WO2023035284A1 - 天冬氨酸二乙酸钠及其制备方法 - Google Patents

天冬氨酸二乙酸钠及其制备方法 Download PDF

Info

Publication number
WO2023035284A1
WO2023035284A1 PCT/CN2021/118311 CN2021118311W WO2023035284A1 WO 2023035284 A1 WO2023035284 A1 WO 2023035284A1 CN 2021118311 W CN2021118311 W CN 2021118311W WO 2023035284 A1 WO2023035284 A1 WO 2023035284A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
acid
preparation
glycine
aspartic acid
Prior art date
Application number
PCT/CN2021/118311
Other languages
English (en)
French (fr)
Inventor
欧敏
梅龙毅
Original Assignee
合肥艾普拉斯环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥艾普拉斯环保科技有限公司 filed Critical 合肥艾普拉斯环保科技有限公司
Priority to EP21956461.4A priority Critical patent/EP4361125A1/en
Publication of WO2023035284A1 publication Critical patent/WO2023035284A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/04Formation of amino groups in compounds containing carboxyl groups
    • C07C227/06Formation of amino groups in compounds containing carboxyl groups by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid
    • C07C227/08Formation of amino groups in compounds containing carboxyl groups by addition or substitution reactions, without increasing the number of carbon atoms in the carbon skeleton of the acid by reaction of ammonia or amines with acids containing functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/14Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof
    • C07C227/18Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters

Definitions

  • the disclosure relates to the technical field of compounds, in particular, to sodium aspartate diacetate and a preparation method thereof.
  • Common chelating agents in the related art mainly include phosphates, hydroxycarboxylic acids, aminocarboxylic acids and polymers containing carboxylic acids; wherein, although the chelating effect of phosphates is better, phosphorus-containing causes great pollution to the environment. Most of them are sodium tripolyphosphate (STPP), but they gradually fade out of the market amid calls for phosphorus restriction and prohibition; hydroxycarboxylic acids mainly include sodium gluconate, sodium citrate, etc., and their chelating properties for general metal ions are relatively low. Poor, cost-effective; acrylic polymers are high-molecular chelating agents, which not only have chelating ability, but also have thickening and flocculating effects.
  • STPP sodium tripolyphosphate
  • acrylic polymers are high-molecular chelating agents, which not only have chelating ability, but also have thickening and flocculating effects.
  • EDTA ethylenediaminetetraacetic acid
  • HEDTA hydroxyethylethylenediaminetriacetic acid
  • DTPA diethylenetriaminepentaacetic acid
  • NTA nitrilotriacetic acid
  • IDS iminodisuccinic acid
  • GLDA glutamic acid diacetic acid
  • MGDA methylglycine diacetic acid
  • EDTA is not easily biodegradable (OECD)
  • NTA has potential carcinogenicity
  • IDS has low performance in chelating metals.
  • the related art provides a biodegradable environment-friendly chelating agent, sodium aspartic acid diacetate (ASDA, L-aspartic acid N, N-diacetic acid tetrasodium salt or Tetrasodium dicarboxymethy-l aspartate).
  • ASDA sodium aspartic acid diacetate
  • L-aspartic acid N L-aspartic acid N, N-diacetic acid tetrasodium salt or Tetrasodium dicarboxymethy-l aspartate
  • the purpose of the present disclosure is to provide sodium aspartate diacetate and a preparation method thereof; wherein, the preparation method of sodium aspartate diacetate has low cost, high yield and few by-products.
  • the present disclosure provides a method for preparing sodium aspartate diacetate, comprising:
  • At least one of maleic anhydride, maleic acid and fumaric acid is hydrolyzed, specifically comprising:
  • At least one of maleic anhydride, maleic acid and fumaric acid is mixed with at least one of water, methanol, ethanol and isopropanol, and then the alkali solution is added dropwise.
  • the temperature during the dropwise addition of the alkali solution is controlled at -40°C to 80°C.
  • At least one of maleic anhydride, maleic acid and fumaric acid is hydrolyzed at a temperature of 0°C to 75°C.
  • the hydrolyzed salt solution is subjected to Michael addition with glycine, specifically comprising:
  • glycine and alkali solution are added to the hydrolyzed salt solution, specifically comprising:
  • glycine and alkali solution are added to the hydrolyzed salt solution, specifically comprising:
  • the hydrolyzed salt solution is subjected to Michael addition reaction with glycine, and then catalyzed with chloroacetic acid, specifically comprising:
  • the chloroacetic acid of equimolar quantity and the alkali solution of equimolar quantity of at least one raw material in maleic anhydride, maleic acid and fumaric acid are added dropwise to the hydrolyzed salt solution and glycine to carry out Michael addition. into the solution after the reaction.
  • the alkaline solution includes at least one of lithium hydroxide solution, sodium hydroxide solution and potassium hydroxide solution.
  • the present disclosure provides sodium aspartate diacetate, which is prepared by the preparation method of sodium aspartate diacetate in any one of the foregoing embodiments.
  • the preparation method of sodium aspartic acid diacetate includes: hydrolyzing at least one of maleic anhydride, maleic acid and fumaric acid to obtain a hydrolyzed salt solution;
  • the salt solution carries out Michael addition reaction with glycine, and then carries out catalytic reaction with chloroacetic acid. Because the sources of maleic anhydride, maleic acid, fumaric acid, glycine and chloroacetic acid are wide and the cost is low, so the preparation cost can be effectively reduced; since the reaction process includes hydrolysis, Michael addition reaction and catalytic reaction are easy to operate, The yield is high, and no toxic by-products are produced in the reaction process, the safety is high, and the method is environmentally friendly.
  • the sodium aspartate diacetate provided in the embodiment of the present disclosure is prepared by the aforementioned preparation method, and has good chelating performance, high safety, and is environmentally friendly.
  • Fig. 1 is the biodegradability detection result figure that the ASDA prepared in Example 1 of the present disclosure is tested in a stable sewage environment;
  • Fig. 2 is the comparison chart of the solubility in water of ASDA prepared in Example 1 of the present disclosure at different pH values;
  • Example 3 is a graph showing the solubility test results of ASDA prepared in Example 1 of the present disclosure in concentrated sodium hydroxide solution;
  • Fig. 5 is the comparison chart of the chelating ability of ASDA prepared in Example 1 of the present disclosure and other chelating agents under the same conditions;
  • Fig. 6 is a comparison chart of the efficiency of removing calcium carbonate scale between ASDA prepared in Example 1 of the present disclosure and other amino polychelating agents.
  • the preparation method of sodium aspartic acid diacetate (ASDA, L-aspartic acid N, N-diacetic acid tetrasodium salt or Tetrasodium dicarboxymethy-l aspartate) provided by the related art, for example: utilize L-aspartic acid as raw material preparation, It is easy to produce a large amount of by-products, and it is easy to affect the chelating performance of the product, which limits its industrialization; or, there is also a method to use amino acid, hydrocyanic acid, and formaldehyde to carry out the Strecker reaction method to produce ASDA.
  • the raw materials are highly toxic and difficult to store. 1. Increase the pressure on safety and environmental protection during use. At the same time, the reaction process is accompanied by a large number of by-products, which are difficult to separate, which greatly limits the application and industrialization of the product.
  • the disclosure provides a preparation method of sodium aspartate diacetate, which has low cost, high yield and few by-products.
  • the preparation method of sodium aspartic acid diacetate comprises: hydrolyzing at least one of maleic anhydride, maleic acid and fumaric acid to obtain a hydrolyzed salt solution; Carry out Michael addition reaction with glycine, then carry out catalytic reaction with chloroacetic acid. Because the sources of maleic anhydride, maleic acid, fumaric acid, glycine and chloroacetic acid are wide and the cost is low, so the preparation cost can be effectively reduced; since the reaction process includes hydrolysis, Michael addition reaction and catalytic reaction are easy to operate, The yield is high, and no toxic by-products are produced in the reaction process, the safety is high, and the method is environmentally friendly.
  • the sodium aspartate diacetate prepared by the disclosed method has good chelating performance, high safety and is environmentally friendly.
  • Hydrolyzing at least one of maleic anhydride, maleic acid and fumaric acid specifically includes: mixing at least one of maleic anhydride, maleic acid and fumaric acid with water, methanol, ethanol and Mix at least one of the isopropanols, and add the alkali solution dropwise.
  • the temperature during the dropwise addition of the alkali solution is controlled at -40 to 80°C; after the dropwise addition, stir for a period of time for later use.
  • hydrolysis temperature of at least one of maleic anhydride, maleic acid and fumaric acid is 0°C to 75°C.
  • the quality of potassium iodide can account for 0.01-10% of one or more mixtures of maleic anhydride, maleic acid and fumaric acid, or the quality of potassium iodide can also account for maleic anhydride, maleic acid and fumaric acid.
  • One or more mixtures of olefinic acid and fumaric acid, and 0.01%-10% of one or more mixtures of water, methanol, ethanol and isopropanol, etc., are not specifically limited here.
  • reaction temperature of the hydrolyzed salt solution is greater than 100°C after adding glycine and alkali solution, it is necessary to lower the temperature to 45°C-100°C after the reaction and then add potassium iodide for the reaction.
  • Glycine and alkali solutions are added to the hydrolyzed salt solution, consisting of:
  • the glycine and the alkali solution After mixing the glycine and the alkali solution, they are added dropwise to the hydrolyzed salt solution; or, the glycine and the alkali solution are simultaneously added to the hydrolyzed salt solution.
  • the preparation method of sodium aspartic acid diacetate disclosed in the present disclosure when using chloroacetic acid to catalyze the reaction, specifically includes chloroacetic acid in an equimolar amount with at least one raw material in maleic anhydride, maleic acid and fumaric acid and an alkali solution in an equimolar amount are simultaneously added dropwise to the solution after the Michael addition reaction of the hydrolyzed salt solution and glycine.
  • the pH is controlled at 6-12 during the above reaction, and after the dropwise addition is completed, the reaction is incubated for 2-24 hours.
  • the temperature of the heat preservation reaction is approximately 45°C-100°C.
  • the alkali solution in the present disclosure includes at least one of lithium hydroxide solution, sodium hydroxide solution and potassium hydroxide solution; further, the mass concentration of the alkali solution can be 30%-50%, that is, lithium hydroxide solution, hydrogen The mass concentration of at least one of the sodium oxide solution and the potassium hydroxide solution is 30%-50%.
  • the reaction formula of the preparation method of sodium aspartate diacetate provided by the present disclosure includes:
  • the preparation method of sodium aspartic acid diacetate uses at least one raw material in maleic anhydride, maleic acid and fumaric acid to produce maleic acid salt after hydrolysis and neutralization reaction, maleic acid After the addition reaction of alkene salt and glycine Michael, it continues to catalyze and replace with chloroacetic acid to generate a biodegradable chelate, sodium aspartic acid diacetate (ASDA); sodium aspartic acid diacetate (ASDA) Calcium, magnesium, iron, copper and other metals show a particularly good chelating performance in comprehensive performance; in addition, the sodium aspartic acid diacetate (ASDA) prepared by the preparation method of the present disclosure can In addition to their high solubility, they also have excellent storage stability.
  • ASDA sodium aspartic acid diacetate
  • the ASDA production method provided by the present disclosure is a process completely using water as the system, the reaction conditions are mild, and there is basically no waste during production.
  • the preparation method of sodium aspartic acid diacetate provided by the disclosure is simple in operation, stable in process, good in product quality and performance, has huge application prospects and market economic benefits, and is environmentally friendly at the same time.
  • ASDA is a colorless and transparent liquid at room temperature.
  • the anions of ASDA can form a coordination geometry structure with metal cations. It has a strong chelating ability for calcium, magnesium, iron, copper and other transition metal ions. The cost performance has greatly exceeded that of EDTA.
  • ASDA has a high dispersion ability, and it may be more effective when used in conjunction with other chelating dispersants.
  • the biodegradability of sodium aspartic acid diacetate (ASDA) prepared by the preparation method provided in Example 1 is detected, and the detection is carried out by a third-party testing organization, adopting the OECD 301B standard, and the 28-day biodegradability of ASDA in sewage The degradability is over 60%, see Figure 1 for details.
  • ASDA sodium aspartate diacetate
  • ASDA sodium aspartate diacetate
  • ASDA sodium aspartic acid diacetate
  • ASDA sodium aspartic acid diacetate
  • ASDA sodium aspartic acid diacetate
  • the preparation method of sodium aspartic acid diacetate of the present disclosure can prepare sodium aspartic acid oxalate with good chelating performance, high safety, and environmental friendliness, and the preparation method of the present disclosure
  • the source of raw materials is wide and the cost is low, so the preparation cost can be effectively reduced; because the reaction process includes hydrolysis, Michael addition reaction and catalytic reaction, it is easy to operate, the yield is high, and no toxic by-products are produced during the reaction process, and the safety is high. Environment friendly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

一种天冬氨酸二乙酸钠及其制备方法,包括:将马来酸酐、顺丁烯二酸和富马酸中的至少一种水解,得到水解后的盐溶液;将水解后的盐溶液与甘氨酸进行迈克尔加成反应后,再与氯乙酸进行催化反应。该天冬氨酸二乙酸钠的制备方法成本低、收率高、副产物少。

Description

天冬氨酸二乙酸钠及其制备方法
相关申请的交叉引用
本公开要求于2021年9月8日提交中国专利局的申请号为CN202111048925.X、名称为“天冬氨酸二乙酸钠及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及化合物技术领域,具体而言,涉及天冬氨酸二乙酸钠及其制备方法。
背景技术
相关技术常见的螯合剂主要有磷酸盐、羟基羧酸、氨基羧酸以及含羧酸类聚合物;其中,虽然磷酸盐的螯合效果较佳,但含磷对环境造成极大污染,使用比较多的主要有三聚磷酸钠(STPP),但是在限磷、禁磷的呼声中逐渐淡出市场;羟基羧酸主要有葡萄糖酸钠、柠檬酸钠等,其对一般金属离子的螯合型性能较差,性价比不高;丙烯酸类聚合物属于高分子螯合剂,除具有螯合能力外,还兼具增稠和絮凝作用,一般螯合后会沉降在水中,同时也难生物降解;氨基羧酸类主要有乙二胺四乙酸(EDTA)、羟乙基乙二胺三乙酸(HEDTA)、二乙烯三胺五乙酸(DTPA)、氮川三乙酸(NTA)、亚氨基二琥珀酸(IDS)、谷氨酸二乙酸(GLDA)、甲基甘氨酸二乙酸(MGDA)等;EDTA不易生物降解(OECD),NTA具有潜在的致癌性,IDS螯合金属的性能较低,GLDA、MGDA制作过程中原料毒性高、设备要求高,工业化难度大,生产成本高,产品价格昂贵,往往限制其在实际生活中的广泛使用。相关技术又提供了一种生物可降解的环境友好型螯合剂,天冬氨酸二乙酸钠(ASDA,L-aspartic acid N,N-diacetic acid tetrasodium salt或Tetrasodium dicarboxymethy-l aspartate)。
但是,相关技术提供的天冬氨酸二乙酸钠的制备方法成本高、收率低、副产物多。
发明内容
本公开的目的在于提供天冬氨酸二乙酸钠及其制备方法;其中,天冬氨酸二乙酸钠的制备方法成本低、收率高、副产物少。
本公开是这样实现的:
第一方面,本公开提供一种天冬氨酸二乙酸钠的制备方法,包括:
将马来酸酐、顺丁烯二酸和富马酸中的至少一种水解,得到水解后的盐溶液;
将水解后的盐溶液与甘氨酸进行迈克尔加成反应后,再与氯乙酸进行催化反应。
在可选的实施方式中,将马来酸酐、顺丁烯二酸和富马酸中的至少一种水解,具体包括:
将马来酸酐、顺丁烯二酸和富马酸中的至少一种与水、甲醇、乙醇和异丙醇中的至少一种混合,再滴加碱溶液。
在可选的实施方式中,滴加碱溶液时的温度控制在-40℃~80℃。
在可选的实施方式中,马来酸酐、顺丁烯二酸和富马酸中的至少一种水解的温度为0℃~75℃。
在可选的实施方式中,将水解后的盐溶液与甘氨酸进行迈克尔加成,具体包括:
向水解后的盐溶液添加甘氨酸和碱溶液,并在温度为45℃~150℃、压力为0-10MPa条件下反应;之后控制温度为45℃~100℃,再添加碘化钾进行反应。
在可选的实施方式中,向水解后的盐溶液添加甘氨酸和碱溶液,具体包括:
将甘氨酸和碱溶液混合后,共同滴加于水解后的盐溶液。
在可选的实施方式中,向水解后的盐溶液添加甘氨酸和碱溶液,具体包括:
将甘氨酸和碱溶液同时添加于水解后的盐溶液中。
在可选的实施方式中,将水解后的盐溶液与甘氨酸进行迈克尔加成反应后,再与氯乙酸进行催化反应,具体包括:
将与马来酸酐、顺丁烯二酸和富马酸中的至少一种原料等摩尔量的氯乙酸和等摩尔量的碱溶液,同时滴加于水解后的盐溶液和甘氨酸进行了迈克尔加成反应后的溶液中。
在可选的实施方式中,碱溶液包括氢氧化锂溶液、氢氧化钠溶液和氢氧化钾溶液中的至少一者。
第二方面,本公开提供一种天冬氨酸二乙酸钠,其是由前述实施方式任一项的天冬氨酸二乙酸钠的制备方法制得的。
本公开具有以下有益效果:
本公开实施例提供的天冬氨酸二乙酸钠的制备方法包括:将马来酸酐、顺丁烯二酸和富马酸中的至少一种水解,得到水解后的盐溶液;将水解后的盐溶液与甘氨酸进行迈克尔加成反应后,再与氯乙酸进行催化反应。由于马来酸酐、顺丁烯二酸、富马酸、甘氨酸和氯乙酸的来源广、成本低,故能够有效地降低制备成本;由于反应过程包括水解、迈克尔加成反应和催化反应易操作、收率高,且反应过程中没有毒副产物产生,安全性高,对环境友好。
本公开实施例提供的天冬氨酸二乙酸钠由前述的制备方法制得,其螯合性能好,安全性高,对环境友好。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例1中制备的ASDA在稳定的污水环境中测试的生物降解性检测结果图;
图2为本公开实施例1中制备的ASDA不同pH值的水中溶解性对比图;
图3为本公开实施例1中制备的ASDA在浓氢氧化钠溶液中的溶解度检测结果图;
图4为本公开实施例1中制备的ASDA热重分析图;
图5为本公开实施例1中制备的ASDA与其他螯合剂在同等条件的螯合能力对比图;
图6为本公开实施例1中制备的ASDA与其他氨基聚螯合剂除去碳酸钙水垢的效率对比图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将对本公开实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
相关技术提供的天冬氨酸二乙酸钠(ASDA,L-aspartic acid N,N-diacetic acid tetrasodium salt或Tetrasodium dicarboxymethy-l aspartate)的制备方法,例如:利用L-天冬氨酸为原料制备,容易产生大量的副产物,且容易影响产品的螯合性能,限制了其产业化推广;或者,还有方法利用氨基酸与氢氰酸、甲醛进行Strecker反应的方法来生产ASDA,原料毒性大,存储、使用过程中给安全环保增加压力同时反应过程且伴有大量副产物,难以分离,很大程度上限制了产品的应用与工业化。
本公开提供了一种天冬氨酸二乙酸钠的制备方法,其成本低、收率高、且副产物少。
以下将对天冬氨酸二乙酸钠及其制备方法进行详细描述。
本公开提供的天冬氨酸二乙酸钠的制备方法包括:将马来酸酐、顺丁烯二酸和富马酸中的至少一种水解,得到水解后的盐溶液;将水解后的盐溶液与甘氨酸进行迈克尔加成反应后,再与氯乙酸进行催化反应。由于马来酸酐、顺丁烯二酸、富马酸、甘氨酸和氯乙酸的来源广、成本低,故能够有效地降低制备成本;由于反应过程包括水解、迈克尔加成反应和催化反应易操作、收率高,且反应过程中没有毒副产物产生,安全性高,对环境友好。
需要说明的是,通过本公开的方法制备的天冬氨酸二乙酸钠的螯合性能好,安全性高,对环境友好。
将马来酸酐、顺丁烯二酸和富马酸中的至少一种水解,具体包括:将马来酸酐、顺丁烯二酸和富马酸中的至少一种与水、甲醇、乙醇和异丙醇中的至少一种混合,再滴加碱溶液。
进一步地,在滴加碱溶液时的温度控制在-40~80℃;滴加后搅拌一段时间备用。
再进一步地,马来酸酐、顺丁烯二酸和富马酸中的至少一种水解的温度为0℃~75℃。
需要说明的是,在水解马来酸酐、顺丁烯二酸和富马酸中的至少一者时,马来酸酐、顺丁烯二酸和富马酸中的一种或几种的混合物与水、甲醇、乙醇和异丙醇中的一种或几种的重量比大致为40%-60%。
将水解后的盐溶液与甘氨酸进行迈克尔加成,具体包括:
向水解后的盐溶液添加甘氨酸和碱溶液,并在温度为45℃~150℃、压力为0-10MPa条件下反应,反应时间可以是2-24h;之后控制温度为45℃~100℃,再添加碘化钾进行反应。
需要说明的是,碘化钾的质量可以占马来酸酐、顺丁烯二酸和富马酸中一种或几种混合物的0.01-10%,或者,碘化钾的质量还可以占马来酸酐、顺丁烯二酸和富马酸中一种或几种混合物、以及水、甲醇、乙醇和异丙醇一种或几种混合物的0.01%-10%等,在此不作具体限定。
还需要说明的是,当水解后的盐溶液在添加甘氨酸和碱溶液反应的温度大于100℃时,需要在反应后,将温度降低至45℃-100℃再添加碘化钾进行反应。
向水解后的盐溶液添加甘氨酸和碱溶液,具体包括:
将甘氨酸和碱溶液混合后,共同滴加于水解后的盐溶液;或者,将甘氨酸和碱溶液同时添加于水解后的盐溶液中。
本公开的天冬氨酸二乙酸钠的制备方法在利用氯乙酸催化反应时,具体包括将与马来酸酐、顺丁烯二酸和富马酸中的至少一种原料等摩尔量的氯乙酸和等摩尔量的碱溶液,同时滴加于水解后的盐溶液和甘氨酸进行了迈克尔加成反应后的溶液中。
进一步地,上述反应进行时pH控制在6-12,且在滴加结束后,保温反应2-24h。
再进一步地,保温反应的温度大致是45℃-100℃。
本公开中的碱溶液包括氢氧化锂溶液、氢氧化钠溶液和氢氧化钾溶液中的至少一种;进一步地,碱溶液的质量浓度可以是30%-50%,即氢氧化锂溶液、氢氧化钠溶液和氢氧化钾溶液中的至少一种的质量浓度为30%-50%。
本公开提供的天冬氨酸二乙酸钠制备方法的反应式包括:
Figure PCTCN2021118311-appb-000001
本公开提供的天冬氨酸二乙酸钠制备方法,利用马来酸酐、顺丁烯二酸和富马酸中的至少一种原料经水解中和反应后产生顺丁烯二酸盐,顺丁烯二酸盐与甘氨酸迈克尔加成反应后继续与氯乙酸催化、取代反应生成生物可降解的螯合物,天冬氨酸二乙酸钠(ASDA);天冬氨酸二乙酸钠(ASDA)对钙、镁、铁、铜和其他金属显示综合性能特别好的螯合性能;此外,本公开的制备方法制得的天冬氨酸二乙酸钠(ASDA)在高浓度的碱水溶液与酸水溶液中都具有很高的溶解度以外,还具有很优越的保存稳定性。本公开提供的ASDA生产方法是一种完全以水为体系的工艺,反应条件温和,生产时基本无废弃物存在。本公开提供的天冬氨酸二乙酸钠的制备方法操作简单、工艺稳定、产品品质好、性能好,具有巨大的应用前景和市场经济效益,同时对于环境友好。
以下结合实施例对本公开作进一步的详细描述。
实施例1
向5000mL四口瓶中加入490g马来酸酐,然后加入1200g去离子水,在25℃水解1h;再用质量分数为50%的NaOH溶液调节反应体系的pH值为6.0左右,保持温度不超过45℃;NaOH溶液滴加完毕后,在反应体系中加入甘氨酸375g与质量分数为50%NaOH的溶液130g,搅拌45min,升温至85℃,并在压力为0.1MPa条件下,继续搅拌3h,加入碘化钾2g,搅拌15min;将质量分数为50%的氯乙酸溶液940g和质量分数为50%的氢氧化钠溶液400g两者同时向上述溶液中滴加,pH控制在6左右,滴加完成后,在85℃左右保温反应5h,降温得到天冬氨酸二乙酸钠盐的溶液,含量为85.6%,收率:98.3%。
实施例2
向5000mL四口瓶中加入530g顺丁烯二酸,然后加入1200g去离子水,在25℃水解1h;再用质量分数为50%的NaOH溶液调节反应体系的pH值为6.5左右,保持温度不超过45℃;NaOH溶液滴加完毕后,在反应体系中加入甘氨酸385g与质量分数为50%的NaOH溶液130g,搅拌45min,升温至75℃,并在压力为0.5MPa条件下,继续搅拌3h,加入碘化钾2g,搅拌15min,将质量分数为50%的氯乙酸溶液940g和质量分数为50%的氢氧化 钠溶液400g两者同时向上述溶液中滴加,pH控制在12左右,滴加完成后,在75℃左右保温反应5h,降温得到天冬氨酸二乙酸钠盐的溶液,含量为86.2%,收率:99%。
实施例3
向5000mL四口瓶中加入490g富马酸,然后加入1200g去离子水,在25℃水解1h;再用质量分数为50%的NaOH溶液调节反应体系的pH值为6.3左右,保持温度不超过45℃,NaOH溶液滴加完毕后,在反应体系中加入甘氨酸375g与质量分数为50%的NaOH溶液130g,搅拌45min,升温至65℃,并在压力为3MPa条件下,继续搅拌4h,加入碘化钾5g,搅拌15min,将质量分数为50%的氯乙酸溶液1040g和质量分数为50%的氢氧化钠溶液420g两者同时向上述溶液中滴加,pH控制在8左右,滴加完成后,在65℃左右保温反应15h,降温得到天冬氨酸二乙酸钠盐的溶液,含量为85.6%,收率:97.6%。
实施例4
向5000mL四口瓶中加入490g马来酸酐,然后加入1200g去离子水,在25℃水解1h,再用质量分数为30%的KOH溶液调节反应体系的pH值为6.2左右,保持温度不超过45℃,KOH溶液滴加完毕后,在反应体系中加入甘氨酸375g与质量分数为30%的KOH溶液148g,搅拌45min,升温至105℃,并在压力为0.3MPa条件下,继续搅拌3h,加入碘化钾2g,搅拌15min,将质量分数为50%的氯乙酸溶液940g和质量分数为30%的氢氧化钾溶液610g两者同时向上述溶液中滴加,pH控制在10左右,滴加完成后,在95℃左右保温反应5h,降温得到天冬氨酸二乙酸钾盐的溶液,含量为80.6%,收率:95.2%。
实施例5
向5000mL四口瓶中加入490g马来酸酐,然后加入1200g去离子水与甲醇400g,在25℃水解1h,再用质量分数为50%的NaOH溶液调节反应体系的pH值为6.3左右,保持温度不超过45℃,NaOH溶液滴加完毕后,在反应体系中加入甘氨酸375g与质量分数为50%的NaOH溶液130g,搅拌45min,升温至90℃,并在压力为0.5MPa搅拌6h,加入碘化钾2g,搅拌15min,质量分数为50%的氯乙酸溶液940g和质量分数为50%的氢氧化钠溶液400g两者同时向上述溶液中滴加,pH控制在7左右,滴加完成后,在80℃左右保温反应10h,降温得到天冬氨酸二乙酸钠盐的溶液,含量为84.5%,收率:97.8%。
实施例6
向5000mL四口瓶中加入490g马来酸酐、顺丁烯二酸和富马酸的混合物,然后加入1200g去离子水、乙醇、甲醇和异丙醇的混合物,在75℃水解1h;再用质量分数为40%的LiOH溶液调节反应体系的pH值为6.0左右,保持温度不超过80℃;LiOH溶液滴加完毕后,在反应体系中加入甘氨酸375g与质量分数为40%LiOH的溶液130g,搅拌45min,升温至150℃,并在压力为5MPa条件下,继续搅拌3h,降温至45℃加入碘化钾2g,搅拌15min;将质量分数为50%的氯乙酸溶液940g和质量分数为40%LiOH溶液400g两者同时 向上述溶液中滴加,pH控制在9左右,滴加完成后,在45℃左右保温反应2h,降温得到天冬氨酸二乙酸钠盐的溶液。
实施例7
向5000mL四口瓶中加入490g顺丁烯二酸和富马酸的混合物,然后加入1200g甲醇和异丙醇的混合物,在5℃水解1h;再用质量分数为38%的KOH溶液调节反应体系的pH值为6.4左右,保持温度在20℃左右;KOH溶液滴加完毕后,在反应体系中加入甘氨酸375g与质量分数为38%的KOH的溶液130g,搅拌45min,升温至45℃,并在压力为10MPa条件下,继续搅拌3h,加入碘化钾2g,搅拌15min;将质量分数为50%的氯乙酸溶液940g和质量分数为38%的KOH溶液400g两者同时向上述溶液中滴加,pH控制在7.5左右,滴加完成后,在45℃左右保温反应24h,降温得到天冬氨酸二乙酸钠盐的溶液。
ASDA在常温下是无色透明液体,ASDA的阴离子可以和金属阳离子形成配位几何结构,对钙、镁、铁、铜及其他过渡金属离子的螯合能力很强,性价比已经很大程度超过EDTA和其他同类型生物降解螯合剂;另外ASDA分散能力较高,与其他螯合分散剂配合使用可能效果更好,同时ASDA可用做重金属离子清洗剂,例如可以应用于民用洗涤剂、工业清洗剂、印染助剂、染整工艺、纺织工业、造纸工业、感光材料、陶瓷工业、电镀工业及土壤重金属污染物的萃取,在传统的工业循环水领域也可以阻垢分散剂。
1、对实施例1提供的制备方法制备的天冬氨酸二乙酸钠(ASDA)的生物降解性进行检测,检测由第三方检测机构进行,采用OECD 301B标准,ASDA在污水中的28天生物降解性达60%以上,详见图1。
2、对实施例1提供的制备方法制备的天冬氨酸二乙酸钠(ASDA)的宽pH值范围内的高溶解性,结果见图2和图3。其中,ASDA低pH值具有高溶解性能,说明ASDA可以用于制备酸性清洗剂;ASDA在强碱性条件下具有高溶解度,更契合高pH值高浓缩洗涤环境要求。需要说明的是,ASDA具有高溶解度,能够配置成高固含量的产品,进而便于制备含有ASDA的产品时减少包装,进而改善包装浪费的问题;也能相应的减少运费和仓储,并改善运输和仓储成本高的问题。
3、对实施例1提供的制备方法制备的天冬氨酸二乙酸钠(ASDA)的热稳定性、应用环境适应性进行检测。ASDA热重分析图见图4。根据检测可知,EDTA和NTA热稳定(>150℃)相比较ASDA更稳定,用热重分析(TGA)和差示扫描量热法(DSC)测定了ASDA-Na4粉末的热稳定性,ASDA固体在250℃左右失去所有水分(约4%),在380℃以上开始迅速分解。
4、对实施例1提供的制备方法制备的天冬氨酸二乙酸钠(ASDA)的螯合能力检测,结果表明同等条件下ASDA螯合金属离子的综合表现优异(见图5)。
5、ASDA还可以用于放置水垢沉淀以及去除水垢;对比实施例1提供的制备方法制备 的天冬氨酸二乙酸钠(ASDA)与其他氨基聚螯合剂除去碳酸钙水垢的效率,可见ASDA是去除CaCO 3垢的最佳生物可降解螯合物(见图6)。
综上所述,本公开的天冬氨酸二乙酸钠的制备方法能够制备出螯合性能好,安全性高,对环境友好的天冬氨酸乙二酸钠,且本公开的制备方法的原料来源广、成本低,故能够有效地降低制备成本;由于反应过程包括水解、迈克尔加成反应和催化反应易操作、收率高,且反应过程中没有毒副产物产生,安全性高,对环境友好。
以上仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种天冬氨酸二乙酸钠的制备方法,其特征在于,包括:
    将马来酸酐、顺丁烯二酸和富马酸中的至少一种水解,得到水解后的盐溶液;
    将所述水解后的盐溶液与甘氨酸进行迈克尔加成反应后,再与氯乙酸进行催化反应。
  2. 根据权利要求1所述的天冬氨酸二乙酸钠的制备方法,其特征在于,将所述马来酸酐、所述顺丁烯二酸和所述富马酸中的至少一种水解,具体包括:
    将所述马来酸酐、所述顺丁烯二酸和所述富马酸中的至少一种与水、甲醇、乙醇和异丙醇中的至少一种混合,再滴加碱溶液。
  3. 根据权利要求2所述的天冬氨酸二乙酸钠的制备方法,其特征在于,滴加所述碱溶液时的温度控制在-40℃~80℃。
  4. 根据权利要求1-3任一项所述的天冬氨酸二乙酸钠的制备方法,其特征在于,所述马来酸酐、所述顺丁烯二酸和所述富马酸中的至少一种水解的温度为0℃~75℃。
  5. 根据权利要求1所述的天冬氨酸二乙酸钠的制备方法,其特征在于,将所述水解后的盐溶液与所述甘氨酸进行所述迈克尔加成,具体包括:
    向所述水解后的盐溶液添加所述甘氨酸和碱溶液,并在温度为45℃~150℃、压力为0-10MPa条件下反应;之后控制温度为45℃~100℃,再添加碘化钾进行反应。
  6. 根据权利要求5所述的天冬氨酸二乙酸钠的制备方法,其特征在于,向所述水解后的盐溶液添加所述甘氨酸和所述碱溶液,具体包括:
    将所述甘氨酸和所述碱溶液混合后,共同滴加于所述水解后的盐溶液。
  7. 根据权利要求5所述的天冬氨酸二乙酸钠的制备方法,其特征在于,向所述水解后的盐溶液添加所述甘氨酸和所述碱溶液,具体包括:
    将所述甘氨酸和所述碱溶液同时添加于所述水解后的盐溶液中。
  8. 根据权利要求1所述的天冬氨酸二乙酸钠的制备方法,其特征在于,将所述水解后的盐溶液与所述甘氨酸进行所述迈克尔加成反应后,再与所述氯乙酸进行催化反应,具体包括:
    将与所述马来酸酐、所述顺丁烯二酸和所述富马酸中的至少一种原料等摩尔量的所述氯乙酸和等摩尔量的碱溶液,同时滴加于所述水解后的盐溶液和所述甘氨酸进行了所述迈克尔加成反应后的溶液中。
  9. 根据权利要求2、5或8所述的天冬氨酸二乙酸钠的制备方法,其特征在于,所述碱溶液包括氢氧化锂溶液、氢氧化钠溶液和氢氧化钾溶液中的至少一者。
  10. 一种天冬氨酸二乙酸钠,其特征在于,其是由权利要求1-9任一项所述的天冬 氨酸二乙酸钠的制备方法制得的。
PCT/CN2021/118311 2021-09-08 2021-09-14 天冬氨酸二乙酸钠及其制备方法 WO2023035284A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21956461.4A EP4361125A1 (en) 2021-09-08 2021-09-14 L-aspartic acid n, n-diacetic acid tetrasodium salt and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111048925.XA CN113735724B (zh) 2021-09-08 2021-09-08 天冬氨酸二乙酸钠及其制备方法
CN202111048925.X 2021-09-08

Publications (1)

Publication Number Publication Date
WO2023035284A1 true WO2023035284A1 (zh) 2023-03-16

Family

ID=78737058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118311 WO2023035284A1 (zh) 2021-09-08 2021-09-14 天冬氨酸二乙酸钠及其制备方法

Country Status (3)

Country Link
EP (1) EP4361125A1 (zh)
CN (1) CN113735724B (zh)
WO (1) WO2023035284A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101535376A (zh) * 2006-09-25 2009-09-16 爱敬油化(株) 使用马来酸酐制造聚天冬氨酸的方法
CN109400492A (zh) * 2018-12-26 2019-03-01 山东泰和水处理科技股份有限公司 一种天冬氨酸二乙酸四钠的制备方法
US20210054146A1 (en) * 2019-08-20 2021-02-25 Covestro Llc Fast preparation of low primary amine containing polyaspartic esters and use of these polyaspartic esters in slow reactivity polyurea systems
CN112430194A (zh) * 2020-12-21 2021-03-02 合肥艾普拉斯环保科技有限公司 一种新型绿色螯合剂的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2220295C3 (de) * 1971-04-30 1981-11-12 Unilever N.V., Rotterdam Waschmittel
JPH09324194A (ja) * 1996-06-05 1997-12-16 Kao Corp 洗浄剤組成物
JP3870448B2 (ja) * 1996-08-13 2007-01-17 昭和電工株式会社 アミノジカルボン酸−n,n−二酢酸塩類の製造法
JP3897378B2 (ja) * 1996-08-14 2007-03-22 三菱レイヨン株式会社 アスパラギン酸誘導体の製造方法
JPH1121585A (ja) * 1997-07-03 1999-01-26 Kao Corp 洗浄剤組成物
JPH1135981A (ja) * 1997-07-16 1999-02-09 Lion Corp 粒状ノニオン洗剤組成物及びその製造方法
CN111606818A (zh) * 2020-05-12 2020-09-01 南京艾普拉斯化工有限公司 螯合剂、清洗剂及螯合剂的制备方法
CN112898169A (zh) * 2021-02-01 2021-06-04 合肥艾普拉斯环保科技有限公司 Mgda生物可降解螯合剂的制备方法
CN112920069A (zh) * 2021-02-01 2021-06-08 合肥艾普拉斯环保科技有限公司 一种生物可降解螯合剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101535376A (zh) * 2006-09-25 2009-09-16 爱敬油化(株) 使用马来酸酐制造聚天冬氨酸的方法
CN109400492A (zh) * 2018-12-26 2019-03-01 山东泰和水处理科技股份有限公司 一种天冬氨酸二乙酸四钠的制备方法
US20210054146A1 (en) * 2019-08-20 2021-02-25 Covestro Llc Fast preparation of low primary amine containing polyaspartic esters and use of these polyaspartic esters in slow reactivity polyurea systems
CN112430194A (zh) * 2020-12-21 2021-03-02 合肥艾普拉斯环保科技有限公司 一种新型绿色螯合剂的制备方法

Also Published As

Publication number Publication date
CN113735724B (zh) 2022-09-13
EP4361125A1 (en) 2024-05-01
CN113735724A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
EP3127896B1 (en) Method for preparing iminodisuccinate chelating agent
CA2007381C (en) Liquid detergent composition containing enzyme and enzyme stabilization system
CN1076395C (zh) 用聚氨基酸在水系统中防腐蚀的方法
EP2207823B1 (en) Copolymer composition and method of producing the composition
BR112017024235B1 (pt) Processo para produção de um agente quelante, mistura de compostos, solução aquosa, e, uso de uma mistura ou de uma solução aquosa
CN103080291B (zh) 改善去污的清洗组合物
CN109110933B (zh) 一种低磷阻垢缓蚀剂及其制备方法
CN112174342B (zh) 一种缓蚀阻垢剂及其制备方法
US11781068B2 (en) Corrosion inhibitor for soft water circulation heating and cooling system and preparation method of corrosion inhibitor
WO2023035284A1 (zh) 天冬氨酸二乙酸钠及其制备方法
CN101265678A (zh) 纸浆漂白中过氧化氢的稳定剂组合物
CN111205840A (zh) 一种基于深共融溶剂的解堵剂及其制备方法
CN102153749B (zh) 一种磺酸基改性聚天冬氨酸的微波合成方法
CN111606818A (zh) 螯合剂、清洗剂及螯合剂的制备方法
DE3914980A1 (de) 2-methyl- und 2-hydroxymethyl-serin-n,n-diessigsaeure und ihre derivate
CN106186376A (zh) 工业锅炉给水凝结水系统阻垢缓蚀剂用组合物及其应用
CN109400492B (zh) 一种天冬氨酸二乙酸四钠的制备方法
US4181672A (en) Process for preparing metal chelates
CN112430194A (zh) 一种新型绿色螯合剂的制备方法
CN103420509A (zh) 一种羟基乙叉二膦酸钠复合型阻垢剂的配制方法
WO2021226845A1 (zh) 螯合剂、清洗剂及螯合剂的制备方法
CN108997170A (zh) 一种易碱解多羧基螯合物及其制备工艺
CN112920069A (zh) 一种生物可降解螯合剂及其制备方法
CN116891220A (zh) 氨基羧酸螯合剂在作为双氧水稳定剂中的应用
JP2001047087A (ja) 水系清缶剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956461

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021956461

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021956461

Country of ref document: EP

Effective date: 20240105

WWE Wipo information: entry into national phase

Ref document number: 2401001510

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE