WO2023035821A1 - 纳米氧化锆分散液、其制备方法及所得单体分散液和光学膜 - Google Patents

纳米氧化锆分散液、其制备方法及所得单体分散液和光学膜 Download PDF

Info

Publication number
WO2023035821A1
WO2023035821A1 PCT/CN2022/110129 CN2022110129W WO2023035821A1 WO 2023035821 A1 WO2023035821 A1 WO 2023035821A1 CN 2022110129 W CN2022110129 W CN 2022110129W WO 2023035821 A1 WO2023035821 A1 WO 2023035821A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconia
nano
dispersion
acid
refractive index
Prior art date
Application number
PCT/CN2022/110129
Other languages
English (en)
French (fr)
Inventor
宋锡滨
马海洋
张栋
张伟
奚洪亮
艾辽东
赵建滨
Original Assignee
山东国瓷功能材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东国瓷功能材料股份有限公司 filed Critical 山东国瓷功能材料股份有限公司
Priority to CN202280061426.0A priority Critical patent/CN117957287A/zh
Publication of WO2023035821A1 publication Critical patent/WO2023035821A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds

Definitions

  • the application belongs to the field of fine chemicals, and in particular relates to a nano-zirconia dispersion liquid, a preparation method thereof, and the resulting monomer dispersion liquid and optical film.
  • zirconia particle dispersion In recent years, through the combination of zirconia particle dispersion and transparent resin or film, it has been well used in the optical field by taking advantage of its high refractive index.
  • high-refractive zirconia dispersions are used to prepare optical films such as brightness-enhancing films and anti-reflection films, which can be used on LCD displays to increase the brightness and clarity of the screen; they can also be used to increase the refractive index of LED sealing resins, thereby improving LED performance.
  • its high-refractive properties can be used in high-refractive coatings and applied in different fields.
  • the above-mentioned zirconia particle dispersion used a dispersion medium in which the dispersion medium was water.
  • the water dispersion was usually used in combination with the resin component.
  • the dispersion is particularly difficult to knead with water-insoluble resin components, so that dispersions in which the dispersion medium is an organic solvent have been strongly demanded in recent years.
  • Zirconia particles generally have good dispersibility in aqueous solvents, but generally have lower dispersibility than organic solvents.
  • CN107001066B discloses a method for preparing highly dispersed nano-zirconia particles and their transparent dispersions, which uses zirconium salts to react with alkali to directly prepare zirconia particles at 170°C, and then the dispersion medium of the water dispersion of zirconia particles The water is replaced by at least one alcohol solvent selected from methanol and ethanol, and then the zirconia particles in the alcohol dispersion are surface-treated with a silane coupling agent and a 12-hydroxystearic acid surface treatment agent, and finally replaced by distillation Alternatively, the alcohol solvent of the above-mentioned alcohol dispersion of zirconia particles is replaced by the target organic solvent by the ultrafiltration concentration replacement method.
  • the zirconia dispersion organic solvent dispersion prepared by the method has a transmittance of more than 10% at a wavelength of 400nm, and a transmittance of more than 80% at a wavelength of 800nm.
  • the viscosity immediately after preparation is 10mPa s or less.
  • this process requires an alcohol solvent as an intermediate phase to obtain the target phase dispersion.
  • the preparation process is relatively complicated, the cost is high, and the alcohol solvent has a low boiling point, which limits the modification temperature, which will lead to insufficient modification.
  • the application provides a nano-zirconia dispersion liquid, its preparation method, the obtained monomer dispersion liquid and an optical film, and the obtained nano-zirconia dispersion liquid has the characteristics of good dispersion uniformity and high refractive index.
  • the first aspect of the embodiments of the present application provides a nano-zirconia dispersion, the amount of nano-zirconia particles contained in the nano-zirconia dispersion is 45-75wt%, and the refractive index of the nano-zirconia dispersion is 1.420-1.565;
  • nano-zirconia particles were characterized by infrared spectroscopy and found that the surface grafted with functional groups in the following peak range:
  • the refractive index of the nano zirconia dispersion liquid is 1.420-1.535 when the zirconia content is 45%-65%, and 1.498-1.498-1.498 when the zirconia content is 65%-75%. 1.565.
  • the refractive index of the nano-zirconia particles in the nano-zirconia dispersion liquid is 2.20-2.60, and the proportion of the tetragonal grain structure in the nano-zirconia particles accounts for 60-95%.
  • the second aspect of the embodiments of the present application provides a method for preparing the nano-zirconia dispersion liquid as described above, comprising the following steps:
  • the added organic acid is 3-20wt% of the nano-zirconia content; the added modifier is 5-20wt% of the nano-zirconia content; the added oily dispersion aid is 5-20wt% of the nano-zirconia content %.
  • adding an organic acid and a modifier to the system to modify the zirconia particles is specifically:
  • Dissolving the organic acid and the modifying agent in the organic solvent is added to the dispersion liquid mixed with the zirconia aqueous solution and the organic solvent under the condition of normal pressure and 50-150° C. to modify the zirconia particles.
  • the organic solvent is at least one of butanone, methyl isobutyl ketone, propylene glycol methyl ether, and ethylene glycol methyl ether; the volume of the added organic solvent and zirconia aqueous solution The ratio is (3-5):1.
  • the organic acid is selected from at least one of saturated or unsaturated monocarboxylic acids, polycarboxylic acids and hydroxycarboxylic acids.
  • the monocarboxylic acid is selected from at least one of formic acid, acetic acid, propionic acid, butyric acid, isooctanoic acid, acrylic acid, and methacrylic acid;
  • the polycarboxylic acid is selected from oxalic acid, propionic acid At least one of diacid, succinic acid, phthalic acid, fumaric acid, and maleic acid;
  • the hydroxycarboxylic acid is at least one selected from lactic acid, malic acid, tartaric acid, and citric acid.
  • the modifying agent is at least one of 3-(methacryloyloxy)propyltrimethoxysilane and 3-glycidyloxypropyltrimethoxysilane .
  • the oily dispersing aid is selected from at least one of anionic dispersants, cationic dispersants, nonionic dispersants and polymer dispersants.
  • the oily dispersing aid is selected from BYK-9076 or BYK-9077.
  • the third aspect of the embodiments of the present application provides a nano-zirconia monomer dispersion, by adding a photocurable resin to the nano-zirconia dispersion as described in any one of the above, and removing the dispersion from the dispersion by vacuum distillation. prepared from organic solvents.
  • the content of nano-zirconia in the nano-zirconia monomer dispersion is 55-85 wt%, and the refractive index of the nano-zirconia monomer dispersion is 1.620-1.720.
  • the photocurable resin is selected from acrylic or methacrylic monomers containing ester, urethane, ether, silicon, halogen and/or phosphorus-containing groups or their Oligomer; the added amount of the photocurable resin is 15-45wt% of the total mass of zirconia and photocurable resin.
  • the photocurable resin is at least one of phenoxybenzyl acrylate, methyl acrylate, and methyl methacrylate.
  • the fourth aspect of the embodiments of the present application provides an optical film, which is prepared by using the nano-zirconia dispersion liquid described in any one of the above or using the nano-zirconia monomer dispersion liquid described in any one of the above.
  • the preparation method of the nano-zirconia dispersion liquid provided by at least one embodiment of the present application is simple to operate, and can directly adopt the simplest distillation replacement method to obtain an organic solvent dispersion liquid from the zirconia water dispersion liquid, and further obtain the organic solvent dispersion liquid by the organic solvent The dispersion liquid is replaced to obtain the monomer dispersion liquid, and the participation of the intermediate phase is not required during the period;
  • the preparation method of the nano-zirconia dispersion uses organic acids, modifiers, and oily dispersion aids to act on the zirconia particles at the same time, making full use of their synergistic effects to achieve The best dispersion effect can effectively improve the compatibility of subsequent organic solvent dispersions and photocurable monomers;
  • the content of the added organic acid, modifier and oily dispersion aid should be controlled within the scope defined in the present application. If the content is too low, the expected modification effect will not be achieved, and if the content is too high, the effect will be counterproductive and cause unnecessary economic losses;
  • the dispersion content of nano-zirconia particles is high, reaching 45-75 wt%, and the refractive index can reach 1.420-1.565. Based on the obtained nano-zirconia The dispersion content of the monomer dispersion liquid can reach 55-85 wt%, and the refractive index can reach 1.620-1.720.
  • Fig. 1 is the infrared spectrogram of the nano zirconia dispersion liquid that the embodiment 1 of the present application provides;
  • Fig. 2 is the infrared spectrogram of the nano zirconia dispersion liquid that the embodiment 5 of the present application provides;
  • Fig. 3 is the infrared spectrogram of the nano zirconia dispersion liquid that the embodiment 6 of the present application provides;
  • Fig. 4 is the infrared spectrogram of the nano zirconia dispersion liquid that the embodiment 7 of the present application provides;
  • Fig. 5 is the infrared spectrogram of the BYK-9076 used in the embodiment of the present application after being added to zirconia (addition amount 40%);
  • Fig. 6 is an infrared spectrogram of the BYK-9076 used in the examples of the present application after it is added to zirconia (addition amount 5%).
  • the content of the unit that is not clearly stated is the mass content; in order to obtain the nano-zirconia dispersion, it can be understood that the zirconia aqueous solution mentioned in the raw materials of this application refers to the nano-zirconia zirconium solution.
  • the application provides a nano-zirconia dispersion liquid, the amount of nano-zirconia particles contained in the nano-zirconia dispersion liquid is 45-75wt%, wherein the nano-zirconia particles are found by infrared spectroscopy Its surface is grafted with the following functional groups in the peak area:
  • the refractive index of the nano zirconia dispersion liquid is 1.420-1.535 when the zirconia content is 45%-65%, and 1.498-1.565 when the zirconia content is 65%-75%.
  • the refractive index of the nano-zirconia particles in the nano-zirconia dispersion liquid is 2.20-2.60.
  • the proportion of the tetragonal grain structure in the nano-zirconia particles accounts for 60-95%. It can be understood that the crystal form of zirconia is divided into monoclinic phase, tetragonal phase, and cubic phase.
  • the nano-zirconia particles with tetragonal phase crystal form in the nano-zirconia dispersion liquid in the embodiment of the present application are among all crystal forms of zirconia. quality ratio.
  • the application also provides a preparation method of nano-zirconia dispersion liquid, comprising the following steps:
  • the preparation method of the nano zirconia dispersion liquid provided in the above examples is to add an organic acid and a modifying agent to the dispersion liquid mixed with water and an organic solvent of zirconia particles, and carry out lipophilic modification treatment on it, after removing At the same time as water, a pure organic solvent phase zirconia dispersion liquid is obtained, and then oily dispersion aid is added to strengthen the stability and dispersibility of the dispersion liquid.
  • the above scheme does not require complex operations and dispersing equipment, and the method is simple. Based on this method, it has significant advantages compared with the dispersion liquid in the prior art where the dispersion medium is replaced.
  • adding an organic acid and a modifier to the system to modify the zirconia particles is specifically:
  • the organic acid and the modifying agent are dissolved in the organic solvent, and added to the dispersion liquid mixed with the zirconium oxide aqueous solution and the organic solvent under the condition of normal pressure and 50-150° C. to modify the zirconium oxide particles.
  • the volume ratio of the added organic solvent to the zirconia aqueous solution is (3-5):1.
  • the organic solvent is at least one of butanone, methyl isobutyl ketone, propylene glycol methyl ether and ethylene glycol methyl ether.
  • the organic acid is selected from at least one of saturated or unsaturated monocarboxylic acid, polycarboxylic acid and hydroxycarboxylic acid; the added organic acid is 3-20wt% of the content of nano-zirconia.
  • the monocarboxylic acid is selected from at least one of formic acid, acetic acid, propionic acid, butanoic acid, isooctanoic acid, acrylic acid, and methacrylic acid;
  • the polycarboxylic acid is selected from oxalic acid, malonic acid, At least one of succinic acid, phthalic acid, fumaric acid, and maleic acid;
  • the hydroxycarboxylic acid is at least one selected from lactic acid, malic acid, tartaric acid, and citric acid.
  • the modifying agent is at least one of 3-(methacryloyloxy)propyltrimethoxysilane and 3-glycidyloxypropyltrimethoxysilane;
  • the modifying agent is 5-20wt% of the nano zirconia content.
  • the purpose of adding organic acid and modifying agent in the preparation method of the nano zirconia dispersion liquid provided in the examples of this application is to treat the surface of zirconia, on the one hand, it is to improve the lipophilicity of zirconia particles, on the other hand, it can The zirconia particles are evenly dispersed, so that the modifier and zirconia can be more fully combined.
  • the presence of organic acids is beneficial to the hydrolysis and grafting of modifiers, and the presence of modifiers is beneficial to the grafting of organic acids and zirconia. Grafting with zirconia also has a positive effect. It can be understood that the added amount of the added organic acid can also be 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 of the content of nano zirconia . , 15, 16, 17, 18, 19 wt%, or any value within the above range.
  • the oily dispersant is selected from at least one of anionic dispersant, cationic dispersant, nonionic dispersant and polymer dispersant, preferably phosphate ester series dispersant;
  • the added oily dispersion aid is 5-20wt% of the content of the nano zirconia.
  • the purpose of adding the oily dispersing aid in the above steps is to further improve the stability and dispersibility of the dispersion. It is especially pointed out that the above-mentioned oily dispersing aid should be added after the organic acid and modifier are added to the dispersion system. This is to ensure that there are sufficient active sites on the surface of the zirconia particles for the organic acid and modifier to perform surface treatment.
  • the added amount of the oily dispersing aid can also be 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 of the nano zirconia content , 19wt% or any value within the above range.
  • the oily dispersing aids can specifically be dispersants BYK-9076 and BYK-9077 produced by BYK, Germany.
  • BYK-9076 is a high molecular weight copolymer silyl ammonium salt
  • Figure 5 is the infrared spectrogram after adding BYK-9076 (40%) to zirconia, where the hydroxyl peak at 3392 cm corresponds to the surface of zirconia The remaining hydroxyl group, 2926cm -2 is the saturated hydrocarbon peak of BYK9076, 1633cm -2 is the water peak adsorbed by zirconia inorganic powder, 1060cm -2 is the Si-O-Zr generated by grafting BYK9076 and zirconia, 565cm -2 It is Zr-O-Zr of zirconia, and the Si-O-Zr peak appears in the product in Figure 5, indicating that BYK-9076 can be grafted with zirconia to form Si-O-Zr functional groups; Infrared spectrum after BYK-9076 (5%).
  • BYK9077 is a high molecular weight copolymer with pigment affinity groups. Therefore, when BYK-9076 is used as an oily dispersion aid, it can provide Si-O-Zr functional groups together with modifiers, further increasing the number of Si-O-Zr functional groups in the prepared nano-zirconia dispersion, Improve the refractive index of nano zirconia dispersion liquid.
  • BYK9077 has a similar structure to BYK9076, but its steric hindrance is larger, and the amount of grafting with zirconia is less, so the hydroxyl peak, water peak and Zr-O-Zr of zirconia can be seen in its infrared spectrum.
  • the present application also provides a nano-zirconia monomer dispersion liquid, by adding a photocurable resin to the nano-zirconia dispersion liquid described in any one of the above-mentioned technical solutions, and removing the organic compound in the dispersion liquid by distillation under reduced pressure. Solvents are prepared.
  • the monomer dispersion mentioned in the present application refers to the dispersion liquid added with a single component, and does not specifically refer to the monomer or its oligomer contained in the photocurable component.
  • the nano-zirconia content in the nano-zirconia monomer dispersion is 55-85 wt%, and the refractive index of the nano-zirconia monomer dispersion is 1.620-1.720. It can be understood that the content of nano zirconia in the monomer dispersion liquid can also be 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84wt% or any value in the above range.
  • the photocurable resin is selected from acrylic or methacrylic monomers or oligomers thereof containing ester, urethane, ether, silicon, halogen and/or phosphorus-containing groups . Moreover, the monomers or oligomers thereof can be obtained commercially.
  • the added amount of the photocurable resin is 15-45wt% of the total mass of zirconia and photocurable resin. It can be understood that the content of the photocurable resin can also be 20, 25, 30, 35 wt % or any value within the above range.
  • the photocurable resin is at least one of phenoxybenzyl acrylate, methyl acrylate, and methyl methacrylate.
  • the present application also provides an optical film, which is characterized in that the nano-zirconia dispersion prepared according to any one of the above technical solutions or the nano-zirconia dispersion according to any one of the above-mentioned technical solutions A monomer dispersion is prepared.
  • the optical film is any one of brightness enhancement film, anti-reflection film and other optical films with high refractive coating.
  • the refractive index is 1.475; when the concentration is 65%, the refractive index is 1.535; when the concentration is 75wt%, the refractive index is 1.565.
  • the preparation method is the same as in Example 1, the difference is that the amount of isooctanoic acid added is 3% of the zirconium content, the amount of 3-glycidyl etheroxypropyl trimethoxysilane is 5% of the zirconium content, and the oily dispersion aid The amount of the agent BYK-9076 is 10% of the zirconium content, and the nano-zirconia organic PGME type dispersion liquid is obtained.
  • the refractive index is 1.470; when the concentration is 65%, the refractive index is 1.529; when the concentration is 75wt%, the refractive index is 1.558.
  • the preparation method is the same as in Example 1, except that the amount of isooctanoic acid added is 12% of the zirconium content, and the amount of modifier 3-(methacryloyloxy) propyltrimethoxysilane is 15% of the zirconium content , the amount of the oily dispersing aid BYK-9077 is 15% of the zirconium content, and the nano-zirconia organic PGME type dispersion liquid is obtained.
  • the refractive index is 1.461; when the concentration is 65%, the refractive index is 1.522; when the concentration is 75wt%, the refractive index is 1.552.
  • the preparation method is the same as in Example 1, except that the amount of isooctanoic acid added is 20% of the zirconium content, the amount of the modifier 3-glycidyloxypropyl trimethoxysilane is 20% of the zirconium content, and the oily dispersion The amount of the auxiliary agent BYK-9077 is 20% of the zirconium content, and the nano-zirconia organic PGME type dispersion liquid is obtained.
  • the refractive index is 1.449; when the concentration is 65%, the refractive index is 1.509; when the concentration is 75wt%, the refractive index is 1.540.
  • the preparation method is the same as that in Example 1, except that the added organic acid is dodecyl hydroxystearic acid, and the amount of added acid is 5% of the zirconium content, so as to obtain a nano-zirconia organic PGME type dispersion.
  • the refractive index is 1.467; when the concentration is 65%, the refractive index is 1.525; when the concentration is 75wt%, the refractive index is 1.554.
  • 2925cm -1 is the characteristic peak of saturated carbon-hydrogen bond
  • 1715cm -1 is the characteristic peak of ester carbonyl group
  • 1562cm -1 and 1463cm -1 are the characteristic absorption peaks of delocalized conjugated ester group
  • 1169cm -1 is the characteristic peak of Si
  • the characteristic absorption peak of -O-Zr, 1032cm -1 is the characteristic absorption peak of CO ether bond, shows that dodecyl hydroxystearic acid, 3-(methacryloyloxy) propyltrimethoxysilane have been successfully grafted onto Zirconia particle surface.
  • the preparation method is the same as in Example 1, except that the added organic acid is acetic acid, and the amount of added acid is 5% of the zirconium content, so as to obtain a nano-zirconia organic PGME type dispersion.
  • the refractive index is 1.420; when the concentration is 65%, the refractive index is 1.498; when the concentration is 75wt%, the refractive index is 1.530.
  • 2934cm -1 is the characteristic peak of saturated carbon-hydrogen bond
  • 1711cm -1 is the characteristic peak of ester carbonyl group
  • 1558cm -1 and 1465cm -1 are the characteristic absorption peaks of delocalized conjugated ester group
  • 1167cm -1 is the characteristic peak of Si
  • the characteristic absorption peak of -O-Zr, 1031cm -1 is the characteristic absorption peak of CO ether bond, indicating that acetic acid and 3-(methacryloyloxy)propyltrimethoxysilane have been successfully grafted to the surface of zirconia particles.
  • the preparation method is the same as that in Example 1, except that the added organic acid is propionic acid, and the amount of the added acid is 5% of the zirconium content, so as to obtain the nano-zirconia organic PGME type dispersion liquid.
  • the refractive index is 1.457; when the concentration is 65%, the refractive index is 1.513; when the concentration is 75wt%, the refractive index is 1.548.
  • 2932cm -1 is the characteristic peak of saturated carbon-hydrogen bond
  • 1714cm -1 is the characteristic peak of ester carbonyl group
  • 1563cm -1 and 1467cm -1 are the characteristic absorption peaks of delocalized conjugated ester group
  • 1109cm -1 is the characteristic peak of Si
  • the characteristic absorption peak of -O-Zr, 1027cm -1 is the characteristic absorption peak of the CO ether bond, indicating that propionic acid and 3-(methacryloyloxy)propyltrimethoxysilane have been successfully grafted onto the surface of zirconia particles .
  • Phenoxybenzyl acrylate was added to the nano-zirconia organic PGME type dispersion prepared in Example 1, and the mixed solution was distilled under reduced pressure to remove the organic solvent to obtain nano-zirconia with photocurable phenoxybenzyl acrylate. Dispersions.
  • the refractive index is 1.675; when the content is 75wt%, the refractive index is 1.700; when the content is 85wt%, the refractive index is 1.720.
  • Phenoxybenzyl acrylate was added to the nano-zirconia organic PGME type dispersion prepared in Example 2, and the mixed solution was distilled under reduced pressure to remove the organic solvent to obtain nano-zirconia with photocurable phenoxybenzyl acrylate. Dispersions.
  • the refractive index is 1.660; when the content is 75wt%, the refractive index is 1.687; when the content is 85wt%, the refractive index is 1.706.
  • Phenoxybenzyl acrylate was added to the nano-zirconia organic PGME type dispersion prepared in Example 3, and the mixed solution was distilled under reduced pressure to remove the organic solvent to obtain nano-zirconia with photocurable phenoxybenzyl acrylate. Dispersions.
  • the refractive index is 1.644; when the content is 75wt%, the refractive index is 1.667; when the content is 85wt%, the refractive index is 1.687.
  • Phenoxybenzyl acrylate was added to the nano-zirconia organic PGME type dispersion prepared in Example 4, and the mixed solution was distilled under reduced pressure to remove the organic solvent to obtain nano-zirconia with photocurable phenoxybenzyl acrylate. Dispersions.
  • the refractive index is 1.620; when the content is 75wt%, the refractive index is 1.643; when the content is 85wt%, the refractive index is 1.662.
  • Phenoxybenzyl acrylate was added to the nano-zirconia organic PGME type dispersion prepared in Example 5, and the mixed solution was distilled under reduced pressure to remove the organic solvent to obtain nano-zirconia with photocurable phenoxybenzyl acrylate. Dispersions.
  • the refractive index is 1.650; when the content is 75wt%, the refractive index is 1.676; when the content is 85wt%, the refractive index is 1.695.
  • Phenoxybenzyl acrylate was added to the nano-zirconia organic PGME type dispersion prepared in Example 6, and the mixed solution was distilled under reduced pressure to remove the organic solvent to obtain nano-zirconia with photocurable phenoxybenzyl acrylate. Dispersions.
  • the refractive index is 1.621; when the content is 75wt%, the refractive index is 1.641; when the content is 85wt%, the refractive index is 1.656.
  • Phenoxybenzyl acrylate was added to the nano-zirconia organic PGME dispersion prepared in Example 7, and the mixed solution was distilled under reduced pressure to remove the organic solvent to obtain nano-zirconia with photocurable phenoxybenzyl acrylate. Dispersions.
  • the refractive index is 1.631; when the content is 75wt%, the refractive index is 1.657; when the content is 85wt%, the refractive index is 1.678.
  • Preparation method is with embodiment 1, and difference is that the isooctanoic acid content that adds is 0, obtains the organic PGME type dispersion liquid of nano zirconium oxide.
  • the refractive index is 1.395; when the concentration is 65%, the refractive index is 1.434; when the concentration is 75wt%, the refractive index is 1.472.
  • Phenoxybenzyl acrylate was added to the nano-zirconia organic PGME type dispersion prepared in Comparative Example 1, and the mixed solution was distilled under reduced pressure to remove the organic solvent, and the final product zirconia was precipitated, and it was impossible to obtain a photocurable benzene compound.
  • Oxybenzyl acrylate nano zirconia dispersion was added to the nano-zirconia organic PGME type dispersion prepared in Comparative Example 1, and the mixed solution was distilled under reduced pressure to remove the organic solvent, and the final product zirconia was precipitated, and it was impossible to obtain a photocurable benzene compound.
  • Oxybenzyl acrylate nano zirconia dispersion Oxybenzyl acrylate nano zirconia dispersion.
  • the refractive index is 1.398; when the concentration is 65%, the refractive index is 1.445; when the concentration is 75wt%, the refractive index is 1.484.
  • Phenoxybenzyl acrylate was added to the nano-zirconia organic PGME dispersion prepared in Comparative Example 3, and the mixed solution was distilled under reduced pressure to remove the organic solvent to obtain nano-zirconia with photocurable phenoxybenzyl acrylate. Dispersions.
  • the refractive index is 1.575, and when the content is 75wt%, the refractive index is 1.598.
  • the preparation method is the same as that of Comparative Example 3, except that the oily dispersing aid BYK-9076 (the addition amount is 5%) is added to the system, and then lauryl hydroxystearic acid (the addition amount is 5% of the zirconium content), 3 -(Methacryloyloxy)propyltrimethoxysilane (the addition amount is 10% of the zirconium content) is used to modify the zirconia particles to obtain a nano-zirconia organic PGME type dispersion liquid.
  • the refractive index is 1.396; when the concentration is 65%, the refractive index is 1.442; when the concentration is 75wt%, the refractive index is 1.480.
  • Phenoxybenzyl acrylate was added to the nano-zirconia organic PGME type dispersion prepared in Comparative Example 5, and the mixed solution was distilled under reduced pressure to remove the organic solvent to obtain nano-zirconia with photocurable phenoxybenzyl acrylate. Dispersions.
  • the refractive index is 1.570, and when the content is 75wt%, the refractive index is 1.594.
  • the preparation method is the same as in Example 5, except that the additions of lauryl hydroxystearic acid, 3-(methacryloyloxy)propyltrimethoxysilane, and oily dispersing aid BYK-9076 are 1% of the zirconium content respectively. 25%, to obtain nano-zirconia organic PGME type dispersion liquid.
  • zirconia particles there are hydroxyl groups, Zr-O-Zr, Si-O-Zr groups, C-O ether bonds, ester carbonyl groups, saturated carbon-hydrogen bond groups, and no conjugated ester groups.
  • the refractive index is 1.398; when the concentration is 65%, the refractive index is 1.447; when the concentration is 75wt%, the refractive index is 1.481.
  • Phenoxybenzyl acrylate was added to the nano-zirconia organic PGME type dispersion prepared in Comparative Example 7, and the mixed solution was distilled under reduced pressure to remove the organic solvent to obtain nano-zirconia with photocurable phenoxybenzyl acrylate. Dispersions.
  • the refractive index is 1.567, and when the content is 75wt%, the refractive index is 1.591.
  • the preparation method is the same as in Example 1, except that the addition amount of isooctanoic acid, 3-glycidyloxypropyltrimethoxysilane, and oily dispersing aid BYK-9076 is 30% of the zirconium content respectively, to obtain nanometer zirconia Organic PGME type dispersion.
  • On the surface of zirconia particles there are hydroxyl groups, Zr-O-Zr, Si-O-Zr groups, C-O ether bonds, ester carbonyl groups, saturated carbon-hydrogen bond groups, and no conjugated ester groups.
  • the refractive index is 1.389; when the concentration is 65%, the refractive index is 1.446; when the concentration is 75wt%, the refractive index is 1.485.
  • Phenoxybenzyl acrylate was added to the nano-zirconia organic PGME type dispersion prepared in Comparative Example 9, and the mixed solution was distilled under reduced pressure to remove the organic solvent to obtain nano-zirconia with photocurable phenoxybenzyl acrylate. Dispersions.
  • the refractive index is 1.557, and when the content is 75wt%, the refractive index is 1.582.
  • the preparation method is the same as in Example 1, except that the content of 3-(methacryloyloxy)propyltrimethoxysilane added is 0 to obtain a nano-zirconia organic PGME type dispersion.
  • the refractive index is 1.399; when the concentration is 65%, the refractive index is 1.439; when the concentration is 75wt%, the refractive index is 1.477.
  • Phenoxybenzyl acrylate was added to the nano-zirconia organic PGME dispersion liquid prepared in Comparative Example 11, and the mixed liquid was distilled under reduced pressure to remove the organic solvent, and the final product zirconia was precipitated, and it was impossible to obtain a photocurable benzene compound.
  • Oxybenzyl acrylate nano zirconia dispersion was added to the nano-zirconia organic PGME dispersion liquid prepared in Comparative Example 11, and the mixed liquid was distilled under reduced pressure to remove the organic solvent, and the final product zirconia was precipitated, and it was impossible to obtain a photocurable benzene compound.
  • Oxybenzyl acrylate nano zirconia dispersion Oxybenzyl acrylate nano zirconia dispersion.
  • the preparation method is the same as that in Example 1, except that the added oily dispersing aid is DISPERBYK-111 (the addition amount is 5% of the zirconium content), to obtain a nano-zirconia organic PGME dispersion.
  • the added oily dispersing aid is DISPERBYK-111 (the addition amount is 5% of the zirconium content)
  • DISPERBYK-111 the addition amount is 5% of the zirconium content
  • the refractive index is 1.391; when the concentration is 65%, the refractive index is 1.443; when the concentration is 75wt%, the refractive index is 1.481.
  • Phenoxybenzyl acrylate was added to the nano-zirconia organic PGME dispersion prepared in Comparative Example 13, and the mixed solution was distilled under reduced pressure to remove the organic solvent to obtain nano-zirconia with photocurable phenoxybenzyl acrylate. Dispersions.
  • the refractive index is 1.560, and when the content is 75 wt%, the refractive index is 1.587.
  • Comparative Example 3 and Comparative Example 5 5% of the oily dispersing aid BYK9076 was first added, resulting in insufficient active sites on the surface of zirconia, while isooctanoic acid and lauryl hydroxystearic acid with long carbon chains have greater steric hindrance, It is difficult to graft with less active sites on the surface of zirconia, so there are no saturated hydrocarbons in comparative examples 3 and 5, and the content of nano-zirconia in the monomer dispersion can only reach 75wt at most %, the refractive index is 1.598 and 1.594, which is much lower than the refractive index 1.641-1.700 of the 75wt% monomer dispersion in Examples 8-14, not to mention the higher refractive index at 85wt% in Examples 8-14.
  • Example 1-7 of the present application when modifiers and organic acids are first added to modify the zirconia particles, there are sufficient active sites on the surface of the zirconia for the organic acids and modifiers to act, which can play a better role in improving the zirconia particles. Sexual effect and dispersion effect.
  • Example 1 is different from the oily dispersing aid used in Comparative Example 13.
  • Comparative Example 13 there is a COOH peak on the surface of the zirconia particles, and there are no Si-O-Zr and conjugated ester group peaks, which shows that in Comparative Example 13 Organic acids and modifiers do not interact with zirconia by grafting, but are simply coated on the surface of zirconia.
  • the preparation methods provided in Examples 1-7 of the present application utilize organic acids, modifiers and oily dispersion aids to simultaneously promote the interaction of zirconia particles, and control the content of each reagent within the range of the present application.
  • the expected functional groups are grafted on the surface of the nano-zirconia particles, and finally a nano-zirconia dispersion with good dispersion uniformity and high refractive index is obtained, and the nano-zirconia dispersion can be used in subsequent
  • the refractive index of high-refractive coatings can be greatly increased, thereby improving the performance of the film.
  • the brightness enhancing film is prepared by liquid solution and applied on the display screen, the light transmittance is 89% and 93%, and this is the difference between the B-level screen and the A-level screen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种纳米氧化锆分散液、其制备方法及所得单体分散液和光学膜,属于精细化工领域。该纳米氧化锆分散液中含有的纳米氧化锆粒子的量为45-75wt%,折射率为1.420-1.565;其中,纳米氧化锆粒子通过红外光谱表征发现其表面接枝有以下出峰区间的官能团:羟基:3200cm -1-3600cm -1、Zr-O-Zr:480cm -1-850cm -1、饱和碳氢键:2850cm -1-2960cm -1、酯羰基:1700cm -1-1750cm -1、离域的共轭型酯基:1460cm -1-1580cm -1、Si-O-Zr:800cm -1-1200cm -1和C-O醚键:1000cm -1-1200cm -1。该纳米氧化锆分散液具有高分散含量,基于其所得到的纳米氧化锆单体分散液的分散含量可达到55-85wt%,折射率可达到1.620-1.720,可在后续例如制备增亮膜或防反射膜中能够大幅提升高折射涂层的折射率,从而提升膜的性能。

Description

纳米氧化锆分散液、其制备方法及所得单体分散液和光学膜
本申请要求在2021年09月13日提交中国专利局、申请号为202111067304.6、申请名称为“纳米氧化锆分散液、其制备方法及所得单体分散液和光学膜”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于精细化工领域,尤其涉及一种纳米氧化锆分散液、其制备方法及所得单体分散液和光学膜。
背景技术
近年来,通过氧化锆颗粒分散体与透明树脂或薄膜结合,利用它的高折射率,在光学领域中得到很好的应用。例如利用高折射的氧化锆分散液制备增亮膜和防反射膜等光学膜,可用在LCD显示器上,增加屏幕的亮度和清晰度;也可以用来提高LED密封树脂折射率,进而提高LED的亮度。总之,其高折射的特性可用在高折射涂层中,在不同领域得到应用。
以往,如上所述的氧化锆粒子分散体使用分散介质为水的分散体,在众多的光学材料用途、例如光学用薄膜的制备中,通常将水分散体与树脂成分混合使用,但由于水分散体特别不容易与非水溶性的树脂成分捏合,以至于近年来强烈需要分散介质为有机溶剂的分散体。氧化锆粒子通常在水性溶剂中大致具有良好的分散性,但相对于有机溶剂,分散性通常低。
氧化锆分散液性能的高低与体系中纳米氧化锆的晶型结构、粒子分散状态和分散液制备工艺息息相关。CN107001066B公开了一种高分散纳米氧化锆颗粒及其透明分散体的制备方法,其采用锆盐与碱反应在170℃条件下直接制备氧化锆颗粒,然后将氧化锆粒子的水分散体的分散介质的水置换为选自甲醇和乙醇的至少1种醇溶剂,然后将醇分散体中的氧化锆粒子用硅烷偶联剂和12-羟基硬脂酸表面处理剂进行表面处理,最后通过蒸馏置换法或者超滤浓缩置换法将上述氧化锆粒子的醇分散体的醇溶剂置换为目标有机溶剂。该方法制备的氧化锆分散液有机溶剂分散体在400nm波长下的透过率为10%以上,在800nm波长下的透过率为80%以上,在25℃下,刚制备后的粘度为10mPa·s以下。但是此工艺需要醇溶剂作为中间相来得到目标相分散体,制备工序较为复杂,成本较高,且醇溶剂沸点较低,对改性温度有所限制,会导致改性不充分的问题。
因此,如何制备得到体系稳定、分散均匀、折射率高的氧化锆分散液对于更好地满足透明有机无机复合物的性能需求而言显得尤为重要。
发明内容
本申请提供了一种纳米氧化锆分散液、其制备方法及所得单体分散液和光学膜,所得纳米氧化锆分散液具有良好的分散均匀性及折射率高等特点。
为了达到上述目的,本申请采用以下技术方案:
本申请实施例的第一方面提供一种纳米氧化锆分散液,所述纳米氧化锆分散液中含有的纳米氧化锆粒子的量为45-75wt%,所述纳米氧化锆分散液的折射率为1.420-1.565;其中,纳米氧化锆粒子通过红外光谱表征发现其表面接枝有以下出峰区间的官能团:
羟基:3200cm -1-3600cm -1、Zr-O-Zr:480cm -1-850cm -1、饱和碳氢键:2850cm -1-2960cm -1、酯羰基:1700cm -1-1750cm -1、离域的共轭型酯基:1460cm -1-1580cm -1、Si-O-Zr:800cm -1-1200cm -1和C-O醚键:1000cm -1-1200cm -1
在本申请的一些实施例中,所述纳米氧化锆分散液的折射率为氧化锆含量在45%-65%时,为1.420-1.535,氧化锆含量在65%-75%时,为1.498-1.565。
在本申请的一些实施例中,所述纳米氧化锆分散液中纳米氧化锆粒子的折射率为2.20-2.60,所述纳米氧化锆粒子中四方相晶粒结构的比例占60-95%。
本申请实施例的第二方面提供一种如上所述的纳米氧化锆分散液的制备方法,包括以下步骤:
向氧化锆水溶液中加入有机溶剂,混合均匀后,向体系中加入有机酸和改性剂对氧化锆粒子进行改性,再加入油性分散助剂,旋转蒸发除去水,得到纳米氧化锆分散液;
其中,所加入的有机酸为纳米氧化锆含量的3-20wt%;所加入的改性剂为纳米氧化锆含量的5-20wt%;所加入的油性分散助为纳米氧化锆含量的5-20wt%。
在本申请的一些实施例中,向体系中加入有机酸和改性剂对氧化锆粒子进行改性具体为:
在常压、50-150℃条件下,向体系中加入有机酸和改性剂对氧化锆粒子进行改性;或者
将有机酸和改性剂溶解在所述有机溶剂中,在常压、50-150℃条件下, 加入到氧化锆水溶液和有机溶剂混合的分散液中对氧化锆粒子进行改性。
在本申请的一些实施例中,所述有机溶剂为丁酮、甲基异丁基酮、丙二醇甲醚和乙二醇甲醚中的至少一种;所加入的有机溶剂与氧化锆水溶液的体积比为(3-5):1。
在本申请的一些实施例中,所述有机酸选自饱和或不饱和的一元羧酸、多元羧酸和羟基羧酸中的至少一种。
在本申请的一些实施例中,所述一元羧酸选自甲酸、乙酸、丙酸、丁酸、异辛酸、丙烯酸、甲基丙烯酸中的至少一种;所述多元羧酸选自草酸、丙二酸、琥珀酸、邻苯二甲酸、富马酸、马来酸中的至少一种;所述羟基羧酸选自乳酸、苹果酸、酒石酸、柠檬酸中的至少一种。
在本申请的一些实施例中,所述改性剂为3-(甲基丙烯酰氧基)丙基三甲氧基硅烷、3-缩水甘油醚氧基丙基三甲氧基硅烷中的至少一种。
在本申请的一些实施例中,所述油性分散助剂选自阴离子型分散剂、阳离子型分散剂、非离子型分散剂和高分子型分散剂中的至少一种。
在本申请的一些实施例中,所述油性分散助剂选自BYK-9076或BYK-9077。
本申请实施例的第三方面提供一种纳米氧化锆单体分散液,通过向根如上任一项所述的纳米氧化锆分散液中加入可光固化树脂,并通过减压蒸馏除去分散液中的有机溶剂制备得到。
在本申请的一些实施例中,所述纳米氧化锆单体分散液中纳米氧化锆的含量为55-85wt%,所述纳米氧化锆单体分散液的折射率为1.620-1.720。
在本申请的一些实施例中,所述可光固化树脂选自包含酯、氨基甲酸乙酯、醚、硅、卤素和/或含磷基团的丙烯酸系或甲基丙烯酸系的单体或其低聚物;所述可光固化树脂的添加量为氧化锆和可光固化树脂总质量的15-45wt%。
在本申请的一些实施例中,所述可光固化树脂为苯氧苄丙烯酸酯、丙烯酸甲酯、甲基丙烯酸甲酯中的至少一种。
本申请实施例的第四方面提供一种光学膜,采用如上任一项所述的纳米氧化锆分散液或采用如上任一项所述的纳米氧化锆单体分散液制备得到。
与现有技术相比,本申请的优点和积极效果在于:
1、本申请至少一个实施例所提供的纳米氧化锆分散液的制备方法,操作简单,可直接采用最简单的蒸馏置换法由氧化锆水分散液换相得到有机溶剂分散液,进一步由有机溶剂分散液置换得到单体分散液,期间均无需中间相 的参与;
2、本申请至少一个实施例所提供的纳米氧化锆分散液的制备方法,采用有机酸、改性剂、油性分散助剂同时对氧化锆粒子进行作用,充分利用它们的协同作用,以起到最好的分散效果,可有效提升后续有机溶剂分散液与光固化单体的相容性;
3、本申请至少一个实施例所提供的纳米氧化锆分散液的制备方法,在原料组分加入时需要在加入油性分散助剂之前将有机酸和改性剂加入到分散液体系中,以保证氧化锆表面有充足的活性位点供有机酸和改性剂进行作用,以起到最好的改性效果和分散效果;
4、本申请至少一个实施例所提供的纳米氧化锆分散液的制备方法,所加入的有机酸、改性剂、油性分散助剂的含量应控制在本申请所限定的范围之内,含量过低起不到预期改性效果,含量过高效果也会适得其反,还会造成不必要的经济损失;
5、本申请至少一个实施例所提供的纳米氧化锆分散液,其中纳米氧化锆粒子的分散含量高,达到了45-75wt%,折射率可达到1.420-1.565,基于其所得到的纳米氧化锆单体分散液的分散含量可达到55-85wt%,折射率可达到1.620-1.720。
附图说明
图1为本申请实施例1提供的纳米氧化锆分散液的红外光谱图;
图2为本申请实施例5提供的纳米氧化锆分散液的红外光谱图;
图3为本申请实施例6提供的纳米氧化锆分散液的红外光谱图;
图4为本申请实施例7提供的纳米氧化锆分散液的红外光谱图;
图5为本申请实施例所采用的BYK-9076加入到氧化锆后(加入量40%)的红外光谱图;
图6为本申请实施例所采用的BYK-9076加入到氧化锆后(加入量5%)的红外光谱图。
具体实施方式
下面将对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,除有特殊说明以外,未明确说明单位的含量均为质 量含量;为获得纳米氧化锆分散液,可以理解的是,本申请原料中所述氧化锆水溶液均指纳米氧化锆水溶液。
为了达到上述目的,本申请提供了一种纳米氧化锆分散液,所述纳米氧化锆分散液中含有的纳米氧化锆粒子的量为45-75wt%,其中,纳米氧化锆粒子通过红外光谱表征发现其表面接枝有以下出峰区间的官能团:
羟基:3200cm -1-3600cm -1、Zr-O-Zr:480cm -1-850cm -1、饱和碳氢键:2850cm -1-2960cm -1、酯羰基:1700cm -1-1750cm -1、离域的共轭型酯基:1460cm -1-1580cm -1、Si-O-Zr:800cm -1-1200cm -1和C-O醚键:1000cm -1-1200cm -1。可以理解的是,这些官能团的成功引入,能够大幅提高氧化锆粒子的亲脂性,为后续各种类型分散液及其膜的制备提供了可能,同时能够对溶剂型及单体型分散液固含量及折射率的提高产生积极影响。
在一些实施例中,所述纳米氧化锆分散液的折射率为氧化锆含量在45%-65%时,为1.420-1.535,氧化锆含量在65%-75%时,为1.498-1.565。
在一些实施例中,所述纳米氧化锆分散液中纳米氧化锆粒子的折射率为2.20-2.60。
在一些实施例中,所述纳米氧化锆粒子中四方相晶粒结构的比例占60-95%。可以理解的是,氧化锆晶型分为单斜相、四方相、立方相,本申请实施例纳米氧化锆分散液中具有四方相晶型的纳米氧化锆粒子为在氧化锆所有晶型中的质量占比。
本申请还提供了一种纳米氧化锆分散液的制备方法,包括以下步骤:
向氧化锆水溶液中加入有机溶剂,混合均匀后,向体系中加入有机酸和改性剂对氧化锆粒子进行改性,再加入油性分散助剂,旋转蒸发除去水,得到纳米氧化锆分散液。
以上实施例所提供的纳米氧化锆分散液的制备方法,在将有机酸和改性剂加入到氧化锆粒子的水和有机溶剂混合的分散液中,对其进行亲油性改性处理,在除去水的同时,得到纯有机溶剂相氧化锆分散液,再加入油性分散助剂,可对分散液的稳定性及分散性进行强化。上述方案无需复杂的操作和分散设备,方法简单,基于这种方式处理后相对于现有技术中进行分散介质替换的分散液而言,具有显著优势。
在一些实施例中,向体系中加入有机酸和改性剂对氧化锆粒子进行改性具体为:
在常压、50-150℃条件下,向体系中加入有机酸和改性剂对氧化锆粒子 进行改性;或者
将有机酸和改性剂溶解在所述有机溶剂中,在常压、50-150℃条件下,加入到氧化锆水溶液和有机溶剂混合的分散液中对氧化锆粒子进行改性。
在一些实施例中,所加入的有机溶剂与氧化锆水溶液的体积比为(3-5):1。
在一些实施例中,所述有机溶剂为丁酮、甲基异丁基酮、丙二醇甲醚和乙二醇甲醚中的至少一种。
在一些实施例中,所述有机酸选自饱和或不饱和的一元羧酸、多元羧酸和羟基羧酸中的至少一种;所加入的有机酸为纳米氧化锆含量的3-20wt%。
在一些实施例中,所述一元羧酸选自甲酸、乙酸、丙酸、丁酸、异辛酸、丙烯酸、甲基丙烯酸中的至少一种;所述多元羧酸选自草酸、丙二酸、琥珀酸、邻苯二甲酸、富马酸、马来酸中的至少一种;所述羟基羧酸选自乳酸、苹果酸、酒石酸、柠檬酸中的至少一种。
在一些实施例中,所述改性剂为3-(甲基丙烯酰氧基)丙基三甲氧基硅烷、3-缩水甘油醚氧基丙基三甲氧基硅烷中的至少一种;所加入的改性剂为纳米氧化锆含量的5-20wt%。
在本申请实施例所提供的纳米氧化锆分散液的制备方法中加入有机酸和改性剂的目的在于对氧化锆表面进行处理,一方面表现为提高氧化锆粒子的亲油性,另一方面可使氧化锆粒子均匀分散,让改性剂与氧化锆更加充分结合。此外,有机酸的存在有利于改性剂的水解和接枝,改性剂的存在有利于有机酸与氧化锆的接枝,二者相互促进,油性分散助剂对于提升有机酸及改性剂与氧化锆的接枝也有积极作用。可以理解的是,所加入的有机酸的添加量还可为纳米氧化锆含量的2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19wt%或上述范围内的任一点值;所加入的改性剂的添加量还可以为纳米氧化锆含量的6、7、8、9、10、11、12、13、14、15、16、17、18、19wt%或上述范围内的任一点值。
在一些实施例中,所述油性分散助剂选自阴离子型分散剂、阳离子型分散剂、非离子型分散剂和高分子型分散剂中的至少一种,优选磷酸酯系列分散助剂;所加入的油性分散助剂为纳米氧化锆含量的5-20wt%。
可以理解的是,上述步骤中加入油性分散助剂的目的在于进一步提高分散液的稳定性及分散性。特别指出的是,上述油性分散助剂应在有机酸和改性剂向分散体系中添加完毕后进行添加,此举在于保证氧化锆粒子表面有充 分的活性位点供有机酸和改性剂进行表面处理。所述油性分散助剂的添加量还可为纳米氧化锆含量的2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19wt%或上述范围内的任一点值。
在一些实施例中,所述油性分散助剂具体可选用德国毕克公司生产的分散剂BYK-9076和BYK-9077。
在以上实施例中,BYK-9076为高分子量共聚物硅烷基铵盐,图5为氧化锆中添加BYK-9076(40%)后的红外光谱图,其中3392cm -2处羟基峰对应氧化锆表面剩余羟基,2926cm -2处的为BYK9076的饱和碳氢峰,1633cm -2为氧化锆无机粉末吸附的水峰,1060cm -2为BYK9076与氧化锆接枝生成的Si-O-Zr,565cm -2为氧化锆的Zr-O-Zr,图5中的产物中出现了Si-O-Zr峰,说明BYK-9076可与氧化锆接枝形成Si-O-Zr官能团;图6为氧化锆中添加BYK-9076(5%)后的红外光谱图。由图5和图6可知,只要添加了BYK9076而无论添加的量多或少,均会出现Si-O-Zr的峰。BYK9077为带颜料亲合基团的高分子量共聚物。因此,当采用BYK-9076作为油性分散助剂时,其可以与改性剂共同提供Si-O-Zr官能团,进一步增加制备获得的纳米氧化锆分散液中的Si-O-Zr官能团的数量,提高纳米氧化锆分散液的折射率。BYK9077与BYK9076结构相似,但其空间位阻较大,与氧化锆的接枝量较少,所以在其红外谱图中可见羟基峰、水峰以及氧化锆的Zr-O-Zr。
本申请还提供了一种纳米氧化锆单体分散液,通过向根据上述任一项技术方案所述的纳米氧化锆分散液中加入可光固化树脂,并通过减压蒸馏除去分散液中的有机溶剂制备得到。此处,需要说明的是,本申请所述单体分散液是指加入了单一组分的分散液,而并非具体指可光固化组分所包含的单体或其低聚物。
在一些实施例中,所述纳米氧化锆单体分散液中纳米氧化锆的含量为55-85wt%,所述纳米氧化锆单体分散液的折射率为1.620-1.720。可以理解的是,该单体型分散液中纳米氧化锆的含量还可以是56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84wt%或上述范围内的任一点值。
在一些实施例中,所述可光固化树脂选自包含酯、氨基甲酸乙酯、醚、硅、卤素和/或含磷基团的丙烯酸系或甲基丙烯酸系的单体或其低聚物。并且,所述单体或其低聚物均可通过市售的方式获得。
在一些实施例中,所述可光固化树脂的添加量为氧化锆和可光固化树脂 总质量的15-45wt%。可以理解的是,可光固化树脂的含量还可以是20、25、30、35wt%或上述范围内的任一点值。
在一些实施例中,所述可光固化树脂为苯氧苄丙烯酸酯、丙烯酸甲酯、甲基丙烯酸甲酯中的至少一种。
本申请还提供了一种光学膜,其特征在于,采用根据上述任一项技术方案所述的制备方法制备得到的纳米氧化锆分散液或采用根据上述任一项技术方案所述的纳米氧化锆单体分散液制备得到。
在一些实施例中,所述光学膜为增亮膜、防反射膜以及其他具有高折射涂层的光学膜中的任一种。
为了更清楚详细地介绍本申请实施例所提供的纳米氧化锆分散液、其制备方法及所得单体分散液,下面将结合具体实施例进行描述。
实施例1
向氧化锆水溶液中加入丙二醇甲醚(PGME)溶剂,混合均匀后,向上述体系中依次加入异辛酸(添加量为锆含量的5%)、3-(甲基丙烯酰氧基)丙基三甲氧基硅烷(添加量为锆含量的10%)对氧化锆粒子进行改性,再加入油性分散助剂BYK-9076(添加量为5%),旋转蒸发除去水,得到纳米氧化锆有机PGME型分散液。
所述纳米氧化锆有机PGME型分散液中,纳米氧化锆的浓度为45wt%时,折射率1.475,浓度为65%时,折射率为1.535,浓度为75wt%,折射率为1.565。
附图1为实施例1的红外光谱图,其中3418cm -1吸收峰为氧化锆粒子表面羟基的特征吸收峰,589cm -1、496cm -1为Zr-O-Zr的特征吸收峰,此外,2950cm -1为饱和碳氢键的特征峰,1718cm -1为酯羰基的特征峰,1561cm -1、1463cm -1为离域的共轭型酯基的特征吸收峰,1170cm -1为Si-O-Zr的特征吸收峰,1025cm -1为C-O醚键的特征吸收峰,表明异辛酸、3-(甲基丙烯酰氧基)丙基三甲氧基硅烷已成功接枝到氧化锆粒子表面。
实施例2
制备方法同实施例1,区别之处在于所加入的异辛酸的量为锆含量的3%,3-缩水甘油醚氧基丙基三甲氧基硅烷的量为锆含量的5%,油性分散助剂BYK-9076的量为锆含量的10%,得到纳米氧化锆有机PGME型分散液。
所述纳米氧化锆有机PGME型分散液中,纳米氧化锆的浓度为45wt%时,折射率1.470,浓度为65%时,折射率为1.529,浓度为75wt%,折射率为 1.558。
实施例3
制备方法同实施例1,区别之处在于加入异辛酸的量为锆含量的12%,改性剂3-(甲基丙烯酰氧基)丙基三甲氧基硅烷的量为锆含量的15%,油性分散助剂BYK-9077的量为锆含量的15%,得到纳米氧化锆有机PGME型分散液。
所述纳米氧化锆有机PGME型分散液中,纳米氧化锆的浓度为45wt%时,折射率1.461,浓度为65%时,折射率为1.522,浓度为75wt%,折射率为1.552。
实施例4
制备方法同实施例1,区别之处在于加入异辛酸的量为锆含量的20%,改性剂3-缩水甘油醚氧基丙基三甲氧基硅烷的量为锆含量的20%,油性分散助剂BYK-9077的量为锆含量的20%,得到纳米氧化锆有机PGME型分散液。
所述纳米氧化锆有机PGME型分散液中,纳米氧化锆的浓度为45wt%时,折射率1.449,浓度为65%时,折射率为1.509,浓度为75wt%,折射率为1.540。
实施例5
制备方法同实施例1,区别之处在于加入的有机酸为十二羟基硬脂酸,且所加入酸量为锆含量的5%,得到纳米氧化锆有机PGME型分散液。
所述纳米氧化锆有机PGME型分散液中,纳米氧化锆的浓度为45wt%时,折射率1.467,浓度为65%时,折射率为1.525,浓度为75wt%,折射率为1.554。
附图2为实施例5的红外光谱图,其中3427cm -1吸收峰为氧化锆粒子表面羟基的特征峰,586cm -1、483cm -1为Zr-O-Zr的特征吸收峰。此外,2925cm -1为饱和碳氢键的特征峰,1715cm -1为酯羰基的特征峰,1562cm -1、1463cm -1为离域的共轭型酯基的特征吸收峰,1169cm -1为Si-O-Zr的特征吸收峰,1032cm -1为C-O醚键的特征吸收峰,表明十二羟基硬脂酸、3-(甲基丙烯酰氧基)丙基三甲氧基硅烷已成功接枝到氧化锆粒子表面。
实施例6
制备方法同实施例1,区别之处在于加入的有机酸为乙酸,且所加入酸量为锆含量的5%,得到纳米氧化锆有机PGME型分散液。
所述纳米氧化锆有机PGME型分散液中,纳米氧化锆的浓度为45wt%时, 折射率1.420,浓度为65%时,折射率为1.498,浓度为75wt%,折射率为1.530。
附图3为实施例6的红外光谱图,其中3427cm -1吸收峰为氧化锆粒子表面羟基的特征峰,589cm -1、496cm -1为Zr-O-Zr的特征吸收峰。此外,2934cm -1为饱和碳氢键的特征峰,1711cm -1为酯羰基的特征峰,1558cm -1、1465cm -1为离域的共轭型酯基的特征吸收峰,1167cm -1为Si-O-Zr的特征吸收峰,1031cm -1为C-O醚键的特征吸收峰,表明乙酸、3-(甲基丙烯酰氧基)丙基三甲氧基硅烷已成功接枝到氧化锆粒子表面。
实施例7
制备方法同实施例1,区别之处在于加入的有机酸为丙酸,且所加入酸量为锆含量的5%,得到纳米氧化锆有机PGME型分散液。
所述纳米氧化锆有机PGME型分散液中,纳米氧化锆的浓度为45wt%时,折射率1.457,浓度为65%时,折射率为1.513,浓度为75wt%,折射率为1.548。
附图4为实施例7的红外光谱图,其中3434cm -1吸收峰为氧化锆粒子表面羟基的特征峰,580cm -1、490cm -1为Zr-O-Zr的特征吸收峰。此外,2932cm -1为饱和碳氢键的特征峰,1714cm -1为酯羰基的特征峰,1563cm -1、1467cm -1为离域的共轭型酯基的特征吸收峰,1109cm -1为Si-O-Zr的特征吸收峰,1027cm -1为C-O醚键的特征吸收峰,表明丙酸、3-(甲基丙烯酰氧基)丙基三甲氧基硅烷已成功接枝到氧化锆粒子表面。
实施例8
将苯氧苄丙烯酸酯加入到实施例1制备得到的纳米氧化锆有机PGME型分散液中,对该混合液进行减压蒸馏,除去有机溶剂,获得具有可光固化苯氧苄丙烯酸酯纳米氧化锆分散液。
所述分散液中纳米氧化锆的含量为55wt%时,折射率为1.675,含量为75wt%时,折射率为1.700,含量为85wt%,折射率为1.720。
实施例9
将苯氧苄丙烯酸酯加入到实施例2制备得到的纳米氧化锆有机PGME型分散液中,对该混合液进行减压蒸馏,除去有机溶剂,获得具有可光固化苯氧苄丙烯酸酯纳米氧化锆分散液。
所述分散液中纳米氧化锆的含量为55wt%时,折射率为1.660,含量为75wt%时,折射率为1.687,含量为85wt%,折射率为1.706。
实施例10
将苯氧苄丙烯酸酯加入到实施例3制备得到的纳米氧化锆有机PGME型分散液中,对该混合液进行减压蒸馏,除去有机溶剂,获得具有可光固化苯氧苄丙烯酸酯纳米氧化锆分散液。
所述分散液中纳米氧化锆的含量为55wt%时,折射率为1.644,含量为75wt%时,折射率为1.667,含量为85wt%,折射率为1.687。
实施例11
将苯氧苄丙烯酸酯加入到实施例4制备得到的纳米氧化锆有机PGME型分散液中,对该混合液进行减压蒸馏,除去有机溶剂,获得具有可光固化苯氧苄丙烯酸酯纳米氧化锆分散液。
所述分散液中纳米氧化锆的含量为55wt%时,折射率为1.620,含量为75wt%时,折射率为1.643,含量为85wt%,折射率为1.662。
实施例12
将苯氧苄丙烯酸酯加入到实施例5制备得到的纳米氧化锆有机PGME型分散液中,对该混合液进行减压蒸馏,除去有机溶剂,获得具有可光固化苯氧苄丙烯酸酯纳米氧化锆分散液。
所述分散液中纳米氧化锆的含量为55wt%时,折射率为1.650,含量为75wt%时,折射率为1.676,含量为85wt%,折射率为1.695。
实施例13
将苯氧苄丙烯酸酯加入到实施例6制备得到的纳米氧化锆有机PGME型分散液中,对该混合液进行减压蒸馏,除去有机溶剂,获得具有可光固化苯氧苄丙烯酸酯纳米氧化锆分散液。
所述分散液中纳米氧化锆的含量为55wt%时,折射率为1.621,含量为75wt%时,折射率为1.641,含量为85wt%,折射率为1.656。
实施例14
将苯氧苄丙烯酸酯加入到实施例7制备得到的纳米氧化锆有机PGME型分散液中,对该混合液进行减压蒸馏,除去有机溶剂,获得具有可光固化苯氧苄丙烯酸酯纳米氧化锆分散液。
所述分散液中纳米氧化锆的含量为55wt%时,折射率为1.631,含量为75wt%时,折射率为1.657,含量为85wt%,折射率为1.678。
对比例1
制备方法同实施例1,区别之处在于加入的异辛酸含量为0,得到纳米氧 化锆有机PGME型分散液。氧化锆粒子表面有羟基、Zr-O-Zr、Si-O-Zr,没有酯羰基、C-O醚键、共轭型酯基、饱和碳氢键基团。
所述纳米氧化锆有机PGME型分散液中,纳米氧化锆的浓度为45wt%时,折射率1.395,浓度为65%时,折射率为1.434,浓度为75wt%,折射率为1.472。
对比例2
将苯氧苄丙烯酸酯加入到对比例1制备得到的纳米氧化锆有机PGME型分散液中,对该混合液进行减压蒸馏,除去有机溶剂,最终产物氧化锆析出,无法获得具有可光固化苯氧苄丙烯酸酯纳米氧化锆分散液。
对比例3
向氧化锆水溶液中加入丙二醇甲醚(PGME)溶剂,混合均匀后,向上述体系中加入油性分散助剂BYK-9076(添加量为5%),再加入异辛酸(添加量为锆含量的5%)、3-(甲基丙烯酰氧基)丙基三甲氧基硅烷(添加量为锆含量的10%)对氧化锆粒子进行改性,旋转蒸发除去水,得到纳米氧化锆有机PGME型分散液。氧化锆粒子表面有羟基、Zr-O-Zr、Si-O-Zr基团、共轭型酯基、酯羰基、C-O醚键基团,没有饱和碳氢键基团。
所述纳米氧化锆有机PGME型分散液中,纳米氧化锆的浓度为45wt%时,折射率1.398,浓度为65%时,折射率为1.445,浓度为75wt%,折射率为1.484。
对比例4
将苯氧苄丙烯酸酯加入到对比例3制备得到的纳米氧化锆有机PGME型分散液中,对该混合液进行减压蒸馏,除去有机溶剂,获得具有可光固化苯氧苄丙烯酸酯纳米氧化锆分散液。
所述分散液中纳米氧化锆的含量为55wt%时,折射率为1.575,含量为75wt%,其折射率为1.598。
对比例5
制备方法同对比例3,区别之处在于向体系中加入油性分散助剂BYK-9076(添加量为5%),再加入十二羟基硬脂酸(添加量为锆含量的5%)、3-(甲基丙烯酰氧基)丙基三甲氧基硅烷(添加量为锆含量的10%)对氧化锆粒子进行改性,得到纳米氧化锆有机PGME型分散液。氧化锆粒子表面有羟基、Zr-O-Zr、Si-O-Zr基团、共轭型酯基、酯羰基、C-O醚键基团,没有饱和碳氢键基团。
所述纳米氧化锆有机PGME型分散液中,纳米氧化锆的浓度为45wt%时,折射率1.396,浓度为65%时,折射率为1.442,浓度为75wt%,折射率为1.480。
对比例6
将苯氧苄丙烯酸酯加入到对比例5制备得到的纳米氧化锆有机PGME型分散液中,对该混合液进行减压蒸馏,除去有机溶剂,获得具有可光固化苯氧苄丙烯酸酯纳米氧化锆分散液。
所述分散液中纳米氧化锆的含量为55wt%时,折射率为1.570,含量为75wt%,其折射率为1.594。
对比例7
制备方法同实施例5,区别之处在于十二羟基硬脂酸、3-(甲基丙烯酰氧基)丙基三甲氧基硅烷、油性分散助剂BYK-9076的添加量分别为锆含量的25%,得到纳米氧化锆有机PGME型分散液。氧化锆粒子表面有羟基、Zr-O-Zr、Si-O-Zr基团、C-O醚键、酯羰基、饱和碳氢键基团,没有共轭型酯基基团。
所述纳米氧化锆有机PGME型分散液中,纳米氧化锆的浓度为45wt%时,折射率1.398,浓度为65%时,折射率为1.447,浓度为75wt%,折射率为1.481。
对比例8
将苯氧苄丙烯酸酯加入到对比例7制备得到的纳米氧化锆有机PGME型分散液中,对该混合液进行减压蒸馏,除去有机溶剂,获得具有可光固化苯氧苄丙烯酸酯纳米氧化锆分散液。
所述分散液中纳米氧化锆的含量为55wt%时,折射率为1.567,含量为75wt%,其折射率为1.591。
对比例9
制备方法同实施例1,区别之处在于异辛酸、3-缩水甘油醚氧基丙基三甲氧基硅烷、油性分散助剂BYK-9076的添加量分别为锆含量的30%,得到纳米氧化锆有机PGME型分散液。氧化锆粒子表面有羟基、Zr-O-Zr、Si-O-Zr基团、C-O醚键、酯羰基、饱和碳氢键基团,没有共轭型酯基基团。
所述纳米氧化锆有机PGME型分散液中,纳米氧化锆的浓度为45wt%时,折射率1.389,浓度为65%时,折射率为1.446,浓度为75wt%,折射率为1.485。
对比例10
将苯氧苄丙烯酸酯加入到对比例9制备得到的纳米氧化锆有机PGME型分散液中,对该混合液进行减压蒸馏,除去有机溶剂,获得具有可光固化苯氧苄丙烯酸酯纳米氧化锆分散液。
所述分散液中纳米氧化锆的含量为55wt%时,折射率为1.557,含量为75wt%,其折射率为1.582。
对比例11
制备方法同实施例1,区别之处在于加入的3-(甲基丙烯酰氧基)丙基三甲氧基硅烷含量为0,得到纳米氧化锆有机PGME型分散液。氧化锆粒子表面有羟基、Zr-O-Zr、Si-O-Zr、,没有酯羰基、C-O醚键、共轭型酯基、饱和碳氢键基团。
所述纳米氧化锆有机PGME型分散液中,纳米氧化锆的浓度为45wt%时,折射率1.399,浓度为65%时,折射率为1.439,浓度为75wt%,折射率为1.477。
对比例12
将苯氧苄丙烯酸酯加入到对比例11制备得到的纳米氧化锆有机PGME型分散液中,对该混合液进行减压蒸馏,除去有机溶剂,最终产物氧化锆析出,无法获得具有可光固化苯氧苄丙烯酸酯纳米氧化锆分散液。
对比例13
制备方法同实施例1,区别之处在于加入的油性分散助剂为DISPERBYK-111(添加量为锆含量的5%),得到纳米氧化锆有机PGME型分散液。氧化锆粒子表面有羟基、Zr-O-Zr、COOH、饱和碳氢键基团、酯羰基、C-O醚键,没有Si-O-Zr、共轭型酯基。
所述纳米氧化锆有机PGME型分散液中,纳米氧化锆的浓度为45wt%时,折射率为1.391,浓度为65%时,折射率为1.443,浓度为75wt%,折射率为1.481。
对比例14
将苯氧苄丙烯酸酯加入到对比例13制备得到的纳米氧化锆有机PGME型分散液中,对该混合液进行减压蒸馏,除去有机溶剂,获得具有可光固化苯氧苄丙烯酸酯纳米氧化锆分散液。
所述分散液中纳米氧化锆的含量为55wt%时,折射率为1.560,含量为75wt%时,折射率为1.587。
表1 实施例1-14及对比例1-14的差异及所得产品数据汇总
Figure PCTCN2022110129-appb-000001
Figure PCTCN2022110129-appb-000002
以下对本申请实施例和对比例进行对比分析:
在不加有机酸(对比例1)或不加改性剂(对比例11)时,由于不存在有机酸和改性剂的相互促进作用,导致对比例1、11的氧化锆表面仅有油性分散助剂提供的Si-O-Zr,进而导致对比例2、12的单体型分散液的制备是失败的。这说明有机酸、改性剂、油性分散助剂对氧化锆粒子的作用是相互促进的,这种促进作用的变化导致氧化锆粒子表面接枝基团的不同,进而对于分散液的成功制备与否产生影响。
对比例3和对比例5由于首先添加了5%的油性分散助剂BYK9076,导致氧化锆表面活性位点不足,而具有长碳链的异辛酸、十二羟基硬脂酸位阻作用较大,其很难与氧化锆表面较少的活性位点发生接枝,因此对比例3和对比例5中不存在饱和碳氢,其单体型分散液中的纳米氧化锆的含量最多只能到75wt%,折射率为1.598和1.594,远低于实施例8-14中75wt%单体型分散液的折射率1.641-1.700,更不必说实施例8-14中85wt%下的更高折射率。本申请实施例1-7先加入改性剂和有机酸对氧化锆粒子改性时,其氧化锆表面有充足的活性位点供有机酸和改性剂进行作用,能起到更好的改性效果和分散效果。
对比例7和对比例9中由于十二羟基硬脂酸和异辛酸具有给电子性的长碳链,且添加量较大(25%和30%),如此大量的给电子基团的接枝直接会使氧化锆中心的缺电子性减弱甚至消失,因此不会出现共轭型酯基,导致其单体型分散液中的纳米氧化锆的含量最多只能到75wt%,且其折射率仅为1.591 和1.582。本申请实施例中由于有机酸的添加量较少,不足以抵消氧化锆中心的缺电子性,因此存在共轭型酯基。
实施例1与对比例13中采用的油性分散助剂不同,对比例13中氧化锆粒子表面存在COOH峰,并且没有出现Si-O-Zr、共轭型酯基峰,这说明对比例13中有机酸与改性剂不是通过接枝的方式与氧化锆进行作用,而是单纯包覆在氧化锆表面。进而导致对比例13中各个浓度的溶剂型分散液折射率均低于实施例1,同时,对比例14中单体型分散液中的纳米氧化锆的含量最多只能到75wt%,折射率为1.587,远低于实施例8中75wt%单体型分散液的折射率1.700,更不必说实施例8中85wt%下的更高折射率,这说明油性分散助剂BYK9076对于促进有机酸及改性剂与氧化锆粒子的接枝具有重要影响,进而影响氧化锆粒子表面的接枝基团数量及类型,从而显著提升分散液的折射率。
由此可见,本申请实施例1-7所提供的制备方法,利用有机酸、改性剂和油性分散助剂同时对氧化锆粒子的相互促进作用,并且将各试剂的含量控制在本申请实施例所提供的范围内,在纳米氧化锆粒子表面接枝有预期的各官能团,最终获得一种具有良好分散均匀性和高折射率的纳米氧化锆分散液,该纳米氧化锆分散液可在后续例如制备增亮膜或防反射膜中能够大幅提升高折射涂层的折射率,从而提升膜的性能。从表1中折射率数据可知,对于溶剂型分散液而言,同样为75wt%条件下,实施例1-7的折射率为1.530-1.565,对比例1、3、5、7、9、11和13的折射率为1.472-1.485,相差0.058-0.08,虽然从数值上看折射率相差不大,但是从分散液折射率这个角度看其差别天壤之别,比如利用相差为0.01折射率的分散液分别制备增亮膜应用在显示屏上,其透光率为89%和93%,而这也正是B级屏与A级屏的区别。

Claims (16)

  1. 一种纳米氧化锆分散液,其特征在于,所述纳米氧化锆分散液中含有的纳米氧化锆粒子的量为45-75wt%,所述纳米氧化锆分散液的折射率为1.420-1.565;其中,纳米氧化锆粒子通过红外光谱表征发现其表面接枝有以下出峰区间的官能团:
    羟基:3200cm -1-3600cm -1、Zr-O-Zr:480cm -1-850cm -1、饱和碳氢键:2850cm -1-2960cm -1、酯羰基:1700cm -1-1750cm -1、离域的共轭型酯基:1460cm -1-1580cm -1、Si-O-Zr:800cm -1-1200cm -1和C-O醚键:1000cm -1-1200cm -1
  2. 根据权利要求1所述的纳米氧化锆分散液,其特征在于,所述纳米氧化锆分散液的折射率为氧化锆含量在45%-65%时,为1.420-1.535,氧化锆含量在65%-75%时,为1.498-1.565。
  3. 根据权利要求1或2所述的纳米氧化锆分散液,其特征在于,所述纳米氧化锆分散液中纳米氧化锆粒子的折射率为2.20-2.60,所述纳米氧化锆粒子中四方相晶粒结构的比例占60-95%。
  4. 一种如权利要求1所述的纳米氧化锆分散液的制备方法,其特征在于,包括以下步骤:
    向氧化锆水溶液中加入有机溶剂,混合均匀后,向体系中加入有机酸和改性剂对氧化锆粒子进行改性,再加入油性分散助剂,旋转蒸发除去水,得到纳米氧化锆分散液;
    其中,所加入的有机酸为纳米氧化锆含量的3-20wt%;所加入的改性剂为纳米氧化锆含量的5-20wt%;所加入的油性分散助为纳米氧化锆含量的5-20wt%。
  5. 根据权利要求4所述的制备方法,其特征在于,向体系中加入有机酸和改性剂对氧化锆粒子进行改性具体为:
    在常压、50-150℃条件下,向体系中加入有机酸和改性剂对氧化锆粒子进行改性;或者
    将有机酸和改性剂溶解在所述有机溶剂中,在常压、50-150℃条件下,加入到氧化锆水溶液和有机溶剂混合的分散液中对氧化锆粒子进行改性。
  6. 根据权利要求4所述的制备方法,其特征在于,所述有机溶剂为丁酮、甲基异丁基酮、丙二醇甲醚和乙二醇甲醚中的至少一种;所加入的有机溶剂与氧化锆水溶液的体积比为(3-5):1。
  7. 根据权利要求4所述的制备方法,其特征在于,所述有机酸选自饱和或不饱和的一元羧酸、多元羧酸和羟基羧酸中的至少一种。
  8. 根据权利要求7所述的制备方法,其特征在于,所述一元羧酸选自甲酸、乙酸、丙酸、丁酸、异辛酸、丙烯酸、甲基丙烯酸中的至少一种;所述多元羧酸选自草酸、丙二酸、琥珀酸、邻苯二甲酸、富马酸、马来酸中的至少一种;所述羟基羧酸选自乳酸、苹果酸、酒石酸、柠檬酸中的至少一种。
  9. 根据权利要求4所述的制备方法,其特征在于,所述改性剂为3-(甲基丙烯酰氧基)丙基三甲氧基硅烷、3-缩水甘油醚氧基丙基三甲氧基硅烷中的至少一种。
  10. 根据权利要求4所述的制备方法,其特征在于,所述油性分散助剂选自阴离子型分散剂、阳离子型分散剂、非离子型分散剂和高分子型分散剂中的至少一种。
  11. 根据权利要求4所述的制备方法,其特征在于,所述油性分散助剂选自BYK-9076或BYK-9077。
  12. 一种纳米氧化锆单体分散液,其特征在于,通过向根据权利要求1-3任一项所述的纳米氧化锆分散液中加入可光固化树脂,并通过减压蒸馏除去分散液中的有机溶剂制备得到。
  13. 根据权利要求12所述的纳米氧化锆单体分散液,其特征在于,所述纳米氧化锆单体分散液中纳米氧化锆的含量为55-85wt%,所述纳米氧化锆单体分散液的折射率为1.620-1.720。
  14. 根据权利要求12所述的纳米氧化锆单体分散液,其特征在于,所述可光固化树脂选自包含酯、氨基甲酸乙酯、醚、硅、卤素和/或含磷基团的丙烯酸系或甲基丙烯酸系的单体或其低聚物;所述可光固化树脂的添加量为氧化锆和可光固化树脂总质量的15-45wt%。
  15. 根据权利要求14所述的纳米氧化锆单体分散液,其特征在于,所述可光固化树脂为苯氧苄丙烯酸酯、丙烯酸甲酯、甲基丙烯酸甲酯中的至少一种。
  16. 一种光学膜,其特征在于,采用根据权利要求1-3任一项所述的纳米氧化锆分散液或采用根据权利要求12-15任一项所述的纳米氧化锆单体分散液制备得到。
PCT/CN2022/110129 2021-09-13 2022-08-04 纳米氧化锆分散液、其制备方法及所得单体分散液和光学膜 WO2023035821A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280061426.0A CN117957287A (zh) 2021-09-13 2022-08-04 纳米氧化锆分散液、其制备方法及所得单体分散液和光学膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111067304.6 2021-09-13
CN202111067304.6A CN113773691A (zh) 2021-09-13 2021-09-13 纳米氧化锆分散液、其制备方法及所得单体分散液和光学膜

Publications (1)

Publication Number Publication Date
WO2023035821A1 true WO2023035821A1 (zh) 2023-03-16

Family

ID=78842921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110129 WO2023035821A1 (zh) 2021-09-13 2022-08-04 纳米氧化锆分散液、其制备方法及所得单体分散液和光学膜

Country Status (2)

Country Link
CN (2) CN113773691A (zh)
WO (1) WO2023035821A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113773691A (zh) * 2021-09-13 2021-12-10 山东国瓷功能材料股份有限公司 纳米氧化锆分散液、其制备方法及所得单体分散液和光学膜
CN114773879A (zh) * 2022-02-24 2022-07-22 山东国瓷功能材料股份有限公司 纳米氧化锆分散液及其制备方法、改性氧化锆粉体、应用
CN114478964B (zh) * 2022-03-04 2024-05-28 山东国瓷功能材料股份有限公司 纳米氧化锆单体型分散液、制备方法及应用
CN114573024B (zh) * 2022-03-18 2024-05-28 山东国瓷功能材料股份有限公司 氧化锆单体型分散液及其制备方法、光学膜和显示屏
CN114479547A (zh) * 2022-03-21 2022-05-13 山东国瓷功能材料股份有限公司 纳米氧化锆单体型分散液及其制备方法和光学膜
CN114605762B (zh) * 2022-04-21 2024-01-26 山东国瓷功能材料股份有限公司 纳米氧化锆分散液、制备方法及应用
CN114736628B (zh) * 2022-05-07 2024-01-26 山东国瓷功能材料股份有限公司 氧化锆树脂型分散液、uv固化胶水及其制备方法和应用
CN114736548B (zh) * 2022-05-13 2023-04-21 山东国瓷功能材料股份有限公司 可光固化的纳米氧化锆分散液及其制备方法、光学膜
CN114958068A (zh) * 2022-05-31 2022-08-30 山东国瓷功能材料股份有限公司 聚硅氧烷改性氧化锆粉体的制备方法、涂覆液及光学膜
CN114989637A (zh) * 2022-05-31 2022-09-02 山东国瓷功能材料股份有限公司 功能化氧化锆及其制备方法和光学薄膜
CN115477715B (zh) * 2022-09-09 2023-07-14 山东国瓷功能材料股份有限公司 氧化钛树脂型分散液及所得光学薄膜
CN116445030A (zh) * 2023-03-14 2023-07-18 北京化工大学 一种透明纳米氧化物水相分散体、纳米复合聚氨酯涂布胶及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010533A1 (en) * 2006-07-18 2008-01-24 Nippon Shokubai Co., Ltd. Metal oxide nanoparticle and method for producing the same
CN105934485A (zh) * 2014-01-24 2016-09-07 株式会社日本触媒 含有金属氧化物粒子的分散体
JP2017025225A (ja) * 2015-07-23 2017-02-02 株式会社日本触媒 分散液
CN107001066A (zh) 2014-09-05 2017-08-01 堺化学工业株式会社 氧化锆粒子的有机溶剂分散体及其制备方法
CN113773691A (zh) * 2021-09-13 2021-12-10 山东国瓷功能材料股份有限公司 纳米氧化锆分散液、其制备方法及所得单体分散液和光学膜

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108529674A (zh) * 2018-07-01 2018-09-14 北京化工大学 一种高分散纳米氧化锆颗粒及其透明分散体的制备方法
CN110713746A (zh) * 2019-11-20 2020-01-21 北京化工大学 一种高折射率耐磨硬化涂料组合物及其硬化膜的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010533A1 (en) * 2006-07-18 2008-01-24 Nippon Shokubai Co., Ltd. Metal oxide nanoparticle and method for producing the same
CN105934485A (zh) * 2014-01-24 2016-09-07 株式会社日本触媒 含有金属氧化物粒子的分散体
CN107001066A (zh) 2014-09-05 2017-08-01 堺化学工业株式会社 氧化锆粒子的有机溶剂分散体及其制备方法
JP2017025225A (ja) * 2015-07-23 2017-02-02 株式会社日本触媒 分散液
CN113773691A (zh) * 2021-09-13 2021-12-10 山东国瓷功能材料股份有限公司 纳米氧化锆分散液、其制备方法及所得单体分散液和光学膜

Also Published As

Publication number Publication date
CN113773691A (zh) 2021-12-10
CN117957287A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
WO2023035821A1 (zh) 纳米氧化锆分散液、其制备方法及所得单体分散液和光学膜
CN106268394B (zh) 氧化锆分散液及其制备方法以及含有该氧化锆分散液的树脂组合物
TWI241326B (en) Hard coating material and film comprising the same
CN112499678B (zh) 纳米氧化锆粉体、其制备方法及所得分散液、光学膜
US9976036B2 (en) Organic solvent dispersion of zirconium oxide particles and method for producing same
TWI394985B (zh) 抗眩膜及其製造方法
CN101896430A (zh) 纳米粒子在有机溶剂中的分散体
CN101067011A (zh) 水溶性丙烯酸树脂及制备
US20120142808A1 (en) Aggregate of Spherical Core-Shell Cerium Oxide/Polymer Hybrid Nanoparticles and Method for Producing the Same
KR100907357B1 (ko) 반사방지 코팅용 코팅제, 제조방법 및 반사방지필름
WO2023178945A1 (zh) 纳米氧化锆单体型分散液及其制备方法和光学膜
CN114231136B (zh) 抗菌ag涂布液组合物、抗菌ag涂布液、抗菌ag书写膜及其制备方法
JP2010031158A (ja) 黒色顔料分散液とその製造方法および用途
WO2011148521A1 (ja) 分散体組成物
WO2019017196A1 (ja) 酸化ジルコニウム粒子分散体組成物およびその硬化物
JP5029818B2 (ja) コーティング組成物及び光学部材
CN114736548B (zh) 可光固化的纳米氧化锆分散液及其制备方法、光学膜
WO2023216486A1 (zh) 氧化锆树脂型分散液、uv固化胶水及其制备方法和应用
JP4655614B2 (ja) フッ化マグネシウム粒子のオルガノゾルとその製造方法、およびそれを用いた塗料
JP6547749B2 (ja) 酸化ジルコニウム、酸化ジルコニウム分散液、酸化ジルコニウム含有組成物、塗膜、および表示装置
CN115197587A (zh) 含磷改性剂改性氧化锆及其制备方法和光学膜
CN114773879A (zh) 纳米氧化锆分散液及其制备方法、改性氧化锆粉体、应用
CN117567896A (zh) 金属氧化物粒子的有机溶剂型分散液及其制备方法和应用
CN117923503A (zh) 内外表面接枝醛基的中空结构二氧化硅分散液及其制备方法
CN115477715A (zh) 氧化钛树脂型分散液及所得光学薄膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866295

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280061426.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022866295

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022866295

Country of ref document: EP

Effective date: 20240415