mixtures of platinum, palladium and rhodium, Most preferably palladium;
  • the inorganic oxide matrix is selected from one or a mixture of alumina, silica-alumina, zeolite, spinel, kaolin, diatomaceous earth, perlite and perovskite, preferably alumina.
  • the desulfurization and denitrification catalyst according to any one of technical schemes 1-3, wherein, in terms of elements, the rare earth metal component and one or more non-noble metals selected from groups VB, VIII, IB, and IIB
  • the molar ratio of the components is (0.6-18):1, more preferably (2-12):1, even more preferably (3-6):1.
  • a method for preparing a desulfurization and denitrification catalyst comprising the following steps:
  • catalyst semi-finished products mixing the active metal precursor with the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix and optionally the precursor of the noble metal component to obtain a slurry, drying and roasting the slurry;
  • the method also optionally includes: S3. Using the solution containing the precursor of the noble metal component as an impregnating liquid, impregnating the catalyst semi-finished product obtained in step S2 to obtain a solid product, drying and roasting the solid product;
  • the active metal in the active metal precursor includes a rare earth metal component, one or more non-noble metal components selected from VB, VIII, IB, IIB groups and VIIB group non-noble metal components;
  • the amount of the active metal precursor, the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix and the noble metal component precursor makes the prepared catalyst, based on the total weight of the catalyst, include by weight percent, in terms of oxidation In terms of material: 25-92% by weight of inorganic oxide matrix, 6-70% by weight of rare earth metal components, 1-12% by weight of one or more non-precious metal components selected from VB, VIII, IB, and IIB groups , 1-10% by weight of non-precious metal components selected from Group VIIB; in terms of elements: 0.01-1.5% by weight of noble metal components.
  • oxides 40-85% by weight of inorganic oxide matrix, 12-60% by weight of rare earth metal components, 2-10% of non-precious metal components selected from one or more of VB, VIII, IB, and IIB groups % by weight, 1-8% by weight of non-noble metal components selected from Group VIIB;
  • precious metal components 0.02-1.2% by weight
  • the amount of the active metal precursor, the inorganic oxide matrix and/or the precursor of the inorganic oxide matrix and the noble metal component precursor is such that in the prepared catalyst, based on the total weight of the catalyst, the total weight of the catalyst is As a basis, including by weight percentage,
  • oxides 45-80% by weight of inorganic oxide matrix, 12-48% by weight of rare earth metal components, 2-8 non-noble metal components selected from one or more of VB, VIII, IB, and IIB groups % by weight, 2-5% by weight of non-noble metal components selected from Group VIIB;
  • precious metal components 0.02-1.0% by weight
  • the molar ratio of the rare earth metal component to one or more non-noble metal components selected from VB, VIII, IB, and IIB groups is (0.6 -18): 1, more preferably (2-12): 1, even more preferably (3-6): 1.
  • the rare earth metal component is selected from one or more mixtures of lanthanum, cerium, praseodymium and neodymium, more preferably lanthanum;
  • One or more non-noble metal components of the VB, VIII, IB, IIB groups are selected from one or more mixtures of iron, cobalt, nickel, copper, zinc and vanadium, more preferably cobalt;
  • the VIIB group non-noble metal component is manganese
  • the noble metal component is selected from one or more of ruthenium, rhodium, rhenium, platinum, palladium, silver, iridium and gold, more preferably a mixture of one or more of platinum, palladium and rhodium, most preferably for palladium;
  • the inorganic oxide matrix is selected from one or a mixture of alumina, silica-alumina, zeolite, spinel, kaolin, diatomaceous earth, perlite and perovskite, preferably alumina.
  • the coprecipitation method comprises:
  • the preparation method according to technical solution 8 wherein the rare earth metal component precursor, one or more non-noble metal component precursors selected from VB, VIII, IB, and IIB groups, VIIB group non-noble metal
  • the component precursors and the noble metal component precursors are each independently selected from nitrates and/or chloride salts of the respective metal components;
  • the co-precipitating agent is carbonate, preferably one or more mixtures of ammonium carbonate, potassium carbonate and sodium carbonate;
  • the co-precipitation reaction is carried out at a pH of 8-10;
  • the roasting conditions in step S13 are: the temperature is 300-800°C, and the time is 1-8h.
  • the baking conditions in step S2 are as follows: the temperature is 300-800° C., and the time is 1-5 hours.
  • step S3 the precursor of the noble metal component is hydrolyzed in an acid solution to obtain the required impregnation solution;
  • the acid solution is a water-soluble inorganic acid and/or organic acid, preferably one or a mixture of hydrochloric acid, nitric acid, phosphoric acid and acetic acid;
  • the amount of acid is such that the pH of the impregnation solution is less than 6.0, preferably less than 5.0;
  • the roasting conditions in step S3 are: the temperature is 300-800°C, and the time is 0.1-5h.
  • the desulfurization and denitration catalyst is contacted with flue gas containing SOx and NOx;
  • the conditions for removing SOx and NOx are: temperature is 500-800°C, pressure is 0.02-4MPa, and the volumetric space velocity of flue gas is 100-50000h -1 ;
  • the content of SOx in the flue gas is 0.001-0.5% by volume, and the content of NOx is 0.001-0.3% by volume;
  • the flue gas is regenerated flue gas from catalytic cracking.
  • the invention provides the following technical solutions:
  • a catalyst for reducing NOx and SOx emissions in flue gas comprising a carrier and a first active component selected from rare earth metals loaded on the carrier, and a second active component selected from Group VIII non-noble metals Components and noble metal components; based on the total weight of the catalyst, the content of the carrier is 25-95% by weight; in terms of oxides, the content of the first active component is 4-60% by weight; The content of the two active components is 2-12% by weight, and the content of the precious metal component is 0.01-2% by weight;
  • the molar ratio of the first active component to the second active component is (0.5-15):1.
  • the content of the carrier is 50-88% by weight
  • the content of the first active component is 8-40% by weight in terms of oxides
  • the content of the second active component is
  • the content of the noble metal component is 2-10% by weight
  • the content of the noble metal component is 0.03-1.2% by weight in terms of elements.
  • the first active component is lanthanum and/or cerium, preferably lanthanum;
  • the second active component is selected from at least one of Group VIII metals, preferably cobalt and/or iron, more preferably cobalt;
  • the noble metal component is selected from one or more of platinum, palladium and rhodium, most preferably palladium;
  • the carrier is at least one selected from alumina, silica-alumina, zeolite, spinel, kaolin, diatomaceous earth, perlite and perovskite, preferably alumina.
  • step (3) mixing and beating the solid product obtained in step (2) with the carrier and/or the precursor of the carrier to obtain a slurry, and drying and roasting the slurry;
  • step (3) Using the solution containing the precursor of the noble metal component as the impregnating liquid, impregnating the solid product obtained in step (3), and then drying and/or roasting.
  • the precursor of the noble metal component is selected from at least one of palladium nitrate, palladium chloride, platinum chlorate and rhodium chloride, preferably palladium nitrate and/or palladium chloride.
  • step (2) the coprecipitant is carbonate, more preferably at least one selected from ammonium carbonate, potassium carbonate and sodium carbonate;
  • the co-precipitation reaction is carried out at a pH of 8-10;
  • the roasting conditions in step (2) include: the temperature is 300-800°C, and the time is 1-8h.
  • step (3) the solid content of the slurry is 7-35% by weight
  • the roasting conditions in the step (3) include: the temperature is 300-800°C, and the time is 1-5h.
  • step (4) the precursor of the noble metal component is hydrolyzed in an acid solution to provide the impregnation solution;
  • the acid is selected from water-soluble inorganic acids and/or organic acids, preferably at least one selected from hydrochloric acid, nitric acid, phosphoric acid and acetic acid;
  • the acid is used in an amount such that the pH of the dipping solution is less than 5.0, preferably 2-5;
  • the roasting conditions in step (4) include: the temperature is 300-700°C, and the time is 0.1-5h.
  • a method for simultaneous removal of SOx and NOx from flue gas comprising: under the condition of simultaneous removal of SOx and NOx, combining the flue gas containing SOx and NOx with the method described in any one of technical schemes 1-4 for reducing Catalyst contact for NOx and SOx emissions in flue gas;
  • the conditions for simultaneously removing SOx and NOx include: a temperature of 500-800°C, a pressure of 0.01-4MPa, and a volumetric space velocity of flue gas of 100-50000h -1 ;
  • the content of SOx is 0.001-0.5% by volume, and the content of NOx is 0.001-0.3% by volume;
  • the flue gas is regenerated flue gas from catalytic cracking.
  • the invention provides the following technical solutions:
  • a catalyst capable of simultaneously reducing SOx and NOx in flue gas comprising a carrier and a first active component selected from rare earth metals loaded on the carrier, selected from VB, VIII, IB, IIB non-noble metals
  • the second active component, the third active component selected from group IIA metals and noble metal components based on the total weight of the catalyst, the content of the carrier is 25-93% by weight, in terms of oxides, the first
  • the content of the first active component is 4-60% by weight
  • the content of the second active component is 2-30% by weight
  • the content of the third active component is 1-30% by weight, based on elements, so
  • the content of the noble metal component is 0.01-2% by weight.
  • the molar ratio of the first active component to the second active component is (0.4-12):1, preferably (0.5-8):1, more preferably (1-4) :1.
  • the content of the carrier is 40-87% by weight, in terms of oxides, the content of the first active component is 8-50% by weight, and the content of the second active component is 3-20% by weight, the content of the third active component is 1-20% by weight, and the content of the noble metal component is 0.02-1.5% by weight in terms of elements;
  • the content of the carrier is 45-80% by weight
  • the content of the first active component is 8-40% by weight in terms of oxides
  • the content of the second active component is The content of the active component is 3-15% by weight
  • the content of the third active component is 2-15% by weight
  • the content of the noble metal component is 0.03-1.2% by weight in terms of elements.
  • the carrier is selected from at least one of alumina, silica-alumina, zeolite, spinel, kaolin, diatomaceous earth, perlite and perovskite, preferably alumina;
  • the first active component is lanthanum and/or cerium, preferably lanthanum;
  • the second active component is selected from at least one of Group VIII metals, preferably cobalt and/or iron, more preferably cobalt;
  • the third active component is selected from one or more of beryllium, magnesium, calcium, strontium and barium, preferably magnesium;
  • the noble metal component is selected from one or more of platinum, palladium and rhodium, most preferably palladium.
  • a method for preparing a catalyst capable of simultaneously reducing SOx and NOx in flue gas comprising the steps of:
  • step (3) mixing and beating the solid product obtained in step (2) with the carrier and/or the precursor of the carrier and optionally the precursor of the noble metal component to obtain a slurry, which is dried and calcined;
  • the method also optionally includes: (4) impregnating the solid product obtained in step (3) with a solution containing the precursor of the noble metal component as the impregnating liquid, and then drying and/or roasting;
  • the amount of the precursor of the first active component precursor, the second active component precursor, the third active component precursor, the carrier and/or the carrier and the noble metal component precursor makes the catalyst prepared by the total weight of the catalyst
  • the content of the carrier is 25-93% by weight, based on oxides
  • the content of the first active component is 4-60% by weight
  • the content of the second active component is 2-30% by weight %
  • the content of the third active component is 1-30% by weight
  • the content of the noble metal component is 0.01-2% by weight in terms of elements.
  • the amount of the first active component precursor, the second active component precursor, the third active component precursor, the carrier and/or the precursor of the carrier and the noble metal component precursor makes the prepared catalyst, with Based on the total weight of the catalyst, the content of the carrier is 45-80% by weight, in terms of oxides, the content of the first active component is 8-40% by weight, and the content of the second active component is 3 -15% by weight, the content of the third active component is 2-15% by weight, and the content of the noble metal component is 0.03-1.2% by weight in terms of elements.
  • the carrier is selected from at least one of alumina, silica-alumina, zeolite, spinel, kaolin, diatomaceous earth, perlite and perovskite, preferably alumina;
  • the first active component is lanthanum and/or cerium, preferably lanthanum;
  • the second active component is selected from at least one of Group VIII metals, preferably cobalt and/or iron, more preferably cobalt;
  • the third active component is selected from one or more of beryllium, magnesium, calcium, strontium and barium, preferably magnesium;
  • the noble metal component is selected from one or more of platinum, palladium and rhodium, most preferably palladium.
  • the coprecipitant described in step (2) is a carbonate, preferably selected from at least one of ammonium carbonate, potassium carbonate and sodium carbonate;
  • the co-precipitation reaction in step (2) is carried out at a pH of 8-10;
  • the solid content of the slurry in step (3) is 6-38% by weight.
  • step (4) the precious metal component precursor is hydrolyzed in an acid solution to provide the impregnation solution;
  • the acid is selected from water-soluble inorganic acids and/or organic acids, preferably at least one selected from hydrochloric acid, nitric acid, phosphoric acid and acetic acid;
  • the acid is used in such an amount that the pH of the impregnating solution is less than 6.0, preferably 2-5.
  • step (2), step (3) and step (4) each independently include: the temperature is 300-800°C, The time is 0.5-8h.
  • a catalyst capable of simultaneously reducing SOx and NOx in flue gas prepared by the method described in any one of technical schemes 5-11.
  • a method for simultaneously removing SOx and NOx from flue gas comprising:
  • the flue gas is contacted with the catalyst described in any one of technical schemes 1-4 and 12 that can simultaneously reduce SOx and NOx in the flue gas;
  • the contacting conditions include: the temperature is 500-800°C, the pressure is 0.01-4MPa, and the volume space velocity of catalytic cracking regenerated flue gas is 200-20000h -1 ;
  • the content of SOx is 0.001-0.5% by volume, and the content of NOx is 0.001-0.3% by volume.
  • the invention provides the following technical solutions:
  • a catalyst capable of/used to simultaneously reduce NOx and SOx in flue gas characterized in that the catalyst comprises or consists of the following components, wherein the active component is component (2) to (6):
  • carrier or inorganic oxide matrix (2) rare earth metal, (3) non-noble metal selected from group VIII or one or more non-noble metals selected from group VB, VIII, IB, IIB, (4 ) a noble metal, (5) optionally a Group VIIB non-noble metal, (6) optionally a Group IIA metal,
  • component (1) carrier or inorganic oxide matrix in terms of oxide is 25-95% by weight, such as 25-93% by weight, or 25-92% by weight, or 40-90% by weight, or 40-87% by weight % by weight, or 40-85% by weight, or 45-80% by weight, or 50-88% by weight, or 50-80% by weight;
  • the content of rare earth metals in component (2) in terms of oxides is: 2-70% by weight, such as 4-60% by weight, or 4-50% by weight, or 4-40% by weight, or 6-70% by weight , or 8-50% by weight, or 8-40% by weight, or 12-60% by weight, or 12-48% by weight;
  • component (3) selected from VIII group non-noble metals or one or more non-noble metals selected from VB, VIII, IB, IIB groups in terms of oxides is: 1-30% by weight, for example, 1 -15% by weight, or 1-12% by weight, or 2-30% by weight, or 2-12% by weight, or 2-10% by weight, or 2-8% by weight, or 3-20% by weight, or 3- 15% by weight;
  • the content of noble metal in component (4) in terms of elements is: 0.01-2% by weight, for example 0.01-1.5% by weight, or 0.01-2% by weight, or 0.02-1.5% by weight, or 0.02-1.2% by weight, or 0.02% by weight -1.0% by weight; or 0.03-1.2% by weight;
  • component (5) VIIB group non-noble metals calculated as oxides is: 0 or 1-10 wt%, 0 or 1-8 wt%, 0 or 2-5 wt%;
  • the content of group IIA metal in component (6) in terms of oxides is: 0 or 1-30 wt%, 0 or 1-20 wt%, 0 or 2-15 wt%;
  • the molar ratio of component (2) to component (3) is (0.4-18):1, such as (0.4-12):1, or (0.5-15):1, or ( 0.5-12): 1, or (0.5-8): 1, or (0.6-18): 1, or (1-10): 1, or (1-6): 1, or (1-4): 1, or (2-12): 1, or (2-5): 1, or (3-6): 1;
  • the sum of the content of component (5) Group VIIB non-noble metal calculated as oxide and the content of component (6) Group IIA metal calculated as oxide is not zero.
  • the component (1) carrier or inorganic oxide matrix is at least one selected from alumina, silica-alumina, zeolite, spinel, kaolin, diatomaceous earth, perlite and perovskite, preferably aluminum oxide; and/or
  • the rare earth metal of the component (2) is one or more of lanthanum, cerium, praseodymium and neodymium, more preferably lanthanum and/or cerium; most preferably lanthanum; and/or
  • the non-noble metal selected from group VIII of the component (3) is cobalt and/or iron, more preferably cobalt; or one or more of the group VB, VIII, IB, IIB of the component (3)
  • Several non-noble metals are selected from one or more of iron, cobalt, nickel, copper, zinc and vanadium, more preferably cobalt and/or iron, most preferably cobalt; and/or
  • the noble metal of the component (4) is selected from one or more of ruthenium, rhodium, rhenium, platinum, palladium, silver, iridium and gold, more preferably one or more of platinum, palladium and rhodium, and most preferably preferably palladium; and/or
  • the component (5) VIIB group non-noble metal is manganese
  • the component (6) group IIA metal is selected from one or more of beryllium, magnesium, calcium, strontium and barium, more preferably magnesium.
  • the catalyst comprises (1) a carrier and (2) a rare earth metal supported on the carrier, (3) a non-noble metal selected from group VIII, and (4) a noble metal, wherein the active components are components (2) to (4) ;
  • component (1) carrier is 25-95% by weight
  • component (2) rare earth metals calculated as oxides is: 4-60% by weight;
  • component (3) selected from group VIII non-noble metals in terms of oxides is: 2-12% by weight;
  • the content of precious metal in component (4) in terms of elements is: 0.01-2% by weight;
  • component (1) carrier is 40-90% by weight
  • component (2) rare earth metals calculated as oxides is: 8-50% by weight;
  • component (3) selected from group VIII non-noble metals in terms of oxides is: 2-12% by weight;
  • the content of noble metal in component (4) in terms of elements is: 0.02-1.5% by weight;
  • component (1) carrier or inorganic oxide matrix in terms of oxide is 50-88% by weight
  • component (2) rare earth metals calculated as oxides is: 8-40% by weight;
  • component (3) selected from group VIII non-noble metals in terms of oxides is: 2-10% by weight;
  • the content of noble metal in component (4) in terms of elements is: 0.03-1.2% by weight;
  • the molar ratio of component (2) to component (3) is (0.5-15):1, or (1-10):1, or (2-5):1.
  • the catalyst comprises (1) a carrier and (2) a rare earth metal supported on the carrier, (3) a metal selected from groups VB, VIII, IB, and IIB One or more non-noble metals, (4) noble metals, and (6) Group IIA metals,
  • the active components are components (2) to (4) and (6);
  • component (1) carrier or inorganic oxide matrix in terms of oxide is 25-93% by weight
  • component (2) rare earth metals calculated as oxides is: 4-60% by weight;
  • component (3) in terms of oxides is one or more non-noble metals selected from groups VB, VIII, IB, and IIB: 2-30% by weight;
  • the content of precious metal in component (4) in terms of elements is: 0.01-2% by weight;
  • component (6) group IIA metal in terms of oxide is: 1-30% by weight
  • component (1) carrier or inorganic oxide matrix in terms of oxide is 40-87% by weight
  • component (2) rare earth metals calculated as oxides is: 8-50% by weight;
  • component (3) in terms of oxides is 3-20% by weight
  • component (4) precious metal in terms of elements is 0.02-1.5% by weight
  • component (6) group IIA metal in terms of oxide is: 1-20% by weight
  • component (1) carrier or inorganic oxide matrix in terms of oxide is 40-85% by weight;
  • component (2) rare earth metals calculated as oxides is: 8-40% by weight;
  • component (3) in terms of oxides is 3-15% by weight
  • the content of noble metal in component (4) in terms of elements is: 0.03-1.2% by weight;
  • component (6) group IIA metal in terms of oxide is: 2-15% by weight
  • the molar ratio of component (2) to component (3) is (0.4-18):1, such as (0.4-12):1, or (0.5-8):1, or ( 1-4):1.
  • the catalyst comprises or consists essentially of the following components, wherein the active components are components (2) to (5):
  • carrier or inorganic oxide matrix (2) rare earth metals, (3) one or more non-noble metals selected from VB, VIII, IB, IIB groups, (4) noble metals, (5) VIIB group non-precious metals,
  • component (1) carrier or inorganic oxide matrix in terms of oxide is 25-92% by weight;
  • component (2) rare earth metals calculated as oxides is: 6-70% by weight;
  • component (3) in terms of oxides is one or more non-noble metals selected from groups VB, VIII, IB, and IIB: 1-12% by weight;
  • the content of noble metal in component (4) in terms of elements is: 0.01-1.5% by weight;
  • component (5) VIIB group non-noble metals calculated as oxides is: 1-10% by weight;
  • component (1) carrier or inorganic oxide matrix in terms of oxide is 40-85% by weight;
  • component (2) rare earth metals calculated as oxides is: 12-60% by weight;
  • component (3) in terms of oxides is one or more non-noble metals selected from groups VB, VIII, IB, and IIB: 2-10% by weight;
  • the content of precious metal in component (4) in terms of elements is: 0.02-1.2% by weight;
  • component (5) VIIB group non-noble metals calculated as oxides is: 1-8% by weight;
  • component (1) carrier or inorganic oxide matrix in terms of oxide is 40-85% by weight;
  • component (2) rare earth metals calculated as oxides is: 12-48% by weight;
  • component (3) in terms of oxides is one or more non-noble metals selected from groups VB, VIII, IB, and IIB: 2-8% by weight;
  • the content of precious metal in component (4) in terms of elements is: 0.02-1.0% by weight;
  • component (5) VIIB group non-noble metals calculated as oxides is: 2-5% by weight;
  • the molar ratio of component (2) to component (3) is (0.6-18):1, such as (2-12):1, or (3-6):1.
  • the catalyst comprises or consists essentially of the following components, wherein the active components are components (2) to (6):
  • carrier or inorganic oxide matrix (2) rare earth metals, (3) one or more non-noble metals selected from VB, VIII, IB, IIB groups, (4) noble metals, (5) VIIB group Non-precious metals, (6) Group IIA metals,
  • component (1) carrier or inorganic oxide matrix in terms of oxide is 25-95% by weight
  • component (2) rare earth metals calculated as oxides is: 2-70% by weight;
  • component (3) in terms of oxides is one or more non-noble metals selected from groups VB, VIII, IB, and IIB: 1-15% by weight;
  • the content of noble metal in component (4) in terms of elements is: 0.01-1.5% by weight;
  • component (5) VIIB group non-noble metals calculated as oxides is: 1-10% by weight;
  • component (6) group IIA metal in terms of oxide is: 1-30% by weight
  • component (1) carrier or inorganic oxide matrix in terms of oxide is 40-90% by weight
  • component (2) rare earth metals calculated as oxides is 4-50% by weight
  • component (3) in terms of oxides is one or more non-noble metals selected from groups VB, VIII, IB, and IIB: 2-12% by weight;
  • the content of precious metal in component (4) in terms of elements is: 0.02-1.2% by weight;
  • component (5) VIIB group non-noble metals calculated as oxides is: 1-8% by weight;
  • component (6) group IIA metal in terms of oxide is: 1-20% by weight
  • component (1) carrier or inorganic oxide matrix in terms of oxide is 50-80% by weight
  • component (2) rare earth metals calculated as oxides is: 4-40% by weight;
  • component (3) in terms of oxides is one or more non-noble metals selected from groups VB, VIII, IB, and IIB: 2-10% by weight;
  • the content of precious metal in component (4) in terms of elements is: 0.02-1.0% by weight;
  • component (5) VIIB group non-noble metals calculated as oxides is: 2-5% by weight;
  • component (6) group IIA metal in terms of oxide is: 2-15% by weight
  • the molar ratio of component (2) to component (3) is (0.4-18):1, such as (0.5-12):1, or (1-6):1.
  • the catalyst is treated by exposure to an atmosphere containing SO2 , wherein the temperature of the SO2 -containing atmosphere is 350-1000°C, the pressure is 0-8MPa, and the content of SO2 is 0.001-100% by volume; or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 400-900° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 450-900° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 500-900° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 550-900° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated for at least 1 minute by exposure to an atmosphere containing SO2 at a temperature of 600-900° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 650-900° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 400-800° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 450-800° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 500-800° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 550-800° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated for at least 1 minute by exposure to an atmosphere containing SO2 at a temperature of 600-900° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 650-900° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 400-750° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 450-750° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 500-750° C., a pressure of 0-5 MPa and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 550-750° C., a pressure of 0-5 MPa and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 600-750° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 650-750° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 400-700° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 450-700° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 500-700° C., a pressure of 0-5 MPa and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 550-700° C., a pressure of 0-5 MPa and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated for at least 1 minute by exposure to an atmosphere containing SO2 at a temperature of 600-700° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume ;or
  • the catalyst is treated for at least 1 minute by exposure to an atmosphere containing SO2 at a temperature of 650-700° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume ;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 400-900°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 450-900°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 500-900° C., the pressure is 0-2 MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by exposing to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 550-900°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 600-900° C., the pressure is 0-2 MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 650-900° C., the pressure is 0-2 MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 400-800°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 450-800°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 500-800°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 550-800°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 600-800°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by exposing to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 650-800°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 400-750° C., the pressure is 0-2 MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 450-750° C., the pressure is 0-2 MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by exposing to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 500-750°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 550-750° C., the pressure is 0-2 MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 600-750° C., the pressure is 0-2 MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 650-750° C., the pressure is 0-2 MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 400-700°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 450-700 ° C, the pressure is 0-2 MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 500-700°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 550-700°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 600-700°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 650-700°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 400-900° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 450-900° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 500-900° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by exposing to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 550-900° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 600-900° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 650-900° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 400-800° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 450-800° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 500-800° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 550-800° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by exposing to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 600-800° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by exposing to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 650-800° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 400-750° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by exposing to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 450-750° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by exposing to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 500-750° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by exposing to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 550-750° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 600-750° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 650-750° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 650-750° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 400-700° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 450-700° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 500-700° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 550-700° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 600-700° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 650-700° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 volume%.
  • the rare earth metals of the component (2) include: lanthanum;
  • the non-noble metal selected from Group VIII of the component (3) or one or more non-noble metals selected from Group VB, VIII, IB, and IIB includes cobalt;
  • the precious metals of the component (4) include: palladium;
  • the Group VIIB non-noble metals of said component (5) include manganese
  • the Group IIA metal of component (6) includes magnesium.
  • the rare earth metal of the component (2) is lanthanum
  • the non-noble metal selected from Group VIII of the component (3) or one or more non-noble metals selected from Group VB, VIII, IB, and IIB is cobalt;
  • the noble metal of the component (4) is palladium
  • the VIIB group non-noble metal of said component (5), if any, is manganese
  • the Group IIA metal of component (6) is magnesium.
  • the active metal in the active metal precursor includes (2) rare earth metals, (3) non-noble metals selected from VIII groups or one or more non-noble metals selected from VB, VIII, IB, IIB groups, ( 5) optionally, a Group VIIB non-noble metal, and (6) optionally, a Group IIA metal; and
  • the active metal precursor with (1) carrier or inorganic oxide matrix or its precursor, and optionally (4) noble metal precursor to obtain a slurry, drying and/or calcining the slurry to obtain a catalyst semi-finished product; then using the solution containing (4) the precursor of the noble metal as the impregnating liquid, the catalyst semi-finished product is impregnated to obtain a solid product, and then the solid product is dried and/or roasted to obtain a catalyst;
  • the amount of active metal precursor, support or inorganic oxide matrix or its precursor, and noble metal precursor makes the prepared catalyst have the composition of the catalyst described in any one of the preceding technical solutions.
  • step (I) adopts a co-precipitation method to obtain the active metal precursor; preferably, the co-precipitation method includes:
  • (I-1) Provide precursors containing (2) rare earth metals, (3) non-noble metals selected from Group VIII or one or more non-noble metals selected from Groups VB, VIII, IB, and IIB , (5) optionally a precursor of a Group VIIB non-noble metal, and (6) optionally a first solution of a Group IIA metal precursor;
  • each precursor is independently selected from nitrates and/or chlorides of each metal;
  • the co-precipitating agent is carbonate, more preferably at least one selected from ammonium carbonate, potassium carbonate and sodium carbonate;
  • the co-precipitation reaction is carried out at a pH of 8-10;
  • the roasting conditions in step (I-3) include: the temperature is 300-800°C, such as 300-700°C, and the time is 0.5-8h, such as 1-8h or 1-5h,
  • the carrier or inorganic oxide matrix or its precursor the precursor of rare earth metal, the non-noble metal selected from Group VIII or the precursor of one or more non-noble metals selected from Group VB, VIII, IB, IIB , the precursor of the noble metal, optionally the precursor of the VIIB group non-noble metal, and optionally the amount of the precursor of the IIA metal makes the prepared catalyst have the composition of the catalyst as described in any one of the foregoing technical schemes.
  • the precursor of the noble metal component is selected from at least one of nitrate, chloride and/or chlorate, such as palladium nitrate, palladium chloride, platinum chlorate and rhodium chloride at least one, preferably palladium nitrate and/or palladium chloride; and/or
  • step (II) the solid content of the slurry is 5-40% by weight, such as 6-38% by weight, or 7-35% by weight; and/or
  • the roasting conditions of the slurry include: a temperature of 300-800°C, such as 300-700°C, and a time of 0.5-8h, such as 1-8h or 1-5h; and/or
  • step (II) the precursor of the noble metal is hydrolyzed in an acid solution to provide the impregnation solution;
  • the acid is selected from water-soluble inorganic acids and/or organic acids, more preferably, at least one selected from hydrochloric acid, nitric acid, phosphoric acid and acetic acid;
  • the acid is used in such an amount that the pH of the immersion solution is less than 6.0, preferably less than 5.0, such as 2.0-5.0;
  • the conditions for roasting the solid product include: a temperature of 300-800°C, such as 300-700°C, and a time of 0.5-8h, such as 1-8h or 1-5h.
  • a method for simultaneously removing SOx and NOx from flue gas comprising: under the condition of removing SOx and NOx, combining flue gas with the catalyst according to any one of the preceding technical solutions or according to any one of the preceding technical solutions Catalyst contact that described preparation method makes;
  • the conditions for removing SOx and NOx include: a temperature of 300-1000°C, such as 500-800°C, or 600-750°C, or 625-750°C, or 650-750°C, or 675-750°C, Or 700-750°C, or 725-750°C, or 600-725°C, or 625-725°C, or 650-725°C, or 675-725°C, or 700-725°C, or 600-700°C, or 625°C -700°C, or 650-700°C, or 675-700°C, or 600-675°C, or 625-675°C, or 650-675°C, or 600-650°C, or 625-650°C, or 600-625°C °C; the pressure is 0-4MPa, such as 0.01-4MPa, or 0.02-4MPa, or 0-0.5MPa; the volumetric space velocity of the flue gas is 100-50000h -1 or 200-20000h -1
  • the content of SOx is 0.001-0.5% by volume, and the content of NOx is 0.001-0.3% by volume; or the volume fractions of SOx and NOx in the flue gas are respectively 1-3000 ⁇ L/L, and The molar ratio of SOx to NOx is 0.5:1-2:1; and/or
  • the flue gas is flue gas containing a certain concentration of SOx and NOx at the same time, such as catalytic cracking regenerated flue gas; preferably, the catalytic cracking regenerated flue gas is contacted with the catalyst after the catalytic cracking cyclone separator and/or It is carried out in the flue gas channel set after the CO incinerator.
  • the content of each component in the regular structure catalyst is measured by X-ray fluorescence spectroscopic analysis method (petrochemical analysis method (RIPP experimental method), edited by Yang Cuiding et al., published by Science Press in 1990).
  • firing conditions there are no particular limitations on firing conditions.
  • calcination can be carried out in air or inert atmosphere (such as nitrogen); calcination conditions can be: the temperature is 300-900 °C, such as 400, 500, 600, 700, 800 °C and any two of these point values. Temperature range, time is 0.1-12h, such as 0.1-5h.
  • the pressure can be subatmospheric, atmospheric or superatmospheric (eg (0-5 MPa).
  • the drying conditions can be: the temperature is 25-250°C, the time is 0.1-12h, and the pressure can be vacuum (such as absolute pressure 0-1kPa, 0-5kPa, 0-10kPa, 0-20kPa, 0-30kPa, 0- 40kPa, 0-50kPa, 0-60kPa, 0-70kPa, 0-80kPa, 0-90kPa, 0-100kPa) or normal pressure (absolute pressure 0.1MPa).
  • the drying temperature is lower than the roasting temperature.
  • the ppm refers to the volume concentration.
  • the content of the components in the catalyst is determined by X-ray fluorescence spectroscopy (XRF).
  • XRF X-ray fluorescence spectroscopy
  • XRD powder X-ray diffraction
  • Catalyst A1 was exposed to an atmosphere containing SO 2 at a temperature of 400° C., a pressure of 0 MPa, and an SO 2 content of 0.001% by volume for 5 minutes. After exposure to SO 2 treatment, XRD analysis was performed on catalyst A1. In the XRD spectrum of catalyst A1, there were characteristic peaks at 2 ⁇ angles of approximately 28.6°, 30.0° and 50.4°.
  • 125 mL of deionized water was weighed in a beaker, and 10 g of lanthanum nitrate based on the mass of La 2 O 3 and 2.5 g of cobalt nitrate based on the mass of Co 2 O 3 were added with stirring until completely dissolved.
  • the completely precipitated mixture was suction-filtered and rinsed with deionized water.
  • the filter cake mixture obtained by suction filtration was dried at 120°C, calcined in an air atmosphere at 700°C for 6 hours, and ground to obtain an active metal precursor.
  • Catalyst A2 was exposed to an atmosphere containing SO 2 at a temperature of 400° C., a pressure of 0 MPa, and a content of SO 2 of 0.001% by volume for 5 minutes. After exposure to SO 2 treatment, XRD analysis was performed on catalyst A2. In the XRD spectrum of catalyst A2, there were characteristic peaks at 2 ⁇ angles of approximately 28.6°, 30.0° and 50.4°.
  • Catalyst A3 was exposed to an atmosphere containing SO 2 at a temperature of 400° C., a pressure of 0 MPa, and a content of SO 2 of 0.001% by volume for 5 minutes. After exposure to SO 2 treatment, XRD analysis was performed on catalyst A3. In the XRD spectrum of catalyst A3, there were characteristic peaks at 2 ⁇ angles of approximately 28.6°, 30.0° and 50.4°.
  • the difference is that the amount of bauxite is reduced, and the mass percentage of the non-precious metal active component accounting for the semi-finished microsphere catalyst prepared is adjusted to 50 %, specifically weighing Al2O3 in terms of mass 20g of bauxite and 20g of the active metal precursor to obtain catalyst A4.
  • Catalyst A4 was exposed to an atmosphere containing SO 2 at a temperature of 400° C., a pressure of 0 MPa, and a content of SO 2 of 0.001% by volume for 5 minutes. After exposure to SO 2 treatment, XRD analysis was performed on catalyst A4. In the XRD spectrum of catalyst A4, there were characteristic peaks at 2 ⁇ angles of approximately 28.6°, 30.0° and 50.4°.
  • Catalyst A5 was exposed to an atmosphere containing SO 2 at a temperature of 400° C., a pressure of 0 MPa, and a content of SO 2 of 0.001% by volume for 5 minutes. After exposure to SO 2 treatment, XRD analysis was performed on catalyst A5. In the XRD spectrum of catalyst A5, there were characteristic peaks at 2 ⁇ angles of approximately 28.6°, 30.0° and 50.4°.
  • Catalyst A6 was exposed to an atmosphere containing SO 2 at a temperature of 400° C., a pressure of 0 MPa, and a content of SO 2 of 0.001% by volume for 5 minutes. After exposure to SO 2 treatment, XRD analysis was performed on catalyst A6. In the XRD spectrum of catalyst A6, there were characteristic peaks at 2 ⁇ angles of approximately 28.6°, 30.0° and 50.4°.
  • the difference is that the palladium chloride solution was replaced by a ruthenium chloride solution of equal concentration, and in the prepared catalyst, the noble metal content remained unchanged, that is, the catalyst A7 was obtained.
  • the difference is that, in terms of oxides, lanthanum nitrate is replaced by cerium nitrate of equal quality; in terms of oxides, cobalt nitrate is replaced by iron nitrate of equal quality, to obtain catalyst A8.
  • Co2O3 quality meter Take by weighing Co2O3 quality meter is 5g cobalt nitrate and dissolve in the beaker completely, take the ammonium carbonate of 7.5g and dissolve in the beaker completely, under stirring condition, cobalt nitrate solution is added under stirring state to ammonium carbonate solution, and add a certain amount of ammonia water to maintain the pH value of the solution at 9.
  • the mixture obtained above was subjected to suction filtration, and the filter cake mixture obtained by suction filtration was dried at 120° C., calcined in an air atmosphere at 700° C. for 6 hours, and then ground to obtain active metal precursor C.
  • the active metal precursor L obtained in the first two steps and the active metal precursor C are fully mechanically mixed to obtain a mixed precursor.
  • the catalyst is prepared as follows: Weigh 15g of OX50 (SiO 2 ) powder and a certain amount of palladium chloride solution prepared in Example A1 according to the palladium content of 0.0045g. Add the palladium chloride solution to the OX50 powder and mix well by stirring constantly. The obtained mixture was placed in an oven at 120° C. until it was dried, and then calcined at 700° C. in an air atmosphere for 4 hours to obtain catalyst E2.
  • catalyst semi-finished product Weigh 40 g of bauxite based on the mass of Al 2 O 3 , add 380 mL of water and 6 g of 36% by weight concentrated hydrochloric acid, and perform beating. Weighed 20g of active metal precursor and added it to the acidified inorganic oxide matrix, mixed and stirred, dried the slurry at 200°C, and calcined at 700°C for 4 hours in an air atmosphere to obtain semi-finished catalyst microspheres. The mass percentage of the non-noble metal active component in the semi-finished product of the prepared microsphere catalyst is 33%.
  • the preparation of catalyst take the precursor of palladium and dilute hydrochloric acid 1:1 miscibility, add deionized water to dilute, be configured into the palladium chloride solution that concentration is 5.6g/L, pH is 2, weigh 15g of catalyst Ball semi-finished product, take by weighing the palladium chloride solution that certain concentration is 5.6g/L by containing palladium quality as 0.0045g.
  • the palladium-containing solution was used as an impregnation solution to impregnate the semi-finished catalyst to obtain a solid product, which was then dried at 120°C and then calcined at 700°C for 4 hours in an air atmosphere to obtain catalyst B1.
  • Catalyst B1 was exposed to an atmosphere containing SO 2 at a temperature of 650 °C, a pressure of 0.05 MPa, and a content of SO 2 of 0.01% by volume for 30 minutes. After exposure to SO 2 treatment, XRD analysis was performed on catalyst B1. In the XRD spectrum of catalyst B1, there were characteristic peaks at 2 ⁇ angles of approximately 28.6°, 30.0° and 50.4°.
  • catalyst semi-finished product Weigh 40 g of bauxite based on the mass of Al 2 O 3 , add 330 mL of water and 6 g of 36% by weight concentrated hydrochloric acid, and perform beating. Weighed 10 g of active metal precursor and added it to the acidified inorganic oxide matrix, mixed and stirred, dried the slurry at 200°C, and calcined at 700°C for 4 hours in an air atmosphere to obtain semi-finished catalyst microspheres. The mass percentage of the non-noble metal active component in the semi-finished product of the prepared microsphere catalyst is 20%.
  • the preparation of catalyst take the precursor of palladium and dilute hydrochloric acid 1:1 miscibility, add deionized water to dilute, be configured into the palladium chloride solution that concentration is 5.6g/L, pH is 2, weigh 15g of catalyst Ball semi-finished product, take by weighing the palladium chloride solution that certain concentration is 5.6g/L by containing palladium quality as 0.0030g.
  • the palladium-containing solution was used as an impregnation solution to impregnate the semi-finished catalyst to obtain a solid product, which was then dried at 120°C and then calcined at 700°C for 4 hours in an air atmosphere to obtain catalyst B2.
  • catalyst semi-finished product Weigh 40 g of bauxite based on the mass of Al 2 O 3 , add 380 mL of water and 6 g of 36% by weight concentrated hydrochloric acid, and perform beating. Weigh 20g of the active metal precursor and add it to the acidified inorganic oxide matrix, mix and stir, dry the slurry at 200°C, and bake it at 700°C for 4 hours in an air atmosphere to obtain a semi-finished catalyst microsphere. The mass percentage of the non-noble metal active component in the semi-finished product of the prepared microsphere catalyst is 33%.
  • the preparation of catalyst take the precursor of palladium and dilute hydrochloric acid 1:1 miscibility, add deionized water to dilute, be configured into the palladium chloride solution that concentration is 5.6g/L, pH is 2, weigh 15g of catalyst Ball semi-finished product, take by weighing the palladium chloride solution that certain concentration is 5.6g/L by containing palladium quality as 0.0030g.
  • the palladium-containing solution was used as an impregnation solution to impregnate the semi-finished catalyst to obtain a solid product, which was then dried at 120°C and then calcined at 700°C for 4 hours in an air atmosphere to obtain catalyst B3.
  • Catalyst B3 was exposed to an atmosphere containing SO 2 at a temperature of 650° C., a pressure of 0.05 MPa, and a content of SO 2 of 0.01% by volume for 30 minutes. After exposure to SO 2 treatment, XRD analysis was performed on catalyst B3. In the XRD spectrum of catalyst B3, there were characteristic peaks at 2 ⁇ angles of approximately 28.6°, 30.0° and 50.4°.
  • the difference is that the amount of bauxite used is reduced, and the mass percentage of the non-precious metal active component in the semi-finished product of the prepared microsphere catalyst is adjusted to 50%.
  • S1 the preparation of the active metal precursor: Weigh 360mL of deionized water in a beaker, add 30g of lanthanum nitrate in terms of La2O3 mass and 3.5g of nitric acid in terms of Co2O3 mass under stirring Cobalt and 2.5 g of manganese chloride by mass of MnO until completely dissolved. Weigh 54 g of ammonium carbonate and dissolve it in 215 mL of deionized water, stir until fully dissolved, add the metal nitrate mixed solution into the ammonium carbonate solution while stirring, and add a certain amount of ammonia water to maintain the pH value of the solution at 9. The completely precipitated mixture was suction-filtered and rinsed with deionized water. The filter cake mixture obtained by suction filtration was dried at 120°C, calcined in an air atmosphere at 700°C for 6 hours, and ground to obtain an active metal precursor.
  • catalyst semi-finished products Weigh 20 g of bauxite based on the mass of Al 2 O 3 , add 240 mL of water and 3 g of 36% by weight concentrated hydrochloric acid, and perform beating. Weigh 20g of the active metal precursor and add it to the acidified inorganic oxide matrix, mix and stir, dry the slurry at 200°C, and bake it at 700°C for 4 hours in an air atmosphere to obtain a semi-finished catalyst microsphere.
  • the non-noble metal active component accounts for 50% by mass of the prepared microsphere catalyst semi-finished product.
  • the preparation of catalyst take the precursor of palladium and dilute hydrochloric acid 1:1 miscibility, add deionized water to dilute, be configured into the palladium chloride solution that concentration is 5.6g/L, pH is 2, weigh 15g of catalyst Ball semi-finished product, take by weighing the palladium chloride solution that certain concentration is 5.6g/L by containing palladium quality as 0.0060g.
  • the palladium-containing solution was used as an impregnation solution to impregnate the semi-finished catalyst to obtain a solid product, which was then dried at 120°C and then calcined at 700°C for 4 hours in an air atmosphere to obtain catalyst B4.
  • Catalyst B4 was exposed to an atmosphere containing SO 2 at a temperature of 650° C., a pressure of 0.05 MPa, and a content of SO 2 of 0.01% by volume for 30 minutes. After exposure to SO 2 treatment, XRD analysis was performed on catalyst B4. In the XRD spectrum of catalyst B4, there were characteristic peaks at 2 ⁇ angles of approximately 28.6°, 30.0° and 50.4°.
  • catalyst semi-finished product Weigh 40 g of bauxite based on the mass of Al 2 O 3 , add 380 mL of water and 6 g of 36% by weight concentrated hydrochloric acid, and perform beating. Weigh 20g of the active metal precursor and add it to the acidified inorganic oxide matrix, mix and stir, dry the slurry at 200°C, and bake it at 700°C for 4 hours in an air atmosphere to obtain a semi-finished catalyst microsphere. The mass percentage of the non-noble metal active component in the semi-finished product of the prepared microsphere catalyst is 33%.
  • the preparation of catalyst take the precursor of palladium and dilute hydrochloric acid 1:1 miscibility, add deionized water to dilute, be configured into the palladium chloride solution that concentration is 5.6g/L, pH is 2, weigh 15g of catalyst Ball semi-finished product, take by weighing the palladium chloride solution that certain concentration is 5.6g/L by containing palladium quality as 0.0030g.
  • the palladium-containing solution was used as an impregnation solution to impregnate the semi-finished catalyst to obtain a solid product, which was then dried at 120°C and then calcined at 700°C for 4 hours in an air atmosphere to obtain catalyst B5.
  • catalyst semi-finished product Weigh 40 g of bauxite based on the mass of Al 2 O 3 , add 380 mL of water and 6 g of 36% by weight concentrated hydrochloric acid, and perform beating. Weighed 20g of active metal precursor and added it to the acidified inorganic oxide matrix, mixed and stirred, dried the slurry at 200°C, and calcined at 700°C for 4 hours in an air atmosphere to obtain semi-finished catalyst microspheres. The mass percentage of the non-noble metal active component in the semi-finished product of the prepared microsphere catalyst is 33%.
  • the preparation of catalyst take the precursor of palladium and dilute hydrochloric acid 1:1 miscibility, add deionized water to dilute, be configured into the palladium chloride solution that concentration is 5.6g/L, pH is 2, weigh 15g of catalyst Ball semi-finished product, take by weighing the palladium chloride solution that certain concentration is 5.6g/L by containing palladium quality as 0.0045g.
  • the palladium-containing solution was used as an impregnation solution to impregnate the semi-finished catalyst to obtain a solid product, which was then dried at 120°C and then calcined at 700°C for 4 hours in an air atmosphere to obtain catalyst B6.
  • Catalyst B6 was exposed to an atmosphere containing SO 2 at a temperature of 650° C., a pressure of 0.05 MPa, and a content of SO 2 of 0.01% by volume for 30 minutes. After exposure to SO 2 treatment, XRD analysis was performed on catalyst B6. In the XRD spectrum of catalyst B6, there were characteristic peaks at 2 ⁇ angles of approximately 28.6°, 30.0° and 50.4°.
  • catalyst semi-finished product Weigh 40 g of bauxite based on the mass of Al 2 O 3 , add 380 mL of water and 6 g of 36% by weight concentrated hydrochloric acid, and perform beating. Weighed 20g of active metal precursor and added it to the acidified inorganic oxide matrix, mixed and stirred, dried the slurry at 200°C, and calcined at 700°C for 4 hours in an air atmosphere to obtain semi-finished catalyst microspheres. The mass percentage of the non-noble metal active component in the semi-finished product of the prepared microsphere catalyst is 33%.
  • the preparation of catalyst take the precursor of ruthenium and dilute hydrochloric acid 1:1 miscibility, add deionized water to dilute, configure the ruthenium chloride solution that concentration is 5.6g/L, pH is 2, weigh 15g of catalyst
  • For the semi-finished spherical product take by weighing a certain amount of ruthenium chloride solution with a concentration of 5.6g/L according to the ruthenium-containing quality of 0.0045g.
  • the ruthenium-containing solution was used as an impregnation solution to impregnate the semi-finished catalyst to obtain a solid product, which was then dried at 120°C and then calcined at 700°C for 4 hours in an air atmosphere to obtain catalyst B7.
  • catalyst semi-finished product Weigh 40 g of bauxite based on the mass of Al 2 O 3 , add 380 mL of water and 6 g of 36% by weight concentrated hydrochloric acid, and perform beating. Weighed 20g of active metal precursor and added it to the acidified inorganic oxide matrix, mixed and stirred, dried the slurry at 200°C, and calcined at 700°C for 4 hours in an air atmosphere to obtain semi-finished catalyst microspheres. The mass percentage of the non-noble metal active component in the semi-finished product of the prepared microsphere catalyst is 33%.
  • the preparation of catalyst take the precursor of palladium and dilute hydrochloric acid 1:1 miscibility, add deionized water to dilute, be configured into the palladium chloride solution that concentration is 5.6g/L, pH is 2, weigh 15g of catalyst Ball semi-finished product, take by weighing the palladium chloride solution that certain concentration is 5.6g/L by containing palladium quality as 0.0045g.
  • the palladium-containing solution was used as an impregnation solution to impregnate the semi-finished catalyst to obtain a solid product, which was then dried at 120°C and then calcined at 700°C for 4 hours in an air atmosphere to obtain catalyst B8.
  • Catalyst C1 was exposed to an atmosphere containing SO 2 at a temperature of 750 °C, a pressure of 0.1 MPa, and a content of SO 2 of 0.02% by volume for 240 minutes. After exposure to SO 2 treatment, XRD analysis was performed on catalyst C1. In the XRD spectrum of catalyst C1, there were characteristic peaks at 2 ⁇ angles of approximately 28.6°, 30.0° and 50.4°.
  • Catalyst C3 was exposed to an atmosphere containing SO 2 at a temperature of 750° C., a pressure of 0.1 MPa, and a content of SO 2 of 0.02% by volume for 240 minutes. After exposure to SO 2 treatment, XRD analysis was performed on catalyst C3. In the XRD spectrum of catalyst C3, there were characteristic peaks at 2 ⁇ angles of approximately 28.6°, 30.0° and 50.4°.
  • the difference is that the amount of bauxite is reduced, and the mass percentage of the non-precious metal active component accounting for the semi-finished microsphere catalyst prepared is adjusted to 50%, that is, 20g is weighed in terms of Al 2 O 3 mass
  • the bauxite and the active metal precursor of 20g obtain catalyst C4.
  • Catalyst C4 was exposed to an atmosphere containing SO 2 at a temperature of 750° C., a pressure of 0.1 MPa, and an SO 2 content of 0.02% by volume for 240 minutes. After exposure to SO 2 treatment, XRD analysis was performed on catalyst C4. In the XRD spectrum of catalyst C4, there were characteristic peaks at 2 ⁇ angles of approximately 28.6°, 30.0° and 50.4°.
  • Catalyst C6 was exposed to an atmosphere containing SO 2 at a temperature of 750° C., a pressure of 0.1 MPa, and a content of SO 2 of 0.02% by volume for 240 minutes. After exposure to SO 2 treatment, XRD analysis was performed on catalyst C6. In the XRD spectrum of catalyst C6, there were characteristic peaks at 2 ⁇ angles of approximately 28.6°, 30.0° and 50.4°.
  • the difference is that the palladium chloride solution was replaced with an equal concentration of ruthenium chloride solution, and in the prepared catalyst, the noble metal content remained unchanged, that is, catalyst C7 was obtained.
  • the difference is that, in terms of oxides, lanthanum nitrate is replaced by cerium nitrate of equal mass; in terms of oxides, cobalt nitrate is replaced by iron nitrate of equal mass, to obtain catalyst C8.
  • Catalyst D1 was exposed to an atmosphere containing SO 2 at a temperature of 800° C., a pressure of 0.2 MPa, and a content of SO 2 of 0.02% by volume for 480 minutes. After exposure to SO 2 treatment, XRD analysis was performed on catalyst D1. In the XRD spectrum of catalyst D1, there were characteristic peaks at 2 ⁇ angles of approximately 28.6°, 30.0° and 50.4°.
  • the difference is that the amount of bauxite used is reduced, and the mass percentage of the non-precious metal active component in the prepared microsphere catalyst semi-finished product is adjusted to 50%.
  • Catalyst D4 was exposed to an atmosphere containing SO 2 at a temperature of 800° C., a pressure of 0.2 MPa, and a content of SO 2 of 0.02% by volume for 480 minutes. After exposure to SO 2 treatment, XRD analysis was performed on catalyst D4. In the XRD spectrum of catalyst D4, there were characteristic peaks at 2 ⁇ angles of approximately 28.6°, 30.0° and 50.4°.
  • Component content determination the component content of the catalyst prepared in the embodiment is all adopted X-ray fluorescence spectrometry (XRF) method to measure, specifically refer to petrochemical industry analysis method (RIPP experimental method), edited by Yang Cuiding etc., Science Press 1990 publishing. The specific results are shown in Table 3 below.
  • XRF X-ray fluorescence spectrometry
  • Catalyst activity evaluation standard in the present invention is measured by the concentration change of SOx and NOx in the reaction product, and SOx and NOx content in the product is measured by FT-IR Fourier transform infrared flue gas analyzer, and is carried out by using fixed-bed micro-reaction experiment device evaluate. Catalyst activity evaluation results are expressed in conversion.
  • C inlet refers to the concentration of SOx or NOx at the inlet of the experimental device
  • C outlet refers to the concentration of SOx or NOx at the outlet of the experimental device.
  • the effects of the catalysts provided in the above examples and comparative examples on simultaneously reducing NO and SO emissions in flue gas were evaluated.
  • the catalytic cracking reaction-regeneration evaluation was carried out on a small-scale fixed-bed simulated flue gas device, the catalyst loading was 1.5g, placed in a quartz tube fixed-bed reactor with an inner diameter of 16.8mm, and the two ends of the catalyst bed were made of quartz wool and quartz Sand (20-40 mesh) is used for filling, so that the catalyst bed is fixed in the constant temperature section in the middle of the reactor.
  • the reaction temperature is 680°C
  • the pressure is 0.03MPa
  • the volume flow rate (standard condition) of the feed gas is 1500mL/min
  • the volume space velocity is about 15000h -1 .
  • the catalyst was pre-treated for 30 min under N2 atmosphere to fully remove the adsorbed species on the surface of the catalyst.
  • the feed gas at the beginning of the reaction contains 1200ppm vol% NO, 1200ppm vol% SO 2 , and the balance is N 2 .
  • the gas products were analyzed by an online infrared analyzer to obtain the post-reaction SO2 and NO concentrations.
  • the results of the evaluation time of 0.5h are listed in Table 4, and the results of the evaluation time of 1.5h are listed in Table 5.
  • Solo-NO and Sole-SO 2 mean that the feed gas contains only 1200 ppm vol % NO or 1200 ppm vol % SO 2 .
  • Catalyst B6 26 25 ⁇ 2 twenty four Catalyst B7 51 31 ⁇ 2 25 Catalyst B8 48 32 ⁇ 2 27 Catalyst C1 57 61 ⁇ 2 53 Catalyst C2 43 48 ⁇ 2 46 Catalyst C3 49 54 ⁇ 2 52 Catalyst C4 68 63 ⁇ 2 55 Catalyst C5 36 55 ⁇ 2 55 Catalyst C6 29 45 ⁇ 2 44 Catalyst C7 54 59 ⁇ 2 51 Catalyst C8 50 61 ⁇ 2 55 Catalyst D1 62 62 ⁇ 2 54 Catalyst D2 48 50 ⁇ 2 48 Catalyst D3 52 57 ⁇ 2 54 Catalyst D4 78 67 ⁇ 2 59 Catalyst D5 42 58 ⁇ 2 58 Catalyst D6 29 49 ⁇ 2 48 Catalyst D7 57 61 ⁇ 2 53 Cataly

Abstract

本发明涉及用于同时降低烟气中SOx与NOx的催化剂及其制备方法和应用,以及一种烟气同时脱SOx和NOx的方法。

Description

降低烟气中SOx与NOx的催化剂及其制备方法以及烟气脱SOx和NOx的方法 技术领域
本发明涉及用于同时降低烟气中SOx与NOx的催化剂及其制备方法和应用,以及一种烟气同时脱SOx和NOx的方法。
背景技术
催化裂化反应过程中,由于烃的反应导致焦炭在催化剂上沉积,使催化剂活性下降。含焦炭的催化剂经汽提段脱去吸附在催化剂上的烃后,被输送到再生器。在再生器中含焦炭的催化剂在高温下与空气充分接触,催化剂表面焦炭被烧掉,使催化剂活性得以复原。在催化剂烧炭时会生成SOx和NOx等,这些气体被排放到空气中对大气造成污染。随着环保要求越来越严格,对烟气污染物的排放标准越来越严格。
目前降低催化裂化再生烟气污染物排放的主要技术措施包括:再生器优化,使用助剂和烟气后处理,其中添加助剂的方法因具有操作灵活和无需投资设施费用等优点而得到普遍应用。目前脱硫脱硝助剂主要是单独脱除一种烟气污染物。例如:CN1334316A公开了一种含有镁铝尖晶石的组合物以及铈/钒的氧化物的硫转移剂,用于催化裂化烟气中脱除SOx;CN104399478A公开了一种硫转移剂及其制备和评价方法,用于催化裂化烟气中脱除SOx;CN101311248B提供了一种能够降低催化裂化再生烟气中NOx排放的组合物,用于降低催化裂化烟气中NOx。
上述专利文献在单独脱除再生烟气中的SOx或NOx时,具有较好的脱除效果,但不能同时脱除氮氧化物与硫氧化物。这就造成如果需要同时脱除SOx和NOx时,对助剂的需求总量较大。这一方面增加了烟气污染物的脱除成本,另一方面较多的助剂加注量会影响催化裂化的产物分布。
为了降低助剂的添加总量,增强助剂的减排效果,提高助剂技术的竞争力。本发明从组合脱除SOx和NOx的目的出发,开发了一种组合脱除烟气污染物的新型催化剂。
发明内容
本发明的目的是为了克服现有脱硫脱硝技术存在的无法同时脱除氮 氧化物与硫氧化物且成本过高的缺陷,提供一种用于同时降低烟气(特别是催化裂化再生烟气)中SOx与NOx的催化剂及其制备方法和应用以及一种烟气(特别是催化裂化再生烟气)同时脱SOx和NOx的方法。本发明提供的催化剂活性高,能够有效的降低烟气中SOx和NOx的排放,并且本发明提供的催化剂制备方法简单。
为了实现上述目的,本发明的第1个方面提供一种用于(同时)降低烟气中NOx和SOx排放的催化剂,该催化剂包括载体和负载在载体上的选自稀土族金属的第一活性组分、选自第VIII族非贵金属的第二活性组分以及贵金属组分;以催化剂总重量为基准,所述载体的含量为25-95重量%,以氧化物计,所述第一活性组分的含量为4-60重量%,所述第二活性组分的含量为2-12重量%,以元素计,所述贵金属组分的含量为0.01-2重量%;
以金属元素计,所述第一活性组分与所述第二活性组分的摩尔比为(0.5-15):1;例如(1-10):1,或者(2-5):1。
在本发明中,在没有相反教导的情况下,“以催化剂总重量为基准”意指所述催化剂的总重量为100重量%;当涉及组分的组成含量时,在没有明确基准时,是以组分的总重量为100重量%为基准的。
为了实现上述目的,本发明的第2个方面提供一种(同时)脱硫脱硝催化剂,以催化剂总重量为基准,按重量百分比计包括,
以氧化物计,25-92重量%,或者40-85重量%,或者45-80重量%的无机氧化物基质;
以氧化物计,6-70重量%,或者12-60重量%,或者12-48重量%的稀土族金属组分(优选地,所述稀土族金属组分选自镧、铈、镨和钕中的一种或几种的混合物,更优选为镧);
以氧化物计,1-12重量%,或者2-10重量%,或者2-8重量%的选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分(优选地,所述VB、VIII、IB、IIB族的一种或几种的非贵金属组分选自铁、钴、镍、铜、锌和钒中的一种或几种的混合物,更优选为钴);
以氧化物计,1-10重量%,或者1-8重量%,或者2-5重量%的选自VIIB族的非贵金属组分(优选地所述VIIB族非贵金属组分为锰);
以元素计,0.01-1.5重量%,或者0.02-1.2重量%,或者0.02-1.0重 量%的贵金属组分(优选地所述贵金属组分选自钌、铑、铼、铂、钯、银、铱和金中的一种或几种的混合物,更优选为铂、钯和铑中的一种或几种的混合物,最优选为钯)。
为了实现上述目的,本发明的第3个方面提供一种能够同时降低烟气中SOx与NOx的催化剂,该催化剂包括载体和负载在载体上的选自稀土族金属的第一活性组分、选自VB、VIII、IB、IIB族非贵金属的第二活性组分、选自IIA族金属的第三活性组分以及贵金属组分;以催化剂总重量为基准,所述载体的含量为25-93重量%,以氧化物计,所述第一活性组分的含量为4-60重量%,所述第二活性组分的含量为2-30重量%,所述第三活性组分的含量为1-30重量%,以元素计,所述贵金属组分的含量为0.01-2重量%。优选地,以金属元素计,所述第一活性组分与所述第二活性组分的摩尔比为(0.4-12):1,优选为(0.5-8):1,进一步优选为(1-4):1。
为了实现上述目的,本发明的第4个方面提供一种用于同时降低烟气中SOx与NOx的催化剂,以催化剂总重量为基准,含有25-95重量%的无机氧化物基质;以氧化物计的2-70重量%的稀土族金属组分;以氧化物计的1-30重量%的IIA族金属组分;以氧化物计的1-15重量%的选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分;以氧化物计的1-10重量%的VIIB族非贵金属组分;以元素计的0.01-1.5重量%的贵金属组分。优选地,以金属元素计,稀土族金属组分与选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分的摩尔比为(0.4-18):1,例如(0.5-12):1,或者(1-6):1。
为了实现上述目的,本发明的第5个方面提供根据第1个方面所述的用于(同时)降低烟气中NOx和SOx排放的催化剂的制备方法,该方法包括:
(1)提供含有选自稀土族金属的第一活性组分前驱体和选自第VIII族非贵金属的第二活性组分前驱体的前驱体溶液;
(2)将所述前驱体溶液与共沉淀剂进行共沉淀反应,然后进行干燥和焙烧;
(3)将步骤(2)得到的固体产物与载体和/或载体的前驱体混合打浆,得到浆液,将浆液进行干燥和焙烧;
(4)以含有贵金属组分前驱体的溶液作为浸渍液,对步骤(3)得到的固 体产物进行浸渍,然后进行干燥和/或焙烧。
本发明的第6个方面提供一种脱硫脱硝催化剂的制备方法,包括以下步骤:
S1、活性金属前驱体的制备:采用共沉淀法或者溶胶凝胶法;
S2、催化剂半成品的制备:将活性金属前驱体与无机氧化物基质和/或无机氧化物基质的前驱体以及任选地贵金属组分前驱体混合打浆,得到浆液,将浆液进行干燥和焙烧;
该方法还任选地包括:S3、以含有贵金属组分前驱体的溶液作为浸渍液,对步骤S2得到的催化剂半成品进行浸渍,得到固体产物,对固体产物进行干燥和焙烧;
其中,活性金属前驱体中的活性金属包括稀土族金属组分、选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分以及VIIB族非贵金属组分;
所述活性金属前驱体、无机氧化物基质和/或无机氧化物基质的前驱体以及贵金属组分前驱体的用量使得制得的催化剂,以催化剂总重量为基准,按重量百分比计包括,以氧化物计:无机氧化物基质25-92重量%,稀土族金属组分6-70重量%,选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分1-12重量%,选自VIIB族的非贵金属组分1-10重量%;以元素计:贵金属组分0.01-1.5重量%。
本发明的第7个方面提供一种制备能够同时降低烟气中SOx与NOx的催化剂的方法,该方法包括如下步骤:
(1)提供含有选自稀土族金属的第一活性组分前驱体、选自VB、VIII、IB、IIB族非贵金属的第二活性组分前驱体以及选自IIA族金属的第三活性组分前驱体的前驱体溶液;
(2)将所述前驱体溶液与共沉淀剂进行共沉淀反应,然后进行干燥和焙烧;
(3)将步骤(2)得到的固体产物与载体和/或载体的前驱体以及任选地贵金属组分前驱体混合打浆,得到浆液,将浆液进行干燥和焙烧;
该方法还任选地包括:(4)以含有贵金属组分前驱体的溶液作为浸渍液,对步骤(3)得到的固体产物进行浸渍,然后进行干燥和/或焙烧;
第一活性组分前驱体、第二活性组分前驱体、第三活性组分前驱体、载体和/或载体的前驱体以及贵金属组分前驱体的用量使得制得的催化 剂,以催化剂总重量为基准,所述载体的含量为25-93重量%,以氧化物计,所述第一活性组分的含量为4-60重量%,所述第二活性组分的含量为2-30重量%,所述第三活性组分的含量为1-30重量%,以元素计,所述贵金属组分的含量为0.01-2重量%。
本发明的第8个方面提供一种用于同时降低烟气中SOx与NOx的催化剂制备方法,该方法包括以下步骤:
(1)采用共沉淀法或者溶胶凝胶法得到活性金属前驱体;
(2)将活性金属前驱体与无机氧化物基质和/或无机氧化物基质的前驱体以及任选地贵金属组分前驱体混合打浆,得到浆液,将所述浆液进行干燥和/或焙烧,得到组合物;
该方法还任选地包括:(3)以含有贵金属组分前驱体的溶液作为浸渍液,对步骤(2)所得组合物进行浸渍,得到固体产物,然后对所述固体产物进行干燥和/或焙烧;
其中,活性金属前驱体中的活性金属包括稀土族金属组分、IIA族金属组分、选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分以及VIIB族非贵金属组分;
所述活性金属前驱体、无机氧化物基质和/或无机氧化物基质的前驱体以及贵金属组分前驱体的用量使得制得的催化剂中,以催化剂总重量为基准,含有25-95重量%的无机氧化物基质;以氧化物计的2-70重量%的稀土族金属组分;以氧化物计的1-30重量%的IIA族金属组分;以氧化物计的1-15重量%的选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分;以氧化物计的1-10重量%的VIIB族非贵金属组分;以元素计的0.01-1.5重量%的贵金属组分。
本发明的第9个方面提供了前述方面中的任一方面的催化剂在同时去除烟气中SOx和NOx的应用。具体来说,本发明提供了一种从含SOx和NOx的烟气中同时脱SOx和NOx的方法,所述方法包括:在同时脱SOx和NOx的条件下,使含SOx和NOx的烟气与前述方面中的任一方面的催化剂接触。优选地,同时脱SOx和NOx的条件为:温度为500-800℃,压力为0.02-4MPa,烟气的体积空速为100-50000h -1。优选地,烟气中SOx的含量为0.001-0.5体积%,NOx的含量为0.001-0.3体积%。
本发明的发明人在研究过程中发现,将特定量的稀土族金属元素(例 如La)和第VIII族非贵金属(例如Co)配合至少一种贵金属元素(例如Pt)作为活性组分使用,配合特定的稀土族金属与第VIII族非贵金属比例,能够有效地同时降低烟气中SOx和NOx的排放。在此基础上,引入IIA族金属组分(例如Mg)和/或引入VIIB族金属组分(例如Mn),可以进一步提高催化剂组合脱除NOx和SOx的能力。当将本发明的催化剂与SO 2接触时,据信硫元素可以转化为不同的化合价态,其中低价态的硫元素有利于烟气中的NOx的转化,从而整个过程可以促使SOx和NOx朝有利于降低污染的方向转化。
本发明提供的催化剂制备方法简单,易于实现,能够有效的降低催化裂化再生烟气中SOx和NOx的排放。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
在本发明中,在没有特别指出的情况下,压力是指表压。
在本发明中,所述能够同时降低烟气中SOx与NOx的催化剂指的是该催化剂能够用于同时脱除烟气中SOx与NOx,降低烟气中SOx与NOx的含量。
在本发明中,SOx是指硫氧化物的混合物(例如SO 2和SO 3的混合物,其摩尔比例不受特别限制,如1:10至10:1),NOx是指氮氧化物的混合物(例如NO 2和NO的混合物,其摩尔比例不受特别限制,如1:10至10:1)。
在本发明中,“用于降低烟气中NOx和SOx排放的催化剂”、“用于(同时)降低烟气中NOx和SOx排放的催化剂”、“脱硫脱硝的催化剂”、“能够同时降低烟气中SOx与NOx的催化剂”、“用于同时降低烟气中SOx与NOx的催化剂”等表述具有相同的含义,指的是这些催化剂能够用于同时脱除烟气中SOx与NOx,降低烟气中SOx与NOx的含量。
根据本发明的第1个方面,本发明提供了一种用于降低烟气中NOx和SOx排放的催化剂,该催化剂包括载体和负载在载体上的选自稀土族金属的第一活性组分、选自第VIII族非贵金属的第二活性组分以及贵金 属组分;以催化剂总重量为基准,所述载体的含量为25-95重量%,以氧化物计,所述第一活性组分的含量为4-60重量%,所述第二活性组分的含量为2-12重量%,以元素计,所述贵金属组分的含量为0.01-2重量%;
以金属元素计,所述第一活性组分与所述第二活性组分的摩尔比为(0.5-15):1,例如(1-10):1,或(1-6):1,(2-5):1,或(2.5-3.5):1,或(2.6-3.4):1,或(2.7-3.3):1,或(2.8-3.2):1,或(2.9-3.1):1,或(2.95-3.05):1。
在本发明提供的催化剂中,所述载体选择范围较宽,优选情况下,所述载体选自氧化铝、氧化硅-氧化铝、沸石、尖晶石、高岭土、硅藻土、珍珠岩和钙钛矿中的至少一种,进一步优选为氧化铝。
本发明中对所述氧化铝的晶型没有特别的限制,包括但不限于γ-氧化铝、δ-氧化铝、η-氧化铝、ρ-氧化铝、κ-氧化铝和χ-氧化铝。
根据本发明,常规定义的稀土族组分均用于本发明,所述第一活性组分为镧和/或铈,优选为镧。采用该种方式能够进一步提高催化剂的脱SOx与NOx的性能。
所述第二活性组分可以选自第VIII族金属中的至少一种,优选为钴和/或铁,更优选为钴。
根据本发明,所述贵金属具有本领域常规释义,优选地,所述贵金属组分选自铂、钯和铑中的一种或几种,最优选为钯。本发明的发明人在研究过程中发现,将贵金属元素钯和其他活性组分配合使用,能够大大提高烟气中SOx与NOx的脱除效果。
根据本发明,将第一活性组分与所述第二活性组分按照摩尔比为(0.5-15):1的配比使用,在特定的配比下,第一活性组分和第二活性组分协同增效,提高烟气中SOx与NOx的脱除效果。
根据本发明的一种优选实施方式,以金属元素计,所述第一活性组分与所述第二活性组分的摩尔比为(1-10):1,优选为(2-5):1,通过对第一活性组合与第二活性组分比例的优化,能够进一步提高催化剂脱除烟气中的SOx与NOx的效果。
根据本发明的一种优选实施方式,以催化剂总重量为基准,所述载体的含量为40-90重量%,以氧化物计,所述第一活性组分的含量为8-50重量%,所述第二活性组分的含量为2-12重量%,以元素计,所述贵金属组分的含量为0.02-1.5重量%。
优选地,以催化剂总重量为基准,所述载体的含量为50-88重量%,以氧化物计,所述第一活性组分的含量为8-40重量%,所述第二活性组分的含量为2-10重量%,以元素计,所述贵金属组分的含量为0.03-1.2重量%。
根据本发明的第2个方面,本发明提供了一种脱硫脱硝的催化剂,以催化剂总重量为基准,按重量百分比计包括,
以氧化物计:无机氧化物基质25-92重量%,稀土族金属组分6-70重量%,选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分1-12重量%,选自VIIB族的非贵金属组分1-10重量%;
以元素计:贵金属组分0.01-1.5重量%。
根据本发明,优选地,以催化剂总重量为基准,按重量百分比计包括,
以氧化物计:无机氧化物基质40-85重量%,稀土族金属组分12-60重量%,选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分2-10重量%,选自VIIB族的非贵金属组分1-8重量%;
以元素计:贵金属组分0.02-1.2重量%。
更优选地,以催化剂总重量为基准,按重量百分比计包括,
以氧化物计:无机氧化物基质45-80重量%,稀土族金属组分12-48重量%,选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分2-8重量%,选自VIIB族的非贵金属组分2-5重量%;
以元素计:贵金属组分0.02-1.0重量%;
最优选的,以催化剂总重量为基准,按重量百分比计包括,
以氧化物计:无机氧化物基质50-80重量%,稀土族金属组分12-43重量%,选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分2-5重量%,选自VIIB族的非贵金属组分2-5重量%;
以元素计:贵金属组分0.02-0.05重量%。
通过采用上述技术方案,在特定含量范围内选择不同种类的金属协同配合,使得不同种类的金属发挥协同作用,并且能够减少贵金属的用量,降低成本。
根据本发明,所有的稀土族金属组分均可用于本发明,为了进一步提高催化剂的脱SOx与NOx的性能,优选稀土族金属组分选自镧、铈、 镨和钕中的一种或几种的混合物,更优选为镧。
在一种实施方案中,VB族非贵金属组分可以选自钒、铌和钽中的一种或几种的混合物;VIII族非贵金属组分可以选自铁、钴和镍中的一种或几种的混合物;IB族非贵金属组分可以为铜;IIB族非贵金属组分可以选自锌、镉和汞中的一种或几种的混合物。
在一种优选实施方案中,VB、VIII、IB、IIB族的一种或几种的非贵金属组分选自铁、钴、镍、铜、锌和钒中的一种或几种的混合物,更优选为钴。
在一种优选实施方案中,VIIB族非贵金属组分为锰。
在一种优选实施方案中,贵金属组分选自钌、铑、铼、铂、钯、银、铱和金中的一种或几种的混合物,更优选为铂、钯和铑中的一种或几种的混合物,最优选为钯。
根据本发明制备得到的脱硫脱硝催化剂,无机氧化物基质为本领域常规使用的各种无机氧化物基质,例如选自氧化铝、氧化硅-氧化铝、沸石、尖晶石、高岭土、硅藻土、珍珠岩和钙钛矿中的一种或几种的混合物。本发明中,尖晶石为本领域常规使用的各种尖晶石,例如镁铝尖晶石、锌铝尖晶石和钛铝尖晶石中的一种或几种的混合物。
根据本发明的一种优选实施方案中,无机氧化物基质为氧化铝。
在一种优选实施方案中,氧化铝选自γ-氧化铝、δ-氧化铝、η-氧化铝、ρ-氧化铝、κ-氧化铝和χ-氧化铝中的一种或几种的混合物,本发明对此没有特别的限定。
根据本发明的一种优选实施方案中,以金属元素计,稀土族金属组分与选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分的摩尔比为(0.6-18):1,进一步优选为(2-12):1,更进一步优选为(3-6):1,例如(1-10):1,或(1-6):1,(2-5):1,或(2.5-3.5):1,或(2.6-3.4):1,或(2.7-3.3):1,或(2.8-3.2):1,或(2.9-3.1):1,或(2.95-3.05):1。
根据本发明的一种特别优选实施方案,以催化剂总重量为基准,按重量百分比计,氧化铝50-80重量%,以氧化物计,镧12-43重量%,钴2-5重量%,锰2-5重量%;以元素计,钯0.02-0.05重量%;更优选地,镧与钴的摩尔比为(3-6):1或(1-6):1,(2-5):1,或(2.5-3.5):1,或(2.6-3.4):1,或(2.7-3.3):1,或(2.8-3.2):1,或(2.9-3.1):1,或(2.95-3.05):1。
本发明的发明人在研究过程中发现,在一种特别优选实施方案下,选择稀土族金属元素镧和含有钴、锰的非贵族金属元素协同贵金属元素中的至少一种元素作为活性组分,将该活性组分应用于脱硫脱硝催化剂中,能够特别有效的降烟气NOx和SOx排放。
根据本发明的第3个方面,本发明提供了一种能够同时降低烟气中SOx与NOx的催化剂,该催化剂包括载体和负载在载体上的选自稀土族金属的第一活性组分、选自VB、VIII、IB、IIB族非贵金属的第二活性组分、选自IIA族金属的第三活性组分以及贵金属组分;以催化剂总重量为基准,所述载体的含量为25-93重量%,以氧化物计,所述第一活性组分的含量为4-60重量%,所述第二活性组分的含量为2-30重量%,所述第三活性组分的含量为1-30重量%,以元素计,所述贵金属组分的含量为0.01-2重量%。
根据本发明,常规定义的稀土族金属组分均可用于本发明,优选所述第一活性组分选自镧、铈、镨和钕中的一种或几种,更优选为镧和/或铈,最优选为镧。采用该种方式能够进一步提高催化剂的脱SOx与NOx的性能。
所述VB族非贵金属组分可以选自钒、铌和钽中的至少一种;所述VIII族非贵金属组分可以选自铁、钴和镍中的至少一种;所述IB族非贵金属组分可以为铜;所述IIB族非贵金属组分可以选自锌、镉和汞中的至少一种。
优选情况下,所述第二活性组分选自铁、钴、镍、铜、锌和钒中的一种或几种,更优选为钴和/或铁,最优选为钴。
在本发明中,所述第三活性组分可以选自铍、镁、钙、锶和钡中的一种或几种,更优选为镁。
所述贵金属组分可以选自钌、铑、铼、铂、钯、银、铱和金中的一种或几种,优选为铂、钯和铑中的一种或几种,最优选为钯。本发明的发明人在研究过程中发现,将钯与其他活性组分配合使用,更有利于脱除烟气中的SOx与NOx。
在本发明提供的催化剂中,所述载体选择范围较宽,优选情况下,所述载体选自氧化铝、氧化硅-氧化铝、沸石、尖晶石、高岭土、硅藻土、珍珠岩和钙钛矿中的至少一种,进一步优选为氧化铝。
对所述氧化铝的晶型没有特别的限制,包括但不限于γ-氧化铝、δ-氧化铝、η-氧化铝、ρ-氧化铝、κ-氧化铝和χ-氧化铝。
根据本发明的一种优选实施方式,以催化剂总重量为基准,所述载体的含量为40-87重量%,以氧化物计,所述第一活性组分的含量为8-50重量%,所述第二活性组分的含量为3-20重量%,所述第三活性组分的含量为1-20重量%,以元素计,所述贵金属组分的含量为0.02-1.5重量%;
优选地,以催化剂总重量为基准,所述载体的含量为45-80重量%,以氧化物计,所述第一活性组分的含量为8-40重量%,所述第二活性组分的含量为3-15重量%,所述第三活性组分的含量为2-15重量%,以元素计,所述贵金属组分的含量为0.03-1.2重量%。
根据本发明,优选地,以金属元素计,所述第一活性组分与所述第二活性组分的摩尔比为(0.4-12):1,优选为(0.5-8):1,进一步优选为(1-4):1,例如(1-6):1,(2-5):1,或(2.5-3.5):1,或(2.6-3.4):1,或(2.7-3.3):1,或(2.8-3.2):1,或(2.9-3.1):1,或(2.95-3.05):1。本发明的发明人在研究过程中发现,将二者在特别比例下复配,能够起到更好的协同效果,更有利于脱除烟气中的SOx与NOx。
根据本发明的第4个方面,本发明提供了一种用于同时降低烟气中SOx与NOx的催化剂,其特征在于,以催化剂总重量为基准,含有25-95重量%的无机氧化物基质;以氧化物计的2-70重量%的稀土族金属组分;以氧化物计的1-30重量%的IIA族金属组分;以氧化物计的1-15重量%的选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分;以氧化物计的1-10重量%的VIIB族非贵金属组分;以元素计的0.01-1.5重量%的贵金属组分。
根据本发明,优选地,以催化剂总重量为基准,含有40-90重量%的无机氧化物基质;以氧化物计的4-50重量%的稀土族金属组分;以氧化物计的1-20重量%的IIA族金属组分;以氧化物计的2-12重量%的选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分;以氧化物计的1-8重量%的VIIB族非贵金属组分;以元素计的0.02-1.2重量%的贵金属组分;更优选地,以催化剂总重量为基准,含有50-80重量%的无机氧化物基质;以氧化物计的4-40重量%的稀土族金属组分;以氧化物计的2-15重量%的IIA族金属组分;以氧化物计的2-10重量%的选自VB、VIII、 IB、IIB族的一种或几种的非贵金属组分;以氧化物计的2-5重量%的VIIB族非贵金属组分;以元素计的0.02-1.0重量%的贵金属组分;最优选地,以催化剂总重量为基准,含有50-80重量%的无机氧化物基质;以氧化物计的7-38重量%的稀土族金属组分;以氧化物计的2-8重量%的IIA族金属组分;以氧化物计的2-7重量%的选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分;以氧化物计的2-5重量%的VIIB族非贵金属组分;以元素计的0.02-0.05重量%的贵金属组分。在上述优选实施方式下,采用特定含量的上述金属配合使用,可以大大减少贵金属的用量,降低成本。
根据本发明,常规定义的稀土族金属组分均可用于本发明,为了进一步提高催化剂的脱SOx与NOx的性能,优选所述稀土族金属组分选自镧、铈、镨和钕中的一种或几种,更优选为镧和/或铈,最优选为镧。
根据本发明,所述IIA族金属组分选自铍、镁、钙、锶和钡中的一种或几种,更优选为镁。
所述VB族非贵金属组分可以选自钒、铌和钽中的至少一种;所述VIII族非贵金属组分可以选自铁、钴和镍中的至少一种;所述IB族非贵金属组分可以为铜;所述IIB族非贵金属组分可以选自锌、镉和汞中的至少一种。
优选情况下,所述VB、VIII、IB、IIB族的一种或几种的非贵金属组分选自铁、钴、镍、铜、锌和钒中的一种或几种,更优选为钴和/或铁,最优选为钴。
优选情况下,所述VIIB族非贵金属组分为锰。
优选情况下,所述贵金属组分选自钌、铑、铼、铂、钯、银、铱和金中的一种或几种,更优选为铂、钯和铑中的一种或几种,最优选为钯。
根据本发明提供的催化剂,所述无机氧化物基质可以是本领域常规使用的各种无机氧化物基质,例如选自氧化铝、氧化硅-氧化铝、沸石、尖晶石、高岭土、硅藻土、珍珠岩和钙钛矿中的至少一种。本发明中,所述尖晶石可以为常用的各种尖晶石,例如可以为镁铝尖晶石、锌铝尖晶石和钛铝尖晶石中的至少一种。
根据本发明的一种优选实施方式,所述无机氧化物基质为氧化铝。
本发明中,所述氧化铝可以选自γ-氧化铝、δ-氧化铝、η-氧化铝、ρ- 氧化铝、κ-氧化铝和χ-氧化铝中的至少一种,本发明对此没有特别的限定。
根据本发明的一种优选实施方式,以金属元素计,稀土族金属组分与选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分的摩尔比为(0.4-18):1,进一步优选为(0.5-12):1,更进一步优选为(1-6):1,例如(2-5):1,或(2.5-3.5):1,或(2.6-3.4):1,或(2.7-3.3):1,或(2.8-3.2):1,或(2.9-3.1):1,或(2.95-3.05):1。
根据本发明的一种特别优选实施方式,以催化剂总重量为基准,含有50-80重量%的氧化铝;以氧化物计的7-38重量%的镧;以氧化物计的2-8重量%的镁;以氧化物计的2-7重量%的钴;以氧化物计的2-5重量%的锰;以元素计的0.02-0.05重量%的钯;更优选情况下,镧与钴的摩尔比为(1-6):1,例如(2-5):1,或(2.5-3.5):1,或(2.6-3.4):1,或(2.7-3.3):1,或(2.8-3.2):1,或(2.9-3.1):1,或(2.95-3.05):1。
本发明的发明人在研究过程中发现,将稀土族元素La、IIA族元素Mg和含有Co、Mn的过渡非贵金属元素配合贵金属元素中的至少一种作为活性组分使用,能够特别有效的降低催化裂化再生烟气NOx和SOx排放。
根据本发明的第5个方面,本发明提供了制备根据本发明的第1个方面的用于降低烟气中NOx和SOx排放的催化剂的方法,该方法包括:
(1)提供含有选自稀土族金属的第一活性组分前驱体和选自第VIII族非贵金属的第二活性组分前驱体的前驱体溶液;
(2)将所述前驱体溶液与共沉淀剂进行共沉淀反应,然后进行干燥和焙烧;
(3)将步骤(2)得到的固体产物与载体和/或载体的前驱体混合打浆,得到浆液,将浆液进行干燥和焙烧;
(4)以含有贵金属组分前驱体的溶液作为浸渍液,对步骤(3)得到的固体产物进行浸渍,然后进行干燥和/或焙烧。
根据本发明提供的方法,第一活性组分、第二活性组分以及所述贵金属组分和载体的具体种类的选择范围在上文第1个方面所述中已经提及,在此不再赘述。
本发明中对步骤(1)提供所述前驱体溶液的方法没有特别的限定,只要使得各金属组分前驱体混合均匀即可。例如可以将各金属组分前驱体 溶于水中,充分搅拌均匀。
根据本发明提供的方法,优选地,所述第一活性组分前驱体和第二活性组分前驱体可以各自独立地选自各金属组分的水溶性盐,如硝酸盐、氯化物、氯酸盐或硫酸盐等,优选为硝酸盐和/或氯化物。
根据本发明提供的方法,优选地,所述贵金属组分前驱体选自硝酸钯、氯化钯、氯酸铂和氯化铑中的至少一种,优选为硝酸钯和/或氯化钯。
根据本发明,选用共沉淀法对前驱体溶液进行共沉淀反应。本发明对所述共沉淀剂的种类和用量没有特别的限定,只要能够使得共沉淀反应顺利进行即可。所述共沉淀剂的种类可以为本领域的常规选择,优选地,所述共沉淀剂为碳酸盐,进一步优选选自碳酸铵、碳酸钾和碳酸钠中的至少一种,更优选为碳酸铵。
步骤(2)中,共沉淀剂可以以溶液的形式引入,与所述前驱体溶液进行共沉淀反应。本发明对所述前驱体溶液和共沉淀剂的溶液的浓度没有特别的限定,只要溶液浓度小于在制备时的溶解度,从而确保能够充分发生所述共沉淀反应即可。
优选地,所述共沉淀反应在pH为8-10,优选8.5-9.5条件下进行。所述共沉淀反应的pH可以通入加入酸和/或碱进行调节,对其具体种类没有特别的限定,例如可以为氨水。
根据本发明,还包括将共沉淀反应得到的反应产物进行固液分离(例如可以为过滤或者是离心分离),以得到固体产物,然后进行所述干燥和焙烧。
优选地,步骤(2)所述焙烧的条件包括:温度为300-800℃,时间为1-8h。
本发明中,所述载体前驱体可以为任何能够通过后续焙烧转化为载体的物质,本领域技术人员可以通过载体的具体种类进行适当选择,本发明在此不再赘述。例如,氧化铝的前驱体可以选自铝的各种溶胶或凝胶,或者氢氧化铝。所述氢氧化铝可以选自三水铝石、湃铝石、诺水铝石、硬水铝石、薄水铝石和拟薄水铝石中的至少一种。
根据本发明提供的方法,所述载体为氧化铝,优选地,在打浆之前,对载体和/或载体的前驱体进行酸化处理,所述酸化处理可以按照本领域常规技术手段进行,进一步地,所述酸化处理所用的酸为盐酸。
本发明对所述酸化处理的条件的选择范围较宽,优选地,所述酸化处理的条件包括:酸铝比为0.12-0.22:1,时间为20-40min。
在本发明中,无特殊说明情况下,所述酸铝比是指以36重量%的浓盐酸计的盐酸与以干基计的氧化铝的前驱体的质量比。
所述酸化胶溶处理的具体实施方式可以为:将氧化铝前驱体加入水中打浆分散。
本发明提供的方法,对步骤(2)得到的固体产物、载体和/或载体的前驱体混合打浆的方法没有特定的限定,对上述物质的加入顺序同样没有限定,只要将上述物质以及水接触混合均匀即可。
根据本发明提供的方法,优选地,步骤(3)所述浆液的固含量为7-35重量%。
根据本发明提供的方法,步骤(3)所述干燥优选为喷雾干燥,在本发明中,所述喷雾干燥可以按照本领域常规技术手段进行,本发明对此没有特备的限定。本领域技术人员可以根据目标催化剂的平均粒径选择适当的喷雾干燥条件,优选喷雾干燥的条件使得喷雾干燥得到的颗粒平均粒径为60-80μm,粒径分布范围主要在20-100μm。
根据本发明提供的方法,步骤(3)中可以对混合打浆得到的浆液进行焙烧,优选地,步骤(3)所述焙烧的条件包括:温度为300-800℃,时间为1-5h。
根据本发明提供的方法,对步骤(4)中所述浸渍没有特别的限定,可以按照本领域常规技术手段进行,可以为饱和浸渍,也可以为过量浸渍,优选为过量浸渍。本领域技术人员可以根据目标产物中贵金属的含量选择适当的操作。
根据本发明,优选地,步骤(4)中,将贵金属组分前驱体在酸溶液中水解以提供所述浸渍液。具体地,还可以在所述水解以后,进行稀释(可以加水)或者提浓(可以进行蒸发),然后进行所述浸渍以提供特定贵金属组分负载量的催化剂。
优选地,所述酸选自可溶于水的无机酸和/或有机酸,优选选自盐酸、硝酸、磷酸和醋酸中至少一种。
根据本发明,优选地,所述酸的用量使得浸渍液的pH值小于5.0,优选为2-5。采用该种优选实施方式更加有利于活性组分的均匀分散,并 能够改善成品催化剂的耐磨损强度。
本发明可以通过对浸渍后得到的混合物进行过滤得到所述固体产物。所述过滤可以按照本领域常规技术手段进行。
本发明步骤(4)中可以仅对固体产物进行干燥,也可以仅对固体产物进行焙烧,还可以对所述固体产物进行干燥后进行焙烧,本发明对此没有特别的限定,优选对所述固体产物进行干燥后进行焙烧。
本发明对步骤(2)、步骤(3)和步骤(4)所述干燥的条件没有特别的限定,可以按照本领域常规技术手段进行。例如,干燥的条件可以各自独立地包括:温度为60-200℃,时间为2-10h。
本发明对所述焙烧条件没有特别的限定,可以按照本领域常规技术手段进行,所述焙烧可以在空气或惰性气氛(包括但不限于氮气)中进行,优选地,步骤(4)所述焙烧的条件包括:温度300-700℃,时间为0.1-5h。
根据本发明的第6个方面,本发明提供了制备根据本发明的第2个方面的脱硫脱硝的催化剂的方法,包括以下步骤:
S1、活性金属前驱体的制备:采用共沉淀法或者溶胶凝胶法;
S2、催化剂半成品的制备:将活性金属前驱体与无机氧化物基质和/或无机氧化物基质的前驱体以及任选地贵金属组分前驱体混合打浆,得到浆液,将浆液进行干燥和焙烧;
该方法还任选地包括:S3、以含有贵金属组分前驱体的溶液作为浸渍液,对步骤S2得到的催化剂半成品进行浸渍,得到固体产物,对固体产物进行干燥和焙烧;
其中,活性金属前驱体中的活性金属包括稀土族金属组分、选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分以及VIIB族非贵金属组分;
所述活性金属前驱体、无机氧化物基质和/或无机氧化物基质的前驱体以及贵金属组分前驱体的用量使得制得的催化剂中,以催化剂总重量为基准,按重量百分比计包括,以氧化物计:无机氧化物基质25-92重量%,稀土族金属组分6-70重量%,选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分1-12重量%,选自VIIB族的非贵金属组分1-10重量%;以元素计:贵金属组分0.01-1.5重量%。
根据本发明,优选地,所述活性金属前驱体、无机氧化物基质和/或无机氧化物基质的前驱体以及贵金属组分前驱体的用量使得制得的催化 剂中,以催化剂总重量为基准,按重量百分比计包括,以氧化物计:无机氧化物基质40-85重量%,稀土族金属组分12-60重量%,选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分2-10重量%,选自VIIB族的非贵金属组分1-8重量%;以元素计:贵金属组分0.02-1.2重量%;
优选地,所述活性金属前驱体、无机氧化物基质和/或无机氧化物基质的前驱体以及贵金属组分前驱体的用量使得制得的催化剂中,以催化剂总重量为基准,按重量百分比计包括,
以氧化物计:无机氧化物基质45-80重量%,稀土族金属组分12-48重量%,选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分2-8重量%,选自VIIB族的非贵金属组分2-5重量%;
以元素计:贵金属组分0.02-1.0重量%;
最优选的,所述活性金属前驱体、无机氧化物基质和/或无机氧化物基质的前驱体以及贵金属组分前驱体的用量使得制得的催化剂中,以催化剂总重量为基准,按重量百分比计包括,
以氧化物计:无机氧化物基质50-80重量%,稀土族金属组分12-43重量%,选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分2-5重量%,选自VIIB族的非贵金属组分2-5重量%;
以元素计:贵金属组分0.02-0.05重量%。
优选地,所述活性组分前驱体中,以金属元素计,稀土族金属组分与选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分的摩尔比为(0.6-18):1,进一步优选为(2-12):1,更进一步优选为(3-6):1,例如(1-10):1,或(1-6):1,(2-5):1,或(2.5-3.5):1,或(2.6-3.4):1,或(2.7-3.3):1,或(2.8-3.2):1,或(2.9-3.1):1,或(2.95-3.05):1。
本发明提供的制备方法中,稀土族金属组分、选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分、VIIB族非贵金属组分、贵金属组分以及无机氧化物基质的具体种类的选择范围如上文第2个方面所述,在此不再赘述。
本发明提供的制备方法可以选用共沉淀法,也可以选用溶胶凝胶法,更优选的为共沉淀法。步骤S1中采用共沉淀法得到活性金属前驱体;
优选地,所述共沉淀法包括:
S11、配制含有稀土族金属组分前驱体、选自VB、VIII、IB、IIB族 的一种或几种的非贵金属组分前驱体以及VIIB族非贵金属组分前驱体的第一溶液;
S12、将第一溶液与共沉淀剂进行共沉淀反应;
S13、将共沉淀反应得到的固体产物进行干燥和焙烧。
本发明对步骤S11得到所述第一溶液的方法没有特别的限定,只要使得各金属组分前驱体混合均匀即可。例如将步骤S11中的各种金属组分前驱体溶于水中充分搅拌均匀即可。
根据本发明,优选地,稀土族金属组分前驱体、选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分前驱体、VIIB族非贵金属组分前驱体以及贵金属组分前驱体可以各自独立地选自各金属组分的水溶性盐,如硝酸盐、氯化物、氯酸盐或硫酸盐等,优选为硝酸盐和/或氯化物。进一步优选地,锰的前驱体为高锰酸钾和/或氯化锰。
本发明对所述共沉淀剂的种类和用量没有特别的限定,只要能够使得共沉淀反应顺利进行即可。共沉淀剂为本领域常规选择的共沉淀剂即可,优选地,共沉淀剂为碳酸盐,进一步优选为碳酸铵、碳酸钾和碳酸钠中的一种或几种的混合物,更优选为碳酸铵。
步骤S12中,共沉淀剂可以以溶液的形式引入,与第一溶液进行共沉淀反应。本发明对第一溶液和共沉淀剂的溶液的浓度没有特别的限定,只要溶解浓度小于在制备时的溶解度,从而确保能够充分发生共沉淀反应即可。
优选地,共沉淀反应在pH为8-10,优选pH为8.5-9.5条件下进行。共沉淀反应的pH可以通入加入酸和/或碱进行调节,对酸和/或碱的种类没有特别的限定,例如氨水。
根据本发明,还包括将共沉淀反应得到的反应产物进行固液分离,得到固体产物。本发明对固液分离的方式没有特别的限定,只要能够使得反应产物实现固液分离即可。例如固液分离方式可以是过滤,还可以是离心。
优选地,步骤S13干燥的条件包括:温度为60-300℃,时间为0.5-6h。
优选地,步骤S13焙烧的条件包括:温度为300-800℃,时间为1-8h。
本发明中贵金属组分可以在步骤S2中引入,也可以在步骤S3中引入,还可以部分在步骤S2引入,部分在步骤S3引入,优选通过在步骤 S3中引入,该种优选实施方式更有利于贵金属的分散。
本发明中,无机氧化物基质的前驱体为任何能够通过后续焙烧转化为氧化物基质的物质,本领域技术人员可以对无机氧化物基质的具体种类进行适当选择,本发明在此不再赘述。例如,氧化铝的前驱体可以选自铝的各种溶胶或凝胶,或者氢氧化铝。氢氧化铝可以选自三水铝石、湃铝石、诺水铝石、硬水铝石、薄水铝石和拟薄水铝石中的一种或几种的混合物。最优选氧化铝的前驱体为拟薄水铝石。
根据本发明提供的制备方法,所述无机氧化物基质为氧化铝,优选地,在打浆之前,需对无机氧化物基质和/或无机氧化物基质的前驱体进行酸化处理,酸化处理的方式可以采用本领域的常规技术手段,进一步优选地,酸化处理使用的酸为盐酸。
本发明对酸化处理的条件选择范围较宽,优选地,所述酸化处理的条件包括:酸铝比为(0.12-0.22):1,时间为20-40min。
在本发明中,无特殊说明情况下,酸铝比是指以36重量%的浓盐酸计的盐酸与以干基计的氧化铝的前驱体的质量比。
所述酸化胶溶处理的具体实施方案可以为:将氧化铝前驱体置于水中打浆分散。
根据本发明,对活性金属前驱体与无机氧化物基质和/或无机氧化物基质的前驱体以及任选地贵金属组分前驱体混合打浆的方法没有特别的限定,对活性金属前驱体与无机氧化物基质和/或无机氧化物基质的前驱体以及任选地贵金属组分前驱体的加入顺序同样没有限定,只要将活性金属前驱体与无机氧化物基质和/或无机氧化物基质的前驱体以及任选地贵金属组分前驱体以及水接触即可。当打浆过程中还含有贵金属组分前驱体时,具体混合打浆过程可以包括:将贵金属组分前驱体(可以以溶液形式引入)加入酸化后的无机氧化物基质混合打浆,再将活性金属前驱体加入,然后对浆液进行干燥和焙烧,得到催化剂成品。
根据本发明,优选地,步骤S2中浆液的固含量为5-40重量%。
步骤S2中干燥方式优选为喷雾干燥,在本发明中,喷雾干燥可以按照本领域常规技术手段进行,本发明对此没有特别的限定。本领域技术人员可以根据目标催化剂的平均粒径选择适当的喷雾干燥条件,优选喷雾干燥的条件使得喷雾干燥得到的颗粒的平均粒径为60-80μm,粒径分布 范围主要在20-100μm。
优选地,步骤S2焙烧的条件包括:温度为300-800℃,时间为1-5h。
根据本发明的制备方法,步骤S3中的浸渍方式可以按照本领域的常规技术手段进行,本发明对此没有特别的限定。例如浸渍方式可以为饱和浸渍,也可以为过量浸渍,优选为过量浸渍。
根据本发明,优选地,步骤S3中,将贵金属组分前驱体在酸溶液中水解制得浸渍液。具体地,还可以在水解以后,进行稀释(可以加水)或者提浓(可以进行蒸发),然后进行浸渍以提供特定贵金属组分负载量的脱硫脱硝催化剂。
优选地,酸为可溶于水的无机酸和/或有机酸,优选为盐酸、硝酸、磷酸和醋酸中的一种或几种的混合物。
根据本发明,优选地,酸的用量使得浸渍液的pH值小于6.0,优选小于5.0。采用这种优选实施方案的优点为更加有利于活性组元均匀分散及改善成品催化剂的耐磨损强度。
本发明可以通过对浸渍后得到的混合物进行过滤得到固体产物。过滤可以按照本领域常规技术手段进行。
本发明步骤S3不仅可以对固体产物进行干燥,也可以仅对固体产物进行焙烧,还可以对固体产物进行干燥后进行焙烧,本发明对此没有特别的限定,优选对固体产物进行干燥后进行焙烧。本发明对干燥和焙烧的条件没有特别的限定,可以按照本领域常规技术手段进行。例如,干燥的条件可以包括:温度为60-150℃,时间为2-10h。本发明对焙烧的条件没有特别的限定,焙烧可以在空气或惰性气氛(例如氮气)中进行,本发明对此没有特别的限制,优选地,步骤S3烘焙的条件为:温度为300-800℃,时间为0.1-5h。
根据本发明的第7个方面,本发明提供了制备根据本发明的第3个方面的能够同时降低烟气中SOx与NOx的催化剂的方法,该方法包括如下步骤:
(1)提供含有选自稀土族金属的第一活性组分前驱体、选自VB、VIII、IB、IIB族非贵金属的第二活性组分前驱体以及选自IIA族金属的第三活性组分前驱体的前驱体溶液;
(2)将所述前驱体溶液与共沉淀剂进行共沉淀反应,然后进行干燥和 焙烧;
(3)将步骤(2)得到的固体产物与载体和/或载体的前驱体以及任选地贵金属组分前驱体混合打浆,得到浆液,将浆液进行干燥和焙烧;
该方法还任选地包括:(4)以含有贵金属组分前驱体的溶液作为浸渍液,对步骤(3)得到的固体产物进行浸渍,然后进行干燥和/或焙烧;
第一活性组分前驱体、第二活性组分前驱体、第三活性组分前驱体、载体和/或载体的前驱体以及贵金属组分前驱体的用量使得制得的催化剂,以催化剂总重量为基准,所述载体的含量为25-93重量%,以氧化物计,所述第一活性组分的含量为4-60重量%,所述第二活性组分的含量为2-30重量%,所述第三活性组分的含量为1-30重量%,以元素计,所述贵金属组分的含量为0.01-2重量%。
根据本发明提供的方法,优选地,第一活性组分前驱体、第二活性组分前驱体、第三活性组分前驱体、载体和/或载体的前驱体以及贵金属组分前驱体的用量使得制得的催化剂,以催化剂总重量为基准,所述载体的含量为40-87重量%,以氧化物计,所述第一活性组分的含量为8-50重量%,所述第二活性组分的含量为3-20重量%,所述第三活性组分的含量为1-20重量%,以元素计,所述贵金属组分的含量为0.02-1.5重量%;
优选地,第一活性组分前驱体、第二活性组分前驱体、第三活性组分前驱体、载体和/或载体的前驱体以及贵金属组分前驱体的用量使得制得的催化剂,以催化剂总重量为基准,所述载体的含量为45-80重量%,以氧化物计,所述第一活性组分的含量为8-40重量%,所述第二活性组分的含量为3-15重量%,所述第三活性组分的含量为2-15重量%,以元素计,所述贵金属组分的含量为0.03-1.2重量%。
根据本发明提供的方法,第一活性组分、第二活性组分、第三活性组分以及所述贵金属组分和载体的具体种类的选择范围如上文第3个方面所述,在此不再赘述。
根据本发明的一种优选实施方式,以金属元素计,第一活性组分前驱体与第二活性组分前驱体的摩尔比为(0.4-12):1,优选为(0.5-8):1,进一步优选为(1-4):1。
本发明对步骤(1)提供所述前驱体溶液的方法没有特别的限定,只要使得各金属组分前驱体混合均匀即可。例如可以将各金属组分前驱体溶 于水中,充分搅拌均匀。
根据本发明,优选地,第一活性组分前驱体、第二活性组分前驱体以及第三活性组分前驱体可以各自独立地选自各金属组分的水溶性盐,如硝酸盐、氯化物、氯酸盐或硫酸盐等,优选为硝酸盐和/或氯化物。
根据本发明,优选地,所述贵金属组分前驱体选自硝酸钯、氯化钯、氯酸铂和氯化铑中的至少一种,优选为硝酸钯和/或氯化钯。
本发明对所述共沉淀剂的种类和用量没有特别的限定,只要能够使得共沉淀反应顺利进行即可。所述共沉淀剂的种类可以为本领域的常规选择,优选地,所述共沉淀剂为碳酸盐,进一步优选选自碳酸铵、碳酸钾和碳酸钠中的至少一种,更优选为碳酸铵。
步骤(2)中,共沉淀剂可以以溶液的形式引入,与所述前驱体溶液进行共沉淀反应。本发明对所述前驱体溶液和共沉淀剂的溶液的浓度没有特别的限定,只要溶液浓度小于在制备时的溶解度,从而确保能够充分发生所述共沉淀反应即可。
优选地,所述共沉淀反应在pH为8-10,优选8.5-9.5条件下进行。所述共沉淀反应的pH可以通入加入酸和/或碱进行调节,对其具体种类没有特别的限定,例如可以为氨水。
根据本发明,还包括将共沉淀反应得到的反应产物进行固液分离(例如可以为过滤或者是离心分离),以得到固体产物,然后进行所述干燥和焙烧。
本发明中所述贵金属组分可以在步骤(3)中引入,也可以在步骤(4)中引入,还可以部分在步骤(3)引入,部分在步骤(4)引入,优选通过在步骤(4)中引入,该种优选实施方式更有利于贵金属的分散。
所述载体前驱体可以为任何能够通过后续焙烧转化为载体的物质,本领域技术人员可以通过载体的具体种类进行适当选择,本发明在此不再赘述。例如,氧化铝的前驱体可以选自铝的各种溶胶或凝胶,或者氢氧化铝。所述氢氧化铝可以选自三水铝石、湃铝石、诺水铝石、硬水铝石、薄水铝石和拟薄水铝石中的至少一种。
根据本发明提供的方法,所述载体为氧化铝,优选地,在打浆之前,对载体和/或载体的前驱体进行酸化处理,所述酸化处理可以按照本领域常规技术手段进行,进一步优地,所述酸化处理使用的酸为盐酸。
本发明对所述酸化处理的条件的选择范围较宽,优选地,所述酸化处理的条件包括:酸铝比为0.12-0.22:1,时间为20-40min。
在本发明中,无特殊说明情况下,所述酸铝比是指以36重量%的浓盐酸计的盐酸与以干基计的氧化铝的前驱体的质量比。
所述酸化胶溶处理的具体实施方式可以为:将氧化铝前驱体加入水中打浆分散。
本发明提供的方法,对所述步骤(2)得到的固体产物、载体和/或载体的前驱体以及任选地贵金属组分前驱体混合打浆的方法没有特别的限定,对上述物料的加入顺序同样没有限定,只要将上述物料以及水接触混合均匀即可。当打浆过程中还含有贵金属组分前驱体时,具体混合打浆过程可以包括:将贵金属组分前驱体(可以以溶液形式引入)加入酸化后的载体混合打浆,再将步骤(2)得到的固体产物加入,然后对浆液进行干燥和焙烧。
根据本发明,优选地,步骤(3)所述浆液的固含量为6-38重量%。
根据本发明提供的方法,步骤(3)所述干燥优选为喷雾干燥,在本发明中,所述喷雾干燥可以按照本领域常规技术手段进行,本发明对此没有特别的限定。本领域技术人员可以根据目标催化剂的平均粒径选择适当的喷雾干燥条件,优选喷雾干燥的条件使得喷雾干燥得到的颗粒的平均粒径为60-80μm,粒径分布范围主要在20-100μm。
根据本发明提供的方法,对步骤(4)中所述浸渍没有特别的限定,可以按照本领域常规技术手段进行,可以为饱和浸渍,也可以为过量浸渍,优选为过量浸渍。本领域技术人员可以根据目标产物中贵金属的含量选择适当的操作。
根据本发明,优选地,步骤(4)中,将贵金属组分前驱体在酸溶液中水解以提供所述浸渍液。具体地,还可以在所述水解以后,进行稀释(可以加水)或者提浓(可以进行蒸发),然后进行所述浸渍以提供特定贵金属组分负载量的催化剂。
优选地,所述酸选自可溶于水的无机酸和/或有机酸,优选选自盐酸、硝酸、磷酸和醋酸中至少一种。
根据本发明,优选地,所述酸的用量使得浸渍液的pH值小于6.0,优选为2-5。采用该种优选实施方式更有利于活性组元均匀分散及改善成 品催化剂的耐磨损强度。
本发明可以通过对浸渍后得到的混合物进行过滤得到所述固体产物。所述过滤可以按照本领域常规技术手段进行。
本发明步骤(4)中可以仅对固体产物进行干燥,也可以仅对固体产物进行焙烧,还可以对所述固体产物进行干燥后进行焙烧,本发明对此没有特别的限定,优选对所述固体产物进行干燥后进行焙烧。本发明对所述干燥和焙烧的条件没有特别的限定,可以按照本领域常规技术手段进行。例如,干燥的条件可以包括:温度为60-200℃,时间为2-10h。
本发明提供方法中,不同步骤的焙烧条件相同或不同,优选地,步骤(2)、步骤(3)和步骤(4)所述的焙烧条件各自独立地包括:温度为300-800℃,时间为0.5-8h。所述焙烧可以在空气或惰性气氛(例如氮气)中进行,本发明对此没有特别的限制,优选在空气气氛下进行。
根据本发明的第8个方面,本发明提供了制备根据本发明的第4个方面的用于同时降低烟气中SOx与NOx的催化剂制备方法,该方法包括以下步骤:
(1)采用共沉淀法或者溶胶凝胶法得到活性金属前驱体;
(2)将活性金属前驱体与无机氧化物基质和/或无机氧化物基质的前驱体以及任选地贵金属组分前驱体混合打浆,得到浆液,将所述浆液进行干燥和/或焙烧,得到组合物;
该方法还任选地包括:(3)以含有贵金属组分前驱体的溶液作为浸渍液,对步骤(2)所得组合物进行浸渍,得到固体产物,然后对所述固体产物进行干燥和/或焙烧;
其中,活性金属前驱体中的活性金属包括稀土族金属组分、IIA族金属组分、选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分以及VIIB族非贵金属组分;
所述活性金属前驱体、无机氧化物基质和/或无机氧化物基质的前驱体以及贵金属组分前驱体的用量使得制得的催化剂中,以催化剂总重量为基准,含有25-95重量%的无机氧化物基质;以氧化物计的2-70重量%的稀土族金属组分;以氧化物计的1-30重量%的IIA族金属组分;以氧化物计的1-15重量%的选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分;以氧化物计的1-10重量%的VIIB族非贵金属组分;以元素计 的0.01-1.5重量%的贵金属组分。
根据本发明,优选地,所述活性金属前驱体、无机氧化物基质和/或无机氧化物基质的前驱体以及贵金属组分前驱体的用量使得制得的催化剂中,以催化剂总重量为基准,含有40-90重量%的无机氧化物基质;以氧化物计的4-50重量%的稀土族金属组分;以氧化物计的1-20重量%的IIA族金属组分;以氧化物计的2-12重量%的选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分;以氧化物计的1-8重量%的VIIB族非贵金属组分;以元素计的0.02-1.2重量%的贵金属组分;更优选地,所述活性金属前驱体、无机氧化物基质和/或无机氧化物基质的前驱体以及贵金属组分前驱体的用量使得制得的催化剂中,以催化剂总重量为基准,含有5-80重量%的无机氧化物基质;以氧化物计的4-40重量%的稀土族金属组分;以氧化物计的2-15重量%的IIA族金属组分;以氧化物计的2-10重量%的选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分;以氧化物计的2-5重量%的VIIB族非贵金属组分;以元素计的0.02-1.0重量%的贵金属组分;最优选地,以催化剂总重量为基准,含有50-80重量%的无机氧化物基质;以氧化物计的7-38重量%的稀土族金属组分;以氧化物计的2-8重量%的IIA族金属组分;以氧化物计的2-7重量%的选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分;以氧化物计的2-5重量%的VIIB族非贵金属组分;以元素计的0.02-0.05重量%的贵金属组分。
优选地,所述活性组分前驱体中,以金属元素计,稀土族金属组分与选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分的摩尔比为(0.4-18):1,进一步优选为(0.5-12):1,更进一步优选为(1-6):1。
本发明提供的方法中,稀土族金属组分、所述IIA族金属组分、所述VB、VIII、IB、IIB族的一种或几种的非贵金属组分、所述VIIB族非贵金属组分以及所述贵金属组分和所述无机氧化物基质的具体种类的选择范围如上文第4个方面所述,在此不再赘述。
本发明提供的方法可以选用共沉淀法,也可以选用溶胶凝胶法,更优选的为共沉淀法。优选步骤(1)采用共沉淀法得到所述活性金属前驱体;更优选地,所述共沉淀法包括:
(1-1)提供含有稀土族金属组分前驱体、IIA族金属组分前驱体、选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分前驱体以及VIIB族 非贵金属组分前驱体的第一溶液;
(1-2)将所述第一溶液与共沉淀剂进行共沉淀反应;
(1-3)将所述共沉淀反应得到的固体产物进行干燥和/或焙烧。
本发明对步骤(1-1)得到所述第一溶液的方法没有特别的限定,只要使得各金属组分前驱体混合均匀即可。例如可以将各金属组分前驱体溶于水中,充分搅拌均匀。
根据本发明,优选地,稀土族金属组分前驱体、IIA族金属组分前驱体、选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分前驱体以及VIIB族非贵金属组分前驱体可以各自独立地选自各金属组分的水溶性盐,如硝酸盐、氯化物、氯酸盐或硫酸盐等,优选为硝酸盐和/或氯化物。特别的,锰的前驱体可以为高锰酸钾和/或氯化锰。
根据本发明,所述贵金属组分前驱体可以选自任何含有所述贵金属组分的水溶性化合物,优选地,所述贵金属组分前驱体选自硝酸钯、氯化钯、氯酸铂和氯化铑中的至少一种,进一步优选为硝酸钯和/或氯化钯。
本发明对所述共沉淀剂的种类和用量没有特别的限定,只要能够使得共沉淀反应顺利进行即可。所述共沉淀剂的种类可以为本领域的常规选择,优选地,所述共沉淀剂为碳酸盐,进一步优选选自碳酸铵、碳酸钾和碳酸钠中的至少一种,更优选为碳酸铵。
步骤(1-2)中,共沉淀剂可以以溶液的形式引入,与所述第一溶液进行共沉淀反应。本发明对所述第一溶液和共沉淀剂的溶液的浓度没有特别的限定,只要溶液浓度小于在制备时的溶解度,从而确保能够充分发生所述共沉淀反应即可。
优选地,所述共沉淀反应在pH为8-10,优选8.5-9.5条件下进行。所述共沉淀反应的pH可以通入加入酸和/或碱进行调节,对其具体种类没有特别的限定,例如可以为氨水。
根据本发明,还包括将共沉淀反应得到的反应产物进行固液分离(例如可以为过滤或者是离心分离),以得到所述固体产物。
优选地,步骤(1-3)所述干燥的条件包括:温度为60-150℃,时间为4-12h。
优选地,步骤(1-3)所述焙烧的条件包括:温度为300-800℃,时间为1-8h。
本发明中所述贵金属组分可以在步骤(2)中引入,也可以在步骤(3)中引入,还可以部分在步骤(2)引入,部分在步骤(3)引入,优选通过在步骤(3)中引入,该种优选实施方式更有利于贵金属的分散。
所述无机氧化物基质的前驱体为任何能够通过后续焙烧转化为氧化物基质的物质,本领域技术人员可以通过具体的无机氧化物基质的具体种类进行适当选择,本发明在此不再赘述。例如,氧化铝的前驱体可以选自铝的各种溶胶或凝胶,或者氢氧化铝。所述氢氧化铝可以选自三水铝石、湃铝石、诺水铝石、硬水铝石、薄水铝石和拟薄水铝石中的至少一种。最优选氧化铝的前驱体为拟薄水铝石。
根据本发明提供的制备方法,所述无机氧化物基质为氧化铝,优选地,在打浆之前,对无机氧化物基质和/或无机氧化物基质的前驱体进行酸化处理,所述酸化处理可以按照本领域常规技术手段进行,进一步优地,所述酸化处理使用的酸为盐酸。
本发明对所述酸化处理的条件的选择范围较宽,优选地,所述酸化处理的条件包括:酸铝比为0.12-0.22:1,时间为20-40min。
在本发明中,无特殊说明情况下,所述酸铝比是指以36重量%的浓盐酸计的盐酸与以干基计的氧化铝的前驱体的质量比。
所述酸化胶溶处理的具体实施方式可以为:将氧化铝前驱体加入水中打浆分散。
根据本发明,对所述活性金属前驱体与无机氧化物基质和/或无机氧化物基质的前驱体以及任选地贵金属组分前驱体混合打浆的方法没有特别的限定,对活性金属前驱体与无机氧化物基质和/或无机氧化物基质的前驱体以及任选地贵金属组分前驱体的加入顺序同样没有限定,只要将活性金属前驱体与无机氧化物基质和/或无机氧化物基质的前驱体以及任选地贵金属组分前驱体以及水接触即可。当打浆过程中还含有贵金属组分前驱体时,具体混合打浆过程可以包括:将贵金属组分前驱体(可以以溶液形式引入)加入酸化后的无机氧化物基质混合打浆,再将活性金属前驱体加入,然后对浆液进行干燥和/或焙烧,得到催化剂成品。
根据本发明,优选地,步骤(2)所述浆液的固含量为5-40重量%。
步骤(2)所述干燥优选为喷雾干燥,在本发明中,所述喷雾干燥可以按照本领域常规技术手段进行,本发明对此没有特别的限定。本领域技 术人员可以根据目标催化剂的平均粒径选择适当的喷雾干燥条件,优选喷雾干燥的条件使得喷雾干燥得到的颗粒的平均粒径为60-80μm,粒径分布范围主要在20-100μm。
优选地,步骤(2)所述焙烧的条件包括:温度为300-800℃,时间为1-5h。
根据本发明的制备方法,对步骤(3)中所述浸渍没有特别的限定,可以按照本领域常规技术手段进行,可以为饱和浸渍,也可以为过量浸渍,优选为过量浸渍。
根据本发明,优选地,步骤(3)中,将贵金属组分前驱体在酸溶液中水解以提供所述浸渍液。具体地,还可以在所述水解以后,进行稀释(可以加水)或者提浓(可以进行蒸发),然后进行所述浸渍以提供特定贵金属组分负载量的催化剂。
优选地,所述酸选自可溶于水的无机酸和/或有机酸,优选选自盐酸、硝酸、磷酸和醋酸中至少一种。
根据本发明,优选地,所述酸的用量使得浸渍液的pH值小于6.0,优选小于5.0。采用该种优选实施方式更有利于活性组元均匀分散及改善成品催化剂的耐磨损强度。
本发明可以通过对浸渍后得到的混合物进行过滤得到所述固体产物。所述过滤可以按照本领域常规技术手段进行。
本发明步骤(3)中可以仅对固体产物进行干燥,也可以仅对固体产物进行焙烧,还可以对所述固体产物进行干燥后进行焙烧,本发明对此没有特别的限定,优选对所述固体产物进行干燥后进行焙烧。本发明对所述干燥和焙烧的条件没有特别的限定,可以按照本领域常规技术手段进行。例如,干燥的条件可以包括:温度为60-150℃,时间为2-10h。本发明对所述焙烧的条件没有特别的限定,所述焙烧可以在空气或惰性气氛(例如氮气)中进行,本发明对此没有特别的限制,步骤(3)所述焙烧的条件优选包括:温度为300-800℃,时间为0.1-5h。
根据本发明提供的方法,提供所述活性金属组分前驱体的方法可以选用共沉淀法,也可以选用溶胶凝胶法,更优选的为共沉淀法。但可以知晓的是,溶胶凝胶法也在本发明的保护范围之内。
本发明提供的催化剂适合于任何含有SOx和NOx的烟气的处理,特 别适用于脱除催化裂化再生烟气中的SOx和NOx。
由此,根据本发明的第9个方面,本发明提供了一种烟气同时脱SOx和NOx的方法,包括:在同时脱SOx和NOx的条件下,使含SOx和NOx的烟气与本发明的催化剂接触。
根据本发明的一种优选实施方式,所述同时脱SOx和NOx的条件包括:
温度为500-800℃,例如,550-780℃,550-750℃,
压力为0.01-4MPa,例如,0.02-4MPa,0.02-1MPa,0.03-2MPa,0.02-0.1MPa,
烟气的体积空速为100-50000h -1,例如,200-20000h -1,500-10000h -1
在本发明中,没有特殊限定的情况下,所述压力为表压。
优选地,所述烟气中,SOx的含量为0.001-0.5体积%,0.002-0.2体积%,NOx的含量为0.001-0.3体积%,0.002-0.2体积%,0.001-0.03体积%。
优选地,所述烟气中,SOx与NOx的体积含量比值为1-1.4:1,优选为1-1.2:1。该种优选实施方式更有利于提高二者的脱除效率。
本发明对所述烟气的选择范围较宽,本发明提供的方法适用于任何同时含有SOx和NOx的烟气。
所述烟气(例如催化裂化再生烟气)中除了含有SOx和NOx之外,还可以含有CO、CO 2、H 2O组分。
优选地,所述烟气为催化裂化再生烟气。
在本发明的一个方面中,本发明提供了下述技术方案:
1、一种用于同时降低烟气中SOx与NOx的催化剂,其特征在于,以催化剂总重量为基准,含有25-95重量%的无机氧化物基质;以氧化物计的2-70重量%的稀土族金属组分;以氧化物计的1-30重量%的IIA族金属组分;以氧化物计的1-15重量%的选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分;以氧化物计的1-10重量%的VIIB族非贵金属组分;以元素计的0.01-1.5重量%的贵金属组分。
2、根据技术方案1所述的催化剂,其中,以催化剂总重量为基准,含有40-90重量%的无机氧化物基质;以氧化物计的4-50重量%的稀土族金属组分;以氧化物计的1-20重量%的IIA族金属组分;以氧化物计的2-12重量%的选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分; 以氧化物计的1-8重量%的VIIB族非贵金属组分;以元素计的0.02-1.2重量%的贵金属组分;
优选地,以催化剂总重量为基准,含有50-80重量%的无机氧化物基质;以氧化物计的4-40重量%的稀土族金属组分;以氧化物计的2-15重量%的IIA族金属组分;以氧化物计的2-10重量%的选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分;以氧化物计的2-5重量%的VIIB族非贵金属组分;以元素计的0.02-1.0重量%的贵金属组分。
3、根据技术方案1所述的催化剂,其中,所述稀土族金属组分选自镧、铈、镨和钕中的一种或几种,更优选为镧和/或铈;
所述IIA族金属组分选自铍、镁、钙、锶和钡中的一种或几种,更优选为镁;
所述VB、VIII、IB、IIB族的一种或几种的非贵金属组分选自铁、钴、镍、铜、锌和钒中的一种或几种,更优选为钴和/或铁;
所述VIIB族非贵金属组分为锰;
所述贵金属组分选自钌、铑、铼、铂、钯、银、铱和金中的一种或几种,更优选为铂、钯和铑中的一种或几种,最优选为钯;
所述无机氧化物基质选自氧化铝、氧化硅-氧化铝、沸石、尖晶石、高岭土、硅藻土、珍珠岩和钙钛矿中的至少一种,优选为氧化铝。
4、根据技术方案1-3中任意一项所述的催化剂,其中,以金属元素计,稀土族金属组分与选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分的摩尔比为(0.4-18):1,进一步优选为(0.5-12):1,更进一步优选为(1-6):1。
5、一种用于同时降低烟气中SOx与NOx的催化剂制备方法,该方法包括以下步骤:
(1)采用共沉淀法或者溶胶凝胶法得到活性金属前驱体;
(2)将活性金属前驱体与无机氧化物基质和/或无机氧化物基质的前驱体以及任选地贵金属组分前驱体混合打浆,得到浆液,将所述浆液进行干燥和/或焙烧,得到组合物;
该方法还任选地包括:(3)以含有贵金属组分前驱体的溶液作为浸渍液,对步骤(2)所得组合物进行浸渍,得到固体产物,然后对所述固体产物进行干燥和/或焙烧;
其中,活性金属前驱体中的活性金属包括稀土族金属组分、IIA族金属组分、选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分以及VIIB族非贵金属组分;
所述活性金属前驱体、无机氧化物基质和/或无机氧化物基质的前驱体以及贵金属组分前驱体的用量使得制得的催化剂中,以催化剂总重量为基准,含有25-95重量%的无机氧化物基质;以氧化物计的2-70重量%的稀土族金属组分;以氧化物计的1-30重量%的IIA族金属组分;以氧化物计的1-15重量%的选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分;以氧化物计的1-10重量%的VIIB族非贵金属组分;以元素计的0.01-1.5重量%的贵金属组分。
6、根据技术方案5所述的制备方法,其中,所述活性金属前驱体、无机氧化物基质和/或无机氧化物基质的前驱体以及贵金属组分前驱体的用量使得制得的催化剂中,以催化剂总重量为基准,含有40-90重量%的无机氧化物基质;以氧化物计的4-50重量%的稀土族金属组分;以氧化物计的1-20重量%的IIA族金属组分;以氧化物计的2-12重量%的选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分;以氧化物计的1-8重量%的VIIB族非贵金属组分;以元素计的0.02-1.2重量%的贵金属组分;
优选地,所述活性金属前驱体、无机氧化物基质和/或无机氧化物基质的前驱体以及贵金属组分前驱体的用量使得制得的催化剂中,以催化剂总重量为基准,含有50-80重量%的无机氧化物基质;以氧化物计的4-40重量%的稀土族金属组分;以氧化物计的2-15重量%的IIA族金属组分;以氧化物计的2-10重量%的选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分;以氧化物计的2-5重量%的VIIB族非贵金属组分;以元素计的0.02-1.0重量%的贵金属组分;
优选地,所述活性组分前驱体中,以金属元素计,稀土族金属组分与选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分的摩尔比为(0.4-18):1,进一步优选为(0.5-12):1,更进一步优选为(1-6):1。
7、根据技术方案5或6所述的制备方法,其中,所述稀土族金属组分选自镧、铈、镨和钕中的一种或几种,更优选为镧和/或铈;
所述IIA族金属组分选自铍、镁、钙、锶和钡中的一种或几种,更优 选为镁;
所述VB、VIII、IB、IIB族的一种或几种的非贵金属组分选自铁、钴、镍、铜、锌和钒中的一种或几种,更优选为钴和/或铁;
所述VIIB族非贵金属组分为锰;
所述贵金属组分选自钌、铑、铼、铂、钯、银、铱和金中的一种或几种,更优选为铂、钯和铑中的一种或几种,最优选为钯;
所述无机氧化物基质选自氧化铝、氧化硅-氧化铝、沸石、尖晶石、高岭土、硅藻土、珍珠岩和钙钛矿中的至少一种,优选为氧化铝。
8、根据技术方案5-7中任意一项所述的制备方法,其中,步骤(1)采用共沉淀法得到所述活性金属前驱体;优选地,所述共沉淀法包括:
(1-1)提供含有稀土族金属组分前驱体、IIA族金属组分前驱体、选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分前驱体以及VIIB族非贵金属组分前驱体的第一溶液;
(1-2)将所述第一溶液与共沉淀剂进行共沉淀反应;
(1-3)将所述共沉淀反应得到的固体产物进行干燥和/或焙烧。
9、根据技术方案8所述的制备方法,其中,稀土族金属组分前驱体、IIA族金属组分前驱体、选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分前驱体以及VIIB族非贵金属组分前驱体可以各自独立地选自各金属组分的硝酸盐和/或氯化物;
优选地,所述共沉淀剂为碳酸盐,进一步优选选自碳酸铵、碳酸钾和碳酸钠中的至少一种;
优选地,所述共沉淀反应在pH为8-10条件下进行;
优选地,步骤(1-3)所述焙烧的条件包括:温度为300-800℃,时间为1-8h。
10、根据技术方案5-9中任意一项所述的制备方法,其中,步骤(2)所述浆液的固含量为5-40重量%;
优选地,步骤(2)所述焙烧的条件包括:温度为300-800℃,时间为1-5h。
11、根据技术方案5-10中任意一项所述的制备方法,其中,步骤(3)中,将贵金属组分前驱体在酸溶液中水解以提供所述浸渍液;
优选地,所述酸选自可溶于水的无机酸和/或有机酸,优选选自盐酸、 硝酸、磷酸和醋酸中至少一种;
优选地,所述酸的用量使得浸渍液的pH值小于6.0,优选小于5.0;
优选地,步骤(3)所述焙烧的条件包括:温度为300-800℃,时间为0.1-5h。
12、技术方案1-4中任意一项所述的催化剂或者技术方案5-11中任意一项所述的制备方法制得的催化剂在催化裂化再生烟气同时脱SOx和NOx反应中的应用。
13、一种烟气同时脱SOx和NOx的方法,包括:在脱SOx和NOx的条件下,使含SOx和NOx的烟气与技术方案1-4中任意一项所述的催化剂或者技术方案5-11中任意一项所述的制备方法制得的催化剂接触;
优选地,所述脱SOx和NOx的条件包括:温度为500-800℃,压力为0.02-4MPa,烟气的体积空速为100-50000h -1
优选地,所述烟气中,SOx的含量为0.001-0.5体积%,NOx的含量为0.001-0.3体积%;
优选地,所述烟气为催化裂化再生烟气。
在本发明的一个方面中,本发明提供了下述技术方案:
1、一种脱硫脱硝催化剂,其特征在于,以催化剂总重量为基准,按重量百分比计包括,
以氧化物计:无机氧化物基质25-92重量%,稀土族金属组分6-70重量%,选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分1-12重量%,选自VIIB族的非贵金属组分1-10重量%;
以元素计:贵金属组分0.01-1.5重量%。
2、根据技术方案1所述的脱硫脱硝催化剂,其中,以催化剂总重量为基准,按重量百分比计包括,
以氧化物计:无机氧化物基质40-85重量%,稀土族金属组分12-60重量%,选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分2-10重量%,选自VIIB族的非贵金属组分1-8重量%;
以元素计:贵金属组分0.02-1.2重量%;
优选地,以催化剂总重量为基准,按重量百分比计包括,
以氧化物计:无机氧化物基质45-80重量%,稀土族金属组分12-48重量%,选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分2-8重 量%,选自VIIB族的非贵金属组分2-5重量%;
以元素计:贵金属组分0.02-1.0重量%。
3、根据技术方案1所述的脱硫脱硝催化剂,其中,所述稀土族金属组分选自镧、铈、镨和钕中的一种或几种的混合物,更优选为镧;
所述VB、VIII、IB、IIB族的一种或几种的非贵金属组分选自铁、钴、镍、铜、锌和钒中的一种或几种的混合物,更优选为钴;
所述VIIB族非贵金属组分为锰;
所述贵金属组分选自钌、铑、铼、铂、钯、银、铱和金中的一种或几种的混合物,更优选为铂、钯和铑中的一种或几种的混合物,最优选为钯;
所述无机氧化物基质选自氧化铝、氧化硅-氧化铝、沸石、尖晶石、高岭土、硅藻土、珍珠岩和钙钛矿中的一种或几种的混合物,优选为氧化铝。
4、根据技术方案1-3中任意一项所述的脱硫脱硝催化剂,其中,以元素计,稀土族金属组分与选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分的摩尔比为(0.6-18):1,进一步优选为(2-12):1,更进一步优选为(3-6):1。
5、一种脱硫脱硝催化剂的制备方法,包括以下步骤:
S1、活性金属前驱体的制备:采用共沉淀法或者溶胶凝胶法;
S2、催化剂半成品的制备:将活性金属前驱体与无机氧化物基质和/或无机氧化物基质的前驱体以及任选地贵金属组分前驱体混合打浆,得到浆液,将浆液进行干燥和焙烧;
该方法还任选地包括:S3、以含有贵金属组分前驱体的溶液作为浸渍液,对步骤S2得到的催化剂半成品进行浸渍,得到固体产物,对固体产物进行干燥和焙烧;
其中,活性金属前驱体中的活性金属包括稀土族金属组分、选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分以及VIIB族非贵金属组分;
所述活性金属前驱体、无机氧化物基质和/或无机氧化物基质的前驱体以及贵金属组分前驱体的用量使得制得的催化剂,以催化剂总重量为基准,按重量百分比计包括,以氧化物计:无机氧化物基质25-92重量%,稀土族金属组分6-70重量%,选自VB、VIII、IB、IIB族的一种或几种 的非贵金属组分1-12重量%,选自VIIB族的非贵金属组分1-10重量%;以元素计:贵金属组分0.01-1.5重量%。
6、根据技术方案5所述的制备方法,其中,所述活性金属前驱体、无机氧化物基质和/或无机氧化物基质的前驱体以及贵金属组分前驱体的用量使得制得的催化剂中,以催化剂总重量为基准,按重量百分比计包括,
以氧化物计:无机氧化物基质40-85重量%,稀土族金属组分12-60重量%,选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分2-10重量%,选自VIIB族的非贵金属组分1-8重量%;
以元素计:贵金属组分0.02-1.2重量%;
优选地,所述活性金属前驱体、无机氧化物基质和/或无机氧化物基质的前驱体以及贵金属组分前驱体的用量使得制得的催化剂中,以催化剂总重量为基准,以催化剂总重量为基准,按重量百分比计包括,
以氧化物计:无机氧化物基质45-80重量%,稀土族金属组分12-48重量%,选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分2-8重量%,选自VIIB族的非贵金属组分2-5重量%;
以元素计:贵金属组分0.02-1.0重量%;
优选地,所述活性组分前驱体中,以金属元素计,稀土族金属组分与选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分的摩尔比为(0.6-18):1,进一步优选为(2-12):1,更进一步优选为(3-6):1。
7、根据技术方案5或6所述的制备方法,其中,所述稀土族金属组分选自镧、铈、镨和钕中的一种或几种的混合物,更优选为镧;
所述VB、VIII、IB、IIB族的一种或几种的非贵金属组分选自铁、钴、镍、铜、锌和钒中的一种或几种的混合物,更优选为钴;
所述VIIB族非贵金属组分为锰;
所述贵金属组分选自钌、铑、铼、铂、钯、银、铱和金中的一种或几种,更优选为铂、钯和铑中的一种或几种的混合物,最优选为钯;
所述无机氧化物基质选自氧化铝、氧化硅-氧化铝、沸石、尖晶石、高岭土、硅藻土、珍珠岩和钙钛矿中的一种或几种的混合物,优选为氧化铝。
8、根据技术方案5-7中任意一项所述的制备方法,其中,步骤S1 中采用共沉淀法得到活性金属前驱体;
优选地,所述共沉淀法包括:
S11、配制含有稀土族金属组分前驱体、选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分前驱体以及VIIB族非贵金属组分前驱体的第一溶液;
S12、将第一溶液与共沉淀剂进行共沉淀反应;
S13、将共沉淀反应得到的固体产物进行干燥和焙烧。
9、根据技术方案8所述的制备方法,其中,稀土族金属组分前驱体、选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分前驱体、VIIB族非贵金属组分前驱体以及贵金属组分前驱体各自独立地选自各金属组分的硝酸盐和/或氯盐;
优选地,所述共沉淀剂为碳酸盐,优选为碳酸铵、碳酸钾、碳酸钠中的一种或几种的混合物;
优选地,所述共沉淀反应在pH为8-10条件下进行;
优选地,步骤S13中焙烧的条件为:温度为300-800℃,时间为1-8h。
10、根据技术方案5-9中任意一项所述的制备方法,其中,步骤S2中浆液的固含量为5-40重量%;
优选地,步骤S2焙烧的条件为:温度为300-800℃,时间为1-5h。
11、根据技术方案5-10中任意一项所述的制备方法,其中,步骤S3中,将贵金属组分前驱体在酸溶液中水解得到所需浸渍液;
优选地,酸溶液为可溶于水的无机酸和/或有机酸,优选为盐酸、硝酸、磷酸和醋酸中的一种或几种的混合物;
优选地,酸的用量使得浸渍液的pH值小于6.0,优选小于5.0;
优选地,步骤S3焙烧的条件为:温度为300-800℃,时间为0.1-5h。
12、技术方案1-4中任意一项所述的脱硫脱硝催化剂或者技术方案5-11中任意一项所述的制备方法制得的脱硫脱硝催化剂在烟气同时脱SOx和NOx反应中的应用。
13、根据技术方案12中的脱硫脱硝催化剂的应用,其中,将脱硫脱硝催化剂与含有SOx和NOx的烟气接触;
其中,脱SOx和NOx的条件为:温度为500-800℃,压力为0.02-4MPa,烟气的体积空速为100-50000h -1
优选地,烟气中SOx的含量为0.001-0.5体积%,NOx的含量为0.001-0.3体积%;
优选地,所述烟气为催化裂化再生烟气。
在本发明的一个方面中,本发明提供了下述技术方案:
1、一种用于降低烟气中NOx和SOx排放的催化剂,该催化剂包括载体和负载在载体上的选自稀土族金属的第一活性组分、选自第VIII族非贵金属的第二活性组分以及贵金属组分;以催化剂总重量为基准,所述载体的含量为25-95重量%,以氧化物计,所述第一活性组分的含量为4-60重量%,所述第二活性组分的含量为2-12重量%,以元素计,所述贵金属组分的含量为0.01-2重量%;
以金属元素计,所述第一活性组分与所述第二活性组分的摩尔比为(0.5-15):1。
2、根据技术方案1所述的催化剂,其中,以催化剂总重量为基准,所述载体的含量为40-90重量%,以氧化物计,所述第一活性组分的含量为8-50重量%,所述第二活性组分的含量为2-12重量%,以元素计,所述贵金属组分的含量为0.02-1.5重量%;
优选地,以催化剂总重量为基准,所述载体的含量为50-88重量%,以氧化物计,所述第一活性组分的含量为8-40重量%,所述第二活性组分的含量为2-10重量%,以元素计,所述贵金属组分的含量为0.03-1.2重量%。
3、根据技术方案1或2的催化剂,其中,以金属元素计,所述第一活性组分与所述第二活性组分的摩尔比为(1-10):1,进一步优选为(2-5):1。
4、根据技术方案1-3中任意一项所述的催化剂,其中,
所述第一活性组分为镧和/或铈,优选为镧;
所述第二活性组分选自第VIII族金属中的至少一种,优选为钴和/或铁,更优选为钴;
所述贵金属组分选自铂、钯和铑中的一种或几种,最优选为钯;
所述载体选自氧化铝、氧化硅-氧化铝、沸石、尖晶石、高岭土、硅藻土、珍珠岩和钙钛矿中的至少一种,优选为氧化铝。
5、技术方案1-4中任意一项所述的用于降低烟气中NOx和SOx排放的催化剂的制备方法,该方法包括:
(1)提供含有选自稀土族金属的第一活性组分前驱体和选自第VIII族非贵金属的第二活性组分前驱体的前驱体溶液;
(2)将所述前驱体溶液与共沉淀剂进行共沉淀反应,然后进行干燥和焙烧;
(3)将步骤(2)得到的固体产物与载体和/或载体的前驱体混合打浆,得到浆液,将浆液进行干燥和焙烧;
(4)以含有贵金属组分前驱体的溶液作为浸渍液,对步骤(3)得到的固体产物进行浸渍,然后进行干燥和/或焙烧。
6、根据技术方案5所述的制备方法,其中,所述第一活性组分前驱体和第二活性组分前驱体各自独立地选自各金属组分的硝酸盐和/或氯化物;
所述贵金属组分前驱体选自硝酸钯、氯化钯、氯酸铂和氯化铑中的至少一种,优选为硝酸钯和/或氯化钯。
7、根据技术方案5或6所述的制备方法,其中,步骤(2)中,所述共沉淀剂为碳酸盐,进一步优选选自碳酸铵、碳酸钾和碳酸钠中的至少一种;
优选地,所述共沉淀反应在pH为8-10条件下进行;
优选地,步骤(2)所述焙烧的条件包括:温度为300-800℃,时间为1-8h。
8、根据技术方案5-7中任意一项所述的制备方法,其中,步骤(3)中,所述浆液的固含量为7-35重量%;
优选地,步骤(3)所述焙烧的条件包括:温度为300-800℃,时间为1-5h。
9、根据技术方案5-8中任意一项所述的制备方法,其中,步骤(4)中,将贵金属组分前驱体在酸溶液中水解以提供所述浸渍液;
优选地,所述酸选自可溶于水的无机酸和/或有机酸,优选选自盐酸、硝酸、磷酸和醋酸中至少一种;
优选地,所述酸的用量使得浸渍液的pH值小于5.0,优选为2-5;
优选地,步骤(4)所述焙烧的条件包括:温度为300-700℃,时间为0.1-5h。
10、一种烟气同时脱SOx和NOx的方法,包括:在同时脱SOx和 NOx的条件下,使含SOx和NOx的烟气与技术方案1-4中任意一项所述的用于降低烟气中NOx和SOx排放的催化剂接触;
优选地,所述同时脱SOx和NOx的条件包括:温度为500-800℃,压力为0.01-4MPa,烟气的体积空速为100-50000h -1
优选地,所述烟气中,SOx的含量为0.001-0.5体积%,NOx的含量为0.001-0.3体积%;
优选地,所述烟气为催化裂化再生烟气。
在本发明的一个方面中,本发明提供了下述技术方案:
1、一种能够同时降低烟气中SOx与NOx的催化剂,该催化剂包括载体和负载在载体上的选自稀土族金属的第一活性组分、选自VB、VIII、IB、IIB族非贵金属的第二活性组分、选自IIA族金属的第三活性组分以及贵金属组分;以催化剂总重量为基准,所述载体的含量为25-93重量%,以氧化物计,所述第一活性组分的含量为4-60重量%,所述第二活性组分的含量为2-30重量%,所述第三活性组分的含量为1-30重量%,以元素计,所述贵金属组分的含量为0.01-2重量%。
2、根据技术方案1所述的催化剂,其中,
以金属元素计,所述第一活性组分与所述第二活性组分的摩尔比为(0.4-12):1,优选为(0.5-8):1,进一步优选为(1-4):1。
3、根据技术方案1所述的催化剂,其中,
以催化剂总重量为基准,所述载体的含量为40-87重量%,以氧化物计,所述第一活性组分的含量为8-50重量%,所述第二活性组分的含量为3-20重量%,所述第三活性组分的含量为1-20重量%,以元素计,所述贵金属组分的含量为0.02-1.5重量%;
优选地,以催化剂总重量为基准,所述载体的含量为45-80重量%,以氧化物计,所述第一活性组分的含量为8-40重量%,所述第二活性组分的含量为3-15重量%,所述第三活性组分的含量为2-15重量%,以元素计,所述贵金属组分的含量为0.03-1.2重量%。
4、根据技术方案1-3中任意一项所述的催化剂,其中,
所述载体选自氧化铝、氧化硅-氧化铝、沸石、尖晶石、高岭土、硅藻土、珍珠岩和钙钛矿中的至少一种,优选为氧化铝;
所述第一活性组分为镧和/或铈,优选为镧;
所述第二活性组分选自第VIII族金属中的至少一种,优选为钴和/或铁,更优选为钴;
所述第三活性组分选自铍、镁、钙、锶和钡中的一种或几种,优选为镁;
所述贵金属组分选自铂、钯和铑中的一种或几种,最优选为钯。
5、一种制备能够同时降低烟气中SOx与NOx的催化剂的方法,该方法包括如下步骤:
(1)提供含有选自稀土族金属的第一活性组分前驱体、选自VB、VIII、IB、IIB族非贵金属的第二活性组分前驱体以及选自IIA族金属的第三活性组分前驱体的前驱体溶液;
(2)将所述前驱体溶液与共沉淀剂进行共沉淀反应,然后进行干燥和焙烧;
(3)将步骤(2)得到的固体产物与载体和/或载体的前驱体以及任选地贵金属组分前驱体混合打浆,得到浆液,将浆液进行干燥和焙烧;
该方法还任选地包括:(4)以含有贵金属组分前驱体的溶液作为浸渍液,对步骤(3)得到的固体产物进行浸渍,然后进行干燥和/或焙烧;
第一活性组分前驱体、第二活性组分前驱体、第三活性组分前驱体、载体和/或载体的前驱体以及贵金属组分前驱体的用量使得制得的催化剂,以催化剂总重量为基准,所述载体的含量为25-93重量%,以氧化物计,所述第一活性组分的含量为4-60重量%,所述第二活性组分的含量为2-30重量%,所述第三活性组分的含量为1-30重量%,以元素计,所述贵金属组分的含量为0.01-2重量%。
6、根据技术方案5所述的方法,其中,以金属元素计,第一活性组分前驱体与第二活性组分前驱体的摩尔比为(0.4-12):1,优选为(0.5-8):1,进一步优选为(1-4):1。
7、根据技术方案5或6所述的方法,其中,第一活性组分前驱体、第二活性组分前驱体、第三活性组分前驱体、载体和/或载体的前驱体以及贵金属组分前驱体的用量使得制得的催化剂,以催化剂总重量为基准,所述载体的含量为40-87重量%,以氧化物计,所述第一活性组分的含量为8-50重量%,所述第二活性组分的含量为3-20重量%,所述第三活性组分的含量为1-20重量%,以元素计,所述贵金属组分的含量为0.02-1.5 重量%;
优选地,第一活性组分前驱体、第二活性组分前驱体、第三活性组分前驱体、载体和/或载体的前驱体以及贵金属组分前驱体的用量使得制得的催化剂,以催化剂总重量为基准,所述载体的含量为45-80重量%,以氧化物计,所述第一活性组分的含量为8-40重量%,所述第二活性组分的含量为3-15重量%,所述第三活性组分的含量为2-15重量%,以元素计,所述贵金属组分的含量为0.03-1.2重量%。
8、根据技术方案5-7中任意一项所述的方法,其中,
所述载体选自氧化铝、氧化硅-氧化铝、沸石、尖晶石、高岭土、硅藻土、珍珠岩和钙钛矿中的至少一种,优选为氧化铝;
所述第一活性组分为镧和/或铈,优选为镧;
所述第二活性组分选自第VIII族金属中的至少一种,优选为钴和/或铁,更优选为钴;
所述第三活性组分选自铍、镁、钙、锶和钡中的一种或几种,优选为镁;
所述贵金属组分选自铂、钯和铑中的一种或几种,最优选为钯。
9、根据技术方案5-8中任意一项所述的方法,其中,
步骤(2)所述共沉淀剂为碳酸盐,优选选自碳酸铵、碳酸钾和碳酸钠中的至少一种;
优选地,步骤(2)所述共沉淀反应在pH为8-10条件下进行;
优选地,步骤(3)所述浆液的固含量为6-38重量%。
10、根据技术方案5-9中任意一项所述的方法,其中,
步骤(4)中,将贵金属组分前驱体在酸溶液中水解以提供所述浸渍液;
优选地,所述酸选自可溶于水的无机酸和/或有机酸,优选选自盐酸、硝酸、磷酸和醋酸中至少一种;
优选地,所述酸的用量使得浸渍液的pH值小于6.0,优选为2-5。
11、根据技术方案5-10中任意一项所述的方法,其中,步骤(2)、步骤(3)和步骤(4)所述的焙烧条件各自独立地包括:温度为300-800℃,时间为0.5-8h。
12、技术方案5-11中任意一项所述的方法制备得到的能够同时降低烟气中SOx与NOx的催化剂。
13、技术方案1-4和12中任意一项所述的能够同时降低烟气中SOx与NOx的催化剂在含有脱SOx和NOx的烟气同时脱SOx和NOx反应中的应用。
14、一种烟气同时脱SOx和NOx的方法,该方法包括:
将烟气与技术方案1-4和12中任意一项所述的能够同时降低烟气中SOx与NOx的催化剂接触;
优选地,所述接触的条件包括:温度为500-800℃,压力为0.01-4MPa,催化裂化再生烟气的体积空速为200-20000h -1
优选地,所述烟气中,SOx的含量为0.001-0.5体积%,NOx的含量为0.001-0.3体积%。
在本发明的一个方面中,本发明提供了下述技术方案:
1、一种能够用于/用于同时降低烟气中NOx和SOx的催化剂,其特征在于,该催化剂包括以下组分或基本上由以下组分组成,其中活性组分为组分(2)至(6):
(1)载体或无机氧化物基质、(2)稀土族金属、(3)选自VIII族的非贵金属或选自VB、VIII、IB、IIB族的一种或几种的非贵金属、(4)贵金属、(5)任选地,VIIB族非贵金属、(6)任选地,IIA族金属,
其中,以100重量%的催化剂总重量为基准,
以氧化物计的组分(1)载体或无机氧化物基质的含量为25-95重量%,例如25-93重量%,或25-92重量%,或40-90重量%,或40-87重量%,或40-85重量%,或45-80重量%,或50-88重量%,或50-80重量%;
以氧化物计的组分(2)稀土族金属的含量为:2-70重量%,例如4-60重量%,或4-50重量%,或4-40重量%,或6-70重量%,或8-50重量%,或8-40重量%,或12-60重量%,或12-48重量%;
以氧化物计的组分(3)选自VIII族的非贵金属或选自VB、VIII、IB、IIB族的一种或几种的非贵金属的含量为:1-30重量%,例如,1-15重量%,或1-12重量%,或2-30重量%,或2-12重量%,或2-10重量%,或2-8重量%,或3-20重量%,或3-15重量%;
以元素计的组分(4)贵金属的含量为:0.01-2重量%,例如0.01-1.5重量%,或0.01-2重量%,或0.02-1.5重量%,或0.02-1.2重量%,或0.02-1.0重量%;或0.03-1.2重量%;
以氧化物计的组分(5)VIIB族非贵金属的含量为:0或1-10重量%,0或1-8重量%,0或2-5重量%;
以氧化物计的组分(6)IIA族金属的含量为:0或1-30重量%,0或1-20重量%,0或2-15重量%;
其中,以金属元素计,组分(2)与组分(3)的摩尔比为(0.4-18):1,例如(0.4-12):1,或(0.5-15):1,或(0.5-12):1,或(0.5-8):1,或(0.6-18):1,或(1-10):1,或(1-6):1,或(1-4):1,或(2-12):1,或(2-5):1,或(3-6):1;
优选地,以氧化物计的组分(5)VIIB族非贵金属的含量与以氧化物计的组分(6)IIA族金属的含量之和不为零。
2、根据技术方案1所述的催化剂,其中,
所述组分(1)载体或无机氧化物基质选自氧化铝、氧化硅-氧化铝、沸石、尖晶石、高岭土、硅藻土、珍珠岩和钙钛矿中的至少一种,优选为氧化铝;和/或
所述组分(2)稀土族金属为镧、铈、镨和钕中的一种或几种,更优选为镧和/或铈;最优选为镧;和/或
所述组分(3)的选自VIII族的非贵金属为钴和/或铁,更优选为钴;或所述组分(3)的选自VB、VIII、IB、IIB族的一种或几种的非贵金属选自铁、钴、镍、铜、锌和钒中的一种或几种,更优选为钴和/或铁,最更优选为钴;和/或
所述组分(4)贵金属选自钌、铑、铼、铂、钯、银、铱和金中的一种或几种,更优选为铂、钯和铑中的一种或几种,最优选为钯;和/或
所述组分(5)VIIB族非贵金属为锰;和/或
所述组分(6)IIA族金属选自铍、镁、钙、锶和钡中的一种或几种,更优选为镁。
3、根据前述技术方案中任一项所述的催化剂,其中
该催化剂包括(1)载体和负载在载体上的(2)稀土族金属、(3)选自VIII族的非贵金属、(4)贵金属,其中活性组分为组分(2)至(4);
其中,以100重量%的催化剂总重量为基准,
组分(1)载体的含量为25-95重量%;
以氧化物计的组分(2)稀土族金属的含量为:4-60重量%;
以氧化物计的组分(3)选自VIII族的非贵金属的含量为:2-12重量%;
以元素计的组分(4)贵金属的含量为:0.01-2重量%;
或者
组分(1)载体的含量为40-90重量%;
以氧化物计的组分(2)稀土族金属的含量为:8-50重量%;
以氧化物计的组分(3)选自VIII族的非贵金属的含量为:2-12重量%;
以元素计的组分(4)贵金属的含量为:0.02-1.5重量%;
或者
以氧化物计的组分(1)载体或无机氧化物基质的含量为50-88重量%;
以氧化物计的组分(2)稀土族金属的含量为:8-40重量%;
以氧化物计的组分(3)选自VIII族的非贵金属的含量为:2-10重量%;
以元素计的组分(4)贵金属的含量为:0.03-1.2重量%;
其中,以金属元素计,组分(2)与组分(3)的摩尔比为(0.5-15):1,或(1-10):1,或(2-5):1。
4、根据前述技术方案中任一项所述的催化剂,其中该催化剂包括(1)载体和负载在载体上的(2)稀土族金属、(3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属、(4)贵金属、和(6)IIA族金属,
其中活性组分为组分(2)至(4)和(6);
其中,以100重量%的催化剂总重量为基准,
以氧化物计的组分(1)载体或无机氧化物基质的含量为25-93重量%;
以氧化物计的组分(2)稀土族金属的含量为:4-60重量%;
以氧化物计的组分(3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属的含量为:2-30重量%;
以元素计的组分(4)贵金属的含量为:0.01-2重量%;
以氧化物计的组分(6)IIA族金属的含量为:1-30重量%;
或者
以氧化物计的组分(1)载体或无机氧化物基质的含量为40-87重量%;
以氧化物计的组分(2)稀土族金属的含量为:8-50重量%;
以氧化物计的组分(3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属的含量为:3-20重量%;
以元素计的组分(4)贵金属的含量为0.02-1.5重量%;
以氧化物计的组分(6)IIA族金属的含量为:1-20重量%;
或者
以氧化物计的组分(1)载体或无机氧化物基质的含量为40-85重量%;
以氧化物计的组分(2)稀土族金属的含量为:8-40重量%;
以氧化物计的组分(3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属的含量为:3-15重量%;
以元素计的组分(4)贵金属的含量为:0.03-1.2重量%;
以氧化物计的组分(6)IIA族金属的含量为:2-15重量%;
其中,以金属元素计,组分(2)与组分(3)的摩尔比为(0.4-18):1,例如(0.4-12):1,或(0.5-8):1,或(1-4):1。
5、根据前述技术方案中任一项所述的催化剂,其中
该催化剂包括以下组分或基本上由以下组分组成,其中活性组分为组分(2)至(5):
(1)载体或无机氧化物基质、(2)稀土族金属、(3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属、(4)贵金属、(5)VIIB族非贵金属,
其中,以100重量%的催化剂总重量为基准,
以氧化物计的组分(1)载体或无机氧化物基质的含量为25-92重量%;
以氧化物计的组分(2)稀土族金属的含量为:6-70重量%;
以氧化物计的组分(3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属的含量为:1-12重量%;
以元素计的组分(4)贵金属的含量为:0.01-1.5重量%;
以氧化物计的组分(5)VIIB族非贵金属的含量为:1-10重量%;
或者
以氧化物计的组分(1)载体或无机氧化物基质的含量为40-85重量%;
以氧化物计的组分(2)稀土族金属的含量为:12-60重量%;
以氧化物计的组分(3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属的含量为:2-10重量%;
以元素计的组分(4)贵金属的含量为:0.02-1.2重量%;
以氧化物计的组分(5)VIIB族非贵金属的含量为:1-8重量%;
或者
以氧化物计的组分(1)载体或无机氧化物基质的含量为40-85重量%;
以氧化物计的组分(2)稀土族金属的含量为:12-48重量%;
以氧化物计的组分(3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属的含量为:2-8重量%;
以元素计的组分(4)贵金属的含量为:0.02-1.0重量%;
以氧化物计的组分(5)VIIB族非贵金属的含量为:2-5重量%;
其中,以金属元素计,组分(2)与组分(3)的摩尔比为(0.6-18):1,例如(2-12):1,或(3-6):1。
6、根据前述技术方案中任一项所述的催化剂,其中
该催化剂包括以下组分或基本上由以下组分组成,其中活性组分为组分(2)至(6):
(1)载体或无机氧化物基质、(2)稀土族金属、(3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属、(4)贵金属、(5)VIIB族非贵金属、(6)IIA族金属,
其中,以100重量%的催化剂总重量为基准,
以氧化物计的组分(1)载体或无机氧化物基质的含量为25-95重量%;
以氧化物计的组分(2)稀土族金属的含量为:2-70重量%;
以氧化物计的组分(3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属的含量为:1-15重量%;
以元素计的组分(4)贵金属的含量为:0.01-1.5重量%;
以氧化物计的组分(5)VIIB族非贵金属的含量为:1-10重量%;
以氧化物计的组分(6)IIA族金属的含量为:1-30重量%;
或者
以氧化物计的组分(1)载体或无机氧化物基质的含量为40-90重量%;
以氧化物计的组分(2)稀土族金属的含量为4-50重量%;
以氧化物计的组分(3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属的含量为:2-12重量%;
以元素计的组分(4)贵金属的含量为:0.02-1.2重量%;
以氧化物计的组分(5)VIIB族非贵金属的含量为:1-8重量%;
以氧化物计的组分(6)IIA族金属的含量为:1-20重量%;
或者
以氧化物计的组分(1)载体或无机氧化物基质的含量为50-80重量%;
以氧化物计的组分(2)稀土族金属的含量为:4-40重量%;
以氧化物计的组分(3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属的含量为:2-10重量%;
以元素计的组分(4)贵金属的含量为:0.02-1.0重量%;
以氧化物计的组分(5)VIIB族非贵金属的含量为:2-5重量%;
以氧化物计的组分(6)IIA族金属的含量为:2-15重量%;
其中,以金属元素计,组分(2)与组分(3)的摩尔比为(0.4-18):1,例如(0.5-12):1,或(1-6):1。
7、根据前述技术方案中任一项所述的催化剂,其中所述催化剂是经暴露于含SO 2的气氛处理过的;
例如,所述催化剂是经暴露于含SO 2的气氛处理过的,其中含SO 2的气氛的温度为350-1000℃,压力为0-8MPa,SO 2的含量为0.001-100体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为400-900℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为450-900℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为500-900℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为550-900℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为600-900℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为650-900℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中 含SO 2的气氛的温度为400-800℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为450-800℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为500-800℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为550-800℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为600-900℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为650-900℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为400-750℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为450-750℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为500-750℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为550-750℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为600-750℃,压力为0-5MPa,SO 2的含量为0.001-5 体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为650-750℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为400-700℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为450-700℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为500-700℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为550-700℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为600-700℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为650-700℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为400-900℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为450-900℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为500-900℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为550-900℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为600-900℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为650-900℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为400-800℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为450-800℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为500-800℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为550-800℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为600-800℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为650-800℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为400-750℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中 含SO 2的气氛的温度为450-750℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为500-750℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为550-750℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为600-750℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为650-750℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为400-700℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为450-700℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为500-700℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为550-700℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为600-700℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为650-700℃,压力为0-2MPa,SO 2的含量为0.01-1 体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为400-900℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为450-900℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为500-900℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为550-900℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为600-900℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为650-900℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为400-800℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为450-800℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为500-800℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为550-800℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为600-800℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为650-800℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为400-750℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为450-750℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为500-750℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为550-750℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为600-750℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为650-750℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为650-750℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为400-700℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中 含SO 2的气氛的温度为450-700℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为500-700℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为550-700℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为600-700℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为650-700℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%。
8、根据前述技术方案中任一项所述的催化剂,其中
所述组分(2)的稀土族金属包括:镧;
所述组分(3)的选自VIII族的非贵金属或选自VB、VIII、IB、IIB族的一种或几种的非贵金属包括钴;
所述组分(4)的贵金属包括:钯;
所述组分(5)的VIIB族非贵金属,如果有的话,包括猛;
所述组分(6)的IIA族金属,如果有的话,包括镁。
9、根据前述技术方案中任一项所述的催化剂,其中
所述组分(2)的稀土族金属为镧;
所述组分(3)的选自VIII族的非贵金属或选自VB、VIII、IB、IIB族的一种或几种的非贵金属为钴;
所述组分(4)的贵金属为钯;
所述组分(5)的VIIB族非贵金属,如果有的话,为猛;
所述组分(6)的IIA族金属,如果有的话,为镁。
10、根据前述技术方案中任一项所述的催化剂,其中所述催化剂是经暴露于含SO 2的气氛处理过的,所述催化剂在粉末XRD谱中在2θ=28.6°±0.1°、30.0°±0.1°以及50.4°±0.1°处具有特征峰。
11、根据前述技术方案中任一项所述的催化剂,其中所述催化剂(新鲜形式)在粉末XRD谱中在2θ=33.0°±0.1°、33.5°±0.1°和47.5°±0.1°处以及在27.0°±0.1°、28.0°±0.1°和39.5°±0.1°处具有特征峰。
12、前述技术方案中任一项所述的催化剂的制备方法,该方法包括:
(I)采用共沉淀法或者溶胶凝胶法得到活性金属前驱体,
其中,活性金属前驱体中的活性金属包括(2)稀土族金属、(3)选自VIII族的非贵金属或选自VB、VIII、IB、IIB族的一种或几种的非贵金属、(5)任选地,VIIB族非贵金属、和(6)任选地,IIA族金属;和
(II)将活性金属前驱体与(1)载体或无机氧化物基质或其前驱体、和任选地(4)贵金属的前驱体混合打浆,得到浆液,将所述浆液进行干燥和/或焙烧,得到催化剂;或者
将活性金属前驱体与(1)载体或无机氧化物基质或其前驱体、和任选地(4)贵金属的前驱体混合打浆,得到浆液,将所述浆液进行干燥和/或焙烧,得到催化剂半成品;然后以含有(4)贵金属的前驱体的溶液作为浸渍液,对催化剂半成品进行浸渍,得到固体产物,然后对所述固体产物进行干燥和/或焙烧,得到催化剂;
其中,活性金属前驱体、载体或无机氧化物基质或其前驱体、和贵金属的前驱体的用量使得制得的催化剂具有如前述技术方案中任一项所述的催化剂的组成。
13、根据前述技术方案中任一项所述的制备方法,其中,步骤(I)采用共沉淀法得到所述活性金属前驱体;优选地,所述共沉淀法包括:
(I-1)提供含有(2)稀土族金属的前驱体、(3)选自VIII族的非贵金属或选自VB、VIII、IB、IIB族的一种或几种的非贵金属的前驱体、(5)任选地VIIB族非贵金属的前驱体、和(6)任选地IIA族金属的前驱体的第一溶液;
优选地,各前驱体独立地选自各金属的硝酸盐和/或氯化物;
(I-2)将所述第一溶液与共沉淀剂进行共沉淀反应;
优选地,所述共沉淀剂为碳酸盐,进一步优选选自碳酸铵、碳酸钾和碳酸钠中的至少一种;
优选地,所述共沉淀反应在pH为8-10条件下进行;
(I-3)将所述共沉淀反应得到的固体产物进行干燥和/或焙烧得到活性金属前驱体;
优选地,步骤(I-3)所述焙烧的条件包括:温度为300-800℃,例如300-700℃,时间为0.5-8h,例如1-8h或1-5h,
其中,载体或无机氧化物基质或其前驱体、稀土族金属的前驱体、选自VIII族的非贵金属或选自VB、VIII、IB、IIB族的一种或几种的非贵金属的前驱体、贵金属的前驱体、任选地VIIB族非贵金属的前驱体、和任选地IIA族金属的前驱体的用量使得制得的催化剂具有如前述技术方案中任一项所述的催化剂的组成。
14、根据前述技术方案中任一项所述的制备方法,其中
在步骤(II)中,所述贵金属组分前驱体选自硝酸盐、氯化物和/或氯酸盐中的至少一种,例如硝酸钯、氯化钯、氯酸铂和氯化铑中的至少一种,优选为硝酸钯和/或氯化钯;和/或
在步骤(II)中,所述浆液的固含量为5-40重量%,例如6-38重量%,或7-35重量%;和/或
在步骤(II)中,所述浆液的焙烧的条件包括:温度为300-800℃,例如300-700℃,时间为0.5-8h,例如1-8h或1-5h;和/或
在步骤(II)中,将贵金属的前驱体在酸溶液中水解以提供所述浸渍液;
优选地,所述酸选自可溶于水的无机酸和/或有机酸,更优选地,选自盐酸、硝酸、磷酸和醋酸中至少一种;
优选地,所述酸的用量使得浸渍液的pH值小于6.0,优选小于5.0,例如2.0-5.0;
优选地,对所述固体产物进行焙烧的条件包括:温度为300-800℃,例如300-700℃,时间为0.5-8h,例如1-8h或1-5h。
15、一种烟气同时脱SOx和NOx的方法,包括:在脱SOx和NOx的条件下,使烟气与根据前述技术方案中任一项所述的催化剂或者根据前述技术方案中任一项所述的制备方法制得的催化剂接触;
优选地,所述脱SOx和NOx的条件包括:温度为300-1000℃,例如500-800℃,或600-750℃,或625-750℃,或650-750℃,或675-750℃,或700-750℃,或725-750℃,或600-725℃,或625-725℃,或650-725℃,或675-725℃,或700-725℃,或600-700℃,或625-700℃,或650-700℃, 或675-700℃,或600-675℃,或625-675℃,或650-675℃,或600-650℃,或625-650℃,或600-625℃;压力为0-4MPa,例如0.01-4MPa,或0.02-4MPa,或0-0.5MPa;烟气的体积空速为100-50000h -1或200-20000h -1;和/或
优选地,所述烟气中,SOx的含量为0.001-0.5体积%,NOx的含量为0.001-0.3体积%;或者所述烟气中SOx和NOx的体积分数分别为1~3000μL/L,并且SOx和NOx的摩尔比为0.5:1-2:1;和/或
优选地,所述烟气为同时含有一定浓度的SOx和NOx的烟气,例如催化裂化再生烟气;优选地,所述催化裂化再生烟气和催化剂接触在催化裂化旋风分离器后和/或CO焚烧炉后设置的烟气通道中进行。
本发明中,规整结构催化剂中各组分含量均采用X射线荧光光谱分析方法(石油化工分析方法(RIPP实验方法),杨翠定等编,科学出版社1990年出版)测得。
本发明中,采用Siemens D5005衍射仪,对催化剂样品进行粉末X射线衍射(XRD)分析,其中在40kV、40mA条件下产生CuKα(λ=0.15418nm)辐射,经Ni过滤。衍射信号记录在2θ5~70°范围内,步长0.02°。
在本发明中,对于焙烧条件不特别限制。例如,焙烧可以在空气或惰性气氛(例如氮气)中进行;焙烧条件可以为:温度为300-900℃,例如400、500、600、700、800℃及这些点值中的任意两个组成的温度范围,时间为0.1-12h,例如0.1-5h。压力可以为低于常压、常压或高于常压(例如(0-5MPa)。
在本发明中,对于干燥条件不特别限制。例如,干燥条件可以为:温度为25-250℃,时间为0.1-12h,压力可以为真空(例如绝对压力0-1kPa,0-5kPa,0-10kPa,0-20kPa,0-30kPa,0-40kPa,0-50kPa,0-60kPa,0-70kPa,0-80kPa,0-90kPa,0-100kPa)或常压(绝对压力0.1MPa)。在本发明中,在进行先干燥,后焙烧的操作时,干燥温度低于焙烧温度。
在本发明中,无特殊说明情况下,所述ppm指的是体积浓度。
以下通过具体实施例详细说明本发明的实施过程和所产生的有益效果,旨在帮助阅读者更清楚地了解本发明的精神实质所在,但不能对本发明的实施范围构成任何限定。
以下实施例和对比例中所用原料均为市售产品,具体厂家和级别如 下表1所示:
表1实施例和对比例中所用的原料的厂家和级别
原料 厂家 级别
硝酸镧 Aladdin Biochemical公司 分析纯
硝酸钴 北京伊诺凯科技有限公司 分析纯
碳酸铵 北京化工厂 分析纯
氨水 天津市大茂化学厂 分析纯,25%
氯化钯 中国医药公司北京采购供应站 /
盐酸 北京化工厂 /
OX50-SiO 2 中石化催化剂公司 /
硝酸镁 国药集团化学试剂有限公司 分析纯
氯化锰 北京化工厂 分析纯
在以下实施例中,催化剂中组分含量均采用X射线荧光光谱(XRF)法测定,具体参见石油化工分析方法(RIPP实验方法),杨翠定等编,科学出版社1990年出版。
在以下实施例中,采用Siemens D5005衍射仪,对催化剂样品进行粉末X射线衍射(XRD)分析,其中在40kV、40mA条件下产生CuKα(λ=0.15418nm)辐射,经Ni过滤。衍射信号记录在2θ5~70°范围内,步长0.02°。
实施例A1
在烧杯中称取350mL去离子水,搅拌下加入以La 2O 3质量计为30g的硝酸镧、以Co 2O 3质量计为5g的硝酸钴直至完全溶解。称取碳酸铵52.5g溶于210mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
称取以Al 2O 3质量计为40g的铝石,加入380mL水及6g的36重量%的盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的载体中混合搅拌,将浆液在200℃下进行干燥,然后在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为33%。
称取钯的前驱体与稀盐酸1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.0045g称取一定量的氯化钯溶液。将含钯溶液作为浸渍液浸渍到上述催化剂半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到催化剂A1。
对新鲜的催化剂A1进行XRD分析,在XRD谱中,在2θ=约33.0°、约33.5°和约47.5°处以及在2θ=约27.0°、约28.0°和约39.5°处存在特征峰。
将催化剂A1暴露于含SO 2的气氛5分钟,所述含SO 2的气氛的温度为400℃,压力为0MPa,SO 2的含量为0.001体积%。在暴露于SO 2处理后,对催化剂A1进行XRD分析,在催化剂A1的XRD谱中,2θ角约为28.6°、30.0°和50.4°处,存在特征峰。
实施例A2
在烧杯中称取125mL去离子水,搅拌下加入以La 2O 3质量计为10g的硝酸镧、以Co 2O 3质量计为2.5g的硝酸钴直至完全溶解。称取碳酸铵18.75g溶于75mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
称取以Al 2O 3质量计为40g的铝石,加入330mL水及6g的36重量%的盐酸,进行打浆。称取10g的活性金属前驱体加入到酸化后的载体中混合搅拌,将浆液在200℃下进行干燥,然后在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为20%。
称取钯的前驱体与稀盐酸1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.003g称取一定量的氯化钯溶液。将含钯溶液作为浸渍液浸渍到上述催化剂半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到催化剂A2。
对新鲜的催化剂A2进行XRD分析,在XRD谱中,在2θ=约33.0°、约33.5°和约47.5°处以及在2θ=约27.0°、约28.0°和约39.5°处存在特征峰。
将催化剂A2暴露于含SO 2的气氛5分钟,所述含SO 2的气氛的温度为400℃,压力为0MPa,SO 2的含量为0.001体积%。在暴露于SO 2处理后,对催化剂A2进行XRD分析,在催化剂A2的XRD谱中,2θ角约为28.6°、30.0°和50.4°处,存在特征峰。
实施例A3
在烧杯中称取331mL去离子水,搅拌下加入以La 2O 3质量计为30g的硝酸镧、以Co 2O 3质量计为3.1g的硝酸钴直至完全溶解。称取碳酸铵49.65g溶于200mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
称取以Al 2O 3质量计为40g的铝石,加入380mL水及6g的36重量%的盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的载体中混合搅拌,将浆液在200℃下进行干燥,然后在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为33%。
称取钯的前驱体与稀盐酸1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.003g称取一定量的氯化钯溶液。将含钯溶液作为浸渍液浸渍到上述催化剂半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到催化剂A3。
对新鲜的催化剂A3进行XRD分析,在XRD谱中,在2θ=约33.0°、约33.5°和约47.5°处以及在2θ=约27.0°、约28.0°和约39.5°处存在特征峰。
将催化剂A3暴露于含SO 2的气氛5分钟,所述含SO 2的气氛的温度为400℃,压力为0MPa,SO 2的含量为0.001体积%。在暴露于SO 2处理后,对催化剂A3进行XRD分析,在催化剂A3的XRD谱中,2θ角约为28.6°、30.0°和50.4°处,存在特征峰。
实施例A4
按照实施例A1的方法,不同的是,减少铝石的用量,将非贵金属活性组分占所制备微球催化剂半成品的质量百分比调整为50%,具体为称 取以Al 2O 3质量计为20g的铝石和20g的活性金属前驱体,得到催化剂A4。
对新鲜的催化剂A4进行XRD分析,在XRD谱中,在2θ=约33.0°、约33.5°和约47.5°处以及在2θ=约27.0°、约28.0°和约39.5°处存在特征峰。
将催化剂A4暴露于含SO 2的气氛5分钟,所述含SO 2的气氛的温度为400℃,压力为0MPa,SO 2的含量为0.001体积%。在暴露于SO 2处理后,对催化剂A4进行XRD分析,在催化剂A4的XRD谱中,2θ角约为28.6°、30.0°和50.4°处,存在特征峰。
实施例A5
在烧杯中称取350mL去离子水,搅拌下加入以La 2O 3质量计为34g的硝酸镧、以Co 2O 3质量计为1g的硝酸钴直至完全溶解。称取碳酸铵52.5g溶于210mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
称取以Al 2O 3质量计为40g的铝石,加入380mL水及6g的36重量%的盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的载体中混合搅拌,将浆液在200℃下进行干燥,然后在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为33%。
称取钯的前驱体与稀盐酸1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.003g称取一定量的氯化钯溶液。将含钯溶液作为浸渍液浸渍到上述催化剂半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到催化剂A5。
对新鲜的催化剂A5进行XRD分析,在XRD谱中,在2θ=约33.0°、约33.5°和约47.5°处以及在2θ=约27.0°、约28.0°和约39.5°处存在特征峰。
将催化剂A5暴露于含SO 2的气氛5分钟,所述含SO 2的气氛的温度为400℃,压力为0MPa,SO 2的含量为0.001体积%。在暴露于SO 2处理后,对催化剂A5进行XRD分析,在催化剂A5的XRD谱中,2θ角约 为28.6°、30.0°和50.4°处,存在特征峰。
实施例A6
在烧杯中称取440mL去离子水,搅拌下加入以La 2O 3质量计为22g的硝酸镧、以Co 2O 3质量计为22g的硝酸钴直至完全溶解。称取碳酸铵66g溶于264mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
称取以Al 2O 3质量计为40g的铝石,加入380mL水及6g的36重量%的盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的载体中混合搅拌,将浆液在200℃下进行干燥,然后在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为33%。
称取钯的前驱体与稀盐酸1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.003g称取一定量的氯化钯溶液。将含钯溶液作为浸渍液浸渍到上述催化剂半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到催化剂A6。
对新鲜的催化剂A6进行XRD分析,在XRD谱中,在2θ=约33.0°、约33.5°和约47.5°处以及在2θ=约27.0°、约28.0°和约39.5°处存在特征峰。
将催化剂A6暴露于含SO 2的气氛5分钟,所述含SO 2的气氛的温度为400℃,压力为0MPa,SO 2的含量为0.001体积%。在暴露于SO 2处理后,对催化剂A6进行XRD分析,在催化剂A6的XRD谱中,2θ角约为28.6°、30.0°和50.4°处,存在特征峰。
实施例A7
按照实施例A1的方法,不同的是,将氯化钯溶液替换为等浓度的氯化钌溶液,且制得的催化剂中,贵金属含量不变,即得到催化剂A7。
实施例A8
按照实施例A1的方法,不同的是,氧化物计,将硝酸镧替换为等质量的硝酸铈;以氧化物计,将硝酸钴替换为等质量的硝酸铁,即得到催 化剂A8。
对比例1
称取以La 2O 3质量计为30g的硝酸镧溶解于烧杯中,称取45g的碳酸铵完全溶解于烧杯中,在搅拌条件下,将硝酸镧溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将上述得到的混合物进行抽滤,将抽滤得到的滤饼混合物在120℃直至烘干,在空气气氛700℃焙烧6小时后,研磨得到催化前驱体L。
称取以Co 2O 3质量计为5g的硝酸钴完全溶解于烧杯中,称取7.5g的碳酸铵完全溶解于烧杯中,在搅拌条件下,将硝酸钴溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将上述得到的混合物进行抽滤,将抽滤得到的滤饼混合物在120℃直至烘干,在空气气氛700℃焙烧6小时后,研磨即制得活性金属前驱体C。
将前两步得到的活性金属前驱体L和活性金属前驱体C充分机械混合,得到混合前驱体。
称取以Al 2O 3质量计为40g的铝石,加入380mL水及6g的36重量%的浓盐酸,进行打浆。取20g的混合前驱体加入到酸化后的无机氧化物基质中混合搅拌,将浆液在120℃下进行干燥,在空气气氛700℃下焙烧4小时,即得到催化剂E1。
对比例2
催化剂按如下方法制备:分别称取15g OX50(SiO 2)粉末和按含钯质量为0.0045g称取一定量的实施例A1中配置的氯化钯溶液。将氯化钯溶液加入到OX50粉末中,并通过不断搅拌使其混合均匀。将得到的混合物置于120℃条件下的烘箱内直至烘干,并且在空气气氛700℃下焙烧4小时,即得到催化剂E2。
对比例3
称取30g的La 2O 3和5g的Co 2O 3,充分机械混合,得到混合前驱体。
称取以Al 2O 3质量计为40g的铝石,加入380mL水及6g的36重量%的浓盐酸,进行打浆。取20g的混合前驱体加入到酸化后的无机氧化物基质中混合搅拌,将浆液在120℃下进行干燥,在空气气氛700℃下焙烧4小时,即得到催化剂E3。
对比例4
参照CN110787834A所述方法制备对比催化剂。按表2比例称取氧化铝、高岭土、镁、硼、镧、铂、钛、铝溶胶、乙酸乙酯并将其混合,加入5倍水,在85℃温度下浸渍3小时以上,浸渍后在85℃下搅拌3小时,使之均匀分散。将上述浆液在300℃温度下,进行喷雾干燥,筛分得到≦200μm的颗粒;将得到的颗粒在500℃温度下焙烧4小时,将得到的活性金属前驱体充分研磨后,压片,过筛,即得到最终的催化剂,记为E4。
表2:对比例4中各原料的质量百分含量
氧化铝 65
高岭土 18
2
2
3.5
0.5
4
铝溶胶 4
乙酸乙酯 1
实施例B1
S1、活性金属前驱体的制备:在烧杯中称取360mL去离子水,搅拌下加入以La 2O 3质量计为30g的硝酸镧、以Co 2O 3质量计为3.5g的硝酸钴和以MnO质量计为2.5g的氯化锰直至完全溶解。称取碳酸铵54g溶于215mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
S2、催化剂半成品的制备:称取以Al 2O 3质量计为40g的铝石,加入380mL水及6g的36重量%的浓盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,将浆液在200℃下进行干燥,并在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为33%。
S3、催化剂的制备:称取钯的前驱体与稀盐酸1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.0045g称取一定量浓度为5.6g/L的氯化钯溶液。将含钯溶液作为浸渍液浸渍到上述催化剂半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到催化剂B1。
对新鲜的催化剂B1进行XRD分析,在XRD谱中,在2θ=约33.0°、约33.5°和约47.5°处以及在2θ=约27.0°、约28.0°和约39.5°处存在特征峰。
将催化剂B1暴露于含SO 2的气氛30分钟,所述含SO 2的气氛的温度为650℃,压力为0.05MPa,SO 2的含量为0.01体积%。在暴露于SO 2处理后,对催化剂B1进行XRD分析,在催化剂B1的XRD谱中,2θ角约为28.6°、30.0°和50.4°处,存在特征峰。
实施例B2
S1、活性金属前驱体的制备:在烧杯中称取150mL去离子水,搅拌下加入以La 2O 3质量计为10g的硝酸镧、以Co 2O 3质量计为1.6g的硝酸钴和以MnO质量计为3.4g的氯化锰直至完全溶解。称取碳酸铵22.5g溶于90mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
S2、催化剂半成品的制备:称取以Al 2O 3质量计为40g的铝石,加入330mL水及6g的36重量%的浓盐酸,进行打浆。称取10g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,将浆液在200℃下进行干燥,并在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为20%。
S3、催化剂的制备:称取钯的前驱体与稀盐酸1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.0030g称取一定量浓度为5.6g/L的氯化钯溶液。将含钯溶液作为浸渍液浸渍到上述催化剂半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小 时,即得到催化剂B2。
实施例B3
S1、活性金属前驱体的制备:在烧杯中称取360mL去离子水,搅拌下加入以La 2O 3质量计为30g的硝酸镧、以Co 2O 3质量计为2.6g的硝酸钴和以MnO质量计为3.4g的氯化锰直至完全溶解。称取碳酸铵54g溶于215mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
S2、催化剂半成品的制备:称取以Al 2O 3质量计为40g的铝石,加入380mL水及6g的36重量%的浓盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,将浆液在200℃进行干燥,并在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为33%。
S3、催化剂的制备:称取钯的前驱体与稀盐酸1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.0030g称取一定量浓度为5.6g/L的氯化钯溶液。将含钯溶液作为浸渍液浸渍到上述催化剂半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到催化剂B3。
对新鲜的催化剂B3进行XRD分析,在XRD谱中,在2θ=约33.0°、约33.5°和约47.5°处以及在2θ=约27.0°、约28.0°和约39.5°处存在特征峰。
将催化剂B3暴露于含SO 2的气氛30分钟,所述含SO 2的气氛的温度为650℃,压力为0.05MPa,SO 2的含量为0.01体积%。在暴露于SO 2处理后,对催化剂B3进行XRD分析,在催化剂B3的XRD谱中,2θ角约为28.6°、30.0°和50.4°处,存在特征峰。
实施例B4
按照实施例B1的方法,不同的是,减少铝石的用量,将非贵金属活性组分占制备微球催化剂半成品的质量百分比调整为50%。
具体地,S1、活性金属前驱体的制备:在烧杯中称取360mL去离子 水,搅拌下加入以La 2O 3质量计为30g的硝酸镧、以Co 2O 3质量计为3.5g的硝酸钴和以MnO质量计为2.5g的氯化锰直至完全溶解。称取碳酸铵54g溶于215mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
S2、催化剂半成品的制备:称取以Al 2O 3质量计为20g的铝石,加入240mL水及3g的36重量%的浓盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,将浆液在200℃进行干燥,并在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为50%。
S3、催化剂的制备:称取钯的前驱体与稀盐酸1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.0060g称取一定量浓度为5.6g/L的氯化钯溶液。将含钯溶液作为浸渍液浸渍到上述催化剂半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到催化剂B4。
对新鲜的催化剂B4进行XRD分析,在XRD谱中,在2θ=约33.0°、约33.5°和约47.5°处以及在2θ=约27.0°、约28.0°和约39.5°处存在特征峰。
将催化剂B4暴露于含SO 2的气氛30分钟,所述含SO 2的气氛的温度为650℃,压力为0.05MPa,SO 2的含量为0.01体积%。在暴露于SO 2处理后,对催化剂B4进行XRD分析,在催化剂B4的XRD谱中,2θ角约为28.6°、30.0°和50.4°处,存在特征峰。
实施例B5
S1、活性金属前驱体的制备:在烧杯中称取340mL去离子水,搅拌下加入以La 2O 3质量计为30g的硝酸镧、以Co 2O 3质量计为1g的硝酸钴和以MnO质量计为3g的氯化锰直至完全溶解。称取碳酸铵51g溶于205mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合 物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
S2、催化剂半成品的制备:称取以Al 2O 3质量计为40g的铝石,加入380mL水及6g的36重量%的浓盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,将浆液在200℃进行干燥,并在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为33%。
S3、催化剂的制备:称取钯的前驱体与稀盐酸1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.0030g称取一定量浓度为5.6g/L的氯化钯溶液。将含钯溶液作为浸渍液浸渍到上述催化剂半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到催化剂B5。
实施例B6
S1、活性金属前驱体的制备:在烧杯中称取330mL去离子水,搅拌下加入以La 2O 3质量计为15g的硝酸镧、以Co 2O 3质量计为15g的硝酸钴和以MnO质量计为3g的氯化锰直至完全溶解。称取碳酸铵49.5g溶于200mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
S2、催化剂半成品的制备:称取以Al 2O 3质量计为40g的铝石,加入380mL水及6g的36重量%的浓盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,将浆液在200℃下进行干燥,并在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为33%。
S3、催化剂的制备:称取钯的前驱体与稀盐酸1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.0045g称取一定量浓度为5.6g/L的氯化钯溶液。将含钯溶液作为浸渍液浸渍到上述催化剂半成品,得到固体产物, 然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到催化剂B6。
对新鲜的催化剂B6进行XRD分析,在XRD谱中,在2θ=约33.0°、约33.5°和约47.5°处以及在2θ=约27.0°、约28.0°和约39.5°处存在特征峰。
将催化剂B6暴露于含SO 2的气氛30分钟,所述含SO 2的气氛的温度为650℃,压力为0.05MPa,SO 2的含量为0.01体积%。在暴露于SO 2处理后,对催化剂B6进行XRD分析,在催化剂B6的XRD谱中,2θ角约为28.6°、30.0°和50.4°处,存在特征峰。
实施例B7
S1、活性金属前驱体的制备:在烧杯中称取365mL去离子水,搅拌下加入以La 2O 3质量计为30g的硝酸镧、以Co 2O 3质量计为3.5g的硝酸钴和以MnO质量计为3g的氯化锰直至完全溶解。称取碳酸铵54.75g溶于220mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
S2、催化剂半成品的制备:称取以Al 2O 3质量计为40g的铝石,加入380mL水及6g的36重量%的浓盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,将浆液在200℃下进行干燥,并在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为33%。
S3、催化剂的制备:称取钌的前驱体与稀盐酸1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钌溶液,pH为2,称取15g的催化剂微球半成品,按含钌质量为0.0045g称取一定量浓度为5.6g/L的氯化钌溶液。将含钌溶液作为浸渍液浸渍到上述催化剂半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到催化剂B7。
实施例B8
S1、活性金属前驱体的制备:在烧杯中称取365mL去离子水,搅拌下加入以CeO2质量计为30g的硝酸铈、以Fe 2O 3质量计为3.5g的硝酸铁 和以MnO质量计为3g的氯化锰直至完全溶解。称取碳酸铵54.75g溶于220mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
S2、催化剂半成品的制备:称取以Al 2O 3质量计为40g的铝石,加入380mL水及6g的36重量%的浓盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,将浆液在200℃下进行干燥,并在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为33%。
S3、催化剂的制备:称取钯的前驱体与稀盐酸1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.0045g称取一定量浓度为5.6g/L的氯化钯溶液。将含钯溶液作为浸渍液浸渍到上述催化剂半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到催化剂B8。
实施例C1
在烧杯中称取390mL去离子水,搅拌下加入以La 2O 3质量计为30g的硝酸镧、以MgO质量计为4g的硝酸镁、以Co 2O 3质量计为5.5g的硝酸钴直至完全溶解。称取碳酸铵59.25g溶于250mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
称取以Al 2O 3质量计为40g的铝石,加入380mL水及6g的36重量%的浓盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,将浆液在200℃下进行干燥,并且在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为33%。
称取钯的前驱体与稀盐酸按质量比1:1互溶,加去离子水稀释,配置 成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.0045g称取一定量浓度为5.6g/L的氯化钯溶液。将氯化钯溶液作为浸渍液浸渍到上述催化剂微球半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到催化剂C1。
对新鲜的催化剂C1进行XRD分析,在XRD谱中,在2θ=约33.0°、约33.5°和约47.5°处以及在2θ=约27.0°、约28.0°和约39.5°处存在特征峰。
将催化剂C1暴露于含SO 2的气氛240分钟,所述含SO 2的气氛的温度为750℃,压力为0.1MPa,SO 2的含量为0.02体积%。在暴露于SO 2处理后,对催化剂C1进行XRD分析,在催化剂C1的XRD谱中,2θ角约为28.6°、30.0°和50.4°处,存在特征峰。
实施例C2
在烧杯中称取220mL去离子水,搅拌下加入以La 2O 3质量计为10g的硝酸镧、以MgO质量计为7g的硝酸镁、以Co 2O 3质量计为5g的硝酸钴和直至完全溶解。称取碳酸铵33g溶于150mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
称取以Al 2O 3质量计为40g的铝石,加入330mL水及6g的36重量%的浓盐酸,进行打浆。称取10g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,将浆液在200℃下进行干燥,并且在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为20%。
称取钯的前驱体与稀盐酸按质量比1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.0030g称取一定量浓度为5.6g/L的氯化钯溶液。将氯化钯溶液作为浸渍液浸渍到上述催化剂微球半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到的催化剂记为S-C-2。
实施例C3
在烧杯中称取390mL去离子水,搅拌下加入以La 2O 3质量计为30g的硝酸镧、以MgO质量计为5g的硝酸镁、以Co 2O 3质量计为4g的硝酸钴直至完全溶解。称取碳酸铵58.5g溶于250mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
称取以Al 2O 3质量计为40g的铝石,加入380mL水及6g的36重量%的浓盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,将浆液在200℃下进行干燥,并且在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为33%。
称取钯的前驱体与稀盐酸按质量比1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.0030g称取一定量浓度为5.6g/L的氯化钯溶液。将氯化钯溶液作为浸渍液浸渍到上述催化剂微球半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到的催化剂记为S-C-3。
对新鲜的催化剂C3进行XRD分析,在XRD谱中,在2θ=约33.0°、约33.5°和约47.5°处以及在2θ=约27.0°、约28.0°和约39.5°处存在特征峰。
将催化剂C3暴露于含SO 2的气氛240分钟,所述含SO 2的气氛的温度为750℃,压力为0.1MPa,SO 2的含量为0.02体积%。在暴露于SO 2处理后,对催化剂C3进行XRD分析,在催化剂C3的XRD谱中,2θ角约为28.6°、30.0°和50.4°处,存在特征峰。
实施例C4
按照实施例C1的方法,不同的是,减少铝石的用量,将非贵金属活性组分占所制备微球催化剂半成品的质量百分比调整为50%,即称取以Al 2O 3质量计为20g的铝石和20g的活性金属前驱体,得到催化剂C4。
对新鲜的催化剂C4进行XRD分析,在XRD谱中,在2θ=约33.0°、约33.5°和约47.5°处以及在2θ=约27.0°、约28.0°和约39.5°处存在特征峰。
将催化剂C4暴露于含SO 2的气氛240分钟,所述含SO 2的气氛的温 度为750℃,压力为0.1MPa,SO 2的含量为0.02体积%。在暴露于SO 2处理后,对催化剂C4进行XRD分析,在催化剂C4的XRD谱中,2θ角约为28.6°、30.0°和50.4°处,存在特征峰。
实施例C5
在烧杯中称取390mL去离子水,搅拌下加入以La 2O 3质量计为34g的硝酸镧、以MgO质量计为4g的硝酸镁、以Co 2O 3质量计为1g的硝酸钴直至完全溶解。称取碳酸铵58.5g溶于250mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
称取以Al 2O 3质量计为40g的铝石,加入380mL水及6g的36重量%的浓盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,将浆液在200℃下进行干燥,并且在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为33%。
称取钯的前驱体与稀盐酸按质量比1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.0030g称取一定量浓度为5.6g/L的氯化钯溶液。将氯化钯溶液作为浸渍液浸渍到上述催化剂微球半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到催化剂C5。
实施例C6
在烧杯中称取480mL去离子水,搅拌下加入以La 2O 3质量计为22g的硝酸镧、以MgO质量计为4g的硝酸镁、以Co 2O 3质量计为22g的硝酸钴直至完全溶解。称取碳酸铵72g溶于300mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
称取以Al 2O 3质量计为40g的铝石,加入380mL水及6g的36重量% 的浓盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,将浆液在200℃下进行干燥,并且在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为33%。
称取钯的前驱体与稀盐酸按质量比1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.0045g称取一定量浓度为5.6g/L的氯化钯溶液。将氯化钯溶液作为浸渍液浸渍到上述催化剂微球半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到催化剂C6。
对新鲜的催化剂C6进行XRD分析,在XRD谱中,在2θ=约33.0°、约33.5°和约47.5°处以及在2θ=约27.0°、约28.0°和约39.5°处存在特征峰。
将催化剂C6暴露于含SO 2的气氛240分钟,所述含SO 2的气氛的温度为750℃,压力为0.1MPa,SO 2的含量为0.02体积%。在暴露于SO 2处理后,对催化剂C6进行XRD分析,在催化剂C6的XRD谱中,2θ角约为28.6°、30.0°和50.4°处,存在特征峰。
实施例C7
按照实施例C1的方法,不同的是,将氯化钯溶液替换为等浓度的氯化钌溶液,且制得的催化剂中,贵金属含量不变,即得到催化剂C7。
实施例C8
按照实施例C1的方法,不同的是,以氧化物计,将硝酸镧替换为等质量的硝酸铈;以氧化物计,将硝酸钴替换为等质量的硝酸铁,即得到催化剂C8。
实施例D1
在烧杯中称取420mL去离子水,搅拌下加入以La 2O 3质量计为30g的硝酸镧、以MgO质量计为4g的硝酸镁、以Co 2O 3质量计为5g的硝酸钴和以MnO质量计为3g的氯化锰直至完全溶解。称取碳酸铵63g溶于250mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属 前驱体。
称取以Al 2O 3质量计为40g的铝石,加入380mL水及6g的36重量%的浓盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,将浆液在200℃下进行干燥,并且在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为33%。
称取钯的前驱体与稀盐酸按质量比1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.0045g称取一定量浓度为5.6g/L的氯化钯溶液。将氯化钯溶液作为浸渍液浸渍到上述催化剂微球半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到催化剂D1。
对新鲜的催化剂D1进行XRD分析,在XRD谱中,在2θ=约33.0°、约33.5°和约47.5°处以及在2θ=约27.0°、约28.0°和约39.5°处存在特征峰。
将催化剂D1暴露于含SO 2的气氛480分钟,所述含SO 2的气氛的温度为800℃,压力为0.2MPa,SO 2的含量为0.02体积%。在暴露于SO 2处理后,对催化剂D1进行XRD分析,在催化剂D1的XRD谱中,2θ角约为28.6°、30.0°和50.4°处,存在特征峰。
实施例D2
在烧杯中称取250mL去离子水,搅拌下加入以La 2O 3质量计为10g的硝酸镧、以MgO质量计为7g的硝酸镁、以Co 2O 3质量计为5g的硝酸钴和以MnO质量计为3g的氯化锰直至完全溶解。称取碳酸铵37.5g溶于150mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
称取以Al 2O 3质量计为40g的铝石,加入380mL水及6g的36重量%的浓盐酸,进行打浆。称取10g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,将浆液在200℃下进行干燥,并且在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制 备微球催化剂半成品的质量百分比为20%。
称取钯的前驱体与稀盐酸按质量比1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.0030g称取一定量浓度为5.6g/L的氯化钯溶液。将氯化钯溶液作为浸渍液浸渍到上述催化剂微球半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到的催化剂记为S-D-2。
实施例D3
在烧杯中称取410mL去离子水,搅拌下加入以La 2O 3质量计为30g的硝酸镧、以MgO质量计为5g的硝酸镁、以Co 2O 3质量计为2.6g的硝酸钴和以MnO质量计为3.4g的氯化锰直至完全溶解。称取碳酸铵61.5g溶于250mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
称取以Al 2O 3质量计为40g的铝石,加入380mL水及6g的36重量%的浓盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,将浆液在200℃下进行干燥,并且在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为33%。
称取钯的前驱体与稀盐酸按质量比1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.0030g称取一定量浓度为5.6g/L的氯化钯溶液。将氯化钯溶液作为浸渍液浸渍到上述催化剂微球半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到的催化剂记为S-D-3。
实施例D4
按照实施例D1的方法,不同的是,减少铝石的用量,将非贵金属活性组分占所制备微球催化剂半成品的质量百分比调整为50%。
具体为:在烧杯中称取420mL去离子水,搅拌下加入以La 2O 3质量 计为30g的硝酸镧、以MgO质量计为4g的硝酸镁、以Co 2O 3质量计为5g的硝酸钴和以MnO质量计为3g的氯化锰直至完全溶解。称取碳酸铵63g溶于250mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
称取以Al 2O 3质量计为20g的铝石,加入240mL水及3g的36重量%的浓盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,将浆液在200℃下进行干燥,并且在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为50%。
称取钯的前驱体与稀盐酸按质量比1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.0060g称取一定量浓度为5.6g/L的氯化钯溶液。将氯化钯溶液作为浸渍液浸渍到上述催化剂微球半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到催化剂D4。
对新鲜的催化剂D4进行XRD分析,在XRD谱中,在2θ=约33.0°、约33.5°和约47.5°处以及在2θ=约27.0°、约28.0°和约39.5°处存在特征峰。
将催化剂D4暴露于含SO 2的气氛480分钟,所述含SO 2的气氛的温度为800℃,压力为0.2MPa,SO 2的含量为0.02体积%。在暴露于SO 2处理后,对催化剂D4进行XRD分析,在催化剂D4的XRD谱中,2θ角约为28.6°、30.0°和50.4°处,存在特征峰。
实施例D5
在烧杯中称取420mL去离子水,搅拌下加入以La 2O 3质量计为34g的硝酸镧、以MgO质量计为4g的硝酸镁、以Co 2O 3质量计为1g的硝酸钴和以MnO质量计为3g的氯化锰直至完全溶解。称取碳酸铵63g溶于250mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合 物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
称取以Al 2O 3质量计为40g的铝石,加入380mL水及6g的36重量%的浓盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,将浆液在200℃下进行干燥,并且在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为33%。
称取钯的前驱体与稀盐酸按质量比1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.0030g称取一定量浓度为5.6g/L的氯化钯溶液。将氯化钯溶液作为浸渍液浸渍到上述催化剂微球半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到催化剂D5。
实施例D6
在烧杯中称取510mL去离子水,搅拌下加入以La 2O 3质量计为22g的硝酸镧、以MgO质量计为4g的硝酸镁、以Co 2O 3质量计为22g的硝酸钴和以MnO质量计为3g的氯化锰直至完全溶解。称取碳酸铵76.5g溶于300mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
称取以Al 2O 3质量计为40g的铝石,加入380mL水及6g的36重量%的浓盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,将浆液在200℃下进行干燥,并且在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为33%。
称取钯的前驱体与稀盐酸按质量比1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.0045g称取一定量浓度为5.6g/L的氯化钯溶液。将氯化钯溶液作为浸渍液浸渍到上述催化剂微球半成品,得到固体产物,然后对 固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到催化剂D6。
实施例D7
在烧杯中称取420mL去离子水,搅拌下加入以La 2O 3质量计为30g的硝酸镧、以MgO质量计为4g的硝酸镁、以Co 2O 3质量计为5g的硝酸钴和以MnO质量计为3g的氯化锰直至完全溶解。称取碳酸铵63g溶于250mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
称取以Al 2O 3质量计为40g的铝石,加入380mL水及6g的36重量%的浓盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,将浆液在200℃下进行干燥,并在空气气氛700℃下第二焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为33%。
称取钌的前驱体与稀盐酸1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钌溶液,称取15g的催化剂微球半成品,按含钌质量为0.0045g称取一定量浓度为5.6g/L的氯化钌溶液。将含钌溶液作为浸渍液浸渍到上述催化剂半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到催化剂D7。
实施例D8
在烧杯中称取420mL去离子水,搅拌下加入以CeO2质量计为30g的硝酸铈、以MgO质量计为4g的硝酸镁、以Fe 2O 3质量计为5g的硝酸铁和以MnO质量计为3g的氯化锰直至完全溶解。称取碳酸铵63g溶于250mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧6小时后,研磨得到活性金属前驱体。
称取以Al 2O 3质量计为40g的铝石,加入380mL水及6g的36重量% 的浓盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,将浆液在200℃下进行干燥,并且在空气气氛700℃下焙烧4小时,得到催化剂微球半成品。非贵金属活性组分占所制备微球催化剂半成品的质量百分比为33%。
称取钯的前驱体与稀盐酸按质量比1:1互溶,加去离子水稀释,配置成浓度为5.6g/L的氯化钯溶液,pH为2,称取15g的催化剂微球半成品,按含钯质量为0.0045g称取一定量浓度为5.6g/L的氯化钯溶液。将氯化钯溶液作为浸渍液浸渍到上述催化剂微球半成品,得到固体产物,然后对固体产物在120℃下进行干燥,然后在空气气氛700℃下焙烧4小时,即得到催化剂D8。
性能测试
组分含量测定:对实施例中制得的催化剂的组分含量均采用X射线荧光光谱(XRF)法测定,具体参见石油化工分析方法(RIPP实验方法),杨翠定等编,科学出版社1990年出版。具体结果如下表3所示。
表3:催化剂的组成(重量百分含量,%)
Figure PCTCN2022118245-appb-000001
Figure PCTCN2022118245-appb-000002
活性评价:本发明中催化剂活性评价标准以反应产物中SOx和NOx浓度变化作为衡量,产物中SOx和NOx含量采用FT-IR傅里叶红外烟气分析仪测量,采用固定床微反实验装置进行评价。催化剂活性评价结果以转化率表示。
转化率计算方法:
X=[C 入口-C 出口]/C 入口×100%
其中,C 入口指的是实验装置入口SOx或NOx的浓度;C 出口指的是实验装置出口SOx或NOx的浓度。
对上述实施例和对比例提供的催化剂在烟气中同时降低NO和SO 2排放的作用进行评价。所述催化裂化反应-再生评价在小型固定床模拟烟气装置上进行,催化剂装填量为1.5g,置于内径16.8mm的石英管固定床反应器中,催化剂床层两端采用石英棉和石英砂(20-40目)进行填充,使 催化剂床层固定于反应器中部恒温段。反应温度为680℃,压力为0.03MPa,原料气体积流量(标况)为1500mL/min,体积空速约为15000h -1。反应器温度稳定后,首先在N 2氛围下对催化剂预先处理30min,充分去除催化剂表面的吸附物种。反应开始时的原料气中含有1200ppm体积%的NO,1200ppm体积%的SO 2,余量为N 2。通过在线红外分析仪分析气体产物,得到反应后SO 2和NO浓度。评价时间为0.5h的结果列于表4,评价时间为1.5h的结果列于表5。在表4和表5中,单独-NO和单独-SO 2分别指的是原料气中仅含有1200ppm体积%的NO或者1200ppm体积%的SO 2
表4:0.5h内不同催化剂的性能比较
0.5h总转化率(%) 组合-NO 组合-SO 2 单独-NO 单独-SO 2
催化剂A1 63 52 <2 42
催化剂A2 43 24 <2 21
催化剂A3 51 42 <2 39
催化剂A4 75 63 <2 53
催化剂A5 37 47 <2 46
催化剂A6 31 37 <2 36
催化剂A7 59 50 <2 40
催化剂A8 54 49 <2 42
催化剂B1 78 53 <2 43
催化剂B2 53 28 <2 22
催化剂B3 61 46 <2 40
催化剂B4 87 65 <2 55
催化剂B5 43 47 <2 46
催化剂B6 34 38 <2 37
催化剂B7 72 51 <2 41
催化剂B8 67 51 <2 44
催化剂C1 65 70 <2 60
催化剂C2 44 50 <2 47
催化剂C3 53 60 <2 57
催化剂C4 79 73 <2 63
催化剂C5 38 62 <2 61
催化剂C6 31 51 <2 50
催化剂C7 61 67 <2 57
催化剂C8 56 69 <2 62
催化剂D1 71 72 <2 62
催化剂D2 50 53 <2 50
催化剂D3 57 63 <2 60
催化剂D4 92 78 <2 68
催化剂D5 46 66 <2 65
催化剂D6 31 56 <2 55
催化剂D7 65 70 <2 60
催化剂D8 59 72 <2 65
催化剂E1 <2 33 <2 32
催化剂E2 10 <2 10 <2
催化剂E3 5 7 <2 7
催化剂E4 4 24 5 23
表5:1.5h内不同催化剂的性能比较
1.5h总转化率(%) 组合-NO 组合-SO 2 单独-NO 单独-SO 2
催化剂A1 39 37 <2 30
催化剂A2 28 19 <2 17
催化剂A3 32 31 <2 29
催化剂A4 46 45 <2 38
催化剂A5 24 35 <2 34
催化剂A6 21 28 <2 27
催化剂A7 37 36 <2 29
催化剂A8 34 36 <2 31
催化剂B1 55 33 <2 27
催化剂B2 39 19 <2 15
催化剂B3 44 29 <2 25
催化剂B4 61 39 <2 33
催化剂B5 32 30 <2 29
催化剂B6 26 25 <2 24
催化剂B7 51 31 <2 25
催化剂B8 48 32 <2 27
催化剂C1 57 61 <2 53
催化剂C2 43 48 <2 46
催化剂C3 49 54 <2 52
催化剂C4 68 63 <2 55
催化剂C5 36 55 <2 55
催化剂C6 29 45 <2 44
催化剂C7 54 59 <2 51
催化剂C8 50 61 <2 55
催化剂D1 62 62 <2 54
催化剂D2 48 50 <2 48
催化剂D3 52 57 <2 54
催化剂D4 78 67 <2 59
催化剂D5 42 58 <2 58
催化剂D6 29 49 <2 48
催化剂D7 57 61 <2 53
催化剂D8 52 62 <2 57
催化剂E1 <2 24 <2 23
催化剂E2 8 <2 8 <2
催化剂E3 4 7 <2 6
催化剂E4 3 15 4 18
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (15)

  1. 一种能够用于/用于同时降低烟气中NOx和SOx的催化剂,其特征在于,该催化剂包括以下组分:
    (1)载体或无机氧化物基质、(2)稀土族金属、(3)选自VIII族的非贵金属或选自VB、VIII、IB、IIB族的一种或几种的非贵金属、(4)贵金属、(5)任选地,VIIB族非贵金属、(6)任选地,IIA族金属,
    其中,以催化剂总重量为基准,
    以氧化物计的组分(1)载体或无机氧化物基质的含量为25-95重量%,例如25-93重量%,或25-92重量%,或40-90重量%,或40-87重量%,或40-85重量%,或45-80重量%,或50-88重量%,或50-80重量%;
    以氧化物计的组分(2)稀土族金属的含量为:2-70重量%,例如4-60重量%,或4-50重量%,或4-40重量%,或6-70重量%,或8-50重量%,或8-40重量%,或12-60重量%,或12-48重量%;
    以氧化物计的组分(3)选自VIII族的非贵金属或选自VB、VIII、IB、IIB族的一种或几种的非贵金属的含量为:1-30重量%,例如,1-15重量%,或1-12重量%,或2-30重量%,或2-12重量%,或2-10重量%,或2-8重量%,或3-20重量%,或3-15重量%;
    以元素计的组分(4)贵金属的含量为:0.01-2重量%,例如0.01-1.5重量%,或0.01-2重量%,或0.02-1.5重量%,或0.02-1.2重量%,或0.02-1.0重量%;或0.03-1.2重量%;
    以氧化物计的组分(5)VIIB族非贵金属的含量为:0或1-10重量%,0或1-8重量%,0或2-5重量%;
    以氧化物计的组分(6)IIA族金属的含量为:0或1-30重量%,0或1-20重量%,0或2-15重量%;
    其中,以金属元素计,组分(2)与组分(3)的摩尔比为(0.4-18):1,例如(0.4-12):1,或(0.5-15):1,或(0.5-12):1,或(0.5-8):1,或(0.6-18):1,或(1-10):1,或(1-6):1,或(1-4):1,或(2-12):1,或(2-5):1,或(3-6):1;
    优选地,以氧化物计的组分(5)VIIB族非贵金属的含量与以氧化物计的组分(6)IIA族金属的含量之和不为零。
  2. 根据权利要求1所述的催化剂,其中,
    所述组分(1)载体或无机氧化物基质选自氧化铝、氧化硅-氧化铝、沸石、尖晶石、高岭土、硅藻土、珍珠岩和钙钛矿中的至少一种,优选为氧化铝;和/或
    所述组分(2)稀土族金属为镧、铈、镨和钕中的一种或几种,更优选为镧和/或铈;最优选为镧;和/或
    所述组分(3)的选自VIII族的非贵金属为钴和/或铁,更优选为钴;或所述组分(3)的选自VB、VIII、IB、IIB族的一种或几种的非贵金属选自铁、钴、镍、铜、锌和钒中的一种或几种,更优选为钴和/或铁,最更优选为钴;和/或
    所述组分(4)贵金属选自钌、铑、铼、铂、钯、银、铱和金中的一种或几种,更优选为铂、钯和铑中的一种或几种,最优选为钯;和/或
    所述组分(5)VIIB族非贵金属为锰;和/或
    所述组分(6)IIA族金属选自铍、镁、钙、锶和钡中的一种或几种,更优选为镁。
  3. 根据前述权利要求中任一项所述的催化剂,其中
    该催化剂包括(1)载体和负载在载体上的(2)稀土族金属、(3)选自VIII族的非贵金属、(4)贵金属;
    其中,以催化剂总重量为基准,
    组分(1)载体的含量为25-95重量%;
    以氧化物计的组分(2)稀土族金属的含量为:4-60重量%;
    以氧化物计的组分(3)选自VIII族的非贵金属的含量为:2-12重量%;
    以元素计的组分(4)贵金属的含量为:0.01-2重量%;
    或者
    组分(1)载体的含量为40-90重量%;
    以氧化物计的组分(2)稀土族金属的含量为:8-50重量%;
    以氧化物计的组分(3)选自VIII族的非贵金属的含量为:2-12重量%;
    以元素计的组分(4)贵金属的含量为:0.02-1.5重量%;
    或者
    以氧化物计的组分(1)载体或无机氧化物基质的含量为50-88重量%;
    以氧化物计的组分(2)稀土族金属的含量为:8-40重量%;
    以氧化物计的组分(3)选自VIII族的非贵金属的含量为:2-10重量%;
    以元素计的组分(4)贵金属的含量为:0.03-1.2重量%;
    其中,以金属元素计,组分(2)与组分(3)的摩尔比为(0.5-15):1,或(1-10):1,或(2-5):1。
  4. 根据前述权利要求中任一项所述的催化剂,其中该催化剂包括(1)载体和负载在载体上的(2)稀土族金属、(3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属、(4)贵金属、和(6)IIA族金属,
    其中,以催化剂总重量为基准,
    以氧化物计的组分(1)载体或无机氧化物基质的含量为25-93重量%;
    以氧化物计的组分(2)稀土族金属的含量为:4-60重量%;
    以氧化物计的组分(3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属的含量为:2-30重量%;
    以元素计的组分(4)贵金属的含量为:0.01-2重量%;
    以氧化物计的组分(6)IIA族金属的含量为:1-30重量%;
    或者
    以氧化物计的组分(1)载体或无机氧化物基质的含量为40-87重量%;
    以氧化物计的组分(2)稀土族金属的含量为:8-50重量%;
    以氧化物计的组分(3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属的含量为:3-20重量%;
    以元素计的组分(4)贵金属的含量为0.02-1.5重量%;
    以氧化物计的组分(6)IIA族金属的含量为:1-20重量%;
    或者
    以氧化物计的组分(1)载体或无机氧化物基质的含量为40-85重量%;
    以氧化物计的组分(2)稀土族金属的含量为:8-40重量%;
    以氧化物计的组分(3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属的含量为:3-15重量%;
    以元素计的组分(4)贵金属的含量为:0.03-1.2重量%;
    以氧化物计的组分(6)IIA族金属的含量为:2-15重量%;
    其中,以金属元素计,组分(2)与组分(3)的摩尔比为(0.4-18):1,例如(0.4-12):1,或(0.5-8):1,或(1-4):1。
  5. 根据前述权利要求中任一项所述的催化剂,其中
    该催化剂包括以下组分:(1)载体或无机氧化物基质、(2)稀土族金属、 (3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属、(4)贵金属、(5)VIIB族非贵金属,
    其中,以催化剂总重量为基准,
    以氧化物计的组分(1)载体或无机氧化物基质的含量为25-92重量%;
    以氧化物计的组分(2)稀土族金属的含量为:6-70重量%;
    以氧化物计的组分(3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属的含量为:1-12重量%;
    以元素计的组分(4)贵金属的含量为:0.01-1.5重量%;
    以氧化物计的组分(5)VIIB族非贵金属的含量为:1-10重量%;
    或者
    以氧化物计的组分(1)载体或无机氧化物基质的含量为40-85重量%;
    以氧化物计的组分(2)稀土族金属的含量为:12-60重量%;
    以氧化物计的组分(3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属的含量为:2-10重量%;
    以元素计的组分(4)贵金属的含量为:0.02-1.2重量%;
    以氧化物计的组分(5)VIIB族非贵金属的含量为:1-8重量%;
    或者
    以氧化物计的组分(1)载体或无机氧化物基质的含量为40-85重量%;
    以氧化物计的组分(2)稀土族金属的含量为:12-48重量%;
    以氧化物计的组分(3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属的含量为:2-8重量%;
    以元素计的组分(4)贵金属的含量为:0.02-1.0重量%;
    以氧化物计的组分(5)VIIB族非贵金属的含量为:2-5重量%;
    其中,以金属元素计,组分(2)与组分(3)的摩尔比为(0.6-18):1,例如(2-12):1,或(3-6):1。
  6. 根据前述权利要求中任一项所述的催化剂,其中
    该催化剂包括以下组分:
    (1)载体或无机氧化物基质、(2)稀土族金属、(3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属、(4)贵金属、(5)VIIB族非贵金属、(6)IIA族金属,
    其中,以催化剂总重量为基准,
    以氧化物计的组分(1)载体或无机氧化物基质的含量为25-95重量%;
    以氧化物计的组分(2)稀土族金属的含量为:2-70重量%;
    以氧化物计的组分(3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属的含量为:1-15重量%;
    以元素计的组分(4)贵金属的含量为:0.01-1.5重量%;
    以氧化物计的组分(5)VIIB族非贵金属的含量为:1-10重量%;
    以氧化物计的组分(6)IIA族金属的含量为:1-30重量%;
    或者
    以氧化物计的组分(1)载体或无机氧化物基质的含量为40-90重量%;
    以氧化物计的组分(2)稀土族金属的含量为4-50重量%;
    以氧化物计的组分(3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属的含量为:2-12重量%;
    以元素计的组分(4)贵金属的含量为:0.02-1.2重量%;
    以氧化物计的组分(5)VIIB族非贵金属的含量为:1-8重量%;
    以氧化物计的组分(6)IIA族金属的含量为:1-20重量%;
    或者
    以氧化物计的组分(1)载体或无机氧化物基质的含量为50-80重量%;
    以氧化物计的组分(2)稀土族金属的含量为:4-40重量%;
    以氧化物计的组分(3)选自VB、VIII、IB、IIB族的一种或几种的非贵金属的含量为:2-10重量%;
    以元素计的组分(4)贵金属的含量为:0.02-1.0重量%;
    以氧化物计的组分(5)VIIB族非贵金属的含量为:2-5重量%;
    以氧化物计的组分(6)IIA族金属的含量为:2-15重量%;
    其中,以金属元素计,组分(2)与组分(3)的摩尔比为(0.4-18):1,例如(0.5-12):1,或(1-6):1。
  7. 根据前述权利要求中任一项所述的催化剂,其中所述催化剂是经暴露于含SO 2的气氛处理过的。
  8. 根据前述权利要求中任一项所述的催化剂,其中
    所述组分(2)的稀土族金属包括:镧;
    所述组分(3)的选自VIII族的非贵金属或选自VB、VIII、IB、IIB族的一种或几种的非贵金属包括钴;
    所述组分(4)的贵金属包括:钯;
    所述组分(5)的VIIB族非贵金属,如果有的话,包括猛;
    所述组分(6)的IIA族金属,如果有的话,包括镁。
  9. 根据前述权利要求中任一项所述的催化剂,其中
    所述组分(2)的稀土族金属为镧;
    所述组分(3)的选自VIII族的非贵金属或选自VB、VIII、IB、IIB族的一种或几种的非贵金属为钴;
    所述组分(4)的贵金属为钯;
    所述组分(5)的VIIB族非贵金属,如果有的话,为猛;
    所述组分(6)的IIA族金属,如果有的话,为镁。
  10. 根据前述权利要求7-9中任一项所述的催化剂,其中所述催化剂是经暴露于含SO 2的气氛处理过的,所述催化剂在粉末XRD谱中在2θ=28.6°±0.1°、30.0°±0.1°以及50.4°±0.1°处具有特征峰。
  11. 根据前述权利要求8-9中任一项所述的催化剂,其中所述催化剂在粉末XRD谱中在2θ=33.0°±0.1°、33.5°±0.1°和47.5°±0.1°处以及在27.0°±0.1°、28.0°±0.1°和39.5°±0.1°处具有特征峰。
  12. 前述权利要求中任一项所述的催化剂的制备方法,该方法包括:
    (I)采用共沉淀法或者溶胶凝胶法得到活性金属前驱体,
    其中,活性金属前驱体中的活性金属包括(2)稀土族金属、(3)选自VIII族的非贵金属或选自VB、VIII、IB、IIB族的一种或几种的非贵金属、(5)任选地,VIIB族非贵金属、和(6)任选地,IIA族金属;和
    (II)将活性金属前驱体与(1)载体或无机氧化物基质或其前驱体、和任选地(4)贵金属的前驱体混合打浆,得到浆液,将所述浆液进行干燥和/或焙烧,得到催化剂;或者
    将活性金属前驱体与(1)载体或无机氧化物基质或其前驱体、和任选地(4)贵金属的前驱体混合打浆,得到浆液,将所述浆液进行干燥和/或焙烧,得到催化剂半成品;然后以含有(4)贵金属的前驱体的溶液作为浸渍液,对催化剂半成品进行浸渍,得到固体产物,然后对所述固体产物进行干燥和/或焙烧,得到催化剂;
    其中,活性金属前驱体、载体或无机氧化物基质或其前驱体、和贵 金属的前驱体的用量使得制得的催化剂具有如前述权利要求中任一项所述的催化剂的组成。
  13. 根据前述权利要求中任一项所述的制备方法,其中,步骤(I)采用共沉淀法得到所述活性金属前驱体;优选地,所述共沉淀法包括:
    (I-1)提供含有(2)稀土族金属的前驱体、(3)选自VIII族的非贵金属或选自VB、VIII、IB、IIB族的一种或几种的非贵金属的前驱体、(5)任选地VIIB族非贵金属的前驱体、和(6)任选地IIA族金属的前驱体的第一溶液;
    优选地,各前驱体独立地选自各金属的硝酸盐和/或氯化物;
    (I-2)将所述第一溶液与共沉淀剂进行共沉淀反应;
    优选地,所述共沉淀剂为碳酸盐,进一步优选选自碳酸铵、碳酸钾和碳酸钠中的至少一种;
    优选地,所述共沉淀反应在pH为8-10条件下进行;
    (I-3)将所述共沉淀反应得到的固体产物进行干燥和/或焙烧得到活性金属前驱体;
    优选地,步骤(I-3)所述焙烧的条件包括:温度为300-800℃,例如300-700℃,时间为0.5-8h,例如1-8h或1-5h,
    其中,载体或无机氧化物基质或其前驱体、稀土族金属的前驱体、选自VIII族的非贵金属或选自VB、VIII、IB、IIB族的一种或几种的非贵金属的前驱体、贵金属的前驱体、任选地VIIB族非贵金属的前驱体、和任选地IIA族金属的前驱体的用量使得制得的催化剂具有如前述权利要求中任一项所述的催化剂的组成。
  14. 根据前述权利要求中任一项所述的制备方法,其中
    在步骤(II)中,所述贵金属组分前驱体选自硝酸盐、氯化物和/或氯酸盐中的至少一种,例如硝酸钯、氯化钯、氯酸铂和氯化铑中的至少一种,优选为硝酸钯和/或氯化钯;和/或
    在步骤(II)中,所述浆液的固含量为5-40重量%,例如6-38重量%,或7-35重量%;和/或
    在步骤(II)中,所述浆液的焙烧的条件包括:温度为300-800℃,例如300-700℃,时间为0.5-8h,例如1-8h或1-5h;和/或
    在步骤(II)中,将贵金属的前驱体在酸溶液中水解以提供所述浸渍液;
    优选地,所述酸选自可溶于水的无机酸和/或有机酸,更优选地,选自盐酸、硝酸、磷酸和醋酸中至少一种;
    优选地,所述酸的用量使得浸渍液的pH值小于6.0,优选小于5.0,例如2.0-5.0;
    优选地,对所述固体产物进行焙烧的条件包括:温度为300-800℃,例如300-700℃,时间为0.5-8h,例如1-8h或1-5h。
  15. 一种烟气同时脱SOx和NOx的方法,包括:在脱SOx和NOx的条件下,使烟气与根据前述权利要求中任一项所述的催化剂或者根据前述权利要求中任一项所述的制备方法制得的催化剂接触;
    优选地,所述脱SOx和NOx的条件包括:温度为300-1000℃,例如500-800℃,或600-750℃,或625-750℃,或650-750℃,或675-750℃,或700-750℃,或725-750℃,或600-725℃,或625-725℃,或650-725℃,或675-725℃,或700-725℃,或600-700℃,或625-700℃,或650-700℃,或675-700℃,或600-675℃,或625-675℃,或650-675℃,或600-650℃,或625-650℃,或600-625℃;压力为0-4MPa,例如0.01-4MPa,或0.02-4MPa,或0-0.5MPa;烟气的体积空速为100-50000h -1或200-20000h -1;和/或
    优选地,所述烟气中,SOx的含量为0.001-0.5体积%,NOx的含量为0.001-0.3体积%;或者所述烟气中SOx和NOx的体积分数分别为1~3000μL/L,并且SOx和NOx的摩尔比为0.5:1-2:1;和/或
    优选地,所述烟气为同时含有一定浓度的SOx和NOx的烟气,例如催化裂化再生烟气;优选地,所述催化裂化再生烟气和催化剂接触在催化裂化旋风分离器后和/或CO焚烧炉后设置的烟气通道中进行。
PCT/CN2022/118245 2021-09-09 2022-09-09 降低烟气中SOx与NOx的催化剂及其制备方法以及烟气脱SOx和NOx的方法 WO2023036317A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3232113A CA3232113A1 (en) 2021-09-09 2022-09-09 Catalyst for reducing sox and nox in flue gas, preparation method therefor, and method for removing sox and nox from flue gas

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202111055118.0A CN115770587A (zh) 2021-09-09 2021-09-09 用于降低烟气中SOx与NOx的催化剂及制备方法和应用、烟气脱SOx和NOx的方法
CN202111055913.X 2021-09-09
CN202111054717.0A CN115770585A (zh) 2021-09-09 2021-09-09 用于降低烟气中nox和sox排放的催化剂及其制备方法、烟气脱sox和nox的方法
CN202111055913.XA CN115779924A (zh) 2021-09-09 2021-09-09 降低烟气中SOx与NOx的催化剂及其制备方法和应用以及烟气脱SOx和NOx的方法
CN202111055118.0 2021-09-09
CN202111054717.0 2021-09-09
CN202111055151.3 2021-09-09
CN202111055151.3A CN115779923A (zh) 2021-09-09 2021-09-09 一种脱硫脱硝催化剂及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2023036317A1 true WO2023036317A1 (zh) 2023-03-16

Family

ID=85506140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118245 WO2023036317A1 (zh) 2021-09-09 2022-09-09 降低烟气中SOx与NOx的催化剂及其制备方法以及烟气脱SOx和NOx的方法

Country Status (3)

Country Link
CA (1) CA3232113A1 (zh)
TW (1) TW202319117A (zh)
WO (1) WO2023036317A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003038937A (ja) * 2001-07-30 2003-02-12 Valtion Teknillinen Tutkimuskeskus 窒素酸化物を接触還元する方法とそのための触媒
US20120036840A1 (en) * 2010-08-11 2012-02-16 Kia Motors Corporation NOx Storage and Reduction Catalyst, Preparation Method, and NOx Removing System
CN110787834A (zh) * 2019-11-11 2020-02-14 上海润琦化工科技有限公司 一种催化裂化烟气脱硫、脱硝助剂及其制备方法
CN111939754A (zh) * 2019-05-17 2020-11-17 中国石油化工股份有限公司 一种含硫氧化物和no的气体的处理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003038937A (ja) * 2001-07-30 2003-02-12 Valtion Teknillinen Tutkimuskeskus 窒素酸化物を接触還元する方法とそのための触媒
US20120036840A1 (en) * 2010-08-11 2012-02-16 Kia Motors Corporation NOx Storage and Reduction Catalyst, Preparation Method, and NOx Removing System
CN111939754A (zh) * 2019-05-17 2020-11-17 中国石油化工股份有限公司 一种含硫氧化物和no的气体的处理方法
CN110787834A (zh) * 2019-11-11 2020-02-14 上海润琦化工科技有限公司 一种催化裂化烟气脱硫、脱硝助剂及其制备方法

Also Published As

Publication number Publication date
CA3232113A1 (en) 2023-03-16
TW202319117A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
CN104998680B (zh) 一种抗so2和h2o中毒的低温脱硝催化剂及其制备方法
CN109174173B (zh) 一种分子筛scr催化剂制备方法及其制备的催化剂
RU2428248C2 (ru) КОМПОЗИЦИИ, ПРИМЕНЯЮЩИЕСЯ, В ЧАСТНОСТИ, ДЛЯ УЛАВЛИВАНИЯ ОКСИДОВ АЗОТА (NOx)
CN106076316B (zh) 一种以偏钛酸为原料制备宽工作温度脱硝催化剂的方法
CN108212180B (zh) 一种中低温scr脱硝用钛钼复合粉及其制备方法
CN109876856B (zh) 一种低温烟气脱硝催化剂及其制备方法
CN106732758A (zh) 一种低温脱硝催化剂及其制备方法
CN111111642B (zh) 一种脱硝催化剂及其制备方法与应用
EP0463626A1 (en) Catalyst for purifying exhaust gas
CN111375423B (zh) 一种高温催化燃烧催化剂及其制备方法
CN108187665A (zh) 脱硝催化剂及其制备方法
WO2019007381A1 (zh) 能够降低CO和NOx排放的组合物及其制备方法和应用以及流化催化裂化方法
JP5463300B2 (ja) 酸化ジルコニウム、酸化イットリウムおよび酸化タングステンをベースとする組成物、調製方法および触媒または触媒担体としての使用
JP5201425B2 (ja) 低温NOx吸着材、その製造方法、及びそれを用いた排ガス浄化方法
WO2023036317A1 (zh) 降低烟气中SOx与NOx的催化剂及其制备方法以及烟气脱SOx和NOx的方法
CN109046324B (zh) 一种以介孔氧化铈为载体的中低温脱硝催化剂及制备方法
CN110721706A (zh) 一种用于净化co的氧化催化剂及其制备方法和应用
CN113413911B (zh) 一种nh3-scr低温烟气脱硝催化剂及其应用
WO2023036315A1 (zh) 规整结构催化剂及其制备方法和烟气同时脱SOx和NOx的方法
CN115025777A (zh) 用于降低FCC再生烟气CO和NOx排放的组合物及其制备方法
CN115779923A (zh) 一种脱硫脱硝催化剂及其制备方法与应用
CN115770587A (zh) 用于降低烟气中SOx与NOx的催化剂及制备方法和应用、烟气脱SOx和NOx的方法
JP5761797B2 (ja) 混合触媒、それを表面に備える触媒担持構造体およびそれらの製造方法
JP3309711B2 (ja) 排気ガス浄化用触媒及びその製造方法
CN114950423B (zh) 室内低浓度甲醛净化催化剂产品及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866778

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3232113

Country of ref document: CA