WO2023032648A1 - ポリアミド酸ワニスおよびポリアミド酸ワニスの製造方法 - Google Patents

ポリアミド酸ワニスおよびポリアミド酸ワニスの製造方法 Download PDF

Info

Publication number
WO2023032648A1
WO2023032648A1 PCT/JP2022/030859 JP2022030859W WO2023032648A1 WO 2023032648 A1 WO2023032648 A1 WO 2023032648A1 JP 2022030859 W JP2022030859 W JP 2022030859W WO 2023032648 A1 WO2023032648 A1 WO 2023032648A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamic acid
diamine
acid varnish
varnish
measured
Prior art date
Application number
PCT/JP2022/030859
Other languages
English (en)
French (fr)
Inventor
穣 久宗
健一 福川
真喜 岡崎
達宣 浦上
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2023032648A1 publication Critical patent/WO2023032648A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyamic acid varnish and a method for producing a polyamic acid varnish.
  • epoxy resins and acrylic resins are well known as colorless and transparent coating resins and binder resins.
  • these resins have problems in terms of heat resistance and chemical resistance. Therefore, transparent polyimides, which are excellent in heat resistance, chemical resistance, mechanical properties, electrical properties, etc., have begun to be used for these applications.
  • Patent Document 1 when a polyamic acid varnish having a transmittance of 35% or more at a wavelength of 450 nm, measured at an optical path length of 1 cm, is used, the resulting polyimide film is less likely to yellow, and the transmittance at a wavelength of 600 nm is 85%. % or more, a colorless and transparent polyimide film is easily obtained.
  • Patent Document 2 describes a polyamic acid varnish and a polyimide obtained by reacting an alicyclic diamine and an aromatic tetracarboxylic dianhydride. Further, it is described that by reacting after purifying at least one of an alicyclic diamine and an aromatic tetracarboxylic dianhydride, a decrease in the b * value due to impurities in the resulting polyimide can be suppressed.
  • the polyamic acid varnishes used in the production of polyimide may differ greatly in light transmittance from one varnish to another. According to the new findings of the present inventors, even in varnishes prepared from the same raw materials by the same manufacturing method, it is possible to confirm a difference in the degree of coloring that can be clearly recognized visually for each varnish (for each lot). .
  • a polyamic acid varnish with a transmittance of a certain level or higher measured by a novel method has a sufficiently low b * value and can impart a highly transparent polyimide; have been found to be obtained by reducing the amount of certain impurities contained in the
  • Patent Document 2 also proposes a polyamic acid varnish using a monomer from which impurities have been removed by refining by sublimation or the like . It was not sexual.
  • the present invention provides a polyamic acid varnish in which the degree of coloring is quantified by a novel method, and which provides a highly transparent polyimide, and a method for producing the polyamic acid varnish. as its purpose.
  • XRF X-ray fluorescence spectroscopy
  • a method for producing a polyamic acid varnish comprising the steps of purifying a diamine by a recrystallization method, and reacting the purified diamine with a tetracarboxylic acid.
  • XRF X-ray fluorescence spectroscopy
  • a polyamic acid varnish whose coloring degree is quantified by a novel method and which provides a highly transparent polyimide, and a method for producing a polyimide from the polyamic acid varnish.
  • the light transmittance was measured after introducing polyamic acid varnish into the measurement cell.
  • the measured value of light transmittance measured for the same polyamic acid varnish may become unstable, and the reliability of the measured light transmittance value is sufficiently ensured. It could not be said that it was.
  • the present inventors introduced a polyamic acid varnish into the inside of the measurement cell, deaerated the polyamic acid varnish inside the cell, and then measured the light transmittance. I found a new measurement method.
  • a polyimide film with a sufficiently reduced b * value can be obtained if the varnish has a certain or higher transmittance of light at a wavelength of 390 nm; It has been found that it can be obtained by using a diamine component (a diamine component having a certain or less oxygen atom content) in which the amount of specific impurities caused by is reduced.
  • a diamine component a diamine component having a certain or less oxygen atom content
  • One embodiment of the present invention relates to a polyamic acid varnish used for producing transparent polyimide.
  • the polyamic acid varnish comprises a polyamic acid, which is the reaction product of a tetracarboxylic acid component and a diamine component, and a solvent.
  • the polyamic acid is a known polyamic acid as a polyimide precursor, and may be a reaction product obtained by reacting a tetracarboxylic acid component and a diamine component by a known method.
  • the tetracarboxylic acid component may be an aromatic tetracarboxylic acid component or an aliphatic tetracarboxylic acid component. From the viewpoint of increasing mechanical properties such as tensile elongation and tensile strength, an aromatic tetracarboxylic acid component is preferred.
  • aromatic tetracarboxylic acid components include 3,3′,4,4′-biphenyltetracarboxylic acid, 2,3,3′,4′-biphenyltetracarboxylic acid, 2,2′,3,3′ -biphenyltetracarboxylic acid, 4,4'-oxydiphthalic acid and fluorenylidene bisphthalic acid.
  • 3,3′,4,4′-biphenyltetracarboxylic acid and 4,4′-oxydiphthalic acid are preferred from the viewpoint of further enhancing the transparency and heat resistance of the polyimide.
  • 4'-biphenyltetracarboxylic acid is more preferred.
  • These aromatic tetracarboxylic acids may be anhydrides (dianhydrides).
  • aliphatic tetracarboxylic acid components include cyclohexane-1,2,4,5-tetracarboxylic acid, [1,1′-bi(cyclohexane)]-3,3′,4,4′-tetracarboxylic acid , [1,1′-bi(cyclohexane)]-2,3,3′,4′-tetracarboxylic acid, [1,1′-bi(cyclohexane)]-2,2′,3,3′-tetra Carboxylic acid, 4,4'-methylenebis(cyclohexane-1,2-dicarboxylic acid), 4,4'-(propane-2,2-diyl)bis(cyclohexane-1,2-dicarboxylic acid), 4,4' -oxybis(cyclohexane-1,2-dicarboxylic acid), bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic acid, 4,4′
  • the diamine component may be an aromatic diamine component, an aliphatic diamine component, diamines having a spirobiindane ring, siloxane diamines, and the like.
  • a diamine component that does not contain an oxygen atom in its molecular structure is preferable from the viewpoint of reducing the amount of specific impurities such as carbonates that cause coloration, as will be described later.
  • aromatic diamine components include p-phenylenediamine, m-phenylenediamine, o-phenylenediamine, 2,4-toluenediamine, 2,5-toluenediamine, 2,6-toluenediamine, 2,2'- Bis(trifluoromethyl)benzidine, 2,2'-bis(4-aminophenyl)hexafluoropropane and the like are included.
  • the aliphatic diamine component may be an alicyclic diamine component or an alkylenediamine component.
  • cycloaliphatic diamine components include 1,4-diaminomethylcyclohexane (1,4-BAC), 1,3-diaminomethylcyclohexane (1,3-BAC), norbornanediamine (NBDA), 1,4- Diaminocyclohexane (DACH), isophoronediamine, 4,4'-methylenebis(cyclohexylamine), and the like.
  • 1,4-diaminocyclohexane is preferable from the viewpoint of further increasing the heat resistance of the polyimide, further increasing the transparency, and making the polyimide less likely to be colored.
  • the content ratio of cis-isomer and trans-isomer can be specified by 1 H-NMR.
  • Impurities contained in these diamine components and tetracarboxylic dianhydride components tend to reduce the light transmittance of the later-described polyamic acid varnish at a wavelength of 390 nm. , tends to increase the coloration (b * value) after imidization. Therefore, the amount of specific impurities such as carbonate contained in the diamine component is preferably as small as possible.
  • the oxygen atom content of the diamine is preferably 4 atomic % or less, more preferably 3 atomic % or less, and even more preferably 1 atomic % or less.
  • the oxygen atom content of the diamine is preferably the oxygen atom content derived from impurities in the diamine.
  • the oxygen atom content of diamine can be measured using an X-ray fluorescence method (XRF), specifically a wavelength dispersive X-ray fluorescence device (WDX).
  • XRF X-ray fluorescence method
  • WDX wavelength dispersive X-ray fluorescence device
  • XRF X-ray fluorescence method
  • WDX wavelength dispersive X-ray fluorescence device
  • the oxygen atom content of diamine can be reduced, for example, by refining the diamine component by recrystallization or by storing it in a light-shielding container in a nitrogen atmosphere.
  • the light transmittance at a wavelength of 390 nm is preferably 50% or more, more preferably 60% or more. It is preferably 70% or more, more preferably 80% or more. Although there is no upper limit, it can be, for example, 99% or less, or 95% or less.
  • the light transmittance of diamine is measured by using Shimadzu Multi spec-1500 for a solution immediately after dissolving diamine in NMP to a concentration of 10 wt%, UV- It can be measured by performing visible spectrum measurement and determining the transmittance of light having a wavelength of 390 nm.
  • the diamine transmittance can be increased, for example, by refining the diamine component by recrystallization or by storing it in a light-shielding container in a nitrogen atmosphere.
  • the solvent may be any known solvent capable of dissolving polyamic acid or polyimide.
  • solvents include ester solvents including methyl acetate, ethyl acetate, butyl acetate, and dimethyl carbonate; ⁇ -butyrolactone (GBL), ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -crotonolactone, Lactone solvents, including nolactone, ⁇ -methyl- ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -acetyl- ⁇ -butyrolactone, and ⁇ -hexanolactone; acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; Ketone-based solvents, phenolic solvents including m-cresol, etc.; , N-dimethylsulfoxide (DMSO) and the like, as well as N-methyl-2-pyrrolidone (NMP), N,N-
  • each of these tetracarboxylic acid component, diamine component and solvent may be used alone or in combination of multiple types.
  • a polyamic acid varnish can be obtained by adding a tetracarboxylic acid component and a diamine component to a solvent and reacting them to form a polyamic acid.
  • the diamine component to be reacted is preferably purified by a recrystallization method.
  • the polyamic acid varnish of the present embodiment can be produced through a step of purifying diamine by a recrystallization method and a step of reacting the purified diamine with tetracarboxylic acid.
  • Purification by recrystallization in the process of refining by recrystallization is a method in which diamine is dissolved in a solvent and then cooled to recrystallize.
  • the sublimation method removes components that are relatively easy to vaporize; the recrystallization method, unlike the sublimation method, removes components that are relatively difficult to vaporize, such as carbonates remaining in the diamine. I can.
  • Purification by the recrystallization method has a faster purification rate than the sublimation method, can purify a large amount of solid at once, and does not require a dedicated device. It is also applicable to diamines with low thermal stability. From these points of view as well, the recrystallization method is preferable.
  • the solvent used in the recrystallization method is not particularly limited as long as it can dissolve diamine, and includes hydrocarbon solvents such as hexane, butane, pentane and heptane, alcohol solvents such as methanol and ethanol, 2-methoxyethanol, 2- Ether solvents such as ethoxyethanol are included. Among them, hydrocarbon solvents are preferable, and hexane is more preferable.
  • the diamine purified by the recrystallization method is preferably stored in a light-shielding container. That is, the polyamic acid varnish preferably further includes a step of storing the diamine in a container having a light shielding rate of 90% or more at a wavelength of 220 to 800 nm under a nitrogen atmosphere before the step of refining by the recrystallization method.
  • the solvent used in the reaction step can be the same as the solvent contained in the polyamic acid varnish.
  • the polyamic acid varnish preferably has a polyamic acid content of 1% by mass or more and 50% by mass or less with respect to the total mass of the varnish, and 10% by mass. % or more and 45 mass % or less.
  • the intrinsic viscosity ( ⁇ ) of the polyamic acid varnish is not particularly limited, it is preferably 0.3 to 2.0 dL/g, more preferably 0.6 to 1.5 dL/g. When the intrinsic viscosity ( ⁇ ) of the polyamic acid varnish is within the above range, it is easy to achieve both coatability and film formability.
  • the intrinsic viscosity ( ⁇ ) of the polyamic acid varnish can be adjusted by adjusting the amount ratio (molar ratio) of the tetracarboxylic acid component and the diamine component when preparing the polyamic acid varnish.
  • the intrinsic viscosity ( ⁇ ) is a value measured at 25° C. with an Ubbelohde viscosity tube when the polyamic acid concentration in N-methyl-2-pyrrolidone (NMP) is 0.5 g/dL.
  • Polyamic acid varnish has a viscosity of 500 mPa s or more and 100,000 mPa s or less measured at 25 ° C. with an E-type viscometer from the viewpoint of adjusting the coatability of the varnish when producing polyimide. It is preferably 3,000 mPa ⁇ s or more and 60,000 mPa ⁇ s or less, and further preferably 4,500 mPa ⁇ s or more and 20,000 mPa ⁇ s or less.
  • the polyamic acid varnish is introduced into a cell with an optical path length of 10 mm and has a light transmittance of 70% or more at a wavelength of 390 nm, which is measured after degassing in the cell.
  • the polyamic acid varnish is degassed inside the cell. of the polyamic acid varnish) are removed from the polyamic acid varnish.
  • Degassing can be performed, for example, by placing a cell into which polyamic acid varnish is introduced into a desiccator, setting the inside of the desiccator to 10.3 kPa by a pump connected to the desiccator, and allowing the cell to stand for 1 minute or more and 30 minutes or less.
  • the air pressure in the desiccator may be 1.0 kPa or more and 50.0 kPa or less, preferably 5.0 kPa or more and 20.0 kPa or less, and more preferably 5.0 kPa or more and 15.0 kPa or less.
  • the light transmittance at an optical path length of 10 mm and a wavelength of 390 nm measured by the above method is 80% or more, a highly transparent polyimide can be produced.
  • polyimide having sufficiently high transparency can be produced even by using a polyamic acid varnish that has a lower light transmittance and that allows coloration of the varnish to be confirmed visually.
  • the polyamic acid varnish may have a light transmittance of 98% or less or 70 to 95% at an optical path length of 10 mm and a wavelength of 390 nm measured by the above method.
  • the light transmittance of the polyamic acid varnish is determined not only by appropriately selecting the types of the diamine component and the tetracarboxylic acid component that constitute the polyamic acid varnish, but also by the impurities contained in the diamine component and the tetracarboxylic dianhydride component, especially the diamine component. reduce the amount of certain impurities such as carbonates contained in the; specifically, it can be increased by reducing the oxygen atom content of the diamine component.
  • the method for reducing the amount of specific impurities is not particularly limited, but as described above, it can be a method of refining the diamine component by recrystallization or storing under light shielding.
  • the b * value in the L * a * b * color system is preferably 1.0 or less.
  • the b * value is a value measured in transmission mode using a colorimeter (for example, a tristimulus value direct-reading colorimeter (Colour Cute CC-i type) manufactured by Suga Test Instruments Co., Ltd.).
  • the transmittance of light having a wavelength of 390 nm is preferably 80% or more.
  • the transmittance can be measured by UV-visible spectroscopy.
  • the b * value and light transmittance after imidization can also be adjusted in the same manner as described above, for example, by adjusting the oxygen atom content of the diamine used to prepare the polyamic acid varnish. That is, even if the same type of diamine is used, by decreasing the oxygen atom content of the diamine, the b * value tends to decrease and the light transmittance tends to increase.
  • Polyimide Film A polyamic acid varnish can be used for producing a polyimide film by applying it to the surface of a substrate and imidizing it.
  • the base material to which the polyamic acid varnish is applied is not particularly limited as long as it has solvent resistance and heat resistance.
  • the substrate is preferably one from which the resulting polyimide layer can be easily peeled off, and is preferably a flexible substrate made of glass, metal, heat-resistant polymer film, or the like.
  • flexible substrates made of metals include copper, aluminum, stainless steel, iron, silver, palladium, nickel, chromium, molybdenum, tungsten, zirconium, gold, cobalt, titanium, tantalum, zinc, lead, tin, silicon, bismuth. , indium, or alloys thereof.
  • the metal foil surface may be coated with a release agent.
  • examples of flexible substrates made of heat-resistant polymer films include polyimide films, aramid films, polyetheretherketone films, polyetherethersulfone films, and the like.
  • the flexible base material made of a heat-resistant polymer film may contain a releasing agent or an antistatic agent, or may be coated with a releasing agent or an antistatic agent.
  • the base material is preferably a polyimide film because the obtained polyimide film has good releasability and high heat resistance and solvent resistance.
  • the method of applying the polyamic acid varnish to the substrate is not particularly limited as long as it can be applied with a certain thickness.
  • coating methods include methods using coating devices such as die coaters, comma coaters, roll coaters, gravure coaters, curtain coaters, spray coaters, and lip coaters.
  • the thickness of the coating film to be formed may be appropriately selected according to the desired thickness of the polyimide film.
  • Imidation is performed by heating the polyamic acid varnish coating film to imidize (ring-close) the polyamic acid. Specifically, the polyamic acid varnish coating film is heated while increasing the temperature to imidize the polyamic acid. Also, at this time, the solvent in the coating film is removed. After that, it is heated at a predetermined temperature for a certain period of time. The temperature can be raised by a known method using an oven, a heating furnace, or the like.
  • the substrate After imidization (ring closure) of the polyamic acid, the substrate can be peeled off to obtain a polyimide film.
  • the polyimide film preferably has a glass transition temperature (Tg) of 270° C. or higher and 330° C. or lower, more preferably 280° C. or higher and 320° C. or lower, and 290° C. or higher and 310° C. or lower. is more preferable.
  • Tg glass transition temperature
  • TMA thermomechanical analyzer
  • the thickness of the polyimide film is not particularly limited, and is appropriately selected according to the application of the polyimide film.
  • the thickness can be about 5 to 10 ⁇ m.
  • the thickness can be about 10 to 25 ⁇ m.
  • the polyimide film preferably has a transmittance of 70% or more for light with a wavelength of 390 nm.
  • the transmittance can be measured by a method similar to that described above.
  • the thickness of the polyimide film when measuring the light transmittance is not particularly limited, and the light transmittance of the actually produced polyimide film (that is, the polyimide film when the thickness is used) is measured.
  • the polyimide film preferably has a b * value of 1.5 or less in the L * a * b * color system from the viewpoint of further enhancing transparency.
  • the b * value can be measured in the same manner as above.
  • the thickness of the polyimide film when measuring the b * value is not particularly limited, and the b * value of the actually produced polyimide film (that is, the polyimide film when the thickness is used) is measured.
  • Tetracarboxylic dianhydride and diamine component The abbreviations of the tetracarboxylic dianhydride and diamine component used in the examples are as follows.
  • t-DACH six types of t-DACH-1 to 6 prepared under the conditions shown in Table 1 below were used.
  • ⁇ Purification conditions 1> In a reaction container, 120 kg of t-DACH-6 (DACH manufactured by Jiangsu Qingquan Chemical Co. Ltd.) was added to 600 kg of hexane under a nitrogen atmosphere, and the mixture was sealed in a nitrogen-purged flask. While stirring, the mixture was heated from outside the reaction vessel with hot water at 60° C. for 5 minutes to completely dissolve t-DACH. Next, in order to remove the tar component that had precipitated on the bottom, the solution was transferred to another reaction vessel purged with nitrogen, and then cooled to room temperature for recrystallization. Then, it was filtered with filter paper in the reaction vessel to obtain recrystallized t-DACH.
  • t-DACH-6 DACH manufactured by Jiangsu Qingquan Chemical Co. Ltd.
  • ⁇ Purification condition 2> In a glove box with a humidity of 25%, 20 g of t-DACH-6 (DACH manufactured by Jiangsu Qingquan Chemical Co. Ltd.) was added to 100 g of hexane and sealed in a nitrogen-purged flask. While stirring, the mixture was heated in an oil bath at 50° C. for 20 minutes to completely dissolve DACH. Next, in order to remove the tar component that had precipitated on the bottom, the solution was transferred into another nitrogen-purged flask and then cooled to room temperature for recrystallization. Then, it was filtered with filter paper in a glove box to obtain recrystallized t-DACH.
  • t-DACH-6 DACH manufactured by Jiangsu Qingquan Chemical Co. Ltd.
  • WDX wavelength dispersive X-ray fluorescence spectrometer
  • GC measurement A liquid obtained by dissolving 20 mg of the sample in 5 mL of methanol is used as the measurement liquid, and 8890/5977BN manufactured by Agilent Technologies is used, and a column of DB-1 (0.25 mm ⁇ 30 m, film thickness 0.25 f (f with hook) Km) is used. GC analysis was performed using a heating program of 100° C. (5 min.) to 320° C. (hold: 3 min.) at a heating rate of 10° C./min.
  • a 10 wt% solution was prepared by mixing one of the respective t-DACH and N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • the above solution immediately after preparation was subjected to UV-visible spectrum measurement in the wavelength range of 300 to 800 nm using Multi spec-1500 manufactured by Shimadzu Corporation, and the transmittance of light of 390 nm wavelength of t-DACH was obtained.
  • Table 2 shows the measurement results of t-DACH.
  • the light transmittance was measured for each polyamic acid varnish.
  • a polyamic acid varnish prepared with NMP so that the polyamic acid concentration is 10% by mass is placed in a quartz cell with an optical path length of 10 mm, placed inside a desiccator connected to a diaphragm pump, and the pressure inside the desiccator is 10.3 kPa.
  • a minute of degassing was performed.
  • a UV-visible spectrum measurement in a wavelength range of 300 to 800 nm was performed using a Shimadzu Multi spec-1500 to obtain light transmittance at a wavelength of 390 nm.
  • the intrinsic viscosity ⁇ (dL/g) of the polyamic acid varnish was measured with an Ubbelohde viscometer at a polymer concentration of 0.5 g/dL, NMP, and 25°C.
  • polyimide film 1 The polyamic acid varnish prepared in Preparation Example 1 was applied onto a glass substrate with a doctor blade to form a coating film of polyamic acid varnish.
  • the coating film of this polyamic acid varnish is placed in an inert oven together with the substrate, the oxygen concentration in the inert oven is controlled to 0.1% by volume or less, and the atmosphere in the oven is raised from 50° C. to 280° C. over 115 minutes. (heating rate: 2° C./min) and then held at 280° C. for 2 hours. After completion of heating, it was further cooled naturally in an inert oven. After that, it was immersed in distilled water, and the formed polyimide film having a thickness of 10 ⁇ m was peeled off from the substrate. The light transmittance and b * value of the obtained polyimide film were measured.
  • Polyimide films 2 to 6 Polyimide films 2-6 were obtained in the same manner as polyimide film 1, except that the polyamic acid varnish was changed to the polyamic acid varnishes prepared in Preparation Examples 2-6. The light transmittance and b * value of the obtained polyimide film were measured.
  • the light transmittance of light at a wavelength of 390 nm, the intrinsic viscosity of the polyamic acid varnish used to prepare the polyimide films 1 to 6, and the light transmittance of the obtained polyimide film at a wavelength of 390 nm, and the b * value are shown in the table. 3.
  • the polyamic acid varnishes of Preparation Examples 1 to 4 using diamines having an oxygen atom content of 4 atomic % or less are the diamines of Preparation Examples 5 and 6 having a higher oxygen atom content. It can be seen that the light transmittance is higher than that of the polyamic acid varnish using , thereby making it possible to obtain a polyimide film with a high light transmittance and a low b * value.
  • the polyamic acid varnish of the present invention is suitable for producing polyimide with high visible light transmittance and little coloration.
  • This polyimide can be applied to panel substrates of various display devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Paints Or Removers (AREA)

Abstract

ポリアミド酸ワニスは、テトラカルボン酸とジアミンとを反応させて得られるポリアミド酸と、溶媒とを含み、光路長10mmのセルに導入し、セル中で15分間脱気した後に測定された、波長390nmにおける光透過率が70%以上である。

Description

ポリアミド酸ワニスおよびポリアミド酸ワニスの製造方法
 本発明は、ポリアミド酸ワニスおよびポリアミド酸ワニスの製造方法に関する。
 従来、無色透明なコーティング樹脂やバインダー樹脂としてはエポキシ系樹脂やアクリル系樹脂がよく知られている。しかしながら、これらの樹脂は、耐熱性、耐薬品性の点に問題がある。そのため、耐熱性や耐薬品性、機械特性、および電気特性などに優れる透明ポリイミドがこれらの用途に用いられはじめている。
 これらの透明性を要求される用途に用いる際には、当然ながら、ポリイミドにも透明性が要求される。一方で、無色透明のポリイミドを得ることは難しく、黄変したポリイミドが得られてしまいやすいという問題がある。そのため、透明性の高いポリイミドを得る方法が種々研究されている。
 たとえば、特許文献1には、光路長1cmで測定した、波長450nmにおける透過率が35%以上であるポリアミド酸ワニスを用いると、得られるポリイミドフィルムが黄変しにくく、波長600nmにおける透過率が85%以上であるポリアミド酸ワニスを用いると、無色透明なポリイミドフィルムが得られやすいと記載されている。
 また、特許文献2には、脂環式ジアミンと芳香族テトラカルボン酸二無水物を反応させて得られるポリアミド酸ワニスおよびポリイミドが記載されている。また、脂環式ジアミンと芳香族テトラカルボン酸二無水物の少なくとも一方を精製した後、反応させることで、得られるポリイミドの不純物によるb値の低下を抑えられることが記載されている。
特開2019-214657号公報 特開2013-23583号公報
 特許文献1の記載からも明らかなように、ポリイミドの作製に用いるポリアミド酸ワニスには、光透過率がワニスごとに大きく異なることがある。本発明者らの新たな知見によれば、同一の原料から同一の製法で調製したワニスにも、ワニスごと(ロットごと)に目視で明瞭に認識できるほどの着色度の違いが確認できることがある。
 これに対し、本発明者らは、これまでの検討において、新規な方法で着色度を定量化する方法を見出した。そして、新規な方法で測定される透過率が一定以上となるポリアミド酸ワニスは、b値が十分に低く、透明性の高いポリイミドを付与しうること;そのようなポリアミド酸ワニスは、たとえばジアミンに含まれる特定の不純物の量を少なくすることによって得られることを見出した。
 特許文献2においても、昇華法による精製などにより不純物を除去したモノマーを用いたポリアミド酸ワニスなどが提案されているものの、得られるポリイミドのb値を十分に低くできるものではなく、十分な透明性を有するものではなかった。
 上記問題に鑑み、本発明は、新規な方法で着色度が定量化されたポリアミド酸ワニスであって、透明性の高いポリイミドが得られるポリアミド酸ワニス、当該ポリアミド酸ワニスの製造方法を提供することを、その目的とする。
 [1] テトラカルボン酸とジアミンとを反応させて得られるポリアミド酸と、溶媒とを含み、光路長10mmのセルに導入し、セル中で15分間脱気した後に測定された、波長390nmにおける光透過率が70%以上である、ポリアミド酸ワニス。
 [2] 前記ジアミンは、分子構造中に酸素原子を含まない、[1]に記載のポリアミド酸ワニス。
 [3] 前記ジアミンの、蛍光X線法(XRF)により測定される酸素原子含有率は、4原子%以下である、[1]または[2]に記載のポリアミド酸ワニス。
 [4] 前記ポリアミド酸は、芳香族テトラカルボン酸と脂環式ジアミンとを反応させて得られる、[1]~[3]のいずれかに記載のポリアミド酸ワニス。
 [5] 前記溶媒は、N-メチル-2-ピロリドンである、[1]~[4]のいずれかに記載のポリアミド酸ワニス。
 [6] 加熱温度280℃で加熱して、厚み10μmのポリイミドフィルムにしたときの、L表色系におけるb値が1.0以下である、[1]~[5]のいずれかに記載のポリアミド酸ワニス。
 [7] 加熱温度280℃で加熱して、厚み10μmのポリイミドフィルムにしたときの波長390nmの光の透過率が80%以上である、[1]~[6]のいずれかに記載のポリアミド酸ワニス。
 [8] ジアミンを再結晶法により精製する工程と、前記精製したジアミンと、テトラカルボン酸とを反応させる工程とを含む、ポリアミド酸ワニスの製造方法。
 [9] 前記再結晶法により精製する工程では、前記ジアミンの蛍光X線法(XRF)により測定される酸素原子含有率を4原子%以下にする、[8]に記載のポリアミド酸ワニスの製造方法。
 [10] 前記再結晶法は、炭化水素系溶媒中で行う、[8]または[9]に記載のポリアミド酸ワニスの製造方法。
 [11] 波長220~800nmの光の遮光率が90%以上である容器中でジアミンを保管する工程をさらに含み、前記保管後のジアミンを前記再結晶法により精製する、[8]~[10]のいずれかに記載のポリアミド酸ワニスの製造方法。
 本発明によれば、新規な方法で着色度が定量化されたポリアミド酸ワニスであって、透明性の高いポリイミドが得られるポリアミド酸ワニス、当該ポリアミド酸ワニスからポリイミドを製造する方法が提供される。
 上記の通り、従来は、測定用のセルにポリアミド酸ワニスを導入した後、そのまま光透過率を測定していた。しかし、従来の光透過率の測定方法では、同一のポリアミド酸ワニスについて測定した光透過率の測定値が不安定になることがあり、測定された光透過率の値の信頼性が十分に確保されているとはいえなかった。
 これに対し、本発明者らは、これまでの検討において、ポリアミド酸ワニスを測定用のセルの内部に導入した後、セル内部でポリアミド酸ワニスを脱気してから光透過率を測定する新たな測定方法を見出した。
 すなわち、従来の測定方法では、ポリアミド酸ワニスを測定用のセルの内部に導入する際に、ワニスに気泡が不可避的に混入してしまう。この混入した気泡により光透過率の測定値が変動してしまうため、測定値が不安定になっていると考えられる。
 これに対し、本実施形態における光透過率の測定では、ポリアミド酸ワニスを測定用のセルの内部に導入した後、セル内部でポリアミド酸ワニスを脱気することで、上記不可避的に混入した気泡をもポリアミド酸ワニスから除去する。その上で光透過率を測定することにより、上記気泡の混入による測定値の変動を抑制し、信頼性がより高い光透過率の測定値を得ることができる。
 さらに、上記測定法において、波長390nmの光の透過率が一定以上となるワニスであれば、b値が十分に低減されたポリイミドフィルムが得られること;そのようなワニスは、好ましくは炭酸塩に起因する特定の不純物の量を低減したジアミン成分(酸素原子含有率が一定以下のジアミン成分)を用いることによって得られることを見出した。以下、本発明の構成について説明する。
 本発明の一実施形態は、透明ポリイミドの作製に用いる、ポリアミド酸ワニスに関する。
 1.ポリアミド酸ワニス
 ポリアミド酸ワニスは、テトラカルボン酸成分とジアミン成分との反応生成物であるポリアミド酸と、溶媒と、を含む。
 ポリアミド酸は、ポリイミドの前駆体として公知のポリアミド酸であり、テトラカルボン酸成分とジアミン成分とを公知の方法で反応させて得られる反応生成物であればよい。
 テトラカルボン酸成分は、芳香族テトラカルボン酸成分であってもよいし、脂肪族テトラカルボン酸成分であってもよいが、ポリイミドのガラス転移温度(Tg)や熱膨張係数を高めて耐熱性を高めたり、引張伸度や引張強度などの機械的物性を高めたりする観点からは、芳香族テトラカルボン酸成分であることが好ましい。
 芳香族テトラカルボン酸成分の例には、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、2,2’,3,3’-ビフェニルテトラカルボン酸、4,4’-オキシジフタル酸およびフルオレニリデンビスフタル酸などが含まれる。これらのうち、ポリイミドの透明性および耐熱性をより高める観点からは、3,3’,4,4’-ビフェニルテトラカルボン酸および4,4’-オキシジフタル酸が好ましく、3,3’,4,4’-ビフェニルテトラカルボン酸がより好ましい。これらの芳香族テトラカルボン酸は、無水物(二無水物)であってもよい。
 脂肪族テトラカルボン酸成分の例には、シクロヘキサン-1,2,4,5-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-3,3’,4,4’-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-2,3,3’,4’-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-2,2’,3,3’-テトラカルボン酸、4,4’-メチレンビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(プロパン-2,2-ジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-オキシビス(シクロヘキサン-1,2-ジカルボン酸)、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸、4,4’-チオビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-スルホニルビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(ジメチルシランジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸、および4,4’-(テトラフルオロプロパン-2,2-ジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)などが含まれる。これらの脂肪族テトラカルボン酸は、無水物(二無水物)であってもよい。
 ジアミン成分は、芳香族ジアミン成分であってもよいし、脂肪族ジアミン成分であってもよいし、スピロビインダン環を有するジアミン類、およびシロキサンジアミン類などであってもよい。中でも、後述するように、着色の原因となる炭酸塩などの特定の不純物量を少なくする観点から、分子構造中に酸素原子を含まないジアミン成分が好ましい。
 芳香族ジアミン成分の例には、p-フェニレンジアミン、m-フェニレンジアミン、o-フェニレンジアミン、2,4-トルエンジアミン、2,5-トルエンジアミン、2,6‐トルエンジアミン、2,2’-ビス(トリフルオロメチル)ベンジジン、および2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパンなどが含まれる。
 脂肪族ジアミン成分は、脂環式ジアミン成分であってもよいし、アルキレンジアミン成分であってもよい。脂環式ジアミン成分の例には、1,4-ジアミノメチルシクロヘキサン(1,4-BAC)、1,3-ジアミノメチルシクロヘキサン(1,3-BAC)、ノルボルナンジアミン(NBDA)、1,4-ジアミノシクロヘキサン(DACH)、イソホロンジアミン、および4,4’-メチレンビス(シクロヘキシルアミン)などが含まれる。これらのうち、ポリイミドの耐熱性をより高め、透明性をより高め、かつ着色をより生じにくくする観点からは、1,4-ジアミノシクロヘキサンが好ましい。なお、1,4-ジアミノメチルシクロヘキサンは、シス体およびトランス体からなる幾何異性体が存在するが、これらのいずれであってもよい。ただし、トランス体とシス体の含有比(トランス体+シス体=100%)が、トランス体60%以上100%以下、シス体0%以上40%以下であることがより好ましい。シス体およびトランス体の含有割合は、H-NMRにより特定することができる。
 これらのジアミン成分やテトラカルボン酸二無水物成分に含まれる不純物、中でも、ジアミン成分に含まれる、炭酸塩などの特定の不純物は、後述するポリアミド酸ワニスの波長390nmにおける光透過率を低下させやすく、イミド化後の着色(b値)を増大させやすい。そのため、ジアミン成分に含まれる炭酸塩などの特定の不純物の量は、できるだけ少ないことが好ましい。具体的には、ジアミンの酸素原子含有率は、4原子%以下であることが好ましく、3原子%以下であることがより好ましく、1原子%以下であることがさらに好ましい。さらに、ジアミンの酸素原子含有率は、ジアミンの不純物由来の酸素原子含有率であることが好ましい。
 ジアミンの酸素原子含有率は、蛍光X線法(XRF)、具体的には波長分散型蛍光X線装置(WDX)を用いて測定することができる。たとえば、試料を錠剤成型し、測定装置としてリガク製ZSX Primus IVを使用し、X線管球にRh(絞り=φ10mm)を使用して、真空下、Fundamental Parameter法により酸素原子含有率の定量分析を行うことにより測定することができる。
 ジアミンの酸素原子含有率は、たとえばジアミン成分を再結晶法により精製したり、窒素雰囲気で遮光容器中で保管したりすることによって低減することができる。
 ジアミンをN-メチル-2-ピロリドン(NMP)に溶解させて10wt%の溶液としたときの、波長390nmにおける光透過率は、50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがさらに好ましく、80%以上であることが特に好ましい。上限に制限はないが、例えば、99%以下にすることができ、95%以下にすることもできる。ジアミンの光透過率は、具体的には、ジアミンをNMPに10wt%となるように溶解させた直後の溶液について、島津製作所製Multi spec-1500を使用して、波長300~800nm領域のUV-可視スペクトル測定を行い、波長390nmの光の透過率を求めることによって測定することができる。
 ジアミンの透過率は、上記と同様に、たとえばジアミン成分を再結晶法により精製したり、窒素雰囲気で遮光容器中で保管したりすることによって高めることができる。
 溶媒は、ポリアミド酸またはポリイミドを溶解できる公知の溶媒であればよい。溶媒の例には、酢酸メチル、酢酸エチル、酢酸ブチル、および炭酸ジメチルなどを含むエステル系溶媒、γ-ブチロラクトン(GBL)、δ-バレロラクトン、ε-カプロラクトン、γ-クロトノラクトン、γ-ヘキサノラクトン、α-メチル-γ-ブチロラクトン、γ-バレロラクトン、α-アセチル-γ-ブチロラクトン、およびδ-ヘキサノラクトンなどを含むラクトン系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、およびシクロヘキサノンなどを含むケトン系溶媒、m-クレゾールなどを含むフェノール系溶媒、メチルスルホン、エチルフェニルスルホン、ジエチルスルホン、ジフェニルスルホン、スルホラン、ビスフェノールS、ソラプソン、ダプソン、ビスフェノールAポリスルホン、およびスルホランなどを含むスルホン系溶媒、N,N-ジメチルスルホキシド(DMSO)などを含むスルホキシド系溶媒、ならびに、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)、およびN,N-ジメチルアセトアミド(DMAc)などを含むアミド系溶媒などが含まれる。
 なお、これらのテトラカルボン酸成分、ジアミン成分および溶媒は、それぞれ一種のみを用いてもよいし、複数種を併用してもよい。
 2.ポリアミド酸ワニスの製造方法
 ポリアミド酸ワニスは、溶媒に、テトラカルボン酸成分およびジアミン成分を添加して、これらを反応させてポリアミド酸とすることにより得ることができる。反応させるジアミン成分は、光透過率が一定以上のポリアミド酸ワニスを得る観点から、再結晶法により精製したものであることが好ましい。
 すなわち、本実施形態のポリアミド酸ワニスは、ジアミンを再結晶法により精製する工程、および精製したジアミンとテトラカルボン酸とを反応させる工程を経て製造されうる。
 再結晶法により精製する工程における、再結晶法による精製は、溶媒にジアミンを溶解させた後、冷却して再結晶化させる方法である。昇華法では、比較的気化しやすい成分を除去する手法であるのに対し;再結晶法では、たとえば昇華法などとは異なり、ジアミンに残存する炭酸塩などの、比較的気化しにくい成分を除去しうる。上記の通り、ジアミンを再結晶法により精製して、上記酸素原子含有率を4原子%以下にすることが好ましい。また、再結晶法による精製は、昇華法と比較して精製速度が速く、大量の固体を一度に精製可能であり、専用の装置も不要である。また、熱安定性の低いジアミンにも適用可能である。これらの観点でも、再結晶法が好ましい。
 再結晶法に用いられる溶媒は、ジアミンが溶解しうるものであればよく、ヘキサン、ブタン、ペンタン、ヘプタンなどの炭化水素系溶媒、メタノール、エタノールなどのアルコール系溶媒、2-メトキシエタノール、2-エトキシエタノールなどのエーテル系溶媒などが含まれる。中でも、炭化水素系溶媒が好ましく、ヘキサンがより好ましい。
 また、再結晶法により精製されるジアミンは、遮光容器中で保管されたものであることが好ましい。すなわち、ポリアミド酸ワニスは、再結晶法により精製する工程の前に、窒素雰囲気下、波長220~800nmの遮光率が90%以上の容器中でジアミンを保管する工程をさらに含むことが好ましい。
 反応させる工程に使用される溶媒は、上記ポリアミド酸ワニスに含まれる溶媒と同様のものでありうる。
 ポリアミド酸ワニスは、ポリイミドを作製する際のワニスの塗工性を調整する観点から、ワニスの全質量に対するポリアミド酸の含有量が、1質量%以上50質量%以下であることが好ましく、10質量%以上45質量%以下であることがより好ましい。
 ポリアミド酸ワニスの固有粘度(η)は、特に制限されないが、0.3~2.0dL/gであることが好ましく、0.6~1.5dL/gであることがより好ましい。ポリアミド酸ワニスの固有粘度(η)が上記範囲内にあると、塗工性と成膜性とを両立しやすい。
 ポリアミド酸ワニスの固有粘度(η)は、ポリアミド酸ワニス調製時のテトラカルボン酸成分とジアミン成分の量比(モル比)などによって調整することができる。また、固有粘度(η)は、N-メチル-2-ピロリドン(NMP)中のポリアミド酸の濃度を0.5g/dLとしたとき、25℃でウベローデ粘度管にて測定される値である。
 ポリアミド酸ワニスは、ポリイミドを作製する際のワニスの塗工性を調整する観点から、E型粘度計により25℃で測定される粘度が、500mPa・s以上100,000mPa・s以下であることが好ましく、3,000mPa・s以上60,000mPa・s以下であることがより好ましく、4,500mPa・s以上20,000mPa・s以下であることがさらに好ましい。
 (ワニスの光透過率およびその測定方法)
 本実施形態において、ポリアミド酸ワニスは、光路長10mmのセルに導入し、セル中で脱気した後に測定された、波長390nmにおける光透過率が70%以上である。
 上記の通り、本実施形態における光透過率の測定では、ポリアミド酸ワニスを測定用のセルの内部に導入した後、セル内部でポリアミド酸ワニスを脱気することで、(ポリアミド酸ワニスを測定用のセルへ導入する時に)不可避的に混入した気泡をポリアミド酸ワニスから除去する。そのうえで光透過率を測定することにより、気泡の混入による測定値の変動を抑制し、信頼性がより高い光透過率の測定値を得ることができる。
 脱気は、たとえばポリアミド酸ワニスを導入したセルをデシケータの内部に入れ、デシケータに接続したポンプによりデシケータ内を10.3kPaとして、上記セルを1分以上30分以下静置する方法により行うことができる。デシケータ内の気圧は、1.0kPa以上50.0kPa以下であればよく、5.0kPa以上20.0kPa以下であることが好ましく、5.0kPa以上15.0kPa以下であることがより好ましい。
 上記方法で測定した光路長10mm、波長390nmにおける光透過率が80%以上であると、より透明性の高いポリイミドを作製することができる。なお、本発明者らの知見によると、上記光透過率がより低く、目視でもワニスに着色が確認できるようなポリアミド酸ワニスを用いても、透明性が十分に高いポリイミドを作製することができる。上記観点から、ポリアミド酸ワニスは、上記方法で測定した光路長10mm、波長390nmにおける光透過率が98%以下であってもよく、70~95%であってもよい。従来の光透過率の測定方法ではこの通りではなかったが、上記した方法でワニスの光透過率を測定することで、ワニスの光透過率が低いものを使用しても予想外に透明性の高いポリイミドを作製できることを確認している。
 ポリアミド酸ワニスの光透過率は、ポリアミド酸ワニスを構成するジアミン成分やテトラカルボン酸成分の種類を適宜選択するだけでなく、ジアミン成分やテトラカルボン酸二無水物成分に含まれる不純物、特にジアミン成分に含まれる炭酸塩などの特定の不純物の量を低減する;具体的には、ジアミン成分の酸素原子含有率を小さくすることによって、高くすることができる。特定の不純物の量を低減する方法は、特に制限されないが、上記の通り、ジアミン成分の再結晶化による精製や遮光下での保管などを行う方法でありうる。
 (イミド化後のb値)
 ポリアミド酸ワニスを280℃で加熱して、厚み10μmのポリイミドフィルムにしたときの、L表色系におけるb値は、1.0以下であることが好ましい。b値は、測色計(例えば、スガ試験機製 三刺激値直読式測色計(Colour Cute i CC-i型))を使用し、透過モードで測定したときの値とする。
 (イミド化後の光透過率)
 ポリアミド酸ワニスを280℃で加熱して、厚み10μmのポリイミドフィルムにしたときの波長390nmの光の透過率は、80%以上であることが好ましい。上記透過率は、UV-可視スペクトル測定により測定することができる。
 イミド化後のb値および光透過率も、上記と同様に、たとえばポリアミド酸ワニスの調製に用いるジアミンの酸素原子含有率によって調整することができる。すなわち、同じ種類のジアミンであっても、ジアミンの酸素原子含有率を小さくすることで、b値は低くなりやすく、光透過率は高くなりやすい。
 3.ポリイミドフィルム
 ポリアミド酸ワニスは、基材の表面に塗布し、イミド化させる方法による、ポリイミドフィルムの作製に用いることができる。
 ポリアミド酸ワニスを塗布する基材は、耐溶媒性および耐熱性を有するものであれば特に制限されない。基材は、得られるポリイミド層の剥離性が良好であるものが好ましく、ガラス、金属または耐熱性ポリマーフィルム等からなるフレキシブル基材であることが好ましい。金属からなるフレキシブル基材の例には、銅、アルミニウム、ステンレス、鉄、銀、パラジウム、ニッケル、クロム、モリブデン、タングステン、ジルコニウム、金、コバルト、チタン、タンタル、亜鉛、鉛、錫、シリコン、ビスマス、インジウム、またはこれらの合金からなる金属箔が含まれる。金属箔表面には、離型剤がコーティングされていてもよい。
 一方、耐熱性ポリマーフィルムからなるフレキシブル基材の例には、ポリイミドフィルム、アラミドフィルム、ポリエーテルエーテルケトンフィルム、ポリエーテルエーテルスルホンフィルム等が含まれる。耐熱性ポリマーフィルムからなるフレキシブル基材は、離型剤や耐電防止剤を含んでいてもよく、表面に離型剤や帯電防止剤がコーティングされていてもよい。得られるポリイミドフィルムの剥離性が良好であり、かつ耐熱性および耐溶媒性が高いことから、基材はポリイミドフィルムであることが好ましい。
 ポリアミド酸ワニスの基材への塗布方法は、一定の厚さで塗布可能な方法であれば、特に制限されない。塗布方法の例には、ダイコータ、コンマコータ、ロールコータ、グラビアコータ、カーテンコータ、スプレーコータ、およびリップコータなどの塗布装置を用いる方法が含まれる。形成する塗膜の厚さは、所望のポリイミドフィルムの厚さに応じて適宜選択すればよい。
 イミド化は、ポリアミド酸ワニスの塗膜を加熱し、ポリアミド酸をイミド化(閉環)させることにより行う。具体的には、ポリアミド酸ワニスの塗膜を、温度を上昇させながら加熱してポリアミド酸をイミド化させる。またこのとき、塗膜中の溶媒を除去する。その後、所定の温度で一定時間加熱する。温度の上昇は、オーブンや加熱炉などを用いる公知の方法により行うことができる。
 ポリアミド酸のイミド化(閉環)後、基材を剥離して、ポリイミドフィルムを得ることができる。
 ポリイミドフィルムは、耐熱性をより高める観点から、ガラス転移温度(Tg)が270℃以上330℃以下であることが好ましく、280℃以上320℃以下であることがより好ましく、290℃以上310℃以下であることがさらに好ましい。上記ガラス転移温度(Tg)は、熱機械分析装置(TMA)により測定することができる。
 ポリイミドフィルムの厚さは、特に制限されず、ポリイミドフィルムの用途等に応じて適宜選択される。たとえば、ポリイミドフィルムを接着シートに用いる場合には、厚さを5~10μm程度とすることができる。一方、各種部材の保護層に用いる場合には、10~25μm程度とすることができる。
 また、ポリイミドフィルムは、透明性をより高める観点から、波長390nmの光の透過率が70%以上であることが好ましい。当該透過率は、上記と同様の方法で測定することができる。なお、上記光透過率を測定する際のポリイミドフィルムの厚さは特に制限されず、実際に作製したポリイミドフィルム(すなわち、使用時の厚さとしたときのポリイミドフィルム)の光透過率を測定する。
 また、ポリイミドフィルムは、透明性をより高める観点から、L表色系におけるb値が1.5以下であることが好ましい。b値は、上記と同様の方法で測定することができる。なお、b値を測定する際のポリイミドフィルムの厚さは特に制限されず、実際に作製したポリイミドフィルム(すなわち、使用時の厚さとしたときのポリイミドフィルム)のb値を測定する。
 以下、実施例を参照して本発明を更に具体的に説明するが、本発明の範囲は実施例の記載に限定されない。
 1.テトラカルボン酸二無水物およびジアミン成分
 実施例で用いたテトラカルボン酸二無水物およびジアミン成分の略称は、それぞれ以下の通りである。
 [テトラカルボン酸二無水物成分]
 s-BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(三菱ケミカル株式会社製、窒素雰囲気下、220~800nmの光の遮光率が90%以上の遮光容器中で保管)
 [ジアミン成分]
 t-DACH:trans-1,4-ジアミノシクロヘキサン
 t-DACHは、下記表1の条件で準備されたt-DACH-1~6の6種類を用いた。
Figure JPOXMLDOC01-appb-T000001
 表1に記載の精製条件1及び2は、それぞれ以下の通りである。
 <精製条件1>
 反応容器内で、窒素雰囲気下、ヘキサン600kgにt-DACH-6(Jiangsu Qingquan Chemical Co. Ltd.社製DACH)120kgを加えて窒素置換したフラスコ内に封入した。これを攪拌しながら、反応容器外から温水で60℃5分間に加熱してt-DACHを完全に溶解させた。次いで、底に沈殿したタール成分を除去するため、別の窒素置換した反応容器に移液した後、室温まで冷却させて再結晶化させた。その後、反応容器内でろ紙でろ過して、再結晶化させたt-DACHを得た。
 <精製条件2>
 湿度25%のグローブボックス内でヘキサン100gにt-DACH-6(Jiangsu Qingquan Chemical Co. Ltd.社製DACH)20gを加えて窒素置換したフラスコ内に封入した。これを攪拌しながら、オイルバスで50℃20分間に加熱してDACHを完全に溶解させた。次いで、底に沈殿したタール成分を除去するため、別の窒素置換したフラスコ内に移液した後、室温まで冷却させて再結晶化させた。その後、グローブボックス内でろ紙でろ過して、再結晶化させたt-DACHを得た。
 準備したジアミンについて、XRF測定、GC測定および光透過率の測定を、以下の方法で行った。
 (蛍光X線(XRF)測定)
 ジアミンの酸素原子含有率を、波長分散型蛍光X線装置(WDX)を用いて測定した。
 具体的には、試料を錠剤成型し、測定装置としてリガク製ZSX Primus IVを使用し、X線管球にRh(絞り=φ10mm)を使用して、真空下、Fundamental Parameter法により酸素原子含有率の定量分析を行った。
 (GC測定)
 試料20mgをメタノール5mLに溶解した液を測定液とし、アジレントテクノロジー社製8890/5977BNを使用し、DB-1(0.25mm×30m、膜厚0.25f(フック付きf)Km)のカラムを用いて、100℃(5min.)-320℃(hold:3min.)、昇温速度10℃/minの昇温プログラムでGC分析を実施した。
 (光透過率の測定)
 それぞれのt-DACHのうちいずれかとN-メチル-2-ピロリドン(NMP)とを混合して、10wt%溶液を調製した。調製直後の上記溶液について、島津製作所製Multi spec-1500を使用して、波長300~800nm領域のUV-可視スペクトル測定を行い、t-DACHの波長390nmの光の透過率を求めた。
 t-DACHの測定結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 2.ポリアミド酸ワニスの調製
 (調整例1~3、5および6)
 温度計、コンデンサー、窒素導入管および攪拌羽を備えたフラスコに、10.28g(0.090モル)の表3のt-DACHおよび207.54g(15質量%相当)のNMPを加えて、湿度50%、窒素雰囲気下において攪拌し、均一な溶液とした。その後、15℃に冷却し、ここに26.35g(0.090モル)のs-BPDAを粉体で装入し、そのまま攪拌した。およそ1時間後、徐々に発熱および粘度の上昇がみられた。昇温させて、内温60~70℃で1時間反応させたところ、均一な溶液となった。その後、室温まで冷却し、一晩室温にて熟成させて淡黄色の粘稠なワニスを得た。
 (調整例4)
 温度計、コンデンサー、窒素導入管および攪拌羽を備えたフラスコに、5.71g(0.050モル)のt-DACH-4および114.05g(15質量%相当)のNMPを加えて、湿度50%、窒素雰囲気下において攪拌し、均一な溶液とした。その後、15℃に冷却し、ここに14.42g(0.050モル)のs-BPDAを粉体で装入し、そのまま攪拌した。およそ1時間後、徐々に発熱および粘度の上昇がみられた。昇温させて、内温60~70℃で1時間反応させたところ、均一な溶液となった。その後、室温まで冷却し、一晩室温にて熟成させて淡黄色の粘稠なワニスを得た。
 (光透過率の測定)
 それぞれのポリアミド酸ワニスについて、光透過率を測定した。
 ポリアミド酸の濃度が10質量%となるようにNMPで調製したポリアミド酸ワニスを、光路長10mmの石英セルに入れ、ダイヤフラムポンプにつないだデシケータの内部に配置し、デシケータ内を10.3kPaとして15分間の脱気を実施した。上記脱気を行ったポリアミド酸ワニスについて、島津製作所製Multi spec-1500を使用し、波長300~800nm領域のUV-可視スペクトル測定を行い、波長390nmにおける光の透過率を得た。
 (固有粘度の測定)
 ポリアミド酸ワニスの固有粘度η(dL/g)を、ポリマー濃度0.5g/dL、NMP、25℃にてウベローデ粘度管にて測定した。
 3.イミド化および測定
 (ポリイミドフィルム1)
 調製例1で調製したポリアミド酸ワニスを、ガラス基板上にドクターブレードで塗工し、ポリアミド酸ワニスの塗膜を形成した。このポリアミド酸ワニスの塗膜を、基板ごとイナートオーブンに入れ、イナートオーブン内の酸素濃度を0.1体積%以下に制御し、オーブン内の雰囲気を50℃から280℃まで115分かけて昇温(昇温速度:2℃/分)させ、その後280℃で2時間保持した。加熱終了後、さらにイナートオーブン内で自然冷却した。その後、蒸留水に浸漬させて、形成された厚み10μmのポリイミドフィルムを基板から剥離させた。得られたポリイミドフィルムの光透過率およびb値を測定した。
 (ポリイミドフィルム2~6)
 ポリアミド酸ワニスを、調製例2~6で調製したポリアミド酸ワニスに変更した以外はポリイミドフィルム1と同様にしてポリイミドフィルム2~6を得た。得られたポリイミドフィルムの光透過率およびb値を測定した。
 (光透過率の測定)
 それぞれのポリイミドフィルムについて、島津製作所製Multi spec-1500を使用し、波長300~800nm領域のUV-可視スペクトル測定を行い、波長390nmの光の透過率を得た。
 (b値の測定)
 それぞれのポリイミドフィルムについて、スガ試験機製 三刺激値直読式測色計(Colour Cute i CC-i型)を使用し、ポリイミドフィルムの黄味の指標となるb値を透過モード、測定方式0°diで測定した。
 ポリイミドフィルム1~6の作製に用いたポリアミド酸ワニスの波長390nmの光の光透過率、固有粘度、ならびに、得られたポリイミドフィルムの波長390nmの光の光透過率、およびb値を、表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、酸素原子含有率が4原子%以下であるジアミンを用いた調整例1~4のポリアミド酸ワニスは、酸素原子含有率がそれよりも高い調製例5および6のジアミンを用いたポリアミド酸ワニスよりも光透過率が高いこと、それにより、光透過率が高く、かつb値が低いポリイミドフィルムを得ることができることがわかる。
 本出願は、2021年8月30日出願の特願2021-140251に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。
 本発明のポリアミド酸ワニスは、可視光の透過率が高く、着色も少ないポリイミドの製造に適している。このポリイミドは、各種ディスプレイ装置のパネル基板に適用可能である。

Claims (11)

  1.  テトラカルボン酸とジアミンとを反応させて得られるポリアミド酸と、溶媒とを含み、
     光路長10mmのセルに導入し、セル中で15分間脱気した後に測定された、波長390nmにおける光透過率が70%以上である、
     ポリアミド酸ワニス。
  2.  前記ジアミンは、分子構造中に酸素原子を含まない、
     請求項1に記載のポリアミド酸ワニス。
  3.  前記ジアミンの、蛍光X線法(XRF)により測定される酸素原子含有率は、4原子%以下である、
     請求項1または2に記載のポリアミド酸ワニス。
  4.  前記ポリアミド酸は、芳香族テトラカルボン酸と脂環式ジアミンとを反応させて得られる、
     請求項1または2に記載のポリアミド酸ワニス。
  5.  前記溶媒は、N-メチル-2-ピロリドンである、
     請求項1または2に記載のポリアミド酸ワニス。
  6.  加熱温度280℃で加熱して、厚み10μmのポリイミドフィルムにしたときの、L表色系におけるb値が1.0以下である、
     請求項1または2に記載のポリアミド酸ワニス。
  7.  加熱温度280℃で加熱して、厚み10μmのポリイミドフィルムにしたときの波長390nmの光の透過率が80%以上である、
     請求項1または2に記載のポリアミド酸ワニス。
  8.  ジアミンを再結晶法により精製する工程と、
     前記精製したジアミンと、テトラカルボン酸とを反応させる工程とを含む、
     ポリアミド酸ワニスの製造方法。
  9.  前記再結晶法により精製する工程では、前記ジアミンの蛍光X線法(XRF)により測定される酸素原子含有率を4原子%以下にする、
     請求項8に記載のポリアミド酸ワニスの製造方法。
  10.  前記再結晶法は、炭化水素系溶媒中で行う、
     請求項8または9に記載のポリアミド酸ワニスの製造方法。
  11.  波長220~800nmの光の遮光率が90%以上である容器中でジアミンを保管する工程をさらに含み、
     前記保管後のジアミンを前記再結晶法により精製する、
     請求項8または9に記載のポリアミド酸ワニスの製造方法。
PCT/JP2022/030859 2021-08-30 2022-08-15 ポリアミド酸ワニスおよびポリアミド酸ワニスの製造方法 WO2023032648A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-140251 2021-08-30
JP2021140251 2021-08-30

Publications (1)

Publication Number Publication Date
WO2023032648A1 true WO2023032648A1 (ja) 2023-03-09

Family

ID=85411047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030859 WO2023032648A1 (ja) 2021-08-30 2022-08-15 ポリアミド酸ワニスおよびポリアミド酸ワニスの製造方法

Country Status (2)

Country Link
TW (1) TW202323460A (ja)
WO (1) WO2023032648A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848776A (ja) * 1994-08-05 1996-02-20 Chisso Corp 側鎖に液晶基を有する新規ポリイミド−アミド
JP2001323061A (ja) * 2000-05-12 2001-11-20 Toray Ind Inc 低誘電率ポリイミド組成物
JP2003327646A (ja) * 2002-05-07 2003-11-19 Gun Ei Chem Ind Co Ltd アミノ基含有フェノール誘導体
JP2005163012A (ja) * 2003-11-13 2005-06-23 New Japan Chem Co Ltd ポリイミド前駆体、ポリイミド及びこれらの製造方法
JP2013164499A (ja) * 2012-02-10 2013-08-22 Canon Inc 光学用部材及びその製造方法
JP2020059785A (ja) * 2018-10-09 2020-04-16 三井化学株式会社 ポリアミド酸およびこれを含むワニス、ならびにポリイミドフィルムの製造方法
JP2021014564A (ja) * 2018-12-25 2021-02-12 旭化成株式会社 ポリイミドワニス及びポリイミドフィルム、並びにこれらの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848776A (ja) * 1994-08-05 1996-02-20 Chisso Corp 側鎖に液晶基を有する新規ポリイミド−アミド
JP2001323061A (ja) * 2000-05-12 2001-11-20 Toray Ind Inc 低誘電率ポリイミド組成物
JP2003327646A (ja) * 2002-05-07 2003-11-19 Gun Ei Chem Ind Co Ltd アミノ基含有フェノール誘導体
JP2005163012A (ja) * 2003-11-13 2005-06-23 New Japan Chem Co Ltd ポリイミド前駆体、ポリイミド及びこれらの製造方法
JP2013164499A (ja) * 2012-02-10 2013-08-22 Canon Inc 光学用部材及びその製造方法
JP2020059785A (ja) * 2018-10-09 2020-04-16 三井化学株式会社 ポリアミド酸およびこれを含むワニス、ならびにポリイミドフィルムの製造方法
JP2021014564A (ja) * 2018-12-25 2021-02-12 旭化成株式会社 ポリイミドワニス及びポリイミドフィルム、並びにこれらの製造方法

Also Published As

Publication number Publication date
TW202323460A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
JP6317733B2 (ja) ポリアミド酸、及びこれを含むワニス、並びにポリイミドフィルム
JP7072140B2 (ja) ポリイミドフィルム
JP6274109B2 (ja) ポリイミド樹脂組成物
TWI593557B (zh) 透明耐熱氣體阻障膜之製造方法
WO2014041816A1 (ja) 透明ポリイミド積層体及びその製造方法
TW201700612A (zh) 樹脂組合物、聚醯亞胺樹脂膜及其製造方法
JPWO2016153064A1 (ja) ジアミンおよびその利用
WO2010100874A1 (ja) ポリアミド酸およびポリイミド、それらの製造方法、組成物ならびに用途
JP6545111B2 (ja) ポリイミド、ポリイミド溶液、ポリイミドフィルムおよびポリイミドフィルムを含有するプラスチック基板材料
JP2008168439A (ja) 金属白色ポリイミド積層体とその製造方法
TWI752982B (zh) 聚醯亞胺樹脂薄膜及聚醯亞胺樹脂薄膜之製造方法
KR102463960B1 (ko) 폴리아마이드산 및 이것을 포함하는 바니시, 필름, 터치 패널 디스플레이, 액정 디스플레이, 및 유기 el 디스플레이
JPWO2019131896A1 (ja) ポリイミド、ポリイミド溶液組成物、ポリイミドフィルム、及び基板
JPWO2017122730A1 (ja) ジアミンおよびその利用
WO2023032648A1 (ja) ポリアミド酸ワニスおよびポリアミド酸ワニスの製造方法
WO2018062422A1 (ja) ジアミンおよびその利用
JP7225427B2 (ja) ポリイミドフィルム、ポリアミド酸およびこれを含むワニス、ならびにポリイミド積層体およびその製造方法
JP2020059785A (ja) ポリアミド酸およびこれを含むワニス、ならびにポリイミドフィルムの製造方法
JP2014172978A (ja) 共重合ポリイミド前駆体および共重合ポリイミド
JP2021147407A (ja) ポリアミド酸ワニス、ポリアミド酸ワニスの透明性の測定方法、ポリイミドの製造方法およびポリイミドフィルム
WO2018186209A1 (ja) ポリイミド系フィルム及び表示装置
JP6795920B2 (ja) ポリイミド前駆体、樹脂組成物、ポリイミド含む樹脂膜及びその製造方法
EP3431525A1 (en) Method for controlling polyimide backbone structure and method for producing polyimide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/06/2024)