WO2023178945A1 - 纳米氧化锆单体型分散液及其制备方法和光学膜 - Google Patents

纳米氧化锆单体型分散液及其制备方法和光学膜 Download PDF

Info

Publication number
WO2023178945A1
WO2023178945A1 PCT/CN2022/119080 CN2022119080W WO2023178945A1 WO 2023178945 A1 WO2023178945 A1 WO 2023178945A1 CN 2022119080 W CN2022119080 W CN 2022119080W WO 2023178945 A1 WO2023178945 A1 WO 2023178945A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconia
nano
monomer
dispersion
specific groups
Prior art date
Application number
PCT/CN2022/119080
Other languages
English (en)
French (fr)
Inventor
朱恒
王晓芳
吕玉兴
艾辽东
奚洪亮
张艳
Original Assignee
山东国瓷功能材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东国瓷功能材料股份有限公司 filed Critical 山东国瓷功能材料股份有限公司
Publication of WO2023178945A1 publication Critical patent/WO2023178945A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present disclosure relates to the technical field of zirconia, and in particular to a nano-zirconia monomer dispersion liquid and its preparation method and optical film.
  • optical film materials such as zirconia monomer dispersions
  • Such materials have a high refractive index and low viscosity, and are also required to have high light transmittance and good compatibility when mixed with toughened resins in downstream applications to make clear High strength optical film.
  • Patent CN104559181B modifies the solvent-based dispersion of zirconium oxide, and then adds a certain mass of silicone resin and ketone or ether dispersion aids to the modified solvent-based dispersion, and then uses rotary evaporation to The original solvent is removed to obtain a zirconium oxide silicone resin composition. Finally, the composition is used to coat a film, and the coating film is heated to form a cured film. The obtained dispersion coating film and cured film both have high refractive index and light transmittance. However, since the final resin composition contains ketones or ether solvents, there will be certain VOC emissions, which will have a certain impact on the environment. Therefore, it is crucial to prepare a nanometer zirconia monomer dispersion that is solvent-free, has high transmittance, and has good compatibility after being mixed with resin.
  • the purpose of the present disclosure includes providing a nano-zirconia monomer dispersion and a preparation method thereof to solve at least one of the above technical problems.
  • the present disclosure provides a nano-zirconia monomer dispersion liquid, which is mainly made of the following raw materials:
  • the specific groups include substituted siloxy group, ⁇ , ⁇ -unsaturated ester group, acid halide group, acetaldehyde group, acetyl group, butyraldehyde group, phenyl group, benzoyl group, benzyl group, butyl group, pentyl group Any one of base or heptyl group or a combination of at least two.
  • the nano-zirconia containing specific groups on the surface exists in the form of an aqueous dispersion, and the mass fraction of the nano-zirconia containing specific groups on the surface in the aqueous dispersion is 5-40%.
  • the organic solvent includes any one or a combination of at least two of organic acids, lower alcohols, esters, ethers, halogenated olefins or ketones, preferably including organic acids;
  • the organic solvent includes formic acid, acetic acid, propionic acid, methanol, ethanol, propanol, n-butanol, ethylene glycol, propylene glycol, glycerol, ethyl acetate and ethyl lactate, dimethyl carbonate, and diethyl ether. , any one or a combination of at least two of n-butyl ether, trichlorethylene, diphenyl ether, acetone, methyl ethyl ketone or methyl isobutyl ketone;
  • the mass of the organic solvent is 3-16 times the mass of the nano-zirconia containing specific groups on the surface.
  • the dispersant includes any one or a combination of at least two dispersants with brands BYK-106, DISPERBYK-110, DISPERBYK-2013, DISPERBYK-103 or BYK-9076;
  • the mass of the dispersant is 2-10% of the mass of the nano-zirconia containing specific groups on the surface.
  • the monomer resin includes any one or a combination of at least two of phenoxybenzyl acrylate, biphenyl carbinyl acrylate, benzyl acrylate or o-phenyl phenoxyethyl acrylate;
  • the mass of the monomer resin is 10-150% of the mass of the nano-zirconia containing specific groups on the surface.
  • the light transmittance of the nano-zirconia monomer dispersion at a wavelength of 800 nm is not less than 50%.
  • the nano-zirconia monomer dispersion can be mixed with the toughening resin in a certain ratio and then dissolve in each other;
  • the mass ratio of the nano-zirconia monomer dispersion liquid and the toughened resin is (1-19):1, preferably 4:1.
  • the toughened resin includes D100.
  • the present disclosure also provides a method for preparing the above-mentioned nano-zirconia monomer dispersion, which includes the following steps:
  • An aqueous dispersion of nano-zirconia containing specific groups on the surface is mixed with an organic solvent, and then concentrated to remove water in the aqueous dispersion and disperse the nano-zirconia containing specific groups on the surface in the organic solvent to obtain nano-oxide Zirconium solvent-based dispersion;
  • the nano-zirconia solvent-based dispersion is mixed with a dispersant and a monomer resin, and then the organic solvent in the nano-zirconia solvent-based dispersion is removed to obtain a nano-zirconia monomer dispersion.
  • the present disclosure provides an optical film prepared by using the above-mentioned nano-zirconia monomer dispersion.
  • the present disclosure provides a nano-zirconia monomer dispersion, which is mainly made of nano-zirconia containing specific groups on the surface, organic solvents, dispersants, monomer resins and other raw materials.
  • the specific types of specific groups contained on the surface of the nano-zirconia groups are limited, and under its cooperation with the dispersant and monomer resin, the nano-zirconia monomer dispersion has high light transmittance, and the wavelength is At 800nm, the light transmittance can exceed 50%; at the same time, because the dielectric constant of the nano-zirconia monomer dispersion is similar to that of the toughened resin, the two can be uniformly mixed, which provides a good foundation for the subsequent preparation of optical materials.
  • the membrane provides the foundation.
  • the present disclosure provides a method for preparing a nano-zirconia monomer dispersion.
  • a water dispersion of nano-zirconia containing specific groups on the surface is mixed with an organic solvent, and concentration is used to disperse the dispersion in the water dispersion.
  • the medium is replaced with an organic solvent from water to obtain a nano-zirconia solvent-based dispersion, and then the nano-zirconia solvent-based dispersion is mixed with a dispersant and monomer resin, and then the organic solvent in the nano-zirconia solvent-based dispersion is removed.
  • a nano-zirconia monomer dispersion is obtained; the preparation method is simple to operate, uses conventional equipment, has high safety, and can achieve stable preparation of nano-zirconia monomer dispersion.
  • the present disclosure provides an optical film prepared by using the above-mentioned nano-zirconia monomer dispersion.
  • the optical film produced has higher clarity.
  • a nano-zirconia monomer dispersion is provided, which is mainly made of the following raw materials:
  • the specific groups on the nanometer zirconia containing specific groups on the surface include substituted siloxy groups, ⁇ , ⁇ -unsaturated ester groups, acid halide groups, acetaldehyde groups, acetyl groups, butyraldehyde groups, phenyl groups, and benzoic acid groups. Any one or a combination of at least two of base, benzyl, butyl, pentyl or heptyl.
  • nano-zirconia containing specific groups on its surface refers to nano-zirconia containing specific groups on its surface after certain treatment.
  • the dielectric constant difference between the nano-zirconia monomer dispersion and the toughened resin is within a certain range.
  • Organic solvents are mainly used to disperse nano-zirconia containing specific groups on the surface.
  • the addition of the dispersant is mainly to fully disperse the nano-zirconia containing specific groups on the surface into the monomer resin, which is beneficial to improving the dispersion of the nano-zirconia monomer dispersion.
  • Monomer resin is mainly used to disperse nano-zirconia containing specific groups on the surface.
  • the specific type is not limited, but the premise is that it must have good dispersion ability for nano-zirconia containing specific groups on the surface.
  • the present disclosure provides a nano-zirconia monomer dispersion, which is mainly made of nano-zirconia containing specific groups on the surface, organic solvents, dispersants, monomer resins and other raw materials.
  • the words “comprising” and “mainly made of” in this disclosure mean that in addition to the raw materials, they may include other raw materials. These raw materials give the nano-zirconia monomer dispersion different properties. characteristic.
  • the words “including” and “mainly made of” mentioned in this disclosure can also be replaced by the closed “is” or “made of”.
  • nano-zirconia containing specific groups on the surface exists in the form of an aqueous dispersion, and the mass fraction of nano-zirconia containing specific groups on the surface in the aqueous dispersion is 5-40%.
  • Typical but non-limiting mass fractions of nano-zirconia containing specific groups on the surface in the aqueous dispersion are 5%, 8%, 10%, 12%, 15%, 18%, 20%, 22%, 25%, 28%, 30%, 32%, 35%, 38% or 40%.
  • the dispersion medium can be fully replaced from water to an organic solvent.
  • the organic solvent includes any one or a combination of at least two of organic acids, lower alcohols, esters, ethers, halogenated alkenes or ketones, preferably including Organic acids.
  • organic solvents include formic acid, acetic acid, propionic acid, methanol, ethanol, propanol, n-butanol, ethylene glycol, propylene glycol, glycerol, ethyl acetate and ethyl lactate, Any one or a combination of at least two of dimethyl carbonate, diethyl ether, n-butyl ether, trichlorethylene, diphenyl ether, acetone, methyl ethyl ketone or methyl isobutyl ketone.
  • the mass of the organic solvent is 3-16 times the mass of nano-zirconia containing specific groups on the surface.
  • the mass of the organic solvent is typically but not limited to 3 times, 5 times, 6 times, 8 times, 10 times, 12 times, 14 times, 15 times or 16 times the mass of nano-zirconia containing specific groups on the surface.
  • the organic solvent By limiting the specific type and amount of the organic solvent, it has good dispersion ability for nanometer zirconia containing specific groups on the surface.
  • the dispersant includes any one or a combination of at least two dispersants with brands BYK-106, DISPERBYK-110, DISPERBYK-2013, DISPERBYK-103 or BYK-9076.
  • the mass of the dispersant is 2-10% of the mass of nano-zirconia containing specific groups on the surface.
  • the typical but non-limiting mass fraction of the dispersant in the nano-zirconia containing specific groups on the surface is 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% or 10%.
  • the monomer dispersion liquid has higher light transmittance.
  • the monomer resin includes phenoxybenzyl acrylate (PBA), biphenylmethyl alcohol acrylate (BPMA), benzyl acrylate (BZA) or o-phenylphenoxyethyl acrylate (OPPEA) or a combination of at least two.
  • PBA phenoxybenzyl acrylate
  • BPMA biphenylmethyl alcohol acrylate
  • BZA benzyl acrylate
  • OPPPEA o-phenylphenoxyethyl acrylate
  • the mass of the monomer resin is 10%-150% of the mass of the nano-zirconia containing specific groups on the surface.
  • the mass of the monomer resin is the mass of nano-zirconia containing specific groups on the surface. Typical but non-limiting mass fractions are 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50 %, 55%, 60%, 70%, 80%, 90%, 100%, 110%, 120%, 130%, 140% or 150%.
  • the light transmittance of the nano-zirconia monomer dispersion at a wavelength of 800 nm is not less than 50%.
  • the nano-zirconia monomer dispersion can be mixed with the toughened resin in a certain ratio and then uniformly dissolved in each other;
  • the mass ratio of the nano-zirconia monomer dispersion liquid and the toughened resin is (1-19):1, preferably 4:1.
  • Typical but non-limiting mass ratios of nano-zirconia monomer dispersion and toughened resin are 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 8:1, 10 :1, 12:1, 13:1, 14:1, 15:1, 16:1, 18:1 or 19:1.
  • the toughened resin includes D100.
  • a method for preparing the above-mentioned nano-zirconia monomer dispersion including the following steps:
  • An aqueous dispersion of nano-zirconia containing specific groups on the surface is mixed with an organic solvent, and then concentrated to remove water in the aqueous dispersion and disperse the nano-zirconia containing specific groups on the surface in the organic solvent to obtain nano-oxide Zirconium solvent-based dispersion;
  • the nano-zirconia solvent-based dispersion is mixed with a dispersant and a monomer resin, and then the organic solvent in the nano-zirconia solvent-based dispersion is removed to obtain a nano-zirconia monomer dispersion.
  • the preparation method is simple to operate, uses conventional equipment, and is highly safe.
  • the concentration method is rotary evaporation.
  • the organic solvent is removed by rotary evaporation.
  • an optical film is also provided, which is prepared by using the above-mentioned nano-zirconia monomer dispersion.
  • the optical film produced has higher clarity.
  • This embodiment provides a nano-zirconia monomer dispersion, which is mainly made of the following raw materials:
  • the aqueous dispersion of nanometer zirconia containing specific groups on the surface is mainly made of nanometer zirconia containing specific groups on the surface and water.
  • the specific group contained on the surface of the nanometer zirconia containing specific groups is substituted silicon.
  • Oxygen group specifically The mass fraction of nano-zirconia containing specific groups on the surface in the aqueous dispersion is 27.4%; the organic solvent is acetic acid, and the amount of organic solvent is 7 times the mass of nano-zirconia containing specific groups on the surface in the aqueous dispersion;
  • the dispersant is BYK-106, and the dispersant is 5% of the mass of nano-zirconia containing specific groups on the surface of the water dispersion; the monomer resin is PBA, and the amount of monomer resin is 5% of the mass of the nano-zirconia containing specific groups on the surface of the water dispersion. 60% of the mass of nano-zirconia.
  • This embodiment provides a nano-zirconia monomer dispersion.
  • This embodiment provides a nano-zirconia monomer dispersion. Except for the specific group contained on the surface of the nano-zirconia containing specific groups in the aqueous dispersion, the remaining raw material composition, dosage, preparation method and implementation Same as Example 1.
  • This embodiment provides a nano-zirconia monomer dispersion. Except for the specific group contained on the surface of the nano-zirconia containing specific groups in the aqueous dispersion, which is an acetaldehyde group, the other raw material compositions, dosages and preparation methods are the same as those in the aqueous dispersion. Same as Example 1.
  • This embodiment provides a nano-zirconia monomer dispersion. Except for the specific group contained on the surface of the nano-zirconia containing specific groups in the aqueous dispersion, the remaining raw material composition, dosage, preparation method and implementation Same as Example 1.
  • This embodiment provides a nano-zirconia monomer dispersion. Except for the specific group contained on the surface of the nano-zirconia containing specific groups in the aqueous dispersion, the remaining raw material compositions, dosages, preparation methods and examples 1 is the same.
  • This embodiment provides a nano-zirconia monomer dispersion. Except for the specific group contained on the surface of the nano-zirconia containing specific groups in the water dispersion, the remaining raw material composition, dosage, preparation method and implementation Same as Example 1.
  • This embodiment provides a nano-zirconia monomer dispersion. Except for the specific group contained on the surface of the nano-zirconia containing specific groups in the aqueous dispersion, which is a benzoic acid group, the other raw material compositions, dosages and preparation methods are the same as those in the aqueous dispersion. Same as Example 1.
  • This embodiment provides a nano-zirconia monomer dispersion. Except for the specific group contained on the surface of the nano-zirconia containing specific groups in the aqueous dispersion, the remaining raw material composition, dosage, preparation method and implementation Same as Example 1.
  • This embodiment provides a nano-zirconia monomer dispersion. Except for the specific group contained on the surface of the nano-zirconia containing specific groups in the aqueous dispersion, the remaining raw material composition, dosage, preparation method and implementation Same as Example 1.
  • This embodiment provides a nano-zirconia monomer dispersion. Except for the specific group contained on the surface of the nano-zirconia containing specific groups in the water dispersion, the remaining raw material composition, dosage, preparation method and implementation Same as Example 1.
  • This embodiment provides a nano-zirconia monomer dispersion. Except for the specific group contained on the surface of the nano-zirconia containing specific groups in the water dispersion, the remaining raw material composition, dosage, preparation method and implementation Same as Example 1.
  • This embodiment provides a nano-zirconia monomer dispersion. Except that the monomer resin is BPMA, the other raw material compositions, dosages, and preparation methods are the same as those in Embodiment 1.
  • This embodiment provides a nano-zirconia monomer dispersion, which is mainly made of the following raw materials:
  • the aqueous dispersion of nanometer zirconia containing specific groups on the surface is mainly made of nanometer zirconia containing specific groups on the surface and water.
  • the specific group contained on the surface of the nanometer zirconia containing specific groups is substituted silicon.
  • Oxygen group specifically The mass fraction of nano-zirconia containing specific groups on the surface in the aqueous dispersion is 21.6%; the organic solvent is methyl ethyl ketone, and the amount of organic solvent is the mass of nano-zirconia containing specific groups on the surface in the aqueous dispersion. 10 times;
  • the dispersant is DISPERBYK-103, and the dosage of the dispersant is 3% of the mass of the nano-zirconia containing specific groups on the surface of the water dispersion;
  • the monomer resin is OPPEA, and the dosage of the monomer resin is 3% of the mass of the nano-zirconia containing specific groups on the surface of the water dispersion. 65% of the mass of the nano-zirconia group.
  • the preparation method of the nano-zirconia monomer dispersion provided in this example is the same as that in Example 1.
  • This comparative example provides a nano-zirconia monomer dispersion. Except for the group contained on the surface of the nano-zirconia containing specific groups in the aqueous dispersion, which is a formamide group, the remaining raw material composition, dosage, preparation method and implementation Same as Example 1.
  • This comparative example provides a nano-zirconia monomer dispersion. Except for the nano-zirconia surface containing specific groups in the aqueous dispersion, the group contained on the surface is butenyl. The remaining raw material composition, dosage, preparation method and implementation Same as Example 1.
  • This comparative example provides a nano-zirconia monomer dispersion. Except for the nano-zirconia surface containing specific groups in the water dispersion, the group contained on the surface is methyl thiocyanate. The remaining raw material compositions, dosages and preparation methods Same as Example 1.
  • This comparative example provides a nano-zirconia monomer dispersion. Except for the nano-zirconia surface containing specific groups in the aqueous dispersion, the groups contained on the surface are nitroso groups. The remaining raw material compositions, dosages, preparation methods and implementation Same as Example 1.
  • This comparative example provides a nano-zirconia monomer dispersion. Except for the nano-zirconia surface containing specific groups in the aqueous dispersion, the group contained on the surface is octyl. The remaining raw material compositions, dosages, preparation methods and examples 1 is the same.
  • This comparative example provides a nano-zirconia monomer dispersion. Except that no dispersant is added in the raw materials and preparation method, the composition and dosage of the other raw materials are the same as in Example 1.
  • the transmittance and dielectric constant of the nano-zirconia single-type dispersion provided in each example and comparative example were detected at a wavelength of 800 nm, and the difference in dielectric constant between the nano-zirconia single-type dispersion and resin D100 was compared. The difference was obtained, and the compatibility of nano-zirconia monomer dispersion liquid and monomer resin D100 was investigated.
  • the light transmittance is measured by a UV-visible spectrophotometer.
  • the dielectric constant ( ⁇ ) refers to the fact that when a medium is exposed to an external electric field, it will generate induced charges and weaken the electric field.
  • the ratio of the original external electric field (in vacuum) to the final electric field in the medium is the dielectric constant.
  • the polarity of a substance can be determined by its dielectric constant. Generally, substances with a dielectric constant greater than 3.6 are polar substances; substances with a dielectric constant in the range of 2.8 to 3.6 are weakly polar substances; substances with a dielectric constant less than 2.8 are non-polar substances. From the general corollary of the principle of similar miscibility, it can be seen that substances with similar polarities are more likely to dissolve in each other.
  • the dielectric constant is measured by the capacitor test method. The specific results are shown in Table 1.
  • the surface of the nano-zirconia containing specific groups in the aqueous dispersion contains substituted siloxy groups, ⁇ , ⁇ -unsaturated ester groups, acyl groups, etc.
  • the nano-zirconia monomer dispersion provided by the present disclosure is mainly made of nano-zirconia containing specific groups on the surface, organic solvents, dispersants, monomer resins and other raw materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本公开提供了一种纳米氧化锆单体型分散液及其制备方法和光学膜,涉及氧化锆技术领域。该纳米氧化锆单体型分散液主要由表面含有特定基团的纳米氧化锆、有机溶剂、分散剂和单体树脂等原料制成,通过对所含特定基团具体种类的限定,以及在其与有机溶剂、分散剂和单体树脂的配合作用下,使得该纳米氧化锆单体型分散液具有高透光率,在波长为800nm下,透光率可超过50%;同时,由于该纳米氧化锆单体型分散液的介电常数与增韧型树脂的介电常数相近,可实现两者的均匀混合,为后续制备光学膜提供了基础。本公开还提供了上述纳米氧化锆单体型分散液的制备方法。

Description

纳米氧化锆单体型分散液及其制备方法和光学膜
相关申请的交叉引用
本申请要求于2022年03月21日提交中国专利局的申请号为202210274643.X、名称为“纳米氧化锆单体型分散液及其制备方法和光学膜”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及氧化锆技术领域,尤其是涉及一种纳米氧化锆单体型分散液及其制备方法和光学膜。
背景技术
随着现代信息科技的飞速发展,人们对高清液晶显示屏的需求日益增长,因此对液晶显示屏的光学膜材料(如氧化锆单体型分散液)的性能要求也越来越高,不仅要求此类材料具有较高的折射率和较低的粘度,还要求其具有较高的透光率,且在下游应用中与增韧型树脂混合后,具有良好的相容性,以制成清晰度较高的光学膜。
专利CN104559181B通过对氧化锆的溶剂型分散液进行改性,而后向改性后的溶剂型分散液中加入一定质量份的有机硅树脂和酮类或醚类分散助剂,再通过旋转蒸发的方式除去原溶剂,得到氧化锆的有机硅树脂组合物,最后用该组合物进行涂膜,再将该涂膜加热形成固化物膜。得到的分散液涂膜和固化物膜均具有较高的折射率和透光率。然而由于最终的树脂组合物中含有酮类或醚类溶剂,因此会存在一定的VOC排放,对环境造成一定影响。因此制备出不含溶剂的、高透光率的、且与树脂混合后具有良好相容性的纳米氧化锆单体型分散液至关重要。
有鉴于此,特提出本公开。
公开内容
本公开的目的包括提供一种纳米氧化锆单体型分散液及其制备方法,以解决上述技术问题中的至少一个。
为了实现上述目的中的至少一个目的,本公开的技术方案如下:
本公开提供了一种纳米氧化锆单体型分散液,主要由以下原料制成:
表面含有特定基团的纳米氧化锆、有机溶剂、分散剂和单体树脂;
其中,所述特定基团包括取代型硅氧基、α,β-不饱和酯基、酰卤基、乙醛基、乙酰基、丁醛基、苯基、苯甲酸基、苄基、丁基、戊基或庚基中的任意一种或至少两种的组合。
可选的,所述表面含有特定基团的纳米氧化锆以水分散液的形式存在,所述表面含有特定基团的纳米氧化锆在所述水分散液中的质量分数为5-40%。
可选的,所述有机溶剂包括有机酸类、低碳醇类、酯类、醚类、卤代烯烃类或酮类中的任意一种或至少两种的组合,优选包括有机酸类;
优选的,所述有机溶剂包括甲酸、乙酸、丙酸、甲醇、乙醇、丙醇、正丁醇、乙二醇、丙二醇、丙三醇、乙酸乙酯和乳酸乙酯、碳酸二甲酯、乙醚、正丁醚、三氯乙烯、二苯醚、丙酮、甲基乙基酮或甲基异丁基酮中的任意一种或至少两种的组合;
优选的,所述有机溶剂的质量为所述表面含有特定基团的纳米氧化锆质量的3-16倍。
可选的,所述分散剂包括牌号为BYK-106、DISPERBYK-110、DISPERBYK-2013、DISPERBYK-103或BYK-9076的分散剂中的任意一种或至少两种的组合;
优选的,所述分散剂的质量为所述表面含有特定基团的纳米氧化锆质量的2-10%。
可选的,所述单体树脂包括苯氧苄丙烯酸酯、联苯甲醇丙烯酸酯、丙烯酸苄基酯或邻苯基苯氧乙基丙烯酸酯中的任意一种或至少两种的组合;
优选的,所述单体树脂的质量为所述表面含有特定基团的纳米氧化锆质量的10-150%。
可选的,所述纳米氧化锆单体型分散液在波长为800nm下的透光率不小于50%。
可选的,所述纳米氧化锆单体型分散液能够与增韧型树脂以一定的比例混合后互溶;
所述纳米氧化锆单体型分散液和增韧型树脂的质量比为(1-19):1,优选为4:1。
可选的,所述增韧型树脂包括D100。
本公开还提供了上述纳米氧化锆单体型分散液的制备方法,包括如下步骤:
将表面含有特定基团的纳米氧化锆的水分散液和有机溶剂混合,然后进行浓缩以去除水分散液中的水且使得表面含有特定基团的纳米氧化锆分散于有机溶剂中,得到纳米氧化锆溶剂型分散液;
将纳米氧化锆溶剂型分散液与分散剂和单体树脂混合,然后将纳米氧化锆溶剂型分散液中的有机溶剂去除,得到纳米氧化锆单体型分散液。
本公开最后提供了一种光学膜,采用上述纳米氧化锆单体型分散液制得。
与现有技术相比,本公开具有如下有益效果:
(1)本公开提供了一种纳米氧化锆单体型分散液,主要由表面含有特定基团的纳米氧化锆、有机溶剂、分散剂和单体树脂等原料制成,通过对表面含有特定基团的纳米氧化锆表面所含特定基团具体种类的限定,以及在其与分散剂和单体树脂的配合作用下,使得该纳米氧化锆单体型分散液具有高透光率,在波长为800nm下,透光率可超过50%;同时,由于该纳米氧化锆单体型分散液的介电常数与增韧型树脂的介电常数相近,可实现两者的均匀混合,为后续制备光学膜提供了基础。
(2)本公开提供了一种纳米氧化锆单体型分散液的制备方法,先将表面含有特定基团的纳米氧化锆的水分散液和有机溶剂混合,利用浓缩将水分散液中的分散介质由水置换成有机溶剂,得到纳米氧化锆溶剂型分散液,然后将纳米氧化锆溶剂型分散液与分散剂和单体树脂混合,再将纳米氧化锆溶剂型分散液中的有机溶剂去除,得到纳米氧化锆单体型分散液;该制备方法操作简单,所采用的设备均为常规设备,安全性高,且可实现纳米氧化锆单体型分散液的稳定制备。
(3)本公开提供了一种光学膜,采用上述纳米氧化锆单体型分散液制得。鉴于上述纳米氧化锆单体型分散液所具有的优势,使得所制得的光学膜具有较高的清晰度。
具体实施方式
下面将结合实施方式和实施例对本公开的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施方式和实施例仅用于说明本公开,而不应视为限制本公开的范围。未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
根据本公开的第一个方面,提供了一种纳米氧化锆单体型分散液,主要由以下原料制成:
表面含有特定基团的纳米氧化锆、有机溶剂、分散剂和单体树脂;
其中,表面含有特定基团的纳米氧化锆上的特定基团包括取代型硅氧基、α,β-不饱和酯基、酰卤基、乙醛基、乙酰基、丁醛基、苯基、苯甲酸基、苄基、丁基、戊基或庚基中的任意一种或至少两种的组合。
在本公开中,表面含有特定基团的纳米氧化锆是指纳米氧化锆经过一定处理后其表面含有特定的基团。
通过对表面所含特定基团具体种类的限定,使得纳米氧化锆单体型分散液与增韧型树脂(例如D100)的介电常数差值在一定范围内。
有机溶剂主要是用于分散表面含有特定基团的纳米氧化锆。
分散剂的加入主要是使得表面含有特定基团的纳米氧化锆充分分散到单体树脂中,有利于纳米氧化锆单体型分散液分散性的提升。
单体树脂主要是用于分散表面含有特定基团的纳米氧化锆,其具体种类不作限定,但是前提是需要对表面含有特定基团的纳米氧化锆具有良好的分散能力。
本公开提供了一种纳米氧化锆单体型分散液,主要由表面含有特定基团的纳米氧化锆、有机溶剂、分散剂和单体树脂等原料制成,通过对表面含有特定基团的纳米氧化锆表面所含特定基团具体种类的限定,以及其与有机溶剂、分散剂和单体树脂的配合作用,使得该纳米氧化锆单体型分散液具有高透光率,在波长为800nm下,透光率可超过50%;同时,由于该纳米氧化锆单体型分散液的介电常数与增韧型树脂的介电常数相近,可实现两者的均匀混合,为后续制备光学膜提供了基础。
需要说明的是,本公开中的“包括”、“主要由……制成”意指其除所述原料外,可以包括其它原料,这些原料赋予所述纳米氧化锆单体型分散液不同的特性。除此之外,本公开所述的“包括”、“主要由……制成”还可以替换为封闭式的“为”或“由……制成”。
作为本公开的一种可选实施方式,表面含有特定基团的纳米氧化锆以水分散液的形式存在,表面含有特定基团的纳米氧化锆在水分散液中的质量分数为5-40%
表面含有特定基团的纳米氧化锆在水分散液中典型但非限制性的质量分数为5%、8%、10%、12%、15%、18%、20%、22%、25%、28%、30%、32%、35%、38%或40%。
通过对表面含有特定基团的纳米氧化锆质量分数的进一步限定,使得分散介质可以从水充分置换为有机溶剂。
作为本公开的一种可选实施方式,有机溶剂包括有机酸类、低碳醇类、酯类、醚类、卤代烯烃类或酮类中的任意一种或至少两种的组合,优选包括有机酸类。
作为本公开的一种可选实施方式,有机溶剂包括甲酸、乙酸、丙酸、甲醇、乙醇、丙醇、正丁醇、乙二醇、丙二醇、丙三醇、乙酸乙酯和乳酸乙酯、碳酸二甲酯、乙醚、正丁醚、三氯乙烯、二苯醚、丙酮、甲基乙基酮或甲基异丁基酮中的任意一种或至少两种的组合。
作为本公开的一种可选实施方式,有机溶剂的质量为表面含有特定基团的纳米氧化锆质量的3-16倍。
有机溶剂的质量为表面含有特定基团的纳米氧化锆质量典型但非限制性的倍数为3倍、5倍、6倍、8倍、10倍、12倍、14倍、15倍或16倍。
通过对有机溶剂具体种类和用量的限定,使得其对于表面含有特定基团的纳米氧化锆具有良好的分散能力。
对于分散剂的具体种类以及用量有进一步优化。作为本公开的一种可选实施方式,分散剂包括牌号为BYK-106、DISPERBYK-110、DISPERBYK-2013、DISPERBYK-103或BYK-9076的分散剂中的任意一种或至少两种的组合。
对于分散剂的用量,作为本公开的一种可选实施方式,分散剂的质量为表面含有特定基团的纳米氧化锆质量的2-10%。
分散剂占表面含有特定基团的纳米氧化锆典型但非限制性的质量分数为2%、3%、4%、5%、6%、7%、8%、9%或10%。
通过对分散剂具体种类以及用量的限定,使得单体型分散液具有较高的透光性。
对于单体树脂的具体种类以及用量也有进一步优化。
作为本公开的一种可选实施方式,单体树脂包括苯氧苄丙烯酸酯(PBA)、联苯甲醇丙烯酸酯(BPMA)、丙烯酸苄基酯(BZA)或邻苯基苯氧乙基丙烯酸酯(OPPEA)中的任意一种或至少两种的组合。
作为本公开的一种可选实施方式,单体树脂的质量为表面含有特定基团的纳米氧化锆质量的10%-150%。
单体树脂的质量为表面含有特定基团的纳米氧化锆质量典型但非限制性的质量分数为10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、70%、80%、90%、100%、110%、120%、130%、140%或150%。
作为本公开的一种可选实施方式,纳米氧化锆单体型分散液在波长为800nm下的透光率不小于50%。
作为本公开的一种可选实施方式,纳米氧化锆单体型分散液能够与增韧型树脂以一定的比例混合后均匀互溶;
纳米氧化锆单体型分散液和增韧型树脂的质量比为(1-19):1,优选为4:1。
纳米氧化锆单体型分散液和增韧型树脂典型但非限制性的质量比1:1、2:1、3:1、4:1、5:1、6:1、8:1、10:1、12:1、13:1、14:1、15:1、16:1、18:1或19:1。
作为本公开的一种可选实施方式,增韧型树脂包括D100。
根据本公开的第二个方面,还提供了上述纳米氧化锆单体型分散液的制备方法,包括如下步骤:
将表面含有特定基团的纳米氧化锆的水分散液和有机溶剂混合,然后进行浓缩以去除水分散液中的水且使得表面含有特定基团的纳米氧化锆分散于有机溶剂中,得到纳米氧化锆溶剂型分散液;
将纳米氧化锆溶剂型分散液与分散剂和单体树脂混合,然后将纳米氧化锆溶剂型分散液中的有机溶剂去除,得到纳米氧化锆单体型分散液。
该制备方法操作简单,所采用的设备均为常规设备,安全性高。
作为本公开的一种可选实施方式,浓缩的方式为旋转蒸发。
作为本公开的一种可选实施方式,有机溶剂的去除方式为旋转蒸发。
根据本公开的第三个方面,还提供了一种光学膜,采用上述纳米氧化锆单体型分散液制得。
鉴于上述纳米氧化锆单体型分散液所具有的优势,使得所制得的光学膜具有较高的清晰度。
下面结合实施例和对比例对本公开提供的技术方案做进一步的描述。其中,原料中的表面含有特定基团的纳米氧化锆不限厂家和牌号,只要其表面含有本公开限定的几种基团均可。
实施例1
本实施例提供了一种纳米氧化锆单体型分散液,主要由以下原料制成:
表面含有特定基团的纳米氧化锆的水分散液、有机溶剂、分散剂和单体树脂;
其中,表面含有特定基团的纳米氧化锆的水分散液主要由表面含有特定基团的纳米氧化锆和水制成,表面含有特定基团的纳米氧化锆表面所含特定基团为取代型硅氧基,具体为
Figure PCTCN2022119080-appb-000001
表面含有特定基团的纳米氧化锆在水分散液中的质量分数为27.4%;有机溶剂为乙酸,有机溶剂的用量为水分散液中表面含有特定基团的纳米氧化锆质量的7倍;
分散剂为BYK-106,分散剂为水分散液中表面含有特定基团的纳米氧化锆质量的5%;单体树脂为PBA,单体树脂的用量为水分散液中表面含有特定基团的纳米氧化锆质量的60%。
本实施例提供的纳米氧化锆单体型分散液的制备方法,包括以下步骤:
(a)取表面含有特定基团的纳米氧化锆的水分散液300g,加入有机溶剂(表面含有特 定基团的纳米氧化锆质量的3倍),利用旋转蒸发器进行浓缩换相;第一次换相结束后继续加入有机溶剂(表面含有特定基团的纳米氧化锆质量的4倍),同样利用旋转蒸发器进行浓缩换相,得到纳米氧化锆溶剂型分散液,纳米氧化锆溶剂型分散液中表面含有特定基团的纳米氧化锆的浓度为25%;
(b)向纳米氧化锆溶剂型分散液中加入分散剂(表面含有特定基团的纳米氧化锆质量的5%)和单体树脂(表面含有特定基团的纳米氧化锆质量的60%),通过旋转蒸发器除去有机溶剂,得到纳米氧化锆单体型分散液。
实施例2
本实施例提供了一种纳米氧化锆单体型分散液,除了水分散液中表面含有特定基团的纳米氧化锆表面所含特定基团为α,β-不饱和酯基,具体为CH 2=CHCOO-,其余原料组成、用量以及制备方法与实施例1相同。
实施例3
本实施例提供了一种纳米氧化锆单体型分散液,除了水分散液中表面含有特定基团的纳米氧化锆表面所含特定基团为酰氯基,其余原料组成、用量以及制备方法与实施例1相同。
实施例4
本实施例提供了一种纳米氧化锆单体型分散液,除了水分散液中表面含有特定基团的纳米氧化锆表面所含特定基团为乙醛基,其余原料组成、用量以及制备方法与实施例1相同。
实施例5
本实施例提供了一种纳米氧化锆单体型分散液,除了水分散液中表面含有特定基团的纳米氧化锆表面所含特定基团为乙酰基,其余原料组成、用量以及制备方法与实施例1相同。
实施例6
本实施例提供了一种纳米氧化锆单体型分散液,除了水分散液中表面含有特定基团的纳米氧化锆表面所含特定基团为丁醛基,其余原料组成、用量以及制备方法与实施例1相同。
实施例7
本实施例提供了一种纳米氧化锆单体型分散液,除了水分散液中表面含有特定基团的纳米氧化锆表面所含特定基团为苯基,其余原料组成、用量以及制备方法与实施例1相同。
实施例8
本实施例提供了一种纳米氧化锆单体型分散液,除了水分散液中表面含有特定基团的纳米氧化锆表面所含特定基团为苯甲酸基,其余原料组成、用量以及制备方法与实施例1相同。
实施例9
本实施例提供了一种纳米氧化锆单体型分散液,除了水分散液中表面含有特定基团的纳米氧化锆表面所含特定基团为苄基,其余原料组成、用量以及制备方法与实施例1相同。
实施例10
本实施例提供了一种纳米氧化锆单体型分散液,除了水分散液中表面含有特定基团的纳米氧化锆表面所含特定基团为丁基,其余原料组成、用量以及制备方法与实施例1相同。
实施例11
本实施例提供了一种纳米氧化锆单体型分散液,除了水分散液中表面含有特定基团的纳米氧化锆表面所含特定基团为戊基,其余原料组成、用量以及制备方法与实施例1相同。
实施例12
本实施例提供了一种纳米氧化锆单体型分散液,除了水分散液中表面含有特定基团的纳米氧化锆表面所含特定基团为庚基,其余原料组成、用量以及制备方法与实施例1相同。
实施例13
本实施例提供了一种纳米氧化锆单体型分散液,除了单体树脂为BPMA,其余原料组成、用量以及制备方法与实施例1相同。
实施例14
本实施例提供了一种纳米氧化锆单体型分散液,主要由以下原料制成:
表面含有特定基团的纳米氧化锆的水分散液、有机溶剂、分散剂和单体树脂;
其中,表面含有特定基团的纳米氧化锆的水分散液主要由表面含有特定基团的纳米氧化锆和水制成,表面含有特定基团的纳米氧化锆表面所含特定基团为取代型硅氧基,具体为
Figure PCTCN2022119080-appb-000002
表面含有特定基团的纳米氧化锆在水分散液中的质量分数为21.6%;有机溶剂为甲基乙基酮,有机溶剂的用量为水分散液中表面含有特定基团的纳米氧化锆质量的10倍;
分散剂为DISPERBYK-103,分散剂的用量为水分散液中表面含有特定基团的纳米氧化锆质量的3%;单体树脂为OPPEA,单体树脂的用量为水分散液中表面含有特定基团的纳米氧化锆质量的65%。
本实施例提供的纳米氧化锆单体型分散液的制备方法与实施例1相同。
对比例1
本对比例提供了一种纳米氧化锆单体型分散液,除了水分散液中表面含有特定基团的纳米氧化锆表面所含基团为甲酰胺基,其余原料组成、用量以及制备方法与实施例1相同。
对比例2
本对比例提供了一种纳米氧化锆单体型分散液,除了水分散液中表面含有特定基团的纳米氧化锆表面所含基团为丁烯基,其余原料组成、用量以及制备方法与实施例1相同。
对比例3
本对比例提供了一种纳米氧化锆单体型分散液,除了水分散液中表面含有特定基团的纳米氧化锆表面所含基团为硫氰酸甲基,其余原料组成、用量以及制备方法与实施例1相同。
对比例4
本对比例提供了一种纳米氧化锆单体型分散液,除了水分散液中表面含有特定基团的纳米氧化锆表面所含基团为亚硝基,其余原料组成、用量以及制备方法与实施例1相同。
对比例5
本对比例提供了一种纳米氧化锆单体型分散液,除了水分散液中表面含有特定基团的纳米氧化锆表面所含基团为辛基,其余原料组成、用量以及制备方法与实施例1相同。
对比例6
本对比例提供了一种纳米氧化锆单体型分散液,除了原料和制备方法中未添加分散剂,其余原料组成、用量与实施例1相同。
为了比较各实施例和对比例的技术效果,特设以下实验例。
实验例
对各实施例和对比例提供的纳米氧化锆单体型分散液在800nm波长下的透光率和介电常数进行检测,对比纳米氧化锆单体型分散液与树脂D100的介电常数差别,得到其差值,并考察纳米氧化锆单体型分散液与单体树脂D100的相容性。
其中,透光率通过紫外可见分光光度计检测得到。
介电常数(ε)指当介质在外加电场下会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场的比值为介电常数。通过物质的介电常数可以判别其极性。通常,介电常数大于3.6的物质为极性物质;介电常数在2.8~3.6范围内的物质为弱极性物质;介电常数小于2.8为非极性物质。由相似相溶原理的一般推论可知,极性相近的物质更容易互溶,由此可知,介电常数相近的物质也更容易互溶。在本公开涉及的有机-无机体系中, 当两种物质的介电常数相差小于20时,二者互溶,可以满足下游应用;当两种物质的介电常数相差大于74.9时,二者不互溶。
介电常数通过电容器测试法测得。具体结果如表1所示。
表1
Figure PCTCN2022119080-appb-000003
Figure PCTCN2022119080-appb-000004
从表1中数据可以看到,本公开实施例1-14中,水分散液中表面含有特定基团的纳米氧化锆表面分别含有取代型硅氧基、α,β-不饱和酯基、酰卤基、乙醛基、乙酰基、丁醛基、苯基、苯甲酸基、苄基、丁基、戊基或庚基中的一种,因此得到的单体型分散液透光率较高,均在50%以上,其介电常数与D100的差值均小于20,二者可以均匀互溶。而对比例1-5中,水分散液中由于表面含有特定基团的纳米氧化锆表面不含有本公开所限定的这几类基团,因此得到的单体型分散液的透光率均小于50%,最低的透光率仅为10%,其介电常数与D100相差很大,均大于74.9,将其与D100混合后会析出大颗粒。对比例6中,由于未使用分散剂,得到的单体型分散液在透光性和与D100的互溶效果均未达到预期。
尽管已用具体实施例来说明和描述了本公开,然而应意识到,在不背离本公开的精神和范围的情况下可以作出许多其它的更改和修改。因此,这意味着在所附权利要求中包括属于本公开范围内的所有这些变化和修改。
工业实用性
本公开提供的纳米氧化锆单体型分散液,主要由表面含有特定基团的纳米氧化锆、有机溶剂、分散剂和单体树脂等原料制成,通过对表面含有特定基团的纳米氧化锆表面所含特定基团具体种类的限定,以及在其与分散剂和单体树脂的配合作用下,使得该纳米氧化锆单体型分散液具有高透光率,在波长为800nm下,透光率可超过50%;同时,由于该纳米氧化锆单体型分散液的介电常数与增韧型树脂的介电常数相近,可实现两者的均匀混合,为后续制备光学膜提供了基础。

Claims (16)

  1. 一种纳米氧化锆单体型分散液,其特征在于,主要由以下原料制成:
    表面含有特定基团的纳米氧化锆、有机溶剂、分散剂和单体树脂;
    其中,所述特定基团包括取代型硅氧基、α,β-不饱和酯基、酰卤基、乙醛基、乙酰基、丁醛基、苯基、苯甲酸基、苄基、丁基、戊基或庚基中的任意一种或至少两种的组合。
  2. 根据权利要求1所述的纳米氧化锆单体型分散液,其特征在于,所述表面含有特定基团的纳米氧化锆以水分散液的形式存在,所述表面含有特定基团的纳米氧化锆在所述水分散液中的质量分数为5-40%。
  3. 根据权利要求1所述的纳米氧化锆单体型分散液,其特征在于,所述有机溶剂包括有机酸类、低碳醇类、酯类、醚类、卤代烯烃类或酮类中的任意一种或至少两种的组合。
  4. 根据权利要求3所述的纳米氧化锆单体型分散液,其特征在于,所述有机溶剂包括有机酸类。
  5. 根据权利要求3所述的纳米氧化锆单体型分散液,其特征在于,所述有机溶剂包括甲酸、乙酸、丙酸、甲醇、乙醇、丙醇、正丁醇、乙二醇、丙二醇、丙三醇、乙酸乙酯和乳酸乙酯、碳酸二甲酯、乙醚、正丁醚、三氯乙烯、二苯醚、丙酮、甲基乙基酮或甲基异丁基酮中的任意一种或至少两种的组合。
  6. 根据权利要求3所述的纳米氧化锆单体型分散液,其特征在于,所述有机溶剂的质量为所述表面含有特定基团的纳米氧化锆质量的3-16倍。
  7. 根据权利要求1所述的纳米氧化锆单体型分散液,其特征在于,所述分散剂包括牌号为BYK-106、DISPERBYK-110、DISPERBYK-2013、DISPERBYK-103或BYK-9076的分散剂中的任意一种或至少两种的组合。
  8. 根据权利要求7所述的纳米氧化锆单体型分散液,其特征在于,所述分散剂的质量为所述表面含有特定基团的纳米氧化锆质量的2-10%。
  9. 根据权利要求1所述的纳米氧化锆单体型分散液,其特征在于,所述单体树脂包括苯氧苄丙烯酸酯、联苯甲醇丙烯酸酯、丙烯酸苄基酯或邻苯基苯氧乙基丙烯酸酯中的任意一种或至少两种的组合。
  10. 根据权利要求9所述的纳米氧化锆单体型分散液,其特征在于,所述单体树脂的质量为所述表面含有特定基团的纳米氧化锆质量的10-150%。
  11. 根据权利要求1-10任一项所述的纳米氧化锆单体型分散液,其特征在于,所述纳米氧化锆单体型分散液在波长为800nm下的透光率不小于50%。
  12. 根据权利要求1-10任一项所述的纳米氧化锆单体型分散液,其特征在于,所述纳米氧化锆单体型分散液能够与增韧型树脂以一定的比例混合后均匀互溶;
    所述纳米氧化锆单体型分散液和增韧型树脂的质量比为(1-19):1。
  13. 根据权利要求12所述的纳米氧化锆单体型分散液,其特征在于,所述纳米氧化锆单体型分散液和增韧型树脂的质量比为4:1。
  14. 根据权利要求12所述的纳米氧化锆单体型分散液,其特征在于,所述增韧型树脂包括D100。
  15. 权利要求1-14任一项所述的纳米氧化锆单体型分散液的制备方法,其特征在于,包括如下步骤:
    将表面含有特定基团的纳米氧化锆的水分散液和有机溶剂混合,然后进行浓缩以去除水分散液中的水且使得表面含有特定基团的纳米氧化锆分散于有机溶剂中,得到纳米氧化锆溶剂型分散液;
    将纳米氧化锆溶剂型分散液与分散剂和单体树脂混合,然后将纳米氧化锆溶剂型分散液中的有机溶剂去除,得到纳米氧化锆单体型分散液。
  16. 一种光学膜,其特征在于,采用权利要求1-14任一项所述的纳米氧化锆单体型分散液制得。
PCT/CN2022/119080 2022-03-21 2022-09-15 纳米氧化锆单体型分散液及其制备方法和光学膜 WO2023178945A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210274643.X 2022-03-21
CN202210274643.XA CN114479547A (zh) 2022-03-21 2022-03-21 纳米氧化锆单体型分散液及其制备方法和光学膜

Publications (1)

Publication Number Publication Date
WO2023178945A1 true WO2023178945A1 (zh) 2023-09-28

Family

ID=81488258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119080 WO2023178945A1 (zh) 2022-03-21 2022-09-15 纳米氧化锆单体型分散液及其制备方法和光学膜

Country Status (2)

Country Link
CN (1) CN114479547A (zh)
WO (1) WO2023178945A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114479547A (zh) * 2022-03-21 2022-05-13 山东国瓷功能材料股份有限公司 纳米氧化锆单体型分散液及其制备方法和光学膜
CN114736628B (zh) * 2022-05-07 2024-01-26 山东国瓷功能材料股份有限公司 氧化锆树脂型分散液、uv固化胶水及其制备方法和应用
CN114989637A (zh) * 2022-05-31 2022-09-02 山东国瓷功能材料股份有限公司 功能化氧化锆及其制备方法和光学薄膜

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08238683A (ja) * 1995-03-06 1996-09-17 Shin Etsu Chem Co Ltd ハードコーティング剤及びハードコート膜が形成された物品
JP2005161111A (ja) * 2003-11-28 2005-06-23 Jsr Corp ジルコニア粒子分散液、その製造方法及び光硬化性組成物
JP2014094850A (ja) * 2012-11-08 2014-05-22 Sumitomo Osaka Cement Co Ltd 表面修飾金属酸化物微粒子、それを含有する分散液、樹脂組成物、複合体及び光学部材
JP2016079050A (ja) * 2014-10-10 2016-05-16 住友大阪セメント株式会社 有機酸含有ジルコニア微粒子分散液、表面修飾ジルコニア微粒子分散液及びその製造方法、樹脂複合組成物
CN107406530A (zh) * 2015-02-25 2017-11-28 Dic株式会社 固化性组合物和其固化物、及光学构件
CN113493222A (zh) * 2020-04-01 2021-10-12 凯斯科技股份有限公司 具有高透明度的无机氧化物纳米粒子分散液及由其制备的光学薄膜和用于显示器的部件
CN113773691A (zh) * 2021-09-13 2021-12-10 山东国瓷功能材料股份有限公司 纳米氧化锆分散液、其制备方法及所得单体分散液和光学膜
CN114479547A (zh) * 2022-03-21 2022-05-13 山东国瓷功能材料股份有限公司 纳米氧化锆单体型分散液及其制备方法和光学膜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08238683A (ja) * 1995-03-06 1996-09-17 Shin Etsu Chem Co Ltd ハードコーティング剤及びハードコート膜が形成された物品
JP2005161111A (ja) * 2003-11-28 2005-06-23 Jsr Corp ジルコニア粒子分散液、その製造方法及び光硬化性組成物
JP2014094850A (ja) * 2012-11-08 2014-05-22 Sumitomo Osaka Cement Co Ltd 表面修飾金属酸化物微粒子、それを含有する分散液、樹脂組成物、複合体及び光学部材
JP2016079050A (ja) * 2014-10-10 2016-05-16 住友大阪セメント株式会社 有機酸含有ジルコニア微粒子分散液、表面修飾ジルコニア微粒子分散液及びその製造方法、樹脂複合組成物
CN107406530A (zh) * 2015-02-25 2017-11-28 Dic株式会社 固化性组合物和其固化物、及光学构件
CN113493222A (zh) * 2020-04-01 2021-10-12 凯斯科技股份有限公司 具有高透明度的无机氧化物纳米粒子分散液及由其制备的光学薄膜和用于显示器的部件
CN113773691A (zh) * 2021-09-13 2021-12-10 山东国瓷功能材料股份有限公司 纳米氧化锆分散液、其制备方法及所得单体分散液和光学膜
CN114479547A (zh) * 2022-03-21 2022-05-13 山东国瓷功能材料股份有限公司 纳米氧化锆单体型分散液及其制备方法和光学膜

Also Published As

Publication number Publication date
CN114479547A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2023178945A1 (zh) 纳米氧化锆单体型分散液及其制备方法和光学膜
WO2023035821A1 (zh) 纳米氧化锆分散液、其制备方法及所得单体分散液和光学膜
TWI303746B (en) Anti-reflective coating composition and coating film with excellent stain resistance
KR100195774B1 (ko) 플라스틱 광학제품
TW571114B (en) Optical element having antireflection film
JP3201654B2 (ja) コーティング組成物
TW200906943A (en) Cellulose esters with a high hydroxyl content and their use in liquid crystal displays
TWI361902B (en) Coating compositions having a superior high adhesive strength on cycloolefin polymer films and cycloolefin polymer films comprising coating layer manufactured by using the same
TW200905329A (en) Retardation film, polarizing plate, liquid crystal display device, and method for production of retardation film
TW200948912A (en) Dispersion liquid, composition for forming a transparent conductive film, transparent conductive film and display device
JP2000017099A (ja) 薄膜及びそれを利用した反射防止膜
TW200946597A (en) Organic-inorganic complex resin composition adapted for protection layer
CN1090084C (zh) 防雾和防反射的光学制品
JPWO2013065696A1 (ja) 金属酸化物被膜用塗布液の製造方法、金属酸化物被膜用塗布液及び金属酸化物被膜
JP3726241B2 (ja) プラスチック光学物品とその製造方法
WO2023216486A1 (zh) 氧化锆树脂型分散液、uv固化胶水及其制备方法和应用
JP4362032B2 (ja) 反射防止膜を有する光学部材及びその製造方法
WO2023216487A1 (zh) 可光固化的纳米氧化锆分散液及其制备方法、光学膜
JPH06105321B2 (ja) 透明被覆複合体
JP2629813B2 (ja) 低反射透明成形体
TWI225085B (en) Coating composition
JP3334261B2 (ja) カラーフィルター
TW201435488A (zh) 無機氧化物被膜形成用塗佈液、無機氧化物被膜及顯示裝置
JPS61276882A (ja) フオトクロミツク積層体
JP2000212480A (ja) 赤外線吸収性ハ―ドコ―ト被膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932997

Country of ref document: EP

Kind code of ref document: A1