WO2023036315A1 - 规整结构催化剂及其制备方法和烟气同时脱SOx和NOx的方法 - Google Patents

规整结构催化剂及其制备方法和烟气同时脱SOx和NOx的方法 Download PDF

Info

Publication number
WO2023036315A1
WO2023036315A1 PCT/CN2022/118239 CN2022118239W WO2023036315A1 WO 2023036315 A1 WO2023036315 A1 WO 2023036315A1 CN 2022118239 W CN2022118239 W CN 2022118239W WO 2023036315 A1 WO2023036315 A1 WO 2023036315A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
catalyst
metal component
content
active
Prior art date
Application number
PCT/CN2022/118239
Other languages
English (en)
French (fr)
Inventor
姜秋桥
宋海涛
赵东越
凤孟龙
曲亚坤
沙昊
Original Assignee
中国石油化工股份有限公司
中石化石油化工科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111055118.0A external-priority patent/CN115770587A/zh
Priority claimed from CN202111054723.6A external-priority patent/CN115779922A/zh
Application filed by 中国石油化工股份有限公司, 中石化石油化工科学研究院有限公司 filed Critical 中国石油化工股份有限公司
Priority to KR1020247011870A priority Critical patent/KR20240053000A/ko
Publication of WO2023036315A1 publication Critical patent/WO2023036315A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used

Definitions

  • the invention relates to a regular structure catalyst capable of simultaneously reducing SOx and NOx emissions, a preparation method thereof and a method for simultaneously removing SOx and NOx from flue gas.
  • the main technical measures to reduce flue gas regenerated by catalytic cracking include: regenerator optimization, post-treatment of flue gas and use of additives.
  • post-treatment technologies such as SCR process
  • ammonia injection can be used to reduce NOx
  • wet desulfurization technology can use alkali injection to absorb SO 2 , but requires high equipment investment, high operating costs, and ammonia escape, blue smoke tailing, etc. question.
  • the mainstream desulfurization and denitrification additives mainly remove one kind of flue gas pollutants alone.
  • CN1334316A discloses a sulfur transfer agent containing a composition of magnesium aluminum spinel and oxides of cerium/vanadium for removing SOx from catalytic cracking flue gas.
  • CN101311248B provides a composition capable of reducing NOx emission in catalytic cracking regeneration flue gas, which is used for reducing NOx in catalytic cracking flue gas.
  • the purpose of the present invention is to overcome the above-mentioned problems in the prior art, and provide a structured catalyst capable of simultaneously reducing SOx and NOx emissions, a preparation method thereof, and a method for simultaneously removing SOx and NOx from catalytic cracking regenerated flue gas.
  • the use of the catalyst provided by the invention can reduce the total addition amount and enhance the emission reduction effect of the auxiliary agent.
  • the first aspect of the present invention provides a structured catalyst capable of simultaneously reducing SOx and NOx emissions, the catalyst comprising a structured carrier and an active component coating distributed on the inner surface and/or outer surface of the structured carrier , based on the total weight of the catalyst, the content of the active component coating is 1-50% by weight, the active component coating contains a substrate and an active metal component, wherein, the active component The total weight of the coating is based on the basis, the content of the matrix is 10-90% by weight, the content of the active metal component is 10-90% by weight, and the active metal component contains: 1) In terms of oxides, 50-95% by weight of one or more metal components selected from the rare earth group and/or group IIA; 2) In terms of oxides, 5-50% by weight of metal components selected from VB, VIIB, VIII, IB and IIB One or several non-precious metal components of the family; 3) 0.01-2% by weight of precious metal components based on elements.
  • based on the total weight of the catalyst means that the total weight of the catalyst is 100% by weight; "based on the total weight of the active component coating is "Baseline” means that the total weight of the active component coating is 100% by weight; when referring to the composition content of the active metal component, it is based on the total weight of the active metal component being 100% by weight .
  • the second aspect of the present invention provides a method for preparing a structured catalyst capable of simultaneously reducing SOx and NOx emissions, the method comprising the following steps:
  • step (2) carrying out co-precipitation reaction with the solution described in step (1) and the coprecipitant, and then drying and roasting the obtained solid product to obtain the active metal component precursor;
  • step (4) impregnate the catalyst semi-finished product obtained in step (4) with a solution containing the precursor of the noble metal component, and then dry and/or calcinate to obtain an active component coating distributed on the inner surface and/or outer surface of the regular structure carrier. layer;
  • one or more metal component precursors of rare earth and/or IIA groups one or more non-noble metal component precursors selected from VB, VIIB, VIII, IB and IIB groups, matrix source , the amount of the noble metal component precursor and the regular structure carrier makes in the prepared regular structure catalyst, based on the total weight of the catalyst, the content of the active component coating is 1-50% by weight, the active
  • the component coating contains a matrix and an active metal component, wherein, based on the total weight of the active component coating, the content of the matrix is 10-90% by weight, and the content of the active metal component is 10% by weight.
  • the active metal component contains: 1) in terms of oxides, 50-95% by weight of one or more metal components selected from the rare earth group and/or IIA group; 5-50% by weight of one or more non-noble metal components selected from groups VB, VIIB, VIII, IB and IIB; 3) 0.01-2% by weight of noble metal components by weight.
  • the third aspect of the present invention provides a method for simultaneously removing SOx and NOx from catalytic cracking regenerated flue gas, the method comprising: under the condition of removing SOx and NOx, contacting catalytic cracking regenerated flue gas with a catalyst, the catalyst is the catalyst of the present invention
  • the structured catalyst capable of simultaneously reducing SOx and NOx emissions described in the first aspect or the structured structured catalyst capable of simultaneously reducing SOx and NOx emissions produced by the preparation method described in the second aspect.
  • the invention starts from the purpose of combined removal of SOx and NOx, and develops a novel catalyst for combined removal of flue gas pollutants.
  • the catalyst combination with regular structure capable of simultaneously reducing SOx and NOx emissions provided by the invention has high pollutant removal activity, simple preparation method, and can effectively reduce SOx and NOx emissions in catalytic cracking regenerated flue gas.
  • the catalyst provided by the invention is a regular material and can be put into a flue gas channel for direct use.
  • the use of the catalyst provided by the invention can reduce the total amount of the additive, enhance the emission reduction effect of the auxiliary agent, and greatly improve the competitiveness of the auxiliary agent technology.
  • regular structure catalyst used refers to a catalyst comprising a regular structure carrier and an active component coating distributed on the inner surface and/or outer surface of the carrier; "regular structure carrier” is a carrier with a regular structure .
  • the first aspect of the present invention provides a catalyst with a regular structure capable of simultaneously reducing SOx and NOx emissions, the catalyst comprising a regular structure carrier and an active component coating distributed on the inner surface and/or outer surface of the regular structure carrier, with the catalyst Based on the total weight of the active component coating, the content of the active component coating is 1-50% by weight, and the active component coating contains a matrix and an active metal component, wherein, the total weight of the active component coating is As a benchmark, the content of the matrix is 10-90% by weight, the content of the active metal component is 10-90% by weight, and the active metal component contains: 1) In terms of oxides, 50-95% by weight One or more metal components selected from the rare earth group and/or group IIA; 2) based on oxides, 5-50% by weight of one or more metal components selected from group VB, VIIB, VIII, IB and IIB Several non-noble metal components; 3) 0.01-2% by weight of noble metal components based on element.
  • the specific type and content of active components exist on the inner surface and/or outer surface of the structured structure carrier in the form of active metal component coating, and the dispersion of active metal in the coating is high, reducing SOx and NOx activity was significantly improved.
  • the content of the active component coating is 5-40 wt%, preferably 10-35 wt%.
  • the content of the matrix is 40-90% by weight, and the content of the active metal component is 10-60% by weight. % by weight; further preferably, the content of the matrix is 50-80% by weight, and the content of the active metal component is 20-50% by weight.
  • the active metal component contains: 1) based on oxides, 60-90% by weight of one or more metals selected from the rare earth group and/or group IIA Components; 2) In terms of oxides, 10-40% by weight of one or more non-noble metal components selected from groups VB, VIIB, VIII, IB and IIB; 3) In terms of elements, 0.02-1.5% by weight % precious metal components.
  • the active metal component contains: 1) based on oxides, 65-85% by weight of one or more metal components selected from the rare earth group and/or group IIA; 15-35% by weight of one or more non-noble metal components selected from groups VB, VIIB, VIII, IB and IIB; 3) 0.03-1.2% by weight of noble metal components by weight.
  • the active metal component contains both a rare earth metal component and a group IIA metal component.
  • the content of the rare earth metal component is 30-80% by weight, more preferably 40-75% by weight; the content of the IIA group metal component is 5-40% by weight, more preferably 10-30% by weight.
  • the active metal component contains one or more non-noble metal components selected from Groups VB, VIII, IB, and IIB and a non-noble metal component of Group VIIB.
  • the content of one or more non-noble metal components of Groups VB, VIII, IB, and IIB is 3-30% by weight, preferably 5-20% by weight. % by weight; the content of the group VIIB non-noble metal component is 3-20% by weight, preferably 5-15% by weight.
  • the molar ratio of lanthanum to cobalt is (0.5-15): 1, such as (1-10): 1, or (1-6): 1, (2-5) :1, or (2.5-3.5):1, or (2.6-3.4):1, or (2.7-3.3):1, or (2.8-3.2):1, or (2.9-3.1):1, or ( 2.95-3.05):1.
  • the adoption of this preferred embodiment is more conducive to improving the performance of the catalyst for combined removal of SOx and NOx.
  • the content of each component in the regular structure catalyst is measured by X-ray fluorescence spectroscopic analysis method (petrochemical analysis method (RIPP experimental method), edited by Yang Cuiding et al., published by Science Press in 1990).
  • the rare earth metal component is selected from lanthanum, cerium, praseodymium and neodymium One or more of them, more preferably lanthanum and/or cerium, more preferably lanthanum.
  • the group IIA metal component is selected from one or more of beryllium, magnesium, calcium, strontium and barium, preferably magnesium.
  • the VB group non-noble metal component can be selected from at least one of vanadium, niobium and tantalum; preferably, the VIIB group non-noble metal component is manganese; the VIII group non-noble metal component can be At least one selected from iron, cobalt and nickel; the group IB non-noble metal component can be copper; the IIB group non-noble metal component can be selected from at least one of zinc, cadmium and mercury.
  • the non-noble metal component selected from one or more of VB, VIIB, VIII, IB and IIB groups is selected from one or more of manganese, iron, cobalt, nickel, copper, zinc and vanadium , more preferably at least one of cobalt, iron and manganese, more preferably manganese, and cobalt and/or iron, most preferably manganese and cobalt.
  • the noble metal component is selected from one or more of ruthenium, rhodium, rhenium, platinum, palladium, silver, iridium and gold, more preferably platinum, palladium and rhodium One or more of them, most preferably palladium.
  • the substrate is selected from at least one of alumina, spinel, perovskite, silica-alumina, zeolite, kaolin, diatomaceous earth and perlite, It is preferably at least one selected from alumina, spinel and perovskite, more preferably at least one of alumina, spinel and perovskite, and still more preferably alumina.
  • the structured support can be used for a catalyst bed provided in a fixed bed reactor.
  • the carrier with regular structure can be a whole carrier block with a hollow channel structure formed inside, a catalyst coating can be distributed on the inner wall of the channel, and the channel space can be used as a fluid flow space.
  • the structured carrier is selected from a monolithic carrier with a parallel channel structure open at both ends.
  • the structured carrier may be a honeycomb structured carrier with honeycomb-shaped openings in the cross-section (referred to as honeycomb carrier).
  • the pore density of the section of the regular structure carrier is 10-300 holes/square inch, preferably 20-300 holes/square inch; the opening of the cross section of the regular structure carrier is The porosity is 20-80%, preferably 50-80%.
  • the holes can be of regular shape or irregular shape, and the shapes of each hole can be the same or different, and each independently can be one of square, regular triangle, regular hexagon, circle and corrugated shape.
  • the structured structure support can be selected from cordierite honeycomb support, mullite honeycomb support, diamond honeycomb support, corundum honeycomb support, zirconium corundum honeycomb support, quartz honeycomb support, nepheline At least one of honeycomb carrier, feldspar honeycomb carrier, alumina honeycomb carrier and metal alloy honeycomb carrier.
  • the present invention does not exclude that the rare earth metal elements, group IIA metal elements and non-noble metal elements of groups IVB, VB, VIB, VIIB, VIII, IB, and IIB also contain elements other than La, Co, Mg and Mn, such as Sr, Ca and Ni, etc.
  • the catalyst comprises a regular structure carrier and an active component coating distributed on the inner surface and/or outer surface of the regular structure carrier, based on the total weight of the catalyst, the active
  • the content of the component coating is 10-35% by weight
  • the active component coating contains a matrix and an active metal component, wherein, based on the total weight of the active component coating, the content of the matrix is 50-80% by weight, the content of the active metal component is 20-50% by weight, the active metal component contains: 1) In terms of oxides, 65-85% by weight of rare earth and/or IIA 2) based on oxides, 15-35% by weight of one or more non-noble metal components selected from VB, VIIB, VIII, IB and IIB groups; 3 ) in terms of elements, 0.03-1.2% by weight of noble metal components; the rare earth metal component is lanthanum, the IIA group metal component is magnesium, and the selected from VB, VIIB, VIII, IB and IIB group One or more non-noble metal
  • the combined use of La, Co, Mg, Mn and noble metals as metal elements can greatly improve the ability to remove SOx and NOx, and the NOx adsorbed by the catalyst can also promote the catalyst’s absorption of SOx .
  • La in terms of oxides means La in terms of La 2 O 3
  • Mg in terms of oxides means MgO
  • Co in terms of oxides means Co in terms of Co 2 O 3
  • Mn refers to MnO in terms of oxides.
  • the second aspect of the present invention provides a method for preparing a structured catalyst capable of simultaneously reducing SOx and NOx emissions, the method comprising the following steps:
  • step (2) carrying out co-precipitation reaction with the solution described in step (1) and the coprecipitant, and then drying and roasting the obtained solid product to obtain the active metal component precursor;
  • step (4) impregnate the catalyst semi-finished product obtained in step (4) with a solution containing the precursor of the noble metal component, and then dry and/or calcinate to obtain an active component coating distributed on the inner surface and/or outer surface of the regular structure carrier. layer;
  • one or more metal component precursors of rare earth and/or IIA groups one or more non-noble metal component precursors selected from VB, VIIB, VIII, IB and IIB groups, matrix source , the amount of the noble metal component precursor and the regular structure carrier makes in the prepared regular structure catalyst, based on the total weight of the catalyst, the content of the active component coating is 1-50% by weight, the active
  • the component coating contains a matrix and an active metal component, wherein, based on the total weight of the active component coating, the content of the matrix is 10-90% by weight, and the content of the active metal component is 10% by weight.
  • the active metal component contains: 1) in terms of oxides, 50-95% by weight of one or more metal components selected from the rare earth group and/or IIA group; 5-50% by weight of one or more non-noble metal components selected from groups VB, VIIB, VIII, IB and IIB; 3) 0.01-2% by weight of noble metal components by weight.
  • the rare earth metal component the IIA metal component, one or more non-noble metal components of the VB, VIIB, VIII, IB and IIB groups and the noble metal component,
  • the selection range of the specific types of the substrate and the structured carrier is as described in the first aspect above, and will not be repeated here.
  • the matrix source is a substance that can be converted into a matrix under the conditions of the calcination in step (4).
  • the matrix source can be a precursor of alumina, for example, the matrix source is selected from the group consisting of gibbsite, pyrenite, nogisite, diaspore, boehmite At least one of stone and pseudo-boehmite, most preferably pseudo-boehmite.
  • the matrix source when the matrix is alumina, preferably, before beating, the matrix source is subjected to acidification and peptization treatment, and the acidification and peptization treatment can be carried out according to conventional technical means in the art, further preferably , the acid used in the acidification and peptization treatment is hydrochloric acid.
  • the present invention has a wide range of options for the conditions of the acidification and peptization treatment.
  • the conditions of the acidification and peptization treatment include: the acid-aluminum ratio is 0.12-0.22:1, and the time is 10-40 minutes.
  • the acid-aluminum ratio refers to the mass ratio of hydrochloric acid calculated as 36% by weight of concentrated hydrochloric acid to the precursor of alumina calculated on a dry basis.
  • one or more metal component precursors containing rare earth and/or IIA groups and one or more non-noble metal groups selected from VB, VIIB, VIII, IB and IIB groups can be independently selected from water-soluble salts of each metal component, such as nitrates, chlorides, chlorates or sulfates, etc., preferably nitrates and/or chlorides.
  • the precursor of manganese may be potassium permanganate and/or manganese chloride.
  • the method for obtaining the solution in step (1) there is no special limitation on the method for obtaining the solution in step (1), as long as the precursors of each metal component are mixed uniformly.
  • the metal component precursors can be dissolved in water and fully stirred evenly.
  • one or more metal component precursors of the rare earth group and/or IIA group, one or more non- The amount of the noble metal component precursor, the matrix source, the noble metal component precursor and the regular structure carrier makes in the prepared regular structure catalyst, based on the total weight of the catalyst, the content of the active component coating is 5 -40% by weight, the active component coating contains a matrix and an active metal component, wherein, based on the total weight of the active component coating, the content of the matrix is 40-90% by weight, the The content of the active metal component is 10-60% by weight, and the active metal component contains: 1) In terms of oxides, 60-90% by weight of one or more rare earth and/or IIA group Metal component; 2) in terms of oxides, 10-40% by weight of one or more non-noble metal components selected from groups VB, VIIB, VIII, IB and IIB; 3) in terms of elements, 0.02-1.5 % by weight of precious metal components;
  • one or more metal component precursors of the rare earth group and/or IIA group, one or more non-noble metal component precursors selected from VB, VIIB, VIII, IB and IIB groups The amount of the matrix source, the precursor of the noble metal component and the structured structure carrier is such that in the prepared structured catalyst, based on the total weight of the catalyst, the content of the active component coating is 10-35% by weight, so
  • the active component coating contains a matrix and an active metal component, wherein, based on the total weight of the active component coating, the content of the matrix is 50-80% by weight, and the content of the active metal component is 20-50% by weight, the active metal component contains: 1) calculated as oxides, 65-85% by weight of one or more metal components selected from the rare earth group and/or group IIA; 2) In terms of oxides, 15-35% by weight of one or more non-noble metal components selected from groups VB, VIIB, VIII, IB and IIB; 3) In terms of elements, 0.03-1.2% by weight of noble metal components
  • the method for providing the precursor of the active metal component may be a co-precipitation method, or a sol-gel method, and more preferably a co-precipitation method.
  • the sol-gel method is also within the protection scope of the present invention.
  • the type and amount of the co-precipitating agent in the present invention can be selected according to conventional technical means, as long as the co-precipitation reaction can be carried out smoothly.
  • the kind of described co-precipitating agent can be conventional selection in this field, preferably, described co-precipitating agent is carbonate, more preferably at least one selected from ammonium carbonate, potassium carbonate and sodium carbonate, more preferably carbonic acid Ammonium.
  • the co-precipitating agent can be introduced in the form of a solution to carry out a co-precipitation reaction with the solution.
  • concentration of the solution and the coprecipitant solution there is no special limitation on the concentration of the solution and the coprecipitant solution, as long as the concentration of the solution is lower than the solubility when the solution is provided, so as to ensure that the coprecipitation reaction can fully occur.
  • the co-precipitation reaction is carried out at a pH of 8-10, preferably 8.5-9.5.
  • the pH of the co-precipitation reaction can be adjusted by adding acid and/or base, and its specific type is not particularly limited, for example, it can be ammonia water.
  • the present invention does not specifically limit the temperature of the co-precipitation reaction, which can be carried out at room temperature.
  • the present invention also includes performing solid-liquid separation (for example, filtration or centrifugation) on the reaction product obtained from the co-precipitation reaction, so as to obtain the solid product.
  • solid-liquid separation for example, filtration or centrifugation
  • the roasting conditions in step (2) include: the temperature is 300-800°C, and the time is 1-8h.
  • the solid content of the active component coating slurry in step (3) is 5-45% by weight.
  • the method of mixing and beating the active metal component precursor, matrix source and water is not particularly limited, and the order of adding the active metal component precursor, matrix source and water is also not limited. It only needs to contact the precursor of the active metal component, the matrix source and water, and then beating to obtain the slurry.
  • the content of the active component coating can be adjusted by adjusting the parameters in the coating process, for example, the amount of the active component coating slurry and the structured carrier can be adjusted during the coating process.
  • the coating described in the method provided by the invention can be to adopt various coating methods to coat the active component coating slurry on the inner surface and/or the outer surface of the regular structure carrier; the method of the coating can be Water coating, dipping or spraying.
  • the specific operation of coating can be carried out with reference to the method described in CN1199733C.
  • the coating adopts a water coating method.
  • one end of the regular structure carrier is immersed in the active component coating slurry, and a vacuum is applied at the other end, so that the active component coating slurry continuously passes through the regular structure carrier. tunnel.
  • the volume of the active component coating slurry passing through the pores of the regular structure carrier can be 2-20 times the volume of the regular structure carrier, and the applied vacuum pressure can be from -0.1MPa (MPa) to -0.01MPa (MPa).
  • the coating temperature can be 10-70° C., and the coating time can be 0.1-300 seconds. Drying and calcining the structured carrier coated with the active component coating slurry can obtain a coating of a part of the active component distributed on the inner surface and/or outer surface of the regular structured carrier, and obtain a semi-finished catalyst.
  • the coating of said part of active components refers to the catalyst semi-finished product obtained at this stage does not include noble metal active components, so it is recorded as the coating of part of active components.
  • step (5) of the present invention only the impregnated material can be dried, or only the impregnated material can be roasted, or the impregnated material can be dried and then roasted.
  • the present invention is not particularly limited to this, preferably the impregnated The resulting material was dried and then calcined.
  • the conditions for the calcination in step (5) are not particularly limited, and can be carried out according to conventional technical means in the art.
  • the roasting in step (5) can be carried out in air or an inert atmosphere (such as nitrogen), and the present invention has no special restrictions on the roasting conditions in step (5), preferably including: the temperature is 300-700 ° C, the time 0.1-5h.
  • the present invention is not particularly limited to the drying conditions described in step (2), step (4) and step (5), and can be carried out according to conventional technical means in the art, for example, step (2), step (4) and step ( 5)
  • the drying conditions may independently include: a temperature of 60-200° C. and a time of 2-10 hours.
  • the impregnation in step (5) is not particularly limited, and can be carried out according to conventional technical means in the field, and those skilled in the art can obtain the specific noble metal content in the catalyst through impregnation.
  • the impregnation in the present invention may be saturated impregnation or excessive impregnation.
  • the precursor of the noble metal component is hydrolyzed in an acid solution to provide the solution.
  • dilution can be added with water
  • concentration can be evaporated
  • the acid is selected from water-soluble inorganic and/or organic acids, preferably at least one selected from hydrochloric acid, nitric acid, phosphoric acid and acetic acid.
  • the acid is used in such an amount that the pH of the impregnation solution is less than 6.0, preferably less than 5.0.
  • the adoption of this preferred embodiment is more conducive to the uniform dispersion of the active components and the improvement of the wear resistance of the finished catalyst.
  • the solid product can be obtained by filtering the mixture obtained after soaking.
  • the filtering can be carried out according to conventional technical means in the art.
  • the third aspect of the present invention provides a method for simultaneously removing SOx and NOx from catalytic cracking regenerated flue gas, the method comprising: under the condition of removing SOx and NOx, contacting catalytic cracking regenerated flue gas with a catalyst, the catalyst is the catalyst of the present invention
  • the structured catalyst capable of simultaneously reducing SOx and NOx emissions described in the first aspect or the structured structured catalyst capable of simultaneously reducing SOx and NOx emissions produced by the preparation method described in the second aspect.
  • the catalyst provided by the invention is particularly suitable for the treatment of catalytic cracking regenerated flue gas containing both SOx and NOx.
  • the present invention selects the contents of SOx and NOx in the catalytic cracking regenerated flue gas in a wide range, as long as they contain SOx and NOx at the same time, it is beneficial to the removal of both.
  • the content of SOx is 0.001-0.5% by volume, and the content of NOx is 0.001-0.3% by volume; further preferably, in the regenerated flue gas from catalytic cracking, the content of SOx is 0.002 -0.2% by volume, the content of NOx is 0.002-0.2% by volume.
  • the volume content ratio of SOx to NOx is 1-1.4:1, preferably 1-1.2:1. This preferred embodiment is more conducive to improving the removal efficiency of the two.
  • the regenerated flue gas from catalytic cracking may also contain gases other than SOx and NOx, including but not limited to CO, CO 2 and H 2 O.
  • the contact conditions include: the temperature is 300-1000°C, the reaction pressure is 0-0.5MPa in gauge pressure, and the volume space velocity of catalytic cracking regenerated flue gas is 200-20000h- 1 ; more preferably, the temperature is 450-750°C, the reaction pressure is 0.05-0.3MPa in terms of gauge pressure, and the volume space velocity of catalytic cracking regenerated flue gas is 1000-10000h -1 .
  • the contacting is carried out in a flue gas channel arranged after the cyclone separator and/or after the CO incinerator.
  • a flue gas channel arranged after the cyclone separator and/or after the CO incinerator.
  • the concentration of SOx and NOx in the flue gas is high and the catalyst fine powder particles are small.
  • the high temperature is conducive to improving the reaction conversion rate, and the small particles are not easy to block the pores.
  • the contact between the fully regenerated flue gas and the catalyst is carried out in the flue gas channel set after the cyclone separator to simultaneously catalytically convert SOx and NOx; during the incomplete regeneration process, due to the low excess oxygen content and high CO concentration in the flue gas, regeneration
  • concentration of NOx in the flue gas at the outlet of the device is very low, while the concentration of reduced nitrogen compounds such as NH 3 and HCN is relatively high. These reduced nitrogen compounds flow downstream with the flue gas, and if they are fully oxidized in the CO incinerator used for energy recovery, they will generate NOx.
  • the contact between the incompletely regenerated flue gas and the catalyst is carried out in the CO incinerator and/or the flue gas channel provided after the CO incinerator, so as to catalytically convert SOx and NOx at the same time.
  • the present invention has no particular limitation on the CO incinerator, and various CO incinerators conventionally used in the field can be used, such as vertical CO incinerators or horizontal CO incinerators.
  • the cyclone separator is preferably a three-stage cyclone separator.
  • the structured catalyst exists in the form of a catalyst bed.
  • the structured structure catalyst can be arranged as a fixed catalyst bed in the flue gas channel after the cyclone separator and/or after the CO incinerator, and the flowing catalytic cracking regenerated flue gas can flow through the structured structure catalyst
  • the bed ie, the pores that can flow through the structured support, reacts with the coating of active components distributed on the walls of the pores.
  • a regular structure catalyst capable of reducing SOx and NOx emissions simultaneously, the catalyst comprising a regular structure carrier and an active component coating distributed on the inner surface and/or outer surface of the regular structure carrier, with the total weight of the catalyst being Standard, the content of the active component coating is 1-50% by weight, the active component coating contains a matrix and an active metal component, wherein, based on the total weight of the active component coating, the The content of the matrix is 10-90% by weight, the content of the active metal component is 10-90% by weight, and the active metal component contains: 1) In terms of oxides, 50-95% by weight is selected from rare earth 2) Based on oxides, 5-50% by weight of one or more metal components selected from VB, VIIB, VIII, IB and IIB groups Precious metal component; 3) 0.01-2% by weight of precious metal component, based on element.
  • the content of the active component coating is 5-40% by weight
  • the content of the matrix is 40-90% by weight, and the content of the active metal component is 10-60% by weight;
  • the active metal component contains: 1) based on oxides, 60-90% by weight of one or more metal components selected from rare earth and/or group IIA; 2) based on oxides 10-40% by weight of one or more non-precious metal components selected from groups VB, VIIB, VIII, IB and IIB; 3) 0.02-1.5% by weight of noble metal components in terms of elements;
  • the content of the active component coating is 10-35% by weight
  • the content of the matrix is 50-80% by weight, and the content of the active metal component is 20-50% by weight;
  • the active metal component contains: 1) based on oxides, 65-85% by weight of one or more metal components selected from rare earth and/or group IIA; 2) based on oxides 15-35% by weight of one or more non-noble metal components selected from groups VB, VIIB, VIII, IB and IIB; 3) 0.03-1.2% by weight of noble metal components by weight.
  • the substrate is selected from the group consisting of alumina, spinel, perovskite, silica-alumina, zeolite, kaolin, diatomaceous earth and pearl At least one of rocks, preferably at least one selected from alumina, spinel and perovskite, more preferably alumina;
  • the structured carrier is selected from a monolithic carrier with a parallel channel structure open at both ends;
  • the pore density of the cross-section of the structured support is 10-300 pores/square inch, and the porosity is 20-80%;
  • the regular structure carrier is selected from cordierite honeycomb carrier, mullite honeycomb carrier, diamond honeycomb carrier, corundum honeycomb carrier, zirconia corundum honeycomb carrier, quartz honeycomb carrier, nepheline honeycomb carrier, feldspar honeycomb carrier, alumina At least one of a honeycomb carrier and a metal alloy honeycomb carrier.
  • the rare earth metal component is selected from one or more of lanthanum, cerium, praseodymium and neodymium, preferably lanthanum and/or cerium, more preferably lanthanum;
  • the group IIA metal component is selected from one or more of beryllium, magnesium, calcium, strontium and barium, preferably magnesium;
  • the non-noble metal component selected from one or more of VB, VIIB, VIII, IB and IIB groups is selected from one or more of manganese, iron, cobalt, nickel, copper, zinc and vanadium, preferably At least one of cobalt, iron and manganese, more preferably manganese and cobalt and/or iron, more preferably manganese and cobalt;
  • the noble metal component is selected from one or more of ruthenium, rhodium, rhenium, platinum, palladium, silver, iridium and gold, preferably one or more of platinum, palladium and rhodium, more preferably palladium.
  • the structured catalyst according to any one of the preceding technical solutions wherein, based on the total amount of the active metal components, in terms of oxides, one or more selected from the rare earth group and/or group IIA
  • the ratio of the content of the metal component to the content of one or more non-noble metal components selected from groups VB, VIIB, VIII, IB and IIB is 1-8, preferably 1.5-6, more preferably 2- 4.
  • the active metal component contains or consists of the following components:
  • one or more metal components selected from the rare earth group; preferably, lanthanum;
  • non-noble metal components selected from groups VB, VIII, IB and IIB; preferably, cobalt;
  • non-noble metal components selected from group VIIB; preferably manganese;
  • the content of 1a) is 30-80% by weight, for example, 35-75% by weight, or 40-70% by weight,
  • the content of 1b) is 5-40% by weight, for example 10-30% by weight,
  • 2a is present in an amount of 5-40% by weight, such as 3-30% by weight, or 5-20% by weight,
  • the content of c) is 0.01-0.2% by weight.
  • the molar ratio of lanthanum to cobalt is (0.5-15):1, such as (1-10):1, or (1-6):1, (2-5):1, or (2.5-3.5):1, Or (2.6-3.4): 1, or (2.7-3.3): 1, or (2.8-3.2): 1, or (2.9-3.1): 1, or (2.95-3.05): 1.
  • the catalyst is treated by exposure to an atmosphere containing SO2 , wherein the temperature of the SO2 -containing atmosphere is 350-1000°C, the pressure is 0-8MPa, and the content of SO2 is 0.001-100% by volume; or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 400-900° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 450-900° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 500-900° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 550-900° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated for at least 1 minute by exposure to an atmosphere containing SO2 at a temperature of 600-900° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 650-900° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 400-800° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 450-800° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 500-800° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 550-800° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated for at least 1 minute by exposure to an atmosphere containing SO2 at a temperature of 600-900° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 650-900° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 400-750° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 450-750° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 500-750° C., a pressure of 0-5 MPa and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 550-750° C., a pressure of 0-5 MPa and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated for at least 1 minute by exposure to an atmosphere containing SO2 at a temperature of 600-750° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 650-750° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 400-700° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 450-700° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 500-700° C., a pressure of 0-5 MPa and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated by exposure to an atmosphere containing SO2 at a temperature of 550-700° C., a pressure of 0-5 MPa and an SO2 content of 0.001-5% by volume for at least 1 minute ;or
  • the catalyst is treated for at least 1 minute by exposure to an atmosphere containing SO2 at a temperature of 600-700° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume ;or
  • the catalyst is treated for at least 1 minute by exposure to an atmosphere containing SO2 at a temperature of 650-700° C., a pressure of 0-5 MPa, and an SO2 content of 0.001-5% by volume ;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 400-900°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 450-900°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 500-900° C., the pressure is 0-2 MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by exposing to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 550-900°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 600-900° C., the pressure is 0-2 MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by exposing to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 650-900°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 400-800°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 450-800°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 500-800°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 550-800°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 600-800°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by exposing to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 650-800°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 400-750° C., the pressure is 0-2 MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 450-750° C., the pressure is 0-2 MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by exposing to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 500-750°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 550-750° C., the pressure is 0-2 MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 600-750° C., the pressure is 0-2 MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 650-750° C., the pressure is 0-2 MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 400-700°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 450-700 ° C, the pressure is 0-2 MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 500-700°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 550-700°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 600-700°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 30-480 minutes, wherein the temperature of the atmosphere containing SO2 is 650-700°C, the pressure is 0-2MPa, and the content of SO2 is 0.01-1 volume %;or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 400-900° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 450-900° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 500-900° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by exposing to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 550-900° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 600-900° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 650-900° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 400-800° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 450-800° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 500-800° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 550-800° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by exposing to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 600-800° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by exposing to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 650-800° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 400-750° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by exposing to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 450-750° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by exposing to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 500-750° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by exposing to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 550-750° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 600-750° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 650-750° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 650-750° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 400-700° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 450-700° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 500-700° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 550-700° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 600-700° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 % by volume; or
  • the catalyst is treated by being exposed to an atmosphere containing SO2 for 60-120 minutes, wherein the temperature of the atmosphere containing SO2 is 650-700° C., the pressure is 0-0.5 MPa, and the content of SO2 is 0.02-0.5 volume%.
  • a method for preparing a structured catalyst capable of simultaneously reducing SOx and NOx emissions comprising the following steps:
  • step (2) carrying out co-precipitation reaction with the solution described in step (1) and the coprecipitant, and then drying and roasting the obtained solid product to obtain the active metal component precursor;
  • step (4) impregnate the catalyst semi-finished product obtained in step (4) with a solution containing the precursor of the noble metal component, and then dry and/or calcinate to obtain an active component coating distributed on the inner surface and/or outer surface of the regular structure carrier. layer;
  • one or more metal component precursors of rare earth and/or IIA groups one or more non-noble metal component precursors selected from VB, VIIB, VIII, IB and IIB groups, matrix source , the amount of the noble metal component precursor and the regular structure carrier makes in the prepared regular structure catalyst, based on the total weight of the catalyst, the content of the active component coating is 1-50% by weight, the active
  • the component coating contains a matrix and an active metal component, wherein, based on the total weight of the active component coating, the content of the matrix is 10-90% by weight, and the content of the active metal component is 10% by weight.
  • the active metal component contains: 1) in terms of oxides, 50-95% by weight of one or more metal components selected from the rare earth group and/or IIA group; 5-50% by weight of one or more non-noble metal components selected from groups VB, VIIB, VIII, IB and IIB; 3) 0.01-2% by weight of noble metal components by weight.
  • one or more metal component precursors of the rare earth group and/or group IIA are selected from groups VB, VIIB, VIII, IB and IIB
  • the amount of one or more non-noble metal component precursors, matrix sources, noble metal component precursors and regular structure supports makes the prepared regular structure catalyst, based on the total weight of the catalyst, the activity
  • the content of the component coating is 5-40% by weight
  • the active component coating contains a matrix and an active metal component, wherein, based on the total weight of the active component coating, the content of the matrix is 40-90% by weight, the content of the active metal component is 10-60% by weight, the active metal component contains: 1) In terms of oxides, 60-90% by weight is selected from the group of rare earths and/or IIA 2) based on oxides, 10-40% by weight of one or more non-noble metal components selected from VB, VIIB, VIII, IB and IIB groups; 3 ) based on elements, 0.02-1.5% by
  • the amount of the component precursor and the structured structure support makes the prepared structured catalyst, based on the total weight of the catalyst, the content of the active component coating is 10-35% by weight, the active component
  • the coating contains a matrix and an active metal component, wherein, based on the total weight of the active component coating, the content of the matrix is 50-80% by weight, and the content of the active metal component is 20-50% % by weight, the active metal component contains: 1) in terms of oxides, 65-85% by weight of one or more metal components selected from the rare earth group and/or group IIA; 2) in terms of oxides , 15-35% by weight of one or more non-precious metal components selected from VB, VIIB, VIII, IB and IIB groups; 3) In terms of elements, 0.03-1.2% by weight of noble metal components.
  • one or more metal component precursors of the rare earth group and/or group IIA are selected from groups VB, VIIB, VIII, IB and IIB
  • the amount of one or several non-precious metal component precursors, matrix source, noble metal component precursor and regular structure support makes in the prepared regular structure catalyst
  • the content of one or more metal components selected from the rare earth group and/or IIA group is the same as that selected from VB, VIIB, VIII, IB and IIB group
  • the ratio of the content of one or more non-precious metal components is 1-8, preferably 1.5-6, more preferably 2-4.
  • one or more metal component precursors of the rare earth group and/or group IIA are selected from groups VB, VIIB, VIII, IB and IIB
  • the amount of one or several non-precious metal component precursors, matrix source, noble metal component precursor and regular structure support makes in the prepared regular structure catalyst
  • the active metal component contains or consists of the following components:
  • one or more metal components selected from the rare earth group; preferably, lanthanum;
  • non-noble metal components selected from groups VB, VIII, IB and IIB; preferably, cobalt;
  • non-noble metal components selected from group VIIB; preferably manganese;
  • the content of 1a) is 30-80% by weight, for example, 35-75% by weight, or 40-70% by weight,
  • the content of 1b) is 5-40% by weight, for example 10-30% by weight,
  • 2a is present in an amount of 5-40% by weight, such as 3-30% by weight, or 5-20% by weight,
  • the molar ratio of lanthanum to cobalt is (0.5-15):1, such as (1-10):1, or (1-6):1, (2-5):1, or (2.5-3.5) :1, or (2.6-3.4):1, or (2.7-3.3):1, or (2.8-3.2):1, or (2.9-3.1):1, or (2.95-3.05):1.
  • the matrix is selected from at least one of alumina, spinel, perovskite, silica-alumina, zeolite, kaolin, diatomaceous earth and perlite, preferably selected from alumina, spinel and perovskite At least one of, more preferably alumina;
  • the structured carrier is selected from a monolithic carrier with a parallel channel structure open at both ends;
  • the pore density of the cross-section of the structured support is 10-300 pores/square inch, and the porosity is 20-80%;
  • the regular structure carrier is selected from cordierite honeycomb carrier, mullite honeycomb carrier, diamond honeycomb carrier, corundum honeycomb carrier, zirconia corundum honeycomb carrier, quartz honeycomb carrier, nepheline honeycomb carrier, feldspar honeycomb carrier, alumina At least one of a honeycomb carrier and a metal alloy honeycomb carrier.
  • the rare earth metal component is selected from one or more of lanthanum, cerium, praseodymium and neodymium, preferably lanthanum and/or cerium, more preferably lanthanum;
  • the group IIA metal component is selected from one or more of beryllium, magnesium, calcium, strontium and barium, preferably magnesium;
  • the non-noble metal component selected from one or more of VB, VIIB, VIII, IB and IIB groups is selected from one or more of manganese, iron, cobalt, nickel, copper, zinc and vanadium, preferably At least one of cobalt, iron and manganese, more preferably manganese and cobalt and/or iron, more preferably manganese and cobalt;
  • the noble metal component is selected from one or more of ruthenium, rhodium, rhenium, platinum, palladium, silver, iridium and gold, preferably one or more of platinum, palladium and rhodium, more preferably palladium.
  • the metal component precursor containing one or more of the rare earth group and/or group IIA is selected from VB, VIIB, VIII, IB and IIB
  • One or more non-noble metal component precursors of the family are independently selected from nitrates and/or chlorides of each metal component;
  • the co-precipitating agent is carbonate, more preferably at least one selected from ammonium carbonate, potassium carbonate and sodium carbonate;
  • the co-precipitation reaction is carried out at a pH of 8-10;
  • the roasting conditions in step (2) include: the temperature is 300-800°C, and the time is 1-8h.
  • the roasting conditions in step (4) include: the temperature is 300-800°C, and the time is 1-5h;
  • step (5) the noble metal component precursor is hydrolyzed in an acid solution to provide the solution;
  • the acid is selected from water-soluble inorganic acids and/or organic acids, preferably at least one selected from hydrochloric acid, nitric acid, phosphoric acid and acetic acid;
  • the acid is used in an amount such that the pH of the immersion solution is less than 6.0, preferably less than 5.0;
  • the roasting conditions in step (5) include: the temperature is 300-700°C, and the time is 0.1-5h.
  • a method for simultaneously removing SOx and NOx from regenerated flue gas from catalytic cracking comprising: contacting the regenerated flue gas from catalytic cracking with a catalyst under the condition of removing SOx and NOx, and the catalyst is according to any of the aforementioned technical solutions
  • a structured catalyst capable of simultaneously reducing SOx and NOx emissions or a structured catalyst capable of simultaneously reducing SOx and NOx emissions prepared according to any one of the aforementioned technical solutions;
  • the contact between the catalytic cracking regenerated flue gas and the structured catalyst is carried out in the flue gas channel after the catalytic cracking cyclone separator and/or after the CO incinerator;
  • the contact conditions include: a temperature of 300-1000°C, such as 500-800°C, or 600-750°C, or 625-750°C, or 650-750°C, or 675-750°C, or 700- 750°C, or 725-750°C, or 600-725°C, or 625-725°C, or 650-725°C, or 675-725°C, or 700-725°C, or 600-700°C, or 625-700°C , or 650-700°C, or 675-700°C, or 600-675°C, or 625-675°C, or 650-675°C, or 600-650°C, or 625-650°C, or 600-625°C, to Gauge pressure gauge, the reaction pressure is 0-4MPa, such as 0.01-4MPa, or 0.02-4MPa, or 0-0.5MPa; catalytic cracking regenerated flue gas volume space velocity is 100-50000h -1 or 200-20000h -1
  • a method for simultaneously removing SOx and NOx from flue gas comprising: under the condition of removing SOx and NOx, contacting flue gas with a catalyst, the catalyst is the catalyst according to any one of the preceding technical solutions Or the catalyst prepared according to the preparation method described in any one of the foregoing technical schemes;
  • the flue gas is flue gas containing a certain concentration of SOx and NOx at the same time, including but not limited to catalytic cracking regenerated flue gas;
  • the volume fractions of SOx and NOx in the flue gas are 1-3000 ⁇ L/L respectively, and the molar ratio of SOx and NOx is 0.5:1-2:1;
  • the contact conditions include: a temperature of 300-1000°C, such as 500-800°C, or 600-750°C, or 625-750°C, or 650-750°C, or 675-750°C, or 700- 750°C, or 725-750°C, or 600-725°C, or 625-725°C, or 650-725°C, or 675-725°C, or 700-725°C, or 600-700°C, or 625-700°C , or 650-700°C, or 675-700°C, or 600-675°C, or 625-675°C, or 650-675°C, or 600-650°C, or 625-650°C, or 600-625°C, to Gauge pressure gauge, the reaction pressure is 0-4MPa, such as 0.01-4MPa, or 0.02-4MPa, or 0-0.5MPa; the volume space velocity of flue gas is 100-50000h -1 or 200-20000h -1 , 500-10000h
  • firing conditions there are no particular limitations on firing conditions.
  • calcination can be carried out in air or inert atmosphere (such as nitrogen); calcination conditions can be: the temperature is 300-900 °C, such as 400, 500, 600, 700, 800 °C and any two of these point values. Temperature range, time is 0.1-12h, for example 0.1-5h.
  • the pressure can be subatmospheric, atmospheric or superatmospheric (eg (0-5 MPa).
  • the drying conditions can be: the temperature is 25-250°C, the time is 0.1-12h, and the pressure can be vacuum (such as absolute pressure 0-1kPa, 0-5kPa, 0-10kPa, 0-20kPa, 0-30kPa, 0- 40kPa, 0-50kPa, 0-60kPa, 0-70kPa, 0-80kPa, 0-90kPa, 0-100kPa) or normal pressure (absolute pressure 0.1MPa).
  • the drying temperature is lower than the roasting temperature.
  • the ppm refers to the volume concentration.
  • SOx refers to a mixture of sulfur oxides (such as a mixture of SO2 and SO3 , the molar ratio of which is not particularly limited, such as 1:10 to 10:1)
  • NOx refers to a mixture of nitrogen oxides ( For example, a mixture of NO 2 and NO, the molar ratio of which is not particularly limited, such as 1:10 to 10:1).
  • the inventors of the present invention have found in the course of research that a specific amount of rare earth metal elements (such as La) and Group VIII non-noble metals (such as Co) are used as active components in combination with at least one noble metal element (such as Pt), and the combination
  • the specific ratio of rare earth metals to group VIII non-noble metals can effectively reduce the emissions of SOx and NOx in flue gas at the same time.
  • group IIA metal components such as Mg
  • group VIIB metal components such as Mn
  • the sulfur element can be converted into different valence states, wherein the sulfur element in a low valence state is conducive to the conversion of NOx in the flue gas, so that the whole process can promote SOx and NOx towards Conducive to the transformation of the direction of pollution reduction.
  • the component content parameters are measured by X-ray fluorescence spectroscopy (XRF) method; raw materials used: lanthanum nitrate (analytical grade, Aladdin Biochemical Company), magnesium nitrate (analytical grade, Sinopharm Chemical Reagent Co., Ltd.), chlorine Potassium chloride (analytical pure, Beijing Chemical Plant), cobalt nitrate (analytical pure, Beijing Yinuokai Technology Co., Ltd.), ammonium carbonate (analytical pure, Beijing Chemical Plant), ammonia water (analytical pure, 25%, Tianjin Damao Chemical Co., Ltd. plant), palladium chloride (Beijing Purchasing and Supply Station of China Pharmaceutical Company), hydrochloric acid (Beijing Chemical Plant), OX50-SiO 2 (Sinopec Catalyst Company).
  • XRF X-ray fluorescence spectroscopy
  • the content of the components in the catalyst is determined by X-ray fluorescence spectroscopy (XRF).
  • XRF X-ray fluorescence spectroscopy
  • the completely precipitated mixture was suction filtered and rinsed with deionized water.
  • the filter cake mixture obtained by suction filtration was dried at 120° C., calcined at 700° C. in an air atmosphere for 5 hours, and ground to obtain an active metal component precursor.
  • the above-mentioned gained active component coating slurry is coated on the cordierite structured carrier of 200 holes/square inch of 300g and dried and roasted to obtain the active component coating distributed on the inner surface and/or outer surface of the regular structure carrier.
  • the obtained components were dried at 120° C. and calcined at 700° C. in an air atmosphere for 4 hours to obtain a semi-finished catalyst with a regular structure.
  • a portion of the active component coating was taken and exposed to an SO2 - containing atmosphere at a temperature of 800 °C, a pressure of 0 MPa, and a SO2 content of 0.001% by volume for 1 minute. After exposure to SO 2 treatment, the coating was subjected to XRD analysis. In the XRD spectrum, there were characteristic peaks at 2 ⁇ angles of approximately 28.6°, 30.0° and 50.4°.
  • the completely precipitated mixture was suction filtered and rinsed with deionized water.
  • the filter cake mixture obtained by suction filtration was dried at 120° C., calcined at 700° C. in an air atmosphere for 5 hours, and ground to obtain an active metal component precursor.
  • the above-mentioned gained active component coating slurry is coated on the cordierite structured carrier of 200 holes/square inch of 300g and dried and roasted to obtain the active component coating distributed on the inner surface and/or outer surface of the regular structure carrier.
  • the obtained components were dried at 120° C. and calcined at 700° C. in an air atmosphere for 4 hours to obtain a semi-finished catalyst with a regular structure.
  • a portion of the active component coating was taken and exposed to an SO2 - containing atmosphere at a temperature of 700 °C, a pressure of 0.1 MPa, and an SO2 content of 0.01% by volume for 5 minutes. After exposure to SO 2 treatment, the coating was subjected to XRD analysis. In the XRD spectrum, there were characteristic peaks at 2 ⁇ angles of approximately 28.6°, 30.0° and 50.4°.
  • the completely precipitated mixture was suction filtered and rinsed with deionized water.
  • the filter cake mixture obtained by suction filtration was dried at 120° C., calcined at 700° C. in an air atmosphere for 5 hours, and ground to obtain an active metal component precursor.
  • the above-mentioned gained active component coating slurry is coated on the cordierite structured carrier of 200 holes/square inch of 300g and dried and roasted to obtain the active component coating distributed on the inner surface and/or outer surface of the regular structure carrier.
  • the obtained components were dried at 120° C. and calcined at 700° C. in an air atmosphere for 4 hours to obtain a semi-finished catalyst with a regular structure.
  • a portion of the active component coating was taken and exposed to an SO2 - containing atmosphere at a temperature of 650 °C, a pressure of 0 MPa, and a SO2 content of 0.001% by volume for 15 minutes. After exposure to SO 2 treatment, the coating was subjected to XRD analysis. In the XRD spectrum, there were characteristic peaks at 2 ⁇ angles of approximately 28.6°, 30.0° and 50.4°.
  • the precipitated mixture was suction-filtered and rinsed with deionized water.
  • the filter cake mixture obtained by suction filtration was dried at 120°C, calcined in an air atmosphere at 700°C for 5 hours, and ground to obtain the precursor of the active metal component.
  • the above-mentioned gained active component coating slurry is coated on the cordierite structured carrier of 200 holes/square inch of 300g and dried and roasted to obtain the active component coating distributed on the inner surface and/or outer surface of the regular structure carrier.
  • the obtained components were dried at 120° C. and calcined at 700° C. in an air atmosphere for 4 hours to obtain a semi-finished catalyst with a regular structure.
  • a portion of the active component coating was taken and exposed to an atmosphere containing SO2 at a temperature of 675 °C, a pressure of 0.2 MPa, and an SO2 content of 0.001% by volume for 30 minutes. After exposure to SO 2 treatment, the coating was subjected to XRD analysis. In the XRD spectrum, there were characteristic peaks at 2 ⁇ angles of approximately 28.6°, 30.0° and 50.4°.
  • the completely precipitated mixture was suction filtered and rinsed with deionized water.
  • the filter cake mixture obtained by suction filtration was dried at 120° C., calcined at 700° C. in an air atmosphere for 5 hours, and ground to obtain an active metal component precursor.
  • the above-mentioned gained active component coating slurry is coated on the cordierite structured carrier of 200 holes/square inch of 300g and dried and roasted to obtain the active component coating distributed on the inner surface and/or outer surface of the regular structure carrier.
  • the obtained components were dried at 120° C. and calcined at 700° C. in an air atmosphere for 4 hours to obtain a semi-finished catalyst with a regular structure.
  • the completely precipitated mixture was suction filtered and rinsed with deionized water.
  • the filter cake mixture obtained by suction filtration was dried at 120° C., calcined at 700° C. in an air atmosphere for 5 hours, and ground to obtain an active metal component precursor.
  • the above-mentioned gained active component coating slurry is coated on the cordierite structured carrier of 200 holes/square inch of 300g and dried and roasted to obtain the active component coating distributed on the inner surface and/or outer surface of the regular structure carrier.
  • the obtained components were dried at 120° C. and calcined at 700° C. in an air atmosphere for 4 hours to obtain a semi-finished catalyst with a regular structure.
  • the above-mentioned gained active component coating slurry is coated on the cordierite structured carrier of 200 holes/square inch of 300g and dried and roasted to obtain the active component coating distributed on the inner surface and/or outer surface of the regular structure carrier.
  • the obtained components were dried at 120°C and calcined at 700°C for 4 hours in an air atmosphere to obtain catalyst D-1.
  • the content of the active component coating is 14.3% by weight.
  • compositions of the catalysts obtained above are listed in Table 1.
  • This test is used to evaluate the effect of the catalysts provided in the above examples and comparative examples on simultaneously reducing NO and SO emissions in flue gas.
  • the catalytic cracking reaction-regeneration evaluation is carried out on a small fixed-bed simulated flue gas device, the catalyst with a regular structure is filled in the catalyst bed, the catalyst loading is 20g, the reaction temperature is 650°C, the pressure is 0.1MPa, and the volume flow rate of the raw gas is (Standard condition) is 1000mL/min, and the volume space velocity is about 3000h -1 . After the reactor temperature was stabilized, the catalyst was pre-treated for 30 min under N2 atmosphere to fully remove the adsorbed species on the surface of the catalyst.
  • the feed gas at the beginning of the reaction contains 1200ppm vol% NO, 1200ppm vol% SO 2 , and the balance is N 2 .
  • the gas products were analyzed by an online infrared analyzer to obtain the post-reaction SO2 and NO concentrations.
  • the results of the evaluation time of 0.5h are listed in Table 2, and the results of the evaluation time of 1.5h are listed in Table 3.
  • the catalyst provided by the present invention can effectively improve the effect of combined SOx and NOx removal, and reduce the emission of SOx and NOx.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种能够同时降低SOx和NOx排放的规整结构催化剂,该催化剂包括规整结构载体和分布在规整结构载体内表面和/或外表面的活性组分涂层,以催化剂的总重量为基准,活性组分涂层的含量为1-50重量%,活性组分涂层含有基质和活性金属组分,其中,以活性组分涂层的总重量为基准,基质的含量为10-90重量%,活性金属组分的含量为10-90重量%,活性金属组分含有:1)以氧化物计,50-95重量%的选自稀土族和/或IIA族的一种或几种的金属组分;2)以氧化物计,5-50重量%的选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分;3)以元素计,0.01-2重量%的贵金属组分。

Description

规整结构催化剂及其制备方法和烟气同时脱SOx和NOx的方法 技术领域
本发明涉及一种能够同时降低SOx和NOx排放的规整结构催化剂及其制备方法和烟气同时脱SOx和NOx的方法。
背景技术
催化裂化反应过程中,由于烃的反应导致焦炭在催化剂上沉积,使催化剂活性下降。含焦炭的催化剂经汽提段脱去吸附在催化剂上的烃后,被输送到再生器。在再生器中含焦炭的催化剂在高温下与空气充分接触,催化剂表面焦炭被烧掉,使催化剂活性得以复原。在催化剂烧炭时会生成SOx和NOx等,这些气体被排放到空气中对大气造成污染。随着环保要求越来越严格,对烟气污染物的排放标准越来越严格。
降低催化裂化再生烟气的主要技术措施包括:再生器优化,烟气后处理和使用助剂。后处理技术中如SCR工艺可利用注氨来还原NOx,湿法脱硫技术可利用注碱来吸收SO 2,但需要较高的设备投资,运行成本高,且出现氨逃逸、蓝烟拖尾等问题。目前主流的脱硫脱硝助剂主要是单独脱除一种烟气污染物。例如:CN1334316A公开了一种含有镁铝尖晶石的组合物以及铈/钒的氧化物的硫转移剂,用于催化裂化烟气中脱除SOx。CN101311248B提供了一种能够降低催化裂化再生烟气中NOx排放的组合物,用于降低催化裂化烟气中NOx。
此外,上述工艺及专利文献在单独脱除再生烟气中SOx或NOx时,具有较好的脱除效果,但不能同时脱除氮氧化物与硫氧化物。
发明内容
本发明的目的是为了克服现有技术存在的上述问题,提供一种能够同时降低SOx和NOx排放的规整结构催化剂及其制备方法和催化裂化再生烟气同时脱SOx和NOx的方法。采用本发明提供的催化剂能够降低其添加总量,增强助剂的减排效果。
为了实现上述目的,本发明第一方面提供一种能够同时降低SOx和NOx排放的规整结构催化剂,该催化剂包括规整结构载体和分布在规整结构载体内表面和/或外表面的活性组分涂层,以所述催化剂的总重量为基准,所述活性组分涂层的含量为1-50重量%,所述活性组分涂层含有基质和活性金属组分,其中,以所述活性组分涂层的总重量为基准,所 述基质的含量为10-90重量%,所述活性金属组分的含量为10-90重量%,所述活性金属组分含有:1)以氧化物计,50-95重量%的选自稀土族和/或IIA族的一种或几种的金属组分;2)以氧化物计,5-50重量%的选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分;3)以元素计,0.01-2重量%的贵金属组分。
在本发明中,在没有相反教导的情况下,“以所述催化剂的总重量为基准”意指所述催化剂的总重量为100重量%;“以所述活性组分涂层的总重量为基准”意指所述活性组分涂层的总重量为100重量%;当涉及所述活性金属组分的组成含量时,是以所述活性金属组分的总重量为100重量%为基准的。
本发明第二方面提供一种能够同时降低SOx和NOx排放的规整结构催化剂的制备方法,该方法包括以下步骤:
(1)配制含有稀土族和/或IIA族的一种或几种的金属组分前驱体和选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分前驱体的溶液;
(2)将步骤(1)所述溶液与共沉淀剂进行共沉淀反应,然后对得到的固体产物进行干燥和焙烧,得到活性金属组分前驱体;
(3)将活性金属组分前驱体、基质源和水混合打浆,得到活性组分涂层浆液;
(4)用所述活性组分涂层浆液涂覆规整结构载体并进行干燥和焙烧以得到分布在规整结构载体内表面和/或外表面的部分活性组分的涂层,得到催化剂半成品;
(5)用含有贵金属组分前驱体的溶液浸渍步骤(4)得到的所述催化剂半成品,然后进行干燥和/或焙烧以得到分布在规整结构载体内表面和/或外表面的活性组分涂层;
其中,稀土族和/或IIA族的一种或几种的金属组分前驱体、选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分前驱体、基质源、贵金属组分前驱体和规整结构载体的用量使得制得的规整结构催化剂中,以所述催化剂的总重量为基准,所述活性组分涂层的含量为1-50重量%,所述活性组分涂层含有基质和活性金属组分,其中,以所述活性组分涂层的总重量为基准,所述基质的含量为10-90重量%,所述活性金属组分的含量为10-90重量%,所述活性金属组分含有:1)以氧化物计,50-95 重量%的选自稀土族和/或IIA族的一种或几种的金属组分;2)以氧化物计,5-50重量%的选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分;3)以元素计,0.01-2重量%的贵金属组分。
本发明第三方面提供一种催化裂化再生烟气同时脱SOx和NOx的方法,该方法包括:在脱SOx和NOx的条件下,将催化裂化再生烟气与催化剂接触,所述催化剂为本发明第一方面所述的能够同时降低SOx和NOx排放的规整结构催化剂或者第二方面所述的制备方法制得的能够同时降低SOx和NOx排放的规整结构催化剂。
本发明从组合脱除SOx和NOx的目的出发,开发了一种组合脱除烟气污染物的新型催化剂。本发明提供的能够同时降低SOx和NOx排放的规整结构催化剂组合脱除污染物的活性高,制备方法简单,能够有效的降低催化裂化再生烟气中SOx和NOx的排放。本发明提供的催化剂为规整材料,可以放入烟气通道直接使用。另外,采用本发明提供的催化剂能够降低其添加总量,增强助剂的减排效果,大幅提高助剂技术的竞争力。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明中,所使用的术语“规整结构催化剂”是指包括规整结构载体和分布在载体内表面和/或外表面的活性组分涂层的催化剂;“规整结构载体”为具有规整结构的载体。
本发明第一方面提供一种能够同时降低SOx和NOx排放的规整结构催化剂,该催化剂包括规整结构载体和分布在规整结构载体内表面和/或外表面的活性组分涂层,以所述催化剂的总重量为基准,所述活性组分涂层的含量为1-50重量%,所述活性组分涂层含有基质和活性金属组分,其中,以所述活性组分涂层的总重量为基准,所述基质的含量为10-90重量%,所述活性金属组分的含量为10-90重量%,所述活性金属组分含有:1)以氧化物计,50-95重量%的选自稀土族和/或IIA族的一种或几种的金属组分;2)以氧化物计,5-50重量%的选自VB、VIIB、VIII、IB和 IIB族的一种或几种的非贵金属组分;3)以元素计,0.01-2重量%的贵金属组分。
本发明提供的规整结构催化剂中,特定种类和含量的活性组分以活性金属组分涂层形式存在于规整结构载体内表面和/或外表面,涂层中活性金属分散度较高,降低SOx和NOx的活性明显提高。
根据本发明的一种优选实施方式,以所述催化剂的总重量为基准,所述活性组分涂层的含量为5-40重量%,优选为10-35重量%。
根据本发明提供的规整结构催化剂,优选地,以所述活性组分涂层的总重量为基准,所述基质的含量为40-90重量%,所述活性金属组分的含量为10-60重量%;进一步优选地,所述基质的含量为50-80重量%,所述活性金属组分的含量为20-50重量%。
根据本发明提供的规整结构催化剂,优选地,所述活性金属组分含有:1)以氧化物计,60-90重量%的选自稀土族和/或IIA族的一种或几种的金属组分;2)以氧化物计,10-40重量%的选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分;3)以元素计,0.02-1.5重量%的贵金属组分。
更进一步优选地,所述活性金属组分含有:1)以氧化物计,65-85重量%的选自稀土族和/或IIA族的一种或几种的金属组分;2)以氧化物计,15-35重量%的选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分;3)以元素计,0.03-1.2重量%的贵金属组分。
根据本发明的一种优选实施方式,所述活性金属组分中同时含有稀土族金属组分和IIA族金属组分。在该种优选实施方式下,更有利于提高催化剂的同时脱除烟气中SOx和NOx的能力。进一步优选地,以所述活性金属组分的总量为基准,稀土族金属组分的含量为30-80重量%,进一步优选为40-75重量%;所述IIA族金属组分的含量为5-40重量%,进一步优选为10-30重量%。
根据本发明的一种优选实施方式,所述活性金属组分中同时含有选自VB、VIII、IB、IIB族的一种或几种的非贵金属组分以及VIIB族非贵金属组分。在该种优选实施方式下,更有利于提高催化剂的同时脱除烟气中SOx和NOx的能力。进一步优选地,以所述活性金属组分的总量为基准,VB、VIII、IB、IIB族的一种或几种的非贵金属组分的含量为3-30重量%,优选为5-20重量%;所述VIIB族非贵金属组分的含量为3-20 重量%,优选为5-15重量%。
根据本发明的一种特别优选的实施方式,镧与钴的摩尔比为(0.5-15):1,例如(1-10):1,或(1-6):1,(2-5):1,或(2.5-3.5):1,或(2.6-3.4):1,或(2.7-3.3):1,或(2.8-3.2):1,或(2.9-3.1):1,或(2.95-3.05):1。采用该种优选实施方式更有利于提高催化剂的组合脱除SOx和NOx的性能。
本发明中,规整结构催化剂中各组分含量均采用X射线荧光光谱分析方法(石油化工分析方法(RIPP实验方法),杨翠定等编,科学出版社1990年出版)测得。
本发明中,采用Siemens D5005衍射仪,对催化剂样品进行粉末X射线衍射(XRD)分析,其中在40kV、40mA条件下产生CuKα(λ=0.15418nm)辐射,经Ni过滤。衍射信号记录在2θ5~70°范围内,步长0.02°。
根据本发明,常规定义的稀土族金属均可用于本发明,为了进一步提高所述规整结构催化剂的同时脱SOx和NOx的性能,优选所述稀土族金属组分选自镧、铈、镨和钕中的一种或几种,更优选为镧和/或铈,更优选为镧。
根据本发明,所述IIA族金属组分选自铍、镁、钙、锶和钡中的一种或几种,优选为镁。
根据本发明,所述VB族非贵金属组分可以选自钒、铌和钽中的至少一种;优选情况下,所述VIIB族非贵金属组分为锰;所述VIII族非贵金属组分可以选自铁、钴和镍中的至少一种;所述IB族非贵金属组分可以为铜;所述IIB族非贵金属组分可以选自锌、镉和汞中的至少一种。
优选地,所述选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分选自锰、铁、钴、镍、铜、锌和钒中的一种或几种,更优选为钴、铁和锰中的至少一种,更进一步优选为锰、以及钴和/或铁,最优选为锰和钴。
根据本发明提供的规整结构催化剂,优选地,所述贵金属组分选自钌、铑、铼、铂、钯、银、铱和金中的一种或几种,更优选为铂、钯和铑中的一种或几种,最优选为钯。
根据本发明提供的规整结构催化剂,优选地,所述基质选自氧化铝、尖晶石、钙钛矿、氧化硅-氧化铝、沸石、高岭土、硅藻土和珍珠岩中的至少一种,优选选自氧化铝、尖晶石和钙钛矿中的至少一种,进一步优选为氧化铝、尖晶石和钙钛矿中的至少一种,更进一步优选为氧化铝。
根据本发明的规整结构催化剂,其中规整结构载体可以用于固定床反应器中提供的催化剂床层。该规整结构载体可以为整块的载体块,内部成型有中空孔道结构,孔道的内壁上可以分布催化剂涂层,孔道空间可以用作流体的流动空间。优选情况下,所述规整结构载体选自具有两端开口的平行孔道结构的整体式载体。所述规整结构载体可以是截面具有蜂窝状开孔的蜂窝式规整载体(简称蜂窝载体)。
根据本发明的规整结构催化剂,优选情况下,所述规整结构载体的截面的孔密度为10-300孔/平方英寸,优选为20-300孔/平方英寸;所述规整结构载体的截面的开孔率为20-80%,优选为50-80%。所述孔可以为规则形状,也可以为不规则形状,各个孔的形状可以相同,也可以不同,各自独立的可以为正方形、正三角形、正六边形、圆形和波纹形中的一种。
根据本发明的规整结构催化剂,优选情况下,所述规整结构载体可以选自堇青石蜂窝载体、莫来石蜂窝载体、金刚石蜂窝载体、刚玉蜂窝载体、锆刚玉蜂窝载体、石英蜂窝载体、霞石蜂窝载体、长石蜂窝载体、氧化铝蜂窝载体和金属合金蜂窝载体中的至少一种。
本发明并不排除所述稀土金属元素、IIA族金属元素和IVB、VB、VIB、VIIB、VIII、IB、IIB族的非贵金属元素还含有除了La、Co、Mg和Mn之外的元素,例如Sr、Ca和Ni等。
根据本发明一种特别优选的实施方式,该催化剂包括规整结构载体和分布在规整结构载体内表面和/或外表面的活性组分涂层,以所述催化剂的总重量为基准,所述活性组分涂层的含量为10-35重量%,所述活性组分涂层含有基质和活性金属组分,其中,以所述活性组分涂层的总重量为基准,所述基质的含量为50-80重量%,所述活性金属组分的含量为20-50重量%,所述活性金属组分含有:1)以氧化物计,65-85重量%的选自稀土族和/或IIA族的一种或几种的金属组分;2)以氧化物计,15-35重量%的选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分;3)以元素计,0.03-1.2重量%的贵金属组分;所述稀土族金属组分为镧,所述IIA族金属组分为镁,所述选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分为锰以及钴,所述贵金属组分为钯。采用该种特别优选的实施方式,将La、Co、Mg、Mn和贵金属作为金属元素配合使用,可大幅提高脱除SOx和NOx的能力,并且被催化剂吸附的NOx 还能促进催化剂对SOx的吸收。
在本发明中,无特殊说明情况下,La以氧化物计是指La以La 2O 3计,Mg以氧化物计是指MgO计,Co以氧化物计是指Co以Co 2O 3计,Mn以氧化物计是指MnO计。
本发明第二方面提供一种能够同时降低SOx和NOx排放的规整结构催化剂的制备方法,该方法包括以下步骤:
(1)配制含有稀土族和/或IIA族的一种或几种的金属组分前驱体和选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分前驱体的溶液;
(2)将步骤(1)所述溶液与共沉淀剂进行共沉淀反应,然后对得到的固体产物进行干燥和焙烧,得到活性金属组分前驱体;
(3)将活性金属组分前驱体、基质源和水混合打浆,得到活性组分涂层浆液;
(4)用所述活性组分涂层浆液涂覆规整结构载体并进行干燥和焙烧以得到分布在规整结构载体内表面和/或外表面的部分活性组分的涂层,得到催化剂半成品;
(5)用含有贵金属组分前驱体的溶液浸渍步骤(4)得到的所述催化剂半成品,然后进行干燥和/或焙烧以得到分布在规整结构载体内表面和/或外表面的活性组分涂层;
其中,稀土族和/或IIA族的一种或几种的金属组分前驱体、选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分前驱体、基质源、贵金属组分前驱体和规整结构载体的用量使得制得的规整结构催化剂中,以所述催化剂的总重量为基准,所述活性组分涂层的含量为1-50重量%,所述活性组分涂层含有基质和活性金属组分,其中,以所述活性组分涂层的总重量为基准,所述基质的含量为10-90重量%,所述活性金属组分的含量为10-90重量%,所述活性金属组分含有:1)以氧化物计,50-95重量%的选自稀土族和/或IIA族的一种或几种的金属组分;2)以氧化物计,5-50重量%的选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分;3)以元素计,0.01-2重量%的贵金属组分。
根据本发明提供的制备方法,稀土族金属组分、IIA族金属组分、所述VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分以及所述贵金属组分、基质以及规整结构载体的具体种类的选择范围如上文第一 方面所述,在此不再赘述。
优选地,所述基质源为在步骤(4)的所述焙烧的条件下能够转变为基质的物质。本领域技术人员可以根据上述基质的种类进行适当的选择,本发明对此没有特别的限定。当所述基质优选为氧化铝时,所述基质源可以为氧化铝的前驱体,例如所述基质源选自三水铝石、湃铝石、诺水铝石、硬水铝石、薄水铝石和拟薄水铝石中的至少一种,最优选为拟薄水铝石。
根据本发明提供的方法,当所述基质为氧化铝时,优选地,在打浆之前,对基质源进行酸化胶溶处理,所述酸化胶溶处理可以按照本领域常规技术手段进行,进一步优选地,所述酸化胶溶处理使用的酸为盐酸。
本发明对所述酸化胶溶处理的条件的选择范围较宽,优选地,所述酸化胶溶处理的条件包括:酸铝比为0.12-0.22:1,时间为10-40min。
在本发明中,无特殊说明情况下,所述酸铝比是指以36重量%的浓盐酸计的盐酸与以干基计的氧化铝的前驱体的质量比。
根据本发明,优选地,含有稀土族和/或IIA族的一种或几种的金属组分前驱体和选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分前驱体可以各自独立地选自各金属组分的水溶性盐,如硝酸盐、氯化物、氯酸盐或硫酸盐等,优选为硝酸盐和/或氯化物。特别的,锰的前驱体可以为高锰酸钾和/或氯化锰。
本发明对步骤(1)得到所述溶液的方法没有特别的限定,只要使得各金属组分前驱体混合均匀即可。例如可以将各金属组分前驱体溶于水中,充分搅拌均匀。
根据本发明的一种优选实施方式,稀土族和/或IIA族的一种或几种的金属组分前驱体、选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分前驱体、基质源、贵金属组分前驱体和规整结构载体的用量使得制得的规整结构催化剂中,以所述催化剂的总重量为基准,所述活性组分涂层的含量为5-40重量%,所述活性组分涂层含有基质和活性金属组分,其中,以所述活性组分涂层的总重量为基准,所述基质的含量为40-90重量%,所述活性金属组分的含量为10-60重量%,所述活性金属组分含有:1)以氧化物计,60-90重量%的选自稀土族和/或IIA族的一种或几种的金属组分;2)以氧化物计,10-40重量%的选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分;3)以元素计,0.02-1.5 重量%的贵金属组分;
进一步优选地,稀土族和/或IIA族的一种或几种的金属组分前驱体、选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分前驱体、基质源、贵金属组分前驱体和规整结构载体的用量使得制得的规整结构催化剂中,以所述催化剂的总重量为基准,所述活性组分涂层的含量为10-35重量%,所述活性组分涂层含有基质和活性金属组分,其中,以所述活性组分涂层的总重量为基准,所述基质的含量为50-80重量%,所述活性金属组分的含量为20-50重量%,所述活性金属组分含有:1)以氧化物计,65-85重量%的选自稀土族和/或IIA族的一种或几种的金属组分;2)以氧化物计,15-35重量%的选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分;3)以元素计,0.03-1.2重量%的贵金属组分。
根据本发明提供的方法,提供所述活性金属组分前驱体的方法可以选用共沉淀法,也可以选用溶胶凝胶法,更优选的为共沉淀法。但可以知晓的是,溶胶凝胶法也在本发明的保护范围之内。
本发明所述共沉淀剂的种类和用量可以按照常规技术手段进行选择,只要能够使得共沉淀反应顺利进行即可。所述共沉淀剂的种类可以为本领域的常规选择,优选地,所述共沉淀剂为碳酸盐,进一步优选选自碳酸铵、碳酸钾和碳酸钠中的至少一种,更优选为碳酸铵。
步骤(2)中,共沉淀剂可以以溶液的形式引入与所述溶液进行共沉淀反应。本发明对所述溶液和共沉淀剂的溶液的浓度没有特别的限定,只要溶液浓度小于在提供所述溶液时的溶解度即可,从而确保能够充分发生所述共沉淀反应即可。
优选地,所述共沉淀反应在pH为8-10优选8.5-9.5条件下进行。所述共沉淀反应的pH可以通入加入酸和/或碱进行调节,对其具体种类没有特别的限定,例如可以为氨水。对于所述共沉淀反应的温度,本发明没有特别的限定,可以在室温下进行。
根据本发明提供的方法,还包括将共沉淀反应得到的反应产物进行固液分离(例如可以为过滤或者是离心分离),以得到所述固体产物。
优选地,步骤(2)所述焙烧的条件包括:温度为300-800℃,时间为1-8h。
在本发明中,优选地,步骤(3)所述的活性组分涂层浆液的固含量为5-45重量%。
根据本发明提供的方法,对所述将活性金属组分前驱体、基质源和水混合打浆的方法没有特别的限定,对活性金属组分前驱体、基质源和水的加入顺序同样没有限定,只要将活性金属组分前驱体、基质源以及水接触,然后打浆得到所述浆液即可。
在本发明中,可以通过调整涂覆过程中的参数来调节活性组分涂层的含量,例如可以通过调整涂覆过程中活性组分涂层浆液、规整结构载体的用量。
本发明提供的方法中所述的涂覆可以为采用各种涂覆方法将活性组分涂层浆液涂覆在规整结构载体的内表面和/或外表面上;所述涂覆的方法可以是水涂法、浸渍法或喷淋法。涂覆的具体操作可以参照CN1199733C中所述的方法进行。在优选情况下,所述涂覆采用水涂法,涂覆过程中规整结构载体一端浸渍在活性组分涂层浆液中,另一端施加真空,使活性组分涂层浆液连续通过规整结构载体的孔道。所述通过规整结构载体孔道的活性组分涂层浆液体积可以为规整结构载体体积的2-20倍,施加的真空压力可以为-0.1MPa(兆帕)至-0.01MPa(兆帕),涂覆温度可以为10-70℃,涂覆时间可以为0.1-300秒。将涂覆好活性组分涂层浆液的规整结构载体进行干燥和焙烧,即可得到分布在规整结构载体内表面和/或外表面的部分活性组分的涂层,得到催化剂半成品。所述部分活性组分的涂层指的是在该阶段得到的催化剂半成品中不包括贵金属活性组分,故记为部分活性组分的涂层,待步骤(5)浸渍完成后,然后进行干燥和/或焙烧以得到分布在规整结构载体内表面和/或外表面的活性组分涂层。
本发明步骤(5)中可以仅对浸渍所得物质进行干燥,也可以仅对浸渍所得物质进行焙烧,还可以对浸渍所得物质进行干燥后进行焙烧,本发明对此没有特别的限定,优选对浸渍所得物质进行干燥后进行焙烧。本发明对步骤(5)所述焙烧的条件没有特别的限定,可以按照本领域常规技术手段进行。例如,步骤(5)所述焙烧可以在空气或惰性气氛(例如氮气)中进行,本发明对步骤(5)所述焙烧的条件没有特别的限制,优选包括:温度为300-700℃,时间为0.1-5h。
本发明对步骤(2)、步骤(4)和步骤(5)所述干燥的条件没有特别的限定,可以按照本领域常规技术手段进行,例如,步骤(2)、步骤(4)和步骤(5)所述干燥的条件可以各自独立地包括:温度为60-200℃,时间为2-10h。
根据本发明对步骤(5)中所述浸渍没有特别的限定,可以按照本领域常规技术手段进行,本领域技术人员可以通过浸渍得到催化剂中特定贵金属含量。本发明所述浸渍可以为饱和浸渍,也可以为过量浸渍。
根据本发明,优选地,步骤(5)中,将贵金属组分前驱体在酸溶液中水解以提供所述溶液。具体地,还可以在所述水解以后,进行稀释(可以加水)或者提浓(可以进行蒸发),然后进行所述浸渍以提供特定贵金属组分负载量的催化剂。
优选地,所述酸选自可溶于水的无机酸和/或有机酸,优选选自盐酸、硝酸、磷酸和醋酸中至少一种。
根据本发明,优选地,所述酸的用量使得浸渍液的pH值小于6.0,优选小于5.0。采用该种优选实施方式更有利于活性组分均匀分散及改善成品催化剂的耐磨损强度。
本发明可以通过对浸渍后得到的混合物进行过滤得到所述固体产物。所述过滤可以按照本领域常规技术手段进行。
本发明第三方面提供一种催化裂化再生烟气同时脱SOx和NOx的方法,该方法包括:在脱SOx和NOx的条件下,将催化裂化再生烟气与催化剂接触,所述催化剂为本发明第一方面所述的能够同时降低SOx和NOx排放的规整结构催化剂或者第二方面所述的制备方法制得的能够同时降低SOx和NOx排放的规整结构催化剂。本发明提供的催化剂特别适合于同时含有SOx和NOx的催化裂化再生烟气的处理。
本发明对所述催化裂化再生烟气中,SOx和NOx的含量选择范围较宽,只要同时含有SOx和NOx即有利于二者的脱除。优选地,所述催化裂化再生烟气中,SOx的含量为0.001-0.5体积%,NOx的含量为0.001-0.3体积%;进一步优选地,所述催化裂化再生烟气中,SOx的含量为0.002-0.2体积%,NOx的含量为0.002-0.2体积%。
优选地,所述烟气中,SOx与NOx的体积含量比值为1-1.4:1,优选为1-1.2:1。该种优选实施方式更有利于提高二者的脱除效率。
本发明中,所述催化裂化再生烟气中还可以含有除了SOx和NOx之外的气体,包括但不限于CO、CO 2和H 2O等。
根据本发明提供的方法,优选地,所述接触的条件包括:温度为300-1000℃,以表压计,反应压力为0-0.5MPa,催化裂化再生烟气体积空速为200-20000h -1;进一步优选地,温度为450-750℃,以表压计,反 应压力为0.05-0.3MPa,催化裂化再生烟气体积空速为1000-10000h -1
根据本发明提供的方法,优选地,所述接触在旋风分离器后和/或CO焚烧炉后设置的烟气通道中进行。完全再生过程中,再生器出口的旋风分离器后,烟气中SOx和NOx浓度高且催化剂细粉颗粒物少,温度高利于提高反应转化率,颗粒物少则不易堵塞孔道,基于此,优选地,完全再生烟气与催化剂所述接触在旋风分离器后设置的烟气通道中进行,以同时催化转化SOx和NOx;不完全再生过程中,由于烟气中过剩氧含量低,CO浓度高,再生器出口烟气中NOx浓度很低,而还原态氮化物如NH 3、HCN等浓度较高。这些还原态氮化物随着烟气向下游流动,在用于回收能量的CO焚烧炉中,若被充分氧化,则生成NOx。基于此,优选地,不完全再生烟气与催化剂所述接触在CO焚烧炉和/或CO焚烧炉后设置的烟气通道中进行,以同时催化转化SOx和NOx。
本发明对所述CO焚烧炉没有特别的限定,可以使用本领域常规使用的各种CO焚烧炉,例如立式CO焚烧炉或卧式CO焚烧炉。
在本发明中,所述旋风分离器优选为三级旋风分离器。
优选情况下,所述规整结构催化剂以催化剂床层的形式存在。本发明提供的方法中,规整结构催化剂可以作为固定的催化剂床层设置在旋风分离器后和/或CO焚烧炉后设置的烟气通道中,流动的催化裂化再生烟气可以流动通过规整结构催化剂床层,即可以流动通过规整结构载体内的孔道,与孔道壁上分布的活性组分涂层发生反应。
本发明还提供了下述技术方案:
1、一种能够同时降低SOx和NOx排放的规整结构催化剂,该催化剂包括规整结构载体和分布在规整结构载体内表面和/或外表面的活性组分涂层,以所述催化剂的总重量为基准,所述活性组分涂层的含量为1-50重量%,所述活性组分涂层含有基质和活性金属组分,其中,以所述活性组分涂层的总重量为基准,所述基质的含量为10-90重量%,所述活性金属组分的含量为10-90重量%,所述活性金属组分含有:1)以氧化物计,50-95重量%的选自稀土族和/或IIA族的一种或几种的金属组分;2)以氧化物计,5-50重量%的选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分;3)以元素计,0.01-2重量%的贵金属组分。
2、根据前述技术方案中任一项所述的规整结构催化剂,其中,
以所述催化剂的总重量为基准,所述活性组分涂层的含量为5-40重 量%;
和/或,以所述活性组分涂层的总重量为基准,所述基质的含量为40-90重量%,所述活性金属组分的含量为10-60重量%;
和/或,所述活性金属组分含有:1)以氧化物计,60-90重量%的选自稀土族和/或IIA族的一种或几种的金属组分;2)以氧化物计,10-40重量%的选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分;3)以元素计,0.02-1.5重量%的贵金属组分;
优选地,
以所述催化剂的总重量为基准,所述活性组分涂层的含量为10-35重量%;
和/或,以所述活性组分涂层的总重量为基准,所述基质的含量为50-80重量%,所述活性金属组分的含量为20-50重量%;
和/或,所述活性金属组分含有:1)以氧化物计,65-85重量%的选自稀土族和/或IIA族的一种或几种的金属组分;2)以氧化物计,15-35重量%的选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分;3)以元素计,0.03-1.2重量%的贵金属组分。
3、根据前述技术方案中任一项所述的规整结构催化剂,其中,所述基质选自氧化铝、尖晶石、钙钛矿、氧化硅-氧化铝、沸石、高岭土、硅藻土和珍珠岩中的至少一种,优选选自氧化铝、尖晶石和钙钛矿中的至少一种,进一步优选为氧化铝;
优选地,所述规整结构载体选自具有两端开口的平行孔道结构的整体式载体;
优选地,所述规整结构载体的截面的孔密度为10-300孔/平方英寸,开孔率为20-80%;
优选地,所述规整结构载体选自堇青石蜂窝载体、莫来石蜂窝载体、金刚石蜂窝载体、刚玉蜂窝载体、锆刚玉蜂窝载体、石英蜂窝载体、霞石蜂窝载体、长石蜂窝载体、氧化铝蜂窝载体和金属合金蜂窝载体中的至少一种。
4、根据前述技术方案中任一项所述的规整结构催化剂,其中,
所述稀土族金属组分选自镧、铈、镨和钕中的一种或几种,优选为镧和/或铈,更优选为镧;
所述IIA族金属组分选自铍、镁、钙、锶和钡中的一种或几种,优选 为镁;
所述选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分选自锰、铁、钴、镍、铜、锌和钒中的一种或几种,优选为钴、铁和锰中的至少一种,进一步优选为锰、以及钴和/或铁,更进一步优选为锰和钴;
所述贵金属组分选自钌、铑、铼、铂、钯、银、铱和金中的一种或几种,优选为铂、钯和铑中的一种或几种,更优选为钯。
5、根据前述技术方案中任一项所述的规整结构催化剂,其中,基于所述活性金属组分的总量,以氧化物计,选自稀土族和/或IIA族的一种或几种的金属组分的含量与选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分的含量的比值为1-8,优选地1.5-6,更优选地2-4。
6、根据前述技术方案中任一项所述的规整结构催化剂,其中,
所述活性金属组分含有或由以下组分:
1a)以氧化物计,选自稀土族的一种或几种的金属组分;优选地,镧;
1b)以氧化物计,选自IIA族的一种或几种的金属组分;优选地,镁;
2a)以氧化物计,选自VB、VIII、IB和IIB族的一种或几种的非贵金属组分;优选地,钴;
2b)以氧化物计,选自VIIB族的一种或几种的非贵金属组分;优选地,锰;
3)以元素计,选自铂、钯和铑中的一种或几种;优选地,钯。
7、根据技术方案6所述的规整结构催化剂,其中,基于100重量%的所述活性金属组分的总量计,
1a)的含量为30-80重量%,例如,35-75重量%,或40-70重量%,
1b)的含量为5-40重量%,例如10-30重量%,
2a)的含量为5-40重量%,例如3-30重量%,或5-20重量%,
2b)的含量为3-20重量%,例如5-15重量%,
c)的含量为0.01-0.2重量%。
8、根据技术方案6所述的规整结构催化剂,其中,
镧与钴的摩尔比为(0.5-15):1,例如(1-10):1,或(1-6):1,(2-5):1,或(2.5-3.5):1,或(2.6-3.4):1,或(2.7-3.3):1,或(2.8-3.2):1,或(2.9-3.1):1,或(2.95-3.05):1。
9、根据前述技术方案中任一项所述的催化剂,其中所述催化剂在粉 末XRD谱中在2θ=33.0°±0.1°、33.5°±0.1°和47.5°±0.1°处以及在27.0°±0.1°、28.0°±0.1°和39.5°±0.1°处具有特征峰。
10、根据前述技术方案中任一项所述的催化剂,其中所述催化剂是经暴露于含SO 2的气氛处理过的;
例如,所述催化剂是经暴露于含SO 2的气氛处理过的,其中含SO 2的气氛的温度为350-1000℃,压力为0-8MPa,SO 2的含量为0.001-100体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为400-900℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为450-900℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为500-900℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为550-900℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为600-900℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为650-900℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为400-800℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为450-800℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中 含SO 2的气氛的温度为500-800℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为550-800℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为600-900℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为650-900℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为400-750℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为450-750℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为500-750℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为550-750℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为600-750℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为650-750℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为400-700℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为450-700℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为500-700℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为550-700℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为600-700℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达至少1分钟处理过的,其中含SO 2的气氛的温度为650-700℃,压力为0-5MPa,SO 2的含量为0.001-5体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为400-900℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为450-900℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为500-900℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为550-900℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为600-900℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为650-900℃,压力为0-2MPa,SO 2的含量为0.01-1 体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为400-800℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为450-800℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为500-800℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为550-800℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为600-800℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为650-800℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为400-750℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为450-750℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为500-750℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为550-750℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中 含SO 2的气氛的温度为600-750℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为650-750℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为400-700℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为450-700℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为500-700℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为550-700℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为600-700℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达30-480分钟处理过的,其中含SO 2的气氛的温度为650-700℃,压力为0-2MPa,SO 2的含量为0.01-1体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为400-900℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为450-900℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为500-900℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为550-900℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为600-900℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为650-900℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为400-800℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为450-800℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为500-800℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为550-800℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为600-800℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为650-800℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为400-750℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为450-750℃,压力为0-0.5MPa,SO 2的含量为 0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为500-750℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为550-750℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为600-750℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为650-750℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为650-750℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为400-700℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为450-700℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为500-700℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为550-700℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中含SO 2的气氛的温度为600-700℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%;或
所述催化剂是经暴露于含SO 2的气氛达60-120分钟处理过的,其中 含SO 2的气氛的温度为650-700℃,压力为0-0.5MPa,SO 2的含量为0.02-0.5体积%。
11、根据前述技术方案中任一项所述的催化剂,其中所述催化剂是经暴露于含SO 2的气氛处理过的,所述催化剂在粉末XRD谱中在2θ=28.6°±0.1°、30.0°±0.1°以及50.4°±0.1°处具有特征峰。
12、一种能够同时降低SOx和NOx排放的规整结构催化剂的制备方法,该方法包括以下步骤:
(1)配制含有稀土族和/或IIA族的一种或几种的金属组分前驱体和选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分前驱体的溶液;
(2)将步骤(1)所述溶液与共沉淀剂进行共沉淀反应,然后对得到的固体产物进行干燥和焙烧,得到活性金属组分前驱体;
(3)将活性金属组分前驱体、基质源和水混合打浆,得到活性组分涂层浆液;
(4)用所述活性组分涂层浆液涂覆规整结构载体并进行干燥和焙烧以得到分布在规整结构载体内表面和/或外表面的部分活性组分的涂层,得到催化剂半成品;
(5)用含有贵金属组分前驱体的溶液浸渍步骤(4)得到的所述催化剂半成品,然后进行干燥和/或焙烧以得到分布在规整结构载体内表面和/或外表面的活性组分涂层;
其中,稀土族和/或IIA族的一种或几种的金属组分前驱体、选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分前驱体、基质源、贵金属组分前驱体和规整结构载体的用量使得制得的规整结构催化剂中,以所述催化剂的总重量为基准,所述活性组分涂层的含量为1-50重量%,所述活性组分涂层含有基质和活性金属组分,其中,以所述活性组分涂层的总重量为基准,所述基质的含量为10-90重量%,所述活性金属组分的含量为10-90重量%,所述活性金属组分含有:1)以氧化物计,50-95重量%的选自稀土族和/或IIA族的一种或几种的金属组分;2)以氧化物计,5-50重量%的选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分;3)以元素计,0.01-2重量%的贵金属组分。
13、根据前述技术方案中任一项所述的制备方法,其中,稀土族和/或IIA族的一种或几种的金属组分前驱体、选自VB、VIIB、VIII、IB和 IIB族的一种或几种的非贵金属组分前驱体、基质源、贵金属组分前驱体和规整结构载体的用量使得制得的规整结构催化剂中,以所述催化剂的总重量为基准,所述活性组分涂层的含量为5-40重量%,所述活性组分涂层含有基质和活性金属组分,其中,以所述活性组分涂层的总重量为基准,所述基质的含量为40-90重量%,所述活性金属组分的含量为10-60重量%,所述活性金属组分含有:1)以氧化物计,60-90重量%的选自稀土族和/或IIA族的一种或几种的金属组分;2)以氧化物计,10-40重量%的选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分;3)以元素计,0.02-1.5重量%的贵金属组分;
优选地,
稀土族和/或IIA族的一种或几种的金属组分前驱体、选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分前驱体、基质源、贵金属组分前驱体和规整结构载体的用量使得制得的规整结构催化剂中,以所述催化剂的总重量为基准,所述活性组分涂层的含量为10-35重量%,所述活性组分涂层含有基质和活性金属组分,其中,以所述活性组分涂层的总重量为基准,所述基质的含量为50-80重量%,所述活性金属组分的含量为20-50重量%,所述活性金属组分含有:1)以氧化物计,65-85重量%的选自稀土族和/或IIA族的一种或几种的金属组分;2)以氧化物计,15-35重量%的选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分;3)以元素计,0.03-1.2重量%的贵金属组分。
14、根据前述技术方案中任一项所述的制备方法,其中,稀土族和/或IIA族的一种或几种的金属组分前驱体、选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分前驱体、基质源、贵金属组分前驱体和规整结构载体的用量使得制得的规整结构催化剂中,
基于所述活性金属组分的总量,以氧化物计,选自稀土族和/或IIA族的一种或几种的金属组分的含量与选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分的含量的比值为1-8,优选地1.5-6,更优选地2-4。
15、根据前述技术方案中任一项所述的制备方法,其中,稀土族和/或IIA族的一种或几种的金属组分前驱体、选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分前驱体、基质源、贵金属组分前驱体和规整结构载体的用量使得制得的规整结构催化剂中,
所述活性金属组分含有或由以下组分:
1a)以氧化物计,选自稀土族的一种或几种的金属组分;优选地,镧;
1b)以氧化物计,选自IIA族的一种或几种的金属组分;优选地,镁;
2a)以氧化物计,选自VB、VIII、IB和IIB族的一种或几种的非贵金属组分;优选地,钴;
2b)以氧化物计,选自VIIB族的一种或几种的非贵金属组分;优选地,锰;
3)以元素计,选自铂、钯和铑中的一种或几种;优选地,钯;
优选地,基于100重量%的所述活性金属组分的总量计,
1a)的含量为30-80重量%,例如,35-75重量%,或40-70重量%,
1b)的含量为5-40重量%,例如10-30重量%,
2a)的含量为5-40重量%,例如3-30重量%,或5-20重量%,
2b)的含量为3-20重量%,例如5-15重量%,
c)的含量为0.01-0.2重量%;和/或
优选地,镧与钴的摩尔比为(0.5-15):1,例如(1-10):1,或(1-6):1,(2-5):1,或(2.5-3.5):1,或(2.6-3.4):1,或(2.7-3.3):1,或(2.8-3.2):1,或(2.9-3.1):1,或(2.95-3.05):1。
16、根据前述技术方案中任一项所述的制备方法,其中,所述基质源为在步骤(4)的所述焙烧的条件下能够转变为基质的物质;
所述基质选自氧化铝、尖晶石、钙钛矿、氧化硅-氧化铝、沸石、高岭土、硅藻土和珍珠岩中的至少一种,优选选自氧化铝、尖晶石和钙钛矿中的至少一种,进一步优选为氧化铝;
优选地,所述规整结构载体选自具有两端开口的平行孔道结构的整体式载体;
优选地,所述规整结构载体的截面的孔密度为10-300孔/平方英寸,开孔率为20-80%;
优选地,所述规整结构载体选自堇青石蜂窝载体、莫来石蜂窝载体、金刚石蜂窝载体、刚玉蜂窝载体、锆刚玉蜂窝载体、石英蜂窝载体、霞石蜂窝载体、长石蜂窝载体、氧化铝蜂窝载体和金属合金蜂窝载体中的至少一种。
17、根据前述技术方案中任一项所述的制备方法,其中,
所述稀土族金属组分选自镧、铈、镨和钕中的一种或几种,优选为 镧和/或铈,更优选为镧;
所述IIA族金属组分选自铍、镁、钙、锶和钡中的一种或几种,优选为镁;
所述选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分选自锰、铁、钴、镍、铜、锌和钒中的一种或几种,优选为钴、铁和锰中的至少一种,更优选为锰、以及钴和/或铁,更进一步优选为锰和钴;
所述贵金属组分选自钌、铑、铼、铂、钯、银、铱和金中的一种或几种,优选为铂、钯和铑中的一种或几种,更优选为钯。
18、根据前述技术方案中任一项所述的制备方法,其中,含有稀土族和/或IIA族的一种或几种的金属组分前驱体和选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分前驱体各自独立地选自各金属组分的硝酸盐和/或氯化物;
优选地,所述共沉淀剂为碳酸盐,进一步优选选自碳酸铵、碳酸钾和碳酸钠中的至少一种;
优选地,所述共沉淀反应在pH为8-10条件下进行;
优选地,步骤(2)所述焙烧的条件包括:温度为300-800℃,时间为1-8h。
19、根据前述技术方案中任一项所述的制备方法,其中,步骤(3)所述活性组分涂层浆液的固含量为5-45重量%;
优选地,步骤(4)所述焙烧的条件包括:温度为300-800℃,时间为1-5h;
优选地,步骤(5)中,将贵金属组分前驱体在酸溶液中水解以提供所述溶液;
优选地,所述酸选自可溶于水的无机酸和/或有机酸,优选选自盐酸、硝酸、磷酸和醋酸中至少一种;
优选地,所述酸的用量使得浸渍液的pH值小于6.0,优选小于5.0;
优选地,步骤(5)所述焙烧的条件包括:温度为300-700℃,时间为0.1-5h。
20、一种催化裂化再生烟气同时脱SOx和NOx的方法,该方法包括:在脱SOx和NOx的条件下,将催化裂化再生烟气与催化剂接触,所述催化剂为根据前述技术方案中任一项所述的能够同时降低SOx和NOx排放的规整结构催化剂或者根据前述技术方案中任一项所述的制备方法制得 的能够同时降低SOx和NOx排放的规整结构催化剂;
优选地,所述催化裂化再生烟气和规整结构催化剂的接触在催化裂化旋风分离器后和/或CO焚烧炉后设置的烟气通道中进行;
优选地,所述接触的条件包括:温度为300-1000℃,例如500-800℃,或600-750℃,或625-750℃,或650-750℃,或675-750℃,或700-750℃,或725-750℃,或600-725℃,或625-725℃,或650-725℃,或675-725℃,或700-725℃,或600-700℃,或625-700℃,或650-700℃,或675-700℃,或600-675℃,或625-675℃,或650-675℃,或600-650℃,或625-650℃,或600-625℃,以表压计,反应压力为0-4MPa,例如0.01-4MPa,或0.02-4MPa,或0-0.5MPa;催化裂化再生烟气体积空速为100-50000h -1或200-20000h -1,500-10000h -1,1000-5000h -1,例如,催化裂化再生烟气体积空速为200-20000h -1
21、一种烟气同时脱SOx和NOx的方法,该方法包括:在脱SOx和NOx的条件下,将烟气与催化剂接触,所述催化剂为根据前述技术方案中任一项所述的催化剂或者根据前述技术方案中任一项所述的制备方法制得的催化剂;
优选地,所述烟气为同时含有一定浓度的SOx和NOx的烟气,包括但不限于催化裂化再生烟气;
优选地,所述烟气中SOx和NOx的体积分数分别为1~3000μL/L,SOx和NOx的摩尔比为0.5:1-2:1;
优选地,所述接触的条件包括:温度为300-1000℃,例如500-800℃,或600-750℃,或625-750℃,或650-750℃,或675-750℃,或700-750℃,或725-750℃,或600-725℃,或625-725℃,或650-725℃,或675-725℃,或700-725℃,或600-700℃,或625-700℃,或650-700℃,或675-700℃,或600-675℃,或625-675℃,或650-675℃,或600-650℃,或625-650℃,或600-625℃,以表压计,反应压力为0-4MPa,例如0.01-4MPa,或0.02-4MPa,或0-0.5MPa;烟气的体积空速为100-50000h -1或200-20000h -1,500-10000h -1,1000-5000h -1,例如,催化裂化再生烟气体积空速为200-20000h -1
在本发明中,对于焙烧条件不特别限制。例如,焙烧可以在空气或惰性气氛(例如氮气)中进行;焙烧条件可以为:温度为300-900℃,例如400、500、600、700、800℃及这些点值中的任意两个组成的温度范围, 时间为0.1-12h,例如0.1-5h。压力可以为低于常压、常压或高于常压(例如(0-5MPa)。
在本发明中,对于干燥条件不特别限制。例如,干燥条件可以为:温度为25-250℃,时间为0.1-12h,压力可以为真空(例如绝对压力0-1kPa,0-5kPa,0-10kPa,0-20kPa,0-30kPa,0-40kPa,0-50kPa,0-60kPa,0-70kPa,0-80kPa,0-90kPa,0-100kPa)或常压(绝对压力0.1MPa)。在本发明中,在进行先干燥,后焙烧的操作时,干燥温度低于焙烧温度。
在本发明中,无特殊说明情况下,所述ppm指的是体积浓度。
在本发明中,SOx是指硫氧化物的混合物(例如SO 2和SO 3的混合物,其摩尔比例不受特别限制,如1:10至10:1),NOx是指氮氧化物的混合物(例如NO 2和NO的混合物,其摩尔比例不受特别限制,如1:10至10:1)。
本发明的发明人在研究过程中发现,将特定量的稀土族金属元素(例如La)和第VIII族非贵金属(例如Co)配合至少一种贵金属元素(例如Pt)作为活性组分使用,配合特定的稀土族金属与第VIII族非贵金属比例,能够有效地同时降低烟气中SOx和NOx的排放。在此基础上,引入IIA族金属组分(例如Mg)和/或引入VIIB族金属组分(例如Mn),可以进一步提高催化剂组合脱除NOx和SOx的能力。当将本发明的催化剂与SO 2接触时,据信硫元素可以转化为不同的化合价态,其中低价态的硫元素有利于烟气中的NOx的转化,从而整个过程可以促使SOx和NOx朝有利于降低污染的方向转化。
以下将通过实施例对本发明进行详细描述。以下实施例中,组分含量参数通过X射线荧光光谱(XRF)方法测得;所用原料:硝酸镧(分析纯,Aladdin Biochemical公司)、硝酸镁(分析纯,国药集团化学试剂有限公司)、氯化钾(分析纯,北京化工厂)、硝酸钴(分析纯,北京伊诺凯科技有限公司)、碳酸铵(分析纯,北京化工厂)、氨水(分析纯,25%,天津市大茂化学厂)、氯化钯(中国医药公司北京采购供应站),盐酸(北京化工厂),OX50-SiO 2(中石化催化剂公司)。
在以下实施例中,催化剂中组分含量均采用X射线荧光光谱(XRF)法测定,具体参见石油化工分析方法(RIPP实验方法),杨翠定等编,科学出版社1990年出版。
在以下实施例中,采用Siemens D5005衍射仪,对催化剂样品进行粉末X射线衍射(XRD)分析,其中在40kV、40mA条件下产生CuKα(λ= 0.15418nm)辐射,经Ni过滤。衍射信号记录在2θ5~70°范围内,步长0.02°。
实施例1
在烧杯中称取320mL去离子水,搅拌下加入以La 2O 3质量计为20g的硝酸镧、以MgO质量计为4g的硝酸镁、以Co 2O 3质量计为5g的硝酸钴和以MnO质量计为3g的氯化锰直至完全溶解,得到非贵金属组分前驱体的溶液;称取碳酸铵48g溶于200mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧5小时后,研磨得到活性金属组分前驱体。
称取以Al 2O 3质量计为30g的铝石,加入160mL水及4.5g的36重量%的浓盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,得到活性组分涂层浆液。
将上述所得活性组分涂层浆液涂覆于300g的200孔/平方英寸的堇青石规整载体并干燥和焙烧以得到分布在规整结构载体内表面和/或外表面的活性组分涂层,将得到的组分在120℃下进行干燥、在空气气氛700℃下焙烧4小时,得到规整结构催化剂半成品。
称取钯的前驱体与稀盐酸按质量比1:1互溶,加去离子水稀释,配置成氯化钯溶液,按含钯质量为0.009g称取一定量的氯化钯溶液,将含钯溶液作为浸渍液浸渍到上述催化剂半成品,得到固体产物,然后对固体产物在120℃下进行干燥、在空气气氛600℃下焙烧4小时,即得到催化剂S-1,其中,以规整结构催化剂的总重量为基准,活性组分涂层的含量为14.3重量%。
取一部分活性组分涂层并对其进行XRD分析,在XRD谱中,在2θ=约33.0°、约33.5°和约47.5°处以及在2θ=约27.0°、约28.0°和约39.5°处存在特征峰;
取一部分活性组分涂层并将其暴露于含SO 2的气氛1分钟,所述含SO 2的气氛的温度为800℃,压力为0MPa,SO 2的含量为0.001体积%。在暴露于SO 2处理后,对该涂层进行XRD分析,在XRD谱中,2θ角约为28.6°、30.0°和50.4°处,存在特征峰。
实施例2
在烧杯中称取250mL去离子水,搅拌下加入以La 2O 3质量计为10g 的硝酸镧、以MgO质量计为7g的硝酸镁、以Co 2O 3质量计为5g的硝酸钴和以MnO质量计为3g的氯化锰直至完全溶解,得到非贵金属组分前驱体的溶液;称取碳酸铵38g溶于150mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧5小时后,研磨得到活性金属组分前驱体。
称取以Al 2O 3质量计为40g的铝石,加入180mL水及6g的36重量%的浓盐酸,进行打浆。称取10g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,得到活性组分涂层浆液。
将上述所得活性组分涂层浆液涂覆于300g的200孔/平方英寸的堇青石规整载体并干燥和焙烧以得到分布在规整结构载体内表面和/或外表面的活性组分涂层,将得到的组分在120℃下进行干燥、在空气气氛700℃下焙烧4小时,得到规整结构催化剂半成品。
称取钯的前驱体与稀盐酸按质量比1:1互溶,加去离子水稀释,配置成氯化钯溶液,按含钯质量为0.018g称取一定量的氯化钯溶液,将含钯溶液作为浸渍液浸渍到上述催化剂半成品,得到固体产物,然后对固体产物在120℃下进行干燥、在空气气氛600℃下焙烧4小时,即得到催化剂S-2,其中,以规整结构催化剂的总重量为基准,活性组分涂层的含量为14.3重量%。
取一部分活性组分涂层并对其进行XRD分析,在XRD谱中,在2θ=约33.0°、约33.5°和约47.5°处以及在2θ=约27.0°、约28.0°和约39.5°处存在特征峰;
取一部分活性组分涂层并将其暴露于含SO 2的气氛5分钟,所述含SO 2的气氛的温度为700℃,压力为0.1MPa,SO 2的含量为0.01体积%。在暴露于SO 2处理后,对该涂层进行XRD分析,在XRD谱中,2θ角约为28.6°、30.0°和50.4°处,存在特征峰。
实施例3
在烧杯中称取360mL去离子水,搅拌下加入以La 2O 3质量计为25g的硝酸镧、以MgO质量计为5g的硝酸镁、以Co 2O 3质量计为2.6g的硝酸钴和以MnO质量计为3.4g的氯化锰直至完全溶解,得到非贵金属组分前驱体的溶液;称取碳酸铵54g溶于210mL去离子水中,搅拌至充分溶 解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧5小时后,研磨得到活性金属组分前驱体。
称取以Al 2O 3质量计为20g的铝石,加入120mL水及3g的36重量%的浓盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,得到活性组分涂层浆液。
将上述所得活性组分涂层浆液涂覆于300g的200孔/平方英寸的堇青石规整载体并干燥和焙烧以得到分布在规整结构载体内表面和/或外表面的活性组分涂层,将得到的组分在120℃下进行干燥、在空气气氛700℃下焙烧4小时,得到规整结构催化剂半成品。
称取钯的前驱体与稀盐酸按质量比1:1互溶,加去离子水稀释,配置成氯化钯溶液,按含钯质量为0.004g称取一定量的氯化钯溶液,将含钯溶液作为浸渍液浸渍到上述催化剂半成品,得到固体产物,然后对固体产物在120℃下进行干燥、在空气气氛600℃下焙烧4小时,即得到催化剂S-3,其中,以规整结构催化剂的总重量为基准,活性组分涂层的含量为11.8重量%。
取一部分活性组分涂层并对其进行XRD分析,在XRD谱中,在2θ=约33.0°、约33.5°和约47.5°处以及在2θ=约27.0°、约28.0°和约39.5°处存在特征峰;
取一部分活性组分涂层并将其暴露于含SO 2的气氛15分钟,所述含SO 2的气氛的温度为650℃,压力为0MPa,SO 2的含量为0.001体积%。在暴露于SO 2处理后,对该涂层进行XRD分析,在XRD谱中,2θ角约为28.6°、30.0°和50.4°处,存在特征峰。
实施例4
在烧杯中称取310mL去离子水,搅拌下加入以La 2O 3质量计为12g的硝酸镧、以MgO质量计为4g的硝酸镁、以Co 2O 3质量计为12g的硝酸钴和以MnO质量计为3g的氯化锰直至完全溶解,得到非贵金属组分前驱体的溶液;称取碳酸铵47g溶于200mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700 ℃焙烧5小时后,研磨得到活性金属组分前驱体。
称取以Al 2O 3质量计为30g的铝石,加入160mL水及4.5g的36重量%的浓盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,得到活性组分涂层浆液。
将上述所得活性组分涂层浆液涂覆于300g的200孔/平方英寸的堇青石规整载体并干燥和焙烧以得到分布在规整结构载体内表面和/或外表面的活性组分涂层,将得到的组分在120℃下进行干燥、在空气气氛700℃下焙烧4小时,得到规整结构催化剂半成品。
称取钯的前驱体与稀盐酸按质量比1:1互溶,加去离子水稀释,配置成氯化钯溶液,按含钯质量为0.009g称取一定量的氯化钯溶液,将含钯溶液作为浸渍液浸渍到上述催化剂半成品,得到固体产物,然后对固体产物在120℃下进行干燥、在空气气氛600℃下焙烧4小时,即得到催化剂S-4,其中,以规整结构催化剂的总重量为基准,活性组分涂层的含量为14.3重量%。
取一部分活性组分涂层并对其进行XRD分析,在XRD谱中,在2θ=约33.0°、约33.5°和约47.5°处以及在2θ=约27.0°、约28.0°和约39.5°处存在特征峰;
取一部分活性组分涂层并将其暴露于含SO 2的气氛30分钟,所述含SO 2的气氛的温度为675℃,压力为0.2MPa,SO 2的含量为0.001体积%。在暴露于SO 2处理后,对该涂层进行XRD分析,在XRD谱中,2θ角约为28.6°、30.0°和50.4°处,存在特征峰。
实施例5
在烧杯中称取320mL去离子水,搅拌下加入以La 2O 3质量计为20g的硝酸镧、以MgO质量计为4g的硝酸镁、以Co 2O 3质量计为5g的硝酸钴和以MnO质量计为3g的氯化锰直至完全溶解,得到非贵金属组分前驱体的溶液;称取碳酸铵48g溶于200mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧5小时后,研磨得到活性金属组分前驱体。
称取以Al 2O 3质量计为30g的铝石,加入160mL水及4.5g的36重量%的浓盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的无 机氧化物基质中混合搅拌,得到活性组分涂层浆液。
将上述所得活性组分涂层浆液涂覆于300g的200孔/平方英寸的堇青石规整载体并干燥和焙烧以得到分布在规整结构载体内表面和/或外表面的活性组分涂层,将得到的组分在120℃下进行干燥、在空气气氛700℃下焙烧4小时,得到规整结构催化剂半成品。
称取钌的前驱体与稀盐酸按质量比1:1互溶,加去离子水稀释,配置成氯化钌溶液,按含钌质量为0.009g称取一定量的氯化钌溶液,将含钌溶液作为浸渍液浸渍到上述催化剂半成品,得到固体产物,然后对固体产物在120℃下进行干燥、在空气气氛600℃下焙烧4小时,即得到催化剂S-5,其中,以规整结构催化剂的总重量为基准,活性组分涂层的含量为14.3重量%。
实施例6
在烧杯中称取320mL去离子水,搅拌下加入以CeO 2质量计为20g的硝酸铈、以MgO质量计为4g的硝酸镁、以Fe 2O 3质量计为5g的硝酸铁和以MnO质量计为3g的氯化锰直至完全溶解,得到非贵金属组分前驱体的溶液;称取碳酸铵48g溶于200mL去离子水中,搅拌至充分溶解,将金属硝酸盐混合溶液在搅拌状态下加入到碳酸铵溶液中,并加入一定量氨水维持溶液pH值在9。将沉淀完全的混合物进行抽滤,并用去离子水淋洗,将抽滤得到的滤饼混合物在120℃下烘干,在空气气氛700℃焙烧5小时后,研磨得到活性金属组分前驱体。
称取以Al 2O 3质量计为30g的铝石,加入160mL水及4.5g的36重量%的浓盐酸,进行打浆。称取20g的活性金属前驱体加入到酸化后的无机氧化物基质中混合搅拌,得到活性组分涂层浆液。
将上述所得活性组分涂层浆液涂覆于300g的200孔/平方英寸的堇青石规整载体并干燥和焙烧以得到分布在规整结构载体内表面和/或外表面的活性组分涂层,将得到的组分在120℃下进行干燥、在空气气氛700℃下焙烧4小时,得到规整结构催化剂半成品。
称取钯的前驱体与稀盐酸按质量比1:1互溶,加去离子水稀释,配置成氯化钯溶液,按含钯质量为0.009g称取一定量的氯化钯溶液,将含钯溶液作为浸渍液浸渍到上述催化剂半成品,得到固体产物,然后对固体产物在120℃下进行干燥、在空气气氛600℃下焙烧4小时,即得到催化剂S-6,其中,以规整结构催化剂的总重量为基准,活性组分涂层的含量 为14.3重量%。
对比例1
称取20g的La 2O 3和5g的Co 2O 3,充分机械混合,得到混合前驱体。
称取以Al 2O 3质量计为30g的铝石,加入380mL水及4.5g的36重量%的浓盐酸,进行打浆。取20g的混合前驱体加入到酸化后的无机氧化物基质中混合搅拌,得到活性组分涂层浆液。
将上述所得活性组分涂层浆液涂覆于300g的200孔/平方英寸的堇青石规整载体并干燥和焙烧以得到分布在规整结构载体内表面和/或外表面的活性组分涂层,将得到的组分在120℃下进行干燥、在空气气氛700℃下焙烧4小时,得到催化剂D-1。其中,以规整结构催化剂的总重量为基准,活性组分涂层的含量为14.3重量%。
上述得到催化剂的组成列于表1。
表1:催化剂的组成(wt%)
Figure PCTCN2022118239-appb-000001
注:表1中各组分含量以活性组分涂层总量为基准。
试验例1
本试验用于对上述实施例和对比例提供的催化剂在烟气中同时降低NO和SO 2排放的作用进行评价。所述催化裂化反应-再生评价在小型固定床模拟烟气装置上进行,规整结构催化剂填充于催化剂床层中,催化剂装填量为20g,反应温度为650℃,压力为0.1MPa,原料气体积流量(标况)为1000mL/min,体积空速约为3000h -1。反应器温度稳定后,首先在N 2氛围下对催化剂预先处理30min,充分去除催化剂表面的吸附物种。反应开始时的原料气中含有1200ppm体积%的NO,1200ppm体积%的SO 2,余量为N 2。通过在线红外分析仪分析气体产物,得到反应后SO 2和NO浓度。评价时间为0.5h的结果列于表2,评价时间为1.5h的结果 列于表3。
表2:0.5h内不同催化剂的脱硫脱硝性能比较
0.5h总转化率(%) 组合-NO 组合-SO 2 单独-NO 单独-SO 2
S-1 57 66 <2 59
S-2 44 37 <2 35
S-3 42 35 <2 32
S-4 22 22 <2 21
S-5 46 49 <2 42
S-6 41 50 <2 46
D-1 <2 23 <2 22
注:表2中单独-NO和单独-SO 2分别指的是原料气中仅含有NO或者SO 2
表3:1.5h内不同催化剂的脱硫脱硝性能比较
1.5h总转化率(%) 组合-NO 组合-SO 2 单独-NO 单独-SO 2
S-1 49 56 <2 50
S-2 41 35 <2 34
S-3 38 32 <2 30
S-4 20 20 <2 20
S-5 40 43 <2 37
S-6 37 44 <2 40
D-1 <2 17 <2 16
注:表3中单独-NO和单独-SO 2分别指的是原料气中仅含有NO或者SO 2
通过表2、表3的结果可以看出,采用本发明提供的催化剂能够有效提高组合脱SOx和NOx的效果,降低SOx和NOx的排放。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (21)

  1. 一种能够同时降低SOx和NOx排放的规整结构催化剂,该催化剂包括规整结构载体和分布在规整结构载体内表面和/或外表面的活性组分涂层,以所述催化剂的总重量为基准,所述活性组分涂层的含量为1-50重量%,所述活性组分涂层含有基质和活性金属组分,其中,以所述活性组分涂层的总重量为基准,所述基质的含量为10-90重量%,所述活性金属组分的含量为10-90重量%,所述活性金属组分含有:1)以氧化物计,50-95重量%的选自稀土族和/或IIA族的一种或几种的金属组分;2)以氧化物计,5-50重量%的选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分;3)以元素计,0.01-2重量%的贵金属组分。
  2. 根据前述权利要求中任一项所述的规整结构催化剂,其中,
    以所述催化剂的总重量为基准,所述活性组分涂层的含量为5-40重量%;
    和/或,以所述活性组分涂层的总重量为基准,所述基质的含量为40-90重量%,所述活性金属组分的含量为10-60重量%;
    和/或,所述活性金属组分含有:1)以氧化物计,60-90重量%的选自稀土族和/或IIA族的一种或几种的金属组分;2)以氧化物计,10-40重量%的选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分;3)以元素计,0.02-1.5重量%的贵金属组分;
    优选地,
    以所述催化剂的总重量为基准,所述活性组分涂层的含量为10-35重量%;
    和/或,以所述活性组分涂层的总重量为基准,所述基质的含量为50-80重量%,所述活性金属组分的含量为20-50重量%;
    和/或,所述活性金属组分含有:1)以氧化物计,65-85重量%的选自稀土族和/或IIA族的一种或几种的金属组分;2)以氧化物计,15-35重量%的选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分;3)以元素计,0.03-1.2重量%的贵金属组分。
  3. 根据前述权利要求中任一项所述的规整结构催化剂,其中,所述基质选自氧化铝、尖晶石、钙钛矿、氧化硅-氧化铝、沸石、高岭土、硅藻土和珍珠岩中的至少一种,优选选自氧化铝、尖晶石和钙钛矿中的至 少一种,进一步优选为氧化铝;
    优选地,所述规整结构载体选自具有两端开口的平行孔道结构的整体式载体;
    优选地,所述规整结构载体的截面的孔密度为10-300孔/平方英寸,开孔率为20-80%;
    优选地,所述规整结构载体选自堇青石蜂窝载体、莫来石蜂窝载体、金刚石蜂窝载体、刚玉蜂窝载体、锆刚玉蜂窝载体、石英蜂窝载体、霞石蜂窝载体、长石蜂窝载体、氧化铝蜂窝载体和金属合金蜂窝载体中的至少一种。
  4. 根据前述权利要求中任一项所述的规整结构催化剂,其中,
    所述稀土族金属组分选自镧、铈、镨和钕中的一种或几种,优选为镧和/或铈,更优选为镧;
    所述IIA族金属组分选自铍、镁、钙、锶和钡中的一种或几种,优选为镁;
    所述选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分选自锰、铁、钴、镍、铜、锌和钒中的一种或几种,优选为钴、铁和锰中的至少一种,更优选为锰以及钴和/或铁,更进一步优选为锰和钴;
    所述贵金属组分选自钌、铑、铼、铂、钯、银、铱和金中的一种或几种,优选为铂、钯和铑中的一种或几种,更优选为钯。
  5. 根据前述权利要求中任一项所述的规整结构催化剂,其中,基于所述活性金属组分的总量,以氧化物计,选自稀土族和/或IIA族的一种或几种的金属组分的含量与选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分的含量的比值为1-8,优选地1.5-6,更优选地2-4。
  6. 根据前述权利要求中任一项所述的规整结构催化剂,其中,
    所述活性金属组分含有或由以下组分:
    1a)以氧化物计,选自稀土族的一种或几种的金属组分;优选地,镧;
    1b)以氧化物计,选自IIA族的一种或几种的金属组分;优选地,镁;
    2a)以氧化物计,选自VB、VIII、IB和IIB族的一种或几种的非贵金属组分;优选地,钴;
    2b)以氧化物计,选自VIIB族的一种或几种的非贵金属组分;优选地,锰;
    3)以元素计,选自铂、钯和铑中的一种或几种;优选地,钯。
  7. 根据权利要求6所述的规整结构催化剂,其中,基于100重量%的所述活性金属组分的总量计,
    1a)的含量为30-80重量%,
    1b)的含量为5-40重量%,
    2a)的含量为3-30重量%,
    2b)的含量为3-20重量%,
    c)的含量为0.01-0.2重量%。
  8. 根据权利要求6所述的规整结构催化剂,其中,
    镧与钴的摩尔比为(1-6):1,例如(2.5-3.5):1。
  9. 根据前述权利要求中任一项所述的催化剂,其中所述催化剂在粉末XRD谱中在2θ=33.0°±0.1°、33.5°±0.1°和47.5°±0.1°处以及在27.0°±0.1°、28.0°±0.1°和39.5°±0.1°处具有特征峰。
  10. 根据前述权利要求中任一项所述的催化剂,其中所述催化剂是经暴露于含SO 2的气氛处理过的。
  11. 根据前述权利要求中任一项所述的催化剂,其中所述催化剂是经暴露于含SO 2的气氛处理过的,所述催化剂在粉末XRD谱中在2θ=28.6°±0.1°、30.0°±0.1°以及50.4°±0.1°处具有特征峰。
  12. 一种能够同时降低SOx和NOx排放的规整结构催化剂的制备方法,该方法包括以下步骤:
    (1)配制含有稀土族和/或IIA族的一种或几种的金属组分前驱体和选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分前驱体的溶液;
    (2)将步骤(1)所述溶液与共沉淀剂进行共沉淀反应,然后对得到的固体产物进行干燥和焙烧,得到活性金属组分前驱体;
    (3)将活性金属组分前驱体、基质源和水混合打浆,得到活性组分涂层浆液;
    (4)用所述活性组分涂层浆液涂覆规整结构载体并进行干燥和焙烧以得到分布在规整结构载体内表面和/或外表面的部分活性组分的涂层,得到催化剂半成品;
    (5)用含有贵金属组分前驱体的溶液浸渍步骤(4)得到的所述催化剂半成品,然后进行干燥和/或焙烧以得到分布在规整结构载体内表面和/或外表面的活性组分涂层;
    其中,稀土族和/或IIA族的一种或几种的金属组分前驱体、选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分前驱体、基质源、贵金属组分前驱体和规整结构载体的用量使得制得的规整结构催化剂中,以所述催化剂的总重量为基准,所述活性组分涂层的含量为1-50重量%,所述活性组分涂层含有基质和活性金属组分,其中,以所述活性组分涂层的总重量为基准,所述基质的含量为10-90重量%,所述活性金属组分的含量为10-90重量%,所述活性金属组分含有:1)以氧化物计,50-95重量%的选自稀土族和/或IIA族的一种或几种的金属组分;2)以氧化物计,5-50重量%的选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分;3)以元素计,0.01-2重量%的贵金属组分。
  13. 根据前述权利要求中任一项所述的制备方法,其中,稀土族和/或IIA族的一种或几种的金属组分前驱体、选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分前驱体、基质源、贵金属组分前驱体和规整结构载体的用量使得制得的规整结构催化剂中,以所述催化剂的总重量为基准,所述活性组分涂层的含量为5-40重量%,所述活性组分涂层含有基质和活性金属组分,其中,以所述活性组分涂层的总重量为基准,所述基质的含量为40-90重量%,所述活性金属组分的含量为10-60重量%,所述活性金属组分含有:1)以氧化物计,60-90重量%的选自稀土族和/或IIA族的一种或几种的金属组分;2)以氧化物计,10-40重量%的选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分;3)以元素计,0.02-1.5重量%的贵金属组分;
    优选地,
    稀土族和/或IIA族的一种或几种的金属组分前驱体、选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分前驱体、基质源、贵金属组分前驱体和规整结构载体的用量使得制得的规整结构催化剂中,以所述催化剂的总重量为基准,所述活性组分涂层的含量为10-35重量%,所述活性组分涂层含有基质和活性金属组分,其中,以所述活性组分涂层的总重量为基准,所述基质的含量为50-80重量%,所述活性金属组分的含量为20-50重量%,所述活性金属组分含有:1)以氧化物计,65-85重量%的选自稀土族和/或IIA族的一种或几种的金属组分;2)以氧化物计,15-35重量%的选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分;3)以元素计,0.03-1.2重量%的贵金属组分。
  14. 根据前述权利要求中任一项所述的制备方法,其中,稀土族和/或IIA族的一种或几种的金属组分前驱体、选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分前驱体、基质源、贵金属组分前驱体和规整结构载体的用量使得制得的规整结构催化剂中,
    基于所述活性金属组分的总量,以氧化物计,选自稀土族和/或IIA族的一种或几种的金属组分的含量与选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分的含量的比值为1-8,优选地1.5-6,更优选地2-4。
  15. 根据前述权利要求中任一项所述的制备方法,其中,稀土族和/或IIA族的一种或几种的金属组分前驱体、选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分前驱体、基质源、贵金属组分前驱体和规整结构载体的用量使得制得的规整结构催化剂中,
    所述活性金属组分含有或由以下组分:
    1a)以氧化物计,选自稀土族的一种或几种的金属组分;优选地,镧;
    1b)以氧化物计,选自IIA族的一种或几种的金属组分;优选地,镁;
    2a)以氧化物计,选自VB、VIII、IB和IIB族的一种或几种的非贵金属组分;优选地,钴;
    2b)以氧化物计,选自VIIB族的一种或几种的非贵金属组分;优选地,锰;
    3)以元素计,选自铂、钯和铑中的一种或几种;优选地,钯;
    优选地,基于100重量%的所述活性金属组分的总量计,
    1a)的含量为30-80重量%,
    1b)的含量为5-40重量%,
    2a)的含量为3-30重量%,
    2b)的含量为3-20重量%,
    c)的含量为0.01-0.2重量%。
  16. 根据前述权利要求中任一项所述的制备方法,其中,所述基质源为在步骤(4)的所述焙烧的条件下能够转变为基质的物质;
    所述基质选自氧化铝、尖晶石、钙钛矿、氧化硅-氧化铝、沸石、高岭土、硅藻土和珍珠岩中的至少一种,优选选自氧化铝、尖晶石和钙钛矿中的至少一种,进一步优选为氧化铝;
    优选地,所述规整结构载体选自具有两端开口的平行孔道结构的整 体式载体;
    优选地,所述规整结构载体的截面的孔密度为10-300孔/平方英寸,开孔率为20-80%;
    优选地,所述规整结构载体选自堇青石蜂窝载体、莫来石蜂窝载体、金刚石蜂窝载体、刚玉蜂窝载体、锆刚玉蜂窝载体、石英蜂窝载体、霞石蜂窝载体、长石蜂窝载体、氧化铝蜂窝载体和金属合金蜂窝载体中的至少一种。
  17. 根据前述权利要求中任一项所述的制备方法,其中,
    所述稀土族金属组分选自镧、铈、镨和钕中的一种或几种,优选为镧和/或铈,更优选为镧;
    所述IIA族金属组分选自铍、镁、钙、锶和钡中的一种或几种,优选为镁;
    所述选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分选自锰、铁、钴、镍、铜、锌和钒中的一种或几种,优选为钴、铁和锰中的至少一种,更优选为锰、以及钴和/或铁,更进一步优选为锰和钴;
    所述贵金属组分选自钌、铑、铼、铂、钯、银、铱和金中的一种或几种,优选为铂、钯和铑中的一种或几种,更优选为钯。
  18. 根据前述权利要求中任一项所述的制备方法,其中,含有稀土族和/或IIA族的一种或几种的金属组分前驱体和选自VB、VIIB、VIII、IB和IIB族的一种或几种的非贵金属组分前驱体各自独立地选自各金属组分的硝酸盐和/或氯化物;
    优选地,所述共沉淀剂为碳酸盐,进一步优选选自碳酸铵、碳酸钾和碳酸钠中的至少一种;
    优选地,所述共沉淀反应在pH为8-10条件下进行;
    优选地,步骤(2)所述焙烧的条件包括:温度为300-800℃,时间为1-8h。
  19. 根据前述权利要求中任一项所述的制备方法,其中,步骤(3)所述活性组分涂层浆液的固含量为5-45重量%;
    优选地,步骤(4)所述焙烧的条件包括:温度为300-800℃,时间为1-5h;
    优选地,步骤(5)中,将贵金属组分前驱体在酸溶液中水解以提供所述溶液;
    优选地,所述酸选自可溶于水的无机酸和/或有机酸,优选选自盐酸、硝酸、磷酸和醋酸中至少一种;
    优选地,所述酸的用量使得浸渍液的pH值小于6.0,优选小于5.0;
    优选地,步骤(5)所述焙烧的条件包括:温度为300-700℃,时间为0.1-5h。
  20. 一种催化裂化再生烟气同时脱SOx和NOx的方法,该方法包括:在脱SOx和NOx的条件下,将催化裂化再生烟气与催化剂接触,所述催化剂为根据前述权利要求中任一项所述的催化剂或者根据前述权利要求中任一项所述的制备方法制得的催化剂;
    优选地,所述接触在旋风分离器后和/或CO焚烧炉后设置的烟气通道中进行;
    优选地,所述接触的条件包括:温度为300-1000℃,以表压计,反应压力为0-0.5MPa,催化裂化再生烟气体积空速为200-20000h -1
  21. 一种烟气同时脱SOx和NOx的方法,该方法包括:在脱SOx和NOx的条件下,将烟气与催化剂接触,所述催化剂为根据前述权利要求中任一项所述的催化剂或者根据前述权利要求中任一项所述的制备方法制得的催化剂;
    优选地,所述烟气为同时含有一定浓度的SOx和NOx的烟气;
    优选地,所述烟气中SOx和NOx的体积分数分别为1~3000μL/L,SOx和NOx的摩尔比为0.5:1-2:1;
    优选地,所述接触的条件包括:温度为300-1000℃,以表压计,反应压力为0-0.5MPa,烟气体积空速为200-20000h -1
PCT/CN2022/118239 2021-09-09 2022-09-09 规整结构催化剂及其制备方法和烟气同时脱SOx和NOx的方法 WO2023036315A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247011870A KR20240053000A (ko) 2021-09-09 2022-09-09 구조화 촉매 및 그 제조 방법과 배가스의 SOx 및 NOx를 동시에 제거하는 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111055118.0 2021-09-09
CN202111055118.0A CN115770587A (zh) 2021-09-09 2021-09-09 用于降低烟气中SOx与NOx的催化剂及制备方法和应用、烟气脱SOx和NOx的方法
CN202111054723.6 2021-09-09
CN202111054723.6A CN115779922A (zh) 2021-09-09 2021-09-09 规整结构催化剂及其制备方法和烟气同时脱sox和nox的方法

Publications (1)

Publication Number Publication Date
WO2023036315A1 true WO2023036315A1 (zh) 2023-03-16

Family

ID=85506131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118239 WO2023036315A1 (zh) 2021-09-09 2022-09-09 规整结构催化剂及其制备方法和烟气同时脱SOx和NOx的方法

Country Status (3)

Country Link
KR (1) KR20240053000A (zh)
TW (1) TW202310921A (zh)
WO (1) WO2023036315A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4692318A (en) * 1984-08-13 1987-09-08 Amoco Corporation Process for simultaneously removing nitrogen oxides, sulfur oxides, and particulates
US5547648A (en) * 1992-04-15 1996-08-20 Mobil Oil Corporation Removing SOx, NOX and CO from flue gases
CN1890021A (zh) * 2003-12-05 2007-01-03 英特凯特公司 混合的金属氧化物吸附剂
CN104759202A (zh) * 2015-03-12 2015-07-08 张伟 一种脱除催化裂化再生烟气污染物助剂及其制备方法
CN111346502A (zh) * 2018-12-20 2020-06-30 中国石油化工股份有限公司 一种不完全再生烟气的处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4692318A (en) * 1984-08-13 1987-09-08 Amoco Corporation Process for simultaneously removing nitrogen oxides, sulfur oxides, and particulates
US5547648A (en) * 1992-04-15 1996-08-20 Mobil Oil Corporation Removing SOx, NOX and CO from flue gases
CN1890021A (zh) * 2003-12-05 2007-01-03 英特凯特公司 混合的金属氧化物吸附剂
CN104759202A (zh) * 2015-03-12 2015-07-08 张伟 一种脱除催化裂化再生烟气污染物助剂及其制备方法
CN111346502A (zh) * 2018-12-20 2020-06-30 中国石油化工股份有限公司 一种不完全再生烟气的处理方法

Also Published As

Publication number Publication date
KR20240053000A (ko) 2024-04-23
TW202310921A (zh) 2023-03-16

Similar Documents

Publication Publication Date Title
DK1874441T3 (en) Catalyst for the oxidation of ammonia for coal-fired public works
RU2428248C2 (ru) КОМПОЗИЦИИ, ПРИМЕНЯЮЩИЕСЯ, В ЧАСТНОСТИ, ДЛЯ УЛАВЛИВАНИЯ ОКСИДОВ АЗОТА (NOx)
KR20140116126A (ko) 개선된 NOx 트랩
TWI830839B (zh) 一種降低煙氣NOx排放的規整結構催化劑及其製備和使用方法
DE102014110543A1 (de) Wolfram/titandioxid-oxidationskatalysator
US5141906A (en) Catalyst for purifying exhaust gas
CN109201079B (zh) 能够降低CO和NOx排放的组合物及其制备方法和应用以及流化催化裂化方法
KR20170018914A (ko) 배기 가스 처리 시스템
CN109201080B (zh) 能够降低CO和NOx排放的组合物及其制备方法和应用以及流化催化裂化方法
WO2019007381A1 (zh) 能够降低CO和NOx排放的组合物及其制备方法和应用以及流化催化裂化方法
US10801384B2 (en) Diesel oxidation catalyst containing manganese
WO2023036315A1 (zh) 规整结构催化剂及其制备方法和烟气同时脱SOx和NOx的方法
CN109201097B (zh) 能够降低CO和NOx排放的组合物及其制备方法和应用以及流化催化裂化方法
CN111346502B (zh) 一种不完全再生烟气的处理方法
JP2004523349A (ja) 窒素酸化物の選択的触媒還元のための触媒及びその製造方法。
CN109201058B (zh) 能够降低CO和NOx排放的组合物及其制备方法和应用以及流化催化裂化方法
CN113117517A (zh) 一种高浓度含硫有机废气的处理方法
CN115025777A (zh) 用于降低FCC再生烟气CO和NOx排放的组合物及其制备方法
CN115779922A (zh) 规整结构催化剂及其制备方法和烟气同时脱sox和nox的方法
CN109201075B (zh) 能够降低CO和NOx排放的组合物及其制备方法和应用以及流化催化裂化方法
TW202319117A (zh) 降低煙氣中SOx與NOx的催化劑及其製備方法以及煙氣脫SOx和NOx的方法
RU2803808C2 (ru) СТРУКТУРИРОВАННЫЙ МОНОЛИТНЫЙ КАТАЛИЗАТОР ДЛЯ УМЕНЬШЕНИЯ ВЫБРОСОВ NOx В СОСТАВЕ ОТРАБОТАННОГО ГАЗА, СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА И ЕГО ПРИМЕНЕНИЕ
CN112808303B (zh) 一种含硫有机废气催化氧化催化剂及其制备方法
WO2022142836A1 (zh) 一种催化组合物、催化剂层、催化装置和气体处理系统
CN109201098B (zh) 能够降低CO和NOx排放的组合物及其制备方法和应用以及流化催化裂化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866776

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247011870

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE